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Abstract 

Wildfires play an important role in the earth system. Understanding the relationship between 

wildfires and their drivers is critical for us to predict fire regime transformations under the 

changing climate and anthropogenic influences. This study used the novel Moderate 

Resolution Imaging Spectroradiometer (MODIS) burned area product MCD45A1 to 

characterize wildfires. The high resolution data were regridded at 0.25° × 0.25° cellsize to 

calculate the wildfire burned area ratio (BAR) and burn date, which show a new pattern of 

global wildfires from April 2000 to March 2009. 

Climate, land cover, topography, and various anthropogenic and natural datasets were 

explored and gridded into 0.25° resolution. This study then used Pearson correlation and 

generalized linear correlation analyses to estimate the relationship between the mean annual 

BAR and possible fire drivers, including the mean annual surface air temperature, mean 

annual rainfall, grass cover, forest cover, population density, cultivation percentage, urban 

cover, nutrient availability, topographical roughness, inter-annual and intra-annual variability 

of rainfall, rainfalls in fire season and non-fire season. The analyses were done at both global 

and regional scales. Optimal generalized linear models (GLMs) were obtained by automatic 

stepwise regression for the globe and each region. The random forest regression was also 

carried out to compare the results from GLM analyses. 

Among all the explanatory variables, the mean annual temperature has the closest relationship 

with the mean annual BAR, and the next most important driver is the grass cover. Each region 

has slightly different sequences of wildfire drivers. The regional GLMs have better prediction 

performance than the global GLM and the random forest. The global random forest regression 

is superior to the global GLM. 
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Sammanfattning 

Bränder utgör en viktig roll i jordens system. Det är kritiskt för oss att förstå bränder och dess 

drivkrafter, för att på så sätt kunna förutspå brändernas förändring på grund av 

klimatförändring. Den här studien använder sig av Moderate Resolution Imaging 

Spectroradiometer (MODIS) brandens area produkt MCD45A1 för att karakterisera bränder. 

Högupplöst data är omformaterad till 0.25° × 0.25° cellstorlek för att kunna beräkna burned 

area ratio (BAR) och datum för branden, vilket visar ett nytt mönster för perioden April 2000 

till Mars 2009. 

Klimat, marktäcke, topografi och diverse antroprogena och naturliga dataset utforskas och 

formateras till 0.25 graders upplösning. Den här studien använder sedan Pearson korrelationen 

och generaliserad linjär korrelation analys för att uppskatta förhållandet mellan års 

genomsnittlig BAR och potentiella brand drivkrafter vilka är, års genomsnittlig mark 

temperatur, års genomsnittligt nederbörd, grästäcke, skogtäcke, befolknings densitet, odlings 

procent, tätorts täckning, näringsämnen, topografi, mellan årliga och inom årliga variationer i 

nederbörd, nederbörd under brandsäsong och icke-brandsäsong. Analyserna är utförda i både 

regional och global skala. Optimalt generaliserad linjär modell (GLM) är erhållen genom en 

automatisk stegvis regression både för global och regional data. Den slumpmässiga skogs 

regressionen är också genomförd för att kunna jämföra med resultatet från GLM analyser. 

Bland alla dom förklarande variablerna är det års genomsnittlig temperatur som har det 

närmaste förhållandet till års genomsnittlig BAR och efter den följer grästäcket. Varje region 

har något olika sekvenser av drivkrafter till bränder. De regionala GLMerna ger en bättre 

förutsägelse än global GLM och slumpmässig skog. Den slumpmässiga globala skogs 

regressionen är överlägsen den globala GLMen. 

 

Nyckelord: MODIS bränd area produkt; BAR; Pearson korrelation; GLM; Slumpmässig skog  
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1 Introduction 

1.1 Impacts of wildfires in earth system 

Wildfires play an important role in terrestrial ecosystems, global biogeochemical cycles and 

climate. They are biological filter, regulator (Bowman et al., 2009) and global vegetation 

consumer (Bond and Keeley, 2005). Wildfires influence ecosystems directly by disturbing 

competition relations between and within species and by accelerating the carbon cycle, 

nutrient cycle, hydrological cycle and energy cycle (Thonicke et al., 2001). They also affect 

ecosystems indirectly by changing climate. Wildfires are a potent biological filter and they 

favour plants with distinct reproductive and survival strategies in different fire regimes 

(Bowman et al., 2009). Bond et al. (2005) argue that fire is another important determinant 

besides climate in shaping the global biome distributions. Especially, wildfires have reduced 

the potential coverage of forest and facilitated the expansion of fire-dependent grassland and 

shrubland. Their simulations show that forest would at least double in extent in the absence of 

fire (Bond et al., 2005).  

Wildfires accelerate the natural carbon cycle of primary production and respiration. Regions 

that have long served as carbon sinks may suddenly become sources of carbon emission due 

to fires (van der Werf et al., 2004). CO2 emissions from all sources of fires (circa 2 to 4 GtC 

per year) are about 50% of those from the fossil fuel combustion (~7.2 GtC per year), among 

which deforestation burning, a net carbon source, is estimated at a rate of 0.65 GtC per year 

(Bowman et al., 2009). Two thirds of the atmospheric CO2 concentration variations from 

1997 to 2001 were attributed to biomass burning (van der Werf et al., 2004). More carbon 

would have been stored in woody vegetation, if there were no fire on the earth (Bond et al., 

2005). Biomass burning also emits other trace gases: CO, CH4, non-methane hydrocarbon, 

CH3Cl, NO, N2O, NH3, SOx and etc. (Andreae and Merlet, 2001; Arora and Boer, 2005). Fire 

emissions can be estimated with the following formula (Hoelzemann et al., 2004) based on the 

total burned biomass equation proposed by Seiler and Crutzen (1980), 

FireEmission=BurntArea×FuelLoad×CombustionEfficiency×EmissionFators. (1) 

In fact, the original carbon emitted during biomass burning is the atmospheric CO2 fixed in 

plants through photosynthesis. Biomass burning does not contribute to the atmospheric carbon 

variation in the view of an appropriate temporal scale (Lehsten et al., 2009). Moreover, 

biomass carbon will be inevitably released into the atmosphere sooner or later, via microbial 

decomposition or via burning. However, biomass burning does cause atmospheric carbon 

variations if we change the viewpoint of time scale. Fire accelerates the atmospheric carbon 

variation. 

Fire influences the climate through the release of carbon (Bowman et al., 2009) and the 

modification of land surface properties (land cover and land surface albedo). The 

deforestation-related fire is an important factor inflating the global burden of greenhouse 

gases. Such burning has a positive feedback on the earth system by intensifying extreme 

weather conducive to fire and bringing about further carbon emissions. Black carbon aerosols 

released from fires may be the factor with the second strongest effect on global warming after 

CO2 (Ramanathan and Carmichael, 2008). Black carbon warms the troposphere, and thereby 
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reduces vertical convection and impedes rain-cloud formation and precipitation. Aerosols also 

act as cloud condensation nuclei; they reduce cloud droplet size and therefore lower 

precipitation efficiency (Arora and Boer, 2005). Surface albedo may decrease after burning 

due to the dark ash and remnants. After the dark ash fading away, the albedo may increase 

due to high reflectance of bare ground, or snow cover in boreal forest. 

 

1.2 Wildfire drivers 

At the local scale, the occurrence of fire needs three basic components, oxygen, fuel and 

ignition temperature, which is known as the fire 

triangle (Figure 1). At landscape scale, the fire 

behaviour is determined by three principle 

environmental factors: fuel, weather, and topography 

(Pyne et al., 1996). At regional or global scale, fire is 

influenced by climate, vegetation, and landuse 

(Bowman et al., 2009). 

 
Figure 1. Fire drivers at different spatial scales. At local scale the 

fire occurrence is determined by the availability of fuel, oxygen 

and ignition temperature; at landscape scale fire activity is 

determined by fuel amount and structure, fire weather and 

topography (Pyne et al., 1996); at regional and global scale, fire is 

influenced by climate change, human landuse, and vegetation distribution (Bowman et al., 2009).  

Climate is a primary driver of large regional fires. Antecedent wet seasons produce substantial 

herbaceous fuel. Drought and warming decrease moisture of live and dead fuel and provide 

fire-conducive weather (Westerling et al., 2006). Sedimentary charcoal records show that fire 

activities increased during warmer intervals and decreased during cold intervals (Power et al., 

2008).  

High fire activity is closely coupled with the inter-annual and decadal climate oscillation. Fire 

occurrence increases during the La Niña phase of the El Niño/Southern Oscillation (ENSO) in 

the southern United States, whereas a distinct increase in fire activity occurs in tropical 

rainforests during El Niño phases (Kitzberger et al., 2007). While Gedalof et al. (2005) reveal 

that the annual area burned by wildfires in 20 National Forests of the Northwestern United 

States during the years from 1948 to 1995 had no significant association with the ENSO. The 

influence of ENSO is uneven in the global scope. 

Elevations of atmospheric CO2 concentration indirectly influence fire regimes by altering fire 

weathers. By modelling, Williams et al. (2001) suggest that the doubled atmospheric CO2 

concentration will increase fire danger index in Australia. 

Agricultural burning for shifting cultivation is practiced in many countries, which accounts 

for certain burned areas in these regions. Lightning is a natural ignition source in addition to 

anthropogenic ignition. Most wildfires in boreal forest are ignited by cloud-to-ground 

lightning strikes (Fauria and Johnson, 2008). 

Fire regime transition can occur due to human landscape management, fire suppression, 
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grazing, invasive plant, and climate (Bowman et al., 2009). Historical fire suppression can 

accumulate more fuels and may result in more severe wildfire events (Gedalof et al., 2005). In 

the beginning of island colonization, slash-and-burn was the main measure to explore new 

area. Human activities were the main driver of fire beyond background climate conditions in 

history (Bowman et al., 2009). 

There have been many efforts to identify the statistical relations between the burned area and 

environmental factors, vegetation compositions, socio-economic influences, as well as other 

possible drivers, such as soil property and topography. Archibald et al. (2008) examine the 

drivers of burnt area in Southern Africa. They enumerate 12 factors that may influence burned 

area by altering fuel load, fuel moisture, fuel continuity, and ignition frequency. By random 

forest regression, their study indicates that the tree cover percentage, rainfall, dry season 

length, and grazing density are the most important determinants of BAR in Southern Africa. 

Using GLM logistic regression, Spessa et al. (2005) find the mean annual BAR can be well 

explained by the mean annual rainfall in Australian wet-dry tropics (r2=0.77). Krawchuk et al. 

(2009) examine the world fire occurrence in relation to 17 climate variables, including 11 

temperature indices and 6 precipitation indices. They also include the influences of net 

primary productivity (NPP), population density and lightning frequency. They present 

regression results using generalized additive model (GAM) and claim that NPP, mean 

temperature of warmest month, annual precipitation, and mean temperature of wettest month 

are the most important explanatory variables. 

 

1.3 Fire representations in dynamic global vegetation models 

Dynamic global vegetation models (DGVMs) should include fire effects in order to simulate 

vegetation dynamics correctly, especially when modelling the regions prone to fires, e.g., in 

Mediterranean, temperate and boreal ecosystems (Sykes et al., 2001) and tropical savannahs. 

The simulation results without fire presence will deviate greatly from the current actual biome 

distributions (Bond et al., 2005).  

There have been many attempts to simulate fire effects in DGVMs (Lenihan et al., 1998; 

Thonicke et al. 2001; Venevsky et al. 2002; Arora and Boer, 2005; Lehsten et al., 2009). 

However, a comprehensive and mechanistic simulation of wild fire and ecosystem dynamics 

is difficult due to inadequate knowledge, extensive parameterisation, computer limitations, 

and inconsistent data (Keane and Finney, 2002). Detail fire spread and behaviour models at 

fine resolution (e.g., 1 km or less) are not suitable for dynamic global vegetation model either 

(Lenihan et al., 1998; Thonicke et al., 2001). Empirical or partly process-based fire models 

are a convenient alternative. Most of these fire models are based on the statistical relations of 

fire occurrence to vegetation states (Steffen et al., 1996), human activities or lightning count, 

and based on empirical formulae of the burned area to fire drivers, such as wind (Arora and 

Boer, 2005), fire season length and fuel load (Thonicke et al., 2001). 

As shown in Equation 1, burned area is a crucial variable for estimating fire emissions 

accurately. The above fire models strived to simulate burnt area correctly at yearly (Thonicke 

et al. 2001) or daily (Arora and Boer, 2005) time intervals. 
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1.4 Fire detections by satellite remote sensing 

With the advent of space-borne wildfire monitoring instruments, satellite remote sensing has 

become the only practical means of detecting, monitoring and characterizing wildfire over 

large areas (Roy et al., 2002). The practice has been highly improved since the operation of 

MODIS on-board the National Aviation and Space Agency (NASA) Terra and Aqua satellites. 

Terra was launched in 1999 and Aqua in 2002. They are in near-polar, sun-synchronous orbits 

at about 705 km altitude, monitoring the earth at the local time of morning for Terra and 

afternoon for Aqua. MODIS is one of the five sensors on these two spacecrafts. It is a highly 

improved successor to the earlier satellite sensors, such as the Advanced Very High 

Resolution Radiometer (AVHRR) and Coastal Zone Color Scanner (CZCS) (Lillesand et al., 

2008). MODIS can provide time-series of global fire data, including active fire and burned 

area products.  

The timing and spatial extent of burning cannot be reliably estimated from the active fire 

product, since it is based on hotspot detection and there may be no satellite overpass at fire 

occurrence or there may be clouds blocking satellites’ view of fire. The burn scar left by 

wildfires will persist on the earth surface over a considerably longer period depending on 

weather conditions and vegetation recovery. Satellites can identify burn scars with higher 

reliability by detecting the spectral alterations before and after biomass burning. Thus the 

satellite remotely-sensed burned area product attracts great attentions among researchers (Roy 

et al., 2002, Lehsten et al., 2009). Of all the currently available multi-annual burned area 

products, the MODIS product provides the highest burned area mapping accuracy (Roy and 

Boschetti, 2009). 

 

1.5 About this study 

The advances of burned area detection have enabled us to shape a new view of the global 

wildfire distributions and fire seasons. This study will present such pictures of global wildfire 

by analyzing the MODIS burned area product within 9 years (from April 2000 to March 

2009). Wildfire has been an essential agent influencing the earth system, e.g., maintaining the 

equilibrium of terrestrial biomes, such as savannahs, and altering the equilibrium of other 

biomes, such as forests. Such wildfire effects of both maintenance and alteration will be 

affected under the changing climate, and under the human efforts of wildfire suppression. 

What factors are more influential, the natural or the anthropogenic? As to the natural factors, 

which one is more dominant, temperature or rainfall? This study aims to relate wildfires with 

their possible drivers at the global range and answer these questions. In the end, this study 

will model the mean annual BAR from these drivers through statistical analyses, including 

GLM and random forest regression. Such models can give enlightening hints about the 

alteration of wildfire regimes in the future under the changing climate and human influences. 

This study involves two steps. The first is the data collection and assimilation, including 

collecting novel global wildfire data and other potential driving factors, such as climate, 

vegetation, soil, population, and etc. These data are then regridded, and appropriate indices 

are extracted at the global range, longitudes from -180º through 180º and latitudes from 90º 
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through -90º, with a resolution of 0.25º×0.25º cellsize. The second step is statistical analyses, 

involving three methods to find out which variables are closely correlated to the BAR. These 

methods include Pearson correlation, generalized linear correlation under logistic regression, 

and random forest regression. The GLM is used to simulate the BAR by the most suitable 

models, which are obtained by a stepwise method under the measure of Akaike’s Information 

Criterion (AIC). 

This study focuses on the statistical relations among the nine years’ mean data. Individual 

year data from April 2004 to March 2005 are also analyzed as a comparison based on another 

set of explanatory variables derived mostly from the same datasets (wind speed, relative 

humidity, and soil moisture are derived from other 3 datasets). This study uses GLM as the 

primary modeling method. A non-parameterized method, random forest regression, is also 

used for comparison. 

The structure of this report is as follows. Section 1 gives a brief introduction of the interaction 

of wildfires with vegetation and climate, the current researches on fire models in DGVMs, 

and satellite wildfire detection. Section 2 describes all the data used in this study. Section 3 

briefly explains the data analysing methods, including correlation analyses, GLM, and 

random forest regression. Section 4 presents the analysing results of wildfire maps, drivers 

and models. Then discussions and conclusions are given in Section 5 and Section 6 

respectively. The main scripts of Matlab® and R, supplementary tables, and the contents of the 

attached CD-ROM are listed in the Appendix. 
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2 Data 

2.1 Burned area product 

This study used the Collection 5 MODIS Level 3 Monthly Tiled 500m Burned Area Product 

(MCD45A1). The dataset has a temporal coverage from April 1st 2000 to the nominal current1 

(Roy et al., 2008). The NASA MODIS sensors on board Aqua and Terra satellites provide 

effective global fire monitoring and burn scar detection (Justice et al., 2006). 

The MCD45A1 data are produced by model-based changing detection, using bi-directional 

reflectance distribution function (BRDF). Seven land surface reflectance bands of MODIS 

sensors are used to detect the burn date of each 500m×500m pixel within a time window of 

three months, i.e. one month before and one month after burning. The burn dates are given at 

an accuracy of ±8 days with 4 quality levels, indicating detection confidence from the most 

confident of level 1 to the least confident of level 4 (Roy et al., 2008). The data are presented 

in the standard MODIS Land tile format in sinusoidal equal area projection. MCD45A1 uses 

266 tiles for the global terrestrial regions from 53.22°S through 75.55°N and each tile has a 

fixed earth-location (coordinates of four corners of each tiles are given in Appendix A), 

covering an area of approximately 1200 × 1200 km (10°× 10° at the equator). Figure 2 shows 

the MODIS tiling scheme in sinusoidal projection2. 

 
Figure 2. MODIS tiling scheme in sinusoidal projection with the equator and prime meridian as standard 

parallel and central meridian respectively (Justice et al., 2006). Each tile has a fixed location with a nominal size 

of 10°× 10°. For MCD45A1 burned area data, only 266 tiles of terrestrial regions are used. 

MCD45A1 pixels with high view zenith (>65°), high solar zenith (>65°), bad quality, high 

aerosol, snow, cloudy, and non-land were discarded in this study. They were disregarded from 

BAR calculations and statistical analyses. 

The data collection and information extraction in this study involved two tasks: 1) massive 

data downloading, and 2) data regridding. MCD45A1 burned area products are stored as one 

                                                        
1 MCD45A1 dataset is available at ftp://e4ftl01u.ecs.nasa.gov/MODIS_Composites/MOTA/MCD45A1.005/ (2009-11-23) 
2 For further description of MODIS burned area production, see MODIS Fire Products Algorithm Theoretical Background 
Document at http://modis.gsfc.nasa.gov/data/atbd/atbd_mod14.pdf (2009-11-23). 
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file per tile per month in hierarchical data format (*.hdf), and the total 9 years’ data consist of 

24,408 files, occupying ~50Gbyte storage space. The fire data, as well as other possible 

driver data, were downloaded to Simba networked cluster (hosted at simba.nateko.lu.se) by 

running a short paragraph of Matlab scripts on Simba. Appendix B1 shows an example of 

downloading the year 2009 data. A Portable Batch System (PBS) batch command file was 

also produced to run the scripts on Simba non-interactively. 

The second step, data regridding, was a bit strenuous, which consumed half of the 

programming efforts in this study. Actually, the use of sinusoidal projection can improve 

storage efficiency of raster image data, and minimize data information loss and data 

redundancy (Seong et al., 2002). However, the tiling scheme used in MCD45A1 is 

overlapped, especially for the tiles away from the central axes (longitude =0 and latitude=0) 

of the projection. Figure 3 gives an example of tiles overlapping among Tile H26V06, 

H27V06, H26V07, and H27V07. Within a gridcell of 1°×1°, the overlapping rate can be as 

high as 35.57%. 

 

Figure 3. The overlapping of MODIS tiles shown under the UTM projection. The mini picture is the world map 

of MODIS tile scheme in the UTM projection, with the red square showing the position of this enlarged area. A 

10°×10° MODIS tile consists of 2400 rows ×2400 columns of original pixels, therefore a 1°×1° resampling 

gridcell should nominally have57600 (240×240) original pixels. Due to overlapping among H26V06, H27V06, 

H26V07, and H27V07, a 1°×1° gridcell can consist of up to 78086 original pixels. The overlapping rate is 

35.57% in this case. 
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2.2 Procedure of burn area data regridding 

This study regridded the burning data at the resolution of 0.25°×0.25°, and each new gridcell 

nominally covered 60×60 original pixels. The annual BAR of each 0.25° gridcell was 

calculated by the total number of burned pixels divided by the total number of burned and 

unburned pixels, discarding the undetected ones. 

BAR =No. of burned pixels / (No. of burned pixels + No. of unburned pixels). (2) 

If the number of total available pixels of the burned and the unburned in Equation 2 was less 

than 90 in a new gridcell, the derived BAR was deemed unreliable. Then the gridcell was 

labelled as not available (NaN) and disregarded in the final statistical analysis. 

The burn date of the new gridcell adopted the majority date of all the original burned pixels 

within the gridcell. If the majority date was not unique, the smallest date was used. This is the 

default rule of the Matlab mode function.  

The procedure of burned area regridding is as follows. 

1) Generate a spatial coordinate matrix, which covers MCD45A1 global spatial dimension. 

This study covered the following area: longitude (-179.875, 179.875), and latitude 

(-53.875, 76.125).  

2) For each small window of new gridcell, calculate what pixels of a specific tile fall in it by 

the function of pixINwin developed in Matlab (see Appendix B2). This small window 

used a nominal resolution of 0.004166666667° (i.e. 10/2400), and the row and column 

were calculated by bilinear interpolation, whose parameters were calculated and stored in 

Coef.mat file beforehand. 

3) For the small window of new gridcell in Step 2, calculate which tiles were involved 

(function tilecal in Appendix B2). There could be at most 4 tiles involved, as shown in 

Figure 3 the overlapping case. In order to reduce intensive loop computations, this study 

first found out if any corner of the small gridcell window fell within a tile (by function 

areap). Function areap adopted an algorithm of judging if a point fell into a polygon, by 

calculating areas of a series of triangles formed by the point to each polygon side. If there 

was any overlapping among tiles within the small window, those pixels from the first 

analyzed tile were kept and the other duplicates were discarded. Since a nominal 

resolution of 0.004166666667° was used for the small window, some regions might be 

oversampled if the original data were longitudinally sparse. E.g., the dimension of tile 

H28V03 is ~ 25°× 17° (longitude×latitude), and the longitudinal width is 25°, much 

greater than 10°. Nevertheless, this study used the ratio of burned area, instead of the 

absolute pixel counts, and there was no obvious bias in the data regridding. 

4) The global image of regridded burned area could be generated from MCD45A1 monthly 

data after Step 3. Unfortunately, this could not be done due to the limitation of computer 

memory (4 Gbyte RAM used in this study). The whole world had to be divided into small 

patches (patch size 20°×20°). Calculate new gridcell information for each patch by the 

function patchcal. 

5) Finally, use the main function to read original tile data from Simba cluster 

(Modis_readx.m, x means which year is read, e.g., 4 stands for the year 2004). Burn 

information can be extracted according to different detection quality levels. This study 
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used two kind quality levels: the best one (level=1) and the all quality levels (level=1 to 

4). When only level 1 data were used, the rest pixels of level 2 to 4 were regarded as 

unburned. Therefore the total number of detected pixels was not changed when 

calculating the BAR. 

A fire year defined from April to the next March were used because 1) MODIS burned area 

data started from 1st April 2004. 2) The analysis showed that this time span could capture an 

unsplit fire season in most regions of the world (see Results). 3) Annual fire data starting 

from any month can be reproduced from these previously-regridded annual data through 

proper combination. 

There could be a situation that a same pixel was burned twice within a single year. This 

would not lead to noticeable bias in several years’ mean BAR analysis since this situation was 

rare, but might produce small errors when analyzing a single year’s BAR. For example, a 

pixel was burned twice within a same year, say January and December of 2004 respectively. 

Only January burn was used for that pixel in regridding. December was disregarded. There 

could be no fire in that pixel in January 2005 since it was burned in December 2004 already. 

Thus the pixel was labeled as unburned for the single year 2005, which would lead to an error 

in statistical analysis. Therefore, it is important to define a proper fire year. For the above 

example, it is better not to define January 2004 and December 2004 in the same fire year. The 

fire year definition in this study, starting from April (or from March as suggested by Boschetti 

et al. 2008), can minimize such errors in most regions of the world. 

 

2.3 Precipitation 

Intuitively, precipitation should be a primary determinant of global wildfires, through 

affecting flammability by changing fuel moisture, and through influencing fuel load by 

altering primary productivity. 

The Tropical Rainfall Measuring Mission (TRMM) 3B43_V6 monthly 0.25°×0.25° merged 

rainfall data (Huffman et al., 2007) were used in this study3. The TRMM data span the period 

from January 1988 to the current with 0.25° resolution (monthly rain rate in mm/hour). The 

resolution is perfect and no regridding is needed. The data are stored as plain binary format, 

using the "big-endian" IEEE 754-1985 representation of 4-byte floating-point unformatted 

binary numbers. For more information, see README for Accessing Experimental Real-Time 

TRMM Multi-Satellite Precipitation Analysis (TMPA-RT) Data Sets4. 

However the spatial coverage of TRMM is only available from ~50° S to ~50° N. Beyond 

this region, the U.S. National Centers for Environmental Prediction (NCEP) Climate 

Prediction Center (CPC) Unified Raingauge Dataset is available. Its spatial coverage is from 

90° S to 90° N with a coarse resolution of 2.5° × 2.5° (Xie et al., 1997). The monthly CPC 

Merged Analysis of Precipitation (CMAP) consists of monthly averaged precipitation rate 

values (mm/day) from January 1979 to June 2007. The dataset used in this study is stored in 

network Common Data Form (netCDF)5. CMAP data were then resampled at 0.25° × 0.25° 

                                                        
3 Available at ftp://disc2.nascom.nasa.gov/data/TRMM/Gridded/3B43_V6/ (2009-11-23). 
4 Available at ftp://trmmopen.gsfc.nasa.gov/pub/merged/3B4XRT_README.pdf (2009-11-23). 
5 Available at http://www.airtracker.us/psd/data/gridded/data.cmap.html (2009-11-23). 
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resolution by nearest interpolation method. 

Due to the known discrepancy between NCEP rainfall data and TRMM precipitation, CMAP 

data were adjusted by the linear factor between NCEP data and TRMM data to minimize the 

discontinuity at the latitude 50°S and 50°N. The Matlab scripts of precipitation data 

transforming are given in Appendix B3. 

 

2.4 Surface air temperature, wind speed, and air relative humidity 

Daily mean values of surface air temperature were obtained from the NCEP Daily Global 

Analyses dataset, whose temporal coverage is from December 1st 1979 to present6. This study 

used the daily temperature data of 9 years (from 2000 to 2009) to get arithmetical mean 

monthly surface air temperature. Resampling from 2.5° × 2.5° to 0.25° × 0.25° resolution was 

done by bilinear interpolation (Appendix B4). 

Monthly mean wind speed and air relative humidity data were collected from the NCEP-DOE 

Reanalysis II dataset, whose coverage is from January 1979 to December 20087. These data 

were extracted and resampled as 0.25°×0.25° resolution by bilinear interpolation (Appendix 

B4). 

2.5 Landcover: forest, grass, urban, and cultivation 

The International Institute for Applied Systems Analysis (IIASA), Austria, provides newly 

summarized landcover dataset8. The dataset consists of global forest cover, grass cover, urban, 

cultivation, water, and bare ground, whose percentages are given at 5’ resolution (i.e. 1°/12). 

The dataset are produced from 6 other datasets (Fischer et al., 2008): 

1) GLC2000 land cover database at 30 arc-sec9;  

2) IFPRI global land cover categorization with 17 land cover classes at 30 arc-seconds;  

3) FAO’s Global Forest Resources Assessment 2000 at 30 arc-seconds resolution;  

4) Digital Global Map of Irrigated Areas at 5’×5’ resolution;  

5) IUCN-WCMC protected areas inventory at 30 arc-seconds; 

6) FAO-SDRN population density inventory at 30 arc seconds. 

This study used the IIASA datasets of forest cover, grass cover, urban, and cultivation, which 

are provided in ASCII text format. Percentages of each landcover class were calculated at 

0.25°×0.25° resolution from area-weighted mean values of original 9 pixels (Appendix B5). 

The area of original pixel (center coordinates: [longitude, latitude] in decimal degree) was 

approximately calculated by the following equation: 

S=cos(lat*pi/180)*R*Res* pi/180*(R*Res* pi/180), (3) 

in which pi=3.14159265359, R=6371km, and Res=0.08333333°. 

 

                                                        
6 Provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, at http://www.esrl.noaa.gov/psd/ (2009-11-23). 
7 Provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, at http://www.cdc.noaa.gov/ (2009-11-23) 
8 Available at http://www.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/LandUseShares.html?sb=9 
(2009-11-23). 
9 See http://ies.jrc.ec.europa.eu/global-land-cover-2000 (2009-11-23). 
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2.6 Soil: nutrient and moisture 

In addition to the above landcover classes, the IIASA also provides global soil quality datasets 

at 5’×5’ resolution (Fischer et al., 2008). This study used soil nutrient availability dataset. Soil 

nutrient availability is classified into 6 ordered categories: 1) No or slight constraints; 2) 

Moderate constraint; 3) Severe constraints; 4) Very severe constraints; 5) Mainly non-soil; 6) 

Permafrost area. Water body and Ocean are labeled as 7 and 0 respectively. This dataset was 

resampled to 0.25°×0.25° resolution using the majority level of nutrient availabilities of the 

original 9 pixels (Appendix B6). 

Monthly mean soil moisture (unit: mm) data are available from January 1948 till present10, 

covering the whole earth at a resolution of 0.5°×0.5°. The dataset (version 2) is model- 

calculated, not directly measured (Fan and van den Dool, 2004). The data were extracted and 

resampled as 0.25°×0.25° resolution by bilinear interpolation in this study (Appendix B6). 

 

2.7 Population density 

This study used the 2000 population density dataset from the Gridded Population of the 

World, version 3 (GPWv3)11. The data with 0.25° resolution, indicating persons/km2, were 

chosen for this study. The spatial coverage is longitude (-180°, 180°) and latitude (-58°, 85°). 

 

2.8 Topographical roughness 

Topographical data consist of elevation, slope and aspects, which may have impacts on fire 

occurrence and spread at landscape scale (Rollins, et al., 2004; Yang et al., 2008). At the 

regional or global scale, it seems unsuitable to use elevation, slope and aspects to analyze the 

BAR. Rough topography may be a barrier hindering fire expanding, and also may reduce 

human accessibility and therefore reduce the possibility of anthropogenic ignition. This study 

used topographical roughness for the BAR analysis, as did by Archibald et al. (2008). 

The global digital elevation model (DEM) GTOPO30 dataset, with 30 arc-seconds (i.e. 

1°/120) resolution and with 90°N to 60°S spatial coverage, was used in this study. The dataset 

is available electronically at the USGS Earth Resources Observation and Science (EROS) 

Data Center12. The standard deviation of elevation within a window of 30×30 pixels was 

calculated, thus the geographical roughness at 0.25°×0.25° resolution was obtained 

(Appendix B7). 

                                                        
10 Provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, at http://www.cdc.noaa.gov/ (2009-11-23). 
11 Produced by the Center for International Earth Science Information Network (CIESIN), Columbia University; and Centro 
International de Agricultura Tropical (CIAT) in 2005. Available at http://sedac.ciesin.columbia.edu/gpw/ (2009-11-23). 
12 Available at http://eros.usgs.gov/products/elevation /gtopo30/gtopo30.html (2009-11-23). 
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3 Methods 

3.1 Regional division 

This study examined the spatial and temporal characteristics of global wildfires in different 

regions. It used the regional division scheme defined by Giglio et al. (2006), which is based 

on fire behavior and suitable for carbon emission study (van der Werf et al., 2006). Other 

researchers have also used this regional division scheme for wildfire related studies, such as 

estimating mercury emissions from fire (Friedli et al., 2009) and characterizing the start of 

fire seasons (Boschetti and Roy, 2008). However, when characterizing fire seasons, this study 

found that there would be two fire seasons (peaking at April and August) in region TENA 

under this division scheme, which is also shown in Boschetti and Roy (2008)’s studies on 

active fire counts. Therefore some states in the Southern United States, which have the same 

fire season as CEAM, were classified into CEAM (Figure 4 and Table 1), albeit this 

classification is not geographically suitable. This division scheme does not consider 

Greenland and Antarctic. 

 
Figure 4. Fourteen regions used in this study (after Giglio et al., 2006). The board between TENA and CEAM is 

slightly modified. The abbreviations are explained in Table 1. 

The annual burned areas (×104 km2) and ratios (%) of 14 regions were calculated based on 

this regional scheme. Fire seasonality and the trend of burned area ratio changes were 

analyzed for each region and the whole world. The area of each 0.25°×0.25° gridcell was 

calculated by ArcGIS® under the World Cylindrical Equal Area projection (False_Easting: 0.0; 

False_Northing: 0.0; Central_Meridian: 0.0; Standard_Parallel_1: 0.0; Linear Unit: Meter; 

Datum: D_WGS_1984). Such area computation is more accurate than the simple spherical 

calculation (Equation 3) in Matlab, since D_WGS_1984 uses a spheroid earth model 

(Semimajor Axis: 6378137.000; Semiminor Axis: 6356752.314; Inverse Flattening: 298.257), 

which approximates to the real earth better than a spherical model. 

Spatial autocorrelation was analyzed for each region using the spdep package (Bivand, 2009) 

in R (Appendix C1). Neighborhood of each gridcell was defined on distance bands from 0 to 

5000 km with 100 km intervals (R function: dnearneigh). The Euclidean distance was 

calculated from longitude/latitude coordinates by great cycle distance in kilometers. 

Row-standardized weights were calculated after neighbors were defined. With increasing 

distance, more and more gridcells may have no neighbors, and therefore zero neighbors were 
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allowed (zeor.policy=true in nb2listw function). Moran’s index of spatial autocorrelation 

(Moran’s I) was then calculated by moran.test of R function according to the following 

formula (Moran, 1950): 
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in which n: number of gridcells, wij is the weight between i and j gridcells, whose BARs are xi 

and xj respectively. The mean BAR is x . 

The calculation of Moran correlogram involves intensive computation and large computer 

memories. Only 5% to 10% samples were used in the calculations for each region due to such 

constraints. 

Table 1. Fourteen regions used in this study (after Giglio et al., 2006). Locations are shown in Figure 4. 

Abbrev. Short Name Comments 

BONA Boreal North America Alaska and Canada. 

TENA Temperate North America Conterminous United States, excluding some 

southern states of the USA 

CEAM Central America Mexico and Central America, including some 

southern states of the USA. 

NHSA Northern Hemisphere South America Division with SHSA is at the Equator. 

SHSA Southern Hemisphere South America Division with NHSA is at the Equator. 

EURO Europe Includes the Baltic States but excluding White 

Russia and the Ukraine. 

MIDE Middle East Africa north of the Tropic of Cancer, and the Middle 

East plus Afghanistan. 

NHAF Northern Hemisphere Africa Africa between the Tropic of Cancer and the 

Equator. 

SHAF Southern Hemisphere Africa  

BOAS Boreal Asia Russia, excluding area south of 55_ N between the 

Ukraine and Kazakhstan. 

CEAS Central Asia Mongolia, China, Japan, and former USSR except 

Russia. 

SEAS Southeast Asia Asia east of Afghanistan and south of China. 

EQAS Equatorial Asia Malaysia, Indonesia, and Papua New Guinea. 

AUST Australia Includes New Zealand. 

 

3.2 Variable generating 

After data regridding into the resolution of 0.25°×0.25° in the initial step, various indices 

were extracted as the input variables used in models. Many possible indices can be generated 

from the above regridded datasets. For example, temperature can be used in any form: annual 

mean temperature, temperature seasonality (standard deviation of temperature), maximum 

temperature of warmest month, minimum temperature of coldest month, mean temperature of 

wettest month, mean temperature of driest month, and so on (Krawchuk et al. 2009). 

Topographical indices can be elevation, slope, aspect, and roughness (standard deviation of 

elevation). 

A lot of interesting information can be extracted from regridded burn area data, such as fire 
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seasons, fire return intervals or fire turnover (inverse of the annual burned area ratio, the 

definition is the same as used by Thonicke et al., 2001), 9 years’ mean annual BAR, 

inter-annual variability of BAR (defined as coefficient of variation of the annual BAR, 

Equation 5). This study presented such four maps of fire characteristics. Combining fire 

seasonality, the BAR was used as the response variable in regression modelling analysis. 

coefficient of variation= standard deviation / mean. (5) 

Two kinds BAR dataset were analyzed in this study: nine years’ mean annual BAR and an 

individual annual BAR in 2004 (from April 2004 to March 2005). Correspondingly, different 

explanatory variables were used in the statistical analyses. 

Nine years’ mean annual BAR 

Thirteen independent variables were used to explain 9 years’ mean annual BAR (Table 2). 

These factors have influences on fuel load or structure (e.g., Grass, Forest, Nutrient, MeanT, 

MeanR, RainNoFire), fuel moisture (e.g., IntraR, InterR, RainFireSeason), ignition 

probabilities (e.g., Cultivation, Urban, Population), or fire spread behavior (e.g., 

Topography). 

Table 2. Explanatory variables used in 9 years mean annual BAR modelling 

Name Description and units 

Cultivation Percentage of agricultural landcover at 0.25°×0.25° gridcell 

Grass Percentage of herbaceous landcover at 0.25°×0.25° gridcell 

Forest Percentage of tree cover at 0.25°×0.25° gridcell 

Nutrient Soil nutrient availability level, from the best (level 1) to the worst (level 6) 

Urban Percentage of built-up at 0.25°×0.25° gridcell 

Population Global population density, persons/km2 

Topography Topographical roughness. The standard deviation of elevation at 0.25°×0.25° gridcell 

MeanT Annual mean temperature (from 2000 to 2008), °C 

MeanR Mean annual rainfall (from 1999 to 2007), mm/year 

IntraR Intra-annual rainfall variability, averaging the standard deviation of monthly mean 

rainfall, mm/month 

InterR Inter-annual rainfall variability. The standard deviation of annual rainfall, mm/year 

RainFireS. Rainfall within fire seasons. Mean monthly rainfall within that season, mm/month 

RainNoFire Rainfall within non-fire seasons. Mean monthly rainfall within that season, mm/month 

Individual annual case (2004) 

For the annual BAR in 2004, seventeen explanatory variables were generated (Table 3). 

Among them, seven variables are the same as those in 9 years’ mean analyses: Cultivation, 

Grass, Forest, Nutrient, Urban, Population, and Topography. They are relatively stable 

variables. Other 10 are climate related variables and may influence fuel load (Rain0, Rain1, 

Rain2, Rain3, Rain4), fuel moisture (Rhum, Soil, TempFire, RainFire), or fire spread 

behaviour (Wind). This study compared the relations of the mean rainfall of 5 different time 

spans: the growing season, 1-year, 2-year, 3-year, and 4-years to the mean BAR, to see if they 

had obvious differences in fitting the mean BAR under GLM logistic regression. It is reported 

that 2 years rainfall is suitable for wildfire modelling in savannah biome (Archibald et al., 

2009). 

This study explored the global characteristics of wild fire within 9 years, involving certain 

efforts in exploratory data analyses (EDA). These analyses were done either in Matlab or in R. 
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When analysis was carried out in R, Rattle (ver 4.9.20) was used in data exploring. Rattle is 

the R Analytical Tool To Learn Easily (A GNOME data miner built on R) developed by 

Togaware Pty Ltd13. The world map of BAR, burn date, and all the explanatory variables 

were produced by Matlab, giving an overview of the data used. The correlation of BAR to 

independent variables were analyzed both by Matlab and R. 

Table 3. Explanatory variables used in 2004 annual BAR modelling 

Name Description and units 

Cultivation Same as Table 1 

Grass Same as Table 1 

Forest Same as Table 1 

Nutrient Same as Table 1 

Urban Same as Table 1 

Population Same as Table 1 

Topography Same as Table 1 

Rhum Relative air humidity at pressure level of 1000hPa within fire season 

Wind Wind speed at pressure level of 1000hPa within fire season, m/s 

Soil Soil moisture within fire season mm 

TempFire Mean temperarure within fire season, °C 

RainFire Mean monthly rainfall within fire season, mm/ month 

Rain0 Total rainfall in the non-fire season immediately before the fire season, mm/season 

Rain1 1 year total rainfall before the peak of fire season, mm/year 

Rain2 2 year total rainfall before the peak of fire season, mm/2year 

Rain3 3 year total rainfall before the peak of fire season, mm/3year 

Rain4 4 year total rainfall before the peak of fire season, mm/4year 

 

3.3 Correlation analyses 

Correlation is the statistical dependence between two or more random variables. It reflects the 

degree to which two variables are related. Correlations can indicate predictive relations 

between two variables. This study used the term correlation under the linear category in 

general sense. The linearity included both ordinary linearity (Pearson correlation) and 

generalized linearity. 

Pearson correlation 

Pearson correlation (or Pearson product moment correlation) is the most common measure of 

linear association. It reflects the degree of linear relationship between two quantitative, 

continuous variables (or variables with interval scales). 

Pearson correlation coefficient is defined as the covariance between two variables, x and y, 

divided by the product of their standard deviations (σx and σy): 

yx

yx
Coef

σσ

),cov(
= . (6) 

Pearson correlation coefficient ranges from +1 to –1, in which +1 means perfect positive 

relationship, -1 perfect negative relationship, and 0 no linear relationship. 

                                                        
13 See http://rattle.togaware.com (2009-08-08) 
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The significance level (p-value) can be calculated to show the reliability of correlation. The 

estimation is based on the t-test of the hypothesis of no correlation. If p-value was not greater 

than 0.05, the correlation between the two variables was regarded as significant in this study. 

Although the hypothesis test requires normal distributions of variables, the requirement is not 

absolutely crucial if the sample size is large (say over 100) and the departure from normality 

is not large (Hill and Lewicki, 2006). 

Pearson correlation gives the first-order linear relation between the response y and the 

explanatory variable x. The square of the coefficient shows the fraction of variance in y that 

can be explained by x in an optimal ordinary linear model (OLM). However, Pearson 

correlation coefficient is sensitive to outliers or extreme values, as well as sample size. The 

conclusion based on the value of correlation coefficient should be given with extreme 

cautions or should combine other analysing methods (Hill and Lewicki, 2006), e.g., scatter 

plot. 

Generalized linear correlation 

Two variables could be statistically associated if they are carried out logarithm, exponent, or 

any other suitable mathematical transformation, even if they have no ordinary linear 

correlation (Weisberg, 2005). This study carried out the correlation analysis under the 

generalized linear sense. This was done by the GLM using logistic transformation of the 

response variable BAR with binomial distribution. 

The original pixels in MODIS dataset are labeled as “burned” or “unburned”. The fire 

occurrence of each pixel follows a binomial distribution if we discard undetected pixels. 

Therefore, the generalized linear model with binomial distribution is suitable for BAR 

regression analysis without considering undetected pixels. The most frequently used kennel 

function for binomial distribution is logistic function (Weisberg, 2005), which emphasizes 

odd observations of BAR by the following equation: 

logit(Y)=loge(Y/(1-Y)). (7) 

Both the large BAR (approximate to 1) and small BAR (approximate to 0) will be 

emphasized in this transformation. Take logit(Y) as the response variable, linear model was 

adopted in regression analysis. Akaike’s information criterion (AIC) 

AIC = –2 log(maximized likelihood) + 2p, where p is the number of effective parameters, (8) 

was used as a measure to evaluate the regression result. This study employed the change of 

AIC by adding one variable (δAIC, the AIC difference between non-variable model and one- 

parameter model), as a criterion to evaluate the importance of that variable. There could be 

such transformations of logarithm, exponent and etc. of that variable, which might be more 

suitable than a simple first-order term. But too many transformations will make the 

comparison of variable importance much more complicated. In this study only the first-order 

term of each variable was used in the comparison of variable importance. 

3.4 Optimal GLM selection 

GLM has been used in several previous studies for fire driver analysis and burned area 

prediction (Rollins, et al., 2004; Littell et al., 2009; Lehsten et al., 2009). This study used 
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GLM logistic regression as the primary methods to evaluate the generalized linear correlation 

of the mean BAR to explanatory variables, as described before. GLM was also used to 

simulate the BAR under logistic regression by an optimal model of the linear combination of 

explanatory variables. 

The optimal model was selected by stepwise trials based on the measure of AIC. Two-time 

interactions of independent variables and quadric terms were also added in the selection 

process. For the 13 explanatory variables in the 9 years’ mean BAR analysis, there were 13 

first-order variables, 13 quadric forms, and 156 two-times interactions. If using a full model 

of 182 terms in stepwise selection, the computation would be extremely intensive. Therefore, 

this study divided the selection process into two steps. First, select the best model from 26 

terms, 13 first-order variables plus 13 quadric forms, using both directions’ searching: 

forward selection and backward elimination. Second, add two-time interactions (156 terms) 

to the best model from the first step, and select an optimal model using both directions’ 

searching again. These intensive computations were implemented using MASS and stats 

packages of R on Simba cluster (see scripts in Appendix C2). Maximum 1000 steps were 

considered in order to stop the process early (see R help for package MASS for detail). The 

anova (analysis of variance) function was used to analyze the contribution to the response 

variable from each independent variable in the final model, which was expressed as the 

changes of residual deviance. 

Half of the samples of each region were used in stepwise search for optimal regional models, 

and the other half were used for model validation, to check if the model is over fitting. 

However, only half of the random samples were not enough to find suitable models for region 

TENA and CEAM. 60% of the samples were used in stead, and the rest 40% of the samples 

were used for validation 

For the individual annual case of 2004 dataset, 17 independent variables were used. Due to 

time limitations, this study only analyzed variable importance, which could give helpful hints 

for future modeling studies. 

R
2
 and goodness of fit 

There are many different definitions of R2, and using R2 as a regression measure is sometimes 

unreliable since it cannot express the correlation of two variables (observed and modelled) 

correctly (Weisberg, 2005). However R2 can provide a general impression of the goodness of 

fit. That’s why it is so popular in modelling literatures. Two different definitions of R2 were 

applied in this study. 

1) Ordinary R2 (coefficient of determination) (Weisberg, 2005) 

∑∑ −−−= 22

mod

2 )(/)(1 YYYYR observedelledobserved
 (9) 

in which Y  is the mean of observed response Yobserved. This formula gives the proportion of 

variance in Yobserved explained by the model. 

2) Pseudo- R2 (Elrod, 1998) 

No function in R package is readily available to compute R2 for GLM regression. S language 

has such function and was borrowed here.  
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Pseudo-R
2
=1-exp((model_deviance-null_deviance)/n)/exp(-null_deviance/n), (10) 

in which model_deviance and null_deviance are components of glm class in R, which are 

calculated based on the maximized likelihood between saturated model and fitted model (see 

R help for package stats for detail). The above pseudo- R2 equation of likelihood ratio test 

statistics is initially suggested by Maddalla (1983) as a better measure of logistic regression 

model. This study showed that the ordinary R2 is much more conservative than the pseudo- 

R2. 

Pseudo-R2 is better to measure goodness of fit of a logistic regression model. As to the 

prediction performance of the model, there is no similar measure. Therefore, this study 

adopted the ordinary R2 to compare goodness of fit and goodness of prediction, and to test if 

the GLM model was overfitting (Appendix C2). Scatter plots, including both training data 

and validation data, were drawn to show the goodness of modeling (both goodness of fit and 

goodness of prediction). 

Modelled mean annual BAR 

The inverse function of Equation 7 is 

Y=1/(1+e
(-logit(Y))

). (11) 

The BAR of each grid cell can be computed using the optimal model obtained in stepwise 

regression trial. Combining the simulation results from 14 regions, a world map of modeled 

mean annual BAR can be produced. This map can also be produced by the global model of a 

single formula. 

Residuals between modelled and observed BARs were calculated by  

Residual=Modelled BAR- Observed BAR. (12) 

 

3.5 Random forest regression 

Random forest, proposed by Breiman (2001), is an excellent machine learning method, and is 

perhaps more suitable than many other regression and classification methods (Liaw and 

Wiener, 2002). It has made impressive results in a wide array of disciplines, from gene-related 

disease classification, biomedical analysis, image recognition, to socioeconomic research and 

financial forecasting (Siroky, 2009). 

Random forest is an ensemble learning method, built on the decision tree method: 

classification and regression tree (CART). A decision tree is basically a classifier with a 

certain node-depth and only two branches at each node. Each node is recursively split until 

the final class at each end node (called leaf) is homogeneous. The idea of CART is 

straightforward, but the result of CART is easily over-fitting and unstable. Instead of a single 

tree classifier, the random forest uses the combining results of many decision trees. The final 

model of random forest is a “forest”, composed of hundreds of hierarchically-structured 

decision tree predictors with the growth methodology same as CART, except that each tree 

grows from bootstrap samples of the original data, 1) without prune, and 2) with the best split 

among randomly chosen variables. These two counter-intuitive points are different from 

CART method. The final result of random forest regression is given by the unweighted 
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average from each tree’s result (Liaw and Wiener, 2002). Random forest combines the speed 

advantage of decision tree method and the generalization advantage of randomness through 

randomly selected samples in bootstrapping and randomly selected variables in splitting 

(Breiman, 2001; Siroky, 2009). The prediction result follows the Law of Large Numbers and 

tends to be stable and against overfitting if the tree number is large enough (Breiman, 2001). 

The algorithm of random forest regression involves three steps (Liaw and Wiener, 2002; 

Siroky, 2009): 

1) Determine the number of trees ntree to grow in the forest model, and the number of 

predictors used for splitting, mtry. Usually choose ntree around 200 ~ 500, and mtry = √ p , 

and p is the number of total predictors. 

2) Grow ntree trees. For each tree Ti (i=1, 2, … ntree): 

a) Draw bootstrap samples of size N with replacement from the training data. 

b) Grow the tree Ti using the bootstrap sample. Split node into two daughter nodes. 

Choose the best split among the randomly selected mtry predictors. 

c) Grow the tree to maximum size and do not prune. 

Output the ensemble of trees {Ti}
ntree

1 . 

3) Predict the new observation. For regression, the result is the unweighted mean of each tree 

predictor: ∑ ntree

1 Ti / ntree. 

Archibald et al. (2009) present an example using random forest to simulate burned area in 

Southern Africa, and 69% of the response variance can be explained by his random forest 

model. Random forest also estimates the variable importance by measuring error increases 

when each variable is permuted. 

The package of randomForest (version 4.5-30) for R, adapted by Liaw and Weiner from the 

Fortran 77 program by Breiman and Adele14 , was used in this study. Random forest 

regression was used as a comparison method to see if it can produce good result in such 

regions that GLM could not. For the 9 years’ mean BAR data, 5% of total samples were used 

as training data in random forest regression. Five hundred trees were grown in the forest, and 

5 variables were tried at each split node. The simulating result of each gridcell was the 

average of these 500 tree predictors. 

                                                        
14 See R document of Package ‘randomForest’ for detail. http://cran.r-project.org (2009-11-23). 
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4 Results 

4.1. Global wildfire maps 

This study summarized two main maps of global wildfire activities: global mean annual BAR 

(Figure 5) and global wildfire seasons (Figure 6). Another two maps, wildfire return intervals 

(Figure 7) and coefficient of variations of annual BAR (Figure 8), were also given. These 

results were derived from the MCD45A1 dataset with the most confident detection quality 

(level 1) with the resolution of 0.25º×0.25º. 

Figure 5 shows that the largest ratio of burned area occurs in Africa and the north most part of 

Australia. Northern AUST, BOAS, and central SHSA have considerably large BAR. BONA, 

China, NHSA, and middle-southern AUST are characterized as low BAR. 

Figure 6 presents a world map of wildfire seasons. It shows that global wildfire season have 

asymmetrically latitudinal distribution. From north to south, fire occurrence time can be 

generalized as four latitudinal zones: 1) the northern hemisphere boreal and temperate zone, 

with active fire months from March to August; 2) the northern hemisphere tropical zone, with 

active fire months from December to February; 3) the southern hemisphere tropical zone, 

with active fire months from June to August; and 4) the southern hemisphere temperate zone, 

with active fire months of December to February. Detailed hemispherical fire seasons are 

given in the following section. 

 
Figure 5. Mean annual ratio of burned area within 9 years from April 2000 to March 2009 at 0.25º resolution. 

The original dataset is MODIS MCD45A1 with the most confident detection quality (Level=1). The colour bar 

is shown in logarithm scale, indicating the ratio of burned area within a 0.25º gridcell. The absolute value of 

BAR is spatial resolution-dependent. 



 21

 

Figure 6. Global wildfire seasons, derived from MODIS MCD45A1dataset with the most confident detection 

quality. The month number on the scale bar is labelled at the last day of each month. 

 
Figure 7. World map of wildfire return interval at 0.25º resolution. The return interval was calculated by the 

inverse of 9 years’ mean annual BAR from MCD45A1 dataset. Note that the absolute value of fire return 

interval is spatial resolution-dependent. 

Regions with short return interval of wildfires are located in Africa and northern Australia 
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(Figure 7). Fire can burn these regions all over within several years. Boreal regions and 

SHSA forests have a fire return interval of several decades, whilst tropical forests have a fire 

return interval of several centuries. 

The regions with lower mean BARs have higher inter-annual variability of BAR, and the 

standard deviation of annual BAR is 2-3 times of mean of annual BAR. Such regions include 

North America, parts of South America, Europe, Asia, and Australia. Figure 8 shows that only 

Africa has an inter-annual variability of BAR lower than 40% by the measure of coefficient 

of variation. The region was burned regularly almost every year within the study period. 

 

Figure 8. Coefficient of variation of annual BAR from April 2000 to Mar 2009 at 0.25º resolution. The 

coefficient of variation is defined as the annual BAR standard deviation divided by the mean value of annual 

BAR. 

 

4.2 Seasonality and spatial autocorrelation 

Global wildfire seasons 

The histogram of burn date in Figure 9 presents a general temporal distribution of fire 

occurrence. The figure shows that there are three main annual peaks of fire events: January, 

April, and August. The rose diagram also indicates the distribution of burned ratio in each bin 

of the histogram. Most of the wildfires have a BAR lower than 10%. Albeit there are fewer 

fire occurrences in November and December, fire events in these months have large BAR. 

Therefore the burned area in these months still can be high (as shown in Figure 10). 
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Figure 9. Rose diagram and simple histogram: seasonality of fire occurrence frequency. Only BAR>0.1% are 

shown in the rose diagram). Fire events in November burn large ratio of area, albeit there are not so many 

occurrences. 

The monthly total area burned by global wildfire peaks in August and December (Figure 10). 

August is the northern hemispheric summer and the southern hemispheric winter. The regions 

to the north of 23.5ºN have peak fire activities in August, and the regions in the Southern 

Hemisphere have peak fire activities in July, August, and September (Figure 11). The only 

region with a peak fire activity in December is NHAF. Other regions in the northern tropical 

zone (i.e. NHSA, SEAS) have a peak fire season in February (CEAM is exceptionally in 

April). Thus, these two humpbacks have different shapes: the August fire season covers most 

parts of the global and is comparatively longer 

(from April to October). The peak appears flatter. 

The December fire season is mainly seen in NHAF 

and looks sharper. It lasts for a shorter period. 

 

Figure 10. Bimodal distribution of global fire seasons. X-axis 

is the month from A (April) to M (March), and the y-axis is 

burned area (unit: 104 km2) detected by MODIS. 

Out of the 14 regions in the regional division scheme, there are only four regions located in 

the Southern Hemisphere: SHSA, SHAF, EQAS and AUST. They roughly share a similar fire 

season from July to October. Their fire activities peak in July (SHAF), August (SHSA and 

EQAS) and September (AUST). This time is the southern hemispheric winter and spring. 

Especially to the north of 23.5ºS, fire is mainly seen in winter. Another four regions (CEAS,  



 24

F
ig

u
re

 1
1

. 
G

lo
b

al
 w

il
d

fi
re

 s
ea

so
n

al
it

y
 i

ll
u

st
ra

te
d

 b
y

 f
o

u
r 

h
em

is
p

h
er

ic
 s

ea
so

n
s:

 w
in

te
r,

 s
p

ri
n

g
, 

su
m

m
er

 a
n

d
 a

u
tu

m
n

. 
T

h
e 

p
ea

k
 f

ir
e 

m
o

n
th

 
o

f 
ea

ch
 r

eg
io

n
 i

s 
g

iv
en

 i
n

 n
u
m

b
er

, 
e.

g
.,

 B
O

N
A

:7
 m

ea
n

s 
th

at
 t

h
e 

p
ea

k
 f

ir
e 

m
o

n
th

 o
f 

B
O

N
A

 i
s 

Ju
ly

. 
W

in
te

r 
fi

re
 h

ap
p

en
s 

b
et

w
ee

n
 2

3
.5

ºN
 

an
d

 2
3

.5
ºS

 a
n

d
 s

p
ri

n
g

-s
u

m
m

er
 f

ir
es

 h
ap

p
en

ed
 o

u
ts

id
e 

th
is

 z
o

n
e.

 A
u

tu
m

n
 f

ir
e 

sp
ar

k
le

s 
in

 a
ll

 l
at

it
u

d
in

al
 z

o
n

es
. 



 25

NHSA, NHAF and SEAS) locate roughly between the Equator and the Tropic of Cancer 

(23.5ºN), sharing a similar fire season from November to April. Their fire activities mainly 

span the season of northern hemispheric winter. Therefore, the zone between the lines of 

23.5ºS and 23.5ºN has the hemispheric winter fire. The wildfires in the rest 6 regions (BONA, 

TENA, EURO, MIDE, BOAS, and CEAS) occur mainly in spring and summer. These 6 

regions are located to the north of the Tropic of Cancer (23.5ºN). 

The fire seasons to the south of the Tropic of Capricorn (23.5ºS) are opposite the fire seasons 

to the north of 23.5ºS. E.g., the mid-east of Argentina, southern coast of South Africa, 

Southwest and Southeast Australian are characterized by summer wildfire activities. 

The autumn fire is seen sparkled in all latitudinal zones, but relatively more autumn fires are 

found close to the eastern coast of two continents: North America and Asia. 

Regional wildfire seasons 

Monthly mean burned areas in 104
 km2 of each region are shown in Figure 12. Fire 

seasonality summarized from these curves is given in Table 4. 

AUST has 8 months’ wildfires, the longest fire season of the 14 regions, spanning from April 

to November. Europe has the shortest fire season, from July to September, lasting 3 months 

(Table 4). 

Time-series analysis was carried out on a month step. Figure 13 shows monthly burned area 

from April 2000 to Mar 2009. These curves appear obviously cyclic properties, such as 

NHAF and SHAF. Most curves show that the burned area values are of annual multimodal 

distribution. However, the mean annual curves in Figure 12 have smeared most multimodal 

properties, and appear as unimodal curves, such as TENA. 

Nine years’ time-series data are not longer enough for trend estimation since any outliers may 

alter the results considerably. Nevertheless, there are more or less increasing or decreasing 

trends in the BAR in the 14 regions and the globe (Figure 13), and only the decreasing trend 

in AUST is significant (p=0.004). 

Burned area 

Global wildfire burned areas were analyzed based on each region and each year from 2000 

(fire year from April 2000 to March 2001, and so on) to 2008. The results are shown in Table 

5 (best level of detection quality) and Table 6 (all levels of detection quality). The mean 

annual percentages of each region burned within the 9 years are given in Figure 14. The 

regions’ mean values from the highest to the lowest are SHAF > NHAF > AUST > Global 

mean > SHSA > SEAS > CEAS > CEAM > BOAS > NHSA > EURO > TENA > BONA > 

MIDE > EQAS. Figure 15 shows the global burned area shares of each region. Three regions 

(NHAF, SHAF and AUST) account for 83.1% of the global burned area within the 9 years, in 

which Africa accounts 72% of the global burned area. 

The areas registered by MODIS in each of the 9 years are given in Table 7. The annual 

registered land area in MODIS MCD45A1 dataset is 0.88×108km2, 66.69% of the total area 

of the 14 regions. 
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Figure 12. Fire seasonality curves of 14 regions (from MCD45A1 all detection quality levels). Each monthly 

mean regional burned area within 9 years was calculated through the mean weighted sum of the BAR of each 

month and each region. The weight is the corresponding gridcell area computed in ArcGIS, based on the 

spheroid cylindrical equal area projection. Y-axis is burned area in ×104km2, and X-axis is the 12 months from J 

(January) through D (December). 
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Figure 13. Monthly burned area from April 2000 to March 2009 of the 14 regions and the globe (all detection 

quality levels). Trends are given in red dashed lines. In X-axis, A: April, J: July, O: October; single digit number 

1,2,…,9: Jan 2001, Jan 2002,…,Jan 2009. Trend in km2/yr is the monthly rate multiplied by 12 (different from 

that directly calculated from annual burned area). 
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Table 4. Summaries of the fire seasonality and trend 

Seasonality Trend 
Region 

Fire season Length Peak km
2
/yr Annual ratio p-value 

BONA May ~ Oct 6 months Jul 12.99 0.21% 0.74 

TENA Jul ~ Oct 4 month Aug 0.41 0.004% 0.99 

CEAM Jan ~ May 5 month Apr 0.58 -0.006% 0.99 

NHSA Dec, Jan ~ Mar 4 month Feb -47.10 -0.61% 0.53 

SHSA Jul ~ Oct 4 month Aug 497.63 0.44% 0.47 

EURO Jul ~ Sep 3 month Aug -26.62 -0.32% 0.65 

MIDE Mar ~ Sep 7 month Aug -57.3 -0.60% 0.16 

NHAF Nov, Dec, Jan, Feb 4 month Dec 558.83 0.07% 0.89 

SHAF Jun ~ Oct 5 month July -361.16 -0.05% 0.91 

BOAS Mar ~ Aug 6 month May 150.85 0.40% 0.55 

CEAS Apr ~ Oct 7 month Aug 276.44 0.29% 0.57 

SEAS Jan ~ May 5 month Feb 91.29 0.20% 0.67 

EQAS Jun ~ Oct 5 month Aug -0.12 -0.008% 0.99 

AUST Apr ~ Nov 8 month Sep -2970.46 -1.25% 0.004 

Global Except Mar, Apr 10 month Aug, Dec -1873.77 -0.09% 0.66 

Note: annual ratio is the change percentage of the burned area, not of the total regional area. 

 
Figure 14. Mean percentage of burned area in 14 regions. SHAF has the highest percentage of burned area. 

Other 2 regions, NHAF and AUST exceed the global mean percentage of area burned. Red line is 2.5%, the 

global mean percentage of burned area with the best detection level, and the blue line is 3.85%, the mean of all 

levels. Global mean value was calculated on the basis of global land area of 1.32×108km2 (total area of 14 

regions). 

 

 

 

 

 

 

 

 

Figure 15. Burned area shares of 14 regions. 

Africa (i.e. NHAF and SHAF) accounts 72% 

of global burned area in total. Savannah fires 

(including NHAF, SHAF and AUST) cover 

83.1% of global burned area. Data shown here 

include all detection levels. 



 

Table 5. Burned area (×104km2) and ratio (%) of 14 regions (data quality level: best) 

2000 2001 2002 2003 2004 2005 2006 2007 2008 Average Year

Region Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio 

BONA 0.22 0.03 0.14 0.02 1.03 0.14 0.86 0.12 0.45 0.06 0.73 0.10 1.03 0.14 0.50 0.07 0.53 0.07 0.61±0.33 0.08 

TENA 0.63 0.12 0.90 0.17 0.57 0.10 0.78 0.15 0.42 0.08 0.86 0.16 1.08 0.21 0.96 0.18 0.47 0.09 0.74±0.23 0.14 

CEAM 1.50 0.61 0.89 0.34 0.89 0.36 1.61 0.77 1.08 0.46 1.66 0.76 0.96 0.39 1.13 0.51 1.34 0.63 1.23±0.31 0.54 

NHSA 1.46 0.66 0.39 0.16 1.02 0.45 1.48 0.63 0.35 0.15 0.34 0.13 1.47 0.66 0.37 0.14 0.09 0.03 0.77±0.58 0.33 

SHSA 6.56 0.69 10.03 1.13 11.83 1.36 9.66 1.15 11.50 1.34 12.23 1.44 7.57 0.84 21.90 2.69 9.77 1.14 11.23±4.42 1.31 

EURO 0.95 0.22 1.10 0.26 0.43 0.10 0.99 0.24 1.01 0.24 0.46 0.11 0.72 0.17 0.86 0.21 0.88 0.20 0.82±0.24 0.19 

MIDE 1.00 0.08 1.13 0.09 1.05 0.09 1.04 0.09 1.08 0.09 0.81 0.07 1.06 0.09 1.02 0.08 0.39 0.03 0.95±0.23 0.08 

NHAF 99.16 11.05 89.32 9.98 81.00 8.75 81.26 8.98 75.81 8.26 87.31 9.48 85.76 9.46 73.94 8.37 76.38 8.32 83.33±7.99 9.18 

SHAF 72.92 23.41 60.87 20.62 76.06 24.27 80.53 23.96 86.23 26.19 82.05 24.51 83.45 27.17 75.98 22.82 79.10 25.39 77.47±7.47 24.26 

BOAS 1.19 0.10 1.53 0.13 4.61 0.43 9.07 0.87 1.59 0.14 1.93 0.18 3.42 0.32 3.06 0.28 7.66 0.73 3.78±2.84 0.35 

CEAS 3.53 0.26 8.24 0.63 15.31 1.29 7.72 0.65 7.54 0.63 9.21 0.77 11.14 0.93 9.49 0.79 12.35 1.04 9.39±3.33 0.78 

SEAS 4.53 1.21 4.17 1.11 3.47 0.88 5.69 1.55 7.16 1.97 5.14 1.45 3.59 0.89 3.53 0.89 4.84 1.38 4.68±1.21 1.26 

EQAS 0.05 0.02 0.07 0.04 0.35 0.16 0.11 0.05 0.23 0.10 0.08 0.03 0.27 0.12 0.11 0.04 0.10 0.04 0.15±0.10 0.07 

AUST 40.02 11.79 46.79 12.04 25.59 6.00 12.10 2.32 24.14 5.16 12.68 2.38 20.80 4.43 17.42 3.52 14.91 2.94 23.83±12.17 5.62 

Global 233.72 2.59 225.57 2.53 223.21 2.53 212.88 2.43 218.58 2.46 215.47 2.42 222.32 2.51 210.26 2.37 208.81 2.35 218.98±8.05 2.50 

Note: 1. The ratio is the percentage of burn area of the whole region, based on the all detected gridcells, including burned and unburned, discarding undetected gridcells.  

2. Global land area: 1.32×108km2, computed as the sum area of 14 regions, disregarding Greenland and the Antarctic. 

3. When calculate using the data of best quality level, other levels are regarded as un-burned pixels. Therefore the detected areas are the same. 

4. The average burned area within 9 years is given as mean ± standard deviation. 

2
9
 



 

Table 6. Burned area (×104km2) and ratio (%) of 14 regions (data quality level: all) 

2000 2001 2002 2003 2004 2005 2006 2007 2008 Average Year

Region Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio 

BONA 0.35 0.05 0.22 0.03 1.61 0.21 1.25 0.17 0.62 0.08 1.22 0.16 1.40 0.19 0.77 0.10 0.74 0.10 0.91±0.48 0.12 

TENA 1.11 0.21 1.33 0.25 0.93 0.17 1.41 0.27 0.82 0.15 1.60 0.31 1.86 0.36 1.77 0.33 0.82 0.15 1.29±0.40 0.24 

CEAM 2.41 0.99 1.40 0.54 1.50 0.62 2.83 1.37 1.86 0.80 2.97 1.39 1.64 0.67 1.93 0.88 2.37 1.13 2.10±0.57 0.93 

NHSA 2.48 1.12 0.71 0.29 1.62 0.71 2.32 0.99 0.60 0.25 0.59 0.23 2.56 1.15 0.63 0.24 0.15 0.06 1.30±0.95 0.56 

SHSA 10.70 1.13 15.34 1.74 18.83 2.17 15.50 1.85 18.48 2.16 18.88 2.24 12.08 1.35 33.07 4.08 16.10 1.89 17.66±6.45 2.07 

EURO 1.61 0.38 1.73 0.41 0.72 0.17 1.73 0.42 1.90 0.45 0.84 0.19 1.68 0.39 1.60 0.38 1.44 0.33 1.47±0.41 0.35 

MIDE 1.66 0.14 1.87 0.15 1.90 0.16 2.09 0.17 2.10 0.17 1.57 0.13 1.95 0.16 1.98 0.16 0.71 0.06 1.76±0.43 0.15 

NHAF 138.61 15.49 126.03 14.12 128.52 13.95 122.07 13.57 117.21 12.85 128.84 14.07 130.08 14.45 113.88 12.99 112.80 12.35 124.23±8.48 13.76 

SHAF 107.75 34.80 91.67 31.37 114.02 37.01 124.49 37.75 129.77 39.92 125.46 38.07 125.97 41.82 117.52 35.80 122.38 40.35 117.67±11.90 37.43 

BOAS 2.02 0.17 2.68 0.23 7.43 0.69 13.90 1.34 2.91 0.26 3.43 0.32 6.30 0.59 5.07 0.46 11.81 1.13 6.17±4.21 0.58 

CEAS 5.96 0.44 13.10 1.01 23.69 2.00 13.22 1.11 14.50 1.22 16.92 1.42 18.99 1.60 16.87 1.42 21.18 1.80 16.05±5.19 1.33 

SEAS 6.86 1.84 6.45 1.72 5.94 1.52 9.60 2.66 11.93 3.32 8.04 2.29 5.99 1.49 5.80 1.48 8.38 2.42 7.67±2.06 2.08 

EQAS 0.07 0.03 0.10 0.05 0.53 0.25 0.16 0.07 0.33 0.15 0.11 0.05 0.39 0.17 0.16 0.07 0.15 0.06 0.22±0.16 0.10 

AUST 57.23 17.11 63.84 16.64 43.11 10.50 20.91 4.10 40.85 9.08 20.85 3.98 33.90 7.50 30.44 6.32 24.06 4.85 37.24±15.50 8.90 

Global 338.84 3.77 326.46 3.67 350.36 3.99 331.49 3.81 343.87 3.90 331.31 3.74 344.80 3.92 331.48 3.77 323.08 3.66 335.74±9.177 3.85 

 

Table 7. MODIS registered valid area (108km2) and ratio to the global land area: 1.32×108km2 

2000 2001 2002 2003 2004 2005 2006 2007 2008 Average Year 

 Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio Area Ratio 

Valid area 0.9 67.92 0.89 67.26 0.88 66.26 0.87 65.76 0.88 66.65 0.89 66.85 0.88 66.42 0.88 66.45 0.88 66.63 0.88±0.01 66.69 
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Spatial autocorrelation 

MODIS MCD45A1dataset gives the burned pixels of ground surface. Many contiguous 

burned pixels might have been the results of a single fire event. Therefore, these regridded 

gridcells might be originally correlated. Figure 14 shows the correlograms of the mean annual 

BAR in 14 regions by Moran’s Index of correlation coefficient (Moran’s I). With the distance 

increases, spatial auto-correlation decreases sharply in each region except for SHAF, CEAS 

and AUST. 

       

       

      

      

       

Figure 14. Moran correlograms of the 9 years’ mean annual BAR in 14 regions. These correlograms indicate 

spatial autocorrelation of the mean annual BAR. Neighborhood was defined on 100 km distance bands from 0 to 

5000km, in which Euclidean distance was calculated by great circle distance in kilometers from 

longitude/latitude coordinates.  

Table 8 summarizes the minimum distance needed to attain spatial independence. Though 

correlogram of CEAS falls sharply with increasing distance to 600km, the correlation remains 

at ~0.1 (Moran’s I) until the distance exceeds 2800 km. The global mean of minimum 
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distance is ~4300 km. 

Table 8. Minimum distance of spatial independence 

Region Distance (km) Region Distance (km) 

BONA 500 NHAF 900 

TENA 300 SHAF 1000 

CEAM 500 BOAS 900 

NHSA 600 CEAS 2800 

SHSA 900 SEAS 400 

EURO 600 EQAS 800 

MIDE 300 AUST 1200 

  Global 4300 

 

4.3. Relations of wildfires to explanatory variables 

The main task of this study was to relate BAR to its explanatory variables. This was carried 

out on the 9-year mean data and individual year data respectively. Year 2004 has been selected 

for the individual year analysis, because the multivariate ENSO index (Wolter and Timlin, 

1998) was around the normal level in this year (see Figure 29 in Discussions), and at least 

four immediately previous years’ weather data are available for 2004. 

Nine years mean 

1) Pearson correlation 

The Pearson correlation coefficients between BAR and other variables were calculated and 

are shown in Table 9. P-values and their correlation ranks are also given. 

The linear dependence of 9-year mean BAR on explanatory variables varies in different 

regions. There are weak linear correlations or even no linear correlations between BAR and 

some explanatory variables in some regions. Some explanatory variables show strong 

inter-correlations, which means large redundancies exist among them. For example, all the 

variables derived from rainfall dataset are highly inter-correlated. 

Table 9. Pearson correlation coefficient between BAR and each independent variable 

Regions BONA   TENA  CEAM  NHSA   SHSA   

Variables Coef p Rank Coef p Rank Coef p Rank Coef p Rank Coef p Rank 

Cultivation 0.10 0.00 1 0.08 0.00 8 0.17 0.00 1 0.012 0.47 13 0.05 0.00 8 

Grass -0.09 0.00 2 0.04 0.00 10 -0.12 0.00 4 0.47 0.00 1 0.17 0.00 1 

Forest 0.06 0.00 7 -0.11 0.00 4 0.04 0.00 9 -0.40 0.00 2 -0.08 0.00 5 

Nutrient -0.09 0.00 3 -0.10 0.00 7 -0.07 0.00 8 -0.04 0.01 10 0.05 0.00 7 

Urban 0.00 0.56 12 -0.04 0.00 11 -0.01 0.56 13 -0.02 0.35 12 -0.04 0.00 9 

Population 0.00 0.58 13 -0.02 0.01 12 0.01 0.45 12 -0.02 0.22 11 -0.03 0.00 10 

Topography -0.07 0.00 4 0.01 0.23 13 0.03 0.03 10 -0.12 0.00 5 -0.13 0.00 2 

MeanT 0.06 0.00 5 -0.11 0.00 6 0.09 0.00 6 0.19 0.00 4 0.07 0.00 6 

MeanR -0.04 0.00 9 -0.13 0.00 2 0.08 0.00 7 -0.09 0.00 6 -0.01 0.14 12 

IntraR -0.01 0.37 10 -0.07 0.00 9 0.16 0.00 2 0.05 0.00 8 0.13 0.00 3 

InterR -0.05 0.00 8 -0.11 0.00 3 0.14 0.00 3 0.06 0.00 7 0.00 0.58 13 

RainFireSeason 0.00 0.53 11 -0.15 0.00 1 -0.011 0.40 11 -0.27 0.00 3 -0.10 0.00 4 

RainNoFire -0.06 0.00 6 -0.11 0.00 5 0.11 0.00 5 0.05 0.00 9 0.02 0.01 11 

(To be continued) 
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Table 9. Continued 

Regions EURO   MIDE   NHAF   SHAF   BOAS   

Variables Coef p Rank Coef p Rank Coef p Rank Coef p Rank Coef p Rank 

Cultivation 0.21 0.00 2 0.27 0.00 1 0.04 0.00 10 0.04 0.00 12 0.19 0.00 3 

Grass -0.01 0.28 10 0.17 0.00 2 0.40 0.00 1 -0.01 0.32 13 0.00 0.45 13 

Forest -0.14 0.00 6 0.05 0.00 12 0.07 0.00 8 0.16 0.00 5 -0.07 0.00 7 

Nutrient -0.13 0.00 7 -0.07 0.00 11 -0.21 0.00 7 0.06 0.00 9 -0.16 0.00 5 

Urban -0.01 0.39 12 0.10 0.00 8 -0.03 0.00 12 -0.05 0.00 11 0.03 0.00 10 

Population -0.02 0.05 9 0.08 0.00 10 -0.04 0.00 11 -0.06 0.00 8 0.01 0.30 12 

Topography 0.01 0.36 11 0.03 0.00 13 -0.03 0.00 13 -0.07 0.00 7 0.01 0.03 11 

MeanT 0.24 0.00 1 -0.15 0.00 3 0.32 0.00 2 0.28 0.00 2 0.27 0.00 1 

MeanR -0.01 0.53 13 0.14 0.00 4 0.23 0.00 6 0.18 0.00 4 -0.04 0.00 9 

IntraR 0.15 0.00 4 0.14 0.00 5 0.29 0.00 3 0.32 0.00 1 0.22 0.00 2 

InterR 0.16 0.00 3 0.10 0.00 9 0.26 0.00 4 0.05 0.00 10 0.04 0.00 8 

RainFireSeason -0.15 0.00 5 0.12 0.00 7 -0.05 0.00 9 -0.11 0.00 6 0.09 0.00 6 

RainNoFire 0.04 0.00 8 0.14 0.00 6 0.26 0.00 5 0.27 0.00 3 -0.17 0.00 4 

Table 9. Continued 

Regions CEAS   SEAS   EQAS   AUST   World   

Variables Coef p Rank Coef p Rank Coef p Rank Coef p Rank Coef p Rank

Cultivation 0.18 0.00 4 0.05 0.00 4 0.07 0.00 9 -0.10 0.00 8 0.00 0.39 13 

Grass 0.17 0.00 5 -0.03 0.00 7 0.17 0.00 6 0.18 0.00 6 0.21 0.00 3 

Forest -0.12 0.00 9 0.07 0.00 2 -0.24 0.00 3 0.14 0.00 7 -0.03 0.00 10 

Nutrient -0.19 0.00 3 -0.03 0.00 6 -0.15 0.00 7 -0.01 0.42 12 -0.09 0.00 7 

Urban -0.09 0.00 10 -0.05 0.00 5 0.06 0.00 10 -0.02 0.02 11 -0.03 0.00 12 

Population -0.08 0.00 11 -0.03 0.01 8 0.03 0.18 11 -0.02 0.02 10 -0.03 0.00 11 

Topography -0.21 0.00 2 -0.08 0.00 1 0.02 0.33 12 0.03 0.01 9 -0.08 0.00 9 

MeanT -0.31 0.00 1 0.05 0.00 3 -0.19 0.00 5 0.51 0.00 4 0.22 0.00 1 

MeanR -0.05 0.00 13 0.01 0.29 11 -0.29 0.00 1 0.63 0.00 3 0.08 0.00 8 

IntraR -0.13 0.00 7 0.01 0.42 12 0.02 0.35 13 0.72 0.00 2 0.22 0.00 2 

InterR -0.07 0.00 12 0.02 0.03 9 -0.11 0.00 8 0.43 0.00 5 0.14 0.00 5 

RainFireSeason -0.12 0.00 8 0.02 0.11 10 -0.29 0.00 2 0.00 0.79 13 -0.13 0.00 6 

RainNoFire 0.17 0.00 6 0.01 0.47 13 -0.21 0.00 4 0.73 0.00 1 0.18 0.00 4 

2) Generalized linear correlation 

The bar plots in Figure 16 show variable importance in the 14 regions and the world by the 

measure of δAIC in generalized linear correlation. Because the number of samples is different 

among regions (resulting from different region size and available pixels) and AIC values have 

no penalty on sample number (Bayesian information criterion does have), the absolute values 

of AIC and δAIC differed greatly among regions.  

Combining the results from the Pearson correlation and generalized linear correlation analyses, 

variable importance of each region is described as follows. 

BONA: The cultivation percentage, grass cover, nutrient availability, and topographic 

roughness are the top four variables correlated to the mean BAR significantly (p= 0.00 for all 

the four variables). The population density, urban coverage, rainfall in fire season, and 

intra-annual variability of rainfall cannot explain the mean BAR well (all p-values greater 

than 0.05). The negative value of δAIC shows that even a non-variable model (a constant) 

could explain the variability of mean BAR better than a model using any one of these 

independent variables does. The results of generalized linear correlation in Figure 16 are 

roughly in line with the Pearson correlations in Table 9. The table further shows that among 



 34 

the four most closely related variables, only cultivation percentage shows positive correlation. 

TENA: Except the topographic roughness, all the other 12 variables are significantly 

correlated to the mean BAR. The rainfall in fire season, mean rainfall, and inter-annual 

rainfall variability are the top three variables related to the BAR, negatively correlating to the 

BAR. The results of Pearson correlation and generalized linear correlation are in agreement 

(only considering the rank of parameter importance and disregarding p-values). 

CEAM: The cultivation percentage is the top variable relating to the BAR. Then come the 

intra- and inter-annual variability of rainfall and grass cover. The least correlated variables are 

urban coverage (p=0.56), population density (p=0.45), and rainfall in fire season (p=0.40). 

These results of Pearson correlation are in line with those of generalized linear correlation. 

NHSA: From both viewpoints of Pearson correlation and generalized linear correlation, the 

grass cover, forest cover, rainfall in fire season and mean temperature are the top four 

important variables for the mean BAR (p= 0.00 for all the four variables). The grass cover and 

mean temperature have positive effects, while the forest cover and rainfall in fire season are 

of negative effects. The cultivation percentage (p=0.47), urban cover (p=0.35), and population 

density (p=0.22) are the last three without significant correlations. 

SHSA: Except the inter-annual variability of rainfall (p=0.58) and mean rainfall (p=0.14), all 

the other 11 explanatory variables are significantly related to the mean BAR, especially the 

grass cover, topographic roughness, and intra-annual variability of rainfall (p= 0.00 for all the 

three variables). The results from Pearson correlation and generalized linear correlation 

support each other. 

EURO: The mean temperature, cultivation percentage, inter- and intra- annul variability of 

rainfall are the four most important variables for the mean BAR (p= 0.00 for all the four 

variables) in the Pearson correlation analysis. They are positively correlated to the BAR. The 

mean rainfall (p=0.53), urban coverage (p=0.39), topographic roughness (p=0.36), and grass 

cover (p=0.28) have no significant correlations with the BAR, which is in line with the results 

from generalized linear correlation. 

MIDE: The Pearson correlation analysis shows that all the 13 variables are significantly 

related to the mean BAR (p= 0.00 for all). The cultivation percentage, grass cover, and mean 

temperature are the top three determinants for the mean BAR. 

NHAF: All the 13 variables are significantly related to the mean BAR (p= 0.00 for all) from 

the results of both Pearson correlation and generalized linear correlation. Grass cover, mean 

temperature, intra- and inter- annual variability of rainfall are the top four determinants, and 

they have positive correlations. 

SHAF: Except for the grass cover (p=0.32), all the other 12 variables are significant 

determinants of the mean BAR (p= 0.00 for all the 12 variables). The top four determinants 

include intra-annual variability of rainfall, mean temperature, rainfall within non-fire season, 

and mean annual rainfall, and they are all positively correlated to the BAR. Pearson 

correlation and generalized linear correlation attain the similar results. 

BOAS: Except for the grass cover and population density, all the other 11 variables are 
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significantly related to the mean BAR in the Pearson correlation analyses. The mean 

temperature is the most important variable. 

   

   

   

   

   

Figure 16. Difference of AIC (δAIC) between non-variable model and one-variable model by GLM logistic 

regression using the 9 years’ mean data. The response is the annual BAR of 9 years mean from April 2000 to 

March 2009. Thirteen Explanatory variables were defined in Table 2. NULL means no variable was used in the 

model (constant). A binomial distribution with logistic link function was used in the generalized linear model 

regression. Add1 function from R stats package was used in the analysis. AIC was used as a measure for each 

model assessment. Detail values of δAIC and significance level of each variable for each region are given in 

Appendix D1. 

CEAS: All variables are significantly correlated to the mean BAR (p=0.00 for all). The four 

major variables are the mean temperature, topographic roughness, nutrient availability and 

cultivation percentage, which are indicated in both Pearson correlation and generalized linear 

correlation. 

SEAS: Both methods of Pearson correlation and generalized linear correlation show that the 

top four variables relating to the BAR are the topographic roughness, forest cover, mean 

temperature, and cultivation percentage, and that the four variables with the least significant 

correlations are rainfall in non-fire season, intra-annual variability of rainfall, mean annual 

rainfall, and rainfall in fire season. 

EQAS: The mean annual rainfall, rainfall in fire season, forest cover, and rainfall in non-fire 
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season are the top four variables (p= 0.00 for all the four variables) with close correlations 

with the mean BAR. The intra-annual variability of rainfall (p=0.35), topographic roughness 

(p=0.33), and population density (p=0.18) have little correlations with the BAR. The results 

of Pearson correlation are generally in agreement with those of generalized linear correlation. 

AUST: Except for the rainfall in fire season (p=0.79) and nutrient availability (p=0.42), all the 

other 11 variables are significantly correlated to the mean BAR. The rainfall in non-fire 

season, intra-annual variability of rainfall, mean annual rainfall, and mean annual temperature 

are the four most decisive determinants. The results of Pearson correlation are roughly in 

agreement with those of generalized linear correlation. 

World: Globally, except the cultivation percentage (p=0.39), all the other 12 variables are 

significantly correlated to the global mean BAR variability (p=0.00), which are indicated both 

in Pearson correlation and generalized linear correlation. The mean temperature, intra-annual 

variability of rainfall, and grass cover are the top three variables correlated to the mean BAR. 

Individual annual case (2004) 

Seventeen explanatory variables were analysed by GLM regression using the Add1 function 

of R. Figure 17 gives these bar plots of each region, and the summary is shown in Table 10. 

Table 10. Variable importance estimated by GLM regression (only list those with p<0.05) 

Region Ranked important variables (p-value) 

BONA Rhum (0.000), Wind (0.003), RainFire (0.008), Nutrient (0.022), Rain2 (0.042), Rain3 (0.045), Rain1 (0.048) 

TENA Cultivation (0.025) 

CEAM Cultivation (0.020) 

NHSA Grass (0.001), Forest (0.002), Rhum (0.008), RainFire (0.016) 

SHSA Rhum (0.000), Topography (0.000), Grass (0.000), Urban (0.003), TempFire (0.004), RainFire (0.007), 

Population (0.007), Forest (0.014), Nutrient (0.014), Rain0 (0.016), Soil (0.029) 

EURO TempFire (0.000), RainFire (0.000), Rhum (0.000), Soil (0.000), Cultivation (0.000), Nutrient (0.003), Wind 

(0.014), Forest (0.015) 

MIDE Cultivation (0.000), TempFire (0.000), Grass (0.000), Rhum (0.000), Rain2 (0.000), Rain0 (0.000), Rain3 

(0.000), Rain1 (0.000), Rain4 (0.001), Soil (0.001), Nutrient (0.006), RainFire (0.009) 

NHAF Grass (0.000), Wind (0.000), TempFire (0.000), Rain0 (0.000), Nutrient (0.000), Rain2 (0.000), Rain4 (0.000), 

Rain1 (0.000), Rain3 (0.000), Soil (0.000), Population (0.000), Rhum (0.000), Forest (0.000), RainFire (0.000), 

Urban (0.002), Cultivation (0.007), Topography (0.042) 

SHAF TempFire (0.000), Rain0 (0.000), Rain2 (0.000), Rain3 (0.000), Rain4 (0.000), Forest (0.000), Rhum (0.000), 

RainFire (0.000), Rain1 (0.000), Population (0.000), Topography (0.000), Wind (0.000), Urban (0.000), Nutrient 

(0.000), Cultivation (0.030) 

BOAS Rhum (0.000), TempFire (0.000), Cultivation (0.000), Nutrient (0.000), Forest (0.001), Rain4 (0.003), Rain2 

(0.004), Rain3 (0.004), RainFire (0.004), Rain1 (0.005), Wind (0.013), Topography (0.027) 

CEAS TempFire (0.000), Wind (0.000), Topography (0.000), Nutrient (0.000), Grass (0.000), Forest (0.000), RainFire 

(0.000), Cultivation (0.000), Population (0.000), Urban (0.000), Rain0 (0.000), Soil (0.001), Rain1 (0.003), 

Rain2 (0.006), Rain4 (0.009), Rain3 (0.013) 

SEAS Topography (0.000), Wind (0.000), Cultivation (0.000), TempFire (0.007), Soil (0.033), Nutrient (0.039) 

EQAS Rain4 (0.017), RainFire (0.019), Rain3 (0.019), Rain2 (0.022), Rain1 (0.028) 

AUST TempFire (0.000), Rain0 (0.000), Rain4 (0.000), Rain2 (0.000), Rain1 (0.000), Rain3 (0.000), Wind (0.000), Soil 

(0.000), Rhum (0.000), RainFire (0.000), Forest (0.000), Grass (0.000), Cultivation (0.000), Population (0.000), 

Urban (0.034) 
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Figure 17. Difference of AIC between non-variable model and one-variable model by GLM regression of the 

year 2004 data. The response is the burned area ratio from April 2004 to March 2005. Seventeen explanatory 

variables were defined as Table 3. NULL means no variable was used in the model. A binomial distribution with 

logistic link function was used in the generalized linear model regression. Add1 function from R stats package 

was used in the analysis. AIC was used as a measure for each model assessment. 

Summary of fire drivers 

Temperature: The mean annual temperature is the most important factor correlating to the 

mean annual BAR globally and in many individual regions: EURO, NHAF (the second most 

important in Pearson correlation), SHAF (the second most important in Pearson correlation), 

BOAS, CEAS, and AUST (the fourth most important in Pearson correlation). Four regions’ 
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BARs have negative correlation with the mean annual temperature: TENA (r=-0.11, p=0.00), 

MIDE (r=-0.15, p=0.00), CEAS (r=-0.31, p=0.00), and EQAS (r=-0.19, p=0.00). The analysis 

on individual annual BAR showed that fire season temperature also plays an important role in 

such regions (Figure 17): CEAM, EURO, MIDE, NHAF, SHAF, BOAS, CEAS, and AUST.  

Rainfall: There is an optimal mean annual rainfall, ~1135 mm/yr, at which the mean BAR 

may tend to be maximal (Figure 18). Below 

this value, the BAR will decrease with 

reducing rainfall; and above 1135 mm/yr, 

BAR will also decrease with elevating 

rainfall. The GLM regression with quadric 

rainfall expression only got a psuedo-R2 

value of 0.225. 

 

Figure 18. Relationship between the mean BAR and 

the mean annual rainfall simulated by GLM 

regression. Scatter plot is the observations; the red 

curve is the fit line by the following polynomial 

logistic equations. The blue line shows the maximum 

position of the fit curves. The fitted equation is: 

logit(BAR)= -7.95+8.72·10-3×R -3.85·10-6×R2 

(psuedo-R2=0.225, df=210094) 

Due to the two intrinsic opposite effects of rainfall separated by the peak of 1135 mm/yr, the 

correlation between BAR and rainfall can be positive (CEAM, MIDE, NHAF, SHAF, AUST) 

or negative (BONA, TENA, NHSA, BOAS, CEAS, EQAS), or even without significant 

relations (SHSA, EURO, SEAS). Global data show a positive relations between the BAR and 

rainfall. 

This study compared different rainfalls in relation to the 2004 annual BAR. Figure 17 shows 

that the rainfalls in growing season have the best fitting results in savannah vegetations 

(NHAF, SHAF, and AUST). In most regions, there are no obvious differences among 1, 2, 3, 

and 4 years’ rainfalls in fitting the BAR in 2004. 

Population and urban area: Population density is comparatively not important in affecting the 

mean annual BAR in both Pearson correlation and generalized linear correlation in all 14 

regions. The urban coverage has almost the same effects as population density on the BAR, 

since these two explanatory variables are highly correlated. 

Cultivation: Globally, the cultivation percentage ranks as the least important variable in 

relation to the mean BAR in Pearson correlation and generalized linear correlation. However, 

cultivation does show highly importance in some regions, such as BONA, CEAM, MIDE, 

EURO, BOAS, CEAS and SEAS. These regions account for 10.8% of the total world burned 

area. Only in AUST, the mean BAR is negatively correlated with the cultivation percentage. 

Grass: The grass cover generally has a positive relation with the global BAR (Figure 19). This 

study found out that it is the second (generalized linear correlation) or third (Pearson 

correlation) most important variable after the temperature (and intra-annual variability of 

rainfall in Pearson correlation). 
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At regional scale, the grass cover has various effects on the BAR. It had significant positive 

effects in TENA, NHSA, SHSA, MIDE, NHAF, EQAS and AUST, no significant effects in 

SHAF, EURO and BOAS, and even negative effects in BONA, CEAM and SEAS. In BONA, 

CEAM and SEAS, which show negative relations between the grass cover and the mean BAR, 

the forest cover is positively related 

to the mean BAR. The grass cover is 

the first important variable in BONA 

(generalized linear correlation), 

NHAF (Pearson correlation) NHSA 

(both methods), and SHSA (both 

methods).  

 

Figure 19. Scatter plot of mean BAR vs. 

grass cover and its general trend. Solid red 

line is the average of mean BAR at each 

grass cover value, and the dash red line is 

one standard deviation of the average. 

Forest: Correlation analyses show that the forest cover is not a strong determinant affecting 

the mean BAR globally. Its impacts on regional BAR are prominent in TENA, NHSA, SHSA, 

EURO, SHAF, SEAS, and EQAS, among which forest cover in SHAF and SEAS holds 

positive relations with the mean BAR. While the year 2004 did not witness strong relation 

between the forest cover and the mean BAR in SEAS in the individual annual analysis of 

generalized linear correlation. 

Topography: Topographical roughness is an important variable in determining BAR in SHSA, 

CEAS, and SEAS. Globally, topographical roughness is not a strong factor influencing the 

BAR, since the burned area in the above three regions only represents 12.3% of the global 

total burned area. 

Nutrient: The nutrient availability is important for vegetation primary production, but it is 

relatively unimportant for the BAR in most regions in this study. BONA and CEAS are 

exceptional. In BONA, the most important factor influencing BAR is cultivation percentage, 

which has significant positive correlation with the BAR. Agricultural fields have high nutrient 

availability (low rank in the dataset of nutrient availability), and hence the nutrient availability 

shows strong negative correlation to the mean BAR here. In CEAS, since the nutrient 

availability is closely related to the cultivation percentage, both have similar importance to the 

mean BAR. 

4.4 Generalized linear models 

Models 

The optimal model for each region was obtained using GLM logistic regression with stepwise 

trials on the different combination of 13 explanatory variables. The final models are not 

confined within the important variables in previous analysis, due to the co-linearity and 

mutual effects among these 13 proposed variables. Scatter plots of Figure 20 show the 

modeled BAR versus the MODIS observed BAR. The formulae of GLM, linear parameters, 
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the standard deviation, and p-values of these linear parameters in each model, as well as 

anova (analysis of variance) analysis are given in Appendix D2. 

   

   

   

   

(To be continued) 
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(Continued) 

   

Figure 20. Modelled BAR vs. observed BAR in each region. Logistic form of modelled BAR was calculated by 

the formulae in Appendix D2, which were revealed by stepwise GLM regression. Then BAR was computed by 

the inverse function of logistic transformation (Equation 11). The red dash line is the linear fit between the 

modeled and the observed, and the gray dotted line is where Modelled = Observed. These scatter plots include 

both training and validation data. A linear adjustment by a factor between modeled and observed in the training 

(see code in Appendix C3) was carried out. 

The abilities of these models in explaining the BAR deviance from the best to the worst are 

given in Table 12, using the measure of psuedo-R2. Ordinary R2 was calculated to compare 

goodness of fit and goodness of prediction (validation phase).  

Good modelling results are seen in AUST, NHAF, SHAF, and NHSA, in which pseudo-R2 

are greater than 0.60. Especially in AUST and NHAF, the ordinary R2 are also greater than 

0.60 (Table 12). Their scatter plots are the best ones among these 14 plots. 

Table 12. Model evaluations 

Ordinary R
2
 Mean squared error 

Model Pseudo-R
2
 Residual DF 

Model Prediction Model Prediction 

AUST 0.77 5467 0.685 0.712 0.0013 0.0013 

NHAF 0.74 9833 0.630 0.620 0.0059 0.0067 

SHAF 0.66 6511 0.576 0.354 0.0078 0.0100 

NHSA 0.66 1792 0.475 0.571 0.000054 0.000049 

World* 0.58 10489 0.366 0.361 0.0022 0.0023 

CEAS 0.56 14342 0.344 0.357 0.00019 0.00019 

EURO 0.51 5346 0.19 0.14 0.00003 0.000033 

SHSA 0.50 9909 0.333 0.333 0.0003 0.0003 

BOAS 0.48 16228 0.312 0.321 0.000076 0.000073 

MIDE 0.43 9961 0.096 0.091 0.000032 0.000026 

EQAS 0.43 1241 0.225 0.213 0.000013 0.000010 

SEAS 0.28 4605 0.130 0.132 0.00056 0.00052 

BONA 0.15 9484 0.025 0.017 0.000009 0.000014 

TENA* 0.12 6568 0.028 0.029 0.000029 0.000022 

CEAM* 0.11 2748 0.029 0.032 0.000091 0.000072 

Note: *World data: 5% samples for training, the rest 95% samples for validation. TENA and CEAM data, 60% 

training and 40% validation. All the other regions 50% training and the rest 50% validation. 

Predictions 

The spatial distribution of global BAR was simulated using the previous optimal GLMs. 

Figure 21 gives the simulation results from the combination of 14 regional models. Figure 22 

provides the results from a single global model (the formula of the world). The overall 
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appearance of these prediction maps is quite in line with the observation. The global model is 

inferior to the combination of regional models. The BARs in many regions are underestimated 

in the global model. 

 

 

(To be continued) 
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(Continued) 

 

Figure 21. Comparison of MODIS measured mean annual BAR (up), simulated annual BAR (middle) by 14 

regional GLM models, and the residual BAR (bottom). BAR maps (up and middle): yellow colour shows higher 

BAR, mainly occurring in NHAF; and red colour shows lower BAR, occurring in central SHSA, northern AUST, 

Northern BOAS and SHAF. Residual map (bottom): blue shows under-prediction and red shows over-prediction. 

SHSA, SHAF, AUST and BOAS were slightly under-predicted. NHAF was over-predicted up to ~30%. 

 

4.5 Random forest model 

The mean BAR of the whole world was simulated by random forest regression. There were 

210095 samples in total (excluding samples with NaN), one response variable and 13 

explanatory variables, and 2 columns data for longitude and latitude coordinates. 

Figure 23 shows the comparison of the modelled versus the observed BAR using the 5% 

samples as training data. This model can explain 60% of the BAR variation, and the mean of 

squared residuals is 0.0014. 

The variable importance was estimated by the mean squared error changes when one variable 

was permuted. Figure 24 shows that the rainfall in fire season and the mean temperature are 

the two most important variables determining the mean annual BAR. That the temperature is 

one of the most important variables is consistent with the results of correlation analyses. The 

population density, urban and cultivation percentage are comparatively important variables, 

contrary to the results of correlation analyses. Mean rainfall is the least important among these 

13 variables, roughly in agreement with the previous results. 
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Figure 22. Simulation of annual BAR by a GLM global model (up) and the residual (bottom). Most BARs were 

under-predicted, such as BONA, TENA, BOAS, and parts of NHAF, SHAF and AUST. South American regions 

were slightly over-predicted. 
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Figure 23. Scatter plot of modelled BAR and 

MODIS observed BAR. Dot blue line means 

modelled = observed. The dash-dot red line is 

the linear fitting between the modelled and the 

observed. 

Figure 24. Variable importance estimated by random 

forest regression. The variable importance was given by 

the measure of the mean squared error increasing 

percent (% Increase of Mean Squared Error) when that 

variable was permuted. 

The global distribution of annual BAR simulated by the random forest model is shown in 

Figure 25, in which 5% of the samples were used as training data and the rest 95% of the 

samples as validation data. The residual between modelled and observed is shown in the 

bottom map of Figure 25. 

The global random forest model is better than global GLM model in approximating the 

observations. The prediction result of the regional GLMs is the best among the three models. 

The model residues of BAR show that these three models have over-predicted the BAR in 

most global burned areas. Regional GLMs over-predicted the BAR in NHAF and SHAF, 

sporadically with under-predictions. SHSA, BOAS, and parts of AUST got underestimated 

results. Global GLM failed to give correctly high BAR in NHAF, but this model still 

produced over-estimated results in most parts of these 14 regions, such as NHSA, SHSA, 

NHAF, SHAF, SEAS and AUST. Random forest regression also showed over-predicted BARs, 

but the high BARs in NHAF and SHAF it modelled are close to the observations. 
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Figure 25. Simulation of annual BAR by the random forest global model (up) and the residual between the 

modelled and the observed (bottom). Modelled BAR shows that most fire occurs in Africa, Australia, and SHSA 

(in reddish-yellowish colour). Residual .map shows that most BARs were over-predicted (in yellowish-reddish 

colour). 
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5 Discussions 

5.1 Detection quality level of MODIS data 

The MCD45A1 dataset has 4 different detection quality levels. When the data are regridded at 

different quality levels, the BAR and the burn dates will be different. The data of the most 

confident detection level (level 1) were compared with the data of all detection levels (from 

level 1 to level 4), to see if there was bias in the previous analyses aroused by different data 

quality. 

Figure 26 are the scatter plots of BAR and burn date between the most confident quality level 

and all levels. The BARs regridded from the data with the best level are slightly lower than 

those from all data levels. Within the detection accuracy of ±8 days, the burn dates of best 

level are almost the same as those of all levels. Some burn dates of these two levels are quite 

different. This was possibly aroused by 1) the detection accuracy was within ±8 days; 2) each 

original pixel had different burn date and led to various results when regridding at 0.25° 

resolutions; 3) the mode function was used in the date resampling, which is not reliable in the 

absence of a majority date. 

  
Figure 26. Comparison of different data qualities in MCD45A1. Generally these two levels in regridding are 

highly correlated. The BARs of the best level are slightly lower than those of all quality levels. Some burn dates 

are different when using different data levels. But most of them are within the detection error of ±8 days. 

Nevertheless, the general characteristics will not be affected by different data quality levels 

used. Actually the world wildfire maps generated from the data with all quality levels (not 

given here) have the same appearance with those generated from the best quality level. 

However, the absolute values of fire return intervals will be slightly smaller in the data of all 

quality levels, since their BARs are slightly larger. 

 

5.2 Fire seasons and burned area 

Fire seasons 

Global fire season map in Figure 11 is comparable to that given by Carmona-Moreno et al. 

(2005) using the AVHRR data from 1982 to 1999 (Figure 27). It is obvious there are globally 
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4 latitudinal zones of wildfire seasons. The spring fire in BOAS is quite prominent in this 

study, and the spring fire zone is displaced northward somehow. While the spring fire in 

BONA in this study is more or less the same as Carmona-Moreno et al. (2005)’s result. The 

southern hemispheric summer fire (December to February) to the south of 23.5ºS, which is 

shown on their map, is even more pronounced in this study. My study also shows that the 

southeast USA has a different fire season from the other parts of USA. Another marked 

difference in my study is that the fire extent is much larger than that given by 

Carmona-Moreno et al., e.g., TENA, SHSA, EURO, BOAS, and CEAS. As to these 

discrepancies, one attractive explanation is that fire seasons and extent have shifted in these 

years. However, further research is necessary to verify the agreement of wildfire results 

derived from these two different data source (MODIS vs. AVHRR) and by different detection 

algorithms (BRDF vs. GEMI). 

 

Figure 27. Global fire seasons for the period 1982-1999 derived from AVHRR data (Carmona-Moreno et al., 

2005). It is obvious there were globally 4 latitudinal zones of wildfire seasons (shown in dotted rectangles). The 

fire extent in this map is smaller than that shown in Figure 11. 

The fire season results in this study generally agree with the Australian fire seasons given by 

the Australian Bureau of Meteorology (Figure 28) and the South America fire seasons given 

by Chuvieco et al. (2008). Figure 28 shows that Australian fire danger seasons are 

winter-spring in the north and summer-late summer in the south. It is possibly inappropriate to 

classify these areas to the south of 23.5ºS as the same region to the north of 23.5ºS since they 

have different fire seasons. 

This study discovered that global wildfires peak in August and December. Roy et al. (2008) 

compare the 12 months’ burn scar and active fires from July 2001 to June 2002 derived from 

MODIS data, and find the same peak fire months of August and December and low fire 

activity months in March, April and October. 

The global fire season curve (Figure 10) shows that smaller burned area occurs in March and 

April, which suggests these months are the start of a new fire season globally. Viewing from 

each of the 14 regions, if taking April as the start of a fire year, 3 regions’ fire season will be 
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split: CEAM, BOAS, SEAS, and those of the other 11 regions are appropriate. If taking 

March as a start, only CEAM and SEAS are inappropriate, which suggests March will be the 

best choice of the start of fire season, in consistent with that noted by Boschetti et al. (2008). 

 

 

 

 

 

 

 

 

 

 

Figure 28. The times of peak fire 

danger over Australia. Winter and 

early spring are the danger periods in 

the north and summer is the danger 

period in the south15. 

 

Burned area 

This study strived to calculate burned area values as accurate as possible. The novel dataset 

was used and regridded at a finer resolution (most of the other research use 1º or 0.5º gridcell), 

MODIS Tiles’ overlapping was carefully excluded, and the equal area projection of spheroid 

earth model was used in area computation. The mean burned area is 3.36±0.09 million km2 

(all data quality levels) globally, occupying 3.85% world terrestrial area (discarding 

Greenland and Antarctic). The value 3.36 million km2 is very close to Giglio et al. (2006)’s 

calculation of the mean value from 2001 to 2004, 3.35 million km2. They used the MODIS 

active fire observations. However, the inter-annual variations of global annual burned area in 

this study are not as big as they noted. 

Savannah fire accounts for 83.1% of global burned area, comparable to van der Werf et al. 

(2006)’s results of approximately 80% in their study period. 72% of global burned area is in 

Africa, close to the results of other researchers (e.g. 68.41% by Roy et al. 2008). 

Lehsten et al. (2009) compute the burned area of Africa from SPOT L3JRC burned area 

product, which shows an average annual burned area of 86.9±12.0 104 km2 in NHAF, and 

108.5±16.0 104 km2 in SHAF. These values are in the burned area range of different detection 

quality levels calculated in this study: ~83 to ~124 (from best level to all levels) 104 km2 in 

NHAF and ~77 to ~118 104 km2 in SHAF. This study shows that the NHAF burned area is 

larger than SHAF burned area, in agreement with the calculation by van der Werf et al. (2006) 

                                                        
15 See www.bom.gov.au (2009-11-23). 
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from MODIS data and TRMM data. However the difference of the burned area between these 

two regions is not as large as they mentioned. 

The burned area values of the first two years in AUST determine the wildfire trend of 

Australia greatly (AUST time-series in Figure 13), and the first two years’ values might be the 

lag influence of 1997-1998 El Niño event, since draught can last much longer than a single El 

Niño event (Lucas et al., 2007). Possibly due to the same reason, the global burned area in 

2002 is markedly large in Figure 13 and Table 6. Year 2003 and 2007 saw above-normal fire 

activities in some regions, e.g., 2003 in BOAS, 2007 in TENA, NHSA, SHSA, and EQAS, 

which might be due to the ENSO inter-annual variability. Thus there is no reliable trend 

inferred from these 9 years’ burned area analyses. Figure 29 shows the multivariate ENSO 

Index (Wolter and Timlin, 1998) from 1997 to the present. The figure also shows that year 

2004 and 2005 are the years with less influences of ENSO, and the multivariate ENSO indices 

are close to the normal level. 

 

Figure 29. Time series of Multivariate ENSO Index after 199716.Red numbers of years have prominent El Niño 

events. Shaded area is the period in this study. 

 

5.3 Fire drivers 

Climate is the primary determinant of wildfire occurrences, directly through weather 

conditions and indirectly through the supply of fuel load. The next requirement is ignition, by 

human or nature (Dwyer et al., 2000). However, statistic analysis cannot tell which factor is 

the driver of wildfires from physical or mechanical sense, due to 

1) Mathematical expression does not necessarily reflect causal relations between explanatory 

variables and the response. One variable may highly correlate to the response due to its 

close correlation to a third variable which is the direct causal factor of the response. For 

example, Archibald et al. (2008) note that the grazing density is an important factor 

determining the wildfire BAR in Southern Africa. Grazing actually has no directly relation 

with fire. Because the grazing can reduce the flammable grassy fuel, it becomes an 

important fire determinant. 

2) Some determinant variables may keep stable in experiment samples and hence cannot 

reflect their deviant impacts in the response. 

3) Some variables may have large noise in the values, and distort their correlation with the 

response. Hence they may have no statistical correlation with the response. 

This study used two principal methods to estimate variable importance: Pearson correlation, 

                                                        
16 Data from http://www.esri.noaa.gov/psd/people/klaus.wolter/MEI/table.html (2009-11-23). 
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generalized linear correlation by logistic regression. Random forest regression was also used 

as comparison to estimate variable importance. Different methods lead to slightly different 

results. Further analysis of which method is reliable is beyond the scope of this study. 

Moreover, variable importance analysis and variable selection is a profound research topic in 

statistics (Wang, 2002; Strobl, et al., 2007). In this study, combining the statistical results and 

physical sense, the influences of the explanatory variables on the BAR were analyzed. 

Temperature: Many other researchers have identified the temperature as the most important 

variable affecting wildfires (Flannigan et al., 2009). Globally, temperature holds positive 

correlation with fire activity, since moderately higher temperature favours vegetation growth 

thus leads to fuel load increase, and higher temperature in fire season also promotes the 

flammability of grassy vegetation and leaf litters, and therefore facilitates fire development 

and spread. Warming can also lengthen fire seasons (Westerling et al., 2006). Some regions 

(TENA, MIDE, CEAS, and EQAS), on the contrary, hold negative relations between the BAR 

and the mean annual temperature. The possible explanation is that warmer conditions might 

tend to lessen moisture available to plant during the growing season in these regions 

(Westerling and Bryant, 2008), and therefore lower the fuel load accumulation. 

Figure 30 shows that the mean annual BAR roughly increases with increasing the mean 

temperature, comparable to Dwyer et al. (2000)’s results based on the AVHRR detected fire 

pixels between April 1992 and December 1993. The mean annual BAR reaches a small 

maximum at 4ºC, whose data are contributed from BOAS. Above 4ºC, the BAR decreases 

slightly with increasing the temperature. The BAR has a pronounced increase when the 

temperature exceeding 22ºC. The BAR reaches maximum at 26ºC, and then decreases after 

this temperature. The maximum mean annual temperature derived from NCEP dataset is 

27.12ºC, and therefore there is no information after this value in Figure 30 Left. 

   
Figure 30. Left: scatter plot of mean annual BAR vs. mean annual temperature. Blue arrows show that the peaks 

are contributed from which region. Red line gives the mean BAR value at a specific temperature point, with one 

standard deviation of the mean showing in red dash line. Right: relations of fire burned pixels with 

bio-temperature (Dwyer et al., 2000). Solid line is the mean, and the dash line is one standard deviation. 

Bio-temperature is the mean of the above zero temperature, hence the curves shift rightward. 

Rainfall: The variation of mean annual rainfall has impacts both on fuel load and fuel 

moisture. These are two opposite effects, and may cancel out each other: low rainfall leads to 

fire-prone condition and also poor fuel, and high rainfall leads to more fuel and also high 
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moisture. That both increase and decrease of rainfall could decrease the BAR implies that 

there exists an optimal rainfall value, at which the BAR can reach maximum, and that the 

annual BAR and the annual rainfall have a unimodal relation (Figure 18). This unimodal 

relationship was also noted by many other researchers (e. g. Dwyer et al., 2000; Spessa et al., 

2005; Lehsten et al., 2009). 

Warmer-temperature-induced higher evaporation and transpiration may reduce the effective 

precipitation (Dwyer et al., 2000). Therefore, entangling with temperature, the relationship of 

mean BAR to mean rainfall tends to be more variable in some places. 

The correlation analyses suggest that another rainfall index, intra-annual rainfall variability, is 

more influential than the mean annual rainfall on the mean BAR in most regions. Possibly due 

to the short period in this study, which failed to catch enough inter-annual variability of 

rainfall, the inter-annual rainfall variability is less noticeable than intra-annual variability in 

affecting the mean annual BAR. In some woody vegetations, such as BONA, TENA, SEAS 

and EQAS, inter-annual rainfall variability did show more importance than intra-annual 

rainfall variability. This is because forests need several years to recover from a wildfire, while 

the intra-annual variability of rainfall has only strong influence on the grass recovery from 

fires. 

The rainfall in fire season is intuitively an important fire driver, affecting fire occurrence and 

spread directly. However, this study found that the rainfall in fire season is less influential on 

the BAR. It even has no significant correlation with the mean annual BAR in BONA, CEAM, 

SEAS, and AUST. The reason for such lack of pronounced relation is three-fold. 1) Fire 

behaviour is controlled by moisture content threshold (Thonicke et al., 2001), and does not 

follow linear relations (no matter generalized or ordinary) with the rainfall in fire season. 2) 

Fire occurrence is only dependent on ignition possibility when fuel is ready for burning in fire 

season. 3) Fire development and spread is dependent on wind and slope after ignition. In 

BONA, the individual annual analysis of year 2004 shows that relative air humidity and wind 

speed are the most important variables. In CEAM, cultivation is the most important variables 

in 2004. In SEAS, topographical roughness and wind speed are important in the analysis of 

2004. And in AUST the most important variables are the temperature in fire season and the 

rainfall in non-fire season. 

To savannah perennial grasses, it is suggested that the previous 2-year mean rainfall before 

fire season is better to fit burned area than a single year rainfall (van Wilgen et al., 2004, 

Archibald et al., 2009). This study found that the growing season rainfall provides the best fit 

to the data in savannah vegetation (NHAF, SHAF, and AUST), and that in most regions, there 

is no obvious difference among 1, 2, 3, and 4 years’ rainfall in fitting the annual BAR. This is 

possibly due to that these rainfall data were highly correlated. 

Population: The population density is not very important in affecting the mean annual BAR in 

correlation analyses in all 14 regions, comparable to Dlamini (2010)’s results using Bayesian 

belief network analysis in Swaziland on the 2001-2007 MCD45A1 dataset. However, the 

random forest analysis suggests that the population density is important, in agreement with 

Archibald et al. (2009)’s results by the random forest analysis in southern Africa. The 

reliability of variable importance given by the random forest regression is investigated by 
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Strobl, et al. (2007). They argue that the results have bias and will favour such variables with 

more categories. They suggest that using another regression function cforest in R party 

package would correct this bias. Another speculation is that the linear correlation (ordinary 

and generalized) is not suitable for analysing the relationship between the population and the 

mean BAR. 

Archibald et al. (2009) argue that percentage of burned area has a monotonic negative relation 

with population density, and percent fire activity has a maximum value when population 

density is ~10 persons/km2. They explain that fewer people may imply larger continuous fuel 

beds, and hence larger BAR and lower fire activity counts (Figure 31). By averaging mean 

BAR at each population density value, my study shows that when population density is less 

than 3 persons/km2, the mean BAR will increase with increasing population density. This is 

intuitively correct: more people, more chance of fire occurrence by human ignition, purposely 

or carelessly. Higher population density also means effective fire suppression, and therefore 

fire spread can be limited. This explanation is also suitable for Archibald et al.’s results by 

active fire data. Here the author admits that different summarizing method may lead to 

different critical population density values. If using GLM logistic regression, the highest BAR 

occurs at ~12 persons/km2 (regression equation is: logit(BAR)= -5.05 +2.72×log10_P -1.26×log10_P 2, 

psuedo- R2= 0.073, df=210094). 

   

          a)                              b)                            c) 

Figure 31. Relationship between the mean BAR and the population density. Archibald et al. (2009) give the 

southern Africa results of 2003 fire season by a) MODIS burned area product, b) MODIS active fire product. 

This study shows c) 9 years global result of MODIS burned area product. Solid line in a) and b) is 99% quantile 

linear regression. Red solid line in c) is the average of mean BAR to a certain population density value, and dash 

line is one standard deviation of the average. 

Other indices derived from population or urban may be more meaningful than population 

density and urban coverage in correlation analysis, e.g., distance to the nearest urban area or 

human. Area burned by wildfires tends to avoid urban areas and places with dense population, 

and hence it is unsuitable to directly link the fire activities with the population density or 

urban coverage cell by cell (or pixel by pixel) on maps. 

Cultivation: Some wildfires in BONA, CEAM, MIDE, EURO, and BOAS are agricultural 

burning for shifting cultivation, such as large-scale agricultural burning in Russia, Kazakhstan, 

China, US, Canada and Ukraine17. Due to this globally small portion of burned area (10.8% of 

the global total), the cultivation percentage does not show its importance in influencing the 

                                                        
17 See report at www.unh.edu/news, May 26, 2009. (2009-11-23) 
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global BAR. 

The negative relation between the cultivation percentage and the mean annual BAR in AUST 

suggests that the vast Australian burned area is not induced by or related to agricultural 

burning, if there is any agricultural burning. On the contrary, fragmentation of agricultural 

fields become the obstacles hindering wildfire spread, and also the large cultivation coverage 

means more human beings and more effective fire suppression in Australia. 

Grass: The grassy vegetation is prone to fire in dry season. Therefore the grass cover is an 

important variable determining the BAR. But at the regional scale, the grass cover has 

different influences in this study. Archibald et al. (2009) note that grazing density is an 

important factor determining the BAR in southern Africa. Probably due to this strong 

cancelling effect of grazing density, the grassland coverage becomes the least important for 

the BAR in SHAF. In BOAS, the grass cover varies greatly in the boreal forest, from below 

10% to over 80% (Figure 32), and the mean annual BAR is mostly below 5%. Because most 

of this small portion BAR is the result of controlled burning for grassland and forest 

management (Dwyer et al., 1999), the BAR has no significant linear correlation with the grass 

cover percentage in BOAS. In EURO, due to relatively lower coverage and highly fragmented 

grassland, the grass cover has no significant association with the BAR either. 

 

Figure 32 Global distribution of grass cover. Data used here are provided by IIASA from 6 data sources (see 

section 2.5 for detail). 

The large area in the northwest of BONA has higher grass coverage but lack confident 

detection of wildfire (Figure 5). The rest parts of BONA with higher BAR have slightly lower 

grass cover, e.g., the south Canada. Therefore, BONA holds a significant negative relation 

between the BAR and the grass cover noticeably. 

Forest: The relationship between the forest cover and the mean BAR is opposite to that 

between the grass cover and the mean BAR (Figure 33). This is because high grass cover 
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means low forest cover, and vice versa, if the land gridcell is not dominated by bare ground. 

MODIS vegetation continuous field products consider that each land gridcell is only 

composed of tree cover, herbaceous cover and bare ground portions (Hansen et al., 2003). 

Figure 33 (left) shows that two distinct peaks of BAR occur at 5-10% and 35-40% forest 

cover respectively. The first peak is exactly the low forest cover region in African Sahel, a 

transition zone from arid desert to humid tropic zone. The second peak is the zone between 

Sahel and the tropic rainforest in Africa. These two regions seem to hold distinct stable 

vegetation structures, which might be maintained by regular wildfires. 

   
Figure 33. Scatter plot of the mean BAR vs. the tree cover and its general trend. Left figure is the result of this 

study: black ‘•’ stands for the global data, and blue ‘×’ is NHAF data; solid red line is the average of mean BAR 

at each forest cover value, and the dash red line is one standard deviation of the average. Right: southern Africa 

results by Archibald et al. (2009). 

Negative correlation of the forest cover and the mean BAR is probably aroused by their 

mutual influences: fire limits the forest cover (Bond and Keeley, 2005), and the increased tree 

cover slows the fire spread and hence reduces the burned area (Giglio et al., 2006). 

Year 2004 did not see strong relation between the forest cover and the mean BAR in SEAS in 

the individual annual GLM analysis. It is possibly because the strong variation of annual BAR 

in this region. 

In SHAF, Archibald et al. (2009) note that tree cover is the most important variable to the 

mean BAR. They find that the BAR will decrease rapidly when the tree cover exceeds 40% 

(Figure 33 right) and suggest this might be the threshold above which fire will be kept out. 

Unfortunately, the analysis on nine years’ data in this study failed to see this relation in SHAF. 

Instead, NHAF holds this kind of relation. 

Topography: Rough topography can reduce the BAR by forming barriers to both fire spread 

and human access (Guyette et al., 2002). Topographic variation also has effects on fuel 

moisture, fuel type and structure (Taylor and Skinner, 2003). Most of the SHSA wildfires 

occur in Pampas Plains and eastern South America, avoiding Andes Mountains. Seldom fires 

are found in Himalayas Mountains of Southeast Asia. Fires are also rare in Mongolia Plateau 

of central Asia (see Figure 5). Therefore, topographical roughness shows its importance in 

such regions with high topographic variations, such as SHSA, CEAS, and SEAS. 
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Lightening: Apart from human ignition, lightning is another important ignition source, 

especially dry lightning storms that bring ignition and strong wind but little precipitation in 

boreal forests (Gedalof et al., 2005; Fauria and Johnson, 2008). In North American boreal 

forest, lightning is abundant enough in most areas and lightning-ignited fire is limited by fuel 

dryness before the lightning strikes (Fauria and Johnson, 2008). This suggests that weather is 

more important than lightning in North America boreal forest, albeit lightning ignition is an 

important fire source here. Archibald et al. (2009) show that most lightning strikes happen 

outside the fire season in such vegetations as forest, forest transition and mosaics, shrub land, 

grassland, and semi-desert vegetation. Lightning frequency correlates to monthly rainfall in 

most places of the world (Arora and Boer, 2005). In fact, only the cloud-to-ground lightning 

in fire season is meaningful to wildfire occurrence. Since such dataset is not available at 

present and the current global lightning data measured by the Lightning Imaging Sensor (LIS) 

on board TRMM satellite are total lightning (intra-cloud and cloud-to-ground) data (Christian 

et al., 1999), lightning was not considered in this study. 

 

5.4 Models 

Three models were used in this study: global GLM, regional GLMs and global random forest. 

Each regional model used half of the data for model selection training and the rest half for 

validation (TENA and CEAM were exceptional). Global model used 5% of the data in model 

selection due to the computer memory limitation, and the rest 95% of the data for validation. 

The comparison of mean squared error in three models shows no over-fitting in these models. 

Final maps of modelled BAR and residues indicate that regional GLMs have the highest 

prediction capability, and that the global GLM is less accurate than the global random forest 

regression. The random forest model did not take the regional division scheme as an 

explanatory variable. In fact the random forest could take regional scheme as a dummy 

variable (factor variable in R) in each regression tree growth in the forest model, but this 

factor variable has no sufficient physical meaning, only a geographical division. 

Variables in the final optimal GLMs are not identical with those showing high importance in 

the correlation analyses. This is certainly true. The stepwise selection algorithm excludes 

redundant variables that are highly correlated. Thus variable importance cannot be 

analytically estimated from the formulae of these optimal GLMs. Some variables that do not 

present in the formula might be more important than the variables in the formula. Also, 

adding or dropping a variable would change parameters of the other variables in the formula. 

Moreover, the formula training data were randomly selected from the total measurements, and 

the optimal formula might be randomly different in each trial of model selection. 

The biggest drawback of the stepwise model selection is that, “one-each-time” nature of 

adding/dropping variables may miss the optimal model with an appropriate combination of 

some variables. Nevertheless, the use of AIC criterion in stepwise model selection by the R 

function stepAIC in MASS package has many advantages over other automatic stepwise model 

selection methods. This viewpoint is shared by Professor Ripley, the author of MASS package 

of R18. 

                                                        
18 See http://www.biostat.wustl.edu/archives/html/s-news/2002-03/msg00114.html (2009-11-23) 
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The models used in this study belong to two different classes: parameter-based and 

non-parameter-based models. The GLM is parameter-based, and the random forest is 

non-parameter-based. Both models are based on the criterion of prediction ability: the GLM is 

based on the maximum likelihood between the saturated model and the fitted model, and the 

random forest is based on the out-of-bag estimate of error rate. The GLM is more 

straightforward, and only one formula was used to predict mean BAR of an individual region, 

albeit some region’s formulae are quite complicated, such as NHAF and SHAF, and some 

region’s formulae cannot explain the BAR variation properly. As to the non-parameter-based 

model, each tree in the random forest is the best split result among randomly selected 

variables. The final regression result is the mean prediction of all the regression trees. 500 

trees were grown in this study. Comparing the global models of the GLM and the random 

forest, random forest has higher prediction capability. But it is more difficult to physically 

explain the random forest model since we have 500 small models (regression trees). Breiman 

(2001) admits that a forest of trees is impenetrable in mechanism. According to the Law of 

Large Numbers, the averaging in the random forest regression is a form of shrinkage, which is 

critical in regression. That may be the reason why random forest has strong prediction ability. 

The proposed explanatory variables should be sufficient to explain the variation of response. 

I.e. all the possible factors determining wildfires should be considered in models. E.g., the 

factors of lightening strikes and forest management should be included in the prediction of 

boreal forest wildfires. If the given variables are not complete and cannot explain the response, 

neither GLM nor random forest model can reach accurate predictions. This study also tried 

random forest regression in region TENA and BONA, and only less than 15% variation of 

BAR could be explained. 

The analyses show that BONA, BOAS and TENA have highest inter-annual variability of 

annual BAR (see Figure 8). It is difficult to simulate the response variable with high 

inter-annul variability, since the mean is unstable. Better results are expected to be attained by 

simulating each year’s BAR, instead of several years’ mean. It is worth to note that MODIS 

burned area product might have failed to map the understory areas burned by forest ground 

fires at an unknown degree (Roy et al. 2008). 

 

5.5 Spatial autocorrelation 

Spatial autocorrelation is the self-correlation of a variable arising from their relative locations 

in geographic space. According to the first law of geography (Tobler, 1970), “Everything is 

related to everything else, but near things are more related than distant things”. Spatial 

dependence or independence depends on the distance between point (polygon) pairs. Spatial 

autocorrelation coefficient is a function of distance (Sokal et al., 1978). 

This study shows that mean annual BAR is highly spatially autocorrelated. Spatial 

autocorrelation violates the assumption of independent and identically-distributed (iid) 

samples in statistics. The spatial autocorrelation of BAR is caused by many mechanisms 

(Dormann et al., 2007; Archibald et al., 2009), e.g., the natural property of spatial data (the 

first law of geography); potential fire drivers are spatially auto-correlated; and spatial 

resolution. 
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Dealing with spatial autocorrelation and eliminating its influence in regression residues are 

beyond the scope of this study. The analysis on explanatory variables shows that they are all 

spatially auto-correlated. The example of NHAF is shown in Figure 34. 

 

Figure 34. Spatial autocorrelation of the BAR and explanatory variables in NHAF. The minimum distances of 

spatial independence for temperature and various rainfall indices are ~1400km, lager than that of BAR. 
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6 Conclusions 

6.1 Global wildfires 

Using the novel MODIS burned area product from April 2000 to March 2009, this study 

presents the global wildfire maps at 0.25° resolutions. By seasons, globally wildfires have 4 

distinct latitudinal zones, with the largest burned area in August and December and the 

smallest burned area in March and April. Each region has various patterns of wildfire season. 

Each year, 335.74±9.18 104km2 of the global area are burned, equivalent to ∼3.85% of the 

global land area (discarding Greenland and Antarctic). Savannah fires in Africa and Australia 

account for 83.1% of the global burned area, and the burned area in Africa is 72% of the 

world total. 

Nine years’ period is not longer enough for trend change analysis on wildfires, albeit Australia 

did show some significant decreasing trend, which is mainly because of large burned area 

values in the first two years. The large burned areas in 2000 and 2001 in Australia were 

probably caused by the lag draught influence of the 1997-1998 El Niño Event.  

BARs, as well as various climate and vegetation, socio-economic variables show highly 

spatial autocorrelation in this study. 

 

6.2 Wildfire drivers 

Correlation analyses indicate that the mean annual temperature is most closely associated with 

the mean annual BAR. Generally, higher temperature promotes wildfires by providing more 

biomass for burning, by creating a fire-prone weather condition, and by lengthening fire 

seasons. When higher temperature inhibits plant growth by reducing available water in 

growing season, temperature will negatively relate to BAR. The correlation analyses did not 

find close relations between the mean annual rainfall and the mean BAR, albeit they did 

present a unimodal distribution and the BAR peaked at 1135 mm/yr in GLM regression. The 

intra-annual variability of rainfall is more influential than the mean annual rainfall amount on 

the mean BAR. The inter-annual variability of rainfall does not show such strong influence, 

possibly due to the short studying period. In some woody vegetation, e.g., BONA, TENA, 

SEAS and EQAS, the inter-annual variability of rainfall does show more importance than the 

intra-annual variability of rainfall. As to the fit ability of rainfalls to the BAR, analysis on the 

2004 data shows that there is no obvious difference among 1, 2, 3, and 4 years’ rainfalls in 

most regions. The total rainfall of the growing season before the fire season attains the best fit 

in savannah biomes (NHAF, SHAF, and AUST). 

Among all the explanatory variables in this study, the population and urban are correlated; the 

cultivation and nutrient are correlated; and the grass and forest covers are inversely correlated. 

Therefore, each pair show similar or inverse relations with the mean BAR. The population 

density is not closely related to the mean BAR in correlation analyses, but it shows 

importance in random forest regression when using the randomForest package of R, incurring 

the necessity of checking the random forest result of parameter importance further. The grass 
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cover is closely associated to the mean BAR in both the global and some regions. The forest 

cover has high importance in TENA, NHSA, SHSA, EURO, SHAF, SEAS, and EQAS. The 

cultivation has important influences on wildfires in BONA, CEAM, MIDE, EURO, BOAS, 

CEAS and SEAS. As to the topographical roughness, it closely correlates to the mean BAR in 

SHSA, CEAS, and SEAS, regions with higher topographical variability. 

 

6.3 Fire models 

Regional GLMs attains better BAR predictions than the global models, including the global 

GLM and the global random forest regression. The BAR of global random forest regression 

are more accurate than that of the global GLM. 

It is easier to simulate BARs in savannah biomes, which are burned regularly and have high 

proportions of burned area. On the contrary, forest fires are hard to predict. Forests are 

generally burned irregularly and have low fractions of burned area. They are also subjected to 

adjustment by fire suppression efforts. The abrupt occurrence of large forest fires due to fuel 

accumulation in a long period of fire suppression is even harder to predict. 

In such regions that the proposed explanatory variables cannot explain the variation of mean 

annual BAR, some other factors should be considered, such as lightning strikes, forest 

management policies, and so on. Simulating several years’ mean annual BAR is suitable and 

has been practiced in savannah biomes (e.g. Spessa et al., 2005), but it is probably not 

suitable in woody vegetations. Instead, simulating the BAR of annual (or seasonal) 

time-series should be practiced for forest biomes. 
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Appendix 

Appendix A Coordinates of four corners of 266 tiles used in MCD45A1 
Tile No. lons(1) lons(2) lons(3) lons(4) lats(1) lats(2) lats(3) lats(4) 

h00v08 -180.000 179.930 -169.920 -169.990 -0.007 9.999 9.991 0.000 

h00v09 179.930 -180.000 -169.990 -169.920 -9.999 0.007 0.000 -9.991 

h00v10 179.860 -180.000 -172.610 -172.470 -19.189 -9.975 -9.984 -19.174 

h01v07 -179.460 179.950 -162.220 -162.470 9.724 19.997 20.268 9.983 

h01v08 -170.020 -172.620 -161.840 -159.390 -0.016 10.000 10.014 0.001 

h01v09 -172.620 -170.020 -159.390 -161.830 -10.000 0.016 -0.001 -10.014 

h01v10 179.950 -179.460 -162.460 -162.210 -19.997 -9.725 -9.983 -20.268 

h01v11 179.740 -180.000 -170.260 -170.000 -27.258 -19.930 -19.937 -27.240 

h02v06 -179.090 179.660 -159.150 -159.630 19.349 29.963 30.586 19.950 

h02v08 -160.020 -162.470 -151.720 -149.430 -0.015 10.000 10.013 0.001 

h02v09 -162.470 -160.020 -149.430 -151.720 -10.000 0.015 -0.001 -10.013 

h02v10 -170.270 -162.480 -151.760 -159.020 -20.000 -9.931 -9.977 -20.044 

h02v11 179.660 -179.090 -159.620 -159.140 -29.963 -19.349 -19.950 -30.586 

h03v06 -159.580 -173.210 -161.250 -148.580 19.872 30.000 30.079 19.950 

h03v07 -152.330 -159.630 -148.430 -141.650 9.933 20.000 20.042 9.976 

h03v09 -152.310 -150.020 -139.470 -141.600 -10.000 0.014 -0.001 -10.012 

h03v10 -159.630 -152.330 -141.640 -148.410 -20.000 -9.933 -9.976 -20.041 

h03v11 -173.210 -159.580 -148.570 -161.220 -30.000 -19.872 -19.949 -30.078 

h04v09 -142.160 -140.010 -129.510 -131.490 -10.000 0.013 -0.001 -10.011 

h04v10 -148.980 -142.170 -131.520 -137.810 -20.000 -9.935 -9.975 -20.038 

h04v11 -161.660 -148.940 -137.930 -149.680 -30.000 -19.876 -19.947 -30.072 

h05v10 -138.340 -132.020 -121.400 -127.200 -20.000 -9.938 -9.974 -20.035 

h05v11 -150.110 -138.310 -127.300 -138.140 -30.000 -19.880 -19.944 -30.066 

h05v13 178.730 -178.750 -156.660 -155.570 -48.000 -38.904 -39.835 -49.054 

h06v03 -179.990 179.770 -170.900 -171.140 49.915 52.325 52.323 49.916 

h06v11 -138.560 -127.670 -116.670 -126.610 -30.000 -19.883 -19.942 -30.060 

h07v03 -178.800 178.460 -154.200 -155.610 48.938 56.039 56.979 49.751 

h07v05 -126.910 -143.600 -130.490 -115.280 29.825 40.000 40.097 29.912 

h07v06 -117.030 -127.020 -115.100 -106.060 19.887 30.000 30.055 19.940 

h07v07 -111.710 -117.060 -106.010 -101.160 9.942 20.000 20.030 9.973 

h08v03 -173.520 177.170 -136.790 -140.050 46.880 59.213 63.180 49.782 

h08v04 -131.010 -156.840 -140.240 -117.280 39.708 49.898 50.126 39.870 

h08v05 -115.370 -130.540 -117.360 -103.700 29.831 40.000 40.085 29.906 

h08v06 -106.400 -115.470 -103.570 -95.441 19.890 30.000 30.049 19.938 

h08v07 -101.550 -106.420 -95.405 -91.046 9.944 20.000 20.027 9.972 

h08v08 -100.010 -101.540 -91.030 -89.655 -0.009 10.000 10.008 0.000 

h08v09 -101.540 -100.010 -89.655 -91.025 -10.000 0.009 0.000 -10.008 

h08v11 -115.470 -106.400 -95.431 -103.560 -30.000 -19.890 -19.938 -30.049 

h09v02 -179.890 178.780 -158.790 -160.110 59.626 63.526 63.518 59.629 

h09v03 -142.360 170.890 -161.120 -124.110 49.415 58.920 60.162 49.810 

h09v04 -117.750 -140.800 -124.620 -104.240 39.734 49.939 50.116 39.862 

h09v05 -103.840 -117.490 -104.260 -92.132 29.836 40.000 40.074 29.901 

h09v06 -95.758 -103.920 -92.052 -84.825 19.894 30.000 30.044 19.936 

h09v07 -91.399 -95.776 -84.801 -80.927 9.946 20.000 20.024 9.971 

h09v08 -90.009 -91.388 -80.914 -79.692 -0.008 10.000 10.007 0.000 

h09v09 -91.388 -90.009 -79.692 -80.910 -10.000 0.008 0.000 -10.007 

h10v02 -174.490 176.550 -135.930 -140.110 57.558 66.357 69.211 59.645 

h10v03 -126.120 -165.420 -140.540 -108.550 49.506 59.439 60.135 49.795 

h10v04 -104.520 -124.890 -109.000 -91.191 39.756 49.968 50.105 39.855 

h10v05 -92.301 -104.430 -91.174 -80.578 29.841 40.000 40.064 29.896 

h10v06 -85.120 -92.376 -80.535 -74.213 19.897 30.000 30.038 19.934 

h10v07 -81.244 -85.134 -74.198 -70.809 9.948 20.000 20.021 9.970 

h10v08 -80.008 -81.234 -70.799 -69.730 -0.007 10.000 10.006 0.000 

h10v09 -81.234 -80.008 -69.730 -70.795 -10.000 0.007 0.000 -10.006 

h10v10 -85.134 -81.244 -70.805 -74.191 -20.000 -9.948 -9.969 -20.021 

h10v11 -92.376 -85.120 -74.205 -80.521 -30.000 -19.897 -19.934 -30.038 

h11v02 -162.000 176.210 -109.910 -120.100 55.534 68.467 75.555 59.681 

h11v03 -109.970 -143.130 -120.320 -92.993 49.579 59.705 60.123 49.782 

h11v04 -91.339 -109.090 -93.397 -78.150 39.773 49.986 50.092 39.849 

h11v05 -80.766 -91.379 -78.111 -69.037 29.846 40.000 40.054 29.892 

h11v06 -74.481 -80.829 -69.021 -63.604 19.901 30.000 30.033 19.932 
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h11v07 -71.089 -74.492 -63.596 -60.691 9.950 20.000 20.018 9.969 

h11v08 -70.007 -71.080 -60.683 -59.767 -0.006 10.000 10.005 0.000 

h11v09 -71.080 -70.007 -59.767 -60.680 -10.000 0.006 0.000 -10.005 

h11v10 -74.492 -71.089 -60.688 -63.589 -20.000 -9.950 -9.968 -20.018 

h11v11 -80.829 -74.481 -63.597 -69.010 -30.000 -19.901 -19.932 -30.033 

h11v12 -91.379 -80.766 -69.025 -78.090 -40.000 -29.846 -29.891 -40.053 

h12v02 -124.410 136.070 -114.540 -94.865 59.051 56.541 67.608 59.261 

h12v03 -93.922 -121.690 -100.180 -77.458 49.636 59.851 60.110 49.771 

h12v04 -78.208 -93.382 -77.751 -65.078 39.786 49.997 50.075 39.841 

h12v05 -69.229 -78.324 -65.064 -57.509 29.851 40.000 40.045 29.888 

h12v07 -60.933 -63.851 -52.994 -50.574 9.952 20.000 20.015 9.968 

h12v08 -60.006 -60.926 -50.568 -49.805 -0.005 10.000 10.005 0.000 

h12v09 -60.926 -60.006 -49.805 -50.565 -10.000 0.005 0.000 -10.005 

h12v10 -63.851 -60.933 -50.572 -52.989 -20.000 -9.952 -9.967 -20.015 

h12v11 -69.282 -63.842 -52.992 -57.501 -30.000 -19.904 -19.930 -30.027 

h12v12 -78.324 -69.230 -57.499 -65.047 -40.000 -29.851 -29.888 -40.044 

h12v13 -93.382 -78.208 -65.061 -77.720 -49.997 -39.786 -39.840 -50.074 

h13v02 -102.760 -157.480 -119.230 -79.385 59.278 68.583 70.242 59.644 

h13v03 -77.991 -100.800 -80.080 -61.937 49.679 59.933 60.093 49.762 

h13v04 -65.150 -77.786 -62.119 -52.009 39.794 50.000 50.058 39.834 

h13v08 -50.005 -50.771 -40.453 -39.842 -0.004 10.000 10.004 0.000 

h13v09 -50.771 -50.005 -39.842 -40.451 -10.000 0.004 0.000 -10.004 

h13v10 -53.209 -50.778 -40.455 -42.388 -20.000 -9.954 -9.966 -20.012 

h13v11 -57.735 -53.202 -42.389 -45.995 -30.000 -19.907 -19.928 -30.022 

h13v12 -65.270 -57.692 -45.984 -52.017 -40.000 -29.855 -29.885 -40.035 

h13v13 -77.786 -65.150 -51.996 -62.096 -50.000 -39.794 -39.833 -50.057 

h14v02 -81.393 -121.560 -88.059 -59.442 59.442 69.530 70.113 59.628 

h14v03 -62.185 -80.282 -60.007 -46.431 49.709 59.977 60.073 49.755 

h14v04 -52.120 -62.229 -46.536 -38.971 39.799 50.000 50.043 39.828 

h14v09 -40.617 -40.004 -29.880 -30.336 -10.000 0.003 0.000 -10.003 

h14v10 -42.567 -40.622 -30.339 -31.788 -20.000 -9.955 -9.965 -20.010 

h14v11 -46.188 -42.562 -31.788 -34.491 -30.000 -19.910 -19.927 -30.017 

h15v02 -60.407 -89.302 -58.535 -39.567 59.550 69.854 70.082 59.620 

h15v03 -46.512 -60.031 -39.918 -30.908 49.727 59.998 60.048 49.748 

h15v05 -34.616 -39.162 -25.995 -22.982 29.864 40.000 40.020 29.880 

h15v07 -30.466 -31.925 -21.191 -20.224 9.957 20.000 20.007 9.964 

h15v11 -34.641 -31.921 -21.189 -22.989 -30.000 -19.913 -19.925 -30.012 

h16v02 -39.873 -58.800 -29.170 -19.753 59.609 69.972 70.047 59.619 

h16v05 -23.077 -26.108 -12.988 -11.486 29.868 40.000 40.012 29.878 

h16v06 -21.280 -23.094 -11.490 -10.591 19.916 30.000 30.008 19.923 

h16v07 -20.311 -21.284 -10.590 -10.108 9.959 20.000 20.004 9.963 

h16v08 -20.002 -20.309 -10.107 -9.955 -0.001 10.000 10.001 0.000 

h16v09 -20.309 -20.002 -9.955 -10.106 -10.000 0.001 0.000 -10.001 

h16v12 -26.108 -23.077 -11.484 -12.985 -40.000 -29.868 -29.878 -40.012 

h17v02 -19.808 -29.238 0.059 0.016 59.627 70.000 70.014 59.624 

h17v03 -15.486 -20.000 0.033 0.013 49.739 60.000 60.009 49.742 

h17v04 -13.026 -15.557 0.022 0.011 39.815 50.000 50.006 39.819 

h17v05 -11.536 -13.054 0.016 0.010 29.872 40.000 40.004 29.876 

h17v06 -10.639 -11.547 0.013 0.009 19.919 30.000 30.003 19.922 

h17v07 -10.155 -10.642 0.010 0.008 9.961 20.000 20.002 9.962 

h17v08 -10.001 -10.154 0.009 0.008 0.000 10.000 10.001 0.000 

h17v10 -10.642 -10.155 0.008 0.010 -20.000 -9.961 -9.962 -20.002 

h17v12 -13.054 -11.536 0.010 0.016 -40.000 -29.872 -29.876 -40.004 

h17v13 -15.557 -13.026 0.011 0.022 -50.000 -39.815 -39.819 -50.006 

h18v02 0.001 -0.035 29.270 19.828 59.625 70.016 69.997 59.626 

h18v03 0.000 -0.016 20.021 15.501 49.743 60.010 59.998 49.738 

h18v04 0.000 -0.009 15.572 13.038 39.820 50.007 49.999 39.814 

h18v05 0.000 -0.005 13.066 11.547 29.876 40.005 39.999 29.872 

h18v06 0.000 -0.003 11.557 10.648 19.922 30.003 30.000 19.919 

h18v07 0.000 -0.002 10.651 10.163 9.962 20.002 20.000 9.961 

h18v08 0.000 0.000 10.163 10.009 0.000 10.001 10.000 -0.001 

h18v09 0.000 0.000 10.009 10.162 -10.001 0.000 0.001 -10.000 

h19v02 19.765 29.184 58.838 39.898 59.620 70.049 69.969 59.607 

h19v03 15.437 19.920 40.024 31.004 49.744 60.028 59.998 49.733 

h19v04 12.981 15.490 31.132 26.071 39.822 50.018 49.999 39.809 

h19v05 11.495 12.998 26.122 23.088 29.878 40.012 39.999 29.868 
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h19v06 10.600 11.499 23.105 21.290 19.924 30.008 30.000 19.916 

h19v07 10.116 10.599 21.293 20.319 9.964 20.005 20.000 9.959 

h19v08 9.963 10.115 20.317 20.010 0.000 10.001 10.000 -0.001 

h19v09 10.115 9.963 20.010 20.316 -10.001 0.000 0.001 -10.000 

h19v10 10.599 10.116 20.318 21.291 -20.005 -9.964 -9.959 -20.000 

h19v11 11.499 10.600 21.288 23.101 -30.008 -19.924 -19.916 -30.000 

h19v12 12.998 11.495 23.084 26.115 -40.012 -29.878 -29.868 -40.000 

h20v02 39.574 58.534 89.344 60.437 59.621 70.082 69.850 59.547 

h20v03 30.916 39.925 60.059 46.532 49.748 60.049 59.995 49.726 

h20v04 25.968 31.001 46.691 39.104 39.824 50.030 49.999 39.804 

h20v05 22.990 26.003 39.177 34.628 29.880 40.020 39.999 29.863 

h20v06 21.199 23.000 34.653 31.931 19.925 30.013 29.999 19.913 

h20v07 20.232 21.199 31.935 30.475 9.965 20.007 20.000 9.957 

h20v08 19.925 20.230 30.472 30.011 0.000 10.002 10.000 -0.002 

h20v09 20.230 19.925 30.011 30.470 -10.002 0.000 0.002 -10.000 

h20v10 21.199 20.232 30.474 31.932 -20.007 -9.965 -9.957 -20.000 

h20v11 23.000 21.199 31.928 34.647 -30.013 -19.925 -19.913 -30.000 

h20v12 26.003 22.990 34.622 39.168 -40.020 -29.880 -29.864 -40.000 

h20v13 31.001 25.968 39.095 46.676 -50.030 -39.824 -39.804 -50.000 

h21v02 59.442 88.030 121.600 81.429 59.628 70.111 69.526 59.439 

h21v03 46.437 60.009 80.313 62.208 49.755 60.073 59.975 49.707 

h21v04 38.977 46.541 62.250 52.136 39.828 50.043 49.998 39.798 

h21v05 34.490 39.014 52.232 46.167 29.883 40.028 39.999 29.859 

h21v06 31.799 34.503 46.201 42.572 19.927 30.018 29.999 19.910 

h21v07 30.348 31.799 42.578 40.631 9.966 20.010 20.000 9.955 

h21v08 29.888 30.345 40.626 40.012 0.000 10.003 10.000 -0.003 

h21v09 30.345 29.888 40.012 40.624 -10.003 0.000 0.003 -10.000 

h21v10 31.799 30.348 40.629 42.573 -20.010 -9.966 -9.955 -20.000 

h21v11 34.503 31.799 42.568 46.193 -30.018 -19.927 -19.910 -30.000 

h21v13 46.541 38.977 52.124 62.231 -50.043 -39.828 -39.799 -50.000 

h22v02 79.385 119.140 157.500 102.800 59.644 70.236 68.580 59.273 

h22v03 61.939 80.074 100.830 78.016 49.762 60.092 59.930 49.677 

h22v04 52.014 62.121 77.810 65.168 39.834 50.058 49.998 39.793 

h22v05 45.997 52.035 65.288 57.706 29.885 40.036 39.999 29.854 

h22v06 42.400 46.008 57.748 53.213 19.929 30.023 29.999 19.907 

h22v07 40.465 42.399 53.220 50.787 9.967 20.013 20.000 9.953 

h22v08 39.850 40.460 50.780 50.013 0.000 10.004 10.000 -0.004 

h22v09 40.460 39.850 50.013 50.778 -10.004 0.000 0.004 -10.000 

h22v10 42.399 40.465 50.784 53.214 -20.013 -9.967 -9.954 -20.000 

h22v11 46.008 42.400 53.207 57.739 -30.023 -19.929 -19.907 -30.000 

h22v13 62.122 52.014 65.153 77.786 -50.058 -39.834 -39.793 -50.000 

h23v02 94.857 114.570 -136.150 124.450 59.260 67.617 56.615 59.045 

h23v03 77.458 100.170 121.730 93.950 49.771 60.109 59.848 49.634 

h23v04 65.081 77.750 93.408 78.228 39.841 50.075 49.995 39.785 

h23v05 57.514 65.067 78.343 69.244 29.889 40.045 39.999 29.850 

h23v06 53.004 57.515 69.296 63.853 19.930 30.028 29.999 19.903 

h23v07 50.581 53.000 63.862 60.942 9.968 20.015 20.000 9.952 

h23v08 49.813 50.575 60.935 60.014 0.000 10.005 10.000 -0.005 

h23v09 50.575 49.813 60.014 60.932 -10.005 0.000 0.005 -10.000 

h23v10 53.000 50.581 60.939 63.855 -20.015 -9.968 -9.952 -20.000 

h23v11 57.515 53.004 63.846 69.285 -30.028 -19.930 -19.904 -30.000 

h24v02 120.100 109.910 -176.200 162.010 59.681 75.555 68.463 55.532 

h24v03 92.994 120.310 143.170 110.000 49.782 60.122 59.702 49.576 

h24v04 78.151 93.393 109.110 91.360 39.849 50.092 49.984 39.771 

h24v05 69.041 78.112 91.398 80.781 29.892 40.054 39.999 29.845 

h24v06 63.609 69.025 80.844 74.493 19.932 30.033 29.999 19.900 

h24v07 60.698 63.602 74.504 71.098 9.969 20.018 20.000 9.950 

h24v12 78.112 69.041 80.769 91.379 -40.054 -29.892 -29.846 -40.000 

h25v02 140.110 135.930 -176.530 174.500 59.645 69.211 66.354 57.556 

h25v03 108.550 140.540 165.450 126.160 49.795 60.135 59.436 49.503 

h25v04 91.191 109.000 124.910 104.540 39.855 50.104 49.965 39.754 

h25v05 80.581 91.174 104.450 92.318 29.896 40.064 39.999 29.840 

h25v06 74.218 80.538 92.392 85.132 19.934 30.038 29.999 19.897 

h25v07 70.816 74.203 85.146 81.253 9.970 20.021 20.000 9.948 

h25v08 69.738 70.806 81.244 80.016 0.000 10.006 10.000 -0.007 

h25v09 70.806 69.738 80.016 81.239 -10.006 0.000 0.007 -10.000 
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h26v02 160.110 158.790 -178.790 179.880 59.629 63.519 63.526 59.626 

h26v03 124.110 161.170 -170.880 142.400 49.810 60.166 58.918 49.411 

h26v04 104.240 124.610 140.830 117.770 39.862 50.115 49.937 39.733 

h26v05 92.134 104.250 117.510 103.850 29.901 40.074 39.999 29.835 

h26v06 84.830 92.054 103.940 95.771 19.936 30.044 29.999 19.893 

h26v07 80.934 84.806 95.789 91.408 9.971 20.024 20.000 9.946 

h26v08 79.701 80.921 91.398 90.017 0.000 10.007 10.000 -0.008 

h27v03 140.050 136.790 -177.160 173.530 49.782 63.180 59.210 46.878 

h27v04 117.280 140.230 156.870 131.040 39.870 50.125 49.896 39.706 

h27v05 103.700 117.360 130.560 115.390 29.906 40.085 39.998 29.830 

h27v06 95.445 103.570 115.490 106.410 19.938 30.049 29.999 19.890 

h27v07 91.052 95.408 106.430 101.560 9.972 20.027 20.000 9.944 

h27v08 89.663 91.036 101.550 100.020 0.000 10.008 10.000 -0.009 

h27v09 91.036 89.663 100.020 101.550 -10.008 0.000 0.009 -10.000 

h27v10 95.408 91.052 101.560 106.420 -20.027 -9.972 -9.944 -20.000 

h27v11 103.570 95.445 106.400 115.470 -30.049 -19.938 -19.890 -30.000 

h27v12 117.360 103.700 115.370 130.540 -40.085 -29.906 -29.831 -40.000 

h28v03 155.610 154.200 -178.460 178.810 49.751 56.971 56.030 48.938 

h28v04 130.340 155.870 173.090 144.350 39.878 50.134 49.836 39.675 

h28v05 115.280 130.480 143.630 126.930 29.912 40.096 39.998 29.824 

h28v06 106.060 115.100 127.030 117.050 19.940 30.055 29.999 19.886 

h28v07 101.170 106.010 117.070 111.720 9.973 20.030 20.000 9.942 

h28v08 99.626 101.150 111.710 110.020 0.000 10.009 10.000 -0.010 

h28v09 101.150 99.626 110.020 111.700 -10.009 0.000 0.010 -10.000 

h28v10 106.010 101.170 111.710 117.060 -20.030 -9.973 -9.942 -20.000 

h28v11 115.100 106.060 117.040 127.020 -30.055 -19.940 -19.887 -30.000 

h28v12 130.480 115.280 126.910 143.590 -40.096 -29.912 -29.825 -40.000 

h28v13 155.870 130.340 144.320 173.040 -50.134 -39.878 -39.678 -49.841 

h29v03 171.140 170.900 -179.770 179.990 49.916 52.323 52.325 49.915 

h29v05 126.870 143.620 156.730 138.500 29.918 40.108 39.994 29.816 

h29v06 116.690 126.630 138.580 127.680 19.942 30.061 29.999 19.883 

h29v07 111.290 116.620 127.720 121.870 9.974 20.033 20.000 9.940 

h29v08 109.590 111.270 121.860 120.020 0.000 10.010 10.000 -0.011 

h29v09 111.270 109.590 120.020 121.850 -10.010 0.000 0.011 -10.000 

h29v10 116.620 111.290 121.870 127.700 -20.033 -9.974 -9.940 -20.000 

h29v11 126.630 116.690 127.670 138.560 -30.061 -19.942 -19.883 -30.000 

h29v12 143.620 126.870 138.480 156.700 -40.108 -29.918 -29.817 -39.997 

h29v13 141.810 143.610 174.760 -179.080 -53.221 -39.874 -37.081 -49.749 

h30v05 138.450 156.760 169.890 150.100 29.924 40.119 39.988 29.806 

h30v06 127.310 138.160 150.130 138.320 19.945 30.067 29.999 19.879 

h30v07 121.410 127.220 138.360 132.030 9.975 20.036 20.000 9.937 

h30v08 119.550 121.380 132.020 130.020 0.001 10.011 10.000 -0.012 

h30v09 121.380 119.550 130.020 132.010 -10.011 -0.001 0.012 -10.000 

h30v10 127.220 121.410 132.020 138.340 -20.036 -9.975 -9.938 -20.000 

h30v11 138.160 127.310 138.310 150.110 -30.067 -19.945 -19.879 -30.000 

h30v12 156.760 138.450 150.080 169.860 -40.119 -29.924 -29.808 -39.990 

h30v13 155.580 156.670 178.750 -178.730 -49.055 -39.835 -38.904 -48.000 

h31v06 137.950 149.700 161.680 148.960 19.947 30.073 29.999 19.875 

h31v07 131.530 137.820 149.000 142.180 9.976 20.039 19.999 9.935 

h31v08 129.510 131.500 142.170 140.020 0.001 10.011 10.000 -0.013 

h31v09 131.500 129.510 140.020 142.160 -10.011 -0.001 0.013 -10.000 

h31v10 137.830 131.530 142.180 148.980 -20.039 -9.976 -9.935 -20.000 

h31v11 149.700 137.950 148.950 161.660 -30.073 -19.947 -19.876 -30.000 

h31v12 149.170 150.120 177.020 -179.690 -42.046 -29.925 -28.087 -39.934 

h31v13 169.400 169.710 179.990 -179.700 -43.738 -39.888 -39.885 -43.744 

h32v07 141.650 148.430 159.640 152.340 9.976 20.042 19.999 9.933 

h32v08 139.480 141.610 152.320 150.020 0.001 10.012 10.000 -0.014 

h32v09 141.610 139.480 150.020 152.320 -10.012 -0.001 0.014 -10.000 

h32v10 148.430 141.650 152.330 159.630 -20.042 -9.976 -9.933 -20.000 

h32v11 161.250 148.580 159.580 173.210 -30.079 -19.950 -19.872 -30.000 

h32v12 161.000 161.670 179.430 -179.190 -39.340 -29.891 -29.419 -38.855 

h33v07 151.770 159.040 170.280 162.490 9.977 20.045 19.999 9.931 

h33v08 149.440 151.730 162.480 160.020 0.001 10.013 10.000 -0.015 

h33v09 151.730 149.440 160.020 162.470 -10.013 -0.001 0.015 -10.000 

h33v10 159.040 151.770 162.480 170.270 -20.045 -9.977 -9.931 -20.000 

h33v11 159.150 159.630 179.090 -179.660 -30.586 -19.950 -19.349 -29.963 
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h34v07 162.470 162.220 -179.950 179.470 9.983 20.268 19.997 9.724 

h34v08 159.400 161.840 172.630 170.020 0.001 10.014 10.000 -0.016 

h34v09 161.840 159.400 170.020 172.620 -10.014 -0.001 0.016 -10.000 

h34v10 162.220 162.470 179.460 -179.950 -20.268 -9.983 -9.724 -19.997 

h35v08 170.000 169.930 -179.930 180.000 0.000 9.991 9.999 -0.007 

h35v09 169.930 170.000 180.000 -179.930 -9.991 0.000 0.007 -9.999 

h35v10 172.480 172.620 180.000 -179.860 -19.166 -9.984 -9.975 -19.181 

Note: down-left corner lons(1), lats(1); up-left corner lons(2), lats(2); up-right corner lons(3), lats(3; and 
down-right corner ons(4), lats(4). 

 

Appendix B. Scripts of data reading, format transforming, and resampling 

B1. Data downloading from NASA ftp server to Simba cluster 

% Data downloading   file name: download.m 

% Text files of 2009001.txt, 2009032.txt, and 2009060.txt are lists of 

% files to be downloaded of corresponding month. 

url='ftp://e4ftl01u.ecs.nasa.gov/MODIS_Composites/MOTA/MCD45A1.005/'; 

opath='/scratch/jin/MODIS/2009/'; 

mon=['2009.01.01/';'2009.02.01/';'2009.03.01/']; 

omon=['001/';'032/';'060/']; 

str0=['2009001.txt';'2009032.txt';'2009060.txt'];  

for j=1:2 

    clear('strFileName'); 

    fid = fopen(str0(j,:),'r'); 

    Counter=1; 

    while feof(fid)==0 

        str=fgetl(fid); 

        strFileName(Counter)=strread(str,'%s'); 

        Counter=Counter+1; 

    end 

    Counter=Counter-1; 

    fclose(fid); 

    for i=1:Counter 

        disp(strcat(num2str(i),'/',num2str(Counter),'Finished')); 

        fn=char(strFileName(i)); 

        infn=sprintf('%s%s%s',url,mon(j,:),fn); 

        outfn=sprintf('%s%s%s',opath,omon(j,:),fn); 

        try 

            urlwrite(infn, outfn); 

        catch 

            disp(strcat('Cannot write ',strFileName(i)));  

        end 

    end %i loop 

end %j loop 
####the following is the PBS scripts for running download.m on Simba 

#!/bin/sh 

#PBS -l nodes=1 

#PBS -l walltime=24:00:00 

# cd /home/jin 

/home/sw/pkg/matlab74/bin/matlab -nodisplay -nojvm -nodesktop -nosplash 

-r download.m 
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B2 Resampling burned area data at 0.25° resolution 

%main function Modis_read0.m 

time0=clock; % calculate how long time this calculation needs 

Tpatch=[-179.875 179.875 -53.875 76.125]; %spatial range of MCD45A1 

Yr=['200004';'200103']; %YYYYMM  

Wstep=0.25; 

Year=[YDOY(Yr(1,:));YDOY(Yr(2,:))]; 

startY=str2num(Year(1,1:4)); 

endY=str2num(Year(2,1:4)); 

patch=[]; 

for i=Tpatch(1):20:Tpatch(2) 

    Lonedge=min( 20+i-Wstep,Tpatch(2)); 

    for j=Tpatch(3):20:Tpatch(4) 

        Latedge=min( 20+j-Wstep,Tpatch(4)); 

        patch=[patch;i Lonedge j Latedge]; 

    end 

end 

NBlock=size(patch,1); 

T=[]; 

for iBlock= 1:NBlock  

    disp(strcat('Working on-',num2str(iBlock),'/',num2str(NBlock),'-Block. 

Please wait...')); 

    Patch=patchcal(patch(iBlock,:),Wstep); 

    %            Patch(i).Tile 

    %            Patch(i).Point 

    %            Patch(i).Point(j).Point 

    NTile=length(Patch); 

    disp(strcat(num2str(iBlock),'/',num2str(NBlock),'Block,Step 2: Reading 

Modis HDF files. Please wait...')); 

    patchburn=struct('Tile',[],'Point',[]); 

    

patchburn.Point=struct('Point',[],'Npixel',[],'NBurn',[],'NBurnB',[],'Bur

nDate',[],'BurnBDate',[]); 

    for iTile=1:NTile   %Tile Loop 

        TileName=Patch(iTile).Tile; 

        patchburn(iTile).Tile=TileName; 

        %Composite FilName 

        result=[]; 

        for i =startY:endY 

            str=strcat('find  /scratch/jin/MODIS/',num2str(i),'/ ',' -name 

',' "*',TileName,'*.hdf"|sort'); 

            [status rtemp]=unix(str);  %UNIX command 

            result=[result rtemp];% 

        end 

        NFile=length(result)/74; 

        if isempty(NFile) 

            continue 

        end 

        clear('filename'); 

        YrMo=[];  % must do this if the assignment is one by one by i=... 

        for i=1:NFile 

            filename(i,:)=result(74*(i-1)+1:i*74-1); 

            YrMo(i)=str2num(result(74*(i-1)+38:i*74-30)); 

        end %get all the filenames within the year range then we only keep those 

within the month period 

        %YrMo=unique(YrMo);%strange!!! the end duplicate     

        Index=find(YrMo<str2num(Year(1,:)) | YrMo>str2num(Year(2,:))); 
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        filename(Index,:)=[];%get the name list of all the valid file 

        NFile=size(filename,1);%and number of files 

        burndate=10000; 

        qa=0; 

        Flag=0; 

        for i_Hdf=1:NFile % Year month loop of a specific tile only one year. 

compose a year file 

            try 

    %             burndate = 

hdfread(filename(i_Hdf,:),'MOD_GRID_Monthly_500km_BA','Fields','burndate'

); 

    %             qa = 

hdfread(filename(i_Hdf,:),'MOD_GRID_Monthly_500km_BA','Fields','ba_qa'); 

    %             Flag=1; 

                sd_id = hdfsd( 'start', filename(i_Hdf,:), 'rdonly' ); 

                sds_id1 = hdfsd( 'select', sd_id, 0 );% the 0-th dataset is 

burndate  

                sds_id2 = hdfsd( 'select', sd_id, 1 );% the 1-th dataset is BA-qa  

                if(sd_id==-1)|(sds_id1==-1)|(sds_id2==-1)%error read 

                    disp(strcat(filename(i_Hdf,38:73),' HDF Data Problem!')); 

                    hdfsd('end',sd_id); 

                else 

                    tempdate=hdfsd('readdata',sds_id1,[0 0],[],[2400 2400])'; 

                    tempqa=hdfsd('readdata',sds_id2,[0 0],[],[2400 2400])'; 

                    hdfsd('end',sd_id); 

                    YYYYDOY=filename(i_Hdf,38:44);  

                    [First Last]=monthrange(YYYYDOY);% get the date range of 

this file 

                    

Index=find((tempdate>0&tempdate<First)|(tempdate>Last&tempdate<367));%fin

d overlap date 

                    tempdate(Index)=0; %out of this month range are repeat cell, 

assigned to no burn within this month 

                    tempqa(Index)=0; 

                    tempdate(find(tempdate==0))=367;%change the no burn from 0 

to 367 

                    burndate=min(burndate, tempdate); 

                    qa=max(qa,tempqa); 

                    Flag=1; 

                end 

            catch 

                disp(strcat(filename(i_Hdf,38:73),' HDF Data Problem!')); 

            end  %try catch end get burndate and ba_qa 

        end %if HDF file is readable  GET a yearly Composite burndate and 

quality. assume only burn once in a year 

        clear('tempdate'); 

        clear('tempqa'); 

        if Flag %calculate burn information of each HDF file 

            NPoint=length(Patch(iTile).Point);% loop by NPoint 

            for jPoint=1:NPoint 

                XY=Patch(iTile).Point(jPoint).XY; 

                %the following algorithm is very slow 

    %             Date=[]; 

    %             Qa=[]; 

    % %             for kk=1:length(XY) 

    %                 Date=[Date burndate(XY(kk,2),XY(kk,1))];%row-lat 

col-lon  

    %                 Qa=[Qa qa(XY(kk,2),XY(kk,1))]; %Date and quality of a 
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specific point 

    %             end 

                Date=burndate(2400.*XY(:,1)-2400+XY(:,2)); %XY(:,1) --lon, 

column and hen the matlab is colum first 

                Qa=qa(2400.*XY(:,1)-2400+XY(:,2)); 

                

patchburn(iTile).Point(jPoint).Point=Patch(iTile).Point(jPoint).Point; 

                

patchburn(iTile).Point(jPoint).Npixel=length(find(Date>0&Date<=367));%367 

is then 0 

                Index=find(Date>0&Date<367); 

                patchburn(iTile).Point(jPoint).NBurn=length(Index); 

                if~isempty(Index) 

                    

patchburn(iTile).Point(jPoint).BurnDate=median(Date(Index)); 

                else 

                    patchburn(iTile).Point(jPoint).BurnDate=0; 

                end 

                Index=find(Date>0&Date<367&Qa==1); 

                patchburn(iTile).Point(jPoint).NBurnB=length(Index); 

                if~isempty(Index) 

                    

patchburn(iTile).Point(jPoint).BurnBDate=median(Date(Index)); 

                else 

                    patchburn(iTile).Point(jPoint).BurnBDate=0; 

                end 

            end %jpoint loop end 

        else 

            patchburn(iTile)=[];%if no result for a whole tile then delete this 

tile 

        end % Flag end 

        disp(strcat('Step 2: 

Reading---',TileName,'...',sprintf('%.1f',iTile/NTile*100),'% finished! 

Please wait...')); 

    end %iTile loop end 

    clear('burndate'); 

    clear('Qa'); 

       %Here get patchburn(iTile).Tile 

       %         patchburn(iTile).Point(jPoint).Point 

       %         patchburn(iTile).Point(jPoint).Npixel 

       %         patchburn(iTile).Point(jPoint).NBurn 

       %         patchburn(iTile).Point(jPoint).NBurnB 

       %         patchburn(iTile).Point(jPoint).BurnDate 

       %         patchburn(iTile).Point(jPoint).BurnBDate 

       % and need to be changed into Point information 

    PointList=[]; 

    Order=[]; 

    disp('Step 3: Re-arrange by point order. Please wait...'); 

    NTile=length(patchburn); 

    for i=1:NTile 

        NPoint=length(patchburn(i).Point); 

        for j=1:NPoint 

            PointList=[PointList;patchburn(i).Point(j).Point]; 

            Order=[Order;i,j];%record the order of each variable in PointList 

        end 

    end 

    [PL II JJ] =unique(PointList,'rows'); 

    NPL=size(PL,1); %number of different points 
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    NPixel=[]; 

    NBurn=[]; 

    NBurnB=[]; 

    BurnDate=[]; 

    BurnBDate=[]; 

    for i=1:NPL 

        NPixelTemp=0; 

        NBurnTemp=0; 

        NBurnBTemp=0; 

        BurnDateTemp=[]; 

        BurnBDateTemp=[]; 

        Index=find(JJ==i); 

        IJ=Order(Index,:); 

        NTime=length(Index); %number of a same point 

        for j=1:NTime 

            NPixelTemp=NPixelTemp+patchburn(IJ(j,1)).Point(IJ(j,2)).Npixel; 

            NBurnTemp=NBurnTemp+patchburn(IJ(j,1)).Point(IJ(j,2)).NBurn; 

            NBurnBTemp=NBurnBTemp+patchburn(IJ(j,1)).Point(IJ(j,2)).NBurnB; 

            BurnDateTemp=[BurnDateTemp 

patchburn(IJ(j,1)).Point(IJ(j,2)).BurnDate]; 

            BurnBDateTemp=[BurnBDateTemp 

patchburn(IJ(j,1)).Point(IJ(j,2)).BurnBDate]; 

        end 

        NPixel(i)=NPixelTemp; 

        NBurn(i)=NBurnTemp; 

        NBurnB(i)=NBurnBTemp; 

        Index=find(BurnDateTemp~=0); 

        if ~isempty(Index) 

            BurnDate(i)=mode(BurnDateTemp(Index)); 

        else 

            BurnDate(i)=0; 

        end 

        Index=find(BurnBDateTemp~=0); 

        if ~isempty(Index) 

            BurnBDate(i)=mode(BurnBDateTemp(Index)); 

        else 

            BurnBDate(i)=0; 

        end 

    end %Tile loop 

    Index=find(NPixel<90);%delete no information area or unreliable area say 

only 90/(60*60)2.5% pixels available 

    PL(Index,:)=[]; 

    NPixel(Index)=[]; 

    NBurn(Index)=[]; 

    NBurnB(Index)=[]; 

    BurnDate(Index)=[]; 

    BurnBDate(Index)=[]; 

    T=[T;PL NPixel' 100*NBurn'./NPixel' 100*NBurnB'./NPixel' BurnDate' 

BurnBDate']; 

end %Block loop 

%str=strcat(Yr(1,:),'-',Yr(2,:),'__1.Lon','__2.Lat','__3.NPixel','__4.Bur

nRatio','__5.BurnBRatio','__6.BurnDate','__7.BurnBDate'); 

% save burn4 str T 

%make a 720X1440 matrix 

R=makerefmat(-179.875,89.875,0.25,-0.25); 

  

P=nan(180*4,360*4); 

[row, col] = latlon2pix(R,T(:,2),T(:,1)); 
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P(row+(col-1).*720)=T(:,4);%Burn ratio 

Burn2000(:,:,1)=P; 

  

P=nan(180*4,360*4); 

[row, col] = latlon2pix(R,T(:,2),T(:,1)); 

P(row+(col-1).*720)=T(:,6); %BurnDate 

Burn2000(:,:,2)=P; 

  

P=nan(180*4,360*4); 

R=makerefmat(-179.875,89.875,0.25,-0.25); 

[row, col] = latlon2pix(R,T(:,2),T(:,1)); 

P(row+(col-1).*720)=T(:,5);%Burn ratio of Best confidence 

  

Burn2000(:,:,3)=P; 

P=nan(180*4,360*4); 

[row, col] = latlon2pix(R,T(:,2),T(:,1)); 

P(row+(col-1).*720)=T(:,7); %BurnDate of Best confidence 

Burn2000(:,:,4)=P; 

str=strcat(Yr(1,:),'-',Yr(2,:),'Page1 Ratio*100','P2 Date','P3 Ratio 

Best','P4 Date Best'); 

save B2000A01M str Burn2000  

  

%%%%calculate time used 

timeused=etime(clock, time0); 

Hour=floor(timeused/3600); 

Minute=floor((timeused-3600*Hour)/60); 

Second=floor(timeused-Hour*3600-Minute*60); 

str=['Finished. Used time: '  num2str(Hour) '-Hours ' num2str(Minute) 

'-Minutes ' num2str(Second) '-Seconds ']; 

disp(str); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Function: patchcal() 

% Purpose:  Calculate what pixels of Modis 45A1 images fall in a specific 

%           patch. The pathch contains many square windows at a size of 

%           Wstep x Wstep. 

% Input:    Patch size: 1x4 vector [LonLeft LonRight LatDown LatUp] in 

%           decimal degrees, e.g.,patch=[-18 54 19.5 21.5];  

%           Wstep: scalar,decimal degree, e.g., Wstep=0.25. 

% Output:   A structure: New_Patch, shows what tiles are involved in this 

%           patch, and in each invoved tile, what points are involved.  

%           These points are the centers of each small windows at a step of Wstep. 

%           Each small window (eg. 0.25 x 0.25 cellsize) may contain many 

%           pixels of a Modis image, XY shows the coordiantes of all the 

%           pixels fall in a small window. 

%           New_Patch(i).Tile--------------string, tile name 

%           New_Patch(i).Point(j).Point----[lon lat] the center coordinate of 

the small window  

%           New_Patch(i).Point(j).XY-------[XI YI] n x 2 array integer 

% Author:   Hongxiao Jin, July 7, 2009 

  

function New_Patch=patchcal(patch,Wstep) 

disp('Step 1: Calculate Tiles and coordinate involved. Please wait...'); 

lon=patch(1):Wstep:patch(2); 

lat=patch(3):Wstep:patch(4); 

[Lon Lat]= meshgrid(lon,lat); 

LengthPoint=numel(Lon); 

patch=struct('Point',[],'Tile',[]); 

%to a specific point iP  iP=1:numel(meshgrid()), it may invovle up to 4 
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%tiles. Each tile contributes some image pixels to the whole small window. 

%There may be some overlapping between tiles. The maximum overlapping 

%points are over 30%. Therefore removing overlapping points is necessary. 

%patch(iP).Point         this point may ivolve 1-4 tiles  j=1:4(maybe) 

%patch(iP).Tile(j).Tile  each tile has some XY grids  

%patch(iP).Tile(j).XY 

%Re-arrange these information in the order of tiles, instead of points. 

for iP=1:LengthPoint % a big loop of all point 

    %get the tiles and their image pixels for a specific point (small window 

center) 

    [Tlist XI YI]=tilecal(Lon(iP),Lat(iP),Wstep,Wstep); 

    patch(iP)=struct('Point',[Lon(iP),Lat(iP)],'Tile',[]); 

    if ~isempty(XI) 

        %%TTTTTTTTTTTTTTTTTTTTT 

        [T Seq]=unique(Tlist,'rows');%get the unique tiles and the sequence 

        [Seq I]=sort(Seq); %sort if the Seq is not in order 

        T=T(I,:); 

        %T(1,:) i=1:Seq(1) 

        %T(k,:) i=Seq(k-1)+1:Seq(k)   k=2:4... 

        TileXY=struct('Tile',[],'XY',[]); 

        TileXY(1)=struct('Tile',T(1,:),'XY',[XI(1:Seq(1)) YI(1:Seq(1))]); 

        LS=length(Seq); % more than one tile 

        if LS>=2 

            for i=2:LS 

                TileXY(i).Tile=T(i,:); 

                TileXY(i).XY=[XI(Seq(i-1)+1:Seq(i)) YI(Seq(i-1)+1:Seq(i))]; 

            end 

        end 

        patch(iP).Tile=TileXY; 

    end 

end 

TileList=[]; 

Order=[]; 

for i=1:LengthPoint 

    NTile=length(patch(i).Tile); 

    for j=1:NTile 

        TileList=[TileList;patch(i).Tile(j).Tile]; 

        Order=[Order;i,j];%record the order of each variable in TileList 

    end 

end 

% for the whole patch, show all the tiles involved, unique 

[TL II JJ] =unique(TileList,'rows'); 

%TL are the unique tiles involved in this patch 

%II is the last location of each unique tile in the Tilelist. Discard 

%JJ is the location of each unique tile in the TL(the unique list). Used in 

%the following calculation 

  

%to a specific Tile i  (i=1:number of unique tiles) 

%New_Patch(i).Tile         this tile ivolves many points 

%New_Patch(i).Point(j).Point   each point has some XY grids  

%New_Patch(i).Point(j).XY 

  

NTL=size(TL,1); %number of unique tiles 

New_Patch=struct('Tile',[],'Point',[]); 

for i=1:NTL 

    New_Patch(i)=struct('Tile',TL(i,:),'Point',[]); 

    PointXY=struct('Point',[],'XY',[]); 

    Index=find(JJ==i); 
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    NPoint=length(Index); 

    IJ=Order(Index,:); %get the location of i-th tile in the TileList 

    for j=1:NPoint 

        PointXY(j).Point=patch(IJ(j,1)).Point; %IJ(i,1) is the location of a 

specific tile  

        PointXY(j).XY=patch(IJ(j,1)).Tile(IJ(j,2)).XY; 

    end 

    New_Patch(i).Point=PointXY; 

end 

disp('Step 1: Coordinate calculation Finished!'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Function: tilecal() 

% Purpose:  Calculate what tiles (4 at most, since 4 corners of each small 

%           window) are involved in a small window. 

% Input:    Central point (lon, lat), width of the window [WLon,WLat] 

% Output:   Modis image coordinates of all the points involved and the 

%           tile name. [TileName XI YI] 

% Author:   Hongxiao Jin, July 7, 2009 

  

function [T_All XI_All YI_All]=tilecal(Lon,Lat,WLon,WLat) 

% WDL=[Lon-WLon/2 Lat-WLat/2]; 

% WUL=[Lon-WLon/2 Lat+WLat/2]; 

% WUR=[Lon+WLon/2 Lat+WLat/2]; 

% WDL=[Lon+WLon/2 Lat-WLat/2]; 

global lons; 

global lats; 

global ColCoef; 

global RowCoef; 

WLons=[Lon-WLon/2 Lon-WLon/2 Lon+WLon/2 Lon+WLon/2]; 

WLats=[Lat-WLat/2 Lat+WLat/2 Lat-WLat/2 Lat+WLat/2]; 

if ~isempty(find(WLons<-180)) % <-180 change; >+180 OK 

    WLons=360+WLons; % if there points cross and below -180, then change it 

to over +180 

end 

load tilering %get a arry of lons lats and tile names of all the 266 tiles 

for i=1:266 

    if ~isempty(find(lons(i,:)>0)) & ~isempty(find(lons(i,:)<0)) & 

(sum(abs(lons(i,:)))>540) %across +-180 and take out +-0 

        I180=find(lons(i,:)<0); 

        lons(i,I180)=360+lons(i,I180); 

        clear('I180'); 

    end % if a tile across +-180, change to over 180. So read for the coordinate 

interpolation in the next step  

end 

% if a window node falls in a tile, calculate what pixels in that tile fall 

in the 

% fid=fopen('16045N.txt','w'); 

T_All=[]; 

XI_All=[]; 

YI_All=[]; 

X_All=[]; 

Y_All=[]; 

for i=1:266 

    CalFlag=1; 

    for j=1:4 

        if CalFlag&areap([WLons(j) WLats(j)],lons(i,:),lats(i,:)) %if points 

are in a same polygon, only cal once 

            T=tile(i,:); 
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            [XI YI X Y]=pixINwin([WLons(1) WLons(3) WLats(1) WLats(2)],i);% 

pixINwin(Win,lons,lats) 

            CalFlag=0; 

            N=length(XI); 

            Tmat=repmat(T,N,1); 

            T_All=[T_All;Tmat]; 

            XI_All=[XI_All;XI]; 

            YI_All=[YI_All;YI]; 

            X_All=[X_All;X]; 

            Y_All=[Y_All;Y]; 

        end 

    end 

end 

% If there are overlapping points, keep the first ones 

Sequence=1:length(X_All); 

[XY order]=unique([X_All Y_All],'rows');  %the order of tile will be ruined, 

it is need to re arrange the order 

clear('XY'); 

Sequence=Sequence(order); 

T_All=T_All(order,:); 

XI_All=XI_All(order); 

YI_All=YI_All(order); 

  

[S I]=sort(Sequence); 

T_All=T_All(I,:); 

XI_All=XI_All(I); 

YI_All=YI_All(I); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Function pixINwin() 

%judge what pixels of a tile fall in a window 

%lons lats 1 2 3 4 -->DL UL UR DR 

%Win  1 2 3 4 -->L R D U 

  

function [XI YI X Y] = pixINwin(Win,ITile)  

global lons; 

global lats; 

global ColCoef; 

global RowCoef; 

  

% %Quick algorithm, gridize the window according to the pixelsize of the tile 

% %it falls then judge the image location XI YI of each grid. discard those 

% %out of [1 2400]  

load Coef %the coefficients transform (lon,lat) to tile (Row,Col) a1 a2 a3 

a4 

%Col=a1+a2*x+a3*y+a4*x*y (bilinear tranformation) 

x=Win(1):0.00416666666666667:Win(2); %grid cell 10/2400 

y=Win(3):0.00416666666666667:Win(4); %=0.00416666666666667 

[X Y]=meshgrid(x,y); 

Col=round(ColCoef(ITile,1)+ColCoef(ITile,2).*X+ColCoef(ITile,3).*Y+ColCoe

f(ITile,4).*X.*Y); 

Row=round(RowCoef(ITile,1)+RowCoef(ITile,2).*X+RowCoef(ITile,3).*Y+RowCoe

f(ITile,4).*X.*Y); 

Index=find(Row>=1&Row<=2400&Col>=1&Col<=2400); 

XI=Col(Index); 

YI=Row(Index); 

X=X(Index); 

Y=Y(Index); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



 79 

% Function: areap() 

% Purpose:  Judge if a point falls in a 4-side polygon 

% Input:    polygon coordinates [(x(1:4),y(1:4)] and a point coordinate [p(1) 

p(2)] 

% Output:   1, if point in polygon, 0 if not. 

  

function AreaPPolygon4=areap(p,x,y) 

A1=area3([p(1) x(1) x(2)],[p(2) y(1) y(2)]); 

A2=area3([p(1) x(2) x(3)],[p(2) y(2) y(3)]); 

A3=area3([p(1) x(3) x(4)],[p(2) y(3) y(4)]); 

A4=area3([p(1) x(4) x(1)],[p(2) y(4) y(1)]); 

ASum=A1+A2+A3+A4; 

A4=area4(x,y); 

if abs(A4-ASum)<1e-10 

    AreaPPolygon4=1; 

else 

    AreaPPolygon4=0; 

end 

function Area=area4(X,Y) 

Area=abs(0.5*(Y(1)*(X(2)-X(4))+Y(2)*(X(3)-X(1))+Y(3)*(X(4)-X(2))+Y(4)*(X(

1)-X(3)))); 

function Area=area3(X,Y) 

Area=abs(0.5*(Y(1)*(X(2)-X(3))+Y(2)*(X(3)-X(1))+Y(3)*(X(1)-X(2)))); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Function: YDOY() 

% Purpose:  Change year month string format from YYYYMM format to YYYYDOY 

%           format.(the first day of that month) e.g., 200508 to 2005213. or 

%           200408 to 2004214 

% Input:    String YYYYMM. E.g., 200508 

% Output:   String YYYYDOY e.g., 2005213 (the first day of that month) 

  

function YYYYDOY=YDOY(YYYYMM) 

Year=YYYYMM(1:4); 

Month=YYYYMM(5:6); 

if mod(str2num(Year),4)==0  % year 2000 2004... 

    switch Month 

        case '01' 

            DOY='001'; 

        case '02' 

            DOY='032'; 

        case '03' 

            DOY='061'; 

        case '04' 

            DOY='092'; 

        case '05' 

            DOY='122'; 

        case '06' 

            DOY='153'; 

        case '07' 

            DOY='183'; 

        case '08' 

            DOY='214'; 

        case '09' 

            DOY='245'; 

        case '10' 

            DOY='275'; 

        case '11' 



 80 

            DOY='306'; 

        case '12' 

            DOY='336'; 

    end 

else  %year 1999 2001 

    switch Month 

        case '01' 

            DOY='001'; 

        case '02' 

            DOY='032'; 

        case '03' 

            DOY='060'; 

        case '04' 

            DOY='091'; 

        case '05' 

            DOY='121'; 

        case '06' 

            DOY='152'; 

        case '07' 

            DOY='182'; 

        case '08' 

            DOY='213'; 

        case '09' 

            DOY='244'; 

        case '10' 

            DOY='274'; 

        case '11' 

            DOY='305'; 

        case '12' 

            DOY='335'; 

    end 

end 

YYYYDOY=[Year DOY]; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Coef is generated by the following codes. Lons and lats are 4 corners of 

each tile (Table Appendix A), start from down-left, clockwise 
for i=1:266 

    A=[1 lons(i,2) lats(i,2) lons(i,2)*lats(i,2) 

       1 lons(i,3) lats(i,3) lons(i,3)*lats(i,3) 

       1 lons(i,4) lats(i,4) lons(i,4)*lats(i,4) 

       1 lons(i,1) lats(i,1) lons(i,1)*lats(i,1)]; 

    bc=[1 

        2399 

        2399 

        1]; 

    br=[1 

        1 

        2399 

        2399]; 

    ColCoef(i,:)=(A\bc)'; 

    RowCoef(i,:)=(A\br)'; 

end 

save Coef ColCoef RowCoef 

 

 



 81 

B3. Precipitation data extracting and transforming 

% Extracting, transforming and merging precipitation data from TRMM and NCEP 

clear 

Year=2007; % for other years, change here as 1999, 2000 and so on 

year=num2str(Year); 

s=netcdf('C:\_MAS08HJI\Master_Thesis\MatLab_Code\TRMM\precip.mon.mean.nc'

); 

  

for i=1:12 

    mon=num2str(i); 

    if length(mon)==1 

        mon=strcat('0',mon); 

    end 
    

Tfn=strcat('C:\_MAS08HJI\Master_Thesis\MatLab_Code\TRMM\Data\3B43.',year(

3:4),mon,'01.6.precipitation.bin'); 

    fid = fopen(Tfn, 'rb'); 

    Data = fread(fid,[1440, 400],'float32=>double','ieee-be'); 

    fclose(fid); 

    Data=flipud(Data'); 

    Data(find(Data<0))=NaN;%-9999 is nan 

    nanMat(1:160,1:1440)=nan; 

    Data=24*[nanMat;Data;nanMat]; %TRMM pre rate mm/hr->mm/day in NCEP  

  

    %NCEP 

    num=12*(Year-1979)+i; 

    MonData=squeeze(s.VarArray(4).Data(num,:,:)); 

    %ncep coordinate range lat 90->-90 center(88.75:2.5:-88.75) 

    %                      lon 0->360  center(1.25:2.5:358.75) 

    %              a(:,1:72) 0->+180 a(:,73:144) +180->360 i.e. (-180->0) 

    MonData=[MonData(:,73:144) MonData(:,1:72)];%(88.75:-2.5:-88.75; 

-178.75:2.5:178.75) 

    [OX,OY]=meshgrid(-178.75:2.5:178.75,88.75:-2.5:-88.75); 

    [NX,NY]=meshgrid(-179.875:0.25:179.875,89.875:-0.25:-89.875); 

    SMonData = interp2(OX,OY,MonData,NX,NY,'nearest'); 

    %NCEP->TRMM 

    ind=find(~(isnan(Data)|isnan(SMonData))); 

    P=polyfit(SMonData(ind),Data(ind),1) 

    %fill TRMM data outside lat[50 -50] with modified NCEP data 

    ind=find(isnan(Data)); 

    Data(ind)=P(1)*SMonData(ind)+P(2); 

    TRMM_NCEP2007(:,:,i)=Data; 

end 

save TRMM_NCEP2007 TRMM_NCEP2007 

 

B4. Extract and resample surface air temperature, wind speed, and air relative humidity data from netCDF 
format 
 

% Extracting surface air temperature. Example 2005. Other years are same 

clear 

s=netcdf('air.sfc.2005.nc'); %matlab function 

Data=s.VarArray(1).Data; %365X73X144  365days 

%clear s 

dayM=nan(12,73,144); 
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ind={1:31,32:59,60:90,91:120,121:151,152:181,182:212,213:243,244:273,274:

304,305:334,335:365};% for nonleap years 

%ind={1:31,32:60,61:91,92:121,122:152,153:182,183:213,214:244,245:274,275

:305,306:335,336:366}; % for leap years 

Data=permute(Data,[3 1 2]);%144X365X73 

Data=[Data(73:144,:,:);Data(1:72,:,:)]; 

Data=permute(Data,[2 3 1]);%365X73X144 

Data(find(Data>=0|Data==-32767))=NaN; 

for i=1:12 

dayM(i,:,:)=squeeze(nanmean(single(Data(ind{i},:,:)),1)).*0.01+477.65-273

.15; 

end 

%ncep coordinate range lat 90->-90 center(90:2.5:-90) 

%                      lon 0->357.5  center(0:2.5:357.5) 

%              a(:,1:72) 0->+177.5 a(:,73:144) +180->357.5 i.e. (-180->-2.5) 

[OX,OY]=meshgrid(-180:2.5:177.5,90:-2.5:-90); 

[NX,NY]=meshgrid(-179.875:0.25:179.875,89.875:-0.25:-89.875); 

Temp2005=nan(12,720,1440); 

for i=1:12 

Temp2005(i,:,:) = 

int8(interp2(OX,OY,squeeze(dayM(i,:,:)),NX,NY,'bilinear')); 

end 

save Temp2005 Temp2005 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Extracting wind speed Example 2004 

nc = netcdf('/scratch/jin/wspd.mon.mean.nc', 'nowrite'); %matlab function 

description = nc.description(:)                      % Global attribute. 

variables = var(nc);                                 % Get variable data. 

Wind2004=squeeze(variables{6}(301:312,1,:,:));%variables{6} 360X17X73X144  

%1979-1 to 2008-12 monthly 17level from 1000hPa(ground) to 10hPa 

nc = close(nc); 

Wind2004=permute(Wind2004,[3 1 2]);%144X12X73 0->360 

Wind2004=[Wind2004(73:144,:,:);Wind2004(1:72,:,:)];%-180->180  

Wind2004=permute(Wind2004,[2 3 1]);%12X73X144 

Wind2004=Wind2004.*0.01+202.65;  

 

[OX,OY]=meshgrid(-180:2.5:177.5,90:-2.5:-90); 

[NX,NY]=meshgrid(-179.875:0.25:179.875,89.875:-0.25:-89.875); 

WD2004=nan(12,720,1440); 

for i=1:12 

WD2004(i,:,:) = 

single(interp2(OX,OY,squeeze(Wind2004(i,:,:)),NX,NY,'bilinear')); 

end 

save WD2004 WD2004 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Extracting Air relative humidity Example 2004 

nc = netcdf('/scratch/jin/rhum.mon.mean.nc', 'nowrite'); %matlab function 

description = nc.description(:)                      % Global attribute. 

variables = var(nc);                                 % Get variable data. 

Rhum2004=squeeze(variables{6}(301:312,1,:,:));%variables{6} 360X17X73X144  

Rhum2004(find(Rhum2004==32766|Rhum2004==-32767)=nan; 

nc = close(nc); 

Rhum2004=permute(Rhum2004,[3 1 2]);%144X12X73 0->360 

Rhum2004=[Rhum2004(73:144,:,:);Rhum2004(1:72,:,:)];%-180->180  

Rhum2004=permute(Rhum2004,[2 3 1]);%12X73X144 

Rhum2004=Rhum2004.*0.01+302.65; 

[OX,OY]=meshgrid(-180:2.5:177.5,90:-2.5:-90); 

[NX,NY]=meshgrid(-179.875:0.25:179.875,89.875:-0.25:-89.875); 

RH2004=nan(12,720,1440); 

for i=1:12 

RH2004(i,:,:) = 

single(interp2(OX,OY,squeeze(Rhum2004(i,:,:)),NX,NY,'bilinear')); 

end 

save RH2004 RH2004 

 

B5. Calculate percentage of landcover classes from 1°/12 resolution to 1°/4 resolution 

% Calculate land cover percentage. Example Urban cover 

clc 

clear 

%Percentage of Urban 

fid=fopen('URB_2000.txt','rt'); 

Header = textscan(fid, '%s',5,'delimiter','\n'); 

Cult=[]; 

for i=1:2160 

    Cult = [Cult;cell2mat(textscan(fid, '%f', 4320))']; 

end 

fclose(fid); 

%calculate 5minX5min gridcell area north->south 1:2160 

Res=0.0833333333333333; %1°/12 

Radius=6371; 

cc=pi/180; 

lat=[(90-Res/2):-Res:(-90+Res/2)]'; 

S=cos(lat.*cc).*(Radius*Res*cc*Radius*Res*cc); 

for i=1:720 

    for j=1:1440 

        TempC=Cult([1:3]+(i-1)*3,[1:3]+(j-1)*3); 

        TempS=repmat(S([1:3]+(i-1)*3),1,3); 

        Cultive(i,j)=sum(sum(TempC.*TempS))/sum(TempS(:)); 

    end 

end 

Urban=single(Cultive); 

Note='Urban percentage'; 

save Urban Urban Note 
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B6. Resample soil nutrient availability and soil water content 

%Soil nutrient availability 

fid=fopen('Nutrient.txt','rt'); 

Header = textscan(fid, '%s',5,'delimiter','\n'); 

Nutrt=[]; 

for i=1:2160 

    Nutrt = [Nutrt;cell2mat(textscan(fid, '%d', 4320))']; 

End 

fclose(fid); 

for i=1:720 

    for j=1:1440 

        Temp=double(Nutrt([1:3]+(i-1)*3,[1:3]+(j-1)*3)); 

        Nut(i,j)=mode(Temp(:)); 

    end 

end 

Nut=int8(Nut); 

Note='Nutrient availability--1:No or slight constraints; 2:Moderate 

constraint; 3:Severe constraints; 4:Very severe constraints; 5:Mainly 

non-soil; 6:Permafrost area;7 Water body; 0:Ocean'; 

save Nutrientt Nut Note 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Soil moisture. Example of 2004 

nc = netcdf('/scratch/jin/soilw.mon.mean.v2.nc', 'nowrite'); %matlab 

function 

description = nc.description(:)                      % Global attribute. 

variables = var(nc);                                 % Get variable data. 

SoilW2004=variables{4}(673:684,:,:);%variables{6} 735X360X720 

%1948-1 to 2009-3 monthly soil water mm from model caculation 

nc = close(nc); 

SoilW2004=permute(SoilW2004,[3 1 2]);%720X12X360 0->360 

SoilW2004=[SoilW2004(361:720,:,:);SoilW2004(1:360,:,:)];%-180->180  

SoilW2004=permute(SoilW2004,[2 3 1]);%12X360X720 

SoilW2004=SoilW2004.*0.0153+500; 

[OX,OY]=meshgrid(-179.75:0.5:179.75,89.75:-0.5:-89.75); 

[NX,NY]=meshgrid(-179.875:0.25:179.875,89.875:-0.25:-89.875); 

SW2004=nan(12,720,1440); 

for i=1:12 

SW2004(i,:,:) = 

single(interp2(OX,OY,squeeze(SoilW2004(i,:,:)),NX,NY,'bilinear')); 

end 

save SW2004 SW2004 

 

B7. Calculate topographical roughness at 0.25° gridcell 
%Topographical roughness 

fn='/scratch/jin/SRTM_GTOPO_u30_mosaic.tif'; 

%TreeP=imread(fn); 

[DEM, cmap, R, bbox] = geotiffread(fn); 

%30arcsec to 0.25 deg so window size 30*30 UL(-180 90) BR(180 -60) 

for i=1:600 

    for j=1:1440 

        WinDEM=DEM((1:30)+(i-1)*30,(1:30)+(j-1)*30); 

        WinDEM(find(WinDEM==-9999))=0; 

        TopoEven(i,j)=std(single(WinDEM(:))); 

    end 

end 

save TopoEven TopoEven 
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Appendix C Scripts of data analyses 

C1. Spatial autocorrelation analysis by calculating Moran’s I of distance band. [R scripts] 

#Spatial auto correlation, Example region AUST 

#5%~10% sample for Moran's I 

library(spdep) 

dataset<- 

read.csv("file:///C:/_MAS08HJI/Master_Thesis/MatLab_Code/720X1440D

ata/AUST.csv", na.strings=c(".", "NA", "", "?")) 

set.seed(1341) 

sampleN<-nrow(dataset)*0.1 

SAM <- sample(nrow(dataset), sampleN) 

X<-dataset[SAM,] 

#Moran's I for a sequence of distance bands. 

MM<-0 

for(i in seq(from=100,to=5000,by=100)) { 

gc.nb<-dnearneigh(as.matrix(data.frame(X[,1],X[,2])),i-100,i,longlat

=TRUE) 

WeightM<-nb2listw(gc.nb,zero.policy=TRUE) 

M<-moran.test(X[,3],WeightM,zero.policy=TRUE) 

j=i/100 

MM[j]<-M$estimate[1] 

cat(i,M$estimate[1],"\n") 

} 

write.csv(data.frame(Distance=seq(from=100,to=5000,by=100),Moran_I=M

M), file = "moran.csv") 

C2. Model selection (GLM) and measure the goodness of fit. [R scripts] 

#Generalized linear model selection, Example region AUST 

#50% sample from dataset training the rest 50% for validataion 

#The following scripts choose the optimal model by stepAIC mdethod 

dataset<- read.csv("file:///home/jin/rwork/World.csv", 

na.strings=c(".", "NA", "", "?")) 

sampleN<-nrow(dataset)*0.1 #50% sample from dataset training the rest 

50% for validataion 

#set.seed(1341)            #10% sample for world data 

SAM <- sample(nrow(dataset), sampleN) 

#Try GLM many times for different parameter combination 

GLM<-glm(MeanBA9~.+I(Cultivation^2)+I(Grass^2)+I(Forest^2)+I(Nutrien

t^2)+I(Urban^2)+I(population^2)+I(Topography^2)+I(MeanT^2)+I(MeanR

^2)+I(IntraR^2)+I(InterR^2)+I(RainFireSeason^2)+I(RainNoFire^2),da

ta=dataset[SAM,3:16],family = binomial(logit)) 

library(MASS) 

STEP<-stepAIC(GLM,direction="both",trace=FALSE) #library(MASS) 

summary(STEP) 

#get the new formula  

GLM<-glm(formula=STEP$formula,data=dataset[SAM,3:16],family = 

binomial(logit)) 

#including two-way interaction #including two-way interaction 

STEP<-stepAIC(GLM,~.+(Cultivation+Grass+Forest+Nutrient+Urban+popula

tion+Topography+MeanT+MeanR+IntraR+InterR+RainFireSeason+RainNoFir

e)^2,direction="both",trace=FALSE) 

GLM<-glm(formula=STEP$formula,data=dataset[SAM,3:16],family = 

binomial(logit)) 

STEP 

summary(GLM) 

anova(GLM) 
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#Model goodness of fit 

R.square<-1-sum((dataset[SAM,3]-GLM$fitted.value)^2)/sum((dataset[SA

M,3]-mean(dataset[SAM,3]))^2) 

MSE<-mean((dataset[SAM,3]-GLM$fitted.value)^2) 

Pseudo.R2<-Rsquared.glm(GLM) 

cat("MSE:",MSE,"Pseudo.R2",Pseudo.R2,"R2",R.square,"\n") 

 

#Goodness of prediction 

PR<-predict(GLM,newdata =dataset[-SAM,],type = "response") 

R.square<-1-sum((dataset[-SAM,3]-PR)^2)/sum((dataset[-SAM,3]-mean(da

taset[-SAM,3]))^2) 

MSE=mean((dataset[-SAM,3]-PR)^2) 

cat("Predict MSE: ",MSE,"R.square: ",R.square,"\n") 

 

# A function calculating pseudo R-square. Algorithm is from S 

Rsquared.glm <- function(o) { 

n <- length(o$residuals) # number of observations 

R2 <- ( 1 - exp( (o$deviance - o$null.deviance)/n ) ) / ( 1 - 

exp( -o$null.deviance/n ) ) 

names(R2) <- "pseudo.Rsquared" 

R2 

} 

 

C3 Scatter plot between modeled and observed 

#Draw scatter plot 

#This block continues with Appendix C2 

PR<-predict(GLM,newdata =dataset[-SAM,],type = "response") 

FT<-c(GLM$fitted.value,PR)/lm(GLM$fitted.value ~ 

dataset[SAM,3])$coefficients[2] # linear modification 

plot(c(dataset[SAM,3],dataset[-SAM,3]),FT,cex=0.5,pch=21,bg="black",

col="black",xlim=c(0,1),ylim=c(0,1),xlab="MODIS Burned Area 

Ratio",ylab="Modelled Ratio",main="World: Observed vs. Modelled 

(GLM, Pseudo R2= 0.58)") 

abline(0,1,lty=3,lwd=1.5,col="blue") 

abline(lm(FT ~ c(dataset[SAM,3],dataset[-SAM,3])),lty=4,lwd=3, 

col="red") 

grid() 
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Appendix D 

 

D1.  δAIC and p-value (Chi square test) in one-variable GLM logistic regression for the 9 years mean BAR 

 BONA TENA CEAM 

Rank Variable δAIC p Variable δAIC p Variable δAIC p 

1 Grass 1.73 0.05 RainFireS. 2.29 0.04 Cultivation 1.73 0.05 

2 Nutrient 1.06 0.08 MeanR 1.20 0.07 IntraR 1.24 0.07 

3 Topography 0.74 0.10 InterR 0.58 0.11 InterR 0.66 0.10 

4 Cultivation 0.43 0.12 Nutrient 0.45 0.12 Grass 0.46 0.12 

5 RainNoFire -0.18 0.18 Forest 0.25 0.13 RainNoFire -0.54 0.23 

6 MeanT -0.38 0.20 RainNoFire 0.25 0.13 MeanT -0.74 0.26 

7 InterR -0.69 0.25 MeanT 0.15 0.14 MeanR -1.17 0.36 

8 Forest -0.84 0.28 Cultivation -1.00 0.32 Nutrient -1.22 0.38 

9 MeanR -1.43 0.45 IntraR -1.17 0.36 Forest -1.79 0.65 

10 IntraR -1.98 0.90 Urban -1.58 0.52 Topography -1.88 0.72 

11 Urban -1.99 0.93 Grass -1.69 0.58 RainFireS. -1.98 0.89 

12 Population -1.99 0.93 Population -1.82 0.67 Population -1.99 0.91 

13 RainFireS. -1.99 0.93 Topography -1.98 0.88 Urban -1.99 0.92 

 NHSA SHSA EURO 

Rank Variable δAIC p Variable δAIC p Variable δAIC p 

1 Grass 24.26 0.00 Grass 32.86 0.00 MeanT 20.64 0.00 

2 Forest 21.66 0.00 Topography 27.81 0.00 Cultivation 10.09 0.00 

3 RainFireS. 13.96 0.00 IntraR 17.39 0.00 RainFireS. 5.55 0.01 

4 MeanT 2.87 0.03 RainFireS. 11.78 0.00 Forest 5.09 0.01 

5 Topography 1.24 0.07 Forest 6.20 0.00 Nutrient 4.82 0.01 

6 MeanR -0.88 0.29 Urban 5.65 0.01 InterR 3.80 0.02 

7 InterR -1.59 0.52 MeanT 4.56 0.01 IntraR 2.80 0.03 

8 IntraR -1.60 0.53 Population 3.98 0.01 RainNoFire -1.50 0.48 

9 RainNoFire -1.66 0.56 Nutrient 1.40 0.07 Population -1.84 0.69 

10 Nutrient -1.77 0.63 Cultivation 0.55 0.11 Grass -1.97 0.86 

11 Population -1.89 0.74 RainNoFire -1.56 0.51 Topography -1.98 0.88 

12 Urban -1.96 0.83 MeanR -1.87 0.72 Urban -1.98 0.88 

13 Cultivation -1.98 0.89 InterR -1.98 0.90 MeanR -1.99 0.92 

 MIDE NHAF SHAF 

Rank Variable δAIC p Variable δAIC p Variable δAIC p 

1 Cultivation 26.73 0.00 MeanT 1427.0 0.00 MeanT 280.1 0.00 

2 MeanT 17.09 0.00 Grass 1123.2 0.00 IntraR 278.8 0.00 

3 Grass 14.41 0.00 IntraR 506.6 0.00 RainNoFire 202.8 0.00 

4 IntraR 8.19 0.00 InterR 403.3 0.00 MeanR 86.1 0.00 

5 RainNoFire 8.11 0.00 RainNoFire 384.5 0.00 Forest 65.2 0.00 

6 MeanR 7.52 0.00 Nutrient 346.7 0.00 RainFireS. 35.6 0.00 

7 RainFireS. 4.94 0.01 MeanR 285.7 0.00 Population 23.9 0.00 

8 Nutrient 4.72 0.01 Population 31.0 0.00 Topography 11.4 0.00 

9 InterR 0.75 0.10 Forest 26.4 0.00 Urban 10.7 0.00 

10 Urban 0.63 0.10 RainFireS. 18.5 0.00 Nutrient 6.4 0.00 

11 Forest -0.66 0.25 Cultivation 9.0 0.00 InterR 5.7 0.01 

12 Population -0.83 0.28 Urban 7.4 0.00 Cultivation 1.4 0.07 

13 Topography -1.40 0.44 Topography 6.0 0.00 Grass -1.8 0.64 

 BOAS CEAS SEAS 

Rank Variable δAIC p Variable δAIC p Variable δAIC p 

1 MeanT 105.50 0.00 MeanT 176.80 0.00 Topography 5.11 0.01 

2 RainNoFire 41.81 0.00 Topography 98.92 0.00 Forest 2.29 0.04 

3 IntraR 38.83 0.00 Nutrient 74.35 0.00 MeanT 0.33 0.13 

4 Nutrient 31.36 0.00 Cultivation 37.06 0.00 Cultivation 0.16 0.14 
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5 Cultivation 26.26 0.00 Grass 33.97 0.00 Urban -0.03 0.16 

6 RainFireS. 6.32 0.00 IntraR 28.47 0.00 Population -1.03 0.32 

7 Forest 4.34 0.01 RainNoFire 27.57 0.00 Nutrient -1.08 0.34 

8 InterR 0.31 0.13 Population 24.23 0.00 Grass -1.23 0.38 

9 MeanR 0.16 0.14 Forest 23.03 0.00 InterR -1.60 0.53 

10 Urban -1.26 0.39 RainFireS. 22.97 0.00 RainFireS. -1.78 0.64 

11 Topography -1.81 0.66 Urban 16.07 0.00 MeanR -1.90 0.75 

12 Population -1.97 0.86 InterR 4.88 0.01 IntraR -1.94 0.81 

13 Grass -1.98 0.88 MeanR 1.77 0.05 RainNoFire -1.95 0.83 

 EQAS AUST World 

Rank Variable δAIC p Variable δAIC p Variable δAIC p 

1 RainFireS. 2.53 0.03 MeanT 643.60 0.00 MeanT 3415.9 0.00 

2 MeanR 2.06 0.04 IntraR 564.08 0.00 Grass 2151.2 0.00 

3 Forest 0.58 0.11 RainNoFire 558.82 0.00 IntraR 1864.1 0.00 

4 RainNoFire 0.19 0.14 MeanR 424.07 0.00 RainFireS. 1454.0 0.00 

5 MeanT -0.15 0.17 InterR 215.35 0.00 RainNoFire 1276.4 0.00 

6 Grass -0.93 0.30 Grass 62.42 0.00 InterR 713.7 0.00 

7 Nutrient -1.04 0.33 Forest 26.35 0.00 Nutrient 458.5 0.00 

8 InterR -1.33 0.41 Cultivation 19.98 0.00 Topography 418.9 0.00 

9 Cultivation -1.81 0.66 Population 13.22 0.00 MeanR 283.4 0.00 

10 Urban -1.88 0.73 Urban 2.85 0.03 Population 123.6 0.00 

11 Population -1.98 0.88 Topography -0.96 0.31 Forest 59.5  0.00 

12 Topography -1.98 0.90 Nutrient -1.90 0.75 Urban 50.9  0.00 

13 IntraR -1.98 0.90 RainFireS. -1.99 0.92 Cultivation -1.8  0.67 

 

D2. Formulae and parameters of regional and global GLM models 

Color scheme of the following formulae is: Blue- interception, Green- first-order terms, Red-quadric terms, and 

Black- two-time interactions. 

BONA: logit(BAR)= –5.486–9.25·10–3×Topography –3.89·10–4×Grass2–5.43·10–7×MeanT2 

TENA: logit(BAR)= –5.312+0.0182×Cultivation–0.0642×RainFireSeason+4.11·10–4×RainFireSeason 2 

CEAM: logit(BAR)= –7.718+0.0447×IntraR –8.54·10–5×RainNoFire 2 

NHSA: logit(BAR)= –12.96+0.0399×Grass+0.0505×RainNoFire–1.33·10–6×MeanR2 

SHSA: logit(BAR)= –11.6+0.0401×Grass+0.0750×Forest–0.805×Urban–4.33·10–3×Topography +0.0465×RainFireSeason 

+0.0426×RainNoFire–6.18·10–4×Forest2 +8.68·10–5×IntraR2 –3.75·10–4×RainFireSeason2 

–1.74·10–4×RainNoFire2 

EURO: logit(BAR)= –15.71+1.50·10–3×MeanT +0.150×RainFireSeason+3.64·10–4×Cultivation2 

–1.17·10–3×RainFireSeason2 

MIDE: logit(BAR)= –9.785+0.0592×Cultivation+0.0411×Grass 

NHAF: logit(BAR)= –3107+0.075×Grass+0.116×Forest–0.865×Nutrient–0.333×Urban–0.451×Population +0.639×MeanT 

+0.138×MeanR–0.122×IntraR+0.0223×InterR–0.662×RainFireSeason –1.018×RainNoFire 

+3.43·10–4×Cultivation2 –2.21·10–4×Grass2–6.13·10–4×Forest2 +0.123×Nutrient2 –3.29·10–5×MeanT2 

+9.48·10–6×MeanR2–2.46·10–5×InterR2 –1.24·10–3×RainNoFire2 +4.40·10–3×Urban·RainNoFire 

–5.34·10–5×population·InterR –7.44·10–5×Forest·MeanR –0.0114×Grass·Urban 

–9.82·10–5×IntraR·InterR +8.11·10–4×IntraR·RainNoFire+4.63·10–5×population·MeanT 

SHAF: logit(BAR)= –8.143+0.057×Grass–0.128×Forest+0.189×Nutrient+3.67×Urban+2.47·10–3×population 

+0.0804×Topography–2.12·10–3×MeanT–0.0427×RainFireSeason+0.0861×RainNoFire 

+4.92·10–4×Cultivation2 –2.63·10–4×Grass2–4.32·10–4×Forest2+7.04·10–4×Urban2 +2.07·10–7×MeanT2 

+1.07·10–5×MeanR2–4.39·10–6×InterR2 –1.38·10–3×RainFireSeason2 –8.84·10–4×RainNoFire2 

–8.50·10–6×Topography·MeanT –4.41·10–4×Urban·MeanT–3.07·10–4×population·RainFireSeason 

–9.94·10–5×Grass·Topography+1.83·10–5×Forest·MeanT 

BOAS: logit(BAR)= –3.513–8.29·10–3×Forest–0.118×Nutrient–2.75·10–3×Topography+9.29·10–4×MeanT 

–0.0143×MeanR +0.166×IntraR–2.35·10–3×IntraR2+1.03·10–3×RainFireSeason2 

–3.81·10–6×Topography·MeanT 

CEAS: logit(BAR)= –6.653+0.0636×Grass–0.0168×Forest–0.224×Nutrient–1.43·10–4×MeanT+9.51·10–3×MeanR 

+5.64·10–3×InterR–0.0823×RainFireSeason+2.20·10–4×Cultivation2+2.88·10–4×Forest2 

–3.08·10–4×RainNoFire2 –1.33·10–5×Grass·MeanT 
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SEAS: logit(BAR)= 3.136+0.077×Cultivation+0.0656×Grass+0.0896×Forest–4.91·10–3×Topography –3.63·10–3×MeanT 

+2.26·10–7×MeanT2+6.97·10–6×MeanR2–7.70·10–4×RainFireSeason2 –4.75·10–4×RainNoFire2 

EQAS: logit(BAR)= –2077–0.0253×Cultivation +0.0307×Grass –0.0553×Forest +0.442×MeanT –2.36·10–5×MeanT2 

–1.15·10–6×InterR2 

AUST: logit(BAR)= 16.15+0.0404×Cultivation+9.09·10–3×Grass–7.69·10–3×MeanT+0.0318×IntraR +5.97·10–7×MeanT2 

–9.77·10–5×IntraR2–5.77·10–6×InterR2 

Global: logit(BAR)=–9.372+0.0625×Grass+0.0366×Forest–0.118×Urban–3.07·10–3×Topography +1.24·10–4×MeanT 

+5.93·10–3×MeanR–0.0444×RainFireSeason +3.97·10–4×Cultivation2 –2.74·10–4×Grass2 

–1.96·10–4×Forest2 –2.26·10–6×MeanR2–7.94·10–5×IntraR2+1.16·10–4×RainFireSeason2 

+3.35·10–5×RainNoFire2 

Information of the optimal model parameters 

BONA 4 parameters 

Variable ββββ    St. dev. p–value Deviance Residual Deviance 

(Intercept) -5.486 0.6324 0.000 NULL 38.827 

Topography -9.25E-03 9.09E-03 0.309 1.453 37.373 

Grass2 -3.89E-04 3.50E-04 0.266 2.836 34.537 

MeanT2 -5.43E-07 3.50E-07 0.120 5.02 29.517 

TENA 4 parameters 

Variable ββββ    St. dev. p–value Deviance Residual Deviance 

(Intercept) -5.312 0.801 0.000 NULL 39.553 

Cultivation 0.0182 0.0105 0.083 0.906 38.646 

RainFireSeason -0.0642 0.0313 0.040 1.163 37.483 

RainFireSeason2 4.11E-04 2.15E-04 0.056 2.465 35.019 

CEAM 3 parameters 

Variable ββββ St. dev. p–value Deviance Residual Deviance 

(Intercept) -7.718 1.095 0.000 NULL 30.5258 

IntraR 0.0447 0.0242 0.064 1.5915 28.9343 

RainNoFire2 -8.54E-05 6.65E-05 0.199 2.6252 26.3091 

NHSA 4 parameters 

Variable ββββ St. dev. p–value Deviance Residual Deviance 

(Intercept) -12.96 3.62 0.000 NULL 22.7373 

Grass 0.0399 0.0218 0.068 12.2938 10.4434 

RainNoFire 0.0505 0.0359 0.159 0.4433 10.0001 

MeanR2 -1.33E-06 1.01E-06 0.187 2.2177 7.7824 

SHSA 11 parameters 

Variable ββββ    St. dev. p–value Deviance Residual Deviance 

(Intercept) -11.6 1.695 0.000 NULL 251.882 

Grass 0.0401 0.0132 0.002 17.128 234.755 

Forest 0.0750 0.0182 0.000 7.098 227.657 

Urban -0.805 0.363 0.027 4.125 223.532 

Topography -4.33E-03 2.10E-03 0.039 19.655 203.876 

RainFireSeason 0.0465 0.0210 0.027 7.871 196.005 

RainNoFire 0.0426 0.0157 0.007 12.754 183.251 

Forest2 -6.18E-04 1.80E-04 0.001 32.98 150.272 

IntraR2 8.68E-05 6.09E-05 0.154 0.012 150.259 

RainFireSeason2 -3.75E-04 1.56E-04 0.016 11.231 139.028 

RainNoFire2 -1.74E-04 6.02E-05 0.004 12.819 126.21 

EURO 5 parameters 

Variable ββββ    St. dev. p–value Deviance Residual Deviance 

(Intercept) -15.71 4.63 0.001 NULL 34.738 

MeanT 1.50E-03 6.57E-04 0.022 11.016 23.722 

RainFireSeason 0.150 0.093 0.107 0.074 23.648 

Cultivation2 3.64E-04 1.76E-04 0.039 3.631 20.017 

RainFireSeason2 -1.17E-03 8.38E-04 0.161 2.994 17.022 
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MIDE 3 parameters 

Variable ββββ    St. dev. p–value Deviance Residual Deviance 

(Intercept) -9.785 1.296 0.000 NULL 51.505 

Cultivation 0.0592 0.0170 0.001 15.545 35.96 

Grass 0.0411 0.0179 0.022 6.604 29.355 

NHAF 27 parameters 

Variable ββββ    St. dev. p–value Deviance Residual Deviance 

(Intercept) -3107 664 0.000 NULL 2006.84 

Grass 0.075 0.0268 0.005 573.99 1432.85 

Forest 0.116 0.026 0.000 134.31 1298.54 

Nutrient -0.865 0.186 0.000 98.2 1200.34 

Urban -0.333 0.460 0.470 50.5 1149.84 

Population -0.451 0.319 0.157 0.07 1149.77 

MeanT 0.639 0.137 0.000 234.62 915.15 

MeanR 0.138 0.058 0.017 23.37 891.78 

IntraR -0.122 0.023 0.000 0.08 891.7 

InterR 0.0223 0.0054 0.000 9.57 882.13 

RainFireSeason -0.662 0.232 0.004 122.81 759.33 

RainNoFire -1.018 0.471 0.031 46.45 712.88 

Cultivation2 3.43E-04 1.59E-04 0.031 30.49 682.39 

Grass2 -2.21E-04 1.68E-04 0.186 30.43 651.96 

Forest2 -6.13E-04 3.50E-04 0.080 24.84 627.12 

Nutrient2 0.123 0.032 0.000 18.81 608.31 

MeanT2 -3.29E-05 7.02E-06 0.000 26.02 582.29 

MeanR2 9.48E-06 1.32E-06 0.000 23.99 558.29 

InterR2 -2.46E-05 1.04E-05 0.018 11.83 546.46 

RainNoFire2 -1.24E-03 1.58E-04 0.000 18.96 527.5 

Urban·RainNoFire 4.40E-03 2.20E-03 0.045 14.37 513.14 

Population·InterR -5.34E-05 3.49E-05 0.126 7.5 505.64 

Forest·MeanR -7.44E-05 2.85E-05 0.009 6.96 498.68 

Grass·Urban -0.0114 0.0041 0.006 4.6 494.08 

IntraR·InterR -9.82E-05 5.32E-05 0.065 1.54 492.54 

IntraR·RainNoFire 8.11E-04 1.72E-04 0.000 19.27 473.27 

Population·MeanT 4.63E-05 3.24E-05 0.154 2.23 471.05 

SHAF 24 parameters 

Variable ββββ    St. dev. p–value Deviance Residual Deviance 

(Intercept) -8.143 11.86 0.492 NULL 1131.65 

Grass 0.0570 0.0192 0.003 0.27 1131.37 

Forest -0.128 0.087 0.141 72.05 1059.32 

Nutrient 0.189 0.061 0.002 3.93 1055.4 

Urban 3.671 0.672 0.000 1.16 1054.23 

Population 2.47E-03 4.36E-03 0.572 3.35 1050.89 

Topography 0.0804 0.0159 0.000 2.15 1048.74 

MeanT -2.12E-03 2.72E-03 0.436 117.41 931.33 

RainFireSeason -0.0427 0.0192 0.026 71.33 860 

RainNoFire 0.0861 0.0120 0.000 73.52 786.48 

Cultivation2 4.92E-04 1.72E-04 0.004 15.66 770.82 

Grass2 -2.63E-04 1.65E-04 0.112 57.8 713.02 

Forest2 -4.32E-04 1.61E-04 0.007 14.9 698.13 

Urban2 7.04E-04 1.80E-03 0.695 5.82 692.31 

MeanT2 2.07E-07 1.56E-07 0.184 9.96 682.34 

MeanR2 1.07E-05 2.30E-06 0.000 46.66 635.68 

InterR2 -4.39E-06 2.06E-06 0.033 9.75 625.93 

RainFireSeason2 -1.38E-03 2.29E-04 0.000 21.57 604.36 
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RainNoFire2 -8.84E-04 1.58E-04 0.000 38.39 565.97 

Topography·MeanT -8.50E-06 1.67E-06 0.000 17.37 548.6 

Urban·MeanT -4.41E-04 7.55E-05 0.000 15.09 533.51 

Population·RainFireSeason -3.07E-04 1.32E-04 0.020 6.71 526.8 

Grass·Topography -9.94E-05 3.76E-05 0.008 4.42 522.38 

Forest·MeanT 1.83E-05 9.44E-06 0.052 3.94 518.44 

BOAS 10 parameters 

Variable ββββ    St. dev. p–value Deviance Residual Deviance 

(Intercept) -3.513 1.343 0.009 NULL 201.581 

Forest -8.29E-03 5.97E-03 0.165 2.943 198.638 

Nutrient -0.118 0.095 0.215 18.064 180.574 

Topography -2.75E-03 2.49E-03 0.270 4.248 176.326 

MeanT 9.29E-04 3.09E-04 0.003 41.044 135.283 

MeanR -0.0143 0.0041 0.000 7.156 128.127 

IntraR 0.166 0.097 0.086 15.553 112.574 

IntraR2 -2.35E-03 1.81E-03 0.193 0.007 112.567 

RainFireSeason2 1.03E-03 5.00E-04 0.040 3.733 108.834 

Topography·MeanT -3.81E-06 1.75E-06 0.029 4.327 104.507 

CEAS 12 parameters 

Variable ββββ    St. dev. p–value Deviance Residual Deviance 

(Intercept) -6.653 0.953 0.000  NULL 316.72 

Grass 0.0636 0.0175 0.000  17.63 299.09 

Forest -0.0168 0.0253 0.505  8.26 290.82 

Nutrient -0.224 0.151 0.137  41.06 249.76 

MeanT -1.43E-04 3.26E-04 0.660  63.41 186.35 

MeanR 9.51E-03 3.11E-03 0.002  20.93 165.42 

InterR 5.64E-03 3.87E-03 0.145  4.23 161.19 

RainFireSeason -0.0823 0.0249 0.001  7.36 153.82 

Cultivation2 2.20E-04 9.85E-05 0.026  2.32 151.51 

Forest2 2.88E-04 2.85E-04 0.311  1.8 149.71 

RainNoFire2 -3.08E-04 1.73E-04 0.076  4.54 145.17 

Grass·MeanT -1.33E-05 6.62E-06 0.044  4.66 140.51 

SEAS 10 parameters 

Variable ββββ    St. dev. p–value Deviance Residual Deviance 

(Intercept) 3.136 8.078 0.698 NULL 124.988 

Cultivation 0.0770 0.0349 0.027 1.982 123.006 

Grass 0.0656 0.0360 0.068 0.002 123.004 

Forest 0.0896 0.0323 0.006 13.789 109.215 

Topography -4.91E-03 2.09E-03 0.019 5.039 104.176 

MeanT -3.63E-03 2.00E-03 0.069 1.566 102.61 

MeanT2 2.26E-07 1.28E-07 0.078 4.876 97.734 

MeanR2 6.97E-06 3.64E-06 0.056 1.46 96.274 

RainFireSeason2 -7.70E-04 4.29E-04 0.073 0.039 96.235 

RainNoFire2 -4.75E-04 2.39E-04 0.047 5.686 90.549 

EQAS 7 parameters 

Variable ββββ    St. dev. p–value Deviance Residual Deviance 

(Intercept) -2077 11620 0.858 NULL 5.2383 

Cultivation -0.0253 0.0723 0.726 0.0801 5.1582 

Grass 0.0307 0.0591 0.603 0.8764 4.2817 

Forest -0.0553 0.0648 0.393 1.0365 3.2452 

MeanT 0.442 2.439 0.856 0.1063 3.1389 

MeanT2 -2.36E-05 1.28E-04 0.854 0.129 3.0099 

InterR2 -1.15E-06 1.04E-05 0.912 0.0139 2.996 
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AUST 8 parameters 

Variable ββββ    St. dev. p–value Deviance Residual Deviance 

(Intercept) 16.15 18.26 0.376 NULL 469.84 

Cultivation 0.0404 0.0115 0.000 10.33 459.51 

Grass 9.09E-03 4.82E-03 0.059 20.59 438.92 

MeanT -7.69E-03 4.55E-03 0.091 305.17 133.75 

IntraR 0.0318 0.0145 0.028 4.73 129.03 

MeanT2 5.97E-07 2.87E-07 0.037 4.63 124.4 

IntraR2 -9.77E-05 5.17E-05 0.059 3.68 120.72 

InterR2 -5.77E-06 2.17E-06 0.008 8.25 112.47 

Global 15 parameters 

Variable ββββ    St. dev. p–value Deviance Residual Deviance 

(Intercept) -9.372 0.731 0.000  NULL 1500.83 

Grass 0.0625 0.0168 0.000  205.69 1295.14 

Forest 0.0366 0.0117 0.002  35.22 1259.93 

Urban -0.118 0.061 0.052  1.82 1258.11 

Topography -3.07E-03 9.10E-04 0.001  45.18 1212.93 

MeanT 1.24E-04 3.88E-05 0.001  274.62 938.31 

MeanR 5.93E-03 8.68E-04 0.000  5.65 932.67 

RainFireSeason -0.0444 0.0088 0.000  151.65 781.01 

Cultivation2 3.97E-04 1.03E-04 0.000  34.37 746.64 

Grass2 -2.74E-04 1.23E-04 0.026  44.36 702.28 

Forest2 -1.96E-04 1.40E-04 0.163  10.51 691.77 

MeanR2 -2.26E-06 3.82E-07 0.000  39.46 652.31 

IntraR2 -7.94E-05 3.37E-05 0.018  0.15 652.17 

RainFireSeason2 1.16E-04 7.38E-05 0.116  0.46 651.7 

RainNoFire2 3.35E-05 9.30E-06 0.000  13.03 638.67 

 

Appendix E.  List of contents on the CD-ROM 

1. Thesis.pdf. Document of master thesis. 

2. Scripts. All the Matlab and R scripts used in this project 

3. Results. All the result pictures, images, and tables. 
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