Master Thesis
TVVR 10/5007

Climate warming effects on
hydropower demand and pricing
iIn California

Adaptability of California’s high-elevation hydropower
system to climate change considering simultaneously
warming effects on energy supply and demand

Marion Guégan

Division of Water Resources Engineering
Department of Building and Environmental Technology

Lund University







Avdelningen for Teknisk Vattenresurslara
ISRN LUTVDG/TVVR-10/5007
ISSN-1101-9824

Climate warming effects on
hydropower demand and pricing
In California

Adaptability of California’s high-elevation hydroper
system to climate change considering simultaneously
warming effects on energy supply and demand

Author: Marion Guégan

Supervisors: Cintia Bertacchi Uvo
Division of Water Resources Engineering
Lund University
Kaveh Madani
Water Science and Policy Center
University of California, Riverside

Examiner:  Rolf Larsson
Division of Water Resources Engineering
Lund University






Climate Warming Effects on Hydropower Demand aridify in California

Abstract

While only about 30% of California’s usable watéorage capacity lies at higher
elevations, high-elevation hydropower units gereeat average 74% of California’s
in-state hydroelectricity. In general, high-elewatiplants have small man-made
reservoirs and rely mainly on snowpack. Their lowiltbin storage capacity is a
concern with regard to climate warming. Snowmeléxpected to shift to earlier in
the year and the system might not be able to stdficient water for release in high-
demanding periods. Previous studies have triedxmoee the climate warming
effects on California’s high-elevation hydropowgstem by focusing on the supply
side (exploring the effects of hydrological changes generation and revenues),
ignoring the warming effects on hydropower demamd pricing. This study extends
the previous work by simultaneous consideratiocliohate change effects on high-
elevation hydropower supply and demand in Caligrrtificial Neural Network
(ANN) models are developed as long-term price faséng tools to estimate the
impact of climate warming on energy prices. Califa’s Energy-Based Hydropower
Optimization Model (EBHOM) is then applied to esditea the adaptability of
California’s high elevation hydropower system tomeite warming considering the
warming effects on hydropower supply and demaneé.mbdel is run for dry and wet
warming scenarios, representing a range of hydicdbgchanges under climate
change. EBHOM's results relative to energy genematienergy spills, reservoir
energy storage, and average shadow prices of egergration and storage capacity
expansion are examined and discussed. The modadsgts are compared with
previous studies to underline the importance ofsmeration of climate change
effects on hydroelectricity demand and pricing kplering the effects of climate
change on California’s hydropower system.

Keywords: Hydropower, Climate Change, Electricity Generati@emand and
Pricing, Artificial Neural Network, California, Higelevation Hydropower Systems.
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1 Introduction

Hydropower facilities in California generated oreeage 37,000GWh or 15% of the
annual in-state generation between 1983 and 2@@gjng annually between 9% and
30% depending on hydrological conditions (McKinney al., 2003). When
precipitation runoff is plentiful, hydroelectric geration is prioritized while other
power plants, mostly gas-fired facilities, may betsdown temporarily (McKinney et
al., 2003). Hydroelectricity’s very low cost, nearo emissions andad following
capacityare some of the reasons for its great popularitgiiMney et al., 2003; Pew
Center on Global Climate Change, 2009). The stat€aiifornia has the second
largest hydropower system in the US behind thee sttWashington, with a total
hydroelectric capacity over 14,000 MW represen2®o of California’s electricity
generation capacity (McKinney et al., 2003). Catfifa also relies on hydroelectricity
imports from the Pacific Northwest including thatss of Oregon and Washington,
and Canada (Aspen Environmental Group and Cub&d)20

California’s statewide average temperatures areard to rise between 3°F and
10.5°F by 2100 (CCCC, 2006, Cayan et al. 2008)s Tteimperature increase is
expected to decrease the state’s snowpack reserviglaelevations and shift the
runoff from snowmelt to an earlier period of theayghan today (CCCC, 2006).
Variations in the annual runoff pattern may sigrafitly alter hydropower generation
depending on the system’s storage and generatipacites. California’s state is
currently encouraging active research on the abdipyaof hydropower systems to
climate change (e.g. Aspen Environmental Group &eégl) 2005; Tanaka et al.,
2006; Medellin-Azuara et al., 2008; Vicuna et 2D08; Vicuna et al., 2009; Madani
and Lund, in press). Besides affecting the avditgbof water for electricity
generation, higher temperatures will likely inceeagemand for cooling in warm
periods (CCCC, 2006; Franco and Sanstad, 2006; nlwemgsawat and
Auffhammer, 2009).

Rising energy demand coupled with reduced hydrtrdég generation could lead to
substantial impact on the electricity market. Aerig hydroelectricity prices is
foreseeable and electricity distributors will prbyaalso have to shift to more
expensive, less environmentally friendly energy reesi to replace the lost
hydropower generation (Union of Concerned Scies)ti2006). To the best of the
author, no study has addressed the impact of dirdadnge on electricity prices in
California by considering simultaneously changes smpply and demand of
hydroelectricity.

California’s Electricity Supply Industry (ESI) is @eregulated competitive market
supervised by the state. It relies on long-terntremts regulated by the state to avoid
market manipulations as it happened during thef@ala crisis of 2000-2001 (CBO,

2001). The California Power Exchange (CalPX) operdhe day-ahead market and
sets the price that the generators will sell eletr based on a bidding process.
California Independent System Operator (CallSOhthperates the region’s power
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grid and wholesale electric markets and deals wdthl-time imbalance energy,
ancillary services and transmission usage.

The specificity of the electricity market comparted other commodities is that it
requires a well coordinated balance between geomrrand consumption since
storage of electricity remains limited and expeasi®mjady and Hemmati, 2006).
Therefore, accurate short-term price forecastingrugial information for producers
and retailers to develop their bidding strategyiday-ahead electricity market; and
has prompted many research works (e.g. Zhao e2@07; Zarezadeh et al., 2008;
Amjady and Keynia, 2010a). However this is not asyetask as price of electricity is
a nonlinear, time variant and volatile signal ovenimultiple periodicity, high
frequency components and significant outliers,, ilmusual prices (especially in
periods of high demand) due to unexpected everttseirlectricity markets (Amjady
and Hemmati, 2006). The application of Artificiaktral Network (ANN) models has
provided a good ability to forecast normal eledtyiprices (Zhao et al., 2007). ANNs
provide an appealing solution for relating noninénput and output variables in
complex systems (ASCE, 2000; Dawson and Wilby, 2001

The present research addresses the impacts oftelim@aming on California’s high-
elevation hydropower system considering simultasBouhe impact of climate
change on the supply, demand and pricing sides.nidie contribution of this work
is the development of a long-term price forecastdehousing Artificial Neural
Networks. The novel price representation is basethe estimation of a relationship
between temperature, electricity demand, time @& year and electricity price
allowing the estimation of climate warming scenaiimpacts on electricity prices. A
novel method of Madani and Lund (2009) for hydropowperation optimization
based on profit maximization was finally used ttireate statewide high-elevation
hydropower system adaptability to climate change.

The present report is organized as follows: Sectibndescribes California’s

hydropower system; Section 3 describes historitedtiécity demand and pricing

trends in California; Section 0 is a literature iesw of climate change effects on
hydropower supply and demand; Section 5 definesrié#nodology of this research
work; Section 6 details the ANN models developed #me estimated effects of
climate warming scenarios on electricity pricesctidm 7 presents the results from
the hydropower optimization model simulations undimate warming scenarios;
Section 8 discusses the limitations of the studg &nure direction; and finally

Section 9 concludes the research.
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2 California and Hydropower

Climate across the California region can be veffedint due to the great differences
in altitude and in latitude of the state. AccorditegKauffman (2003), five major
climate types can be observed in close proximit€alifornia; namely Desert, Cool
Interior, Highland, Steppe and Mediterranean. As dbjective of this research is to
study the impacts of statewide climate change otifo@aa’s high-elevation
hydropower system, only major trends of temperatur@ precipitation distribution
will be presented. Much of California has warm dgmmers and cool wet winters
(Zhu et al., 2005). In terms of electricity demaids corresponds to high demands
in summer for air cooling (Figure 1) and in winfer heating whereas the lowest
demands occur in spring and autumn when neitheat gneating nor cooling is
required. Precipitation in California is very unaviaroughout the year with around
75% of the annual average of 584mm occurring betwvidevember and March (Zhu
et al., 2005) and falls as snow in the Sierra Navambuntain range (Moser et al.,
2009). This results in spatially uneven runoff wittore than 70% of California‘s
average annual runoff occurring in northern Cafifar(Madani and Lund, 2009).

California’s hydroelectric system generated 15%aonrage of the annual in-state
generation between 1983 and 2001 (McKinney et2803). In-state hydropower is
generated by four types of hydropower systems:-higdd low-storage hydropower
plants, low-head multipurpose dams, pumped-stogalgats, and run-of-the-river
units (Pew Center on Global Climate Change, 2008&. distribution of California’s
hydropower system is displayed in Figure 2.

While only about 30% of the state’s usable wateragte capacity lies at higher
elevations, high-elevation hydropower units gereerat average 74% of California’s
in-state hydroelectricity (Madani and Lund, 2009%6 high-elevation hydropower
plants, above 1,000 feet (or 305 meters), have mbatified by Madani and Lund
(2009). Most of them are located in Northern Caitifa (Aspen Environmental Group
and Cubed, 2005). Hydroelectric generation is galyetheir only purpose and only
little amounts of water are necessary to produdistamtial quantities of electricity
with vertical drops of water of hundreds of feeefPCenter on Global Climate
Change, 2009). They have been designed to takendyeaof the snowpack acting as
a natural reservoir and their man-made reservaisiglly small (Madani and Lund,
in press). Their limited storage capacity may midem sensitive to future snowpack
volume and runoff timing variations (Madani and dum press).
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3 Electricity demand and pricing in California

The disparities between the trends in electricggnend in California and the US have
been of great interest to the scientific commuf(aty. Kandel et al., 2008; Horowitz,
2007; Rosenfeld, 2006). California’s aggregate tatdty consumption per capita
(ECP) remained almost flat since 1976 while it @ased by around 50% nationwide
as seen in Figure 3. On a sector-by-sector bdssnhin difference comes from the
industrial and residential sectors. Between 1924005, California’s residential per
capita electricity consumption increased slowly {i#6) compared to the US where
it increased by 60% (Kandel et al, 2008). Califammiresidential ECP slow increase is
among others related to: its mild climate comparedther states resulting in less
heating and less cooling demand in winter and summaspectively (Kandel et al.,
2008); the high concentration of urban areas wttexee are many multi-family units
(Kandel et al., 2008); the higher than US averagergy prices (see Figure 4)
encouraging consumers to save energy (Kandel et2@08); and probably the
aggressive energy efficiency programs launched rarol©76 (Horowitz, 2007).
Between 1973 and 2005, California’s industrial seotduced its ECP by 39%, partly
because there has been a structural change iro@&is economic structure since
the late 1990s which has bartered energy-intensigaufacturing for less-energy
intensive services (Tanton, 2008).

While California’s ECP remained roughly flat, itggregate electricity consumption
increased by 65% between 1980 and 2008, as didrimpd electricity with for
example an increase by 60% in coal-based elegtriciports from 1983 to 2005
(Tanton, 2008).

The electricity peak demand in California has dsen increasing since the 1960s
but the growth rate slowed down after the init@tian of energy efficiency programs
in 1976 (Rosenfeld, 2006). California electricigak demand reached 55GW in 2004
(Rosenfeld, 2006).
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Figure 3 - California and US per capita electricityuse by sector, 1960-2008. (Kandel et
al., 2008)
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US average nominal retail electricity prices hamereased significantly since the
1970s as shown in Figure 4, as a result of the &%) crisis (Bloom Energy, 2010).
On average, prices in California are higher thathearest of the nation. The second
energy crisis experienced by California in 2001 teda retail price jump by 30%
between 1999 and 2002, and prices have not dedresignrificantly since then
(Figure 4). In 2006, California’s state had theosethighest retail sales in the US
according to Kandel et al. (2008). A linear reg@s®f the average retail prices for
the period 1960-2005 corresponds to an annual broate of about 0.25cents/KWh.
If a similar linear increase is assumed up to thet @ the 21 century, this would
lead to an increase of 25 cents/KWh by 2100, cparding to an increase of more
than 100% compared to average retail prices of 2005
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Average Retail Prices
(in Nominal cents/KWh)

o N b O
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Figure 4 - Average Retail Price of Electricity to Wtimate Consumer in Nominal Dollars,
for US and California, 1960-2008. (Source: EIA, da compiled from AER: Table 8.10;
SEDS - California: Table 5.3 & California Electricity Profile: Table 8)
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4 California and Climate Change

4.1 Climate Change scenarios for California

The scientific community agrees on the fact thatshrface temperature is expected
to increase worldwide, whereas the future hyetdgrapttern is still uncertain
(CCCC, 2006; Cayan et al., 2008). Cayan et al.§p@frcused their study on changes
in climate at the surface, mostly related to terapge and precipitation, and
addressed plausible pathways for the Californidoregrhe climate change scenarios
are produced by combining Global Climate Models K& to Green House Gas
(GHG) emission scenarios as defined in the IPCCrtRoAssessment released in
2007. They addressed namely the three following Gk Parallel Climate Model
(PCM) from the National Center for Atmospheric Rasd (NCAR) and U.S.
Department of Energy, the CM2.1 from the Nationale@nic and Atmospheric
Administration (NOAA) Geophysical Fluids Dynamicathoratory (GFDL) and the
Hadley Center model (HADCM2). Three probable setspmjections of GHG
emissions for California are the B1 (low emissiors2 (medium-high emissions)
and Alfi (high emissions) storylines (Figure 5) y@a et al., 2008).

The magnitude of projected temperature rise over tthenty-first century varies

depending on the model sensitivity and the emissaamarios as illustrated in Figure
6. By 2100, temperature increases are estimatednige between 1.5°C and 4.5°C
(2.8°F -8.0°F), under the lower emission scenarloif the less responsive GCM

PCM and under the higher emission scenario A2 iDIGFespectively (Cayan et al.,

2008). Generally, warming is expected to be greamtesummer than the rest of the
year for all scenarios except PCM B1 (Cayan et28108). Warming should affect

both wet and dry days with about the same degragaiCet al., 2006). In their work,

Cayan et al. (2008) present different plausiblepiratures increases for two regions
in California: Northern California region (NOCALNd Southern California region

(SOCAL).
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Figure 5 - Historical and projected CO2 emissions scenarios B1, A2 and Alfi (Source:
CCCC, 2006)
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Climate warming is likely to affect hydropower option simultaneously on the
supply/generation, demand and pricing sides. Tdo#tet of the author, these issues
have always been addressed independently. Thewfoljosections review recent
research conducted in California on climate warnimgacts on the supply side (e.g.
Madani and Lund, 2009; in press; Vicuna et al.,82@D09) and then on the demand
side (e.g. Franco and Sanstad, 2006; AroonruengsawlaAuffhammer, 2009).

Previous works assessing climate change impadBaiifiornia have commonly used
a range of plausible scenarios from an earlier vadr€ayan et al. (2006) or directly
based on the former IPCC Third Assessment. (eg.eMadAzuara et al., 2008;
Vicuna et al., 2008; Aroonruengsawat and Auffhamr@@n9; Madani and Lund, in
press).

Increasing Sensitivity

w
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Warming Range

Climate Models
PCM1 GFDL HadCM3
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Warming Range

Atfi
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Warming Range

A2

No Projection
Available

Increasing Emissions

IPCC Emissions
Scenarios

B1

Figure 6 - Warming ranges for 3 plausible GCMs couled with 3 GHGs for California
(Source: CCCC, 2006)
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4.2 Impacts on the supply side

Climate change will impact hydrological condition€alifornia’s 2% century
hydrology is expected to be altered in the follagvimanner: part of the winter
precipitation falling as snow nowadays will turnréan; higher temperatures will lead
to a shift of the snowmelt peak flow; a reductidntlte peak flow's intensity and
increased winter runoff (Moser et al., 2009).

Hydrological changes are a big concern for Calisenhydropower system which
may face water shortages in summer when the densati@ highest (Moser et al.,
2009). This issue should be less problematic faw-dtevation multipurpose
hydropower systems (less than 1,000 feet) bemgfittirom large man-made
reservoirs, than for high-elevation units with shmhn-made reservoirs (Tanaka et
al., 2006). Relying mainly on natural snowpack resg, high-elevation hydropower
systems have a limited flexibility in operation. tifieir storage capacity cannot
accommodate to hydrological changes, high-elevatyaropower systems may be
vulnerable to climate change (Madani and Lundfesg).

According to Madani and Lund (in press), most stadassessing the impacts of
climate change on hydropower generation in Califotrave focused on large-scale
low-elevation systems (e.g. Tanaka et al., 200&)noa few individual high-elevation

hydropower units (e.g. Vicuna et al, 2008; 2009)gh-tlevation systems are
nonetheless generating on average 74% of Califsrnastate hydroelectricity

(Madani and Lund, 2009) which has prompted recesearch on the impacts of
climate change on high-elevation hydropower systéeg. Vicuna et al., 2008;

Madani and Lund, 2009; in press).

Vicuna et al. (2008) studied the impact of fourmzie change scenarios on high-
elevation hydropower system in the Upper AmericaiveR using a linear
programming model optimizing the system for revemaimization, restricted to
operational and physical constraints. The model wader historical conditions
replicated expected patterns of operation with rieée refilling in spring and
electricity generated in priority when it is the shovaluable. For the two drier
scenarios, both power generation and energy revdacease but generation more
than revenue, showing the ability of the systersttwe water when prices are low for
a later release when energy is more valuable @eptember) (Vicuna et al., 2008).
For the wetter scenarios, the increase in generatibpaces the increase in revenue
and the generation pattern is similar to the hydrply. For all scenarios, the
occurrence of spillage increased, caused by tranirenient hydrograph.

The energy price representation considered by VA@iral. (2008) distinguishes two
constant on-peak and off-peak monthly prices; samjisome effects of non-constant
energy prices. If fixed monthly prices were usedmadel based on revenue
maximization would suggest no generation in momtiis low energy prices to allow

maximum generation in month where energy is vakigdbladani and Lund, 2007).

Madani and Lund (2009) formulated a new approacérevthe price representation is
derived from the distribution of hourly real timeiges for each month. This allows

9
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capturing the hourly variability in energy price®r a monthly basis — of the overall
energy market which is responding mostly to on-peall off-peak variability in
energy demands (Madani and Lund, 2009). The enmigg used is a function of the
percent time turbines are in operation, assumimy thperate in hours when the
energy market offers higher prices (Madani and L.@009).

Madani and Lund (2009) also introduced a novel @ggh to model the behavior of a
large number of high-elevation hydropower systetims,Energy-Based Hydropower
Optimization Model (EBHOM). To the best of the amthEBHOM is the only one of
its kind, allowing modeling an entire region’s higkevation hydropower system in a
relatively straight forward manner, without the dée develop traditional streamflow
and reservoir volume-based models for each platitdrsystem. EBHOM was tested
against the traditional hydropower optimization mlodeveloped by Vicuna et al.
(2008) on the Upper American River system (Madanale 2008). Both models
predicted the same changes in generation and rewegiiln respect to the historical
case. Even if the EBHOM is very simplified compatedtraditional optimization
models, it produces reasonable results and ispaf@teard towards modeling global
trends including “the effects of climate change amergy prices on system-wide
generation and hydropower revenues” (Madani andl]_.tmpress).

Madani and Lund (in press) applied EBHOM to estantte impacts of climate
warming on California’s high elevation hydropowestem for the three following
scenarios: warming-only, dry warming (GFDL-A2) amet warming (PCM-A2).
Warming-only and dry warming scenarios reduce lgetheration and revenue while
the wetter scenario has the opposite effect. Custemage and generation capacities
are able to cope with some of the supply loss efdty warming scenario. Compared
with the base historical scenario, the decreasarudff by 20% led to revenue losses
of only 14%. Contrarily, the increase by 10% of @anrunoff compared to the base
case, led to an increase of only 6% in generatmh286 in revenues for the wet case
scenario. Spills increased for all scenarios exteptdry one.

The above mentioned studies have only considemdctimate warming will change
hydrologic conditions and alter hydropower watepmy. Potential changes in
electricity demand and prices have not been aceduioir. These could be the result
of various climatic, economic, technologic, polioy market reasons (Madani and
Lund, in press). Environmental constraints havba#n addressed either.

10
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4.3 Impacts on the demand side

On the demand side, climate warming is expectedd®ase the need for cooling in
summer and attenuate the need for heating in W@ECC, 2006).

Franco and Sanstad (2006) examined the statewrdelamon between daily average
quantities: mean daily temperatures and base la@adisextreme quantities: maximum
daily temperatures and peak loads. A nonlinear eomelationship between average
daily temperature and demand, and a linear relsttipnbetween summer peak load
and maximum temperatures were determined. They lag@ climate change
scenarios for the 2century and examined demand responsiveness (eoimgjche
relationships between demand and temperature antdari the future). Relative to the
base period 1961-1990, electricity demand increas#te range 3.1-20.3% and peak
load increased in the range 4.1-19.3% by 210G ftoteworthy that even a small
increase in demand would result in a high incréasenergy expenditures (Franco
and Sanstad, 2006). Aroonruengsawat and Auffhani@@89) used a unique panel of
household electricity billing data from Califorrsa’three largest investor-owned
companies. They did not estimate demand as a &mofi statewide temperature but
divided California in 16 climate zones. They proget an increase in aggregate
demand ranging from 18% to 55% by 2100 assumingrestant population. This
represents an average annual growth rate of aggredectricity demand ranging
between 0.17% and 0.44%. In reality these growttsraccelerate with time.

Aroonruengsawat and Auffhammer (2009) coupled dimsarming to economical
future scenarios. They developed two scenariosidernsg electricity price increases
based on the projected impacts of AB 32 compliaeebined with natural gas price
increases: a discrete 30% increase by 2020 rengaiaithe same level until the end
of the century and two successive increases of Bp%020 and 20% by 2040. By
2100, the total change in demand ranges betweenamPo-39% and between -7%
and +24% for the low and high price increase scéesaespectively. Higher prices
result in a decreased demand compared to the basenhere no price increase was
considered. Aroonruengsawat and Auffhnammer (200€) aonsidered population
increase scenarios. Combined to a low forcing d¢emaarming scenario, a low
projection of 0.18% population growth rate per y¢aguivalent to a population
increase by 18% by 2100) predicts an increase 6f085 in residential electricity
demand by 2100. This increase is much higher thar20% increase predicted for
the climate warming only scenario. The worst cdssy tpredicted coupled a high
forcing scenario with a high growth rate (+1.47% year) and suggested an increase
in demand up to 478%. Their conclusion is that dgnaphic trends have substantial
impacts on future energy demands and might outwgsighmpact of climate change
on energy demand.

11
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5 Method

The overall method used in this work is shortlyalded hereafter and schematized
in a flowchart in Figure 7. Further details on thedels selected and the choices and
assumptions made are given in the following sestion

An ANN was developed to map the relationship betwaeset of inputs and the
hourly electricity prices. The inputs include ndyaliemperature, demand and
deterministic components (season, day of the weals, etc.). An ANN model was
chosen for this purpose as it is a powerful machHesning tool providing an
appealing solution for relating input and outputriailes in complex systems
(Dawson and Wilby, 2001). ANNs are capable of eting information from
systems even with little prior physical knowleddmat the systems (Zhang et al.,
1998). The ANN architecture chosen is a multilafe=d-forward model using the
Shuffle Complex Evolution (SCE-UA) global-searchiopzation method developed
by Duan et al. (1992).

The performance of ANNs is reliant on the quardityl quality of the calibration data
(Kingston et al., 2005). Before calibration of theodel, a preliminary statistical
analysis of the collected data was performed toagebverview of existing trends,
potential problems and allow an adequate data pcepsing.

Once the ANN was trained, simulations with pertdrbgut data were run to account
for the chosen climate warming scenarios. Scenavere chosen from the work of
Cayan et al. (2008) based on the IPCC Fourth Assads The outputs of the trained
ANN are predicted hourly prices. The price représton chosen for the next
modeling steps is based on the work of Madani amttdL(2009) capturing the hourly
variability of energy prices.

Climate warming effect on California’s high elewati hydropower system was
estimated using the energy-based hydropower ogtoiz model EBHOM
developed by Madani and Lund (2009). Price frequeaad revenue curves
(integration over the price frequency curves) waravn and used as inputs to the
hydropower optimization model EBHOM together withet historic monthly
generation data and seasonal runoff distributidhs. results obtained from EBHOM
are monthly optimized generation, revenue and drdemth storage data for the
statewide high-elevation hydropower system, comsidgeclimate change effects on
the demand, supply and pricing sides.

Previous findings from Madani and Lund (in pressgessing climate change impacts
on the supply side only, were finally comparedi® tesults from this research.

The following sections review the method in detalection 6 includes a description
of existing ANN models, followed by data collecti@and analysis, ANN model

selection, set up and calibration. It includesapplication of the trained ANN model
to estimate future price scenarios. Section 7 pteSeBHOM model and its results.

13
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6 Artificial Neural Network

6.1 Background and motivation: ANNs to model electricity prices

Artificial Neural Networks (ANNSs) are networks afterconnected neurons that were
developed in an attempt to reproduce the powerfaidn brain’s architecture (Hsieh
and Tang, 1998). ANNs are powerful machine learningdels that have been
successfully developed for different purposes ngni@ nonlinear modeling (e.g.
Kingston et al., 2005) and classification (e.g.90ts et al., 2004). They provide an
appealing solution for relating input and outputriailes in complex systems
(Dawson and Wilby, 2001) and have been widely &ppin different fields namely
hydrological modeling (e.g. Dawson and Wilby, 20Ringston et al. 2005; Olsson et
al., 2004), electricity load forecasting (e.g. Aghckt al., 2006; Ortiz-Arroyo et al.,
2005; Hippert and Taylor, 2010) and electricitycprishort-term forecasting (e.g.
Ranjbar et al., 2006; Zarezadeh et al., 2008; Gab,e2000).

In recent years there has been active researckeveap accurate short-term price
forecasting tools for the energy market (e.g. Zlehaal., 2007; Lu et al., 2005;
Amjady and Keynia, 2010a; Yamin et al., 2004; Zacksh et al., 2008). Electricity
price is a nonlinear, time variant and volatilensigowning multiple periodicity, high
frequency components and significant outliers,, ilmusual prices (especially in
periods of high demand) due to unexpected everttseirlectricity markets (Amjady
and Hemmati, 2006). California’s ESI turned intcompetitive deregulated market in
the 1990s (CBO, 2001). The deregulation of energyket created competition
among electricity producers and retailers who ngeck forecasts to develop their
bidding strategy in the electricity market (Lu ét, 2005; Amjady and Hemmati,
2006). Optimal decisions are now highly dependemtnearket electricity price
(Amjady and Keynia, 2010a). For instance, eledirigeneration scheduling is based
on profit maximization in the new structures whereia was based on cost
minimization — to satisfy the electricity demandlall operating constraints — in the
earlier regulated environment (Zarezadeh et @08p

Dealing with short-term price forecasting, ANNs bashown a good ability to
forecast normal electricity prices (Zhao et al.020 One of the main advantage of
ANNs over traditional methods such as regressioth @me series or regressive
integrated moving average (ARIMA) is that they amere adapted to long-term
patterns as they can cope with high non linear \aehaf the target signal (Amjady
and Hemmati, 2006). However, one main problem eniayed in most studies is the
inability of the models to deal with price spikaesthe electricity market (e.g. Zhao et
al., 2007; Lu et al., 2005; Amjady and Keynia, 2&10amin et al., 2004). Generally,
price spikes are abnormal market clearing pricas iticlude namelybnormal high
prices which are prices much higher than normal pricdsa(Zet al., 2005). Price
spikes are highly erratic and are caused by a nurobecomplex factors and
unexpected events such as transmission networkingenties, transmission or
congestion and generation contingencies (Zhao.e2@D7). According to Lu et al.
(2005), almost all the existing techniques reqftiltering out the price spike signals
in order to forecast normal prices with rather hagieuracy.
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To the best of the author, research on ANNs hakigixely focused on short-term
price forecasting following the needs from the nearllo ANN model for long-term
electricity price forecasting accounting for climathange scenarios has been
developed, and neither for estimating impacts tfriuclimate on any other variable.

6.2 Background on ANN model types

A typical ANN consists of a number of neurons (atatled nodes) that are organized
in a specific arrangement (ASCE, 2000). One waglagsifying neural networks is
by the direction of information flow and processirfgedforward and recurrent
networks (ASCE, 2000). In a feedforward networkg(ffe 8), information flows
unidirectionally from an input layer towards anmuitlayer. In between the input and
output layers there can be one or several hiddgwdgrocessing information before
it reaches the output layer. In this case neurom®aly connected between different
layers, but not to other neurons belonging to #maeslayer. In a recurrent network
information flows in both directions — inputs towasutputs and vice versa — and also
nodes belonging to the same layer can be interctesheRecurrent networks allow
modeling dynamic systems by making feedback passibthe network but it is also
possible to treat explicitly dynamic systems wigled-forward networks by including
lagged inputs (Maier and Dandy, 2000). Feed-forwagtivorks namely multilayer
perceptron (MLP) models are commonly used for mtexh and forecasting
applications in hydrological problems (ASCE, 2060ngston et al., 2005) and in
short-term electricity price forecasting (e.g. Remjet al.,, 2006; Zarezadeh et al.,
2008). Feed-forward networks have in general aefagrocessing speed than
recurrent networks (Maier and Dandy, 2000) &hatnik et al. (1989khowed that
with a single hidden layer they can approximate aoy linear function, given that
sufficient degrees of freedom (i.e. hidden neuramne)provided.

Input Hidden Qurput
layer layer layer

Network Network
Input Output
X Y

Figure 9 - Schematic diagram of a

Figure 8 - Schematic diagram of a feedforward neuron "j" (Source: ASCE, 2000)
three-layer ANN (Source: ASCE, 2000)

A schematic diagram of & jpeuron is displayed in Figure 9. This neuron tiamss
an input vectorX = (xq,...,x;,..,Xx,) into a single outpyt;. Neuron ' is
characterized by a set of weights representedusc®rW; = (wyj, ..., Wij, ..., Wp;),
a biasb; and an activation function f. The inputs to theno@ can be causal variables
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i.e. the inputs to the system if the neuron ishim input layer, or they can be outputs
from neurons belonging to previous layers. Thevattn function determines the
response of the neuron as followys:= f(X * W + bj). Sigmoid functions, namely
logistic sigmoid (‘logsig’) or hyperbolic tangentanh’ or ‘tansig’), are commonly
used in the hidden layers (ASCE, 2000). They retmmon-linear output response
which makes them a useful tool to map nonlineacgsees and are usually combined
to a linear activation function in the output lagyaSCE, 2000).

In order to obtain a model representing realita@surately as possible, the model has
to be trained and optimized. Training, or calibrgtian ANN model is the process of
adjusting its parameters (weights) to minimize edpfined error function (Kingston
et al, 2005). A data sample is presented to theeimaid the error is calculated by
comparing the simulated and the observed targensities. Local or global search
optimization algorithms may be used to train theNARMaier and Dandy, 2000).
Local search methods scan the error surface imglesidirection whereas global
search methods scan simultaneously the error suifiadifferent directions (Kingston
et al., 2005). Back-propagation algorithm is amtreymost widely applied methods
to train an ANN in hydrological modeling (Maier aba@ndy, 2000) and in electricity
price short-term forecasting (e.g. Ranjbar et28l06; Zarezadeh et al., 2008). Radial
basis function method and conjugate gradient metiredexamples of other local
search algorithms (ASCE, 2000). One of the majemwthacks of local-type search
optimization methods is that they are not desigtedhandle the presence of
multilocal optima (Duan et al., 1992). It is themef not guaranteed that the user will
obtain the global optimum as the ANN may get stunckne of the local minima of
the error surface (Kingston et al., 2005). Glaotedrch methods have the ability to
escape local minima in the error surface and shalprinciple, find the optimal
weight configurations (Maier and Dandy, 2000). Genalgorithms and Shuffle
Complex Evolution algorithms are examples of glaedrch methods that have been
applied in the hydrological field (Kingston et a2Q05). The reader is referred to
Maier and Dandy (2000), ASCE (2000) and Duan et1892) for a more exhaustive
review of training methods.

During the training phase, the ANN has to be adplish order to minimize the error
function. The optimal ANN architecture is commodigtermined through a trial-and-
error procedure by trying out different number adden layers and nodes (ASCE,
2000; Maier and Dandy, 2000). Increasing the sfzéi® ANN increases the number
of free parameters (weights). An ANN should con&mough parameters to improve
its capacity to map a complex relationship betwieninputs and outputs (Dawson
and Wilby, 2001). However, increasing the size lo¢ hetwork over a certain
threshold may produce the opposite effect if theNABtarts overfitting the data,
annihilating its ability to generalize trends (Danwsand Wilby, 2001). This
phenomenon appears when the ANN performs well dutte training period but
produces poor results if a new data sample is pteddo the ANN; the ANN fitted
the training data so well that it fitted to the s@icontained in the sample (Hsieh and
Tang, 1998). Cross-validation procedure also referto as cross-training is
commonly used to prevent overfitting to occur (Maaed Dandy, 2000). It consists
of dividing the data sample into three sets — Ugualled the training, validation and
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test sets — and then using them independently éokctvhen the ANN is optimized.
The ANN is considered to be optimized when thenirgj set minimizes the error
function and the error starts increasing over thkdation set (ASCE, 2000). It has
also been suggested in literature that if the nundbetraining samples exceed a
specific threshold, defined by a ratio betweenrthmber of training samples and the
number of connection weights, overfitting will natise. These ratios can vary
consistently in literature (Maier and Dandy, 2008)f it should be interpreted as
follows: the higher the number of training sampld® lower the probability of
overfitting the data.

6.3 ANN model set up

The method used to design the ANN was inspired fiteerprotocol for implementing

ANN Rainfall-Runoff model defined by Dawson and Wil (2001) and modeling

suggestions from Maier and Dandy (2000). The maodeprocess steps will be
explicitly detailed as far as possible so thatuhkdity of the model and results can
be assessed. The procedure was the following:

Selection of the adequate predictors and predist&idata collection

Data preprocessing

ANN Selection: choice of an appropriate networketgmd training algorithm
Network training: choice of the architecture ararting set

Evaluation of ANN performance

aprwODdN R

6.3.1 Data collection - Predictors and predictand selection

Hourly prices were selected as the only predict&sal-time hourly energy prices for
2005-2008 were collected from the California ISO e@pAccess Same-time
Information System (OASIS) websitét{p://oasishis.caiso.coin/In April 2009 a
new market design was implemented. Instead to &tackree main price zones, Cal
ISO started using Locational Marginal Pricing tpeaduces prices at 3,000 different
pricing nodes around the California grid. Thereftine data sets from after April
2009 are considerably different from the previoystam so data could not be
gathered easily for 2009. Cal ISO serves more tB@ammillion consumers with
electricity so these hourly prices are consideredepresentative for California’s
energy market.

Electricity price is driven by many factors in angoetitive energy market (Ranjbar et
al., 2006). Research works applying ANNs to shemtrt price forecasting have

chosen among others the following predictors: hisab hourly prices, system loads,
lagged hourly prices and day of the week as theyaditen easily accessible (e.g.
Ranjbar et al., 2006; Zarezadeh et al., 2008). &aal. (2000) also considered fuel
costs, power import/export data and other weatheables. In the present research
the following inputs were chosen: temperature, demaeason, month, day of the
week, hour, lagged hourly temperatures for theethmevious hours, a ‘degree-day’
temperature input. The season is expected to atémuthe annual price variability,
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the hour for the daily periodicity and the day loé tweek for the weekly periodicity,
i.e. to distinguish workdays from weekends.

Hourly temperature data for the period 2005-2008vextracted from the website of
University of California Statewide Integrated Pkinagement Program (UC IPM)
(http://www.ipm.ucdavis.edu/WEATHER/wxretrieve.n)dml These data were
available for several Pest stations across Calddont not further north nor further
south than the Fresno and Colusa Counties respBctit was decided to extract
hourly data from three different Pest stations &mddefine their average as the
representative temperature for the state of Cailior

Hourly electricity load data were also collectednfr CallSO OASIS website
(http://oasishis.caiso.cojn/for 2005-2008. Demand was also estimated using
temperature data based on the work of Franco amdt&h (2006). Using daily
demand of electricity from 2004 for the area sarsiby the Cal ISO, they found out
that there is a high correlation between the dd#ynand and the average daily
temperature measured in four locations of CalifarniThey approximated the
relationship by the U-shaped third degree polynbmiatted in Figure 10. The
polynomial reached its minimum daily demand Tgy,, = 53,5°F. Estimating hourly
demands through this function implies that the hodemand follows the same
pattern as the mean daily demand. This seems &orbasonable assumption for this
work since we are interested in the big picturer @alifornia and that temperatures
are also flattened. However this remains a linotatio map properly hourly prices
that contain many peaks which might result fromqets of peak demand.

900,000

y =3.3833x3 - 263.75x2 - 831.05x + 905961
850,000 R? = 0.9098 .
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550,000 A

500,000

40 45 50 55 60 65 70 75 80
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Figure 10 - Electricity demand in the CallSO area a function of average daily
temperatures, 2004 (Source: Franco and Sanstad, 2)0
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6.3.2 Data analysis and preprocessing

6.3.2.1 Data analysis

ANNSs are reliant on the quantity and quality of daibration data (Kingston et al.,

2005). A preliminary analysis of the data was penied to get a better understanding
of the varying nature of hourly prices and to chi#dkere aren’t any major abnormal

trends. Temporary irregularities in the energy i extreme weather conditions
may for instance lead to substantial variationshim energy prices while being the
result of single events, hedging the generalizatagracity of ANNSs.

The main statistical characteristics of the setgiwen in Table 1. The data set has a
mean of 57$/MWh and a standard deviation of ar@#®IMWh. Around 80% of the
data are in the range 25%$-90%$ but the hourly priceshighly volatile with prices up
to 400$/MWh which is 7 times the average price.

Table 1 - Dataset statistical characteristics befer preprocessing

Prices in $/MWh Price Percentiles in $/MWh
Standard
Average Deviation Minimum Maximum 10th 25th 50th 75th 90th
56.77 36.52 0.00 399.99 2423 37.78 50.85 67.18 91389.

The hourly price time-series for 2005-2008 is @dttin Figure 11 where two

‘abnormal’ trends are noticed (circled in the figuwith exceptionally high prices.

Figure 12 is plot of monthly average prices in egelr. The same two periods of
higher than normal prices can be observed. The dime happened in 2005, where
prices have started increasing in July, reached aximum average value of
80$/MWh in October and have only dropped to norteeéls in January 2006. The
second period of higher than normal prices happemetie first half of 2008 and

peaked to a monthly average value of more than/M08% in June 2008. A specific

investigation of these two periods was conductatiémext paragraphs.

In 2005, national natural gas prices increasedtantially over levels seen in 2004
(California 1SO, 2006) resulting in increasing puotion costs for electricity. This
steady rise began in January and later on pricalsepgeimmediately after Hurricanes
Katrina and Rita hit the US Gulf Coast (Califort®&0O, 2006). The most destructive
wave of the hurricanes occurred the last week ajustiin southeast Louisiana and
caused severe destruction along the Gulf coast ftentral Florida to Texas. In
particular, national gas production and transpntainfrastructures in the Gulf of
Mexico Region were destructed (California 1ISO, 200&fter this event, Western
markets — which have not been directly affectedhieyhurricanes —started trading gas
at a discount of approximately $2/mmBtu (millionith thermal units) to national
prices (Department of Market Monitoring — Calif@nlSO, 2006). In December
2005, a cold snap coupled with limitations to thalfGCoast transportation and
production infrastructure resulted in a second peath California prices reaching
their highest levels since December 2000 (Cali®oi80O, 2006).
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The climatic conditions of 2008 were investigatsdeatreme temperatures can lead
to an increase in electricity demand, and drougiriditions to a reduction in
generation from hydropower units. According to NO&©O09) summer and fall 2008
were warmer than average in California as it exgpeed its 6th warmest summer and
3“ warmest fall on record whereas temperatures intewimere slightly below
normal. California experienced its driest springafth-May) on record and also
received below normal precipitation in summer aaltl 2008 (NOAA, 2009). At the
same time, the snowpack was referred to as amondehlthiest in more than a
decade in some parts of Western US with most locatinear to above average
(NOAA, 2009). From these facts, it is hard to asskthere was a shortage of supply
as the abundant snowpack runoff may have compeh$atehe drought. However,
the 2008 Annual Report from California ISO (2008tes that “monthly average
hydroelectric production in 2008 was below 2007elsvfor most months and well
below the monthly production levels for 2005 and@&0 Furthermore, the same
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report from California ISO (2009) explains that tpemary driver of the high

electricity prices in 2008 was the spike in worldeifossil fuel costs. Natural gas,
which is the primary fuel for California’s energupply, reached its highest level
since Hurricanes Katrina and Rita impacted muchirahgas infrastructure in 2005.
These high natural gas prices, coincident with lbydroelectric production in

California in the first half of that year, resultéd high production costs of electric
power in 2008 and the need for additional importsnf the Pacific Northwest and
Southwest (California ISO, 2009). The senior vigespmlent and chief customer
officer of Pacific Gas & Electric also declaredttlithe combination of skyrocketing

natural gas prices, increased electricity demarttlawer supplies of hydroelectric
power are having a significant impact on the costlectricity” (PG&E, 2008).

As the main focus of this paper is to investigdte telation between prices and
climate, prices have been plotted against temperatuFigure 13. The top graphis a
plot of the raw hourly data while the bottom oneowhk the average price
corresponding to each degree Fahrenheit. Fronothgraph, no obvious conclusion
can be drawn regarding the relationship between rd@-time prices and the
temperature. This strengthens the need for a palvaddeling tool able to represent
highly non linear relationships. The bottom plofigure 13 shows that prices tend to
increase for both low (>30°F) and high (>90°F) tengures but more significantly
for high ones. This corresponds to the great needdoling in the long warm periods
in California. In-between average temperaturesaapend the mean of the entire set
which is 57°F. Year 2008 presents higher pricesn tlmher years for most
temperatures above 50°F. This phenomenon has limrrssed earlier.
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It is well-known that the hour of the day has anfigant influence on the demand
and therefore on the price too. Figure 14 showlgaverage prices per hour in each
season was plotted to check this affirmation. Fifeigure 14 one can see that the
main difference between seasons occur between #RM2OPM. The high cooling
demand in summer increases the price, peaking RM1ivhile the ‘no’ or little
heating demand in winter decreases the price.
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Figure 14 - Hourly average prices in each season

6.3.2.2 Data preprocessing

From the results of the data analysis, it was amaéseexclude the period September
to December 2005 from the input data to the ANNtheey partly result form an
extreme event (Hurricane Katrina) and would mosbpbly hedge the training of the
neural network. The price increase in 2008 wagékalt of a combination of several
factors. It was decided to keep 2008’s data to kaegeat quantity of data and
because soaring prices of fossil fuels togetheh ity periods are most likely to
occur again in the future. However, an additionaunon in the input layer was
introduced to account for this specific phenomernidns input is equal to 1 for the
period January-June 2008 and 0 otherwise.

The statistical characteristics of the preprocessath set are given in Table 2.
Negative price intensities have been set to zedotla overall zero-depth probability
is 1.30%.

Table 2 - Dataset statistical characteristics aftepreprocessing

Prices in $/MWh Price Percentiles in $/MWh
Standard
Average Deviation Minimum Maximum 10th  25th  50th  75th  90th
54.87 36.54 0.00 399.99 23.88 36.88 49.13 64.14 2884.

The last stage of the data preprocessing was éimelatdization of the hourly prices
and temperatures, by subtracting the mean valubeofset and dividing it by the
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standard deviation. Standardized temperature datged between -2.72 and 3.05 and
standardized price data between -1.50 and -9.4d olitput data i.e. the hourly prices
were then scaled between 0.1 and 0.9 to avoid bougae/hen using the log sigmoid
function in the hidden layer (and similarly betwe€h9 and 0.9 when using the
hyperbolic tangent activation function).

6.3.3 ANN Selection

A multilayer feed-forward ANN was coupled with trglobal-search algorithm
developed by Duan et al. (1992) called the “Shufftanplex Evolution” (SCE-UA).

A single hidden layer with a sigmoid activation étion was chosen. The choice of
the sigmoid function (tansig or logsig) and the bemof hidden neurons were based
on a sensitivity analysis detailed in section 6.4He activation function in the output
layer is linear. Cross-validation was used as thepéng criteria to prevent overfitting
the training dataset. The model was developed IRHRAN by Juan Martin Bravo
in application to river discharge analysis and waslified for our case study.

The general idea of SCE-UA algorithm is to geneeafmpulation of random points
from the feasible space of parameters that willveveowards an optimal solution,
i.e. the global minimum of the error surface. Theps are the followings. First the
population is divided into several communities l@&l complex) that evolve
independently. Within each community, only the mdrthe population with the best
probability of converging towards a global solutimnkept and stored in a ‘sub-
complex’ using the Complex Evolution Algorithm (CCHDuan et al., 1992). The
points stored in the sub-complex will become parelny generating offsprings
towards an improvement direction. Each sub-complélk generate offsprings in
different directions toward an optimum, based anoivn ‘knowledge’ of the error
surface. The population is mixed regularly in ortieshare the knowledge between
the communities and to ensure survivability. Fyallset of optimum parameters will
eventually be found after several iterations of ghecedure. None of the information
from the sample is ignored as each member of a aontynis a potential parent with
the ability to participate to the reproduction mss. The evolution process also
ensures that the communities don’t get trap intoramising regions. The SCE-UA
method has good convergence properties over a lmaragk of problems and it
should have a high probability of finding the glbbptimum (Duan et al., 1992).

The flowchart of SCE-UA algorithm and further degtion of the algorithm’s steps
can be found in the publications from the authDign et al. (1992, 1994).

Duan et al. (1994) established some guidelines aw to choose the algorithmic
parameters in the SCE-UA model. The parameters weitialized to the
recommended values (n is the number of parametenstimize):

Number of points in complex: m=2n + 1

Number of points in each sub-complex:g=n+1

Number of consecutive offspring generated by eabhcomplexo = 1
Number of evolution steps taken by each com@lexm =2n + 1
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Finally the number of complex is problem dependantl was chosen based on
sensitivity analysis detailed in section 6.4.1.

6.3.4 Network training

Cross-validation procedure was chosen to preventt@aining. The data set was
partitioned into three sets referred to as calibnattest and validation in the
following proportions: 50%, 25% and 25% respectivdbata was split randomly
between the sets but a control was performed torerssgood distribution among the
different sets by checking that extreme (or claseextreme) values of price and
temperature were within the training set and theams and standard deviations of all
sets were similar. The training set should be seprm@tive of the entire population
and include all ranges of intensities because efinhbility of ANNs to extrapolate
(Maier and Dandy, 2000).

6.3.5 Evaluation of ANN performance

The results of the ANN modeling were assessed rimgeof: correlation with the
determination coefficier®?, root mean square error (RMSE), the ANN’s output
price patterns and the frequency distribution a€g®. As the dataset is large, it is
important to assess the quality of the developedahnot only based aR? value.
Furthermore, it is important to keep in mind thatthis research, the final desired
output from the ANN model is to draw revenue curf@seach month (for several
climate change scenarios) that will serve as inpotshe EBHOM model. These
revenue curves are nothing else than the integraNer the price frequency curves
for each month (Madani and Lund, 2009), so theueegy distribution of prices was
directly assessed in terms of revenue curves.
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6.4 ANN Calibration

ANN training was performed through a trial and erpoocess. Firstly a sensitivity
analysis was performed to determine the best n&taarhitecture and the training
algorithm parameters; it also includes an assedsofethe choice of some inputs.
Several dataset breakdowns were then considerextl lzas both deterministic and
stochastic approaches. Finally, a comparison oflitierent ANN models developed
was performed to select the ANN model to be usledigiterm price forecasting tool.

6.4.1 Sensitivity analysis

An ANN is a black-box model which has to be calibthto determine the optimal
architecture and parameters. The sensitivity aisaberried out includes assessment
of the following parameters:

= Number of complexes for the SCE-UA optimizationcaithm
* Number of hidden nodes

= Activation function: logsig or tansig

= Relevancy of the input selection

6.4.1.1 Number of complex and hidden neurons

The optimal numbers of complex and hidden node® wetermined in the same way.
The first models developed used only one complekhadden neuron and were then
independently increased to 2, 4 and 8 in the neodets. Higher values have also
been tried out, but the time required running soetdels over the entire dataset
exceeded 48 hours, which was considered exceSsive. is a limiting factor in the
ANN models improvements. A single hidden layer whgsen as it should be enough
to model any non-linear relationship (e.g. Horntkag, 1989). Table 3 shovié
values for the different models tried out to estenthe adequate number of complex
and hidden neurons. Correlation in terms Rf value improves with increasing
complexes and hidden neurons so they were botb 8efor the next modeling steps.

Table 3 - Calibration results used to select the &djuate number of complex and hidden
neurons

Number Hidden  Activation
Run Complex  neurons function RZ.:. RZ 4 R%
1 1 4 logsig 0.26 0.23 0.24
2 8 4 logsig 0.27 0.23 0.25
3 1 8 logsig 0.27 0.23 0.26
A 8 8 _.___logsig 029 025 0.24
5 8 1 logsig 0.20 0.18 0.19
6 8 2 logsig 0.22 0.19 0.21
7 8 4 logsig 0.27 0.23 0.25
8 8 8 logsig 0.29 0.25 0.24
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6.4.1.2 Logsig vs. Tansig activation function

A sigmoid-type activation function - usually lodéssigmoid (logsig) or hyperbolic
tangent (tansig) — is commonly used in the hid@gerd (Maier and Dandy, 2000). A
comparison of ANNs with identical architectures dhdse two activation functions
(cf. Table 4) led to the choice of tansig for tbdwing reasons:
= correlations are similar for both ANNS;
= the average price returned by the ANN using tafgigtion is closer to the
average of historical prices. It also returns highaximum price values;
= tansig function was used in earlier research wagkdying ANNs to short-
term electricity price forecasting (e.g. Ranjbarakt 2006; Zarezadeh et al.,
2008; Gao et al., 2000).

Table 4 - Results used to select the adequate aetion function in the hidden layer

Activation Average Price Maximum Price
Run function R*;im ($/MWh) ($/MWh)
Historic - - 54.87 399.99
9 Logsig 0.25 54.96 177.59
10 Tansig 0.25 54.93 217.39

6.4.1.3 Assessment of the selected inputs

First, an ANN model using solely temperature asuingas tried out and then
additional inputs were included (season, month, tayr, temperatures in 3 earlier
hours and load). The correlation improves signifigawhen more predictors are
considered (cf. Table R%,, jumps from 0.08 to 0.23) because temperature only
cannot represent accurately the high volatilityeltgfctricity prices. Among the other
predictors, none were assessed during the sehsiinalysis, except the load input.
ANN models should be able to determine single-hdlyderhich inputs are critical,
but it might increase processing speed if the mmelecteda priori have little
importance (Maier and Dandy, 2000).

Table 5 - Results used to assess the adequacy & $elected predictors

Number Hidden Input Activation
Run Complex neurons neurons function RZ%,, R%,4 R%« R%, RMSE

11 8 2 1 logsig 0.09 0.07 0.08 0.08 0.070
12 8 2 8 logsig 0.25 021 0.23 0.23 0.065
13 16 4 1 logsig 0.09 0.07 0.09 0.09 0.070

To estimate the impact of climate change simultasgoon electricity demand and
prices, two approaches were imagined. Developir@ANNS in series, the first one
modeling demand using temperature and the otheligioes, and the second ANN
estimating prices based on the output demand frneitst ANN; or building a single

ANN considering that demand is a linear function tefnperature previously
estimated by Franco and Sanstad (2006). A modabusiis demand function was
compared to a model using historical hourly demamdestimate if results are
improved by using historical hourly demand data hge#dd from CallSO

(http://oasishis.caiso.coin/Using historical hourly demand data improved thé
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correlation by only 0.03 (see Table 6) which was$ considered as a significant

improvement. In terms of revenue curves, it is Har@éssess which model is more
accurate. Depending on the month, it is a differeatlel that fits historical revenues
better as illustrated with June and October moathBigure 15.

Finally, the demand function as temperature eséithay Franco and Sanstad (2006)
was chosen; nearly no accuracy was gained by wuhnegtly hourly demand data

from CallSO, training two ANNSs in series may be éimonsuming, and there will

also be uncertainty in the estimation of demanthftioe first ANN model.

Table 6 - Results used to choose the demand inpub the ANN between historical
demand and the demand function defined by Franco ahSanstad (2006)

Run Demand specification ~ RZ%.;, RZ,4 RZ R%, RMSE
14 Demand = f (T) 0.30 0.24 0.27 0.28 0.140
15 Real demand 0.33 0.29 0.31 0.31 0.136
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Figure 15 — Revenue curve comparison between two Anally-based ANN models fed
with historical hourly demand data or with demand & a function of temperature
estimated by Franco and Sanstad (2006) for June (apd October (b)
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6.4.2 Comparison of ANNs developed for different dataset breakdowns

Generally in a competitive energy market, hourlgcéicity price series contain
multiple seasonalities such as, weekly and dailodeities (Amjady and Hemmatti,
2006). It is very hard for a single ANN to map eatty the input/output relationship
of such a signal in all time periods (Amjady andyHi@, 2010b). In previous
research, datasets have sometimes been partitadoeg: periods of warm/cool days
(e.g. Ranjbar et al. 2006), public holidays (e.gnjddy and Keynia. 2010b),
workdays/weekends (e.g. Gao et al., 2000) or siticheomponents (e.g. Zhao et al.,
2007). As part of the ANN calibration procedurdfetent data breakdowns have also
been tried out in this work. A summary of the expents and results obtained during
training is given in Table 8; the results from telier sensitivity analysis detailed in
6.4.1 are not included. In the present section,meomresults to all experiments are
first presented, then each experiment is discusseidcompared to the others and
finally two ANNs are elected for estimating futyméce representation.

6.4.2.1 General comments on the ANNs results

General observations and comments can be drawntfrerapplication of an ANN to
model electricity prices for the selected inputdhiis research. The results from the
calibration of the ANN model over the entire datasee used here for illustrative
purposes (cf. Figures 16-18) and apply to all itmeioANN models developed during
calibration. Figure 16 shows the frequency of histd prices and ANN output
prices, Figure 17 the historical and ANN outputes against temperature and Figure
18 the hourly price time series for 2006 and 2008.

The ANN returns essentially prices in the rangel@6$/MWh; lower and higher

prices are poorly modeled and no prices higher B@0S/MWh are returned (cf.

Figure 16). The frequency of prices belonging te thnge 25-100$/MWh is very

similar to the historical price frequency as hightied in Figure 16. This pattern is
interesting as it reflects the ability of the ANM teproduce the historical price
frequency where most data are available; around 808te data belong to the range
25-100$/MWh. The ANN cannot however model the vieigh prices because they
are too rare. ANNs learn better on the (frequenBrage data than on the (rare)
extreme intensities (Olsson et al., 2004).

Price intensities start increasing significantlyemhtemperatures exceed 80°F (Figure
17) and the highest price intensities are retutnethe ANN in summer (Figure 18).
This result was expected as it corresponds toittedir conditioning demand during
summer in California. High prices (over 100$/MWH)served for middle range
temperatures (40-80°F) are not modeled (cf. Figute The inputs selected in this
research are presumably not driving these higheprso this result seems reasonable.
These high prices can be considered as price spikésh are highly erratic in
competitive energy markets and difficult to modsing ANNs (Zhao et al., 2007) as
discussed earlier in Section 6.1.
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From Figure 18, one can see that there is a sygldes drop observed in the middle
of the year 2008. This was expected as a binamtin@as added to account for the
specific conditions in the first half of 2008 (eapled in Section 6.3.2.2).
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Figure 16 — Frequency of historical and modeled pdes for an Annually-base ANN
trained on all price ranges from 2005-2008
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6.4.2.2 Comparison of dataset breakdowns based on deterministic variables

Inspired by previous works, several dataset breakddhave been considered during
ANN calibration. For time-saving purposes, trainimgs carried out only on parts of
the dataset (e.g. for two hours of the day whehanly-based data breakdown was
considered). Based on the experimental resultsagivdable 8, further investigation

was decided or not. The following data breakdowesewtried out and the range of
R? and RMSE values obtained for the simulations arengin Table 7:

= Seasonally-based: Summer and Autumn
= Monthly-based: January, April and July
= Hourly-based: Hours 14 and 24

= Daily-based: Tuesday and Saturday

=  Workdays- / Week-End-based

» Yearly-based: 2007

Table 7 - Range of Rand Root Mean Square Error (RMSE) values for diffeent data
breakdowns

Data breakdown R uiation RMSE
Seasonally-based 0.22-0.43 0.126-0.145
Monthly-based 0.22-0.41 0.128-0.143
Hourly-based 0.25-0.26 0.125-0.150
Daily-based 0.24-0.36 0.116-0.142
Workdays- / Weekend-based 0.28-0.33 0.121-0.144
Yearly based 0.20 0.136
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Table 8 - Summary of the results from ANN calibraton for the data breakdowns experiments

Network architecture Training algorithm Results
Price range - Hidden Hidden  Activation Points per Points per
Dataset breakdown  |nputs ~ layers  neurons  function ~ Complex _ complex  sub-complex RZ..  Riya  Riq R4, RMSE'
All 11 1 8 Tansig 8 51 50 0.30 0.24 0.27 0.28 0.140
January 9 1 8 Tansig 8 2*Npar+1 Npar+1 0.26 0.20 250. 0.24 0.128
April 9 1 8 Tansig 8 2*Npar+1 Npar+1 0.42 0.33 0.390.39  0.143
July 9 1 8 Tansig 8 2*Npar+1 Npar+1 0,44 0,38 0,370,41 0,138
October 9 1 8 Tansig 8 2*Npar+1 Npar+1 0.25 0.20 180. 0.22 0.132
Summer 10 1 8 Tansig 8 51 50 0.46 0.39 0.40 0.43 1450.
Autumn 10 1 8 Tansig 8 51 50 0.33 0.13 0.08 0.22 12®.
Hour 14 10 1 8 Tansig 8 2*Npar+1 Npar+1 0.30 0.24 200 0.25 0.150
Hour 24 10 1 8 Tansig 8 2*Npar+1 Npar+1 0.28 0.21 .240 0.26 0.125
Tuesday 10 1 8 Tansig 8 2*Npar+1 Npar+1 0.28 0.24 .170 0.24 0.142
Saturday 10 1 8 Tansig 8 2*Npar+1 Npar+1 0.41 0.24 0.33 0.36 0.116
WE-based 10 1 8 Tansig 8 51 50 0.38 0.27 0.30 0.330.121
Workdays-based 10 1 8 Tansig 8 51 50 0.29 0.25 0.28.28 0.144
Year 2007 11 1 8 Tansig 8 2*Npar+1 Npar+1 0.22 0.16 0.20 0.20 0.136
‘Normal prices’ 11 1 8 Tansig 8 51 50 0.39 0.37 80.3 0.38 0.079
‘Medium prices’ 11 1 8 Tansig 8 51 50 0.36 0.36 40.3 0.36 0.069
‘Low prices’ 11 1 8 Tansig 8 51 50 0.10 0.09 0.04 .08 0.035
‘High prices’ 11 1 8 Tansig 8 51 50 0.17 0.15 0.150.16 0.249

"RMSE: Root Mean Square Error
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The different data breakdowns are compared in ¢xe paragraphs.

Hourly-based & Daily-based models
The hourly-based model was discarded from furthedysis because it has a low
RZ; mulation F@Nge value and average RMSE value.

The correlation range for the daily-based modeluitions isR2;,, ,iation = 024 —
0.36 and for the workdays-/ weekends- based MR}, jation = 0-28 — 0.33. The
partition between workdays and weekends, requiinly two individual models, was
preferred to a daily data breakdown and the daalseld models were abandoned. The
division between weekends and workdays has alrbedy used for short-term price
forecasting (e.g. Gao et al., 2000) and will beessad in detail later.

Hourly- and daily-based models have not been asddszsed on other performance
criteria (e.g. frequency distribution) becausediid require building each individual
models to extract monthly patterns and was consitiEro time consuming.

Yearly-based

The model developed for year 2007 has the lowestrmiénation coefficient among
all experiments WitlR2, . 1ation = 0.20 and its RMSE value is not significantly
reduced compared to the model built for all fousngedata. Figure 19 is a comparison
of the revenue curves between this model and theeemgsing the entire dataset for
the months of June and December. Generally, monévignue curves developed for
2007’s model are further away from the historicatiad(or do not have a significantly
better fit) than the model using the four yearsdafa. It was therefore decided to
exclude the yearly-based model from further analysi
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Figure 19 - Comparison of the revenue curves for Yaly-based ANN model calibrated
on 2007's data and an Annually-based ANN calibratedn all data for June (a) and
December (b)
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Monthly-based, Seasonally-based, Workdays/WE- based

Figure 20 is a comparison of April’'s and July’seaue curves for four ANN models:

seasonally-based, monthly-based, workday- and weleiased models combined in
parallel and Base model using all data. The bédofithe revenue curves can be
observed for monthly-based models and summer mdded. workdays/weekends-

based model produced a better fit than the Baseeimfod most months. It was

decided to keep only one model for the next stéghis research and the monthly-
based models were elected for the following reasons

= Generally, those produced the best fit for the meeecurves and especially
for the month of April where the other data pawtis didn't fit so good;

= this partition seemed the most appropriate to captue monthly variability
of prices which is of interest in this research.

*  R%ulation = 0.22 — 0.41 and RMSE=0.13-0.14 are among the best errors
from the experiments together with the seasonaletspd
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Figure 20 - Revenue curves for four ANN models: Bas(calibrated on all data), workday
and weekend-based models combined in parallel, Seaslly-based and Monthly-based
models for April (a) and July (b)
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6.4.2.3 Comparison of dataset breakdowns based on stochastic variables

Additional dataset breakdowns have been tried The. motivations for the partitions
considered are presented in this section andithplementation is detailed after.

The first partition was inspired by an experimerdad® by Olsson et al. (2004) for
rainfall intensity classification. They have figsttlivided their dataset in different
categories based on rainfall intensity. Then thedtto use a stratified sample for
ANN calibration, designed to contain an identicalmiper of intensities in each
category. This may improve the ANN training as x&rning capacity of ANNs is
commensurate with the quantity of data availablisgan et al., 2004). This method
was tried out in the present research as previgpsrinents haven't been able to
capture low price intensities (below 25%/MWh) anghhprices (above 125$/MWh).
In light of these results, a non representativesaniple designed to contain a similar
number of price intensities in predefined pricegemwas extracted.

The two following experiments were inspired by therk from Lu et al. (2005) and
Zhao et al. (2007) who spotlighted the fact thatNSNwere unable to model price
spikes because of they are highly erratic, sevaddrs of magnitude higher than the
average price, often under-represented comparedrtoal prices and most likely not
driven by the inputs selected in the present w@vkh respect to the use of ANN
models, this is a delicate issue. ANNs are tralyetter on the range of intensities that
is the most frequent in the calibration set (Olssbml., 2004). Therefore, scattered
outliers will be poorly modeled. According to Luadt (2005), almost all the existing
techniques for short-term price forecasting reqfiitering out the price spike signals
in order to forecast normal prices with rather haglsuracy.

As defined by Lu et al. (2005) high price spikes prices exceeding the threshold P
B=ut26 1)

whereu is the mean of historical market price ahis the standard deviation of the
prices. In the present case study, price spikesespond to prices exceeding
128%/MWh, including 3.7% of the price populatiorr (91 data) and representing
12.9% of cumulated price intensities. Many higteindity prices happened in 2008
but probably aren’t really price spikes as theslted from a global increase in
electricity prices. Their intensity is still ‘abrmoally’ high so it was decided to make
no distinction between those and other price spiiesy few price spikes seemed to
have occurred in 2005 but this is partly because foonths of data were removed.
Most spikes occurred in spring and summer.

Based on the previous comments, the following gatéitions have been considered:
= Stratified dataset considering five price ranges.
= Division of the set between ‘Normal prices’ (beldlae threshold | and
price spikes.
= Division of the set between ‘Low prices’ (includirtge 10% lowest price
intensities), ‘Medium prices’ (prices between Lowcps and the threshold
P,) and Price spikes.
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Stratified dataset breakdown

Five categories of prices p (given in [$/MWh]) wedefined on the basis of the
cumulative distribution of prices: 0 <925, 25 < p< 50, 50 < p< 75, 75 < p< 100,
100 < p. Each category contained 1000 data samgigieg a total of 5000 data
samples, 15% of the original dataset. Then thevastdivided into training, test and
validation set as usual for calibration. The optieai ANN for 8 hidden neurons
gaveR?raining =0.29 andR?imulation = 0.28.

Figure 21 shows the prices plotted against tempexaPrices below 20$/MWh are

still not captured and prices above 150$/MWh eithéisually, the agreement

between historical and modeled prices is not impdovor high temperatures

compared to the earlier models, e.g. the Annualyel model calibrated on all

prices. This ANN model calibrated on a stratifiednple was abandoned as it did not
capture the low and high prices as wished.
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Figure 21 — Price obtained from the ANN trained ovea stratified sample (2005-2008)
against temperature

‘Normal prices’ model

The correlations obtained from the ‘normal priceddel are very much improved
compared to the ANN developed for the entire datdde simulation for the optimal
parameters giveR2,,,.iqtion = 0-38 and RMSE = 0.08 (compared Rf;uiation =
0.28 and RMSE = 0.14 for the Annually-based ANN trairmeer all prices). Figure
22 shows the prices plotted against temperatuiees?below 20$/MWh and above
90$/MWh are still not modeled properly. Too few aldielong to these ranges
compared to the quantity of data available in therival 20-90$/MWh to be modeled
adequately by the ANN. This observation conductedthlie next experiment
considering a division between Low, Medium and €dpikes.
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Figure 22 — Prices from an ANN model trained overdormal’ prices (below 128 $/MWh)
against temperature (2005-2008)

A second ANN was developed for the set of prickespi As expected these could not
be modeled accurately because there are too fem #8991 data samples), the spikes
are very volatile and they are probably not dribgnthe selected inputs. No further
investigation to model price spikes was carried asiit is beyond the scope of this
work. Further research could consider applyingariging scheme’ as proposed by
Yamin et al. (2004) or by a similar reasoning.

Price spikes represent only 3.7% of the price patmri but their summed intensities
reach nearly 13% of the total. Two options wereseeable to deal with price spikes:
considering that a certain percentage of priceespikill occur in the future or that
there won't be any more spikes. This depends onthevenergy market is projected
to evolve. Lu et al. (2005) spotlighted the faattin an ideal competitive electricity
market, price spikes should only occur when the ateimexceeds the supply.
However, most markets are not ideally competitasggd gaming behaviors probably
influence the market (Lu et al., 2005). It has d®®n argued that suppliers take
advantage of the vulnerability (difficulty of stog, generation capacity constraints
and transmission congestion) of the electricity kaaby withholding their capacity
so as to shift supply-demand curves and forcingepsapikes (Zhao et al., 2007).
Therefore, if the market operation is foreseentay |s it is today — which is the
assumption we make in the present work — then psigikes should be kept
unimpaired as they will most likely continue to acc If the market is envisaged to
turn towards an ‘ideal’ competitive market or mayogvards a highly supervised
market preventing spikes to occur, then spikes lghioei removed. The percentage of
energy spikes in the future is assumed to be tme s in the base case. Unimpaired
price spikes were added to the modeled price setFagure 23 shows the revenue
curves for the models calibrated on all prices ormmrmal prices for June and
September. The model developed for ‘normal prifiesbetter historical data.
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Figure 23 - Comparison of the revenue curves for tav Annually-based ANN models: one
trained on all prices and on 'normal prices' (price spikes truncated) for June (a) and
September (b). The historic proportion of price spkes in the market was assumed to
remain constant for the second model.

‘Medium prices’ and ‘Low prices’ models

Figure 24 displays the plot of prices vs. tempegmfior the medium range prices
which gives RZ,, iation = 0.36 and RMSE = 0.07 (compared Rg;,,..,1qti0n = 0-38
and RMSE = 0.08 for the ‘normal prices’). Surprigin these results are not far off
from the results obtained for normal prices anddbreelation in terms of Rvalue is
even lower. The same price trend as for ‘normatqw is observed except that the
lower bound of the modeled prices is now higheouad 35$/MWh. Truncating the
10% low prices did not help the ANN to reproduce tbw range of the calibration
set and increased the price set’'s average. ANNallyseturn outputs where most
data are available (Olsson et al., 2004); this bwt the origin of this phenomenon,
otherwise no other explanation has been foundooexplain this trend.
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Figure 24 - Prices from an ANN model trained over medium’ prices (between 22 and
128 $/MWh) against temperature (2005-2008)
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The second model developed for the set of the 1@#edt values returned prices
mostly around the average of the calibration setHigure 25) and the correlation is
low, RZ; u1ation = 0-08. It is hard to assess if the ANN returned thegwritollow an
underlying relationship; this dataset breakdown alz@ndoned.

25 T T T T T
* Histarical Prices §
20 +  Modeled Prices
B A B i .
=
& 15} + 1
=
o
=
Jak]
=0 -
O
=2
T
5 B + .
¥
0 G SRR AL kbR ariie |
20 30 40 al 60 70 a0 an 100

Temperature Ohsemned [*F]
Figure 25 - Modeled and historical prices againstemperature, low range, 2005-2008

6.4.3 Summary of the findings and choice of the optimum ANNs

Among all the dataset breakdowns tried out in thégarch, two divisions stand out:
= Monthly-based models (ANN1)
= Annually-based model calibrated on Normal price éxcluding price spikes
(ANN2)

Monthly models were elected because they visudlyéll historical patterns and
seem appropriate to capture the monthly variabilityenergy prices. The annual
model trained for normal prices improves the deteation coefficient but requires
filtering out the spikes, assuming that all prioeer a certain range are non natural
price spikes. The same proportion of spikes agi®period 2005-2008 was assumed
to occur in the future.

The two models are compared hereafter in terms ohtinty price frequency
distribution using revenue curves. The visual ages® between the revenue curves
for January, April and July (cf. Figure 26) is vesiynilar between the two models and
historical data; April is the only month of the yegar which the curves have a
significant different pattern.

Two models were kept because it is not possiblentmwv which one is the most
accurate.
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6.5 Application of ANN to long-term price forecasting

6.5.1 Climate warming scenarios

The impacts of climate warming by 2100 on hourlgcélicity prices were estimated

based on five scenarios given in Table 9 and addpten the simulations of twenty-

first century climates evaluated by Cayan et al08). A strong assumption was
made: the statewide temperature increase considezesl is the average of the
temperature increases for the two regions NOCAL 8G€CAL estimated by Cayan

et al. (2008); NOCAL corresponds to Sacramentooregihereas SOCAL to the area
around Riverside. This average value was consideyebe representative of the
highly electricity demanding areas, i.e. the higbbpulated areas in California which
are of interest in this work. Another assumptiorthat the increase estimated by
Cayan et al. (2008) is based on mean values fdnitherical period (1961-1990) and

that we consider the increase based on mean Valugx005-2008).

Four scenarios consider a constant temperatureaserthroughout the year and one
high forcing scenario (GFDL-A2-Seasonal) considgrkigher increase in summer

and a lower increase in winter respectively, thathe rest of the year. As no more

information was gathered about the temperature@asas in spring and autumn, these
values were assumed to be equal to the averagelademperature increase.

Table 9 - Climate Change Scenarios for Californiagdapted from Cayan et al. (2008))

2070-2099 Temperature Change (*F)
Spring (MAM) &
Scenario Name GCM SRES Winter (DJF) Summer (JJAAutumn (SON)

GFDL-A2-Annual GFDL A2 +8,0 +8,0 +8,0
PCM-A2-Annual PCM A2 +4,6 +4,6 +4,6
GFDL-B1-Annual GFDL B1 +4,9 +4,9 +4,9
PCM-B1-Annual PCM B1 +2,8 +2,8 +2,8
GFDL-A2-Seasonal GFDL A2 +6,0 +10,5 +8,0

1 Values from two regions referred to as Nocal 8odal (North and South California) were
averaged to produce an average considered to besespative for entire California.

2 Temperature change in Spring and Autumn was asgumbe equal to the average annual
temperature change

6.5.2 Results

Results for each climate warming scenarios and Ahidlel are presented in Table
10. The forecasted average price for all climatemiag scenarios are always
exceeding the base case average price (55 $/MWdNtW ANNs (ANN1) predict
higher average price increases than the Annual Atddel trained on Normal prices
for all scenarios; i.e. ANN1 estimates higher piit@eases than ANN2.
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Table 10 — Price distribution statistics for each limate warming scenario & ANN model

Prices in $/MWh

Price Percentiles in $/MWh

Climate ANN Standard

scenario model Average Deviation Minimum Maximum 10th  25th  50th ~ 75th  90th
Base Case - 54.87 36.54 0.00 399.99 23.88 36.88 49.13 64.14 284.
GFDL-A2- ANN1 59.89 33.16 0.00 425.66 30.78 41.04 51.73 (@0.296.15
Annual ANN2 55.96 33.04 9.00 399.99 31.13 4058 49.31 $1.976.11
PCM-A2- ANN1 56.94 2751 0.00 392.77 31.11 40.64 5091 56.988.49
Annual ANN2 55.25 32.74 9.76 399.99 31.31 40.20 49.02 50.174.98
GFDL-A2- ANN1 61.55 35.28 0.00 425.66 3120 4169 5238 3J1.99.75
Seasonal  ANN2 56.67 33.07 9.00 399.99 31.64 4115 49.87 #3.276.89
PCM-B1- ANN1 55.82 25.09 0.00 384.30 3142 4055 50.64 45.485.00
Annual ANN2 55.03 32.57 10.73 399.99 31.67 40.24 48.98 9&8. 74.42
GFDL-B1- ANN1 57.15 27.95 0.00 388.50 31.11 40.67 50.93 57.189.09
Annual ANN2 55.30 32.76 9.62 399.99 31.27 40.20 49.04 40.275.04

Figure 27 shows the forecasted price intensitiegingy temperature for climate
warming scenario PCM-A2-Annual for both ANN modelsosen. Figure 28 is the
same figure for scenario GFDL-A2-Annual. Pricesréase for all scenarios for the
highest temperatures relative to historical prid¢egh forcing scenarios lead to high
price increases and low forcing scenarios to Iquee increases.

Revenue curves for one month from each seasongdamypril, July, October) were
plotted for climate scenarios GFDL-A2-Annual andNRrB2-Annual in Figure 29
and Figure 30 for ANN1 and ANN2 respectively. FottbANN models, all climate
warming scenarios lead to high increases in rev@ilusummer months, and more
attenuated increases in spring and autumn. In wihtgh forcing scenarios lead to
higher price drops relative to Base case if congpéodow forcing scenarios. These
patterns correspond to what was expected, incresssdifor cooling in warm months
and decreased need for heating in winter monthsalFolimate scenarios, the ANN2
returns similar revenue curves in April. April isettransition month between winter
and spring seasons, so energy price patterns ipggtiifferent between years and it is
difficult for the ANN to learn the input-output eg¢lonship.

The lower increases in revenue using an AnnualgedaANN compared to those
using Monthly based ANNs probably result from timeet scale of the ANN models.

In the case of an Annual model, temperature dateples from all twelve months of

the year are fed to the ANN during calibration #meltrained ANN has knowledge of
all historical temperature ranges. Most perturbemiperature samples for climate
warming scenarios will not be out of range of tlaibration temperature range,
except for the extreme highest temperature. Modiased models use a monthly
calibration set; they are independent from eaclercéimd have no knowledge of the
price-temperature relationship mapped in other hwnfThe highest perturbed
temperatures accounting for CC of each monthhbcatiion set will be unknown by
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the corresponding ANN, but might be known by otmeonthly ANN models.
Monthly models might overestimate future price msigies. For illustrative purposes,
Figure 31 shows the price distribution against terafure from the Monthly- based
and Annually-based ANN models under GFDL-A2-Annge¢nario in March. The
Monthly model estimates very high price increases the highest temperatures
experienced in that month (T>95°F) whereas the Ahnmmodel estimates more
moderate price increases, which seem more reasordistorically, this temperature
range was experienced in other months of the jyreapring for example, and was not
responsible for such high prices. Having no knogkedf the rest of the year,
Monthly-based ANNs might misestimate the input-otitgelationship and an Annual
model (or seasonal) may be more appropriate tovddfalperturbed temperatures.
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climate warming scenario for both ANN models: ANN1(a) and ANN2 (b)
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Another possible reason for the lower increasegwenue estimated by the Annual
ANN model is also based on the fact that an ANN ehdéshrns from examples which
are fed during the training procedure. Since thigleh was trained only for normal
prices, it will not return prices much higher thie ones fed during training. In the
first experiment (monthly models for all prices gei), since price spikes were not
removed, the ANN will more likely return high priggensities.
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Figure 28 - Simulated ANN prices and historical prces (2005-2008) for GFDL-A2-
Annual climate warming scenario for both ANN models ANN1 (a) and ANN2 (b)
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Figure 29 - Monthly Revenue Curves obtained from AN1 model for January (a), April
(b), July (c) and October (d) for different climatewarming scenarios
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Figure 30 - Monthly Revenue Curves obtained from ANI2 model, for January (a), April
(b), July (c) and October (d) for different climate warming scenarios (it is assumed that
the same proportion of price spikes as in the 2008008 historical price set occur in the
future under climate change scenarios)
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7 Energy-Based Hydropower Optimization Model

7.1 Model set up

This study investigates the effects of climate ¢feapon California’s high-elevation
hydropower plants using the Energy-Based Hydropovgtimization Model
(EBHOM) developed by Madani and Lund (2009). EBH®@M monthly step model
which does all storage, release and flow calculatim energy units (Madani and
Lund, 2009). It gives a big picture of the systemdl & an interesting alternative to
conventional volume-based optimization models thaually require detailed
information such as streamflows, turbine capagGisésrage operating capacities and

energy storage capacities at each individual mhtite system.

The flow chart of the EBHOM modeling process isegivn Figure 32. The reader is
referred to Madani and Lund (2009) for details oBHEOM’'s mathematical
formulation. The input data required to run EBHONE:arunoff data, available
storage capacity at each power plant, frequendyoafly electricity prices for each
month of the year. Runoff data representative tddlelevation ranges (1000-2000,
2000-3000 and >3000 feet) were gathered from skug@ Geological Survey
(USGS) gauges as described in Madani and Lund j200@ee elevation bands were
chosen to take into account the different valu¢hef snowpack and precipitation in
each band. Monthly runoff distributions in eachganvere then perturbed using
monthly runoff perturbation ratios of the adoptelilmate change scenarios as
described by Vicuna et al. (2008). A perturbatiahoris “a simple ratio of average
runoff predicted by a GCM for different eras fogigen time period (eg. £:0_of
Qies0-90 Where Q is average July streamflow)” (Vicuna ket 2008). Madani and
Lund (in press) finally adjusted these ratios aheglevation band as follow: dry and
wet climate warming scenarios result in 20% less H0P6 more annual runoff when

going up one band, respectively.
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Figure 32 - Flow chart of EBHOM model
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The available energy storage capacity at each pplaat is determined using the No
Spill Method (NSM) developed by Madani and Lund(@2)) applicable when: plants
are operated for net revenue maximization, stonagames do not significantly

affect the head and there is no over-year stordigese conditions are filled by
California’s high-elevation hydropower system (Maidand Lund, 2009).

The price representation used to run is eitheohestl prices or forecasted prices
from the earlier ANNs developed. Revenue curvegweawn by integration over the
price frequency curves for each month and were piecewise linearized into five

segments to solve EBHOM through linear programniivigdani and Lund, 2009).

7.2 Climate warming and Price Increase Scenarios

The scenarios elected to run EBHOM are summarizetible 11. A Dry warming

GFDL-A2) and a Wet warming (PCM-A2) were chosenbt consistent with the
previous research of Madani and Lund (in press). additional Seasonal Dry
warming scenario considering high temperature ss®e in summer and low
temperature increases in winter was chosen. Fdr danate scenario, EBHOM was
run under Historical price or price forecasts freither the Monthly-based ANN
model (ANN1) or the Annually-based ANN model (ANNRunning EBHOM based
on price forecasts considers the changes in emtngyand due to climate warming.

Two price increase scenarios (+30% or +100% by PWe defined. Inspired by
the work from Aroonruengsawat and Auffhammer (20®9¢ first scenario assumes
a discrete price increase of 30% by 2020 remaitorthe same level until the end of
the century. The second scenario is based on 8terical trend of average retail
prices in California described in section 3. A dans annual growth rate of 0.25
cents/KWh (calculated for the period 1960-2005 Fifiure 4) results in retail prices
increase by 100% by 2100. Each price increase gosnia then coupled to each
climate warming scenario, run under historical @siand the two ANN price models.

Table 11 — Scenarios defined to run EBHOM, includig 4 climate scenarios and 3 price
models. Additional scenarios were designed by coupy two pure price increase
scenarios (+30%, +100%) to the scenarios in this Bbée.

Scenario Accronym CC Scenario Price Model Price Inease
Base Base Case S
Dry GFDL-A2-Annual None: Historical
prices
Wet PCM-A2-Annual
Base ANN1 Base Case
Dry ANN1 GFDL-A2-Annual ANN1:
Dry-Seas ANN1 GFDL-A2-Seasonal Monthly ANNs +0%
Wet ANN1 PCM-A2-Annual
Base ANN2 Base Case
Dry ANN2 GFDL-A2-Annual ANN2:
Dry-Seas ANN2 GFDL-A2-Seasonal AN”gr”rﬁglAF',\'r'i\éécs’r
Wet ANN2 PCM-A2-Annual
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7.3 Results

7.3.1 Historical prices and climate change impact on hydrology only

EBHOM'’s results for 1985-1998 hydrologic conditioasd 2005-2008 historical
price dataset are presented here. Table 12 inditete energy generation, energy
spill and annual energy revenue change with Dry\Wad climate scenarios as well
as the Base case scenario. In the present sesiiis are discussed and compared
to those obtained by Madani and Lund (in pressp did the same study but with a
different price dataset. Hourly electricity pricigem 2005-2008 are also used here
but prices from the period September-December 2006 removed from the set as
explained in Section 6.3.2.2. Other difference$lie work of Madani and Lund (in
press) are: a different piecewise linearizatiorthef revenue curves was considered,
and because the problem is relatively complex stiieer may not always come up
with the globally optimal solution.

Energy generation, energy spills and revenues asereunder Wet scenario but
decrease under Dry scenario relative to the Base.cBnergy spills increase

drastically under Wet scenario with 8 times mordissthan under Base case. Energy
spills occur due to the limited storage capacityhef system and the abundant runoff
available. These results are similar to those fidaxlani and Lund (in press). Even if
average generation increases by nearly 6% unders@eéeiario relative to Base case,
average revenues only increase by 2%. Under Dryasite average generation

decreases by 20% but revenues only decrease byré¥ve to Base case. The
system adapts to the new climatic conditions toimepe profits. Revenues estimated
in the present work are different from the onesaimiatd by Madani and Lund (in

press).

Table 12 - EBHOM's results (average of results ovel985-1998 period) for different
climate scenarios

Base Dry Wet
Generation (1,000 GWh/year) 22.3 17.9 23.6
Generation change with respect to the base case (%) -19.8 +5.8
Spill (GWh/year) 130 96 1112
Spill change with respect to the base case (%) 6 -2 +756
Revenue (million $/year) 1,726 1,482 1,762
Revenue change with respect to the base case (%) 41 -1 +2.1
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7.3.1.1 Generation changes with climate warming

Figure 33 shows average monthly energy generatiori®85 to 1998 hydrologic
conditions, modified for different climate chang&esults are summed from all 137
units modeled. On average, dry conditions leade$s Igeneration than under Base
case except in January and February. The monthmigrggon peaks occur in January
and in June, when demand is high and energy isalkbdu Generation between
January and April is highest for the Wet scenatie tb increased runoff. In the rest
of the year, average monthly generation is sliglethg than under Base case.

Figure 34 shows the frequency of optimized mongdgeration for each month over
the 14 year period (1985-1998) summed for all uhitsthe different climates. Over
the entire study period, Dry climate leads to lgemeration than Base case and in
contrast, Wet climate nearly always leads to memegation than Base case. If more
storage capacity was available, the generationecunder Wet scenario would be
closer to the Base case curve, with higher revenues
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Figure 33 - Average Monthly Generation (1985-1998)nder different climate scenarios
and historical prices
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Figure 34 - Frequency of monthly optimized generatin (1985-1998) under various
climate scenarios (all months, all years, all uni)sand historical prices
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7.3.1.2 Reservoir storage changes with climate warming

Figure 35 shows how average end-of-month energggtan all reservoirs combined
changes with climate when reservoirs are operatecemergy revenues only. The
starting month for reservoir refilling is Januargder Base and Wet scenarios and
November under Dry climate. Under climate warmiogrerios, reservoirs capture
most of snowmelt water between January and Mayralehse it progressively in
months of high demand, maximizing profit. The tigniof the patterns is similar to
the monthly runoff distributions. The peak storawfensity is relative to the amount
of water available, it is the largest under Wetnsem, then Base case and finally
lowest under Dry scenario. The peak intensity $® &wer under Base case than Wet
scenario because some of the water is directhaseld and not stored for later. For
instance, the end-of-month storage capacity in Jsir@dout the same for these two
scenarios.

8
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o 47
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Figure 35 - Average total end-of-month energy stoige (1985-1998) under different
climate scenarios and historical prices. The blackne is the system'’s storage capacity.

7.3.1.3 Energy spills with climate warming

Figure 36 shows the frequency of total monthly gpespills from the system for the
study period (1985-1998) when the system is opgnhifor revenue maximization.
Energy spill is the equivalent energy value ofweger that cannot be stored nor sent
through turbines because of limited capacitiesr@@nes spilled by the system in 35%
of months under Wet climate, in 20% of months unBase case and in 10% of
months under Dry climate. What is calculated as@nespill in this study is the
increased energy spill with respect to the Base,@szero spills under the Base case
was expected. However, the results showed a minimadel error of 130GWh,
corresponding to 0.6% of total generation on averagder the Base case.

Figure 37 shows the distribution of total averagenthly energy spill for different

climates. Spills occur only between January and Magll cases. Substantial energy

spills (850 GWh in total) occur in February undeetV¥cenario even though the total

storage capacity is not met. EBHOM has perfectsighe into the future and knows
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what will happen in the next months, so in thiseciasuggests spilling and emptying
the reservoirs in advance.
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Figure 36 - Frequency of total monthly energy spil(1985-1998) under different climate
scenarios (all months, all years, all units) and btorical prices
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Figure 37 - Average Monthly Total Energy Spill (198-1998) under different climate
scenarios and historical prices
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7.3.1.4 Revenue and energy price patterns under climate warming

Figure 38 shows climate warming effects on montmserage price received for
generated energy in the period 1985-1998. Price=wed under Dry scenario exceed
the Base case prices 85% of the time, but montbhemtion is less 100% of the
time. This is what was expected given the non-limekationship between electricity
prices and generation. Prices received under WWfeaitg are similar to the ones under
Base case, but never exceed those. Average pece&/ed here reach 175 $/MWh
under Dry climate, 150 $/MWh under Wet climate, &3%$/MWh under Base case
whereas those did not exceed 135 $/MWh, 120 $/MWh120 $/MWh respectively
in Madani and Lund (in press).
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Figure 39 shows the effects of climate warming be frequency of total annual
revenues from the system for the 14 years peri®851.998). Annual revenues are
the highest 80% of the time under the Wet scenamaisthe lowest 100% of the time
under Dry scenario. Although monthly average primzzived for generated energy
were higher under the Dry scenario, the increassevarage prices received does not
compensate for the Dry scenario reduction in engagyeration. On average, annual
revenues are $210 million lower than the Base frashe Dry scenario.
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Figure 38 - Frequency of monthly energy price (198%998) under different climate
scenarios (all months, all years, all units) and btorical prices
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Figure 39 - Frequency of total annual revenue (198%998) under different climate
scenarios and historical prices
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7.3.1.5 Benefits of expanding energy storage and generation capacity

Figure 40 shows, on average, how energy storagecitgpexpansion changes
hydropower generation revenues for different clematenarios over the 14 years
study period. This figure indicates the averagedshaprice of energy storage
capacity (the increase in annual revenue per 1 MaMbrgy storage capacity
expansion) for all 137 reservoirs. For instancergase in annual revenue per 1IMWh
energy storage capacity expansion is less than $#and $51 (compared to $35,
$47 and $54 in Madani and Lund (in press)) fort8@ studied plants under the Base,
Dry and Wet scenarios. Storage capacity expansidmces spills and allows for more
release in summer when energy is the most valuAblrage annual revenues can be
increased by expanding storage capacity in alltpléexcept for four plants under
Base case), although such expansion might notdtifi¢al due to expansion costs. As
expected, benefits of capacity expansion are grdateWet scenario when the
additional capacity can be more frequently useanBwith the historical hydrology,
expanding storage capacity increases total aneuahues in all years.
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Figure 40 - Average Shadow Price of Energy Storageéapacity of 137 hydropower units
in California for 1985-1998 period under differentclimate scenarios and historical prices
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Figure 41 - Average Shadow Price of Energy Generath Capacity of 137 hydropower
units in California for 1985-1998 period under different climate scenarios and historical
prices
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Figure 42 - Average shadow values of energy storaged generation capacity of 137
hydropower units in California in the 1985-1998 peiod under different climate scenarios
and historical prices

Figure 41 indicates the average shadow price afggrgeneration (turbine) capacity
(increase in annual revenue per 1 MWh of annualrgsngeneration capacity

expansion) for all 137 plants under different clienacenarios. All scenarios benefit
from an increase in generation capacity, reducpiissand allowing more energy to

be generated when prices are high. Increase inahmauenue per IMWh energy
storage capacity expansion is around $22, $18 a5df& the 137 studied plants
under the Base, Dry and Wet scenarios. Even thgeglkeration capacity expansion
produces benefits, expansion costs might be prorebi

Figure 42 indicates how the marginal benefits oérgp storage and generation
capacity expansion of power plants vary with clienétach point in the figure is a
plant). It clarifies the relative importance of extenergy generation and storage
capacity for each unit for all climate scenariosxder Base scenario, half of the
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power plants benefit more from energy storage dppagpansion than generation
capacity expansion. However, storage capacity estpans more beneficial in terms
of revenue if the entire system is considered. Gompn of Figure 42a with Figure
42b-d shows how storage capacity becomes moreblaluader climate warming as
the scatter in the figures expands to the righlghlighting the higher benefit from
energy storage capacity expansion than generatipacgty expansion. Under Wet
scenario, 86% of the units benefit more from steregpacity expansion. Finally for
the Dry scenario, 55% of the power plants benefitenfrom energy storage capacity
expansion than generation capacity expansion. Hemewearly 40% of the plants
increase their revenues by less than 5% per MWiaggocapacity expansion. The
plants that do not spill are responsible for thig Increase in average shadow prices.

Figure 43 shows the changes of marginal benefitsnefgy storage and generation
(turbine) capacities relative to the base caseu(Bigi2a) with different climate
warming scenarios. Under the Dry scenario, mardiealefits of energy generation
capacity of all units are lower than the Base chseause water supply availability is
the limiting factor. For about 50% of plants, thelue of expanding energy storage
under drier conditions is more than with the Baase¢ allowing more winter inflows
to be shifted to high value summer power genergtioe maximum difference can be
as high as $28). For the Wet scenario, almostratk tbenefit from energy storage
capacity expansion as well as from generation dgpexpansion, reducing spills and
shifting generation from low- to high-valued months this case, energy storage
capacity expansion is more valuable than generaapacity expansion.
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Figure 43 - Average change of energy storage and rgation capacity shadow values
from the base case with different climate scenariogfor 137 hydropower units in
California in the 1985-1998 period) based on histdzal prices
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7.3.2 Climate change impact on energy demand, pricing and on
hydrology

The previous section described climate warming ctdfeon California’s high-
elevation hydropower system by focusing on the Bugige (exploring the effects of
hydrological changes on generation and revenugsdring the warming effects on
hydropower demand and pricing. The present seetxtends the previous results by
simultaneous consideration of climate change effect high-elevation hydropower
supply and demand in California. The ANNs develojpe8ection 6 are used as long-
term price forecasting tools to estimate the impzfctlimate warming on energy
prices. Two different ANN models were developed:M@nthly-based ANN models
calibrated for all price ranges (ANN1), and a singlnnually-based ANN model
calibrated on Normal prices (ANN2). These modell oé referred to as ANN1 and
ANNZ2 respectively hereafter for simplification.

Table 13 indicates how energy generation, energly apd annual energy revenue
change relative to Base case for different climstenarios and forecasted future
energy pricing. For each climate warming scendbiy(Wet or Dry-Seasonal), the
average annual generation and energy spills arsghe no matter what the price
representation is. Generally, when warming effectslemand are considered, annual
revenues decrease relative to the Base case for ds@r and wetter conditions.
Depending on the ANN model used to forecast pritkere can be significant
differences in average revenues received, especialiler drier conditions. Under
Dry climate, the difference in revenues between ef®odsing ANN1 or ANN2 is
around 130 million $/year and under Dry-Seasonahate it reaches 180 million
$lyear. Generally, ANN1 predicts higher annual agerrevenues than ANN2 under
all climates. The Dry scenario estimates more ingmrdecreases in revenue than the
Dry-Seasonal one.

Table 13 - EBHOM's results (average of results ovel985-1998 period) for different
climate warming scenarios considering simultaneougl the warming effects on
hydropower supply and demand (ANN1: Monthly-based AIN model; ANN2: Annually-
based ANN model calibrated on Normal prices)

Climate scenario Base Dry Wet Dry Dry-Seas Wet
Price Model Historical ANN1 ANN2 ANN1 ANN2 ANN1  ANN2

Generation (1,000
GWhiyear) 22.3 17.9 23.6 17.9 17.9 23.6
Generation change with
respect to the base case -19.8  +5.8 -19.8 -19.8 +5.8
(%)
Spill (GWh/year) 130 96 1112 96 96 1112

Spill change with respect

-26 +756 -26 -26 +756

to the base case (%)
Revenue (mi||ion $/year) 1,726 1,482 1,762 1,533 1,400 1,587 1,408 1,718 601,6

Revenue change with
respect to the base case -14.1  +21 -11.2 -18.9 -8.1 -18.4 -0.5 -3.8

(%)
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7.3.2.1 Generation changes with climate warming scenarios

Figure 44a-b shows average monthly energy generfiiol 985 to 1998 for different
climate warming scenarios, considering climate wagreffects on high-elevation
hydropower supply and demand simultaneously. Result summed from all 137

units modeled.

Generation (1000 GWh/Month)

Generation (1000 GWh/Month)

Figure 44 - Average Monthly Generation (1985-1998)nder dry (a) and wet (b) warming
scenarios, considering the warming effects on hydpmwer supply and demand
simultaneously (Future energy pricing is forecastedising ANNs — ANN1: Monthly-based
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When climate warming effects on hydropower demand fricing are considered,
average monthly generation increases in June dpchdd decrease from November
to February under all scenarios, compared to wheset were ignored. Less
generation in winter is necessary since theresss heeed for heating and increases in
summer to satisfy the high demand for cooling. Gatien is peaking in June or July
depending on the ANN model considered, but both AMNbddels result in a peak in
summer. The highest peaks occur in July for ANN@ esaches 2,500GWh/Month
for Dry ANN2, 2,700GWh/Month for Dry-Seasonal ANMBAd 2,900GWh/Month for
Wet ANN2. Dry-Seasonal scenarios estimate more rgéoa in July and August
than Dry scenarios. Under the rest of the montbagsidering warming effects on
energy demand results in similar behavior thanrigigathem.

7.3.2.2 Reservoir storage changes with climate warming

Figure 45a-b shows how average end-of-month enstggage in all reservoirs
combined changes with climate when reservoirs gerated for energy revenues
only, for drier and wetter scenarios respectivebnsidering climate warming effects
on high-elevation hydropower supply and demand kanaously.

Reservoirs start refilling earlier in the Dry sceaa than in the Wet ones and Base
case. In the dry scenarios, the system must takenmahadvantage of the water
available from late autumn to spring, to releasghén prices are the highest, i.e. in
summer. Between February and June, the systensstoyee water in its reservoirs
when future changes in demand are considered tham whey are ignored. This is
true for both drier and wetter scenarios. Lessgnisrneeded in cold months so more
water is available to be stored until high-demagdimonths. The peak storage occurs
in May under all climate change scenarios. In g of the months, less energy is
stored when changes in demand are considered. ©ragey the system’s total
storage capacity is never met. The main differdretgveen the two ANN models is
that on average less energy is stored in summeARMX2 compared to ANN1,
because in that case generation peaked in Julgn@lrg than 500 GWh). There is no
significant difference between the Dry and Dry-®e@é$ scenarios, except slightly
less storage in summer for the latter scenario.
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Figure 45 - Average total end-of-month energy stoige (1985-1998) under dry (a) and
wet (b) warming scenarios, considering the warmingffects on hydropower supply and
demand simultaneously (Future energy pricing is foecasted using ANNs — ANNZ1:
Monthly-based model; ANN2: Annually-based model calbrated on Normal prices)
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7.3.2.3 Energy spills with climate warming

Figure 46a-b shows the distribution of total averagpnthly energy spill for dry and

wet climate scenarios considering changes in fule@reands. All spills occur in the

refilling season (December to May) before releakemdemand and prices are high.
The energy spill patterns are similar between afl stenarios and between all wet
scenarios. Considering warming effect on demand doé alter the average monthly
spill pattern. Average energy spills of about 850GW@¢cur in February under Wet

scenarios. EBHOM suggests emptying reservoirs wamck since it has perfect
foresight into the future.
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Figure 46 - Average Monthly Total Energy Spill (198-1998) under different warming
scenarios, considering the warming effects on hydpmwer supply and demand
simultaneously (Future energy pricing is forecastedising ANNs — ANN1: Monthly-based
model; ANN2: Annually-based model calibrated on Nomal prices)
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7.3.2.4 Revenue and energy price patterns under climate warming

Figure 47a-b shows climate warming effects on mlgnélverage price received for
generated energy, for drier (a) and wetter (b) &ges respectively, considering
climate warming effects on hydropower supply anchaed simultaneously.

200
Base
180 b Dry
160 - —e— Dry ANN1

e — Dl"y ANN2
140  ..... o---- Dry-Seas ANN1
..... &---- Dry-Seas ANN2

120

100

80

Average Energy Price ($/MWh)

60

0% 20% 40% 60% 80% 100%
Non-Exceedance Probability

a) Dry scenarios
200

Base
180 -

—e— Wet
160 - Wet ANN1
—a— \Wet ANN2

140
120
100

80

60

Average Energy Price ($/MWh)

40 -+ T T T T T T T T T

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Non-Exceedance Probability

b) Wet Scenarios

Figure 47 - Frequency of monthly energy price (198%998) under dry (a) and wet (b)
warming scenarios , considering the warming effectsn hydropower supply and demand
simultaneously (all months, all years, all units)Kuture energy pricing is forecasted using
ANNs — ANNL1: Monthly-based model; ANN2: Annually-based model calibrated on
Normal prices)

Energy prices received under Base case are exc&&8emf time under Dry ANN2
and Dry-Seas ANN2 and 60% of time under Dry ANNH @ry-Seas ANN1. The
aggregate monthly energy price received under DoyhSeasonal scenarios exceeds
those under their respective Dry scenario. Aggeegainthly energy prices for 1985-
1998 is about 150-160 $/MWh when ANNL1 is used waeri is about 180-190
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$/MWh when ANNZ2 is used under Dry scenarios. Gdhlyermonthly energy prices
received when the scenario is based on ANN2 exdeese when ANNL1 is used.

Monthly energy prices received under Wet ANN1 neerceed Base case neither
other wet scenarios. Prices received under Wet AN2lower than Base case and
Wet scenario (based on historical prices) 85% eftiftme, but exceed both the rest of
the times. Generally dry scenarios increase momhérgy prices relative to the Base

case whereas wet scenarios decrease prices.
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Figure 48 - Frequency of total annual revenue (1985998) under dry (a) and wet (b)
warming scenarios, considering the warming effectsn hydropower supply and demand
simultaneously (Future energy pricing is forecastedising ANNs — ANN1: Monthly-based
model; ANN2: Annually-based model calibrated on Nomal prices)

65



Climate Warming Effects on Hydropower Demand aridify in California

Figure 48a-b shows the effects of climate warmingle frequency of total annual
revenues from the system for the 14 years peri@851.998) for drier (a) and wetter
conditions (b), considering climate warming effects hydropower supply and
demand simultaneously. Under Dry conditions, annereénues received are always
lower than those under Base case. Although mordkigrage prices received for
generated energy were higher under the Dry scemdhie increase in average prices
received does not compensate for the Dry scenegthsction in energy generation.
For drier climate, considering the simultaneouseaf of climate warming on
hydropower supply and demand leads to an increasmmual revenues when the
model is based on ANN1 and a decrease when thelnoti@ased on ANN2. For
wetter conditions, considering the simultaneousat$f of warming on hydropower
supply and demand decreases revenues comparecetotivdy were neglected. For
all climate warming scenarios ANN1 increases reesreompared to ANN2; this has
already been discussed in Section 6.5 dealing teittong-term price forecasting;
Monthly-based models (ANN1) are likely to overesttmfuture prices.

7.3.2.5 Benefits of expanding energy storage and generation capacity

Figure 49a-b shows, on average, how energy stotagacity expansion changes
hydropower generation revenues for drier (a) anttewngb) climate scenarios over
the 14 years study period. These figures indidateatverage shadow price of energy
storage capacity (the increase in annual revenué pWh energy storage capacity
expansion) for all 137 reservoirs. Average ann@alenues can be increased by
expanding storage capacity in all plants (excepséwen plants under Dry ANN1 and
Dry ANN2), although such expansion might not bdifiesl due to expansion costs.
In summer, demand increases and energy is valusbléhe system benefits from
storing more snowmelt water. Increase in annuamae per IMWh energy storage
capacity expansion is between $45 and $81 for 8% studied plants under drier
scenarios considering changes in demand. It is ftoacdnclude on the benefits from
expanding energy storage capacity under wetter asiosn Expanding storage
capacity can be more or less beneficial than whemamd changes were ignored,
depending on the ANN forecast model used. Under AMN1, expanding energy
storage capacity is more valuable for about 50 pdwan under wetter scenarios,
which is surprising. Greater benefits of storageacity expansion for Wet scenarios
were expected since the additional capacity cambee frequently used. However
the estimations from ANN2 seem more reasonable.

Figure 50a-b indicates the average shadow pricengfrgy generation (turbine)
capacity (increase in annual revenue per 1 MWmatial energy generation capacity
expansion) for the entire system, under drier (& wetter (b) climate warming
scenarios. Considering climate warming effects emahd attenuates the benefits
from expanding energy generation capacity undetewstenarios relative to the Wet
scenario based on historical pricing. The same oamns valid for drier conditions,
except for Dry-Seasonal ANN1 scenario. Increasennual revenue per 1MWh
energy generation capacity expansion is $22, $1&rbr$22-24 for the 137 studied
plants under Base, drier and wetter scenarios casphy.
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Figure 49 - Average Shadow Price of Energy Storageéapacity of 137 hydropower units
in California in the 1985-1998 period under dry (a)and wet (b) warming scenarios,
considering the warming effects on hydropower suppl and demand simultaneously
(Future energy pricing is forecasted using ANNs — NN1: Monthly-based model; ANN2:
Annually-based model calibrated on Normal prices)
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Figure 50 - Average Shadow Price of Energy Generatn Capacity of 137 hydropower
units in California in the 1985-1998 period under dy (a) and wet (b) warming scenarios,
considering the warming effects on hydropower suppl and demand simultaneously
(Future energy pricing is forecasted using ANNs — NN1: Monthly-based model; ANN2:
Annually-based model calibrated on Normal prices)
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Figure 51 indicates how the marginal benefits ofrgn storage and generation
capacity expansion of power plants vary with thiéedent scenarios (each point is a
plant). It clarifies the relative importance of extenergy generation and storage
capacity for each unit for all climate scenariosder all climate warming scenarios,
expanding energy storage capacity is typically mbemeficial than expanding
generation capacity if the expansion costs arestimee. Expanding energy storage
capacity allows storing water in off-peak monthsl aeleasing it through turbines
when prices are higher. Depending on the ANN faeozodel, between 45 and 52
plants under drier scenarios, and only between rid B8 plants under wetter
scenarios, benefit more from energy generationagpexpansion (out of 137 plants
in total). Energy storage capacity shadow pricfli81-2.32] and [1.93-2.27] times
higher than the energy generation shadow pricalfgpower plants under Dry and
Wet scenarios considering warming effects on demand
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Figure 51 - Average shadow values of energy storaged generation capacity of 137
hydropower units in California in the 1985-1998 peiod under dry (a, b) and wet (c, d)
warming scenarios, considering the warming effecten hydropower supply and demand
simultaneously (Future energy pricing is forecastedising ANNs — ANN1: Monthly-based
model; ANN2: Annually-based model calibrated on Nomal prices)
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Figure 52 shows the changes of marginal benefitsnefgy storage and generation
(turbine) capacities relative to the Base case diittr and wetter warming scenarios.
Patterns for Dry-Seasonal scenarios are similaheoDry scenarios so they are not
shown in the figure. Under Dry ANN1 and Dry ANN2,arginal benefits of
expanding energy generation capacity for all uaits lower than under Base case.
There is less inflow, so the existing generatiopacity is more often sufficient to
avoid spills. For between 75 and 87 of plants (8%} the value of expanding
energy storage capacity under drier conditionsasenthan under Base case. For Wet
ANN1 and Wet ANN2 scenarios, most units (121 and delkpectively) benefit more
from energy storage capacity expansion than foreBease. Under the wetter
scenarios about 50% of plants benefit from expandioth generation and storage
capacities, but energy storage capacity expansionoire valuable, as the scatter in
Figure 52c-d expands to the right.
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Figure 52 - Average change of energy storage and rgation capacity shadow values
from the base case from dry (a, b) and wet (c, d)avming scenarios (for 137 hydropower
units in the 1985-1998 period), considering the waring effects on hydropower supply
and demand simultaneously (Future energy pricing igorecasted using ANNs — ANNL1:
Monthly-based model; ANN2: Annually-based model calbrated on Normal prices)
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7.3.3 Pure price increase scenarios coupled with climate warming
scenarios

Average annual revenues for each price increasesos (0%, +30% and +100% by
year 2100 coupled to warming scenarios are shown on Fi§8teThe inputs used to
EBHOM are monthly revenue curves which are the giatéion over the price
frequency distribution. Therefore, a linear pricerease by K% increases annual
revenues by K%. For instance, a price increase 084 under a Dry scenario
increases average annual revenue by 100% relativihe initial Dry scenario.
Revenues are increased by K% (K=30 or 100) undghr pece increase scenario, SO
are average shadow prices of energy generationnsipa and energy capacity
expansion. Energy storage expansion and energyajareexpansion become more
valuable when price increase scenarios are comsider

Average annual energy generation and energy spilsidentical whether or not a
price distribution was increase by K% for each aliemwarming scenario. The same
behavior is observed for average monthly generadearage end-of-month storage
and energy spill patterns. The system optimizeddeenue maximization responds
in a similar manner to the price distribution iresed by a constant percentage than to
the initial price distribution.
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Figure 53 - EBHOM'’s annual revenue results (averagef results over 1985-1998 period)
for different climate warming scenarios coupled tgorice increase scenarios by 0%, 30%
and 100%. Scenarios are based on historical pricesy forecasted future energy prices
from Monthly ANN models (ANN1) or an Annual ANN model (ANN2). The horizontal
axis crosses the vertical axis at the Base case ¥#)0average revenue value.
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8 Limitations and Future Direction

Climate warming might have impacts on Californidigh-elevation hydropower
system in the next century. This work is aimingsdimate the effects from a change
in both hydrological conditions and energy demamd gricing. What we are
interested in is the ‘big’ picture; so many simyilify assumptions were necessary and
should be considered in interpreting results. Fmtance, temperature data from
several meteorological stations were averaged fmal@ temperature dataset for
California, even if temperature varies consistefrttyn area to area. Results from this
work give however some insights on how the systeksvand how it might adapt to
climate change.

Energy demand was included in ANN modeling as altbider polynomial function
of temperature. This function was estimated by €waand Sanstad (2006) to
correlate the daily mean demand to the averagg thailperature. Estimating hourly
demands through this function implies that the houdlemand follows the same
pattern as the mean daily demand. This seems aaéasonable assumption knowing
that we are interested in the big picture overfGalia and that temperatures are also
flattened. However this remains a limitation to nm@pperly the hourly prices that
contain many peaks which might result from periotipeak demand. Historically,
peak loads have been increasing year after yearttaads not considered in the
present modeling. An interesting future developmeatid be to improve the
experiment tried out in this work, by considerimg tdevelopment of two ANNS in
series: the first one to estimate a non linearaesp of demand from temperature and
the second model, a honlinear response of priee dflemand.

Processing time for ANN calibration is a limitingctor. Using a more powerful

computer system or opting for a simpler ANN optiatian method such as the
Levenberg-Marquadt algorithm could allow enhancthg ANN architecture and

accelerate the calibration process. Several inadbp#rcalibration runs could then be
performed to ensure finding the optimal set of \Wwe&g(weights should converge to
identical values). However, even if the SCE-UA pptiation algorithm is complex, it

should have a high probability of finding the glbbptimum (Duan et al., 1992).

In the present research two ANN models are devdlop2 parallel monthly models
for all price ranges and one annual model for nbmawage prices (from which price
spikes have been removed). Each approach presdvasitages and drawbacks to
map hourly prices accurately. Monthly models deighall price ranges and there is
no arbitrary elimination of price intensities tltatuld be abnormal (or not). However,
maybe the ANN does not learn anything from thegé prices, which might bias the
learning phase. One main drawback of monthly modptsears when using ANNs as
forecast tools and results from the inability of K&lto extrapolate. The temperature
data samples are perturbed to account for climatenimg and then fed to the ANN.
Some of these temperatures will be far off the eanfj the monthly calibrations
datasets and the ANN will face new examples. Thightrlead to overestimation of
the prices. An annual ANN model may be more appatpto deal with increases in
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temperature because these temperatures might leered historically in other
periods of the years, i.e. in other months. Theush®ANN model trained on normal
prices should model those with rather high accumamgording to Lu et al. (2005),
who mention that it is necessary to remove prigkespfrom calibration to improve
accuracy. When using this Annual ANN model as adast tool, it is assumed that
the future proportion of price spikes will remaimetsame as for 2005-2008. The
future energy market was assumed to stay not idealinpetitive, with operators
giving priority to profit maximization, leading t@ossible manipulations of the
market. However, it is worth mentioning that in adeal’ or highly-supervised
energy market spikes should not occur except wieemadd exceeds supply. Further
research should deepen price spikes modeling.

The two ANN models developed here do not distingwimrkdays from week-ends
or public holidays. This was seen in some worksloort-term price forecasting (e.qg.
Gao et al., 2000; Amjady and Keynia, 2010b) andukhde considered in further
research. An idea could be to develop two paréliNs: one for workdays and one
for both week-ends and holidays since those hamiasiprice patterns.

Real-time energy prices for the period 2005-2008ewemployed to calibrate the
ANN models and to model the Base case of EBHOM.lidapon of longer-period
price data sets might improve the ANN mapping aa@cyias ANN models are reliant
on the quantity and quality of data. The pricefsain 2005-2008 does nhot exactly
match the energy prices from the runoff data pefdi®85-1998. This might cause
some inaccuracies in EBHOM'’s estimation of reveramd energy prices but should
not affect other results much (generation, spitid storage) as the energy price trends
are similar between years (Madani and Lund, ing)res

Calibration of EBHOM is likely to underestimate ege storage capacities (Madani
and Lund, 2009) and therefore also underestimaeatiaptability of the system to
climate changes. Availability of spill or energyisige capacity data would reduce
this source of error (Madani and Lund, in press).

Population growth rate is not considered here enftiture scenarios. However, it was
shown in the work from Aroonruengsawat and Auffhann{2009) that it had
significant impacts on projected demand. Even agopulation growth rate of 0.18%
per year predicts an increase of 65-70% in res@ealectricity demand by 2100,
which completely outpaces the increase resultingmfr climate change
(Aroonruengsawat and Auffhammer,2009). Additiorergarios including population
increase scenarios could be developed in futuesarel work.

Finally, price elasticity of demand is neglected fthis work for problem
simplification. If energy prices start rising sudostially, it is very probable that
consumers will save money by saving energy. Thesempment demand decrease will
affect energy prices and so on. A recurrent ANNIad¢dae more suitable for model
such phenomenon if compared to a feed-forward AR, is more complex to
implement and time-consuming to train. An econoinetiodel could also be built to
estimate this price elasticity of demand.
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9 Conclusion

The main objectives of this research work were ftiilowings: develop a tool to
model the effects of climate warming on future ggedemand and pricing and
estimate the consequent impacts of climate chamg€alifornia’s high-elevation

hydropower system. An ANN model was chosen to n@pnon-linear relationship
between temperature, energy demand and prices. mbiel was then used to
forecast energy prices for different climate wamgnscenarios. Two ANN models
were developed, a Monthly-based model calibratedathnprice ranges and an
Annually- based ANN model calibrated on normal @sidprice spikes removed).
Price spikes in California 1ISO energy market wetentified as prices exceeding
128%/MWh, based on real-time energy prices fopreod 2005-2008. For the model
calibrated on normal prices, the same proportiorpride spikes (with the same
intensities) was assumed to occur in future. Iis thork, the energy market was
assumed to remain not ideally competitive with fityagiven to profit maximization.

The ANN price forecast model estimates higher gneggenues in warm months for
high-forcing climate scenarios than for low-forciegenarios, and vice-verse in cold
months. This corresponds to the higher demand dofing in summer and lower
demand for heating in winter. The magnitude of geasnin revenue is on average
higher for the Monthly-based ANN models than fag #innually-based ANN model,
but monthly models might overestimate prices.

EBHOM'’s results for Dry and Wet climate warming sagos run under historical
prices are the followings. Energy generation insesafrom January to April under
Wet scenario; snowmelt water is plentiful and th&team has limited capacity to store
the shift in peak runoff. Average monthly genenatimcreases also under Dry
scenario from January to March relative to Base,clast decreases in the rest of the
months since less inflow is available. For Dry weugnscenarios, the reservoirs
refilling month shift to earlier in the year to ¢ape the shifted snowmelt. The peak
end-of month storage is in May for both scenaribgm@as it was in June under Base
case. Under Wet scenario, energy spills increasadarly 1,000 GWh between
January and April compared to Base case. Enerdis sgicur when the system
cannot store all the incoming runoff or send ibtigh the turbines. Even if average
generation increases by nearly 6% under Wet saengdtive to Base case, average
revenues only increase by 2% because spills ineresisder Dry scenario, average
generation decreases by 20% but revenues only aseciey 14% relative to Base
case, showing that the system is able to adapt ter&in extent to changing
hydrology. The system increases annual revenueishiér energy storage or energy
generation capacity is expanded under Wet and Bepagios relative to Base case.
Energy storage capacity expansion is more benkfib@an generation capacity
expansion, although such expansion might not kdiggsdue to expansion costs. As
expected, benefits of capacity expansion are grdate Wet scenario when the
additional capacity can be more frequently used.
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EBHOM'’s results when climate change effects on falgivation hydropower supply
and demand in California are simultaneously comsmie@are compared hereafter to
those results when changes in demand were ignBreztgy generation increases in
warm months when demand is high and energy is kluand decrease in winter
when less heating is needed and prices are off-pHaik is true for both climate
warming scenarios and both ANN models. Between k&rand June, the end-of-
month storage increases under all scenarios relaiwhen changes in demand were
ignored. Less energy is generated in the warmetevgirand it is then available to be
stored until the high-demanding season. Energysspie not much different from
EBHOM'’s results based on historical pricing. Untiéet scenarios, energy revenues
decrease because average energy price receivegadecand average energy
revenues is lower than in Base case. Under Dryagsiterrevenues are always lower
than Base case and the Monthly-based ANN modelesiggnore revenues than the
Annually-based ANN model. The system under Dry ades benefits more from
energy storage capacity expansion than when Réslgrices were considered. Under
wetter conditions is hard to conclude since it aeiseon the ANN model. Alongside,
the marginal benefits from energy generation expansnder both Dry and Wet
scenarios considering the effects of warming on ateimare estimated to decrease
relative to when they were neglected.

Finally, expanding energy storage capacity of @alifa’s high-elevation hydropower
system seems to be the most beneficial option tptatb climate change and
maximize the increase in revenue, although suchresipn might not be justified due
to expansion costs. The benefits gained range 28nmto 81%/Year/MWh when
changes in demand are considered, depending atirtiete scenario. A case by case
study of the benefits gained by each power plaoukhbe performed to decide
whether storage or generation capacities shoukpanded at each unit.
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Acronyms

ANN: Artificial Neural Network

ANNZ1: 12 monthly-based ANN model trained on allcgrranges, 2005-2008
ANNZ2: 1 ANN model trained on Normal prices, exchigliprice spikes, 2005-2008
CAISO: see CallSO

CallSO: California Independent System Operator

CCCC: California Climate Change Center

CCE: Competitive Complex Evolution

CPI: Consumer Price Index

EBHOM: Energy-Based Hydropower Optimization Model
ECP: Electricity Consumption Per capita

GCM: Global Climate Model

GFDL: Geophysical Fluids Dynamics Laboratory

IPCC: Intergovernmental Panel on Climate Change

Logsig: Logistic sigmoid

MLP: Multi-Layer Perceptron

MSE: Mean-Squared Error

NCAR: National Center for Atmospheric Research

NN: Neural Network

NOAA: National Oceanic and Atmospheric Administoati
NOCAL: Northern California Region referring to Sagrento area
NSM: No-Spill Method

OASIS: Open Access Same-time Information System

PCM: Parallel Climate Model

PG&E: Pacific Gas & Electric

RMSE: Root Mean-Squared Error

SCE: Southern California Edison

SCE-UA: Shuffle Complex Evolution — University ofi&ona
SDG&E: San Diego Gas & Electric

SOCAL: Southern California region referring to t#rea around Riverside
SRES: Special Report on Emissions Scenarios

Tanh: see Tansig

Tansig: Hyperbolic tangent

Glossary

Nominal price: “The price paid for a product or\gee at the time of the transaction.
Nominal prices are those that have not been adjusteemove the effect of
changes in the purchasing power of the dollar; tieflgct buying power in the
year in which the transaction occurred.”

(Source: EIA http://www.eia.doe.gov/glossary/index.cfm?id=N

Normal prices: Prices that are not price spikes, positive price values below the
threshold defining price spikes.

Predictor: neuron in the input layer of an artdlaneural network

Predictand: neuron in the output layer of an aitifineural network
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