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Abstract

In this paper we fit non-linear models. We build Threshold Autoregressive
(TAR) and Generalized Autoregressive Conditional Heteroskedasticity (GARCH)
models and estimate the parameters associated to the models, e.g. the threshold
for the TAR model. The TAR and the GARCH model concept are applied to
simulated data and to three empirical datasets, two River flow time series and one
Blowfly data set. We observe significant non-linear effects from the tests for the
three empirical time series. Two different TAR models fit to the Blowfly data.
We fit ultimately TAR models to the river data sets. The fitted AR-GARCH
model does not give satisfactory results for the three empirical data sets.

Keywords: Non-linear Time Series, Threshold Autoregressive Model, ARCH,
GARCH.
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1 Introduction

1.1 Background

In the field of time series there are many linear processes that can be fitted by the
autoregressive moving average (ARMA) models. However, there are several time series
which do not exhibit a linear behaviour. These processes cannot be well fitted by the
common and popular ARMA models.

To adequately fit these non-linear time series, other more complicated models have to
be taken into account that has the ability to capture the dynamics of the series more
precisely.

Although many tests exist that has the capability of detecting the presence of nonlin-
earity there isn‘t any single dominating test that is able to pin down the exact type
of nonlinearity. Rather can the test available, suggest that some form of nonlinearity
structure is present in the data and perhaps aim towards a general class of nonlinear
models that should be examined closer.

1.2 Problem

Since the category of non-linearity includes such a wide range of different shapes that
a time series can take, the primary problem is that of correctly specify or approximate
the right kind of non-linearity and then fit a model to it. There are many different
models to choose from when it comes to non-linearity and choosing the best one may
be a matter of taste. Two analysts may choose different models for the same data.

The choice of model depends not only on the specific series under study as well as on
the characteristics of the model under consideration but also on the analysts experience
and background. The model that agrees the most with the features of the series being
analyzed should be applied and studied more thorough.

The models we are looking at in this thesis are the Threshold Autoregressive (TAR)
and the General Autoregressive Conditional Heteroskedasticity (GARCH) models. The
model that agrees the most with the features of the series being analyzed should be
applied and studied more thorough.

1.3 Purpose

The purpose of the thesis is to compare the characteristics and the performance of
different models developed to handle non-linearity and heteroskedasticity (time varying
variance). We use simulated TAR and GARCH data as well as three real TAR time
series data. We then apply the TAR and the GARCH models to the simulated and the
real data and evaluate the findings. In specific, we seek to find out if possible thresholds
is present in the data.
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2 The Data Sets

In the first part of the thesis, we simulate some TAR and GARCH processes and apply
the TAR and ARCH/GARCH models to the simulated data. By simulations we have
the benefit of observing the performance of each model to different kinds of data. In
the second part we apply the models to real data. The data sets used is the Blowfly
data set and two river flow data set taken from UK‘s centre of Ecology & Hydrology.

The A.J Nicholsons Blowfly data is a frequently used data in population ecology. It is
the data derived from the experiment which observes every other day, the population
change of 1000 blowflies caged in, with a restricted amount of food being available
daily.1 See Tong [12].

The data sets used in the second part are obtained from the home page of UK‘s centre of
Ecology & Hydrology.2 These data sets come from the measure station Easter Turnaig
which monitors the Oykel river flow which is operated by the Scottish Environment
Protection Agency (SEPA). The second data set comes from the Comber measure
station which monitors Enler river flow. The entire series measure from late 1977 till
2008 and includes some 11500 observations. For our particular analysis of the Oykel and
the Enler River, we consider only the measured series from 2005 to 2008, two samples
of totally 1461 observations. The flow of the rivers is measured in cubic metres per
second (also known as cumecs).

3 Models

3.1 Non-Linear Models

Among models for non-linearity we consider and further investigate are the TAR model,
introduced by Tong [11] and the ARCH model first presented by Engle [8] and further
developed by Bollerslev [2] to become the GARCH model. It should be noted that
there exist many different extensions and development of the above mentioned models.

For fitting the models we use Matlab and R. In R, we have downloaded the package
(TSA) which is a TAR model extension written by Chan [5]. We have also used a
Matlab-R link that establishes a connection between the two programs making it avail-
able to run commands to R from within Matlab. We use a significance level of 5%
throughout the analysis.

1The blowfly data set can be accessed at:http://robjhyndman.com/TSDL/data/blowfly.dat
2The river data sets can be found at: http://www.ceh.ac.uk/data/nrfa/river flow data.html
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3.1.1 The TAR and the SETAR Models

Threshold Autoregressive (TAR) models are commonly referred to as piecewise linear
models or regime-switching models. They consist of k, AR(p) parts where one process
change to another according to the value of an observed variable, a threshold. Once
the series cross the threshold value, the process takes on another value. TAR models
are usually referred to as TAR (k,p) where p is the autoregressive order in each regime.
Since there can be different numbers of autoregressive orders in each regime, the model
is sometimes denoted TAR(k).

The Self-Exciting Threshold Autoregressive (SETAR) model, first introduced by Tong
[11], is a special case of the TAR model. Here, the movements between the regimes are
controlled or governed by a variable called threshold just as in the TAR model with
the difference that the threshold of a SETAR model is Self-Exciting. This means that,
unlike the TAR model, where the threshold is assumed to be an exogenous variable,
the threshold variable of a SETAR model is a certain lagged value of the series itself,
an endogenous variable.

To estimate a time series with an assumed TAR model behavior it is essential to know
the value of the threshold parameter in the series. If the value of the threshold parameter
is known, the estimation of the TAR model is readily available. Then for example a two
regime TAR model can be represented by equation (1). The observations are sorted
according to if yt−1 is greater or smaller than the threshold value and each regime can
be estimated as a common AR process.

Yt = It[α10 +

p∑
i=1

α1iYt−i] + (1− It)[α20 +
r∑
i=1

α2iYt−i] + εt (1)

where the error term εt is a white-noise process and It is an idicator function such as

It = 1 if Yt−1 > τ and It = 0 if Yt−1 ≤ τ

and τ is the threshold variable that separates the two regimes. The more general form
also allows different error terms variances across regimes :

Yt =

{
α10 + α11Yt−1 + ...+ α1pYt−p + ε1t if Yt−1 > τ

α20 + α21Yt−1 + ...+ α2rYt−r + ε2t if Yt−1 ≤ τ
(2)

If the switch of the process takes more than one period to occur, then its appropriate
to select the delay parameter d which solely is the length of the lag of the threshold
variable, the size of the lag. The delay parameter is a positive integer. It may be
estimated along with the other parameters of the model. As with the estimation of the
threshold value, mentioned earlier, the estimation procedure of the delay parameter of
a TAR model is usually done for each potential value of the d. The model that yields
the smallest residual sum of squares makes the most consistent estimate of the delay
parameter.
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3.1.2 TGSP Algorithm

In most situations, the threshold value is unknown and needs to be estimated along with
the other parameters in the model. One way of finding the unknown threshold value
is the method proposed by Chan [4] mentioned in Enders [7]. The suggested approach
is based on the idea that the threshold value is one of the elements of the series itself.
We now can consider all of the elements of the series as a potential threshold value and
fit a model of the form (1) or (2) to each value of yt. Only the middle 70 or 80% of the
series is tested for the threshold. The reason for this restriction is to keep a satisfactory
amount of observations on each regime when estimating the threshold and the other
parameters in the TAR model.

We specify the regimes and estimate a model in each regime by least squares regression.
For each of the potential threshold the residual sum of squares is saved and we choose
the threshold value that is corresponding to the model with the least sum of squared
residuals. Putting it in a different way, it could be explained that the threshold model
seeks to divide the observations in such a way that each regime has a homoskedastic
error process.

Here the algorithm for finding the threshold is called the Threshold Grid Search Process
(TGSP), and a simple routine for it in MATLAB can be found in Appendix A.

3.1.3 The ARCH and GARCH Models

Autoregressive Conditional Heteroskedasticity (ARCH), first introduced by Engle [8]),
and Generalized Autoregressive Conditional Heteroskedasticity (GARCH), first intro-
duced by Bollerslev [2], models are models whose primary field of interest is in the
financial sector. They where originally developed to capture the dynamics of the condi-
tional volatility. Bollerslevs further development of Engle ARCH model lead to GARCH
model. The main difference from the ARCH model is that the GARCH allow for the
error terms to be modelled as an ARMA process. Two important characteristics within
the sector of financial time series are fat tails and volatility clustering, which can be
captured and explained by one of the members of the GARCH family models.

If we estimate a series with an ARMA model, and the conditional variance of this series
is not a constant and it is predicted with an AR(p) process of , then we have a time
series with ARCH effect; consider the following AR(1) process:

yt = a0 + a1yt−1 + εt (3)

where εt is the error process.

V ar(yt+1|yt) = Et(εt+1)
2 (4)

The estimated conditional variance is:

ε̂t
2 = α0 + α1ε̂

2
t−1 + α2ε̂

2
t−2 + ...+ αq ε̂

2
t−q + νt (5)
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where νt is a white-noise process.

Now consider that the error process of the fitted ARMA model is:

εt = νt
√
ht (6)

where the variance of νt process ,σ2
ν , is one.

ht = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiht−i (7)

Then we have GARCH(p,q).

3.2 Model Specification

Model selection is a set of steps designed to basically make the process of model selection
faster and easier. By following the below steps, misspecifications will much easier be
detected than if not following the steps, since the advancement of the models follow the
order of the steps.

1. Make a visual inspection of the data by plotting. This is to help determine the
shape of the potential nonlinearity. Structural breaks as well as outliers will
deviate from the pattern.

2. The second step is to fit the best linear model possible to the data. Then running
a set of tests will help evaluate if the residuals are serially correlated.

3. Step three is to test for non-linearity. We consider Tsay (Cryer & Chan [6]),
Keenan (Cryer & Chan [6]) and The Likelihood Ratio Test (Cryer & Chan [6] ).
Other test exists as well to alarm the presence of a non-linear behaviour, such as
the RESET test, the McLeod-Li test and various Lagrange multiplier tests. See
Enders [7] and Cryer & Chan [6].

4. In case non-linearity is found, then the appropriate form of non-linearity should
be determined. As there are many kinds of non-linearity, there is no general way.

5. The chosen non-linear model should make a better fit to the data than the linear
model, and all parameters should be significant.

3.2.1 Model Diagnostics

The other very important part of building a model, or even one of the most important
ones, is that of validating the residuals. In order for a model to be correctly speci-
fied, there shouldn‘t be any remaining structure in the residuals after having fitted a
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model. If there is, predictions from the model may be unreliable and misleading. That
would mean that the model to some degree failed to capture or explain the underlying
generating mechanism of the data.

On the other hand, if the model is correctly specified, then the remaining residuals
should be approximately independently identically normally distributed, in other words
white noise.

We assess the goodness of fit for the models and, if necessary, suggest appropriate
modifications in case of poor fit.

3.2.2 Calculations

The raw residuals from the TAR model are defined by subtracting the fitted value from
the data (Cryer & Chan 2008), where the t-th fitted value is the estimated conditional
mean of Yt given past values of Y ‘s; the residuals, ε̂t, are calculated as:

ε̂t = Yt − {Φ̂1,0 + Φ̂1,1Yt−1 + ...+ Φ̂1,pYt−p}I(Yt−d ≤ τ̂)

−{Φ̂2,0 + Φ̂2,1Yt−1 + ...+ Φ̂2,qYt−q}I(Yt−d > τ̂)
(8)

Standardised residuals are calculated to overcome the problem of different variances of
the raw residuals. The standardized residuals êt are obtained by normalization, which
is, dividing each of the raw residuals by their standard deviation.

êt =
ε̂t

σ̂1I(Yt−d ≤ τ̂) + σ̂2I(Yt−d > τ̂)
(9)

Other measures of spread we will use in the evaluation section is the Root Mean Squared
Error, RMSE.

RMSE =

√√√√1

τ

T+τ∑
t=T+1

(h2t − σ2
t )

2 (10)

where τ is the number of predictions, h2t is the real variance and σ2
t is the predicted

variance. The statistics give information about the spread of the residuals from a model
fit. It can be described as being the standard deviation of the residuals, if unbiased.

Another test used to check residuals is the Jarque-Bera test

JB =
n

6

(
S2 +

1

4
K2

)
(11)

where n is the number of observations, S is the sample Skewness, a measure of the
asymmetry and K the sample kurtosis, a measure of the flatness.
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This test uses the different moments of the sample to describe various characteristics
of the distribution. For example, the first moment is the mean, the second moment is
the variance, and third and fourth moment is the Skewness and Kurtosis respectively.
See Jarque & Bera [1].

(a) skewness (b) kurtosis

Figure 1: Visualisation of skewness and kurtosis

The normal distribution has skewness and kurtosis of both being equal to zero.

3.2.3 Overfitting and Parameter Redundancy

One way of assessing the performance of a model that has been specified is to fit another
model to the same data but with an additional coefficient. For instance, if we have a
TAR(2, 1, 1) model we may want to check if the TAR(2, 2, 1), TAR(2, 1, 2) or TAR(2,
2, 2) make a better one than our original model. The point of this procedure, called
over fitting, is to see if the additional coefficient(s) are significantly different from zero
as well as to see if the original estimates of the coefficients in the TAR(2, 1, 1) model
change significantly due to the extra added coefficient. An indication of the overall fit
of the model by this procedure allows us to make modifications if necessary.

3.2.4 Nonlinearity Tests

Portmanteau tests are residual based test that establish the degree of correlation a
variable has on itself on various time intervals. They operate under the null hypothesis
of residual independence. The alternative hypothesis is then that they are dependent.

We make use of various tests to assess if the series are nonlinear. The following tests
are used: ARCH/GARCH test, Ljung-Box Q test, Keenan test, Tsay test and the like-
lihood ratio test for threshold non-linearity. In addition, we look at the ACF of the
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residuals (squared as well) and consider the Jarque-Bera test for normality.

The ARCH/GARCH test we are mentioning here is the Lagrange Multiplier test sug-
gested by Engle [8] for pretesting a series whether ARCH model is appropriate for it or
not . The first step on ARCH/GARCH test is to have the residuals of an OLS regres-
sion; then the test statistic is the Lagrange Multiplier test statistic TR2 which is derived
from the regression of the squared residuals on a constant and p lags ; TR2, where T is
the number of squared residuals included in the regression and R2 is the sample mul-
tiple correlation coefficient, has χ2

p distribution. A built-in MATLAB routine is used
for this test. For further reading on Lagrange Multiplier test and the ARCH/GARCH
test, see Enders [7] and Engle [8].

The Ljung-Box Q-test is a typical portmanteau test which checks if the residual of an
estimated ARMA (p, q) model is white-noise or not. The test statistic is written as:

Q = T (T + 2)
s∑

k=1

r2k
T − k

(12)

The Q-statistic mentioned above has a distribution with s degrees of freedom. See
Enders [7].

The null hypothesis, H0, of the likelihood ratio test for threshold non-linearity is that
the fitted model to the series is an AR(p) model and the alternative hypothesis, H1,
is that the fitted model to the series is a TAR(k) model with autoregressive order p in
each regime. For example if, we suspect TAR non-linearity we estimate an AR(1) model
as the H0 and a TAR(2; 1, 1) as H1. The likelihood ratio test statistic of threshold
non-linearity (TLRT) is

Tn = (n− p) log

{
σ̂2(H0)

σ̂2(H1)

}
(13)

Where σ̂2(H0) is the sum of squared residuals of the fitted AR(p) model to the series
and σ̂2(H1) is the sum of squared residuals of the TAR(k) model fitted to the data.
The distribution of the test statistic is not a standard distribution. See Chan [3] and
Tong [13].

Keenan‘s test is based on approximating a non-linear stationary series by Volterra
expansion, which is:

yt = µ+
∞∑

µ=−∞

θµεt−µ +
∞∑

ν=−∞

∞∑
µ=−∞

θµνεt−µεt−ν (14)

where εt is a white noise process.
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The null hypothesis of the Keenan test considers that the coefficients of the double sum
part are zero and so the series is linear. The notations for Keenan test, TLRT test and
Tsay test is from Cryer & Chan [6].

The Tsay test is an expansion of Keenans test which allows for non-linearity detection
in a more general way. The point we should consider about Keenan and Tsay tests is
that they detect quadratic non-linearity and they cannot be adequate for TAR models
since they are linear in each regime. See Cryer & Chan [6].

4 Applications

4.1 Simulated Series

4.1.1 Simulated TAR Model

In this part we simulate a TAR model by help of a MATLAB routine presented in
appendix II. The algorithm used for simulation is a simple straight forward way of
doing it. The simulated model is:

Yt =

{
0.6yt−1 + εt if yt−1 ≤ −0.2 (Lower regime)

−0.9yt−1 + εt if yt−1 > −0.2 (Upper regime)
(15)

where εt has mean zero and variance 0.25. This series is a simple TAR(2; 1, 1) model
in which the two regimes can be distinguished easily. Figure 2 shows the plot of the
series versus the first lag values, which gives an overview of the two different regimes
separated by the threshold, here represented by the dotted red line.

Figure 2: Plot of the series versus its first lag values

Figure 3 shows the series versus time. In plot (a) and (b), we graph the two separated
series which build the TAR model; in the plot (c) it can be seen that the TAR(1) model
is not similar to any of the series which are building it; in plot (d) the elements of the
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upper and lower regimes of the TAR model are separated and it can be observed how
the TAR model uses the both series according to the threshold value to build the TAR
procedure.

Figure 3: Simulated TAR model; In plot (d) the red stars show the lower regime, and
the blue dots the upper regime.

Figure 4 shows the sample autocorrelation (SACF) and the sample partial autocorre-
lation (SPACF) for the simulated TAR(2, 1, 1) data, for the squared data, and for the
third power of the simulated series; although the SACF and PACF of the series itself
can not give much information on the non-linearity, the SACF of the higher powers
of the series can point out the non-linear correlation of the data. Here, the SACF of
the squared series point out correlation of the lags of the squared data which is an
indication of presence of non-linearity.
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Figure 4: The sampled ACF and PACF for simulated TAR models

Now we examine the data for possible serial correlation and non-linearity. Ideally, these
tests are able to pin down a suitable model that fits the data well. See Table 1.

Table 1: Results of pre-test for non-linearity of simulated TAR(2; 1, 1) data

Tests p-value test statistics critical value

ARCH/GARCH Test
Using up to lag 15 0.000 94.2181 24.9958
Using up to lag 20 0.000 97.0089 31.4104
Using up to lag 25 0.000 98.1159 37.6525
LBQ Test
Using up to lag 15 0.0047 32.9864 24.9958
Using up to lag 20 0.0007 46.3696 31.4104
Using up to lag 25 0.0022 49.8536 37.6525

It‘s clear that some kind of dependence is present, both the test for ARCH effect and
LB-Q test indicate that some form of heteroskedasticity in the data is present. Further,
the tests for detecting non-linearity all have p-values less than 0.000. Keenan, Tsay
and TLRT test suggest that the data is non-linear resulting in the test-statistics being
174.7, 70.74 and 28.79 respectively. Since the tests indicate heteroskedasticity; we try
to fit an ARCH or GARCH model to the data, which in this case a GARCH model is
not significant but an ARCH model is.

The estimated model with ARCH effect for the simulated data is:

yt = −0.10294 + εt (16)
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where the conditional variance is:

σ2
t = 0.077297 + 0.20838ε2t−1 (17)

In Table 2 the results of the fitted ARCH model is presented and it shows that the
estimated ARCH model in equation (16) is significant.

Table 2: Result of fitted ARCH model to the simulated TAR(2; 1, 1)

Parameter Value Standard Error T-statistic P-value

C -0.102 0.0143 -7.161 0.000
K 0.077 0.007 10.33 0.000

ARCH(1) 0.208 0.0778 2.677 0.011
AIC:297.572

4.1.2 Simulated GARCH Model

In this section, we try to fit a TAR model to a simulated GARCH model.The following
set of simulated data with GARCH(2,1) effect is considered:

yt = 0.35 + εt (18)

Where the conditional variance is:

σ2
t = 0.2004 + 0.1167σ2

t−1 + 0.2369σ2
t−2 + 0.4097ε2t−1 (19)

Figure 5 shows the plotted GARCH(2,1) model in equation (18) and its error term εt
is called innovations which is plotted in the second plot of Figure 5. The innovations
has a conditional variance which is AR(2) process in equation (19) and is shown in the
third plot of Figure 5.

Figure 5: The simulated GARCH model
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TGSP is used to find the threshold value for the simulated GARCH series; Figure 6
shows the sum of squared residuals(SSR) of the fitted models for the possible threshold
values and the estimated threshold by this method for the series with GARCH effect is
-0.2552 and the corresponding model for the threshold is:

Yt =

{
0.0533yt−1 + et1 if yt−1 ≤ −0.2552 (Lower regime)

0.0945yt−1 + et2 if yt−1 > −0.2552 (Upper regime)
(20)

Figure 6: The sum of squared residuals of the TAR models fitted to the GARCH data

But as it can be seen in Figure 6 the estimated Sum of Squared Residuals (SSR) of
the series are fluctuating a lot and it can be interpreted as either the GARCH model
has several thresholds or the SSR build a new non-linear process.The other point which
should be noticed is that since we have not considered the distribution of the threshold
value and the confidence interval for the threshold we can not choose this model as a
significant model, even if there might exist significant thresholds, because the algorithm
is unclear about the significance about the thresholds.

One of the possible tools to check the goodness of the fit for the model is that the resid-
uals of the fitted model should be independent and uncorrelated, and the independence
shall not be effected by transformations such as squaring. As we can see in Figure 7,
the residuals of the upper regime are correlated, and this can be an indicator of lack of
fit of the model.
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(a) (b)

Figure 7: Correlation function of residuals for upper and lower regimes

If we move further on and check the squared residuals we observe that the squared
residuals are not white noise and therefore the TAR model does not catch any of the
ARCH/GARCH characteristics of the series. See Figure 8.

(a) Upper regime (b) Lower regime

Figure 8: Squared residuals plotted for lower and upper regimes of the estimated TAR
model
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4.2 Real Series

4.2.1 The Blowfly Data

The plot of the blowfly data, presented in Figure 9 shows that either the original series
or the transformed one, doesn‘t follow a regular linear series.

(a) Original Blowfly data (b) Transformed Blowfly data

Figure 9: The Blowfly data

As it can be seen in Table 3, the tests of non-linearity show that the Blowfly population
does not follow a linear model, and the likelihood ratio test for threshold nonlinearity
(TLRT test) shows that a TAR model can be fitted to the data.

Table 3: Results of Blowfly data pre-test for non-linearity

Original Logarithm
Tests p-value test statistics p-value test statistics

ARCH/GARCH Test
Using up to lag 15 0.178 19.970 1.000 1.250
Using up to lag 20 0.355 21.730 0.842 13.760
Using up to lag 25 0.425 25.660 0.963 13.900
LBQ Test
Using up to lag 15 0.007 31.790 0.000 48.99
Using up to lag 20 0.000 63.110 0.000 113.5
Using up to lag 25 0.000 68.240 0.000 116.7
Keenan Test 0.000 48.800 0.000 29.70
Tsay Test 0.000 16.07 0.000 10.87
TLRT Test 0.000 27.26 0.000 89.59

In Tong [12], it is suggested that the linear model applied in the article lacks in fit
because it fails to catch two very important biological features, namely that there is a
threshold due to food limitation and that there is a delay due to development time of
the population till the flies mature.
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By using these arguments we fit a TAR model to the data. Here, we try to fit TAR mod-
els to both transformed 3 and untransformed data, and we get TAR(2; 1, 2) and TAR(2;
2, 2) models respectively, with threshold one at point 914.113, log10914.113 = 2.961,
and one at 4404.

Table 4: Result of TAR model fit for logarithm transformed Blowfly data

Model: TAR(2,1,2)
Delay parameter: 8
Estimated Threshold: 2.961
The threshold is searched from the 15 percentile to the 85 percentile of all data.
The estimated threshold is the 17.6 percentile of all data.
AIC: -319.8

Lower Regime Upper Regime
Coef. Est. Std.Err t-stats p-value Est. Std.Err t-stats p-value

Intercept 2.706 0.183 14.81 0.000 0.263 0.074 3.551 0.004
Lag1 0.264 0.051 5.147 0.000 1.261 0.057 22.07 0.000
Lag2 0.000 0.000 0.000 0.000 -0.343 0.059 -5.817 0.00

Nr of Observations is 64 Nr of Observations is 298
Residual Std.Err = 0.143 R = 0.999 Residual Std.Err = 0.154 R = 0.998
F-stat (df = 2,60) = 19998 p-value = 0 F-stat (df=3,288) = 46149 p-value = 0

The first threshold can be explained as the point where the population starts increasing
more rapidly as a consequence of high population of mature flies:

y∗t =

{
2.706 + 0.264y∗t−1 + e∗t1 if y∗t−1 ≤ 2.961

0.263 + 1.261y∗t−1 − 0.343y∗t−2 + e∗t2 if y∗t−1 > 2.961
(21)

where e∗t1 and e∗t2 are the error processes with specifications in Table 4.
Here y∗t−i = log

yt−i

10 for i = 0, 1, 2.

But the second threshold can be interpreted as the point where lack of food can cause
a noticeable decline in the process of population increase:

yt =

{
852.9 + 0.905yt−1 − 0.122yt−2 + et1 if yt−1 ≤ 4404

105.9 + 1.281yt−1 − 0.351yt−2 + et2 if yt−1 > 4404
(22)

where et1 and et2 are the error processes with specifications in Table 5.

3Logarithm in base 10 is used for the transformation.

18



Table 5: Result of TAR model fit for the raw Blowfly data

Model: TAR(2,2,2);
Delay parameter: 8.
Estimated Threshold: 4404
The threshold is searched from the 15 percentile to the 85 percentile of all data.
The estimated threshold is the 17.6 percentile of all data.
AIC: -319.8

Lower Regime Upper Regime
Coef. Est. Std.Err t-stats p-value Est. Std.Err t-stats p-value

Intercept 852.9 148.2 5.755 0.000 105.9 128.6 0.823 0.412
Lag1 0.905 0.066 13.70 0.000 1.281 0.071 17.91 0.000
Lag2 -0.122 0.065 -1.872 0.062 -0.351 0.073 -4.780 0.000

Nr of Observations is 251 Nr of Observations is 110
Residual Std.Err = 1199 R = 0.919 Residual Std.Err =708.4 R = 0.965
F-stat (df = 3,243) = 915.5 p-value = 0 F-stat (df=3,104) = 944.9 p-value = 0
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4.2.2 The River Flow in Northern Scotland

Figure 10: UK, Scotland and Ireland

Here we apply the TAR model con-
cept to the two rivers described earlier.
The catchment area for Oykel, the up-
per red dot, is 330.7 km2. For Enler
River, the catchment area is significantly
smaller, 61.8 km2. Here, catchment area
refers to drainage basin which is an area
where rainwater and melting water from
snow and ice drains downhill towards a
river, lake, reservoir, sea or ocean. The
drainage basin includes all land and wa-
terways available that conveys the wa-
ter to the specific point in that drainage
basin to where the water gathers up,
the river of Oykel or Enler in this case.
One drainage basin is separated from an-
other one by the topography, settlement,
mountains, forest etc.

To the left side, a map over the UK,
Scotland and Ireland shows the position
(red dot) on the top centre of the East-
ern Turnaig Oykel river flow and Comber
station that measure the river of Enler
close to Ireland. This region and per-
haps specifically Scotlands climate is to
a large degree defined by the Gulfstream

which passes just north of Scotland. Due to the Gulfstreams position, Scotlands climate
is mild and warmer than other places with similar positioning in the world. In general,
the climate could be described as being very changeable. Rain fallowed by sun or vice
versa is rather common throughout the day as well as wide variations in climate over
short distances. The months that have the lowest precipitations are May and June.
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The Oykel River

Figure 11: Oykel riverflow data taransformed and untransformed

The time series is plotted in its original, untransformed shape and in its transformed
shape. We see that the original series exhibit great variations, such as cycles, on a yearly
basis. Further, the cycles seem to indicate very low activity around the months of May
to June and, except for these months, the rivers behaviour is very temperamental the
rest of the year.

The behaviour of the Oykel River and other rivers in this part of Scotland are probably
greatly influenced by the catchment area through which they flow and the capacity of
the catchment area is to a large extent influenced by the climate at a given time of year.
We assume that a very intensive rainfall will result in an inability of the catchment area
to absorb all the water and thus lead to some sort of surface runoff, where water flows
more or less rapidly, pending on the topography of the area, towards the natural gather
point to, e.g. the river. In that case, it would mean that the rainfall exceeded some sort
of critical point to where the soil could handle, absorb all the water. The catchment
capacity is then full and the response of the soil accounting for all the water may result
in surface runoffs, and probably a greater chance of flooding and erosions.

In the opposite case, when no or very little precipitation has occurred for a period of
time, droughts would be more probable to occur. The event of passing the threshold
isn‘t longer that probable because the capacity of the soil to absorb the water will have
drained by some kind of constant demand.
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This diversity of climate at different time points of the year as well as the complexity
of the structure of water flows in the catchment area may point towards the need to
apply a TAR model to the data for the reasons described. Firstly, the climate in this
part of Scotland is very erratic, with very high perks and low downs. Secondly, if the
level of the river is triggered by a threshold, the soils inability to absorb water, it seems
natural to consider a TAR model with this feature inbuilt.

(a) (b)

Figure 12: Q-Q plot of Oykel river data, raw and transformed

We perform a logarithmic transformation to the series in order to attempt to:
a) Make a better fit to our model.
b) Normalize the data in respect to the variance, e.g. make it more homoskedastic.
c) To increase the importance of small values and to reduce the impact of large values.

The transformation of the logarithm of the river data result in the skewness and the
kurtosis to change drop drastically from 2.55 and 11.19 to -0.12 and 2.33, respectively.
We expect this to have a large effect in the analysis, improving the fit and normalize
the data, although the remaining data display a leptokurtic shape.

Following the steps in the model specification part, we start with the simplest model.
We have already seen the plot of the data. Next step is to have a look at the SACF
and the SPACF.
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Figure 13: Sampled Autocorrelation and Sampled Partial Autocorrleataion of the log-
transformed Oykel river data

We see that it is an Autoregressive process. We examine the ACF as well as the PACF
plots of the logarithmic Oykel river flow series and get a rough visual estimate of the
number of parameters we shall include in the ARMA model. Initially one can say one or
perhaps two or even three AR parameters. The number of MA parameters will initially
be set to zero, however this may change later on.

Table 6: Results of the fitted ARMA models to Oykel river data

Model 1 Model 2 Model 3 Model 4 Model 5
ARMA(p,q) (1,0) (2,0) (3,1) (4,0) (3,2)
AIC 3041 3040 3023 3030 3018
SSR 682.7 680.9 670.7 673.8 667.5
RMSE 0.684 0.683 0.679 0.680 0.677

We tried to fit many different ARMA models to the data and some even including MA
parameters. We also considered the AR(2) but a closer examination of the ACF of the
residuals revealed serial correlation at different lag intervals so this model was rejected.
The model with the best fit in respect to AIC, RMSE and SSR is the last estimated
model. It is an ARMA(3, 0) model.
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However, it is possible to drop the Moving Average term without a too big of a loss in
goodness-of-fit.

Balancing between these two models, ARMA(3, 1) and AR(3), is perhaps a matter of
personal preference. However, we choose the AR(3) for a couple of reasons, one being
that the model containing only three coefficients is more parsimonious, that is, it is
simpler to interpret than the other one that contain four parameters. Other reasons
are that the residuals of the AR(3) model are as good as those form the ARMA(3, 1)
model. From this perspective, it seems more reasonable to choose the AR(3) above. We
find no evidence of ARCH/GARCH effects, and we decide to leave the ARMA model
as that.

Table 7: Results of the fitted ARMA(3,0) model to Oykel river data

Coefficients Estimates Std. Error Test Statistics p-value
Intercept 0.293 0.036 8.214 0.000
AR1 0.904 0.026 34.71 0.000
AR2 -0.140 0.035 -3.994 0.000
AR3 0.097 0.026 3.723 0.000
RMSE=0.680 SSR = 674.1 AIC = 3028

Table 8: Results of pre-test for non-linearity of Oykel river data

Tests p-value test statistics critical value

ARCH/GARCH Test
Using up to lag 15 0.867 9.19 24.99
Using up to lag 20 0.951 10.7 31.41
Using up to lag 25 0.976 13.0 37.65
LBQ Test
Using up to lag 15 0.838 9.69 24.99
Using up to lag 20 0.769 15.1 31.41
Using up to lag 25 0.802 18.8 37.65

The diagnostics checking of the residuals and the overall fit look well. We do not suspect
non-linearity at this time. The hypothesis of GARCH effect is rejected. Our residuals
look like noise. However, not to be surprised later on, we do test for non-linearity. The
tests are carried on from the AR(3) in Table 9.
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Table 9: Results of test for non-linearity of Oykel river data

Tests p-value test statistics

Keenan Test 0.000 105.1
Tsay Test 0.000 16.27
TLRT
Setting p=3, d=1 0.000 112.30
Setting p=3, d=2 0.005 33.53
Setting p=3, d=3 0.008 21.64

Here we see the result from the test for non-linearity. We see that they all indicate the
presence of some kind of non-linearity at 5% significance level. Keenan and Tsay test
indicate that quadratic nonlinearity is present, TLRT that we may have a potential
threshold model with two regions.

As we at this point only consider GARCH and TAR models to model non-linearity,
we are probably at risk of misspecification. We have ruled out the GARCH since
diagnostics did not support this kind of non-linearity in the variance. We decide to
estimate a TAR(k) model and in the following step we enable a grid search to find
potential thresholds in the series.

(a) (b)

Figure 14: Oykel river flow, raw and transformed plot of potential thresholds vs SSR

The threshold grid search procedure, TGSP, described earlier, plots the results of the
TAR models of the middle 70% observations against their SSR to find potential thresh-
olds. The threshold corresponding to the smallest residual sum of squares is chosen.
We add that when searching for the threshold in the untransformed data we did not

25



yield any satisfying result, no through or dip was encountered in the plot that indicated
a possible threshold.

The second figure of the logarithmic transformation does indicate several potential
thresholds. Interpretation is not straightforward without a confidence interval; a sudden
drop of a large magnitude could suggest that there exist several thresholds. The first
around y = 0.8, the second around y = 1.2, a third around y = 1.5, and the fourth
around y=2.6.

We first fit a TAR (2, 1, 1) model with delay set to 1 to the Oykel River flow data set.
Then we fit another model of form TAR (2, 2, 1), d=1 and continue in this fashion by
adding and removing parameters untill we are satisfied. Our criterion for goodness-of-
fit is the Akaike criterion in combination with SSR, RMSE, numbers of parameters etc.
Simply put, we look for the most parsimonious model.

Table 10: Results of the fitted TAR models to transformed Oykel river data

Model 1 Model 2 Model 3 Model 4 Model 5
TAR(k) (2; 1, 1) (2; 2, 1) (2; 3,1) (2; 1, 2) (2; 2, 2)
Threshold 0.827 1.497 1.497 0.8207 1.497
Observation 268;1193 479; 982 481; 908 268; 1193 479;982
Delay 1 1 1 1 1
AIC 2983 2932 2930 2975 2928
SSR 665.1 636.0 636.5 660.9 634.4
RMSE 0.675 0.661 0.661 0.673 0.660
LB-Q test (p-values)
Using up to lag 15 0.049 0.089 0.093 0.614 0.408
Using up to lag 20 0.082 0.103 0.108 0.612 0.352
Using up to lag 25 0.151 0.206 0.209 0.677 0.480
ARCH test (p-values)
Using up to lag 15 0.859 0.943 0.943 0.871 0.929
Using up to lag 20 0.937 0.971 0.970 0.938 0.963
Using up to lag 25 0.972 0.981 0.980 0.969 0.974
J-B test (p-values) 0.000 0.000 0.000 0.000 0.000

In addition to the models in Table 10, we also estimated various models with different
delay parameters. None of them resulted in a better fit. Examining the outcomes of
the results in Table 10 closer, it seems like the models with an estimated threshold of
1.5 all have better goodness of fit compared to the models that where estimated with
a threshold of 0.8. The models above are all rather similar in terms of model fit. We
also fit another model, a TAR(2; 2, 3), and let it represent the final choice of model.
The main reason for choosing the TAR model below is that the diagnostics yielded the
best result.
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Table 11: Result of the best fitted TAR model to the transformed Oykel river data

Model: TAR(2,2,3)
Delay parameter: 1
Estimated Threshold: 1.497
The threshold is searched from the 15 percentile to the 85 percentile of all data.
The estimated threshold is the 32.9 percentile of all data.
AIC: 2918 SSR: 629.4 RMSE: 0.657

Lower Regime Upper Regime
Coef. Est. Std.Err t-stats p-value Est. Std.Err t-stats p-value

Const. 0.202 0.039 0.189 0.000 0.739 0.085 8.727 0.000
Lag1 1.906 0.118 16.089 0.000 0.767 0.032 24.33 0.000
Lag2 -0.823 0.101 -8.115 0.000 -0.137 0.036 -3.806 0.000
Lag3 — — — — 0.086 0.028 3.079 0.002

Nr of Observations is 481 Nr of Observations is 980
Residual Std.Err = 0.603 R = 0.741 Residual Std.Err =0.684 R = 0.946
F-stat (df = 3,476) = 453.28 p-value = 0 F-stat (df=4, 975) = 4238 p-value = 0

From the output of the selected model we firstly start off with transforming the thresh-
old back to its original scale. The threshold of translates into circa 4.47 cubic metres
of water.

This can be interpreted as being the critical level of what the catchment basin can
support in terms of water storage in the soil before the excess water beyond the threshold
of 4.47 cubic meters start responding with surface runoffs. If the total amount of water,
including melted snow and ice, rain and hail exceeds that level, the predicted level of
water will pass the threshold and the consequences result in a higher probability of
floods, erosions and landslides since the water will have no way to go.

As seen in the time series plot of the Oykel river flow, once the threshold is exceeded,
the response of the rivers behaviour is very episodic and erratic. The upper regime is
to a larger extent more influenced by the previous periods. This is perhaps because
of when more persistent rain periods occur, the water does not disappear as fast as in
periods of less rain.

The storage capacity of the catchment gets more and more filled up and as the rain
falls over the entire area, the first water reaches the river within a short period of time.
Water that falls further away has to travel longer, through different layers of soil, and
the effect of all these factors may result in a longer delay.

On the other hand, when the amount of water lie under the threshold, the predicted
water response is fairly predictable, not varying too much. During the dry month,
with lower precipitation, it seems like whenever the threshold is crossed, the catchment
response doesnt collapse.
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In between the heavy rainfalls during the dry middle months, the soil is able to drain the
water falling into the catchment area and keep the storage of water emptier than during
rainy periods. This is because of the soils constant demand for water is higher, probably
due to vegetation, underlying canals etc, than the total amount of precipitation in the
area so the threshold is not being crossed. In the lower regime, the present amount
of cumecs is greatly influenced by the two previous periods. Warmer weather and
evaporation makes the water level less dependent to previous precipitation.

Y ∗t =

{
0.202 + 1.906y∗t−1 − 0.823y∗t−2 + e∗t1 if y∗t−1 ≤ 1.497

0.739 + 0.767y∗t−1 − 0.137y∗t−2 + 0.086y∗t−3 + e∗t2 if y∗t−1 > 1.497
(23)

where e∗t1 and e∗t2 are the error processes with specifications in Table 11. Here y∗t−i =
log

yt−i

10 for i = 0, 1, 2, 3.

The Enler river

Another river we will have a look at is the river of Enler. The series consists of 1461
observations here as well. In between 27/8-2008 to 3/9-2008, a total of 8 observations
were missing from the dataset. Missing data is probably unavoidable in the long run,
and the deciding upon a strategy for handling them will aid in the analysis. When
faced with missing data there are a few options available. Dependent on the dataset in
use, its size and characteristics, there are a few things to do.

One can simply ignore them and delete them, which lead to loss of information in one
or another way.

The most common thing to do is to use various imputation methods. Imputation is a
replacement method where the missing value is substituted in on or another way.

There is a wide range of different ways to do the imputation. One can replace the
missing value with the mean of the entire dataset. This approach is likely to be good if
the data set doesn‘t display too much variety. We apply an imputation technique called
hot deck imputation, Tsikriktsis [14]. The hot deck imputation method is simple; here
we substitute the missing data by real data from a similar case of the original set for
which the data isn‘t missing.

For instance, for this dataset we consider replacing the missing data with real data from
periods with similar record, here from September to February. Since the frequency of
missing data only is about 0.5 % we do not expect imputation in this case to be a
potential threat to our analysis. We assume that the values to be replaced have no
negative effect in the analysis.
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Table 12: Result of Hot Deck Imputation

Day Month Year Value
27 8 2008 0.604
28 8 2008 0.656
29 8 2008 0.696
30 8 2008 0.709
31 8 2008 0.762
1 9 2008 0.845
2 9 2008 0.961
3 9 2008 1.010

We begin our analysis by plotting the river in its untransformed and transformed shape.
This river has a much lower water flow in cumecs than does Oykel River. One very
noticeable feature of the river that struck us is that the middle 4-6 months are rather
calm, with year 2007 as an exception. When the precipitation does occur, the rivers
response seems irregular and somewhat sporadic throughout the year, almost clustering
up. It should be remembered that the river is quite small, about one tenth of the size
of Oykel in terms of cumecs. The catchment area is also a lot smaller, being about 5
times smaller than that of the Oykel.
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Figure 15: Enler river data, original and transformed data

First impression of this series that struck us is the resemblance of a GARCH model.
Later on, we shall see if the GARCH model fit the series.

As in the previous analysis of Oykel, after having inspected ACF and PACF, the initial
autoregressive order to include is about three. We evaluate as before, various combina-
tions of model settings and select the best fitting linear model.

Table 13: Results of log of the Enler River

Model 1 Model 2 Model 3
ARMA(p, q) (1, 0) (2, 0) (3, 0)

AIC 1680 1678 1669
SSR 269.0 268.1 265.9

RMSE 0.429 0.428 0.427

The model we select is the first one. It seems reasonable, having only one parameter
and have as much explanatory power as the other ones. The residuals are checked for
disturbances, we check the squared residuals as well. From the tests, we can see that
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there may be something fishy at lag 25 for the LB-Q test, which should be investigated
further. A visual inspection could reveal more than the numerical test, so we plot the
residuals from the AR(1) model.

Table 14: Test of residuals for ARCH/GARCH effect

Tests p-value test statistics critical value

ARCH/GARCH Test
Using up to lag 15 0.210 19.07 24.99
Using up to lag 20 0.393 21.07 31.41
Using up to lag 25 0.287 28.44 37.65
LBQ Test
Using up to lag 15 0.082 23.08 24.99
Using up to lag 20 0.080 29.40 31.41
Using up to lag 25 0.020 41.51 37.65

Figure 16: Residuals of Enler river data from AR(1)

An instant impression tells us that some kind of structure is present. The residuals
do not seem normally distributed, rather clustering up sporadically. We suspect that
arch effect or some other mechanism is in present in the data. However though, there
is little support for arch effect. We will estimate an AR(1)-GARCH(1, 1) and see if we
can catch the underlying dynamics.
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Table 15: Result of AR(1)-GARCH(1, 1) fit to Enler river data

Parameter Estimate Sts.Error Test Statistic p-value

C -0.054 0.020 -2.635 0.013
AR(1) 0.923 0.012 74.88 0.000
K 0.026 0.004 6.266 0.000
GARCH(1) 0.799 0.029 27.35 0.000
ARCH(1) 0.057 0.010 5.300 0.000
AIC = 1661

A model taking the form AR(2)-GARCH(1,1) was also estimated. Its AIC is 1649.
When dividing the Innovations with the Sigmas, there should be a white noise if the
model is correct for the data; unfortunately it is not, residuals from this model are
not normally distributed as well. More GARCH coefficients where estimated but the
residuals didnt yield normality.

Figure 17: Innovations divided by Sigmas from AR(1)-GARCH(1, 1)

The structure does not resemble normal homoskedastic process. We conclude that
the AR-GARCH models do not work for this particular data set. Having ruled out
AR-GARCH, the only one remaining to test and estimate is the TAR model. The
tests for non-linearity indicate that quadratic nonlinearity is present as well as a pos-
sible threshold alternative. The AR model under the null hypothesis is tested against
the alternative, a TAR model with autoregressive order one in each regime and delay
parameter equal to one.

Table 16: Results of test for non-linearity

Test p-value Test-stat

Keenan Test 0.000 62.45
Tsay Test 0.000 37.38
TLRT
Setting p=1, d=1 0.000 50.7840

With the threshold search algorithm enabled, we search for thresholds in both the raw
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and transformed data. As seen in the plots, no visible threshold is present, just a slope.
A threshold would look like a single through in the plot.

(a) Raw data (b) Transformed data

Figure 18: Plot of potential thresholds vs SSR, original and transformed Enler river
flow data. There is some indications of a potential threshold at the value y= -0.955.

Table 17: Result of TAR model fit

Model: TAR(2, 1, 1)
Delay parameter: 1
Estimated Threshold: -0.955
The threshold is searched from the 15 percentile to the 85 percentile of all data.
The estimated threshold is the 44.8 percentile of all data.
AIC: 1584 SSR: 129.9 RMSE: 0.269

Lower Regime Upper Regime
Coef. Est. Std.Err t-stats p-value Est. Std.Err t-stats p-value

Const. -0.090 0.055 -1.611 0.1075 -0.045 0.017 -2.702 0.007
Lag1 00.917 0.033 27.6922 0.0000 0.789 0.023 33.54 0.000

Nr of Observations is 665 Nr of Observations is 796
Residual Std.Err = 0.354 R = 0.954 Residual Std.Err =0.473 R = 0.587
F-stat (df=2, 651)=6969 p-value = 0 F-stat (df=2, 804)=572 p-value = 0

Since we have no support for the GARCH, we conclude that the best model would be
the linear AR(1) or the piecewise linear model TAR(2, 1, 1) d=1. The residuals of the
TAR model are still subject to serial correlation at certain lags, but less than from the
AR(1) model.

In deciding which model to choose, considering that both models are subject to serial
correlation, and that the AR(1) model is simpler than the TAR model perhaps the AR
seems as a better choice. One aspect that the TAR model captures, which is interesting
in this case, is the threshold opposed to the AR. The TAR model allows us to more
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precisely inference on the rivers behaviour so we choose this one. The regimes are
separated by the threshold of 0.385 cumecs.

When the rivers flow is below the threshold, it is easier to predict. The soil has more
capacity to store the water and rain doesnt have a very large impact on the river
flow. When the river flow exceeds this threshold and enters another state, the behavior
of the river change. In this new state, drastic changes are expected from whenever
precipitation occurs and the rivers response becomes much harder to predict.
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5 Conclusions and Discussions

5.1 Conclusions

After performing the diagnostic tests and modelling procedures, there were some results
obtained for the simulated data sets and for real data sets.

For the simulated data, we were successful in fitting a GARCH model to the simulated
TAR series and a TAR model to the simulated GARCH series. Although it was possible
to fit another model to the real data one should pay careful attention about the choice
of model before finally making a selection. Numerical measures of goodness of fit is
without hesitation of utmost importance when fitting a model, but there are other
criterias to consider as well, such as the relevance of the model to the data to be fitted.

There were two different TAR models fitted to the Blowfly data while there was no
ARCH effect detected and therefore no ARCH/GARCH model could be fitted to the
data.

To a certain degree the result of the Oykel and the Enler data indicate that the threshold
models may be appropriate for modelling and analysing these two rivers.

For the Oykel, the TAR model performed slightly better even though the AR(3) model
was simpler. Any GARCH effects were not supported for.

The second river, Enler, was also tested for thresholds. Here, we encountered ARCH
effects but when investigating it closer, the fitted AR-GARCH model didn‘t give sat-
isfactory result. Here we ultimately compared the AR and the TAR model and finally
choose the simple TAR model which performed better than the other models.

It‘s realistic to think of the cumecs in the river as a result of different degrees of rain
precipitation. Depending on many factors, such as layers of soil, the distance that
the water has to travel to the river, the catchment will respond differently, even to
a similar precipitation depending on if the previous time periods where subject to
rainfall or not. Depending on the current state, once the crossing of the threshold is
made, the catchment enters a new state, to where its now unstable and the probability
of landslides, erosions and floods increases.

5.2 Discussions

A potential question in this inference for the Blowfly data is whether the upper regime of
the logarithmic threshold and the lower regime of the untransformed threshold collapse
on each other so that there is a three regime TAR model.

We should also take into consideration that the population dynamic cannot be well
explained with a simple TAR model, because it is quite difficult to choose the delay
and threshold which best explains the data and perhaps a more complicated function
of threshold and delay parameter is needed for modeling.
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Another way to go further into modeling of the population data sets such as Blowfly
data is to consider a dynamic threshold variable in which the switching threshold value
while going from lower regime to upper regime is different from the threshold value of
going back from upper regime to lower regime.

While fitting a TAR model to the data, we need to estimate the unknown threshold
value and consequently we need to find the confidence interval for the threshold. The
problem we face for calculating the critical values of the threshold variable is that
we should know the distribution of the threshold variable which is not a standard
distribution. There are bootstrap methods for finding the distribution, and a solution
similar to finding the critical values for maximum likelihood ratio tests for finding the
critical values. See Enders [7], Hansen [10] and Joliffe & Jones & Garthwaite [9].

In the fitting of TAR models to rivers, it would be interesting to estimate a three regime
TAR model that has the dynamic to model whether the catchment are in drought,
medium rain precipitation or intensive rain precipitation. For this, we would have to
engage in the challenge to program an algorithm, more complicated, that would need
further restrictions.

The Oykel River, in Northern Scotland showed evidence of multiple regimes. This
may point towards a three-regime TAR model, where the lower regime describe the
river system in times of drought, a middle regime that describe the river system in
periods of medium precipitation and finally the upper regime that would describe the
river system in times of heavy rain downfall. A three regime TAR model would more
accurately describe the behaviour of the rivers respond to different degrees of rainfall,
or seasons of the year, of the catchment area.

36



References

[1] Jarque C. Bera A. Efficient tests for normality, heteroskedasticity and serial inde-
pendence of regression residuals: Monte carlo evidence. Economics Letter, 7:313
318, 1981.

[2] T. Bollerslev. Autoregressive conditional heteroscedasticity with estimates of the
variance of united kingdom inflation. Econometrics, 31:307–327, 1986.

[3] K. S. Chan. Percentage points of likelihood ratio tests for threshold autoregression.
Journal of the Royal Statistical Society, 53:691–696, 1991.

[4] K. S. Chan. Consistency and limiting distribution of the least squares estimator
of a threshold autoregressisve model. The Annuals of Statistics, 21:520–533, 1993.

[5] K. S. Chan. TSA: Time Series Analysis, 2008. R package version 0.97.

[6] Chan K.S. Cryer, J. Time Series Analysis [electronic resource]: With Applications
in R. Springer Science + Business Media, New York, 2008.

[7] W. Enders. Applied Econometric Time Series. John Wiley Sons, third edition,
2004.

[8] Robert F Engle. Autoregressive conditional heteroscedasticity with estimates of
the variance of united kingdom inflation. Econometrica, 50(4):987–1007, July 1982.

[9] Joliffe I. Jones B. Garthwaite, P. Statistical Inference. Prentice Hall, London,
1995.

[10] B. E. Hansen. Inference in tar models. 1996. Forthcoming in Studies in Non-linear
Dynamics and Econometrics.

[11] H. Tong. Threshold Models in Non-linear Time Series Analysis. Springer, New
York, 1983.

[12] H. Tong. Non-linear time series modelling in population biology: A preliminary
case study. Lecture Notes in Control Information Science, 106, 1988.

[13] H. Tong. Non-Linear Time Series :A Dynamical System Approach. Oxford Uni-
versity Press, Clarendon New York, 1990.

[14] N. Tsikriktsis. A review of techniques for treating missing data in om survey
research. Operations Management, 24:53–62, 2005.

37



A MATLAB routine for TGSP

function[tau b minr y1 y2]=tauest(y)

% Gets the time series as input and estimates the threshold value

% tau <-- the threshold value

% b <-- the coefficients of the AR models estimated in each regime

% minr <-- the residuals corresponding to the estimated threshold

% y1 <-- the elements of the series in lower regime

% y2<-- the elements of the series in upper regime

[a ind]=sort(y);

mini=ceil(.15*length(a));

maxi=ceil(.85*length(a));

z1=[];z2=[];

residuals=ones(1,maxi-mini+1)*1000000;

size(residuals);

for i=mini:maxi

for j=1:length(y)-1

if y(j)<a(i)

z1=[z1;y(j+1) y(j)];

else

z2=[z2;y(j+1) y(j)];

end

end

[b1(i,:) bint1 r1]=regress(z1(:,1),[ones(size(z1(:,2))) z1(:,2)]);

[b2(i,:) bint2 r2]=regress(z2(:,1),[ones(size(z2(:,2))) z2(:,2)]);

z1=[];

z2=[];

residuals(1,i-mini+1)=sum(r1.^2)+sum(r2.^2);

end

min(residuals(1:end));

[stres ind2]=sort(residuals(:));

minr=residuals(ind2(1));

tauind=ind2(1)+mini-1;

tau=a(tauind);

b=[b1(tauind,:);b2(tauind,:)];

figure

plot(a(mini:maxi),residuals(:))

hold on

xlabel(’ Sorted \ity_t’);

ylabel(’Residuals’)

hold off

y1=y(y<tau);
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y2=y(y>tau);

end

B Matlab routine for simulating a TAR model

function[y]=tar(p1,p2,tau,d,n)

% p1: arma coefficient vector for the lower regime

%(The first value should be the constant)

% p2: arma coefficeint vector for upper regime(The first value should be

% the constant)

% tau: threshold value

% d: the delay parameter

% n: number of simulations wanted

p1n=length(p1);

p2n=length(p2);

p=max(p1n,p2n);

y=[rand(d,1);zeros(n-d,1)];

lagy=zeros(n,p);

lagy=[ones(n,1),lagmatrix(y,[1:p])];

lagy(isnan(lagy))=0;

figure

hold on

for j=d+1:n

if y(j-d)<tau

y(j)=sum(lagy(j,1:p1n)*p1’)+normrnd(0,.25);

lagy=[ones(n,1),lagmatrix(y,1:p)];

lagy(isnan(lagy))=0;

plot(j,y(j),’*’)

else

y(j)=sum(lagy(j,1:p2n)*p2’)+normrnd(0,.25);

lagy=[ones(n,1),lagmatrix(y,[1:p])];

lagy(isnan(lagy))=0;

plot(j,y(j),’r*’)

end

end

hold off

figure

y=y;

y2=y.^2;

y3=y.^3;

save y y;

load y;
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figure

subplot(2,1,1); plot(y); hold on; plot(1:length(y),tau,’r’);

title(’yt series’)

subplot(2,2,4); plot(sort(y));hold on; plot(1:length(y),tau,’r’);

title(’yt series sorted ascending’)

subplot(2,2,3); plot(tau,y,’r’); hold on;

for i=d+1:length(y)

hold on

plot(y(i-d),y(i));

end

hold off

figure

subplot(2,2,1); autocorr(y,36,0,1.96); title(’ACF of y’)

subplot(2,2,2); parcorr(y,36,0,1.96); title(’PACF of y’)

subplot(2,2,3); autocorr(y2,36,0,1.96); title(’ACF of y^{2}’)

subplot(2,2,4); autocorr(y3,36,0,1.96); title(’ACF of y^{3}’)

end
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