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Abstract  

While only about 30% of California’s usable water storage capacity lies at higher 
elevations, high-elevation hydropower units generate on average 74% of California’s 
in-state hydroelectricity. In general, high-elevation plants have small man-made 
reservoirs and rely mainly on snowpack. Their low built-in storage capacity is a 
concern with regard to climate warming. Snowmelt is expected to shift to earlier in 
the year and the system might not be able to store sufficient water for release in high-
demanding periods. Previous studies have tried to explore the climate warming 
effects on California’s high-elevation hydropower system by focusing on the supply 
side (exploring the effects of hydrological changes on generation and revenues), 
ignoring the warming effects on hydropower demand and pricing. This study extends 
the previous work by simultaneous consideration of climate change effects on high-
elevation hydropower supply and demand in California. Artificial Neural Network 
(ANN) models are developed as long-term price forecasting tools to estimate the 
impact of climate warming on energy prices.  California’s Energy-Based Hydropower 
Optimization Model (EBHOM) is then applied to estimate the adaptability of 
California’s high elevation hydropower system to climate warming considering the 
warming effects on hydropower supply and demand. The model is run for dry and wet 
warming scenarios, representing a range of hydrological changes under climate 
change. EBHOM’s results relative to energy generation, energy spills, reservoir 
energy storage, and average shadow prices of energy generation and storage capacity 
expansion are examined and discussed. The modeling results are compared with 
previous studies to underline the importance of consideration of climate change 
effects on hydroelectricity demand and pricing in exploring the effects of climate 
change on California’s hydropower system.  
 
 
Keywords: Hydropower, Climate Change, Electricity Generation, Demand and 
Pricing, Artificial Neural Network, California, High-elevation Hydropower Systems. 
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1 Introduction 

Hydropower facilities in California generated on average 37,000GWh or 15% of the 
annual in-state generation between 1983 and 2001, ranging annually between 9% and 
30% depending on hydrological conditions (McKinney et al., 2003). When 
precipitation runoff is plentiful, hydroelectric generation is prioritized while other 
power plants, mostly gas-fired facilities, may be shut down temporarily (McKinney et 
al., 2003). Hydroelectricity’s very low cost, near-zero emissions and load following 
capacity are some of the reasons for its great popularity (McKinney et al., 2003; Pew 
Center on Global Climate Change, 2009). The state of California has the second 
largest hydropower system in the US behind the state of Washington, with a total 
hydroelectric capacity over 14,000 MW representing 25% of California’s electricity 
generation capacity (McKinney et al., 2003). California also relies on hydroelectricity 
imports from the Pacific Northwest including the states of Oregon and Washington, 
and Canada (Aspen Environmental Group and Cubed, 2005).  
 
California’s statewide average temperatures are expected to rise between 3°F and 
10.5°F by 2100 (CCCC, 2006, Cayan et al. 2008). This temperature increase is 
expected to decrease the state’s snowpack reserve at high elevations and shift the 
runoff from snowmelt to an earlier period of the year than today (CCCC, 2006). 
Variations in the annual runoff pattern may significantly alter hydropower generation 
depending on the system’s storage and generation capacities. California’s state is 
currently encouraging active research on the adaptability of hydropower systems to 
climate change (e.g. Aspen Environmental Group & Cubed, 2005; Tanaka et al., 
2006; Medellin-Azuara et al., 2008; Vicuna et al., 2008; Vicuna et al., 2009; Madani 
and Lund, in press). Besides affecting the availability of water for electricity 
generation, higher temperatures will likely increase demand for cooling in warm 
periods (CCCC, 2006; Franco and Sanstad, 2006; Aroonruengsawat and 
Auffhammer, 2009).   
 
Rising energy demand coupled with reduced hydroelectricity generation could lead to 
substantial impact on the electricity market. A rise in hydroelectricity prices is 
foreseeable and electricity distributors will probably also have to shift to more 
expensive, less environmentally friendly energy sources to replace the lost 
hydropower generation (Union of Concerned Scientists, 2006). To the best of the 
author, no study has addressed the impact of climate change on electricity prices in 
California by considering simultaneously changes in supply and demand of 
hydroelectricity.  
 
California’s Electricity Supply Industry (ESI) is a deregulated competitive market 
supervised by the state. It relies on long-term contracts regulated by the state to avoid 
market manipulations as it happened during the California crisis of 2000-2001 (CBO, 
2001). The California Power Exchange (CalPX) operates the day-ahead market and 
sets the price that the generators will sell electricity based on a bidding process. 
California Independent System Operator (CalISO) then operates the region’s power 
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grid and wholesale electric markets and deals with real-time imbalance energy, 
ancillary services and transmission usage.  
 
The specificity of the electricity market compared to other commodities is that it 
requires a well coordinated balance between generation and consumption since 
storage of electricity remains limited and expensive (Amjady and Hemmati, 2006). 
Therefore, accurate short-term price forecasting is crucial information for producers 
and retailers to develop their bidding strategy in a day-ahead electricity market; and 
has prompted many research works (e.g. Zhao et al., 2007; Zarezadeh et al., 2008; 
Amjady and Keynia, 2010a). However this is not an easy task as price of electricity is 
a nonlinear, time variant and volatile signal owning multiple periodicity, high 
frequency components and significant outliers, i.e., unusual prices (especially in 
periods of high demand) due to unexpected events in the electricity markets (Amjady 
and Hemmati, 2006). The application of Artificial Neural Network (ANN) models has 
provided a good ability to forecast normal electricity prices (Zhao et al., 2007). ANNs 
provide an appealing solution for relating non-linear input and output variables in 
complex systems (ASCE, 2000; Dawson and Wilby, 2001).  
 
The present research addresses the impacts of climate warming on California’s high-
elevation hydropower system considering simultaneously the impact of climate 
change on the supply, demand and pricing sides. The main contribution of this work 
is the development of a long-term price forecast model using Artificial Neural 
Networks. The novel price representation is based on the estimation of a relationship 
between temperature, electricity demand, time of the year and electricity price 
allowing the estimation of climate warming scenarios impacts on electricity prices. A 
novel method of Madani and Lund (2009) for hydropower operation optimization 
based on profit maximization was finally used to estimate statewide high-elevation 
hydropower system adaptability to climate change.  
 
The present report is organized as follows: Section 2 describes California’s 
hydropower system; Section 3 describes historical electricity demand and pricing 
trends in California; Section 0 is a literature review of climate change effects on 
hydropower supply and demand; Section 5 defines the methodology of this research 
work; Section 6 details the ANN models developed and the estimated effects of 
climate warming scenarios on electricity prices; Section 7 presents the results from 
the hydropower optimization model simulations under climate warming scenarios; 
Section 8 discusses the limitations of the study and future direction; and finally 
Section 9 concludes the research.   
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2 California and Hydropower 

Climate across the California region can be very different due to the great differences 
in altitude and in latitude of the state. According to Kauffman (2003), five major 
climate types can be observed in close proximity in California; namely Desert, Cool 
Interior, Highland, Steppe and Mediterranean. As the objective of this research is to 
study the impacts of statewide climate change on California’s high-elevation 
hydropower system, only major trends of temperature and precipitation distribution 
will be presented. Much of California has warm dry summers and cool wet winters 
(Zhu et al., 2005). In terms of electricity demands this corresponds to high demands 
in summer for air cooling (Figure 1) and in winter for heating whereas the lowest 
demands occur in spring and autumn when neither great heating nor cooling is 
required. Precipitation in California is very uneven throughout the year with around 
75% of the annual average of 584mm occurring between November and March (Zhu 
et al., 2005) and falls as snow in the Sierra Nevada mountain range (Moser et al., 
2009). This results in spatially uneven runoff with more than 70% of California‘s 
average annual runoff occurring in northern California (Madani and Lund, 2009).  
 
California’s hydroelectric system generated 15% on average of the annual in-state 
generation between 1983 and 2001 (McKinney et al., 2003). In-state hydropower is 
generated by four types of hydropower systems: high-head low-storage hydropower 
plants, low-head multipurpose dams, pumped-storage plants, and run-of-the-river 
units (Pew Center on Global Climate Change, 2009). The distribution of California’s 
hydropower system is displayed in Figure 2.  
 
While only about 30% of the state’s usable water storage capacity lies at higher 
elevations, high-elevation hydropower units generate on average 74% of California’s 
in-state hydroelectricity (Madani and Lund, 2009). 156 high-elevation hydropower 
plants, above 1,000 feet (or 305 meters), have been identified by Madani and Lund 
(2009). Most of them are located in Northern California (Aspen Environmental Group 
and Cubed, 2005). Hydroelectric generation is generally their only purpose and only 
little amounts of water are necessary to produce substantial quantities of electricity 
with vertical drops of water of hundreds of feet (Pew Center on Global Climate 
Change, 2009). They have been designed to take advantage of the snowpack acting as 
a natural reservoir and their man-made reservoir is usually small (Madani and Lund, 
in press). Their limited storage capacity may make them sensitive to future snowpack 
volume and runoff timing variations (Madani and Lund, in press).  
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Figure 1 - Electricity supply and demand profile for a typical hot summer day (Source: 
Mc Kinney et al., 2003)  

Figure 2 - Hydroelectric power plants distribution in Californ ia
(Source: California Energy Comission,
http://www.energy.ca.gov/hydroelectric/hydro_power_plants.html

Climate Warming Effects on Hydropower Demand and Pricing in California

4 

Electricity supply and demand profile for a typical hot summer day (Source: 

Hydroelectric power plants distribution in Californ ia (capacity > 1MW)
California Energy Comission,  

http://www.energy.ca.gov/hydroelectric/hydro_power_plants.html) 

Pricing in California 

 
Electricity supply and demand profile for a typical hot summer day (Source: 

 
(capacity > 1MW) 
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3 Electricity demand and pricing in California 

The disparities between the trends in electricity demand in California and the US have 
been of great interest to the scientific community (e.g. Kandel et al., 2008; Horowitz, 
2007; Rosenfeld, 2006). California’s aggregate electricity consumption per capita 
(ECP) remained almost flat since 1976 while it increased by around 50% nationwide 
as seen in Figure 3. On a sector-by-sector basis, the main difference comes from the 
industrial and residential sectors. Between 1973 and 2005, California’s residential per 
capita electricity consumption increased slowly (by 14%) compared to the US where 
it increased by 60% (Kandel et al, 2008). California’s residential ECP slow increase is 
among others related to: its mild climate compared to other states resulting in less 
heating and less cooling demand in winter and summer respectively (Kandel et al., 
2008); the high concentration of urban areas where there are many multi-family units 
(Kandel et al., 2008); the higher than US average energy prices (see Figure 4) 
encouraging consumers to save energy (Kandel et al., 2008); and probably the 
aggressive energy efficiency programs launched around 1976 (Horowitz, 2007). 
Between 1973 and 2005, California’s industrial sector reduced its ECP by 39%, partly 
because there has been a structural change in California’s economic structure since 
the late 1990s which has bartered energy-intensive manufacturing for less-energy 
intensive services (Tanton, 2008). 
 
While California’s ECP remained roughly flat, its aggregate electricity consumption 
increased by 65% between 1980 and 2008, as did imports of electricity with for 
example an increase by 60% in coal-based electricity imports from 1983 to 2005 
(Tanton, 2008). 
 
The electricity peak demand in California has also been increasing since the 1960s 
but the growth rate slowed down after the initialization of energy efficiency programs 
in 1976 (Rosenfeld, 2006). California electricity peak demand reached 55GW in 2004 
(Rosenfeld, 2006). 

 
Figure 3 - California and US per capita electricity use by sector, 1960-2008. (Kandel et 
al., 2008) 
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US average nominal retail electricity prices have increased significantly since the 
1970s as shown in Figure 4, as a result of the 1970s fuel crisis (Bloom Energy, 2010). 
On average, prices in California are higher than in the rest of the nation. The second 
energy crisis experienced by California in 2001 led to a retail price jump by 30% 
between 1999 and 2002, and prices have not decreased significantly since then 
(Figure 4). In 2006, California’s state had the second highest retail sales in the US 
according to Kandel et al. (2008). A linear regression of the average retail prices for 
the period 1960-2005 corresponds to an annual growth rate of about 0.25cents/KWh. 
If a similar linear increase is assumed up to the end of the 21st century, this would 
lead to an increase of 25 cents/KWh by 2100, corresponding to an increase of more 
than 100% compared to average retail prices of 2005.  
 

 
Figure 4 - Average Retail Price of Electricity to Ultimate Consumer in Nominal Dollars, 
for US and California, 1960-2008. (Source: EIA, data compiled from AER: Table 8.10; 
SEDS – California: Table 5.3 & California Electricity Profile: Table 8) 
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4 California and Climate Change 

4.1 Climate Change scenarios for California 

The scientific community agrees on the fact that the surface temperature is expected 
to increase worldwide, whereas the future hyetograph pattern is still uncertain 
(CCCC, 2006; Cayan et al., 2008). Cayan et al. (2008) focused their study on changes 
in climate at the surface, mostly related to temperature and precipitation, and 
addressed plausible pathways for the California region. The climate change scenarios 
are produced by combining Global Climate Models (GCMs) to Green House Gas 
(GHG) emission scenarios as defined in the IPCC Fourth Assessment released in 
2007. They addressed namely the three following GCMs: the Parallel Climate Model 
(PCM) from the National Center for Atmospheric Research (NCAR) and U.S. 
Department of Energy, the CM2.1 from the National Oceanic and Atmospheric 
Administration (NOAA) Geophysical Fluids Dynamics Laboratory (GFDL) and the 
Hadley Center model (HADCM2). Three probable sets of projections of GHG 
emissions for California are the B1 (low emissions), A2 (medium-high emissions) 
and A1fi (high emissions) storylines (Figure 5) (Cayan et al., 2008).  
 
The magnitude of projected temperature rise over the twenty-first century varies 
depending on the model sensitivity and the emission scenarios as illustrated in Figure 
6. By 2100, temperature increases are estimated to range between 1.5°C and 4.5°C 
(2.8°F -8.0°F), under the lower emission scenario B1 in the less responsive GCM 
PCM and under the higher emission scenario A2 in GFDL respectively (Cayan et al., 
2008). Generally, warming is expected to be greater in summer than the rest of the 
year for all scenarios except PCM B1 (Cayan et al., 2008). Warming should affect 
both wet and dry days with about the same degree (Cayan et al., 2006). In their work, 
Cayan et al. (2008) present different plausible temperatures increases for two regions 
in California: Northern California region (NOCAL) and Southern California region 
(SOCAL).  
 

 
Figure 5 - Historical and projected CO2 emissions - scenarios B1, A2 and A1fi (Source: 

CCCC, 2006) 
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Climate warming is likely to affect hydropower operation simultaneously on the 
supply/generation, demand and pricing sides. To the best of the author, these issues 
have always been addressed independently. The following sections review recent 
research conducted in California on climate warming impacts on the supply side (e.g. 
Madani and Lund, 2009; in press; Vicuna et al., 2008; 2009) and then on the demand 
side (e.g. Franco and Sanstad, 2006; Aroonruengsawat and Auffhammer, 2009).  
 
Previous works assessing climate change impacts in California have commonly used 
a range of plausible scenarios from an earlier work of Cayan et al. (2006) or directly 
based on the former IPCC Third Assessment. (eg. Medellín-Azuara et al., 2008; 
Vicuna et al., 2008; Aroonruengsawat and Auffhammer, 2009; Madani and Lund, in 
press).  
 

 
Figure 6 - Warming ranges for 3 plausible GCMs coupled with 3 GHGs for California 

(Source: CCCC, 2006) 
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4.2 Impacts on the supply side 

Climate change will impact hydrological conditions. California’s 21st century 
hydrology is expected to be altered in the following manner: part of the winter 
precipitation falling as snow nowadays will turn to rain; higher temperatures will lead 
to a shift of the snowmelt peak flow; a reduction of the peak flow’s intensity and 
increased winter runoff (Moser et al., 2009).   
 
Hydrological changes are a big concern for California’s hydropower system which 
may face water shortages in summer when the demand is the highest (Moser et al., 
2009). This issue should be less problematic for low-elevation multipurpose 
hydropower systems (less than 1,000 feet) benefitting from large man-made 
reservoirs, than for high-elevation units with small man-made reservoirs (Tanaka et 
al., 2006). Relying mainly on natural snowpack reserves, high-elevation hydropower 
systems have a limited flexibility in operation. If their storage capacity cannot 
accommodate to hydrological changes, high-elevation hydropower systems may be 
vulnerable to climate change (Madani and Lund, in press).  
 
According to Madani and Lund (in press), most studies assessing the impacts of 
climate change on hydropower generation in California have focused on large-scale 
low-elevation systems (e.g. Tanaka et al., 2006) or on a few individual high-elevation 
hydropower units (e.g. Vicuna et al, 2008; 2009). High-elevation systems are 
nonetheless generating on average 74% of California’s in-state hydroelectricity 
(Madani and Lund, 2009) which has prompted recent research on the impacts of 
climate change on high-elevation hydropower systems (e.g. Vicuna et al., 2008; 
Madani and Lund, 2009; in press).  
 
Vicuna et al. (2008) studied the impact of four climate change scenarios on high-
elevation hydropower system in the Upper American River using a linear 
programming model optimizing the system for revenue maximization, restricted to 
operational and physical constraints. The model ran under historical conditions 
replicated expected patterns of operation with reservoir refilling in spring and 
electricity generated in priority when it is the most valuable. For the two drier 
scenarios, both power generation and energy revenue decrease but generation more 
than revenue, showing the ability of the system to store water when prices are low for 
a later release when energy is more valuable (July-September) (Vicuna et al., 2008). 
For the wetter scenarios, the increase in generation outpaces the increase in revenue 
and the generation pattern is similar to the hydrograph. For all scenarios, the 
occurrence of spillage increased, caused by the inconvenient hydrograph. 
 
The energy price representation considered by Vicuna et al. (2008) distinguishes two 
constant on-peak and off-peak monthly prices; capturing some effects of non-constant 
energy prices. If fixed monthly prices were used, a model based on revenue 
maximization would suggest no generation in months with low energy prices to allow 
maximum generation in month where energy is valuable (Madani and Lund, 2007). 
Madani and Lund (2009) formulated a new approach where the price representation is 
derived from the distribution of hourly real time prices for each month. This allows 



Climate Warming Effects on Hydropower Demand and Pricing in California 

10 

capturing the hourly variability in energy prices – on a monthly basis – of the overall 
energy market which is responding mostly to on-peak and off-peak variability in 
energy demands (Madani and Lund, 2009). The energy price used is a function of the 
percent time turbines are in operation, assuming they operate in hours when the 
energy market offers higher prices (Madani and Lund, 2009). 
 
Madani and Lund (2009) also introduced a novel approach to model the behavior of a 
large number of high-elevation hydropower systems, the Energy-Based Hydropower 
Optimization Model (EBHOM). To the best of the author, EBHOM is the only one of 
its kind, allowing modeling an entire region’s high elevation hydropower system in a 
relatively straight forward manner, without the need to develop traditional streamflow 
and reservoir volume-based models for each plant in the system. EBHOM was tested 
against the traditional hydropower optimization model developed by Vicuna et al. 
(2008) on the Upper American River system (Madani et al., 2008). Both models 
predicted the same changes in generation and revenue with respect to the historical 
case. Even if the EBHOM is very simplified compared to traditional optimization 
models, it produces reasonable results and is a step forward towards modeling global 
trends including “the effects of climate change and energy prices on system-wide 
generation and hydropower revenues” (Madani and Lund, in press). 
  
Madani and Lund (in press) applied EBHOM to estimate the impacts of climate 
warming on California’s high elevation hydropower system for the three following 
scenarios: warming-only, dry warming (GFDL-A2) and wet warming (PCM-A2). 
Warming-only and dry warming scenarios reduce both generation and revenue while 
the wetter scenario has the opposite effect. Current storage and generation capacities 
are able to cope with some of the supply loss of the dry warming scenario. Compared 
with the base historical scenario, the decrease of runoff by 20% led to revenue losses 
of only 14%. Contrarily, the increase by 10% of annual runoff compared to the base 
case, led to an increase of only 6% in generation and 2% in revenues for the wet case 
scenario. Spills increased for all scenarios except the dry one.  
 
The above mentioned studies have only considered that climate warming will change 
hydrologic conditions and alter hydropower water supply. Potential changes in 
electricity demand and prices have not been accounted for. These could be the result 
of various climatic, economic, technologic, policy or market reasons (Madani and 
Lund, in press). Environmental constraints haven’t been addressed either. 
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4.3 Impacts on the demand side 

On the demand side, climate warming is expected to increase the need for cooling in 
summer and attenuate the need for heating in winter (CCCC, 2006).  
 
Franco and Sanstad (2006) examined the statewide correlation between daily average 
quantities: mean daily temperatures and base loads; and extreme quantities: maximum 
daily temperatures and peak loads. A nonlinear convex relationship between average 
daily temperature and demand, and a linear relationship between summer peak load 
and maximum temperatures were determined. They developed climate change 
scenarios for the 21st century and examined demand responsiveness (considering the 
relationships between demand and temperature invariant in the future). Relative to the 
base period 1961-1990, electricity demand increased in the range 3.1–20.3% and peak 
load increased in the range 4.1–19.3% by 2100. It is noteworthy that even a small 
increase in demand would result in a high increase in energy expenditures (Franco 
and Sanstad, 2006). Aroonruengsawat and Auffhammer (2009) used a unique panel of 
household electricity billing data from California’s three largest investor-owned 
companies. They did not estimate demand as a function of statewide temperature but 
divided California in 16 climate zones. They projected an increase in aggregate 
demand ranging from 18% to 55% by 2100 assuming a constant population. This 
represents an average annual growth rate of aggregate electricity demand ranging 
between 0.17% and 0.44%. In reality these growth rates accelerate with time.   
 
Aroonruengsawat and Auffhammer (2009) coupled climate warming to economical 
future scenarios. They developed two scenarios considering electricity price increases 
based on the projected impacts of AB 32 compliance combined with natural gas price 
increases: a discrete 30% increase by 2020 remaining to the same level until the end 
of the century and two successive increases of 30% by 2020 and 20% by 2040. By 
2100, the total change in demand ranges between +4% and +39% and between -7% 
and +24% for the low and high price increase scenarios respectively. Higher prices 
result in a decreased demand compared to the base case where no price increase was 
considered. Aroonruengsawat and Auffhammer (2009) also considered population 
increase scenarios. Combined to a low forcing climate warming scenario, a low 
projection of 0.18% population growth rate per year (equivalent to a population 
increase by 18% by 2100) predicts an increase of 65-70% in residential electricity 
demand by 2100. This increase is much higher than the 20% increase predicted for 
the climate warming only scenario. The worst case they predicted coupled a high 
forcing scenario with a high growth rate (+1.47% per year) and suggested an increase 
in demand up to 478%. Their conclusion is that demographic trends have substantial 
impacts on future energy demands and might outweigh the impact of climate change 
on energy demand.  
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5 Method 

The overall method used in this work is shortly described hereafter and schematized 
in a flowchart in Figure 7. Further details on the models selected and the choices and 
assumptions made are given in the following sections.   
 
An ANN was developed to map the relationship between a set of inputs and the 
hourly electricity prices. The inputs include notably temperature, demand and 
deterministic components (season, day of the week, hour, etc.). An ANN model was 
chosen for this purpose as it is a powerful machine learning tool providing an 
appealing solution for relating input and output variables in complex systems 
(Dawson and Wilby, 2001). ANNs are capable of extracting information from 
systems even with little prior physical knowledge about the systems (Zhang et al., 
1998). The ANN architecture chosen is a multilayer feed-forward model using the 
Shuffle Complex Evolution (SCE-UA) global-search optimization method developed 
by Duan et al. (1992).  
 
The performance of ANNs is reliant on the quantity and quality of the calibration data 
(Kingston et al., 2005). Before calibration of the model, a preliminary statistical 
analysis of the collected data was performed to get an overview of existing trends, 
potential problems and allow an adequate data preprocessing.  
 
Once the ANN was trained, simulations with perturbed input data were run to account 
for the chosen climate warming scenarios. Scenarios were chosen from the work of 
Cayan et al. (2008) based on the IPCC Fourth Assessment. The outputs of the trained 
ANN are predicted hourly prices. The price representation chosen for the next 
modeling steps is based on the work of Madani and Lund (2009) capturing the hourly 
variability of energy prices.  
 
Climate warming effect on California’s high elevation hydropower system was 
estimated using the energy-based hydropower optimization model EBHOM 
developed by Madani and Lund (2009). Price frequency and revenue curves 
(integration over the price frequency curves) were drawn and used as inputs to the 
hydropower optimization model EBHOM together with the historic monthly 
generation data and seasonal runoff distributions. The results obtained from EBHOM 
are monthly optimized generation, revenue and end-of-month storage data for the 
statewide high-elevation hydropower system, considering climate change effects on 
the demand, supply and pricing sides.  
 
Previous findings from Madani and Lund (in press), assessing climate change impacts 
on the supply side only, were finally compared to the results from this research.  
 
The following sections review the method in details. Section 6 includes a description 
of existing ANN models, followed by data collection and analysis, ANN model 
selection, set up and calibration. It includes the application of the trained ANN model 
to estimate future price scenarios. Section 7 presents EBHOM model and its results. 
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Figure 7 - Flow chart of the project's methodology (to read from left to right) 
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6 Artificial Neural Network 

6.1 Background and motivation: ANNs to model electricity prices 

Artificial Neural Networks (ANNs) are networks of interconnected neurons that were 
developed in an attempt to reproduce the powerful human brain’s architecture (Hsieh 
and Tang, 1998). ANNs are powerful machine learning models that have been 
successfully developed for different purposes namely for nonlinear modeling (e.g. 
Kingston et al., 2005) and classification (e.g. Olsson et al., 2004). They provide an 
appealing solution for relating input and output variables in complex systems 
(Dawson and Wilby, 2001) and have been widely applied in different fields namely 
hydrological modeling (e.g. Dawson and Wilby, 2001; Kingston et al. 2005; Olsson et 
al., 2004), electricity load forecasting (e.g. Azadeh et al., 2006; Ortiz-Arroyo et al., 
2005; Hippert and Taylor, 2010) and electricity price short-term forecasting (e.g. 
Ranjbar et al., 2006; Zarezadeh et al., 2008; Gao et al., 2000).  
 
In recent years there has been active research to develop accurate short-term price 
forecasting tools for the energy market (e.g. Zhao et al., 2007; Lu et al., 2005; 
Amjady and Keynia, 2010a; Yamin et al., 2004; Zarezadeh et al., 2008). Electricity 
price is a nonlinear, time variant and volatile signal owning multiple periodicity, high 
frequency components and significant outliers, i.e., unusual prices (especially in 
periods of high demand) due to unexpected events in the electricity markets (Amjady 
and Hemmati, 2006). California’s ESI turned into a competitive deregulated market in 
the 1990s (CBO, 2001). The deregulation of energy market created competition 
among electricity producers and retailers who need price forecasts to develop their 
bidding strategy in the electricity market (Lu et al., 2005; Amjady and Hemmati, 
2006). Optimal decisions are now highly dependent on market electricity price 
(Amjady and Keynia, 2010a). For instance, electricity generation scheduling is based 
on profit maximization in the new structures whereas it was based on cost 
minimization – to satisfy the electricity demand and all operating constraints – in the 
earlier regulated  environment (Zarezadeh et al., 2008). 
 
Dealing with short-term price forecasting, ANNs have shown a good ability to 
forecast normal electricity prices (Zhao et al., 2007). One of the main advantage of 
ANNs over traditional methods such as regression and time series or regressive 
integrated moving average (ARIMA) is that they are more adapted to long-term 
patterns as they can cope with high non linear behavior of the target signal (Amjady 
and Hemmati, 2006).  However, one main problem encountered in most studies is the 
inability of the models to deal with price spikes in the electricity market (e.g. Zhao et 
al., 2007; Lu et al., 2005; Amjady and Keynia, 2010a; Yamin et al., 2004). Generally, 
price spikes are abnormal market clearing prices that include namely abnormal high 
prices which are prices much higher than normal prices (Zhao et al., 2005). Price 
spikes are highly erratic and are caused by a number of complex factors and 
unexpected events such as transmission network contingencies, transmission or 
congestion and generation contingencies (Zhao et al., 2007). According to Lu et al. 
(2005), almost all the existing techniques require filtering out the price spike signals 
in order to forecast normal prices with rather high accuracy.  
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To the best of the author, research on ANNs has exclusively focused on short-term 
price forecasting following the needs from the market. No ANN model for long-term 
electricity price forecasting accounting for climate change scenarios has been 
developed, and neither for estimating impacts of future climate on any other variable. 

6.2 Background on ANN model types 

A typical ANN consists of a number of neurons (also called nodes) that are organized 
in a specific arrangement (ASCE, 2000). One way of classifying neural networks is 
by the direction of information flow and processing: feedforward and recurrent 
networks (ASCE, 2000). In a feedforward network (Figure 8), information flows 
unidirectionally from an input layer towards an output layer. In between the input and 
output layers there can be one or several hidden layers processing information before 
it reaches the output layer. In this case neurons are only connected between different 
layers, but not to other neurons belonging to the same layer. In a recurrent network 
information flows in both directions – inputs toward outputs and vice versa – and also 
nodes belonging to the same layer can be interconnected. Recurrent networks allow 
modeling dynamic systems by making feedback possible in the network but it is also 
possible to treat explicitly dynamic systems with feed-forward networks by including 
lagged inputs (Maier and Dandy, 2000). Feed-forward networks namely multilayer 
perceptron (MLP) models are commonly used for prediction and forecasting 
applications in hydrological problems (ASCE, 2000; Kingston et al., 2005) and in 
short-term electricity price forecasting (e.g. Ranjbar et al., 2006; Zarezadeh et al., 
2008). Feed-forward networks have in general a faster processing speed than 
recurrent networks (Maier and Dandy, 2000) and Hornik et al. (1989) showed that 
with a single hidden layer they can approximate any non linear function, given that 
sufficient degrees of freedom (i.e. hidden neurons) are provided.  

 
 
 
 
 
 
 
 
 
 
  

 
 

A schematic diagram of a jth neuron is displayed in Figure 9. This neuron transforms 
an input vector � = ���, … , ��, … , �	
 into a single output �
. Neuron ‘j’ is 
characterized by a set of weights represented by a vector �
 = ���
, … , ��
, … , �	
�, 
a bias �
 and an activation function f. The inputs to the neuron can be causal variables 

Figure 8 - Schematic diagram of a feedforward 
three-layer ANN (Source: ASCE, 2000) 

Figure 9 - Schematic diagram of a 
neuron "j" (Source: ASCE, 2000) 
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i.e. the inputs to the system if the neuron is in the input layer, or they can be outputs 
from neurons belonging to previous layers. The activation function determines the 
response of the neuron as follows: �
 = ��� ∗ �
 + �
�. Sigmoid functions, namely 
logistic sigmoid (‘logsig’) or hyperbolic tangent (‘tanh’ or ‘tansig’), are commonly 
used in the hidden layers (ASCE, 2000). They return a non-linear output response 
which makes them a useful tool to map nonlinear processes and are usually combined 
to a linear activation function in the output layer (ASCE, 2000).  
 
In order to obtain a model representing reality as accurately as possible, the model has 
to be trained and optimized. Training, or calibrating, an ANN model is the process of 
adjusting its parameters (weights) to minimize a predefined error function (Kingston 
et al, 2005). A data sample is presented to the model and the error is calculated by 
comparing the simulated and the observed target intensities. Local or global search 
optimization algorithms may be used to train the ANN (Maier and Dandy, 2000). 
Local search methods scan the error surface in a single direction whereas global 
search methods scan simultaneously the error surface in different directions (Kingston 
et al., 2005). Back-propagation algorithm is among the most widely applied methods 
to train an ANN in hydrological modeling (Maier and Dandy, 2000) and in electricity 
price short-term forecasting (e.g. Ranjbar et al., 2006; Zarezadeh et al., 2008). Radial 
basis function method and conjugate gradient method are examples of other local 
search algorithms (ASCE, 2000). One of the major drawbacks of local-type search 
optimization methods is that they are not designed to handle the presence of 
multilocal optima (Duan et al., 1992). It is therefore not guaranteed that the user will 
obtain the global optimum as the ANN may get stuck in one of the local minima of 
the error surface (Kingston et al., 2005).  Global search methods have the ability to 
escape local minima in the error surface and shall, in principle, find the optimal 
weight configurations (Maier and Dandy, 2000). Genetic algorithms and Shuffle 
Complex Evolution algorithms are examples of global search methods that have been 
applied in the hydrological field (Kingston et al., 2005). The reader is referred to 
Maier and Dandy (2000), ASCE (2000) and Duan et al. (1992) for a more exhaustive 
review of training methods. 
 
During the training phase, the ANN has to be adjusted in order to minimize the error 
function. The optimal ANN architecture is commonly determined through a trial-and-
error procedure by trying out different number of hidden layers and nodes (ASCE, 
2000; Maier and Dandy, 2000). Increasing the size of the ANN increases the number 
of free parameters (weights). An ANN should contain enough parameters to improve 
its capacity to map a complex relationship between the inputs and outputs (Dawson 
and Wilby, 2001). However, increasing the size of the network over a certain 
threshold may produce the opposite effect if the ANN starts overfitting the data, 
annihilating its ability to generalize trends (Dawson and Wilby, 2001). This 
phenomenon appears when the ANN performs well during the training period but 
produces poor results if a new data sample is presented to the ANN; the ANN fitted 
the training data so well that it fitted to the noise contained in the sample (Hsieh and 
Tang, 1998). Cross-validation procedure also referred to as cross-training is 
commonly used to prevent overfitting to occur (Maier and Dandy, 2000). It consists 
of dividing the data sample into three sets – usually called the training, validation and 
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test sets – and then using them independently to check when the ANN is optimized. 
The ANN is considered to be optimized when the training set minimizes the error 
function and the error starts increasing over the validation set (ASCE, 2000). It has 
also been suggested in literature that if the number of training samples exceed a 
specific threshold, defined by a ratio between the number of training samples and the 
number of connection weights, overfitting will not arise. These ratios can vary 
consistently in literature (Maier and Dandy, 2000), but it should be interpreted as 
follows: the higher the number of training samples, the lower the probability of 
overfitting the data.  

6.3 ANN model set up 

The method used to design the ANN was inspired from the protocol for implementing 
ANN Rainfall-Runoff model defined by Dawson and Wilby (2001) and modeling 
suggestions from Maier and Dandy (2000). The modeling process steps will be 
explicitly detailed as far as possible so that the validity of the model and results can 
be assessed. The procedure was the following: 
 
1. Selection of the adequate predictors and predictands & Data collection 
2. Data preprocessing 
3. ANN Selection: choice of an appropriate network type and training algorithm  
4. Network training: choice of the architecture and training set 
5. Evaluation of ANN performance 

6.3.1 Data collection - Predictors and predictand selection 

Hourly prices were selected as the only predictand. Real-time hourly energy prices for 
2005-2008 were collected from the California ISO Open Access Same-time 
Information System (OASIS) website (http://oasishis.caiso.com/). In April 2009 a 
new market design was implemented. Instead to look at three main price zones, Cal 
ISO started using Locational Marginal Pricing that produces prices at 3,000 different 
pricing nodes around the California grid. Therefore the data sets from after April 
2009 are considerably different from the previous system so data could not be 
gathered easily for 2009. Cal ISO serves more than 30 million consumers with 
electricity so these hourly prices are considered as representative for California’s 
energy market. 
 
Electricity price is driven by many factors in a competitive energy market (Ranjbar et 
al., 2006). Research works applying ANNs to short-term price forecasting have 
chosen among others the following predictors: historical hourly prices, system loads, 
lagged hourly prices and day of the week as they are often easily accessible (e.g. 
Ranjbar et al., 2006; Zarezadeh et al., 2008). Gao et al. (2000) also considered fuel 
costs, power import/export data and other weather variables. In the present research 
the following inputs were chosen: temperature, demand, season, month, day of the 
week, hour, lagged hourly temperatures for the three previous hours, a ‘degree-day’ 
temperature input. The season is expected to account for the annual price variability, 
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the hour for the daily periodicity and the day of the week for the weekly periodicity, 
i.e. to distinguish workdays from weekends.  
 
Hourly temperature data for the period 2005-2008 were extracted from the website of 
University of California Statewide Integrated Pest Management Program (UC IPM) 
(http://www.ipm.ucdavis.edu/WEATHER/wxretrieve.html). These data were 
available for several Pest stations across California but not further north nor further 
south than the Fresno and Colusa Counties respectively. It was decided to extract 
hourly data from three different Pest stations and to define their average as the 
representative temperature for the state of California.  
 
Hourly electricity load data were also collected from CalISO OASIS website 
(http://oasishis.caiso.com/) for 2005-2008. Demand was also estimated using 
temperature data based on the work of Franco and Sanstad (2006). Using daily 
demand of electricity from 2004 for the area services by the Cal ISO, they found out 
that there is a high correlation between the daily demand and the average daily 
temperature measured in four locations of California. They approximated the 
relationship by the U-shaped third degree polynomial plotted in Figure 10. The 
polynomial reached its minimum daily demand for ���	 = 53,5°�. Estimating hourly 
demands through this function implies that the hourly demand follows the same 
pattern as the mean daily demand. This seems to be a reasonable assumption for this 
work since we are interested in the big picture over California and that temperatures 
are also flattened. However this remains a limitation to map properly hourly prices 
that contain many peaks which might result from periods of peak demand. 

 
Figure 10 - Electricity demand in the CalISO area as function of average daily 
temperatures, 2004 (Source: Franco and Sanstad, 2006) 
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6.3.2 Data analysis and preprocessing 

6.3.2.1 Data analysis 

ANNs are reliant on the quantity and quality of the calibration data (Kingston et al., 
2005). A preliminary analysis of the data was performed to get a better understanding 
of the varying nature of hourly prices and to check if there aren’t any major abnormal 
trends. Temporary irregularities in the energy market or extreme weather conditions 
may for instance lead to substantial variations in the energy prices while being the 
result of single events, hedging the generalization capacity of ANNs. 
 
The main statistical characteristics of the set are given in Table 1. The data set has a 
mean of 57$/MWh and a standard deviation of around 37$/MWh. Around 80% of the 
data are in the range 25$-90$ but the hourly prices are highly volatile with prices up 
to 400$/MWh which is 7 times the average price.  
 
Table 1 - Dataset statistical characteristics before preprocessing 

Prices in $/MWh Price Percentiles in $/MWh 

Average 
Standard 
Deviation Minimum Maximum 10th 25th  50th 75th 90th 

56.77 36.52 0.00 399.99 24.23 37.78 50.85 67.18 89.91 
 
The hourly price time-series for 2005-2008 is plotted in Figure 11 where two 
‘abnormal’ trends are noticed (circled in the figure) with exceptionally high prices. 
Figure 12 is plot of monthly average prices in each year. The same two periods of 
higher than normal prices can be observed. The first one happened in 2005, where 
prices have started increasing in July, reached a maximum average value of 
80$/MWh in October and have only dropped to normal levels in January 2006. The 
second period of higher than normal prices happened in the first half of 2008 and 
peaked to a monthly average value of more than 100$/MWh in June 2008. A specific 
investigation of these two periods was conducted in the next paragraphs. 
 
In 2005, national natural gas prices increased substantially over levels seen in 2004 
(California ISO, 2006) resulting in increasing production costs for electricity. This 
steady rise began in January and later on prices peaked immediately after Hurricanes 
Katrina and Rita hit the US Gulf Coast (California ISO, 2006). The most destructive 
wave of the hurricanes occurred the last week of August in southeast Louisiana and 
caused severe destruction along the Gulf coast from central Florida to Texas. In 
particular, national gas production and transportation infrastructures in the Gulf of 
Mexico Region were destructed (California ISO, 2006). After this event, Western 
markets – which have not been directly affected by the hurricanes –started trading gas 
at a discount of approximately $2/mmBtu (million British thermal units) to national 
prices (Department of Market Monitoring – California ISO, 2006). In December 
2005, a cold snap coupled with limitations to the Gulf Coast transportation and 
production infrastructure resulted in a second peak, with California prices reaching 
their highest levels since December 2000 (California ISO, 2006).   
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Figure 11 - Real-time hourly prices observed for the time series 2005-2008 

 
Figure 12 - Average Hourly Prices per month for each year 2005-2008 

 
The climatic conditions of 2008 were investigated as extreme temperatures can lead 
to an increase in electricity demand, and drought conditions to a reduction in 
generation from hydropower units. According to NOAA (2009) summer and fall 2008 
were warmer than average in California as it experienced its 6th warmest summer and 
3rd warmest fall on record whereas temperatures in winter were slightly below 
normal. California experienced its driest spring (March-May) on record and also 
received below normal precipitation in summer and fall 2008 (NOAA, 2009). At the 
same time, the snowpack was referred to as among the healthiest in more than a 
decade in some parts of Western US with most locations near to above average 
(NOAA, 2009). From these facts, it is hard to assess if there was a shortage of supply 
as the abundant snowpack runoff may have compensated for the drought. However, 
the 2008 Annual Report from California ISO (2009) states that “monthly average 
hydroelectric production in 2008 was below 2007 levels for most months and well 
below the monthly production levels for 2005 and 2006”. Furthermore, the same 
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report from California ISO (2009) explains that the primary driver of the high 
electricity prices in 2008 was the spike in worldwide fossil fuel costs. Natural gas, 
which is the primary fuel for California’s energy supply, reached its highest level 
since Hurricanes Katrina and Rita impacted much natural gas infrastructure in 2005. 
These high natural gas prices, coincident with low hydroelectric production in 
California in the first half of that year, resulted in high production costs of electric 
power in 2008 and the need for additional imports from the Pacific Northwest and 
Southwest (California ISO, 2009). The senior vice president and chief customer 
officer of Pacific Gas & Electric also declared that “The combination of skyrocketing 
natural gas prices, increased electricity demand and lower supplies of hydroelectric 
power are having a significant impact on the cost of electricity” (PG&E, 2008).  
 
As the main focus of this paper is to investigate the relation between prices and 
climate, prices have been plotted against temperature in Figure 13. The top graph is a 
plot of the raw hourly data while the bottom one shows the average price 
corresponding to each degree Fahrenheit. From the top graph, no obvious conclusion 
can be drawn regarding the relationship between the real-time prices and the 
temperature. This strengthens the need for a powerful modeling tool able to represent 
highly non linear relationships. The bottom plot in Figure 13 shows that prices tend to 
increase for both low (>30°F) and high (>90°F) temperatures but more significantly 
for high ones. This corresponds to the great need for cooling in the long warm periods 
in California. In-between average temperatures are around the mean of the entire set 
which is 57°F. Year 2008 presents higher prices than other years for most 
temperatures above 50°F. This phenomenon has been discussed earlier.  

 
Figure 13 - Hourly prices against temperature (top) and Average hourly prices per 
temperature (bottom) 
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It is well-known that the hour of the day has a significant influence on the demand 
and therefore on the price too. Figure 14 showing the average prices per hour in each 
season was plotted to check this affirmation. From Figure 14 one can see that the 
main difference between seasons occur between 12PM and 20PM. The high cooling 
demand in summer increases the price, peaking at 17PM, while the ‘no’ or little 
heating demand in winter decreases the price.  

 
Figure 14 - Hourly average prices in each season 

6.3.2.2 Data preprocessing 

From the results of the data analysis, it was chosen to exclude the period September 
to December 2005 from the input data to the ANN as they partly result form an 
extreme event (Hurricane Katrina) and would most probably hedge the training of the 
neural network. The price increase in 2008 was the result of a combination of several 
factors. It was decided to keep 2008’s data to keep a great quantity of data and 
because soaring prices of fossil fuels together with dry periods are most likely to 
occur again in the future. However, an additional neuron in the input layer was 
introduced to account for this specific phenomenon. This input is equal to 1 for the 
period January-June 2008 and 0 otherwise.  
 
The statistical characteristics of the preprocessed data set are given in Table 2. 
Negative price intensities have been set to zero and the overall zero-depth probability 
is 1.30%. 
 
Table 2 - Dataset statistical characteristics after preprocessing 

Prices in $/MWh Price Percentiles in $/MWh 

Average 
Standard 
Deviation Minimum Maximum 10th 25th  50th 75th 90th 

54.87 36.54 0.00 399.99 23.88 36.88 49.13 64.14 84.28 
 
The last stage of the data preprocessing was the standardization of the hourly prices 
and temperatures, by subtracting the mean value of the set and dividing it by the 
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standard deviation. Standardized temperature data ranged between -2.72 and 3.05 and 
standardized price data between -1.50 and -9.44. The output data i.e. the hourly prices 
were then scaled between 0.1 and 0.9 to avoid squashing when using the log sigmoid 
function in the hidden layer (and similarly between -0.9 and 0.9 when using the 
hyperbolic tangent activation function).  

6.3.3 ANN Selection 

A multilayer feed-forward ANN was coupled with the global-search algorithm 
developed by Duan et al. (1992) called the “Shuffle Complex Evolution” (SCE-UA). 
A single hidden layer with a sigmoid activation function was chosen. The choice of 
the sigmoid function (tansig or logsig) and the number of hidden neurons were based 
on a sensitivity analysis detailed in section 6.4.1. The activation function in the output 
layer is linear. Cross-validation was used as the stopping criteria to prevent overfitting 
the training dataset. The model was developed in FORTRAN by Juan Martin Bravo 
in application to river discharge analysis and was modified for our case study.  
 
The general idea of SCE-UA algorithm is to generate a population of random points 
from the feasible space of parameters that will evolve towards an optimal solution, 
i.e. the global minimum of the error surface. The steps are the followings. First the 
population is divided into several communities (called complex) that evolve 
independently. Within each community, only the part of the population with the best 
probability of converging towards a global solution is kept and stored in a ‘sub-
complex’ using the Complex Evolution Algorithm (CCE) (Duan et al., 1992). The 
points stored in the sub-complex will become parents by generating offsprings 
towards an improvement direction. Each sub-complex will generate offsprings in 
different directions toward an optimum, based on its own ‘knowledge’ of the error 
surface. The population is mixed regularly in order to share the knowledge between 
the communities and to ensure survivability. Finally a set of optimum parameters will 
eventually be found after several iterations of the procedure. None of the information 
from the sample is ignored as each member of a community is a potential parent with 
the ability to participate to the reproduction process. The evolution process also 
ensures that the communities don’t get trap into unpromising regions. The SCE-UA 
method has good convergence properties over a broad range of problems and it 
should have a high probability of finding the global optimum (Duan et al., 1992).  
 
The flowchart of SCE-UA algorithm and further description of the algorithm’s steps 
can be found in the publications from the authors, Duan et al. (1992, 1994).   
 
Duan et al. (1994) established some guidelines on how to choose the algorithmic 
parameters in the SCE-UA model. The parameters were initialized to the 
recommended values (n is the number of parameters to optimize): 
 

� Number of points in complex: m = 2n + 1 
� Number of points in each sub-complex: q = n + 1 
� Number of consecutive offspring generated by each sub-complex: α = 1 
� Number of evolution steps taken by each complex: β = m = 2n + 1 
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Finally the number of complex is problem dependant and was chosen based on 
sensitivity analysis detailed in section 6.4.1.  

6.3.4 Network training 

Cross-validation procedure was chosen to prevent overtraining. The data set was 
partitioned into three sets referred to as calibration, test and validation in the 
following proportions: 50%, 25% and 25% respectively. Data was split randomly 
between the sets but a control was performed to ensure a good distribution among the 
different sets by checking that extreme (or close to extreme) values of price and 
temperature were within the training set and that means and standard deviations of all 
sets were similar. The training set should be representative of the entire population 
and include all ranges of intensities because of the inability of ANNs to extrapolate 
(Maier and Dandy, 2000). 

6.3.5 Evaluation of ANN performance 

The results of the ANN modeling were assessed in terms of: correlation with the 
determination coefficient ��, root mean square error (RMSE), the ANN’s output 
price patterns and the frequency distribution of prices. As the dataset is large, it is 
important to assess the quality of the developed model not only based on �� value. 
Furthermore, it is important to keep in mind that in this research, the final desired 
output from the ANN model is to draw revenue curves for each month (for several 
climate change scenarios) that will serve as inputs to the EBHOM model. These 
revenue curves are nothing else than the integration over the price frequency curves 
for each month (Madani and Lund, 2009), so the frequency distribution of prices was 
directly assessed in terms of revenue curves. 
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6.4 ANN Calibration 

ANN training was performed through a trial and error process. Firstly a sensitivity 
analysis was performed to determine the best network architecture and the training 
algorithm parameters; it also includes an assessment of the choice of some inputs. 
Several dataset breakdowns were then considered based on both deterministic and 
stochastic approaches. Finally, a comparison of the different ANN models developed 
was performed to select the ANN model to be used a long-term price forecasting tool.  

6.4.1 Sensitivity analysis 

An ANN is a black-box model which has to be calibrated to determine the optimal 
architecture and parameters. The sensitivity analysis carried out includes assessment 
of the following parameters: 
 

� Number of complexes for the SCE-UA optimization algorithm 
� Number of hidden nodes 
� Activation function: logsig or tansig 
� Relevancy of the input selection 

6.4.1.1 Number of complex and hidden neurons 

The optimal numbers of complex and hidden nodes were determined in the same way. 
The first models developed used only one complex and hidden neuron and were then 
independently increased to 2, 4 and 8 in the next models. Higher values have also 
been tried out, but the time required running such models over the entire dataset 
exceeded 48 hours, which was considered excessive. Time is a limiting factor in the 
ANN models improvements. A single hidden layer was chosen as it should be enough 
to model any non-linear relationship (e.g. Hornik et al., 1989). Table 3 shows R� 
values for the different models tried out to estimate the adequate number of complex 
and hidden neurons. Correlation in terms of  R� value improves with increasing 
complexes and hidden neurons so they were both set to 8 for the next modeling steps.  

Table 3 - Calibration results used to select the adequate number of complex and hidden 
neurons 

Run 
Number 
Complex 

Hidden 
neurons 

Activation 
function � !"#$

%  �&"'#(
%  � )* 

%  

1 1 4 logsig 0.26 0.23 0.24 

2 8 4 logsig 0.27 0.23 0.25 

3 1 8 logsig 0.27 0.23 0.26 

4 8 8 logsig 0.29 0.25 0.24 

5 8 1 logsig 0.20 0.18 0.19 

6 8 2 logsig 0.22 0.19 0.21 

7 8 4 logsig 0.27 0.23 0.25 

8 8 8 logsig 0.29 0.25 0.24 
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6.4.1.2 Logsig vs. Tansig activation function 

A sigmoid-type activation function - usually logistic sigmoid (logsig) or hyperbolic 
tangent (tansig) – is commonly used in the hidden layer (Maier and Dandy, 2000). A 
comparison of ANNs with identical architectures and these two activation functions 
(cf. Table 4) led to the choice of tansig for the following reasons: 

� correlations are similar for both ANNs;  
� the average price returned by the ANN using tansig function is closer to the 

average of historical prices. It also returns higher maximum price values; 
� tansig function was used in earlier research works applying ANNs to short-

term electricity price forecasting (e.g. Ranjbar et al., 2006; Zarezadeh et al., 
2008; Gao et al., 2000). 

Table 4 - Results used to select the adequate activation function in the hidden layer 

Run 
Activation 
function +%

,-. 
Average Price 

($/MWh) 
Maximum Price 

($/MWh) 
Historic - - 54.87 399.99 

9 Logsig 0.25 54.96 177.59 

10 Tansig 0.25 54.93 217.39 

6.4.1.3 Assessment of the selected inputs 

First, an ANN model using solely temperature as input was tried out and then 
additional inputs were included (season, month, day, hour, temperatures in 3 earlier 
hours and load). The correlation improves significantly when more predictors are 
considered (cf. Table 5, R/01

�  jumps from 0.08 to 0.23) because temperature only 
cannot represent accurately the high volatility of electricity prices. Among the other 
predictors, none were assessed during the sensitivity analysis, except the load input. 
ANN models should be able to determine single-handedly which inputs are critical, 
but it might increase processing speed if the inputs selected a priori have little 
importance (Maier and Dandy, 2000).  
 
Table 5 - Results used to assess the adequacy of the selected predictors 

Run 
Number 
Complex 

Hidden 
neurons 

Input 
neurons 

Activation 
function � !"#$

%  �&"'#(
%  � )* 

%  �*#2
%  RMSE 

11 8 2 1 logsig 0.09 0.07 0.08 0.08 0.070 

12 8 2 8 logsig 0.25 0.21 0.23 0.23 0.065 

13 16 4 1 logsig 0.09 0.07 0.09 0.09 0.070 

 
To estimate the impact of climate change simultaneously on electricity demand and 
prices, two approaches were imagined. Developing two ANNs in series, the first one 
modeling demand using temperature and the other predictors, and the second ANN 
estimating prices based on the output demand from the first ANN; or building a single 
ANN considering that demand is a linear function of temperature previously 
estimated by Franco and Sanstad (2006). A model using this demand function was 
compared to a model using historical hourly demand to estimate if results are 
improved by using historical hourly demand data gathered from CalISO 
(http://oasishis.caiso.com/). Using historical hourly demand data improved the  �� 
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correlation by only 0.03 (see Table 6) which was not considered as a significant 
improvement. In terms of revenue curves, it is hard to assess which model is more 
accurate. Depending on the month, it is a different model that fits historical revenues 
better as illustrated with June and October months on Figure 15.  
Finally, the demand function as temperature estimated by Franco and Sanstad (2006) 
was chosen; nearly no accuracy was gained by using directly hourly demand data 
from CalISO, training two ANNs in series may be time consuming, and there will 
also be uncertainty in the estimation of demand from the first ANN model. 

Table 6 - Results used to choose the demand input to the ANN between historical 
demand and the demand function defined by Franco and Sanstad (2006) 

Run Demand specification � !"#$
%  �&"'#(

%  � )* 
%  �*#2

%  RMSE 

14 Demand = f (T) 0.30 0.24 0.27 0.28 0.140 

15 Real demand 0.33 0.29 0.31 0.31 0.136 

 
a) June 

 
b) October 

Figure 15 – Revenue curve comparison between two Annually-based ANN models fed 
with historical hourly demand data or with demand as a function of temperature 
estimated by Franco and Sanstad (2006) for June (a) and October (b) 
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6.4.2 Comparison of ANNs developed for different dataset breakdowns 

Generally in a competitive energy market, hourly electricity price series contain 
multiple seasonalities such as, weekly and daily periodicities (Amjady and Hemmati, 
2006). It is very hard for a single ANN to map correctly the input/output relationship 
of such a signal in all time periods (Amjady and Keynia, 2010b). In previous 
research, datasets have sometimes been partitioned along: periods of warm/cool days 
(e.g. Ranjbar et al. 2006), public holidays (e.g. Amjady and Keynia. 2010b), 
workdays/weekends (e.g. Gao et al., 2000) or stochastic components (e.g. Zhao et al., 
2007). As part of the ANN calibration procedure, different data breakdowns have also 
been tried out in this work. A summary of the experiments and results obtained during 
training is given in Table 8; the results from the earlier sensitivity analysis detailed in 
6.4.1 are not included. In the present section, common results to all experiments are 
first presented, then each experiment is discussed and compared to the others and 
finally two ANNs are elected for estimating future price representation.  

6.4.2.1 General comments on the ANNs results 

General observations and comments can be drawn from the application of an ANN to 
model electricity prices for the selected inputs in this research. The results from the 
calibration of the ANN model over the entire dataset are used here for illustrative 
purposes (cf. Figures 16-18) and apply to all the other ANN models developed during 
calibration. Figure 16 shows the frequency of historical prices and ANN output 
prices, Figure 17 the historical and ANN output prices against temperature and Figure 
18 the hourly price time series for 2006 and 2008. 
 
The ANN returns essentially prices in the range 25-100$/MWh; lower and higher 
prices are poorly modeled and no prices higher than 300$/MWh are returned (cf. 
Figure 16). The frequency of prices belonging to the range 25-100$/MWh is very 
similar to the historical price frequency as highlighted in Figure 16. This pattern is 
interesting as it reflects the ability of the ANN to reproduce the historical price 
frequency where most data are available; around 80% of the data belong to the range 
25-100$/MWh. The ANN cannot however model the very high prices because they 
are too rare. ANNs learn better on the (frequent) average data than on the (rare) 
extreme intensities (Olsson et al., 2004).  
 
Price intensities start increasing significantly when temperatures exceed 80°F (Figure 
17) and the highest price intensities are returned by the ANN in summer (Figure 18). 
This result was expected as it corresponds to the high air conditioning demand during 
summer in California. High prices (over 100$/MWh) observed for middle range 
temperatures (40-80°F) are not modeled (cf. Figure 17). The inputs selected in this 
research are presumably not driving these high prices so this result seems reasonable. 
These high prices can be considered as price spikes which are highly erratic in 
competitive energy markets and difficult to model using ANNs (Zhao et al., 2007) as 
discussed earlier in Section 6.1.   
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From Figure 18, one can see that there is a sudden price drop observed in the middle 
of the year 2008. This was expected as a binary input was added to account for the 
specific conditions in the first half of 2008 (explained in Section 6.3.2.2). 

 
Figure 16 – Frequency of historical and modeled prices for an Annually-base ANN 
trained on all price ranges from 2005-2008 
 

 
Figure 17 – Modeled prices for an Annually-based ANN trained on all price ranges 
(green +) and Historical prices (blue x) against temperature, 2005-2008 
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Figure 18 – Price time series for 2006 (top) and 2008 (bottom) for an Annually-based 
ANN model trained on all price ranges from 2005-2008 (green +), historical price (blue x) 

6.4.2.2 Comparison of dataset breakdowns based on deterministic variables 

Inspired by previous works, several dataset breakdowns have been considered during 
ANN calibration. For time-saving purposes, training was carried out only on parts of 
the dataset (e.g. for two hours of the day when an hourly-based data breakdown was 
considered). Based on the experimental results given in Table 8, further investigation 
was decided or not. The following data breakdowns were tried out and the range of 
 �� and RMSE values obtained for the simulations are given in Table 7: 
 

� Seasonally-based: Summer and Autumn 
� Monthly-based: January, April and July 
� Hourly-based: Hours 14 and 24 
� Daily-based: Tuesday and Saturday 
� Workdays- / Week-End-based 
� Yearly-based: 2007 

Table 7 - Range of R2 and Root Mean Square Error (RMSE) values for different data 
breakdowns 

Data breakdown �*#23'" #4$
%  RMSE 

Seasonally-based 0.22-0.43 0.126-0.145 
Monthly-based 0.22-0.41 0.128-0.143 
Hourly-based 0.25-0.26 0.125-0.150 
Daily-based 0.24-0.36 0.116-0.142 
Workdays- / Weekend-based 0.28-0.33 0.121-0.144 
Yearly based 0.20 0.136 
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Table 8 - Summary of the results from ANN calibration for the data breakdowns experiments 

Network architecture Training algorithm  Results 

Price range - 
Dataset breakdown Inputs 

Hidden 
layers 

Hidden 
neurons 

Activation 
function Complex 

Points per 
complex 

Points per 
sub-complex � !"#$

%  �&"'#(
%  � )* 

%  �*#2
%  RMSE* 

All 11 1 8 Tansig 8 51 50 0.30 0.24 0.27 0.28 0.140 

January 9 1 8 Tansig 8 2*Npar+1 Npar+1 0.26 0.20 0.25 0.24 0.128 

April 9 1 8 Tansig 8 2*Npar+1 Npar+1 0.42 0.33 0.39 0.39 0.143 

July 9 1 8 Tansig 8 2*Npar+1 Npar+1 0,44 0,38 0,37 0,41 0,138 

October 9 1 8 Tansig 8 2*Npar+1 Npar+1 0.25 0.20 0.18 0.22 0.132 

Summer 10 1 8 Tansig 8 51 50 0.46 0.39 0.40 0.43 0.145 

Autumn 10 1 8 Tansig 8 51 50 0.33 0.13 0.08 0.22 0.126 

Hour 14 10 1 8 Tansig 8 2*Npar+1 Npar+1 0.30 0.24 0.20 0.25 0.150 

Hour 24 10 1 8 Tansig 8 2*Npar+1 Npar+1 0.28 0.21 0.24 0.26 0.125 

Tuesday 10 1 8 Tansig 8 2*Npar+1 Npar+1 0.28 0.24 0.17 0.24 0.142 

Saturday 10 1 8 Tansig 8 2*Npar+1 Npar+1 0.41 0.24 0.33 0.36 0.116 

WE-based 10 1 8 Tansig 8 51 50 0.38 0.27 0.30 0.33 0.121 

Workdays-based 10 1 8 Tansig 8 51 50 0.29 0.25 0.28 0.28 0.144 

Year 2007 11 1 8 Tansig 8 2*Npar+1 Npar+1 0.22 0.16 0.20 0.20 0.136 

‘Normal prices’ 11 1 8 Tansig 8 51 50 0.39 0.37 0.38 0.38 0.079 

‘Medium prices’ 11 1 8 Tansig 8 51 50 0.36 0.36 0.34 0.36 0.069 

‘Low prices’ 11 1 8 Tansig 8 51 50 0.10 0.09 0.04 0.08 0.035 

‘High prices’ 11 1 8 Tansig 8 51 50 0.17 0.15 0.15 0.16 0.249 

 *RMSE: Root Mean Square Error
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The different data breakdowns are compared in the next paragraphs.  
 
Hourly-based & Daily-based models 
The hourly-based model was discarded from further analysis because it has a low 
R/01567809:

�  range value and average RMSE value.  
 
The correlation range for the daily-based model simulations is R/01567809:

� = 0.24 −
0.36  and for the workdays-/ weekends- based model R/01567809:

� = 0.28 − 0.33. The 
partition between workdays and weekends, requiring only two individual models, was 
preferred to a daily data breakdown and the daily-based models were abandoned. The 
division between weekends and workdays has already been used for short-term price 
forecasting (e.g. Gao et al., 2000) and will be assessed in detail later. 
 
Hourly- and daily-based models have not been assessed based on other performance 
criteria (e.g. frequency distribution) because it would require building each individual 
models to extract monthly patterns and was considered too time consuming.  
 
Yearly-based 
The model developed for year 2007 has the lowest determination coefficient among 
all experiments with R/01567809:

� = 0.20 and its RMSE value is not significantly 
reduced compared to the model built for all four years data. Figure 19 is a comparison 
of the revenue curves between this model and the model using the entire dataset for 
the months of June and December. Generally, monthly revenue curves developed for 
2007’s model are further away from the historical data (or do not have a significantly 
better fit) than the model using the four years of data. It was therefore decided to 
exclude the yearly-based model from further analysis.  

 
a) June         b) December 

 
Figure 19 - Comparison of the revenue curves for Yearly-based ANN model calibrated 
on 2007’s data and an Annually-based ANN calibrated on all data for June (a) and 
December (b) 
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Monthly-based, Seasonally-based, Workdays/WE- based 
Figure 20 is a comparison of April’s and July’s revenue curves for four ANN models: 
seasonally-based, monthly-based, workday- and weekend-based models combined in 
parallel and Base model using all data. The best fit for the revenue curves can be 
observed for monthly-based models and summer model. The workdays/weekends- 
based model produced a better fit than the Base model for most months. It was 
decided to keep only one model for the next steps of this research and the monthly-
based models were elected for the following reasons: 
 

� Generally, those produced the best fit for the revenue curves and especially 
for the month of April where the other data partitions didn’t fit so good; 

� this partition seemed the most appropriate to capture the monthly variability 
of prices which is of interest in this research.  

� R/01567809:
� = 0.22 − 0.41 and RMSE=0.13-0.14 are among the best errors 

from the experiments together with the seasonal models; 

 
a) April 

 
b) July 

Figure 20 - Revenue curves for four ANN models: Base (calibrated on all data), workday 
and weekend-based models combined in parallel, Seasonally-based and Monthly-based 
models for April (a) and July (b) 
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6.4.2.3 Comparison of dataset breakdowns based on stochastic variables 

Additional dataset breakdowns have been tried out. The motivations for the partitions 
considered are presented in this section and their implementation is detailed after.  
 
The first partition was inspired by an experiment made by Olsson et al. (2004) for 
rainfall intensity classification. They have firstly divided their dataset in different 
categories based on rainfall intensity. Then they tried to use a stratified sample for 
ANN calibration, designed to contain an identical number of intensities in each 
category. This may improve the ANN training as the learning capacity of ANNs is 
commensurate with the quantity of data available (Olsson et al., 2004). This method 
was tried out in the present research as previous experiments haven’t been able to 
capture low price intensities (below 25$/MWh) and high prices (above 125$/MWh). 
In light of these results, a non representative subsample designed to contain a similar 
number of price intensities in predefined price ranges was extracted. 
 
The two following experiments were inspired by the work from Lu et al. (2005) and 
Zhao et al. (2007) who spotlighted the fact that ANNs were unable to model price 
spikes because of they are highly erratic, several orders of magnitude higher than the 
average price, often under-represented compared to normal prices and most likely not 
driven by the inputs selected in the present work. With respect to the use of ANN 
models, this is a delicate issue. ANNs are trained better on the range of intensities that 
is the most frequent in the calibration set (Olsson et al., 2004). Therefore, scattered 
outliers will be poorly modeled. According to Lu et al. (2005), almost all the existing 
techniques for short-term price forecasting require filtering out the price spike signals 
in order to forecast normal prices with rather high accuracy.  
 
As defined by Lu et al. (2005) high price spikes are prices exceeding the threshold Pv: 

 CD = E ± 2G (1) 

where E is the mean of historical market price and G is the standard deviation of the 
prices. In the present case study, price spikes correspond to prices exceeding 
128$/MWh, including 3.7% of the price population (or 1191 data) and representing 
12.9% of cumulated price intensities. Many high intensity prices happened in 2008 
but probably aren’t really price spikes as these resulted from a global increase in 
electricity prices. Their intensity is still ‘abnormally’ high so it was decided to make 
no distinction between those and other price spikes. Very few price spikes seemed to 
have occurred in 2005 but this is partly because four months of data were removed. 
Most spikes occurred in spring and summer. 
 
Based on the previous comments, the following data partitions have been considered: 

� Stratified dataset considering five price ranges. 
� Division of the set between ‘Normal prices’ (below the threshold Pv) and 

price spikes.  
� Division of the set between ‘Low prices’ (including the 10% lowest price 

intensities), ‘Medium prices’ (prices between Low prices and the threshold 
Pv) and Price spikes. 
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Stratified dataset breakdown 
Five categories of prices p (given in [$/MWh]) were defined on the basis of the 
cumulative distribution of prices: 0 < p ≤ 25, 25 < p ≤ 50, 50 < p ≤ 75, 75 < p ≤ 100, 
100 < p. Each category contained 1000 data samples, giving a total of 5000 data 
samples, 15% of the original dataset. Then the set was divided into training, test and 
validation set as usual for calibration. The optimized ANN for 8 hidden neurons 
gave �HIJ�	�	K

� = 0.29 and �M��NOJH�P	
� = 0.28.  

 
Figure 21 shows the prices plotted against temperature. Prices below 20$/MWh are 
still not captured and prices above 150$/MWh either. Visually, the agreement 
between historical and modeled prices is not improved for high temperatures 
compared to the earlier models, e.g. the Annually-based model calibrated on all 
prices. This ANN model calibrated on a stratified sample was abandoned as it did not 
capture the low and high prices as wished.  

 
Figure 21 – Price obtained from the ANN trained over a stratified sample (2005-2008) 
against temperature 
 
‘Normal prices’ model 
The correlations obtained from the ‘normal price’ model are very much improved 
compared to the ANN developed for the entire dataset. The simulation for the optimal 
parameters gives  �M��NOJH�P	

� = 0.38 and RMSE = 0.08 (compared to �M��NOJH�P	
� =

0.28 and RMSE = 0.14 for the Annually-based ANN trained over all prices). Figure 
22 shows the prices plotted against temperature. Prices below 20$/MWh and above 
90$/MWh are still not modeled properly. Too few data belong to these ranges 
compared to the quantity of data available in the interval 20-90$/MWh to be modeled 
adequately by the ANN. This observation conducted to the next experiment 
considering a division between Low, Medium and Price spikes. 
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Figure 22 – Prices from an ANN model trained over ‘normal’ prices (below 128 $/MWh) 
against temperature (2005-2008) 
 
A second ANN was developed for the set of price spikes. As expected these could not 
be modeled accurately because there are too few data (1191 data samples), the spikes 
are very volatile and they are probably not driven by the selected inputs. No further 
investigation to model price spikes was carried out as it is beyond the scope of this 
work. Further research could consider applying a ‘damping scheme’ as proposed by 
Yamin et al. (2004) or by a similar reasoning.  
 
Price spikes represent only 3.7% of the price population but their summed intensities 
reach nearly 13% of the total. Two options were foreseeable to deal with price spikes: 
considering that a certain percentage of price spikes will occur in the future or that 
there won’t be any more spikes. This depends on how the energy market is projected 
to evolve. Lu et al. (2005) spotlighted the fact that in an ideal competitive electricity 
market, price spikes should only occur when the demand exceeds the supply. 
However, most markets are not ideally competitive, and gaming behaviors probably 
influence the market (Lu et al., 2005). It has also been argued that suppliers take 
advantage of the vulnerability (difficulty of storing, generation capacity constraints 
and transmission congestion) of the electricity market by withholding their capacity 
so as to shift supply-demand curves and forcing price spikes (Zhao et al., 2007). 
Therefore, if the market operation is foreseen to stay as it is today – which is the 
assumption we make in the present work – then price spikes should be kept 
unimpaired as they will most likely continue to occur.  If the market is envisaged to 
turn towards an ‘ideal’ competitive market or maybe towards a highly supervised 
market preventing spikes to occur, then spikes should be removed. The percentage of 
energy spikes in the future is assumed to be the same as in the base case. Unimpaired 
price spikes were added to the modeled price set and Figure 23 shows the revenue 
curves for the models calibrated on all prices or on normal prices for June and 
September. The model developed for ‘normal prices’ fits better historical data.  
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a) June           b) September 

Figure 23 - Comparison of the revenue curves for two Annually-based ANN models: one 
trained on all prices and on 'normal prices' (price spikes truncated) for June (a) and 
September (b). The historic proportion of price spikes in the market was assumed to 
remain constant for the second model. 
 
‘Medium prices’ and ‘Low prices’ models 
Figure 24 displays the plot of prices vs. temperature for the medium range prices 
which gives  �M��NOJH�P	

� = 0.36 and RMSE = 0.07 (compared to �M��NOJH�P	
� = 0.38 

and RMSE = 0.08 for the ‘normal prices’). Surprisingly, these results are not far off 
from the results obtained for normal prices and the correlation in terms of R2 value is 
even lower. The same price trend as for ‘normal’ prices is observed except that the 
lower bound of the modeled prices is now higher, around 35$/MWh. Truncating the 
10% low prices did not help the ANN to reproduce the low range of the calibration 
set and increased the price set’s average. ANNs usually return outputs where most 
data are available (Olsson et al., 2004); this may be at the origin of this phenomenon, 
otherwise no other explanation has been found out to explain this trend.  

 
Figure 24 - Prices from an ANN model trained over ‘medium’ prices (between 22 and 
128 $/MWh) against temperature (2005-2008) 
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The second model developed for the set of the 10% lowest values returned prices 
mostly around the average of the calibration set (cf. Figure 25) and the correlation is 
low, R/01567809:

� = 0.08. It is hard to assess if the ANN returned the prices follow an 
underlying relationship; this dataset breakdown was abandoned.  

 
Figure 25 - Modeled and historical prices against temperature, low range, 2005-2008 

6.4.3 Summary of the findings and choice of the optimum ANNs 

Among all the dataset breakdowns tried out in this research, two divisions stand out: 
� Monthly-based models (ANN1) 
� Annually-based model calibrated on Normal price i.e. excluding price spikes 

(ANN2) 
  
Monthly models were elected because they visually fit well historical patterns and 
seem appropriate to capture the monthly variability of energy prices. The annual 
model trained for normal prices improves the determination coefficient but requires 
filtering out the spikes, assuming that all prices over a certain range are non natural 
price spikes. The same proportion of spikes as for the period 2005-2008 was assumed 
to occur in the future. 
 
The two models are compared hereafter in terms of monthly price frequency 
distribution using revenue curves. The visual agreement between the revenue curves 
for January, April and July (cf. Figure 26) is very similar between the two models and 
historical data; April is the only month of the year for which the curves have a 
significant different pattern.  
 
Two models were kept because it is not possible to know which one is the most 
accurate. 
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a) January 

 
b) April 

 
c) July 

Figure 26 - Comparison of the revenue curves for the monthly based ANNs and the 
annually-based ANN calibrated on 'normal prices' (price spikes truncated) for January 
(a), April (b) and July (c)  
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6.5 Application of ANN to long-term price forecasting  

6.5.1 Climate warming scenarios 

The impacts of climate warming by 2100 on hourly electricity prices were estimated 
based on five scenarios given in Table 9 and adapted from the simulations of twenty-
first century climates evaluated by Cayan et al. (2008). A strong assumption was 
made: the statewide temperature increase considered here is the average of the 
temperature increases for the two regions NOCAL and SOCAL estimated by Cayan 
et al. (2008); NOCAL corresponds to Sacramento region whereas SOCAL to the area 
around Riverside. This average value was considered to be representative of the 
highly electricity demanding areas, i.e. the highly-populated areas in California which 
are of interest in this work. Another assumption is that the increase estimated by 
Cayan et al. (2008) is based on mean values for the historical period (1961-1990) and 
that we consider the increase based on mean values for (2005-2008).  
 
Four scenarios consider a constant temperature increase throughout the year and one 
high forcing scenario (GFDL-A2-Seasonal) considers a higher increase in summer 
and a lower increase in winter respectively, than in the rest of the year. As no more 
information was gathered about the temperature increases in spring and autumn, these 
values were assumed to be equal to the average annual temperature increase. 
 
Table 9 - Climate Change Scenarios for California (adapted from Cayan et al. (2008)) 

2070-2099 Temperature Change (°F) ¹ ² 

Scenario Name GCM SRES Winter (DJF) Summer (JJA) 
Spring (MAM) & 
Autumn (SON) 

GFDL-A2-Annual GFDL A2 +8,0 +8,0 +8,0 

PCM-A2-Annual PCM A2 +4,6 +4,6 +4,6 

GFDL-B1-Annual GFDL B1 +4,9 +4,9 +4,9 

PCM-B1-Annual PCM B1 +2,8 +2,8 +2,8 

GFDL-A2-Seasonal GFDL A2 +6,0 +10,5 +8,0 

¹ Values from two regions referred to as Nocal and Socal (North and South California) were 
averaged to produce an average considered to be representative for entire California. 
² Temperature change in Spring and Autumn was assumed to be equal to the average annual 
temperature change 
 

6.5.2 Results 

Results for each climate warming scenarios and ANN model are presented in Table 
10. The forecasted average price for all climate warming scenarios are always 
exceeding the base case average price (55 $/MWh). Monthly ANNs (ANN1) predict 
higher average price increases than the Annual ANN model trained on Normal prices 
for all scenarios; i.e. ANN1 estimates higher price increases than ANN2.  
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Table 10 – Price distribution statistics for each climate warming scenario & ANN model 

 
Figure 27 shows the forecasted price intensities against temperature for climate 
warming scenario PCM-A2-Annual for both ANN models chosen. Figure 28 is the 
same figure for scenario GFDL-A2-Annual. Prices increase for all scenarios for the 
highest temperatures relative to historical prices; high forcing scenarios lead to high 
price increases and low forcing scenarios to lower price increases.  
 
Revenue curves for one month from each season (January, April, July, October) were 
plotted for climate scenarios GFDL-A2-Annual and PCM-A2-Annual in Figure 29 
and Figure 30 for ANN1 and ANN2 respectively. For both ANN models, all climate 
warming scenarios lead to high increases in revenues in summer months, and more 
attenuated increases in spring and autumn. In winter, high forcing scenarios lead to 
higher price drops relative to Base case if compared to low forcing scenarios. These 
patterns correspond to what was expected, increased need for cooling in warm months 
and decreased need for heating in winter months. For all climate scenarios, the ANN2 
returns similar revenue curves in April. April is the transition month between winter 
and spring seasons, so energy price patterns might be different between years and it is 
difficult for the ANN to learn the input-output relationship. 
 
The lower increases in revenue using an Annually-based ANN compared to those 
using Monthly based ANNs probably result from the time scale of the ANN models. 
In the case of an Annual model, temperature data samples from all twelve months of 
the year are fed to the ANN during calibration and the trained ANN has knowledge of 
all historical temperature ranges. Most perturbed temperature samples for climate 
warming scenarios will not be out of range of the calibration temperature range, 
except for the extreme highest temperature. Monthly-based models use a monthly 
calibration set; they are independent from each other and have no knowledge of the 
price-temperature relationship mapped in other months. The highest perturbed 
temperatures accounting for CC of each monthly calibration set will be unknown by 

Climate 
scenario 

ANN 
model 

Prices in $/MWh Price Percentiles in $/MWh 

Average 
Standard 
Deviation Minimum Maximum 10th 25th  50th 75th 90th 

Base Case - 54.87 36.54 0.00 399.99 23.88 36.88 49.13 64.14 84.28 

GFDL-A2-
Annual 

ANN1 59.89 33.16 0.00 425.66 30.78 41.04 51.73 70.20 96.15 

ANN2 55.96 33.04 9.00 399.99 31.13 40.58 49.31 61.95 76.11 

PCM-A2-
Annual 

ANN1 56.94 27.51 0.00 392.77 31.11 40.64 50.91 66.91 88.49 

ANN2 55.25 32.74 9.76 399.99 31.31 40.20 49.02 60.11 74.98 

GFDL-A2-
Seasonal 

ANN1 61.55 35.28 0.00 425.66 31.20 41.69 52.38 71.93 99.75 

ANN2 56.67 33.07 9.00 399.99 31.64 41.15 49.87 63.24 76.89 

PCM-B1-
Annual 

ANN1 55.82 25.09 0.00 384.30 31.42 40.55 50.64 65.44 85.00 

ANN2 55.03 32.57 10.73 399.99 31.67 40.24 48.98 48.98 74.42 

GFDL-B1-
Annual 

ANN1 57.15 27.95 0.00 388.50 31.11 40.67 50.93 67.11 89.09 

ANN2 55.30 32.76 9.62 399.99 31.27 40.20 49.04 60.24 75.04 
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the corresponding ANN, but might be known by other monthly ANN models. 
Monthly models might overestimate future price intensities. For illustrative purposes, 
Figure 31 shows the price distribution against temperature from the Monthly- based 
and Annually-based ANN models under GFDL-A2-Annual scenario in March. The 
Monthly model estimates very high price increases for the highest temperatures 
experienced in that month (T>95ºF) whereas the Annual model estimates more 
moderate price increases, which seem more reasonable. Historically, this temperature 
range was experienced in other months of the year, in spring for example, and was not 
responsible for such high prices. Having no knowledge of the rest of the year, 
Monthly-based ANNs might misestimate the input-output relationship and an Annual 
model (or seasonal) may be more appropriate to deal with perturbed temperatures. 

 
a) Monthly-based ANN (ANN1) 

 
b) Annually-based ANN, Normal prices (ANN2) 

Figure 27 - Simulated ANN prices and historical prices (2005-2008) for PCM-A2-Annual 
climate warming scenario for both ANN models: ANN1 (a) and ANN2 (b) 
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Another possible reason for the lower increases in revenue estimated by the Annual 
ANN model is also based on the fact that an ANN model learns from examples which 
are fed during the training procedure. Since this model was trained only for normal 
prices, it will not return prices much higher than the ones fed during training. In the 
first experiment (monthly models for all prices range), since price spikes were not 
removed, the ANN will more likely return high price intensities. 
 

 
a) Monthly-based ANN (ANN1) 

 
b) Annually-based ANN trained on Normal prices, i.e. price spikes removed from 

training dataset (ANN2) 
 

Figure 28 - Simulated ANN prices and historical prices (2005-2008) for GFDL-A2-
Annual climate warming scenario for both ANN models: ANN1 (a) and ANN2 (b) 
 



Climate Warming Effects on Hydropower Demand and Pricing in California 

45 

 
a) January 

 
b) April 
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d) October 

Figure 29 - Monthly Revenue Curves obtained from ANN1 model for January (a), April 
(b), July (c) and October (d) for different climate warming scenarios 
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c) July 

 
d) October 

 

Figure 30 - Monthly Revenue Curves obtained from ANN2 model, for January (a), April 
(b), July (c) and October (d) for different climate warming scenarios (it is assumed that 
the same proportion of price spikes as in the 2005-2008 historical price set occur in the 
future under climate change scenarios) 
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a) Monthly-based ANN (ANN1)         b) Annually-based ANN, Normal prices (ANN2) 

Figure 31 – Results from ANN1 (a) and ANN2 (b) for GFDL-A2-Annual climate 
warming scenario in March. Historical prices (blue x), Modeled prices (green +) 
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7 Energy-Based Hydropower Optimization Model 

7.1 Model set up 

This study investigates the effects of climate change on California’s high-elevation 
hydropower plants using the Energy-Based Hydropower Optimization Model 
(EBHOM) developed by Madani and Lund (2009). EBHOM is a monthly step model 
which does all storage, release and flow calculations in energy units (Madani and 
Lund, 2009). It gives a big picture of the system and is an interesting alternative to 
conventional volume-based optimization models that usually require detailed 
information such as streamflows, turbine capacities, storage operating capacities and 
energy storage capacities at each individual plant of the system.  
 
The flow chart of the EBHOM modeling process is given in Figure 32. The reader is 
referred to Madani and Lund (2009) for details on EBHOM’s mathematical 
formulation. The input data required to run EBHOM are: runoff data, available 
storage capacity at each power plant, frequency of hourly electricity prices for each 
month of the year. Runoff data representative of three elevation ranges (1000-2000, 
2000-3000 and >3000 feet) were gathered from several US Geological Survey 
(USGS) gauges as described in Madani and Lund (2009). Three elevation bands were 
chosen to take into account the different value of the snowpack and precipitation in 
each band. Monthly runoff distributions in each range were then perturbed using 
monthly runoff perturbation ratios of the adopted climate change scenarios as 
described by Vicuna et al. (2008). A perturbation ratio is “a simple ratio of average 
runoff predicted by a GCM for different eras for a given time period (eg. Q2070–99/ 
Q1960–90, where Q is average July streamflow)” (Vicuna et al., 2008). Madani and 
Lund (in press) finally adjusted these ratios at each elevation band as follow: dry and 
wet climate warming scenarios result in 20% less and 10% more annual runoff when 
going up one band, respectively. 
 

 
Figure 32 - Flow chart of EBHOM model 
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The available energy storage capacity at each power plant is determined using the No 
Spill Method (NSM) developed by Madani and Lund (2009), applicable when: plants 
are operated for net revenue maximization, storage volumes do not significantly 
affect the head and there is no over-year storage. These conditions are filled by 
California’s high-elevation hydropower system (Madani and Lund, 2009). 
 
The price representation used to run is either historical prices or forecasted prices 
from the earlier ANNs developed. Revenue curves were drawn by integration over the 
price frequency curves for each month and were then piecewise linearized into five 
segments to solve EBHOM through linear programming (Madani and Lund, 2009). 

7.2 Climate warming and Price Increase Scenarios 

The scenarios elected to run EBHOM are summarized in Table 11. A Dry warming 
GFDL-A2) and a Wet warming (PCM-A2) were chosen to be consistent with the 
previous research of Madani and Lund (in press). An additional Seasonal Dry 
warming scenario considering high temperature increases in summer and low 
temperature increases in winter was chosen. For each climate scenario, EBHOM was 
run under Historical price or price forecasts from either the Monthly-based ANN 
model (ANN1) or the Annually-based ANN model (ANN2). Running EBHOM based 
on price forecasts considers the changes in energy demand due to climate warming.  
 
Two price increase scenarios (+30% or +100% by 2100) were defined. Inspired by 
the work from Aroonruengsawat and Auffhammer (2009), the first scenario assumes 
a discrete price increase of 30% by 2020 remaining to the same level until the end of 
the century. The second scenario is based on the historical trend of average retail 
prices in California described in section 3. A constant annual growth rate of 0.25 
cents/KWh (calculated for the period 1960-2005, cf. Figure 4) results in retail prices 
increase by 100% by 2100. Each price increase scenarios is then coupled to each 
climate warming scenario, run under historical prices and the two ANN price models.  
 
Table 11 – Scenarios defined to run EBHOM, including 4 climate scenarios and 3 price 
models. Additional scenarios were designed by coupling two pure price increase 
scenarios (+30%, +100%) to the scenarios in this Table. 

Scenario Accronym CC Scenario Price Model Price Increase  
Base Base Case 

None: Historical 
prices 

±0% 

Dry  GFDL-A2-Annual 

Wet  PCM-A2-Annual 

Base ANN1 Base Case 

ANN1: 
 Monthly ANNs 

Dry ANN1 GFDL-A2-Annual 

Dry-Seas ANN1 GFDL-A2-Seasonal 

Wet ANN1 PCM-A2-Annual 

Base ANN2 Base Case 
ANN2: 

 Annual ANN for 
Normal Prices 

Dry ANN2 GFDL-A2-Annual 

Dry-Seas ANN2 GFDL-A2-Seasonal 

Wet ANN2 PCM-A2-Annual 
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7.3 Results 

7.3.1 Historical prices and climate change impact on hydrology only 

EBHOM’s results for 1985-1998 hydrologic conditions and 2005-2008 historical 
price dataset are presented here. Table 12 indicates how energy generation, energy 
spill and annual energy revenue change with Dry and Wet climate scenarios as well 
as the Base case scenario. In the present section, results are discussed and compared 
to those obtained by Madani and Lund (in press), who did the same study but with a 
different price dataset. Hourly electricity prices from 2005-2008 are also used here 
but prices from the period September-December 2005 was removed from the set as 
explained in Section 6.3.2.2. Other differences with the work of Madani and Lund (in 
press) are: a different piecewise linearization of the revenue curves was considered, 
and because the problem is relatively complex, the solver may not always come up 
with the globally optimal solution. 
 
Energy generation, energy spills and revenues increase under Wet scenario but 
decrease under Dry scenario relative to the Base case. Energy spills increase 
drastically under Wet scenario with 8 times more spills than under Base case. Energy 
spills occur due to the limited storage capacity of the system and the abundant runoff 
available. These results are similar to those from Madani and Lund (in press). Even if 
average generation increases by nearly 6% under Wet scenario relative to Base case, 
average revenues only increase by 2%. Under Dry scenario, average generation 
decreases by 20% but revenues only decrease by 14% relative to Base case. The 
system adapts to the new climatic conditions to maximize profits. Revenues estimated 
in the present work are different from the ones obtained by Madani and Lund (in 
press).  
 
Table 12 - EBHOM's results (average of results over 1985-1998 period) for different 
climate scenarios 

Base Dry  Wet 

Generation (1,000 GWh/year) 22.3 17.9 23.6 

Generation change with respect to the base case (%)   -19.8 +5.8 

Spill (GWh/year) 130 96 1112 

Spill change with respect to the base case (%)   -26 +756 

Revenue (million $/year) 1,726 1,482 1,762 
Revenue change with respect to the base case (%) -14.1 +2.1 
 
 
 
 
 
 



Climate Warming Effects on Hydropower Demand and Pricing in California 

52 

7.3.1.1 Generation changes with climate warming 

Figure 33 shows average monthly energy generation for 1985 to 1998 hydrologic 
conditions, modified for different climate changes. Results are summed from all 137 
units modeled. On average, dry conditions lead to less generation than under Base 
case except in January and February. The monthly generation peaks occur in January 
and in June, when demand is high and energy is valuable. Generation between 
January and April is highest for the Wet scenario due to increased runoff. In the rest 
of the year, average monthly generation is slightly less than under Base case.  
 
Figure 34 shows the frequency of optimized monthly generation for each month over 
the 14 year period (1985-1998) summed for all units, for the different climates. Over 
the entire study period, Dry climate leads to less generation than Base case and in 
contrast, Wet climate nearly always leads to more generation than Base case. If more 
storage capacity was available, the generation curve under Wet scenario would be 
closer to the Base case curve, with higher revenues. 

 
Figure 33 - Average Monthly Generation (1985-1998) under different climate scenarios 
and historical prices 

 
Figure 34 - Frequency of monthly optimized generation (1985-1998) under various 
climate scenarios (all months, all years, all units) and historical prices  
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7.3.1.2 Reservoir storage changes with climate warming 

Figure 35 shows how average end-of-month energy storage in all reservoirs combined 
changes with climate when reservoirs are operated for energy revenues only. The 
starting month for reservoir refilling is January under Base and Wet scenarios and 
November under Dry climate. Under climate warming scenarios, reservoirs capture 
most of snowmelt water between January and May and release it progressively in 
months of high demand, maximizing profit. The timing of the patterns is similar to 
the monthly runoff distributions. The peak storage intensity is relative to the amount 
of water available, it is the largest under Wet scenario, then Base case and finally 
lowest under Dry scenario. The peak intensity is also lower under Base case than Wet 
scenario because some of the water is directly released and not stored for later. For 
instance, the end-of-month storage capacity in June is about the same for these two 
scenarios.  

 
Figure 35 - Average total end-of-month energy storage (1985-1998) under different 
climate scenarios and historical prices. The black line is the system’s storage capacity. 

7.3.1.3 Energy spills with climate warming 

Figure 36 shows the frequency of total monthly energy spills from the system for the 
study period (1985-1998) when the system is optimized for revenue maximization. 
Energy spill is the equivalent energy value of the water that cannot be stored nor sent 
through turbines because of limited capacities. Energy is spilled by the system in 35% 
of months under Wet climate, in 20% of months under Base case and in 10% of 
months under Dry climate. What is calculated as energy spill in this study is the 
increased energy spill with respect to the Base case, so zero spills under the Base case 
was expected. However, the results showed a minimal model error of 130GWh, 
corresponding to 0.6% of total generation on average, under the Base case. 
 
Figure 37 shows the distribution of total average monthly energy spill for different 
climates. Spills occur only between January and May in all cases. Substantial energy 
spills (850 GWh in total) occur in February under Wet scenario even though the total 
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what will happen in the next months, so in this case it suggests spilling and emptying 
the reservoirs in advance.  

 
Figure 36 - Frequency of total monthly energy spill (1985-1998) under different climate 
scenarios (all months, all years, all units) and historical prices 
 

 
Figure 37 - Average Monthly Total Energy Spill (1985-1998) under different climate 
scenarios and historical prices 
 

7.3.1.4 Revenue and energy price patterns under climate warming 

Figure 38 shows climate warming effects on monthly average price received for 
generated energy in the period 1985-1998. Prices received under Dry scenario exceed 
the Base case prices 85% of the time, but monthly generation is less 100% of the 
time. This is what was expected given the non-linear relationship between electricity 
prices and generation. Prices received under Wet climate are similar to the ones under 
Base case, but never exceed those. Average prices received here reach 175 $/MWh 
under Dry climate, 150 $/MWh under Wet climate, and 135$/MWh under Base case 
whereas those did not exceed 135 $/MWh, 120 $/MWh and 120 $/MWh respectively 
in Madani and Lund (in press). 
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Figure 39 shows the effects of climate warming on the frequency of total annual 
revenues from the system for the 14 years period (1985-1998). Annual revenues are 
the highest 80% of the time under the Wet scenarios and the lowest 100% of the time 
under Dry scenario. Although monthly average prices received for generated energy 
were higher under the Dry scenario, the increase in average prices received does not 
compensate for the Dry scenario reduction in energy generation. On average, annual 
revenues are $210 million lower than the Base case for the Dry scenario. 
 

 
Figure 38 - Frequency of monthly energy price (1985-1998) under different climate 
scenarios (all months, all years, all units) and historical prices 
 

 
Figure 39 - Frequency of total annual revenue (1985-1998) under different climate 
scenarios and historical prices 
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7.3.1.5 Benefits of expanding energy storage and generation capacity 

Figure 40 shows, on average, how energy storage capacity expansion changes 
hydropower generation revenues for different climate scenarios over the 14 years 
study period. This figure indicates the average shadow price of energy storage 
capacity (the increase in annual revenue per 1 MWh energy storage capacity 
expansion) for all 137 reservoirs. For instance, increase in annual revenue per 1MWh 
energy storage capacity expansion is less than $29, $48 and $51 (compared to $35, 
$47 and $54 in Madani and Lund (in press)) for the 137 studied plants under the Base, 
Dry and Wet scenarios. Storage capacity expansion reduces spills and allows for more 
release in summer when energy is the most valuable. Average annual revenues can be 
increased by expanding storage capacity in all plants (except for four plants under 
Base case), although such expansion might not be justified due to expansion costs. As 
expected, benefits of capacity expansion are greater for Wet scenario when the 
additional capacity can be more frequently used. Even with the historical hydrology, 
expanding storage capacity increases total annual revenues in all years. 

 
Figure 40 - Average Shadow Price of Energy Storage Capacity of 137 hydropower units 
in California for 1985-1998 period under different climate scenarios and historical prices 

 
Figure 41 - Average Shadow Price of Energy Generation Capacity of 137 hydropower 
units in California for 1985-1998 period under different climate scenarios and historical 
prices 
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               a) Base                b) Dry 

 
c) Wet 

Figure 42 - Average shadow values of energy storage and generation capacity of 137 
hydropower units in California in the 1985-1998 period under different climate scenarios 
and historical prices 
 
Figure 41 indicates the average shadow price of energy generation (turbine) capacity 
(increase in annual revenue per 1 MWh of annual energy generation capacity 
expansion) for all 137 plants under different climate scenarios. All scenarios benefit 
from an increase in generation capacity, reducing spills and allowing more energy to 
be generated when prices are high. Increase in annual revenue per 1MWh energy 
storage capacity expansion is around $22, $18 and $25 for the 137 studied plants 
under the Base, Dry and Wet scenarios. Even though generation capacity expansion 
produces benefits, expansion costs might be prohibitive.  
 
Figure 42 indicates how the marginal benefits of energy storage and generation 
capacity expansion of power plants vary with climate (each point in the figure is a 
plant). It clarifies the relative importance of extra energy generation and storage 
capacity for each unit for all climate scenarios. Under Base scenario, half of the 
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power plants benefit more from energy storage capacity expansion than generation 
capacity expansion. However, storage capacity expansion is more beneficial in terms 
of revenue if the entire system is considered. Comparison of Figure 42a with Figure 
42b–d shows how storage capacity becomes more valuable under climate warming as 
the scatter in the figures expands to the right, highlighting the higher benefit from 
energy storage capacity expansion than generation capacity expansion. Under Wet 
scenario, 86% of the units benefit more from storage capacity expansion. Finally for 
the Dry scenario, 55% of the power plants benefit more from energy storage capacity 
expansion than generation capacity expansion. However, nearly 40% of the plants 
increase their revenues by less than 5$ per MWh storage capacity expansion. The 
plants that do not spill are responsible for this low increase in average shadow prices. 
 
Figure 43 shows the changes of marginal benefits of energy storage and generation 
(turbine) capacities relative to the base case (Figure 42a) with different climate 
warming scenarios. Under the Dry scenario, marginal benefits of energy generation 
capacity of all units are lower than the Base case, because water supply availability is 
the limiting factor. For about 50% of plants, the value of expanding energy storage 
under drier conditions is more than with the Base case, allowing more winter inflows 
to be shifted to high value summer power generation (the maximum difference can be 
as high as $28). For the Wet scenario, almost all units benefit from energy storage 
capacity expansion as well as from generation capacity expansion, reducing spills and 
shifting generation from low- to high-valued months. In this case, energy storage 
capacity expansion is more valuable than generation capacity expansion. 
 

 
 a) Dry       b) Wet 
 

Figure 43 - Average change of energy storage and generation capacity shadow values 
from the base case with different climate scenarios (for 137 hydropower units in 
California in the 1985-1998 period) based on historical prices 
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7.3.2 Climate change impact on energy demand, pricing and on 
hydrology 

The previous section described climate warming effects on California’s high-
elevation hydropower system by focusing on the supply side (exploring the effects of 
hydrological changes on generation and revenues), ignoring the warming effects on 
hydropower demand and pricing. The present section extends the previous results by 
simultaneous consideration of climate change effects on high-elevation hydropower 
supply and demand in California. The ANNs developed in Section 6 are used as long-
term price forecasting tools to estimate the impact of climate warming on energy 
prices. Two different ANN models were developed: 12 Monthly-based ANN models 
calibrated for all price ranges (ANN1), and a single Annually-based ANN model 
calibrated on Normal prices (ANN2). These models will be referred to as ANN1 and 
ANN2 respectively hereafter for simplification. 
 
Table 13 indicates how energy generation, energy spill and annual energy revenue 
change relative to Base case for different climate scenarios and forecasted future 
energy pricing. For each climate warming scenario (Dry, Wet or Dry-Seasonal), the 
average annual generation and energy spills are the same no matter what the price 
representation is. Generally, when warming effects on demand are considered, annual 
revenues decrease relative to the Base case for both drier and wetter conditions. 
Depending on the ANN model used to forecast prices, there can be significant 
differences in average revenues received, especially under drier conditions. Under 
Dry climate, the difference in revenues between models using ANN1 or ANN2 is 
around 130 million $/year and under Dry-Seasonal climate it reaches 180 million 
$/year. Generally, ANN1 predicts higher annual average revenues than ANN2 under 
all climates. The Dry scenario estimates more important decreases in revenue than the 
Dry-Seasonal one. 
 
Table 13 - EBHOM's results (average of results over 1985-1998 period) for different 
climate warming scenarios considering simultaneously the warming effects on  
hydropower supply and demand (ANN1: Monthly-based ANN model; ANN2: Annually-
based ANN model calibrated on Normal prices) 

Climate scenario Base Dry Wet Dry Dry-Seas Wet 

Price Model Historical ANN1 ANN2 ANN1 ANN2 ANN1 ANN2 
Generation (1,000 
GWh/year) 

22.3 17.9 23.6 17.9 17.9 23.6 

Generation change with 
respect to the base case 
(%) 

 
-19.8 +5.8 -19.8 -19.8 +5.8 

Spill (GWh/year) 130 96 1112 96 96 1112 
Spill change with respect 
to the base case (%)  

-26 +756 -26 -26 +756 

Revenue (million $/year) 1,726 1,482 1,762 1,533 1,400 1,587 1,408 1,718 1,660 
Revenue change with 
respect to the base case 
(%) 

 
-14.1 +2.1 -11.2 -18.9 -8.1 -18.4 -0.5 -3.8 
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7.3.2.1 Generation changes with climate warming scenarios 

Figure 44a-b shows average monthly energy generation for 1985 to 1998 for different 
climate warming scenarios, considering climate warming effects on high-elevation 
hydropower supply and demand simultaneously. Results are summed from all 137 
units modeled.  

 
a) Dry scenarios 

 
b) Wet Scenarios 

 
Figure 44 - Average Monthly Generation (1985-1998) under dry (a) and wet (b) warming 
scenarios, considering the warming effects on hydropower supply and demand 
simultaneously (Future energy pricing is forecasted using ANNs – ANN1: Monthly-based 
model; ANN2: Annually-based model calibrated on Normal prices) 
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When climate warming effects on hydropower demand and pricing are considered, 
average monthly generation increases in June and July and decrease from November 
to February under all scenarios, compared to when those were ignored. Less 
generation in winter is necessary since there is less need for heating and increases in 
summer to satisfy the high demand for cooling. Generation is peaking in June or July 
depending on the ANN model considered, but both ANN models result in a peak in 
summer. The highest peaks occur in July for ANN2 and reaches 2,500GWh/Month 
for Dry ANN2, 2,700GWh/Month for Dry-Seasonal ANN2 and 2,900GWh/Month for 
Wet ANN2. Dry-Seasonal scenarios estimate more generation in July and August 
than Dry scenarios. Under the rest of the months, considering warming effects on 
energy demand results in similar behavior than ignoring them. 
 

7.3.2.2 Reservoir storage changes with climate warming 

Figure 45a-b shows how average end-of-month energy storage in all reservoirs 
combined changes with climate when reservoirs are operated for energy revenues 
only, for drier and wetter scenarios respectively, considering climate warming effects 
on high-elevation hydropower supply and demand simultaneously. 
 
Reservoirs start refilling earlier in the Dry scenarios than in the Wet ones and Base 
case. In the dry scenarios, the system must take maximal advantage of the water 
available from late autumn to spring, to release it when prices are the highest, i.e. in 
summer. Between February and June, the system stores more water in its reservoirs 
when future changes in demand are considered than when they are ignored. This is 
true for both drier and wetter scenarios. Less energy is needed in cold months so more 
water is available to be stored until high-demanding months. The peak storage occurs 
in May under all climate change scenarios. In the rest of the months, less energy is 
stored when changes in demand are considered. On average, the system’s total 
storage capacity is never met. The main difference between the two ANN models is 
that on average less energy is stored in summer for ANN2 compared to ANN1, 
because in that case generation peaked in July (by more than 500 GWh). There is no 
significant difference between the Dry and Dry-Seasonal scenarios, except slightly 
less storage in summer for the latter scenario.  
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a) Dry scenarios 

 
b) Wet scenarios 

 
Figure 45 - Average total end-of-month energy storage (1985-1998) under dry (a) and 
wet (b) warming scenarios, considering the warming effects on hydropower supply and 
demand simultaneously (Future energy pricing is forecasted using ANNs – ANN1: 
Monthly-based model; ANN2: Annually-based model calibrated on Normal prices) 
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7.3.2.3 Energy spills with climate warming 

Figure 46a-b shows the distribution of total average monthly energy spill for dry and 
wet climate scenarios considering changes in future demands. All spills occur in the 
refilling season (December to May) before release when demand and prices are high. 
The energy spill patterns are similar between all dry scenarios and between all wet 
scenarios. Considering warming effect on demand does not alter the average monthly 
spill pattern. Average energy spills of about 850GWh occur in February under Wet 
scenarios. EBHOM suggests emptying reservoirs in advance since it has perfect 
foresight into the future. 

 
a) Dry scenarios 

 
b) Wet scenarios 

 

Figure 46 - Average Monthly Total Energy Spill (1985-1998) under different warming 
scenarios, considering the warming effects on hydropower supply and demand 
simultaneously (Future energy pricing is forecasted using ANNs – ANN1: Monthly-based 
model; ANN2: Annually-based model calibrated on Normal prices) 
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7.3.2.4 Revenue and energy price patterns under climate warming 

Figure 47a-b shows climate warming effects on monthly average price received for 
generated energy, for drier (a) and wetter (b) scenarios respectively, considering 
climate warming effects on hydropower supply and demand simultaneously.  

 
a) Dry scenarios 

 
b) Wet Scenarios 

 
Figure 47 - Frequency of monthly energy price (1985-1998) under dry (a) and wet (b) 
warming scenarios , considering the warming effects on hydropower supply and demand 
simultaneously (all months, all years, all units) (Future energy pricing is forecasted using 
ANNs – ANN1: Monthly-based model; ANN2: Annually-based model calibrated on 
Normal prices)  
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and Dry-Seas ANN2 and 60% of time under Dry ANN1 and Dry-Seas ANN1. The 
aggregate monthly energy price received under both Dry-Seasonal scenarios exceeds 
those under their respective Dry scenario. Aggregate monthly energy prices for 1985-
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$/MWh when ANN2 is used under Dry scenarios. Generally, monthly energy prices 
received when the scenario is based on ANN2 exceed those when ANN1 is used. 
Monthly energy prices received under Wet ANN1 never exceed Base case neither 
other wet scenarios. Prices received under Wet ANN2 are lower than Base case and 
Wet scenario (based on historical prices) 85% of the time, but exceed both the rest of 
the times. Generally dry scenarios increase monthly energy prices relative to the Base 
case whereas wet scenarios decrease prices. 
 

 
a) Dry scenarios 

 
b) Wet Scenarios 

 

Figure 48 - Frequency of total annual revenue (1985-1998) under dry (a) and wet (b) 
warming scenarios, considering the warming effects on hydropower supply and demand  
simultaneously (Future energy pricing is forecasted using ANNs – ANN1: Monthly-based 
model; ANN2: Annually-based model calibrated on Normal prices) 
 
 
 

900

1,100

1,300

1,500

1,700

1,900

2,100

2,300

0% 20% 40% 60% 80% 100%

A
n

n
u

a
l 

R
e

v
e

n
u

e
 (

M
il

li
o

n
 $

/y
e

a
r)

Non Exceedance Probability

Base

Dry

Dry ANN1

Dry ANN2

Dry-Seas ANN1

Dry-Seas ANN2

900

1,100

1,300

1,500

1,700

1,900

2,100

2,300

0% 20% 40% 60% 80% 100%

A
n

n
u

a
l 

R
e

v
e

n
u

e
 (

M
il

li
o

n
 $

/y
e

a
r)

Non Exceedance Probability

Base

Wet

Wet ANN1

Wet ANN2



Climate Warming Effects on Hydropower Demand and Pricing in California 

66 

Figure 48a-b shows the effects of climate warming on the frequency of total annual 
revenues from the system for the 14 years period (1985-1998) for drier (a) and wetter 
conditions (b), considering climate warming effects on hydropower supply and 
demand simultaneously. Under Dry conditions, annual revenues received are always 
lower than those under Base case. Although monthly average prices received for 
generated energy were higher under the Dry scenarios, the increase in average prices 
received does not compensate for the Dry scenarios reduction in energy generation. 
For drier climate, considering the simultaneous effects of climate warming on 
hydropower supply and demand leads to an increase in annual revenues when the 
model is based on ANN1 and a decrease when the model is based on ANN2. For 
wetter conditions, considering the simultaneous effects of warming on hydropower 
supply and demand decreases revenues compared to when they were neglected. For 
all climate warming scenarios ANN1 increases revenues compared to ANN2; this has 
already been discussed in Section 6.5 dealing with to long-term price forecasting; 
Monthly-based models (ANN1) are likely to overestimate future prices. 
 

7.3.2.5 Benefits of expanding energy storage and generation capacity 

Figure 49a-b shows, on average, how energy storage capacity expansion changes 
hydropower generation revenues for drier (a) and wetter (b) climate scenarios over 
the 14 years study period. These figures indicate the average shadow price of energy 
storage capacity (the increase in annual revenue per 1 MWh energy storage capacity 
expansion) for all 137 reservoirs. Average annual revenues can be increased by 
expanding storage capacity in all plants (except for seven plants under Dry ANN1 and 
Dry ANN2), although such expansion might not be justified due to expansion costs. 
In summer, demand increases and energy is valuable, so the system benefits from 
storing more snowmelt water. Increase in annual revenue per 1MWh energy storage 
capacity expansion is between $45 and $81 for the 137 studied plants under drier 
scenarios considering changes in demand. It is hard to conclude on the benefits from 
expanding energy storage capacity under wetter scenarios. Expanding storage 
capacity can be more or less beneficial than when demand changes were ignored, 
depending on the ANN forecast model used. Under Dry ANN1, expanding energy 
storage capacity is more valuable for about 50 power than under wetter scenarios, 
which is surprising. Greater benefits of storage capacity expansion for Wet scenarios 
were expected since the additional capacity can be more frequently used. However 
the estimations from ANN2 seem more reasonable.  
 
Figure 50a-b indicates the average shadow price of energy generation (turbine) 
capacity (increase in annual revenue per 1 MWh of annual energy generation capacity 
expansion) for the entire system, under drier (a) and wetter (b) climate warming 
scenarios. Considering climate warming effects on demand attenuates the benefits 
from expanding energy generation capacity under wetter scenarios relative to the Wet 
scenario based on historical pricing. The same comment is valid for drier conditions, 
except for Dry-Seasonal ANN1 scenario. Increase in annual revenue per 1MWh 
energy generation capacity expansion is $22, $15-17 and $22-24 for the 137 studied 
plants under Base, drier and wetter scenarios respectively. 
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a) Dry 

 
b) Wet 

 

Figure 49 - Average Shadow Price of Energy Storage Capacity of 137 hydropower units 
in California in the 1985-1998 period under dry (a) and wet (b) warming scenarios, 
considering the warming effects on hydropower supply and demand simultaneously 
(Future energy pricing is forecasted using ANNs – ANN1: Monthly-based model; ANN2: 
Annually-based model calibrated on Normal prices) 
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a) Dry 

 
b) Wet 
 

Figure 50 - Average Shadow Price of Energy Generation Capacity of 137 hydropower 
units in California in the 1985-1998 period under dry (a) and wet (b) warming scenarios, 
considering the warming effects on hydropower supply and demand simultaneously 
(Future energy pricing is forecasted using ANNs – ANN1: Monthly-based model; ANN2: 
Annually-based model calibrated on Normal prices) 
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Figure 51 indicates how the marginal benefits of energy storage and generation 
capacity expansion of power plants vary with the different scenarios (each point is a 
plant). It clarifies the relative importance of extra energy generation and storage 
capacity for each unit for all climate scenarios. Under all climate warming scenarios, 
expanding energy storage capacity is typically more beneficial than expanding 
generation capacity if the expansion costs are the same. Expanding energy storage 
capacity allows storing water in off-peak months and releasing it through turbines 
when prices are higher. Depending on the ANN forecast model, between 45 and 52 
plants under drier scenarios, and only between 15 and 18 plants under wetter 
scenarios, benefit more from energy generation capacity expansion (out of 137 plants 
in total). Energy storage capacity shadow price is [1.81-2.32] and [1.93-2.27] times 
higher than the energy generation shadow price for all power plants under Dry and 
Wet scenarios considering warming effects on demand. 

 
                                   a) Dry ANN1         b) Dry ANN2 

  
                                c) Wet ANN1         d) Wet ANN2 

 

Figure 51 - Average shadow values of energy storage and generation capacity of 137 
hydropower units in California in the 1985-1998 period under dry (a, b) and wet (c, d) 
warming scenarios, considering the warming effects on hydropower supply and demand 
simultaneously (Future energy pricing is forecasted using ANNs – ANN1: Monthly-based 
model; ANN2: Annually-based model calibrated on Normal prices) 
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Figure 52 shows the changes of marginal benefits of energy storage and generation 
(turbine) capacities relative to the Base case with drier and wetter warming scenarios. 
Patterns for Dry-Seasonal scenarios are similar to the Dry scenarios so they are not 
shown in the figure. Under Dry ANN1 and Dry ANN2, marginal benefits of 
expanding energy generation capacity for all units are lower than under Base case. 
There is less inflow, so the existing generation capacity is more often sufficient to 
avoid spills. For between 75 and 87 of plants (55-63%), the value of expanding 
energy storage capacity under drier conditions is more than under Base case. For Wet 
ANN1 and Wet ANN2 scenarios, most units (121 and 112 respectively) benefit more 
from energy storage capacity expansion than for Base case. Under the wetter 
scenarios about 50% of plants benefit from expanding both generation and storage 
capacities, but energy storage capacity expansion is more valuable, as the scatter in 
Figure 52c-d expands to the right. 

 
                          a)   Dry ANN1         b)  Dry ANN2 

 
                              c)   Wet ANN1          d)  Wet ANN2 
 
Figure 52 - Average change of energy storage and generation capacity shadow values 
from the base case from dry (a, b) and wet (c, d) warming scenarios (for 137 hydropower 
units in the 1985-1998 period), considering the warming effects on hydropower supply 
and demand simultaneously (Future energy pricing is forecasted using ANNs – ANN1: 
Monthly-based model; ANN2: Annually-based model calibrated on Normal prices) 
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7.3.3 Pure price increase scenarios coupled with climate warming 
scenarios 

Average annual revenues for each price increase scenarios (±0%, +30% and +100% by 
year 2100) coupled to warming scenarios are shown on Figure 53. The inputs used to 
EBHOM are monthly revenue curves which are the integration over the price 
frequency distribution. Therefore, a linear price increase by K% increases annual 
revenues by K%. For instance, a price increase of 100% under a Dry scenario 
increases average annual revenue by 100% relative to the initial Dry scenario. 
Revenues are increased by K% (K=30 or 100) under each price increase scenario, so 
are average shadow prices of energy generation expansion and energy capacity 
expansion. Energy storage expansion and energy generation expansion become more 
valuable when price increase scenarios are considered. 
 
Average annual energy generation and energy spills are identical whether or not a 
price distribution was increase by K% for each climate warming scenario. The same 
behavior is observed for average monthly generation, average end-of-month storage 
and energy spill patterns. The system optimized for revenue maximization responds 
in a similar manner to the price distribution increased by a constant percentage than to 
the initial price distribution. 

 
Figure 53 - EBHOM’s annual revenue results (average of results over 1985-1998 period) 
for different climate warming scenarios coupled to price increase scenarios by 0%, 30% 
and 100%. Scenarios are based on historical prices, or forecasted future energy prices 
from Monthly ANN models (ANN1) or an Annual ANN model (ANN2). The horizontal 
axis crosses the vertical axis at the Base case (+0%) average revenue value. 
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8 Limitations and Future Direction 

Climate warming might have impacts on California’s high-elevation hydropower 
system in the next century. This work is aiming to estimate the effects from a change 
in both hydrological conditions and energy demand and pricing. What we are 
interested in is the ‘big’ picture; so many simplifying assumptions were necessary and 
should be considered in interpreting results. For instance, temperature data from 
several meteorological stations were averaged to define a temperature dataset for 
California, even if temperature varies consistently from area to area. Results from this 
work give however some insights on how the system works and how it might adapt to 
climate change. 
 
Energy demand was included in ANN modeling as a third order polynomial function 
of temperature. This function was estimated by Franco and Sanstad (2006) to 
correlate the daily mean demand to the average daily temperature. Estimating hourly 
demands through this function implies that the hourly demand follows the same 
pattern as the mean daily demand. This seems to be a reasonable assumption knowing 
that we are interested in the big picture over California and that temperatures are also 
flattened. However this remains a limitation to map properly the hourly prices that 
contain many peaks which might result from periods of peak demand. Historically, 
peak loads have been increasing year after year and this is not considered in the 
present modeling. An interesting future development could be to improve the 
experiment tried out in this work, by considering the development of two ANNs in 
series: the first one to estimate a non linear response of demand from temperature and 
the second model, a nonlinear response of price from demand.  
 
Processing time for ANN calibration is a limiting factor. Using a more powerful 
computer system or opting for a simpler ANN optimization method such as the 
Levenberg-Marquadt algorithm could allow enhancing the ANN architecture and 
accelerate the calibration process. Several independent calibration runs could then be 
performed to ensure finding the optimal set of weights (weights should converge to 
identical values). However, even if the SCE-UA optimization algorithm is complex, it 
should have a high probability of finding the global optimum (Duan et al., 1992). 
 
In the present research two ANN models are developed; 12 parallel monthly models 
for all price ranges and one annual model for normal range prices (from which price 
spikes have been removed). Each approach presents advantages and drawbacks to 
map hourly prices accurately. Monthly models deal with all price ranges and there is 
no arbitrary elimination of price intensities that could be abnormal (or not). However, 
maybe the ANN does not learn anything from these high prices, which might bias the 
learning phase. One main drawback of monthly models appears when using ANNs as 
forecast tools and results from the inability of ANNs to extrapolate. The temperature 
data samples are perturbed to account for climate warming and then fed to the ANN. 
Some of these temperatures will be far off the range of the monthly calibrations 
datasets and the ANN will face new examples. This might lead to overestimation of 
the prices. An annual ANN model may be more appropriate to deal with increases in 
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temperature because these temperatures might have occurred historically in other 
periods of the years, i.e. in other months. The Annual ANN model trained on normal 
prices should model those with rather high accuracy according to Lu et al. (2005), 
who mention that it is necessary to remove price spikes from calibration to improve 
accuracy. When using this Annual ANN model as a forecast tool, it is assumed that 
the future proportion of price spikes will remain the same as for 2005-2008. The 
future energy market was assumed to stay not ideally competitive, with operators 
giving priority to profit maximization, leading to possible manipulations of the 
market. However, it is worth mentioning that in an ‘ideal’ or highly-supervised 
energy market spikes should not occur except when demand exceeds supply. Further 
research should deepen price spikes modeling. 
 
The two ANN models developed here do not distinguish workdays from week-ends 
or public holidays. This was seen in some works on short-term price forecasting (e.g. 
Gao et al., 2000; Amjady and Keynia, 2010b) and should be considered in further 
research. An idea could be to develop two parallel ANNs: one for workdays and one 
for both week-ends and holidays since those have similar price patterns. 
 
Real-time energy prices for the period 2005-2008 were employed to calibrate the 
ANN models and to model the Base case of EBHOM. Application of longer-period 
price data sets might improve the ANN mapping accuracy as ANN models are reliant 
on the quantity and quality of data. The price set from 2005-2008 does not exactly 
match the energy prices from the runoff data period 1985-1998. This might cause 
some inaccuracies in EBHOM’s estimation of revenues and energy prices but should 
not affect other results much (generation, spills and storage) as the energy price trends 
are similar between years (Madani and Lund, in press).  
 
Calibration of EBHOM is likely to underestimate energy storage capacities (Madani 
and Lund, 2009) and therefore also underestimate the adaptability of the system to 
climate changes. Availability of spill or energy storage capacity data would reduce 
this source of error (Madani and Lund, in press). 
 
Population growth rate is not considered here in the future scenarios. However, it was 
shown in the work from Aroonruengsawat and Auffhammer (2009) that it had 
significant impacts on projected demand. Even a low population growth rate of 0.18% 
per year predicts an increase of 65-70% in residential electricity demand by 2100, 
which completely outpaces the increase resulting from climate change 
(Aroonruengsawat and Auffhammer,2009). Additional scenarios including population 
increase scenarios could be developed in future research work. 
 
Finally, price elasticity of demand is neglected in this work for problem 
simplification. If energy prices start rising substantially, it is very probable that 
consumers will save money by saving energy. The consequent demand decrease will 
affect energy prices and so on. A recurrent ANN could be more suitable for model 
such phenomenon if compared to a feed-forward ANN, but is more complex to 
implement and time-consuming to train. An econometric model could also be built to 
estimate this price elasticity of demand.   
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9 Conclusion 

The main objectives of this research work were the followings: develop a tool to 
model the effects of climate warming on future energy demand and pricing and 
estimate the consequent impacts of climate change on California’s high-elevation 
hydropower system. An ANN model was chosen to map the non-linear relationship 
between temperature, energy demand and prices. This model was then used to 
forecast energy prices for different climate warming scenarios. Two ANN models 
were developed, a Monthly-based model calibrated on all price ranges and an 
Annually- based ANN model calibrated on normal prices (price spikes removed). 
Price spikes in California ISO energy market were identified as prices exceeding 
128$/MWh, based on real-time energy prices for the period 2005-2008. For the model 
calibrated on normal prices, the same proportion of price spikes (with the same 
intensities) was assumed to occur in future. In this work, the energy market was 
assumed to remain not ideally competitive with priority given to profit maximization. 
 
The ANN price forecast model estimates higher energy revenues in warm months for 
high-forcing climate scenarios than for low-forcing scenarios, and vice-verse in cold 
months. This corresponds to the higher demand for cooling in summer and lower 
demand for heating in winter. The magnitude of changes in revenue is on average 
higher for the Monthly-based ANN models than for the Annually-based ANN model, 
but monthly models might overestimate prices.  
 
EBHOM’s results for Dry and Wet climate warming scenarios run under historical 
prices are the followings. Energy generation increases from January to April under 
Wet scenario; snowmelt water is plentiful and the system has limited capacity to store 
the shift in peak runoff. Average monthly generation increases also under Dry 
scenario from January to March relative to Base case, but decreases in the rest of the 
months since less inflow is available. For Dry warming scenarios, the reservoirs 
refilling month shift to earlier in the year to capture the shifted snowmelt. The peak 
end-of month storage is in May for both scenarios whereas it was in June under Base 
case. Under Wet scenario, energy spills increase by nearly 1,000 GWh between 
January and April compared to Base case. Energy spills occur when the system 
cannot store all the incoming runoff or send it through the turbines. Even if average 
generation increases by nearly 6% under Wet scenario relative to Base case, average 
revenues only increase by 2% because spills increase. Under Dry scenario, average 
generation decreases by 20% but revenues only decrease by 14% relative to Base 
case, showing that the system is able to adapt to a certain extent to changing 
hydrology. The system increases annual revenues if either energy storage or energy 
generation capacity is expanded under Wet and Dry scenarios relative to Base case. 
Energy storage capacity expansion is more beneficial than generation capacity 
expansion, although such expansion might not be justified due to expansion costs. As 
expected, benefits of capacity expansion are greater for Wet scenario when the 
additional capacity can be more frequently used. 
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EBHOM’s results when climate change effects on high-elevation hydropower supply 
and demand in California are simultaneously considered are compared hereafter to 
those results when changes in demand were ignored. Energy generation increases in 
warm months when demand is high and energy is valuable, and decrease in winter 
when less heating is needed and prices are off-peak. This is true for both climate 
warming scenarios and both ANN models. Between February and June, the end-of-
month storage increases under all scenarios relative to when changes in demand were 
ignored. Less energy is generated in the warmer winters and it is then available to be 
stored until the high-demanding season. Energy spills are not much different from 
EBHOM’s results based on historical pricing. Under Wet scenarios, energy revenues 
decrease because average energy price received decrease and average energy 
revenues is lower than in Base case. Under Dry scenario, revenues are always lower 
than Base case and the Monthly-based ANN model suggests more revenues than the 
Annually-based ANN model. The system under Dry scenarios benefits more from 
energy storage capacity expansion than when historical prices were considered. Under 
wetter conditions is hard to conclude since it depends on the ANN model. Alongside, 
the marginal benefits from energy generation expansion under both Dry and Wet 
scenarios considering the effects of warming on demand are estimated to decrease 
relative to when they were neglected.  
 
Finally, expanding energy storage capacity of California’s high-elevation hydropower 
system seems to be the most beneficial option to adapt to climate change and 
maximize the increase in revenue, although such expansion might not be justified due 
to expansion costs. The benefits gained range from 29 to 81$/Year/MWh when 
changes in demand are considered, depending on the climate scenario. A case by case 
study of the benefits gained by each power plant should be performed to decide 
whether storage or generation capacities should be expanded at each unit. 
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Acronyms 

ANN: Artificial Neural Network 
ANN1: 12 monthly-based ANN model trained on all price ranges, 2005-2008 
ANN2: 1 ANN model trained on Normal prices, excluding price spikes, 2005-2008 
CAISO: see CalISO 
CalISO: California Independent System Operator  
CCCC: California Climate Change Center 
CCE: Competitive Complex Evolution 
CPI: Consumer Price Index 
EBHOM: Energy-Based Hydropower Optimization Model 
ECP: Electricity Consumption Per capita 
GCM: Global Climate Model 
GFDL: Geophysical Fluids Dynamics Laboratory 
IPCC: Intergovernmental Panel on Climate Change 
Logsig: Logistic sigmoid 
MLP: Multi-Layer Perceptron 
MSE: Mean-Squared Error 
NCAR: National Center for Atmospheric Research 
NN: Neural Network 
NOAA: National Oceanic and Atmospheric Administration 
NOCAL: Northern California Region referring to Sacramento area 
NSM: No-Spill Method 
OASIS: Open Access Same-time Information System 
PCM: Parallel Climate Model 
PG&E: Pacific Gas & Electric 
RMSE: Root Mean-Squared Error 
SCE: Southern California Edison 
SCE-UA: Shuffle Complex Evolution – University of Arizona 
SDG&E: San Diego Gas & Electric 
SOCAL: Southern California region referring to the area around Riverside 
SRES: Special Report on Emissions Scenarios 
Tanh: see Tansig 
Tansig: Hyperbolic tangent 
 

Glossary 

Nominal price: “The price paid for a product or service at the time of the transaction. 
Nominal prices are those that have not been adjusted to remove the effect of 
changes in the purchasing power of the dollar; they reflect buying power in the 
year in which the transaction occurred.”  
(Source: EIA, http://www.eia.doe.gov/glossary/index.cfm?id=N) 

Normal prices: Prices that are not price spikes, i.e. positive price values below the 
threshold defining price spikes. 

Predictor: neuron in the input layer of an artificial neural network 
Predictand: neuron in the output layer of an artificial neural network  
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