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Abstract 

Some fundamental physical questions were highlighted through a literature study. The 

mathematical model for both the initiation of turbulence fields and for the DNS solver was 

shown. Initial turbulence fields were then formed by the different methods and a comparison 

between them was made. The comparison included differences in overall pattern through the 

use of different energy spectrum functions, which also was reviewed in detail. Flame-

turbulence interaction for a lean hydrogen-air flame at different turbulence fields, by varying 

the turbulent intensity and integral length scale and thereby also the Reynolds and Karlovitz 

numbers, was studied in 2D and 3D through DNS. The phenomenon of preheat zone 

broadening by turbulent eddies, the distribution of species within the reaction zone and 

preheat zone, pressure effects on the reaction zone, eddy pair distortion of the flame front and 

2D-3D simulation differences were observed qualitatively. Turbulent flame speed, flame 

induced turbulence and flame surface density was measured quantitatively through defining of 

the instantaneous flame surface position by the fuel distribution. Based on the used set up, an 

outlook towards future work was done. 
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1. Introduction 

To acquire a good understanding of the present research on turbulent flames, an overview of 

the subject is given first. Based on this, several fundamental questions are discussed. Finally a 

summary of some unresolved scientific questions is given, followed by a short description of 

this thesis work. 

1.1. Turbulent combustion 

A process where a fuel is oxidized, releasing heat, is called combustion. If the fuel is in fluid 

form and flows through the reaction zone, the flow case can either be laminar or turbulent. 

Turbulence occurs for sufficiently high Reynolds number, defined as  



lu 
Re                  (1) 

where u is the flow speed, l is the characteristic length and   is the kinematic viscosity. In a 

laminar case, molecular diffusion is the main transport process across the streamwise flow 

convection. In a turbulent flow, however, transport by turbulent eddies is also present, making 

the transport in the flow cross-streamwise direction severely higher. The turbulent convection 

speed can be estimated as the turbulent integral velocity and written as 'u . In a turbulent flow, 

the dimensionless turbulent Reynolds number is often used to describe the characteristics of 

the flow. The turbulent Reynolds number is defined as 



lu
T




'
Re ,                   (2) 

where the characteristic length scale l  now is set as the integral length scale. Both the laminar 

flame speed, LS , and the laminar flame thickness, L , is proportional to the square root of the 

diffusion coefficient and the diffusion coefficient is proportional to the viscosity. Assuming 

approximately equality instead of proportionality gives that expression (2) can be rewritten as 

LL

T

l

S

u




'
Re .                  (3) 

Turbulent combustion is achieved when the flow of fuel/air mixture through a reaction zone is 

turbulent.  

Depending on the intake of air into the fuel flow, the combustion can be premixed, partially 

premixed or non-premixed. Different types of combustion have different types of 

applications. Non-premixed flames are the most common type of flame used. This is due to 

the easiness of controlling such flames by only having possible flammability in the small 

region of mixing. A non-premixed flame can not flash back and is therefore very safe. A 

typical use of the turbulent non-premixed flame is in the diesel engine. High injection speed 

of the diesel is required to keep the engine at high rotational speed. To burn all fuel, the 

mixing by diffusion is not sufficient. When turbulence is present, the mixing of fuel and air is 

increased, which makes the flame burn fast enough. Premixed flames are most commonly 

used in spark-ignition engines, modern gas turbines and industrial gas burners. The advantage 
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of the premixed flame in comparison to the non-premixed flame, is that the access of air can 

be modulated, making it possible to alter the characteristics of the combustion. The 

temperature of the flame is often altered in this way, because a change in temperature also 

changes the emissions. When a premixed flame becomes turbulent, the flame-front becomes 

wrinkled and the area of it increases. An increased area results in a higher effective flame 

speed according to 

L
T L

M

A
S S

A
 ,                  (4) 

where 
TS  is the turbulent flame speed, 

LA  is the laminar flame-front area and 
MA  is the mean 

flame-front area. This relation explains why it is necessary to have turbulent combustion in a 

lot of practical applications where high flame speed is required to e.g. keep an engine at high 

revolution speed. This information is assembled from [1], which could be reviewed for a 

deeper discussion. 

1.2. The influence of turbulent eddies on a flame front 

Laminar flames are well examined due to less required CPU time in comparison to the 

turbulent cases. Studies of turbulent eddies in laminar cases are not possible, but a flame's 

interaction with vortices can provide some valuable information [2].   

Flame/vortex interaction is much dependent on the Froude number and can only exist for low 

numbers. The Froude number is defined as  

gD

U
Fr


 ,                  (5) 

where U  is the mean flow velocity, D  is the characteristic diameter for the flow and g  is the 

gravitational acceleration. This is due to the fact that the buoyancy effect is totally negligible 

for high Froude numbers, but when it is lowered, flame/vortex interaction appears, first 

downstream and then for higher Froude numbers, more upstream [3]. In a typical case, the 

flame/vortex interaction is studied by using a bluff body or a rim to stabilize the flame and  

 

Figure 1. A bluff body stabilized flame interacts with votices [3]. 
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then generate vortices and making them flow through the flame front. For a bluff body 

stabilized flame, this is illustrated in figure 1. In a turbulent case, turbulent eddies are 

generated.  

Depending on Damköhler number, defined as  

t

c

Da



                 (6) 

and representing the ratio of the fluid time scale, 
t , and the chemical time scale, 

c , the 

vortices disturb the flame very differently. (i) For small Damköhler numbers, typically 

Da<0.5, the mixing with ambient gas by vortices is very intense and pockets of unburned 

fuel/air mixture may be formed. (ii) For intermediate Damköhler numbers, typically 

0.5<Da<5, the convection interacts with the flame surface, making it wrinkled, but it stays 

connected without breaking points. (iii) For large Damköhler numbers, the flame remains 

almost unperturbed, since the chemical timescale is much smaller than the one for the vortex. 

This is detailed reviewed by Renard et al. [3]. 

It is indicated that at least for low Damköhler numbers, Da<<1, vortices contribute to 

significant flame contortion. However, the formation of pockets can be canceled by slow 

vortex rotational speed or high convectional speed, making it possible for the flame to 

consume them. 

The pocket formation by vortices and the reaction zone curvature has been numerically 

studied [2, 4, 5]. Poinsot et al. [2] revised the turbulent-regime diagram originally proposed 

by Borghi, which helps interpreting e.g. flame quenching in turbulent combustion. Kadowaki 

and Hasegaw [4] performed a study of cellular, premixed, laminar flames' interaction with 

vortices and the differences of the flame/vortex pair interaction at variant vortex strengths by 

numerical simulation. Particularly the influences of the hydrodynamic, body-force and 

diffusive-thermal effects were studied. Najm and Wyckoff [5] studied the contortion of a 

premixed flame by a vortex pair and the generation of baroclinic vorticity. 

In a turbulent case, turbulent eddies are the ones affecting the flame front and their 

interference is quite similar to that of vortices. Depending on the Karlovitz number, defined as 

2/12/3

'


















lS

u
Ka L

Lk

c 




      (7) 

which represents the ratio of the chemical time scale and the Kolmogorov time scale, 
k , the 

flame/eddy interaction acts in three different regimes: (i) For Karlovitz number lower than 

one, the smallest turbulent eddy is larger than the reaction zone, which makes it unable to 

interact within the reaction zone. The large scale eddies however will induce different flow 

speeds at different positions of the flame front causing wrinkling of the flame front. 

Increasing the Karlovitz number will decrease the size of the Kolmogorov eddy. (ii) For Ka>1 

the Kolmogorov eddy is smaller than the reaction zone thickness, making it able to influence 

the preheat zone. In the preheat zone, the interaction performed by turbulent eddies is 

visualized by a not too significant broadening, making the heat and mass transfer amidst 

reaction zone and preheat zone larger. This is a commonly accepted theory, however, the 
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experimental and numerical results differ significantly and the theory could not be considered 

to be proven, since the point where the preheat zone broadening is visible span over the range 

~ 2 ~ 40Ka   according to Driscoll [7]. The effect of flame wrinkling and, more generally, 

the structure of the flame have been studied numerically by e.g. Sankaran and Menon [8, 9]. 

(iii) When Karlovitz number exceeds 100, the Kolmogorov eddy fits into the inner layer of 

the reaction zone. When this is possible, the interaction of flame and eddy is very intense, 

causing effective mixing with ambient air and unburned fuel/air pockets could be created in 

the reaction zone. When unburned mixture passes through the reaction zone, the temperature 

will be lowered due to the unreleased thermal energy and may even exceed the limit of 

quenching. An interesting notation is that for a fluid time scale equal to the Kolmogorov time 

scale, the Karlovitz number is the inverse of the Damköhler number, which is in fact the case 

for laminar flames. The Damköhler number ranges described for laminar flame/vortex 

interaction studies could therefore easily be related to Karlovitz number ranges.  

Additional numerical studies for Bunsen flame, V-flame and other apparatuses to view the 

flame front structure has been performed [10, 11, 12, 13]. Experiments for high Karlovitz 

number flames have recently been studied with high resolution [6, 14, 15].   

The Kolmogorov eddy is very quickly dissipated due to viscous effects. At 1Ka  , where the 

smallest eddy should be able to interact with the preheat zone, the Kolmogorov eddy barely 

survives one revolution, making its effect on the preheat zone very insignificant [7]. When the 

Karlovitz number is raised, the Kolmogorov eddy becomes smaller than the reaction zone 

thickness, making the largest eddy that is able to interact with the preheat zone more long 

lived, causing the preheat zone width to grow with increasing Karlovitz number [7]. 

As a result of the wrinkling process by vortices or turbulent eddies, the wrinkled flame front 

will become affected by a few additional effects. The most significant influences are the 

diffusive thermal effect and the wrinkling enhancing Darrieus-Landau effect. For non-unity 

Lewis number flame, the flame velocity changes in a curved surface and changes counter 

actively for a convex and concave surface respectively, enhancing the existing differences. 

The Darrieus-Landau effect is more straight-forwardly derived from the continuity equation. 

If a flow is diverging, the flow speed becomes lower, making it possible for a flame to 

propagate faster upstream. The Darrieus-Landau effect always enhances wrinkling, while the 

influence of the diffusive thermal effect is dependent on the Lewis number. These effects are 

more detailedly reviewed in different applications by references [3, 4, 5, 16, 17].  

An additional effect to keep in mind is that over a flame, the viscosity is raised. A viscosity 

raise dissipates the smallest eddies more quickly, making their interaction on the flame front 

even less important [18]. 

1.3. The influence of flame on turbulence 

It is often desirable to increase and optimize turbulence when it is interacting with a flame. In 

many applications, an appropriate flame speed is sought and it is most effectively modulated 

with variation of the turbulent intensity. The turbulence/flame interaction is however not a 

one way communication. Turbulence is also induced by a propagating flame by a few 

different factors, detailedly reviewed by Lipatnikov and Chomiak [18]. 

When combustion occurs, it is a mistake to neglect pressure changes over the flame [18]. The 

pressure differences can be characterized as a torque, called the baroclinic torque, which 

depends on the misalignment of the pressure and density gradients. A counteraction of the 

pressure induced turbulence is, as mentioned above, the fact that the viscosity does not remain 
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constant during combustion. The viscosity downstream of a propagating flame is higher than 

that of the upstream. The raised viscosity dissipates the smallest eddies quickly, making the 

scale of the Kolmogorov eddy larger. In Reynolds averaged Navier-Stokes (RANS) 

framework, the turbulent kinetic energy equation is expressed as  

'
'' '' '' '' '' ''

j jk

j k k j k k

k k k k k

uDk p p
u u u k u u u

Dt x x x x x


  

   
     

    

 
               (8) 

where k  is the turbulent kinetic energy,   is the density, ju  is the velocity in the j  

direction, p  is pressure and ij  is the viscous stress tensor defined as 

2

3

ji k
ij ij

j i k

uu u

u u x
   

  
       

           (9) 

where   is the dynamic viscosity. According to equation (8), the turbulent kinetic energy is 

affected by five separate terms, which can have different signs and therefore can both support 

as well as counteract each other. The first term on the right hand side is the production due to 

large scale mean velocity. The second term is the redistribution term within the flame brush. 

The contribution of this is small, if any. The third term is the dissipation term that can be 

affected by the raise of viscosity on the burned side. The fourth and fifth terms are due to 

pressure in the sense of the fluctuating pressure and the mean pressure gradient respectively. 

A DNS study of flame generated turbulence in a partially premixed case is done by Yaldizli et 

al. [19]. 

1.4. Local flame quenching in turbulent flames 

As previously mentioned, at intense turbulence where Karlovitz number is high, Ka>100, 

flame/eddy interaction or mixing is occurring within the inner layer of the reaction zone, 

causing unburned fuel/air pockets to penetrate the reaction zone. The pockets left unburned 

lower the temperature of the flame. If the temperature is lower than the ignition temperature, 

fuel/air mixture will not be ignited at that position, creating an extincted area in the reaction 

zone called a flame hole. The dynamics and creation of flame holes in bluff body stabilized 

flames are described by Shanbhogue et al. [20]. According to Shanbhogue, flame holes are 

created under these circumstances through two mechanisms; (i) heat/radical losses to the bluff 

body and (ii) strains induced by flame wrinkling or divergence of the flow field.  

The strain needed to create a flame hole is called the extinction strain rate and is dependent on 

the characteristics of the flame; such as fuel composition, equivalence ratio and chemical time 

scale. The fact that flame holes are found is not the same as a bluff body stabilized flame is 

blowing off, but since extinction is associated with high Karlovitz number, the flame holes 

could lead towards it. A flame hole is not stationary. When it is induced, it is always 

convected downstream by the mean flow. The size is also changed depending on the 

characteristics of the edge of the flame. 

Another interesting aspect of flame holes is that if a hole is initiated in a high strain region, it 

will affect the regions in the vicinity. A nearby location, which with its earlier local conditions 

would not be extinguished, can with an adjacent flame hole now fulfill the requirements.  
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1.5. Unresolved scientific questions 

As reviewed in section 1.2, the effect of turbulence on a flame is well examined and 

understood for low and moderate levels of turbulence. When the Karlovitz number exceeds 

100 however, the turbulence is very intense and the CPU requirements for simulation cases 

becomes challenging. A kind of vision would be to perform DNS on all different types of 

premixed flames and collecting them to form a data base. The next step is then to perform 

simulations on high intensity turbulence cases, which also will grant further understanding of 

flame holes. This could be done by studying near blowoff, bluff body stabilized flames like 

what Shanbhogue et al. [20] have done.   

The results regarding flame generated turbulence differs quite a lot and it therefore seems 

likely that it requires more fundamental research. This might be done e.g. by more accurately 

determine the flame speed, as proposed by Driscoll [7]. 

1.6. Scope of this thesis 

The goal of this project is to improve the understanding of the flame/turbulence interaction in 

the thin reaction zone regime and, maybe more importantly, in the broken reaction zone 

regime by using DNS. This involves all the above discussed phenomenon of turbulent eddies’ 

effect on a flame-front, for different sizes, flame generated turbulence and local quenching of 

the flame-front. 

2. Governing equations for DNS of turbulent flames 

2.1. Governing equations 

In a fluid flow, mass and momentum are conserved. This means that when simulating a 

turbulent flow, conservation equations for mass and momentum can be used. The 

conservation equations for mass and momentum are 

 
0

i

i

u

t x

 
 

 
                     (10) 

   
,

1

N
j i j ij

k k j

ki j i

u u u p
Y f

t x x x

  




  
    

   
                    (11) 

where 
kY  is the mass fraction of species k  and jf  is the external force in the j th direction.  

When simulating combustion process, the reaction proceeds through various species and an 

equation for the conservation of species is also required, which can be written as 

  ,
k

i k i k k

i

Y
u V Y

t x


 

 
  

 
 ,                                          (12) 

where ,k iV  is the i -component of the diffusion velocity of species k  and 
k  is the reaction 

rate of species k . The reaction rate k  could be calculated by using the empirical Arrhenius 

expression. For e.g. a bimolecular reaction A B C   it reads 
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expbC a
A B

u

dC E
C C AT

dt R T

 
  

 
         (13) 

where A , b  and 
aE  are empirical parameters and C  represents concentrations of each 

substance. 

The last very vital conservation equation is for energy and it is written as 

,

1

1
1 :

N
j j

r i j

ii i i i

Y uDh Dp h
h Q

Dt Dt x x Le x x
   



     
       

     
                (14) 

where the enthalpy h  is defined as 

1

N

i i

i

h Y h


                 (15) 

 0

, ' '

ref

T

i i p i

T

h h c T dT   ,                         (16) 

where   is the thermal diffusion coefficient and rQ  is the heat transferred from the 

environment to the control volume. The perfect gas law, or the equation of state, is also 

required to close the governing equations 

1

N
i

u

i i

Y
p R T

W




                      (17) 

Where 
uR  is the universal gas constant and 

iW  is the molecular weight of species i . 

The chemical model for hydrogen/air combustion is relatively simple in comparison to 

models for hydrocarbon combustion. The participating species in a hydrogen/air flame are 

2H , 2O , 2HO , 22OH , OH 2 , OH , H  and O , resulting in a reaction scheme of 21 

elementary chemical steps according to Williams [21]. 

2.2. DNS method 

The simulations in this project are performed with an in-house code and the initial turbulence 

field is also compared with the one generated using an open source pencil code. DNS stands 

for direct numerical simulation. DNS solves equations (10) and (11) without any modeling, 

which makes the simulation more exact, but also much more dependent on the grid and 

available computational power. The grid has to fulfill some fundamental requirement to make 

the DNS possible. Both the spatial and temporal domain must be fully resolved and for the 

spatial part, this means that all possible length scales of turbulent eddies must have sufficient 

resolution. For small scales, this condition yields that the length between the grid point must 

be smaller than the Kolmogorov scale. For large scales, it means that the length of the 

computational domain must be larger than the integral scale to be assure of resolving the 

integral scale eddies, according to Poinsot and Veynatne [22]. The in-house code uses a first 

order temporal Euler solver and a spatial solver, containing a fifth order convection solver and 
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second order solvers for diffusion, pressure and continuity. The chemical scheme is detailed 

and handled by a stiff solver. The boundary conditions used are periodic, making the volume 

constant. The scheme of the pencil code uses third order Runge-Kutta temporal solver and has 

been verified to be fifth order in space [23]. 

3. Problem formulation and initial field 

3.1. Initial field of turbulence 

When a turbulence field is to be simulated, a set of initial conditions to describe a physical 

situation has to be prescribed along with iterations with the governing equations. This requires 

high processor power and is time consuming what so ever. When simulations are performed, 

the initial turbulence field is more commonly created by inducing a random field to the grid. 

The assumption of similar diffusion of turbulent eddies and molecules can thereafter create a 

non-physical, but well-behaving, turbulent flow [24]. In many applications, it is not vital that 

the velocity field is fully physical. If the velocity field is divergence free and contains the 

energy spectra and correlation functions of fully developed turbulence, it is sufficient [25]. 

Three different methods for creation of the initial field of turbulence will be described; (i) 

according to [25] for a general 2-D case, (ii) according to [24] for both 2-D and 3-D and (iii) a 

similar method to [24] but performed by the use of FFT (Fast Fourier transform). 

3.1.1. Method 1  

In [25], equations (18) and (19) were used to generate a 2D velocity field. A scalar field 

 ,r t  was first defined, which was assumed to be homogeneous, isotropic and a stationary 

stochastic process according to  

          


















x

tr

y

tr
trtrtr yx ,

,
,

,,,,





,                     (18) 

where the statistics of the velocity field was taken from that of  ,r t . The statistical 

properties of the field was then specified by the stochastic properties of 

 
     trQtx

t

tr
,,

, 22 


 


 
             (19) 

where   and   are the temporal and spatial correlation lengths, the  -field is Gaussian 

white noise and 2 2Q     is a mathematical operator, whose Fourier transform becomes 

 2 2Q k . For a grid with NN   grid points and constant distance between them, 

 yx , manipulation of the scalar field by using transform to the Fourier space, 

discretization, time integration and random variables eventually results in the components of 

stochastic turbulence; the velocity field, the discrete correlation tensor ( )mnR s  and the energy 

spectrum E , equations (19-22). 

     , , 1 , 1

1

2

x

m n m n m nt t t   
   

            (20) 
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     , 1, 1,

1

2

y

m n m n m nt t t   
   

            (21) 

                   












 




,
64

2
exp

2

1
)(

s

N
nmi

N
sRmn  

   stt
NN


























  

 ~~2
sin

2
sin *22

                        (22) 

     tt
NNN

E  


 ~~2
sin

2
sin

2

1 *222/122

53




























                 (23) 

The turbulent kinetic energy, 2

0u , the time scale, 
0t , and the length scale, 

0l , is then given by 

 2

0

0

u E k dk



                    (24) 

 0 2

0 0

1
0,t R s ds

u



                       (25) 

 0 2

0 0

1
,0l R r dr

u



  .                     (26) 

The velocity field generated is incompressible, homogeneous, isotropic and stationary.  

Careta et al. [25] reviewed two cases of turbulent flows where different initial fields are 

appropriate. The first one, originally proposed by Kraichnan, roots in the choice of the 

operator Q  as 

2 2 2 21
exp

2
Q  

 
     

 
       (27) 

with the Fourier transform 

 2 2 2 21
exp

2
Q k k 

 
  

 
.                           (28) 

This results in a correlation tensor and energy spectrum as 

 
2 2

4 4 2
, 1 exp

8 4 4

r r s
R r s



   

   
      

   
                 (29) 
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   3 2 2exp
4

E k k k





        (30) 

and the basic parameters 

2

0 48
u




                  (31) 

0t               (32) 

1/ 2

0
2

l


 .                 (33) 

Figure 2 shows a simulation of turbulence generated in this way for different correlation 

lengths  . 

Choosing the Q  operator as 

 
7/6

2 2 2 21Q  


      ,    (34) 

with the Fourier transform 

   
7/6

2 2 2 21Q k k 


   ,    (35) 

 

 (a)             (b) 

Figures 2 (a) and (b). Two Kraichnan's spectrums with grid mesh of 64x64 points. The only difference in operating condition 

for the images is that (a) uses 6 and (b) uses 12 , which directly affects the size of the largest eddies according to 

(32) [25]. 
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results in the so called Kárman-Obukhov's spectrum. The correlation tensor and energy 

spectrum then becomes 

     1/3 4/3

1/3 4/3
13/3 4

9 4 1
, exp

1 3 2
2

3

s
R r s K K


   




   
           

 

             (36) 

   
7 / 6

3 2 21
4

E k k k







       (37) 

where  K x  is the modified Bessel function of fractional order,   is the gamma function, 




 
0

1)( dtetx tx
                     (38) 

and   is the non-dimensionalized spatial parameter r  by /r  . This yields turbulent 

intensity and length scales as 

2

0 4

9

32
u




                  (39) 

0t               (40) 

0

1 5

2 6

1
2

3

l 

   
    
   

 
 
 

.                      (41) 

Figure 3 shows a turbulence field generated in this way. This spectrum's arrows are less 

ordered relative each other and the eddies are more diffusive.  

3.1.2. Method 2 

According to Kraichnan [24] a random velocity field can be initiated in the form 

          



N

n

nnnnnn txkkwtxkkvtxu
1

sincos, 


.   (42) 

The conditions for  nkv


 and  nkw


 to assure divergence free flow, i.e. 

  0,  txu


,                 (43) 

are checked through 
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          

         

           .0)43(cossin

cossin

sincos,

1

1

1



















N

n

nnnnnnnn

N

n

nnnnnnnn

N

n

nnnnnn

txkkkwtxkkkv

ktxkkwktxkkv

txkkwtxkkvtxu













         (44) 

(44) is fulfilled for 

0)()(  nnnn kwkkvk


                      (45) 

i.e.  nkv


 and  nkw


 orthogonal to nk


. The vectors  nkv


 and  nkw


 are therefore chosen as 

  nnn kkv


  ,   nnn kkw


  ,       (46) 

where n


 and n


 are arbitrary vectors picked from Gaussian distributions to keep the 

randomness of the field. Only the initial field per se is of interest, the evolution in time of the 

initial field by the  tn   term is not needed. The actual solving for time dependency is later 

performed by the CFD solver. The vectors nk


 should also be random but must be picked so 

that the energy spectrum is fulfilled.  

Numerically in a 3D case, the vectors nk


 are distributed within the volume limited by spheres 

of radii equal to the lower and higher wave number of the discretized interval of the energy 

spectrum. Within the spheres there exist a certain number of grid points available for 

selection. This is depending on the radii of the spheres, hence larger radii results in more 

possible grid points. The number of grid points available for selection is limited by a set 

maximum for high wave numbers to keep the required CPU time down. The same procedure 

can be used in a 2D case, but with circles instead. 

 

Figure 3. Initial field generated through the Kármán-Obukhov's spectrum approach [25]. 
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According to Fourier decomposition, the velocity field could also be written as [26] 

   

   

        

      

             

   .sincos2

sincossincos

ˆˆˆ

ˆˆˆˆ
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ˆ
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










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





















N

n

nn

nn

N

n

nn

n

xki

n

N

n

xki

n

nn

N

n

xki

n

N

n

xki

n

Nn

xki

n

N

n

xki

n

N

Nn

xki

n

xkbxka

xkixkbiaxkixkbia

biakuekueku

kukuekueku

ekueku

ekuxu

nn

nn

nn

n





















             (47) 

Identification of terms in (42) with those in (47) yields 

 

       
i

kwkv
ku

kw
b

kv
a

nn
n

n

n

22
ˆ

2

   
2




















.            (48) 

The turbulent kinetic energy, ek , is given by [26] 

  







N

Nn

ii

ki
N

Nn

iiiiiie ReRxRuuk n ˆ
2

1ˆ
2

1
0

2

1

2

1 0


,                       (49) 

whence the discretized energy spectrum is defined as [26] 

       

   

       

       

   
.

442

1

442

1

22222

1
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1

 ˆˆˆˆˆˆ
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1
)(
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*

*











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
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 
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



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
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






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


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



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
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nnnn

nini

ninininiiiiin

kwkv

kwkwkvkv

i
kwkv

i
kwkv

kuku

kukukukuRRkE








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                            (50) 
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After that the vectors nk  has been distributed randomly, the coefficient vectors  nkv


 and 

 nkw


 are formed by first performing the cross product in (46), determining the direction and 

then determining the magnitude by multiplying with the assigned energy for each vector, 

governed by equation (50). 

Calculation of the actual velocity field requires summation over the entire domain for each 

grid point, according to (42). Finally, the turbulent intensity of the created field needs to be 

controlled and if it differs too much from the desired one, it should be scaled. This is done by 

summing up the turbulent kinetic energy of the created field according to the first part of (49) 

and calculating the turbulent intensity. The estimation of the turbulent kinetic energy is 

dependant on the number of dimensions used, here written as nDim , according to 

e

e

k
nDim

u

u
nDim

k

2
'

'
2

2







.                 (51) 

A factor can be calculated by dividing the desired turbulent intensity by the one received in 

(51) and then simply multiplying each velocity vector with that factor. 

A strength of the method is that it works for 1D, 2D and 3D cases. The construction of a 2D 

initial turbulence field is very similar to the construction of a 3D field. Apart from putting the 

velocity components in the z-direction to 0, the only major difference is the random n


 and 

n


 vectors, which should be projected onto the z-axis or directly created as a randomly 

positive or negative normal to the x-y plane. 

3.1.3. Method 3 

The routine of using FFT is quite similar to the method described in paragraph 4.1.2, but has 

the advantage of requiring less computational time. By applying the randomization of vectors 

nk  and calculating the Fourier coefficients from the energy spectrum according to (50), the 

velocity field is then constructed by performing an inverse Fourier transform by FFT. 

3.1.4. High Reynolds number modeling of energy spectrum 

The energy spectrum was modeled by the high Reynolds number approximation. The high 

Reynolds number energy spectrum approximation function is written as [26] 

       kfklfkCkE L

3/53/2           (52) 

with 

 
  

03/5

2/12

p

L

L

ckl

kl
klf


















         (53) 
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and 

 
   













 
cck

ekf

4/144

                            (54) 

where   is the dissipation rate and C, 
Lc , 

0p ,   and c  are modeling parameters. 

The energy spectrum function (52) describes the energy distribution as function of the 

absolute value of the wave number. Comparing the turbulent kinetic energy with the one 

expressed as an integral over the entire energy spectrum along with an estimation of the 

dissipation, results in a relation between the modeling parameters; 

   

  
  

  
  

dke
ckl

kl
k

l

k
C

l

k
dke

ckl

kl
kC

dkkfklfkC

dkkEk

cck

p

L

e

e
cck

p

L

L

e



















































































































4/144
0

4/144
0

3/5

0

2/12

3/5

3/2
2/3

2/3
3/5

0

2/12

3/53/2

0

3/53/2

0

)(

          (55) 
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                                                                                        

C
I

1
1                (57) 

For high Reynolds numbers, a very minor part of the energy is contained in the range affected 

by the  kηf  term and is in the high Reynolds number approximation neglected. The integral 

1I  can in that case be rewritten as 
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The value of Lc  is relying on the choice of the modeling parameter 0p . 0p  can be chosen 

arbitrary, but most commonly as 2 or 4 [26]. If the integral 2I  is solved numerically by using 

Simpson’s rule [27] 
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1I  is given by 
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According to [28], the constant C  has been determined empirically from the constant 1C  to 

5.0
55

18
1  CC                   (61) 
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                                                                                         

5.1528.1 C .                  (62) 

Values for Lc  then results in 
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The dissipation rate,  , can be written as the integral of )(2 2 kEk  over all wave numbers 

[26]. The high Reynolds number approximation leads to the neglection of the )(klfL  term, 

since a very minor part of the energy is dissipated in the large scale region. This yields 
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Rearranging terms in (64) and the using the definition of the Kolmogorov length scale lead to  
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                                                                          
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Equations (64) and (66) gives 
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In the simplest case, 0c , through the change of variable; xkη  , the integral could be 

solved using the gamma function 
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dxex x
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According to Pope [26],   has been determined experimentally to be 2.5  which through 

numerically solving equation (68) using Simpson’s rule (59), results in 4.0c . 

If the method is applied for low Reynolds number however, the neglect of the high and low 

wave number functions for the turbulent kinetic energy and the dissipation calculations 

respectively, is not a good estimation. Without the simplifications in (58) and (64) along with 

the estimation of the Kolmogorov length scale as 
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the integral equations 
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must be solved through iteration since they are dependant. After the use of Simpson’s rule 

(59) and iteration in two steps for a various range of turbulent Reynolds numbers, the results 

stabilized. The values of the constants Lc  and c  as functions of Reynolds number are 

displayed in figures 4 and 5 for 20 p  and 40 p respectively. 



 24 

Finally, the dissipation rate is to be estimated. The estimation can either be done by (i) using 

the estimation from equation (55), (ii) a RANS expression or (iii) through the definition of the 

Kolmogorov length scale by estimating both the length scale per se and the viscosity. For the 

fields created in this project, the first estimation (i) was used.  

The dissipation rate estimation from equation (55) along with the estimation of the turbulent 

kinetic energy according to (51) yields  
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A quite similar way is using the RANS approach. Along with the estimation of the turbulent 

kinetic energy in (51) yields [26] 
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Where the modeling parameter DC  and the length scale ml  is estimated according to RANS 

theory [26]. 

Equation (65) yields 
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According to [29] the dynamic viscosity of a gas mixture is calculated as 
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where ij  is given by 

2
4/12/12/1

11
8

1
























































i

j

j

i

j

i
ij

m

m

μ

μ

m

m
 .                (79) 



 25 

 
Figure 4. The modeling parameters Lc  and c  for various Reynolds numbers at 20 p . 

 
Figure 5. The modeling parameters Lc  and c  for various Reynolds numbers at 40 p . 



 26 

The kinematic viscosity is then given by 

mix

mix
mix




                  (80) 

which yields  
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with ij  as 
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Some difficulties occur when the high Reynolds number approximation, equation (52), is used 

in a DNS setup, which is limited to low Reynolds numbers. Figure 6 shows a plot of the 

energy spectrum at various turbulent Reynolds number with the integral length scale, l , set as 

ml  10 3 , the turbulent intensity set as 
s

m
'u  50 , which assumes variable viscosity when 

varying the Reynolds number, and with the Kolmogorov length scale estimation according to 

(72). All spectrums uses 20 p , but the solid line spectrums uses fix values of the energy 

spectrum modeling parameters Lc  and c  as described by Pope [26], while the dashed line 

spectrums uses the variable values from figure 4. The figure more clearly demonstrates how 

severe the difference of using fixed and variable energy spectrum modeling parameters for 

low Reynolds numbers is. It also shows that the inertial sub-range is insignificant for 

200Re T  and does not become sufficient until the turbulent Reynolds number approaches at 

least 500. For low Reynolds numbers, it would be desirable to use some different kind of 

energy spectrum function with a, somewhat, more significant distribution of energy to the 

smaller scales. 

3.1.5. Low Reynolds number modeling of energy spectrum 

There are easier spectrums to use than the high Reynolds number energy spectrum 

approximation. For low Reynolds numbers, equation (52) can be simplified and written as an 

energy spectrum function [30] 

 
2

242'
  kekuAkE ,                     (83) 

where k  is the nondimensionalized wave number parameter. The wave number is 

nondimensionalized by the maximum wave number of the domain i.e. division by 2  times 

the inverse of the integral length scale as shown in (84). 
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Integrating the energy spectrum should lead to the turbulent kinetic energy, which results in 

the constant A  according to [31] 
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Figure 6. The high Reynolds number energy spectrum approximation (51) for various turbulent Reynolds number at 

ml  10
3

  and 
s

m
'u  50 . The solid line spectrums corresponds to the use of fix energy spectrum modeling parameters and 

turbulent Reynolds numbers, given from left to right; TRe  10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 

700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000 and 10000. The dashed line spectrums corresponds to 

the use of varying values of Lc  and c  and turbulent Reynolds numbers, given from left to right; Lc 0.898, 2.583, 4.809 

and 6.054, c 0.670, 0.471, 0.414 and 0.404, TRe 10, 100, 1000 and 10000 respectively. 
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The constant A hence results in the values displayed in (87) for the different dimension cases 

respectively. 
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The low Reynolds number energy spectrum approximation is visualized in figure 7, using 

parameters 
s

m
'u  50  and m.l  0050  for a 1D case. The structure is similar to the low  

 

Figure 7. The low Reynolds number energy spectrum approximation (83) for a 1D cases with integral length scale 

mm.l  50  and turbulent intensity 
s

m
'u 50 . 
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Reynolds number visualizations in figure 6, although the low Reynolds number spectrum is 

independent of Reynolds number. 

3.1.6. Testing and plots of the initial field of turbulence 

As described in the previous sections, initial turbulence fields can be created in different 

ways. When performing simulations and visualization, three methods were tested; (i) the 

method described in section 3.1.2 for both 3D generated, plotted in 2D and directly 2D 

generated turbulence, (ii) the FFT method, as described in section 3.1.3, generated in 2D, both 

using the high and low Reynolds number energy spectrum approximation and (iii) the initial 

turbulence field created in the open source pencil code through feeding of energy at a set 

maximum wave number and then during iterations in time allowing it to cascade to smaller 

scales. 

To resolve all scales of turbulence, the resolution would preferably be as high as possible. For 

the 3D initialization however, the number of grid points was limited by the amount of 

accessible memory to a 256256256   grid mesh. The center layer in the z-direction was 

plotted. To simplify comparison between the different fields, the resolution for the 2D cases 

was also set to 256 grid points on the domain length i.e. a total grid mesh of 256256  . 

However, to make the visualization clearer, the initial fields are only displayed on a 6464   

mesh grid. The turbulent intensity was kept constant for all fields at smu / 50'  and the 

domain length was set to mm 5 . With integral scale equal to the domain length, i.e. mml  5 , 

these conditions results in a turbulent Reynolds number equal to  

7.457
000357.0
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53.1
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S

u


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The initial turbulence fields are pre-combustion, but since they are eventually to be used in 

lean premixed hydrogen air flames, Borghi’s definition of the turbulent Reynolds number is 

still used. The values of laminar flame speed and laminar flame thickness are experimental 

measurements from [32]. 

Plots of the turbulence field generated through method 2 as described in chapter 3.1.2 are 

shown in figures 8 and 9 for the 3D and 2D case respectively, using the high Reynolds 

number approximation. Plots of turbulence generated through method 3 as described in 

section 3.1.3 are shown in figures 10 and 11, with integral scales of mm 5  and mm 5.0  

respectively, using the low Reynolds number approximation. Figures 12 and 13 also shows 

method 3 generated turbulence with integral length scales of mm 5  and mm 5.0  respectively 

but instead using the high Reynolds number energy spectrum approximation. The pencil-code 

generated turbulence field is shown in figure 14, using an approximate integral length scale of 

mm 5 . 

The fields in figures 8 and 9 do not differ significantly, which is expected since they are 

generated with identical methods. More interesting is that when testing with coarser grid, the 

differences become more severe. In that case, the pattern of eddies is much more discernable 

for 2D and the turbulence field in 3D looks more like a regular flow field. When the vorticity 

was measured, it was observed that the maximum vorticity for 3D case was almost one order 

of magnitude larger than in the 2D case. However, during the testing with coarser grid, the 

exact opposite was observed. This means that uneven distribution of vorticity is probably a  
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Figure 8. 3D initial turbulence field, created through method 2 as described in section 3.1.2 using energy spectrum (52). 

Parameters used are int. length scale of 5 mm, turbulent intensity of 50 m/s and grid resolution of 256x256. 

 

Figure 9. 2D initial turbulence field, created through method 2 as described in section 3.1.2 using energy spectrum (52) 

Parameters used are int. length scale of 5 mm, turbulent intensity of 50 m/s and grid resolution of 256x256. 



 31 

 

Figure 10. 2D init. turb. field, created through method 3 as described in section 3.1.3 using energy spectrum (83). Parameters 

used are int. length scale of 5 mm, turbulent intensity of 50 m/s and grid resolution of 256x256. 

 

Figure 11. 2D init. turb. field, created through method 3 as described in section 3.1.3 using energy spectrum (83). Parameters 

used are int. length scale of 0.5 mm, turbulent intensity of 50 m/s and grid resolution of 256x256. 
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Figure 12. 2D init. turb. field, created through method 3 as described in section 3.1.3 using energy spectrum (52). Parameters 

used are int. length scale of 5 mm, turbulent intensity of 50 m/s and grid resolution of 256x256. 

 

Figure 13. 2D init. turb. field, created through method 3 as described in section 3.1.3 using energy spectrum (52). Parameters 

used are int. length scale of 0.5 mm, turbulent intensity of 50 m/s and grid resolution of 256x256. 
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matter of coincidences. Also, the maximum root-mean-square velocity fluctuates a lot 

between different simulations of the same field. For the fields visualized in figures 8 and 9, 

the maximum root mean square velocity was measured to 
s

m
 002  for the 2D case and 

s

m
 602  

for the 3D case. This means that both vorticity and the root mean square velocity is higher in 

the 3D case compared to 2D. Again, this is the opposite of what was observed during the 

testing with coarser grid so further conclusions could not be drawn. 

The eddies in the turbulence generated through method 3 with large integral length scale, 

figure 10, are quite different from the others. The large eddies are clear but small scale 

fluctuations are not discernable. This is due to the use of the low Reynolds number energy 

spectrum approximation. An estimation of the Kolmogorov length scale commonly used is the 

one percent limit. The size of the Kolmogorov length scale is where the energy spectrum has 

reached one percent of its value at the integral length scale. In this case that means  
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Figure 14. 3D init. turb. field, created through the open source pencil-code. Approximate parameters used are int. length scale 

of 0.5 mm, turbulent intensity of 50 m/s and grid resolution of 256x256. 
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An integral length scale of mm 5  gives an integral scale wave number of  
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and resulting, when put into equation (89), in 
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Solving equation (91) numerically yields 
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The integral length scale being only about 1.6 times the Kolmogorov length scale clearly 

indicates that almost all energy is distributed over a very narrow band of large length scales 

and the small scales barely receives any. Maximum vorticity was measured in the field to 
1610881 - m.   and the maximum root mean square velocity to about  m/s160 , which was less 

than the ones in the 2D and 3D, method 2 generated turbulence cases, but not significant.  

The theory described in the previous paragraph is also shown in figure 11. When the integral 

length scale was decreased, a narrow band of smaller eddies was observed. However, with the 

low resolution of the visualization, the eddies in this case only shows up as a random noise. 

When the high Reynolds number energy spectrum function (52) was used instead, figures 12 

and 13, the spectrum of scales became quite different. Comparing figures 10 and 12, it is 

obvious that a lot of smaller scales are discernable; e.g. the large eddy at coordinates 

x=0.0048, y=0.0014. In figure 10 that eddy is quite smooth while in figure 12 the small eddies 

makes it more irregular. The maximum vorticity in figure 12 is about 16108 - m  which is 

significantly higher than the one in figure 10. Also the maximum root-mean-square velocity is 

higher in figure 12; /s 230 m  in comparison with /s 160 m  in figure 10. Even though the large 

structures are similar and the visual changes are minor, quantitatively, the vorticity and root 

mean square velocity differ quite considerably when the energy spectrum is changed. 

The same comparison can be made between figures 11 and 13, who are using low Reynolds 

number and high Reynolds number energy spectrum functions respectively. However, in this 

case it is almost impossible to observe any differences. Figure 11, with a very narrow band of 

scales, is already observed as randomly distributed fluctuations on this coarse grid 

visualization and the adding of more smaller scales is not visible.  

If the fields with the small integral scale instead are plotted with high resolution, 10241024  , 

and zoomed into one tenth of the actual domain, the exact same conclusions should be able to 
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be drawn. The plots with energy spectrum (82) and (52) are visualized in figures 15 and 16 

respectively. The small scale differences are not as easy to observe as previously, but through 

detailed comparison between the two, it could be seen that the high Reynolds number energy 

spectrum contains more small scales. 

The pencil-code created turbulence field was plotted after the method described earlier 

stabilized. The velocity values at the edges are incorrect due to plotting and multiprocessor 

communication issues. The eddies in that field are larger and contains less small scales than 

the other methods, so even though the creation process appears more physical and it is much 

more time consuming, the field does not fulfill the desired properties.  

To assure sufficient resolution, the velocity field can be visualized in a 3D plot. For increasing 

Reynolds numbers, the introducing of smaller scales increases the velocity differences 

between grid points and beyond a certain level, the resolution can not be considered adequate. 

Through testing and visualization, this can be seen through the following method. If the 

resolution is high enough, the velocity field looks smooth, while for too low resolution, the 

velocity field looks spiky i.e. too large velocity differences between adjacent grid points. For 

the 256256   resolution test case, velocity fields for turbulent Reynolds numbers; 10, 50, 100 

and 200 are visualized in figures 17, 18, 19 and 20 respectively. Which figures that actually is 

smooth enough is quite subjective. Clearly, for the Reynolds numbers 10 and 50, the 

resolution is sufficient and for the Reynolds number 200, it is insufficient. Reynolds number 

100 however, is a borderline case. 256256   resolution is probably not sufficient for 

Reynolds number 100 but the actual upper limitation is not far below. In the same way, the 

upper Reynolds number for resolutions 512512   and 10241024   is also estimated. For the 

512512   resolution case, the maximum possible Reynolds number to simulate is 

approximately 900 and for the 10241024   resolution case approximately 2000. The 

visualization of the 10241024   case with turbulent intensity of 218.484 m/s and turbulent 

Reynolds number of 2000 is shown in figure 21. 

3.2. Cases to be studied 

As written in section 3.1.6, studies of turbulent cases are governed by simulation limitations. 

When the cases to be studied were set up for the thin reaction zone regime and the broken 

reaction zone regime, the requirements were considered according to that section. 

Theoretically, the highest possible turbulent Reynolds number to simulate is 

3/4Re NT  ,            (93) 

where N  is the number of grid points on the domain width. The resolution requirement is due 

to that all scales, down to the Kolmogorov scale, must be resolved in a DNS study [22]. The 

highest possible turbulent Reynolds number to study in a 3D case with approximately 610  

node points should therefore be around 464. 2D is the alternative, which with the same 

number of node points corresponds to a maximum turbulent Reynolds number of 410 . As 

described in section 3.1.6, the actual upper limits are much lower and not more than half, if 

that, of the theoretical values should be used. 
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Figure 15. 2D init. turb. field, created through method 3 as described in section 3.1.3 using energy spectrum (82). Parameters 

used are int. length scale of 0.5 mm, turbulent intensity of 50 m/s and grid resolution of approximately 102x102. 

 

Figure 16. 2D init. turb. field, created through method 3 as described in section 3.1.3 using energy spectrum (52). Parameters 

used are int. length scale of 0.5 mm, Reynolds number of  and grid resolution of 102x102. 
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Figure 17. Zoomed plot of the 2D init. turb. field, created through method 3 as described in section 3.1.3 using energy 

spectrum (52). Parameters used are int. length scale of 5 mm, turbulent intensity of 1.09242 m/s and turbulent Reynolds 

number of 10.  

 

Figure 18. Zoomed plot of the 2D init. turb. field, created through method 3 as described in section 3.1.3 using energy 

spectrum (52). Parameters used are int. length scale of 5 mm, turbulent intensity of 5.4621 m/s and turbulent Reynolds 

number of 50. 
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Figure 19. Zoomed plot of the 2D init. turb. field, created through method 3 as described in section 3.1.3 using energy 

spectrum (52). Parameters used are int. length scale of 5 mm, turbulent intensity of 10.9242 m/s and turbulent Reynolds 

number of 100. 

 

Figure 20. Zoomed plot of the 2D init. turb. field, created through method 3 as described in section 3.1.3 using energy 

spectrum (52). Parameters used are int. length scale of 5 mm, turbulent intensity of 21.8484 m/s and turbulent Reynolds 

number of 200. 
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To resolve the inner structure of the flame front, 20 grid points inside of the reaction zone is 

required. If the reaction zone thickness is compared to the integral length scale, which is in 

the same order as the computational domain length, this condition sets an upper limit for the 

ll/δ  in the Borghi diagram. In the 3D (2D) case, where the number of distributable grid points 

is 100 (1000) in one direction, this condition limits the calculable domain to 5ll/δ  

 50ll/δ . This means that for ll/δ  higher than 5, a 2D simulation is required. 

Six simulation cases were then set up with conditions for possibly relevant scenarios. Lean 

combustion is a relevant case to study. Low temperature leads to low emissions of e.g. 
xNO  

and it has therefore practical applications. Due to this, the equivalence ratio was set somewhat 

lower than unity, 0.8  , for all cases. The temperature and pressure was set to room 

temperature and atmospheric pressure, since it is a very common situation. Equal equivalence 

ratio and pressure for all cases leads to the same laminar flame speed and laminar flame 

thickness for all studies and the values used are from [32]. To study differences between the 

thin reaction zone regime and the broken reaction zone regime, the Karlovitz number was set 

to span over the range of 30 300Ka  . After some minor testing it was realized that the 

resolution in a 3D simulation was too poor to visualize the desired phenomenon and 2D 

simulations was selected for all cases. 3D simulation was tested for cases 3 and 4 which are 

theoretically on the resolution limit since comparison between the Kolmogorov length scale 

and the cell length gives 

 

Figure 21. Zoomed plot of the 2D init. turb. field, created through method 3 as described in section 3.1.3 using energy 

spectrum (52). Parameters used are int. length scale of 5 mm, turbulent intensity of 218.484 m/s, turbulent Reynolds number 

of 2000 and resolution of 1024x1024. 
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According to equations (94), (95) and (96), all scales should be possible to resolve, since 

43  , case case ηη . The calculation of the Kolmogorov length scale being a rough estimation 

makes it uncertain that the smallest scale is resolved for neither of the cases. This makes it 

doubtful if DNS in fact is used for the 3D simulations. The different cases are listed in Table 1 

and marked in the Borghi diagram in figure 22. 

 

Case 1 2 3 4 5 6 

  0.8 0.8 0.8 0.8 0.8 0.8 

)( KT  298 298 298 298 298 298 

)( atmp  1 1 1 1 1 1 

)( mml  0.1667 0.357 1.25 1.667 2.5 5 

)/( ' smu  33 15.3 50 33 86.8 165.3 

TRe  10 10 114 100 397.92 1512.88 

Ka  146.78 31.6 100 46.42 161.56 300 

)/( smSL  1.53 1.53 1.53 1.53 1.53 1.53 

)( mml  0.357 0.357 0.357 0.357 0.357 0.357 

)( mmL  5 5 5 5 5 5 

Lc  0.90 0.90 3.84 2.58 4.40 5.65 

c  0.67 0.67 0.43 0.47 0.42 0.41 

Table 1. Operating conditions for the simulation cases.  
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3.3. Computational set up 

After setting the physical domain length fixed as mm 5  and the integral length scale being 

varied as parts of the domain length, the initiation of a propagating flame front had to be 

considered. During early testing it was found that for high intensity turbulence cases, which 

most of the ones in table 1 are, a thin high temperature region was quickly distributed before 

ignition and a planar propagating flame was not possible to achieve. To assure quick ignition 

and propagation before distribution, the hot band was set as broad as half of the domain and 

with initial temperature of 3500 K. The temperature gradients between the hot and room 

temperate regions was then lowered by linearly decreasing the temperature over 2.5% of the 

domain length. This initial temperature distribution was used for all cases except the non-

turbulent flame cases. For a non-turbulent flame, it is no risk using a thinner hot band since no 

turbulence has the possibility of shattering it. An initial high temperature distribution of one 

fourth of the domain length was therefore used to get a longer propagation and hence also a 

more accurate laminar flame speed measurement. The initial temperature distribution for the 

turbulent cases is visualized in figure 23. 

 

 
Figure 22. Borghi diagram with the cases to be studied marked out. 
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4. Results and discussion 

In this chapter, results obtained from simulations of the cases described in section 3.2 will be 

presented and discussed. The flame front is visualized by the species 2HO , since it is created 

in elementary reactions involving species such as 

MHOMOH  22                           (97) 

222 OHHHO  .                       (98) 

Visualization of the flame turbulence interaction is done by simultaneous plotting of the 2HO  

species and the vorticity   defined as 

u


 .               (99) 

For 2D, the vorticity around the z-axis is the interesting part and written as 

y

u

x

v









 .               (100) 

 

 

Figure 23. The initial temperature distribution used in all simulation cases. 
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4.1. 2D simulations 

The main results were achieved from the use of 2D simulations for all cases described in 

section 3.3 with 10241024   grid resolution. Quantitatively, the turbulent flame speed and the 

flame surface density, FSD, were measured. 

For both measurements, an exact instantaneous position of the flame front had to be 

calculated. For this, the normalized distribution of fuel was used. By the change of variable to 

the reaction progress variable 

 
burnedfuelunburnedfuel

fuelunburnedfuel

YY

YY
tyxc

,,

,
,,




 ,        (101) 

the normalized fuel distribution scaled to vary between 0 and 1 approximately was given. The 

ensemble mean of it was obtained through the integration in the homogeneous direction y  

    dytyxc
L

txc
y

,,
1

, ,                        (102) 

and the mean flame front location was then defined to be located at a fix value of the mean 

normalized distribution of fuel. Due to pocket formation for the highest turbulent intensity 

cases, the fixed value was chosen to be low to avoid disturbances from the pockets. The value 

  25.0, txc                (103) 

was used. For each time step, the flame front speed relative to fixed coordinates, *S , was 

calculated by 

   

t

|x|x
S

.t,xc.tt,xc*




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 250250
.      (104) 

According to continuity equation relative *S , the flow speed in the unburned mixture, uu , 

would be 
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where u  is the density on the unburned side, b  is the density on the burned side and bu  is 

the flow speed in the burned mixture. *S  being positive, equation (104) means that uu  also is 

positive since 

ub  .           (106) 
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To acquire the flame speed relative to unburned mixture, uu  has to be subtracted from *S , i.e. 

u

* uSS  .              (107) 

The FSD was determined by first measuring the length of the flame front in each 

computational cell. The reaction progress variable in each cell was distributed to the adjacent 

node points and by calculation of the intersections of the flame front with the cell border 

through linear interpolation, the flame front length was calculated by the use of the 

Pythagorean Theorem. This also requires the assumption of a linear flame front within each 

cell. The FSD variable   in cell ji  ,  was then calculated by  

 
yx

l
ji

ji


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,
, ,                 (108) 

where jil ,  is the flame front length in cell ji  ,  and x  and y  is the cell sizes in the x and y 

directions, respectively. The FSD average over the homogenous direction along the flame 

front is then calculated by 
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4.1.1. Laminar flame 

As an extra comparison case, simulation of laminar flames was performed. As mentioned in 

section 3.3, for a laminar flame (non-turbulent) there is no risk of shattering of the flame front 

and the width of the hot ignition region was therefore set as one fourth of the domain instead 

of half for the turbulent cases. This is to acquire a longer distance of propagation and 

therefore also a better stabilized value. Time evolution of the propagating 2HO  layer for a 

laminar flame at atmospheric pressure is visualized in figure 24.  

Equations (101-103) were used when defining the instantaneous flame front. *

LS  was then 

calculated through equation (104) and visualized in figure 25 with the values of the left flame 

front displayed with stars and the values of the right flame front displayed with circles. Figure 

25 shows a monotonic decrease, which is due to the pressure difference during earlier flame 

ignition. The mean flow velocity at the initial state was set to be zero. However, as it is shown 

below that as the flame propagates, the velocity field is altered. A mean flow velocity, uu , 

defined at 250.c   and averaged in the homogenous direction is calculated. uu  was 

calculated at each time and visualized in figure 25 with the values of the left flame front 

displayed with triangles and the values of the right flame front displayed with plus signs. 

Initially, due to ignition disturbances, the characteristics of the flame speed and the flow 

velocity is very different, but after some time the difference between the two velocities 

becomes stationary. The laminar flame speed was therefore estimated as the difference 

between the flame transportation speed and the flow velocity as 
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Figure 24. Time sequence of the propagation of the 2HO  layer for a non-turbulent flame. The frames corresponds to the 

elapsed times of s .30656  and s 52.2081  respectively. 

 

 

Figure 25. 
*

T
S  for the laminar flame displayed as stars and circles and 

u
u  at the flame front position displayed as triangles 

and plus signs for the left and right flame front respectively. 
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The experimental measurement of the flame speed, and hence also the value of the flame 

speed used in the calculations of the turbulent Reynolds numbers, is 
s

m
 53.1  [32] and 

therefore about half the one calculated in this laminar flame case. This difference might be 

due to the use of constant volume and a very small propagation distance.  

For future comparison, the thickness of the preheat zone was also measured. The preheat zone 

was assumed to last from approximately K 350  to the ignition temperature. The ignition 

temperature is the temperature where the chain branching reaction  

OHOOH  2                     (111) 

is faster than the chain terminating reaction (97). The rate of the reactions is given by the 

Arrhenius expression (13), which for reactions (110) and (97) reads [33] 
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The mole fraction MX  is one and the mole fractions of the other species does not influence 

the cross-over temperature since they are the same for both expressions. Figure 26 shows the 

rate of species concentration as function of temperature and the crossover temperature is 

found to be about K 980 . 

The temperature field was then plotted and displayed in figure 27 with only three temperature 

stages; 300, 350 and 980, making the preheat zone clearly visualized. Figure 27 also shows 

the distribution of species H , O , OH , 2HO  and 22OH . The thickness of the preheat zone, 

p , was measured from figure 27 and calculated as 

m.m..p   788 003831180003919870 .                (114) 

This calculation along with the estimation of the Kolmogorov length scale, (72), yields that 

the smallest length scale is smaller than the laminar thickness of the preheat zone for all cases. 

Due to this, broadening of the preheat zone is expected to occur in all cases. The distribution 

of radicals, H , O  and OH  has differences in mass fraction but similar profiles. Their values 

in the preheat zone is low and then gradually increases through the reaction zone. The 2HO  

species is mainly centered in the preheat zone and deceases closer to and through the reaction 

zone. This is due to that the reaction rate of 2HO  is mainly controlled by low temperature 

reactions such as (97), and due to the low concentration of radicals, the reverse reactions of 

(98) and (115). 
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222 OOHOHHO     (115) 

A low concentration of OH , makes the reverse reaction of equations (116) and (117) quite 

insignificant. 

OHOHHHO 2                        (116) 

22 OOHOHO                       (117) 

The distribution of 22OH  is quite similar to the distribution of 2HO , except that it does not 

decrease as rapidly in the reaction zone and post-flame zone as 2HO . This is due to that the 

rate of formation of 22OH  is only governed by reactions involving either 2HO  or radicals. 

The highest concentration of 22OH  is therefore found in the preheat zone, where the 

concentration of 2HO  is high and the concentration of radicals is low. The rate of 22OH  is 

therefore mainly controlled by reactions (118), (119) and (120). 

22222 OOHHOHO      (118) 

2222 HOHHOH     (119) 

2222 HOOHOHOH      (120) 

Figure 26. The reaction rate of species OH  and 2HO  plotted against temperature. The intersection is at 

approximately K 980 . 
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When the concentration of 2HO  decreases through the reaction zone, the rate of 22OH  is kept 

up by the increased concentration of OH  through the reverse reactions in equations (121), 

(122) and (123). 

 

Figure 27. Magnified visualization of the preheat zone for a stationary propagating laminar flame. The frames correspond to 

the preheat zone and distribution of species; H , O , OH , 2HO  and 22OH  respectively. 
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MOHOHMOH 22       (121) 

OHOHHOH  222     (122) 

222 HOOHOOH     (123) 

A simulation of a laminar flame at 30 atmospheres pressure was also performed and the 

position of the 2HO  layer at times s.  822385 , s 8.00619  and s 116.221  along with a 

zoomed figure of the 2HO  layer at s 116.221  are visualized in figure 28. At this pressure the 

flame front is much thinner than at atmospheric pressure and some minor wrinkling starts 

approximately at time s.  822385 . It later enhances and at time s 116.221 , the wrinkling is 

severe. Wrinkling of a laminar flame at high pressure is due to the non-unity Lewis number. 

Lewis number is the ratio between thermal and mass diffusivity and when it is non-unity, the 

mixture is not homogenously premixed. When the flame thickness becomes smaller, due to 

 

Figure 28. The 2HO  layer for a non-turbulent flame with 30 atmospheres pressure. The first three frames corresponds to the 

elapsed times of s 85.8223 , s 98.0061  and s .221611  respectively and the fourth frame shows a zoomed image of the 

lower right corner of the 2HO  at s .221611 . 
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high pressure, the flame becomes more responsive to the disturbances of the diffusive-thermal 

effect, the non-unity Lewis number effect. 

4.1.2. Case 1 in 2D 

Although the turbulent Reynolds number of case 1 is low, the Karlovitz number is very high. 

This is due to the high turbulent intensity in comparison with the very small integral length 

scale. In theory, inner flame region disturbance is expected for this case at the same time as 

the large structures of the flame front should be left with minor distortion. The turbulent flame 

speed is also in large extent connected to the degree of which the large scales of the flame are 

perturbed. A time sequence of the propagation of the 2HO  species layer along with vorticity 

is shown in figure 29. 

The first frame in the sequence of figure 29 shows the vorticity of the initial turbulence field 

and is clearly governed by very small scales. The second frame in the sequence, which is 

close to ignition, clearly shows the very minor large scale distortion. In the unburned gas 

region, the dissipation of the smallest scales is already severe and due to the raise of the 

viscosity in the unburned gases, a large amount of the turbulence was extinguished in the hot 

region. In the third and fourth frame it can be seen how the initial minor wrinkling of the 

flame is enhanced by the diffusive thermal effect and the Darrieus-Landau effect and 

eventually stabilizes. Due to the use of constant volume and the fact that the remaining eddies 

in the unburned gas eventually are being crushed between flame fronts, time steps beyond the 

fourth frame will for sure not provide any additional knowledge about the desired 

observations. 

Through the same method as described in section 4.1.1, the preheat zone and vorticity was 

visualized in figure 30 in a zoomed frame of the lower right part of the second frame in figure 

29 i.e. at time s 7.737014 . Figure 30 also shows the distribution of species H , O , OH , 

2HO  and 22OH  respectively at the same time and position as the preheat zone frame. 

The first frame in figure 30 clearly shows the broadening of the preheat zone by turbulent 

eddies. The distribution of radicals is very similar to the one observed in the laminar case. 

Apart from wrinkling, a minor disturbance in the OH  distribution is discernable. When a 

preheat zone broadened by turbulent eddies is observed it becomes clear that the distributions 

of 2HO  and 22OH  is a good indicator of the preheat zone. They are the only ones of the 

observed species that are affected by the preheat zone broadening and follows the contour of 

it very well. Measurements also shows that the concentration of species 2HO  and 22OH  in 

the turbulent case is increased where the preheat zone is concave and decreased where it is 

convex, compared to the laminar case. 

*

TS  was estimated through the method described in section 4.1 and plotted as a function of 

time in figure 31 with the values of the left flame front displayed with stars and the values of 

the right flame front displayed with circles. In the same figure, uu  at the flame front position 

is visualized with the values of the left flame front as triangles and the values of the right 
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flame front with plus signs. Both *

TS  and uu  are considered to be stabilized in the interval 

between times s.  935218  and s 7438.66 . After time s 7438.66 , the wrinkling of the two 

flame fronts became quite different, as can be seen in figure 29, which also makes the flame 

speed evolve in different directions. The turbulent flame speed was therefore estimated as the 

mean of the stabilized values i.e. 
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The FSD was calculated for times s 73701.4  and s 3255.96  and plotted in figures 32 and 

33 to visualize the difference in wrinkling for the two flame fronts. As expected from the 

results during the calculation of the flame speed, it in the FSD figures becomes clear that the 

left flame front is much more wrinkled than the right one. Ideally, the distribution of flame 

surface density should be continuous and expected, if overstated a bit, to be formed as a 

triangle. The FSD at early time seems to be well fitting to that description, due to very little  

 

Figure 29. Time sequence of the 2HO  layer propagation along with vorticity for case 1. The frames corresponds to the 

elapsed times of s .737014 , s 7.4074 , s 6.74386  and s 6.32559  respectively. 
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wrinkling. At later time however, the wrinkling becomes large and a big part of the domain 

length, which makes it statistically impossible to get a well distributed FSD. The statistics and 

the shape of the distribution should become better if the domain was larger. 

 

Figure 30. Visualizations at time s.  40747 for zoomed figures of the preheat zone along with vorticity and distribution of 

species; H , O , OH , 2HO  and 22OH  for the frames respectively. The zoomed area is also marked in figure 29, frame 3. 
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Figure 31. 
*

T
S  for case 1 displayed as stars and circles and 

u
u  at the flame front position displayed as triangles and plus 

signs for the left and right flame front respectively. 

 

Figure 32. FSD for case 1 over the domain width at time s 73701.4 . 
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4.1.3. Case 2 in 2D 

The second case is similar to the first in the sense that the integral length scale is small 

compared to the length of the domain. The Reynolds numbers are identical, which is achieved 

by approximately setting the turbulent intensity to half the one in case 1. These changes in 

conditions make the Karlovitz number drop significantly and end up in about one fourth of the 

one in case 1. The flame is in the thin reaction zone region and inner flame region distortion is 

therefore not expected. The phenomenon that should be able to discern are instead broadening 

of the pre heat zone and higher rate of large scale distortion of the flame than in case 1. A 

time sequence of the propagation of the 2HO  species layer along with vorticity is shown in 

figure 34. Like in case 1, the large scale wrinkling seems much more severe for the left flame 

front than the right. 

*

TS  was estimated through the method described in section 4.1 and plotted as a function of 

time in figure 35 with the values of the left flame front displayed with stars and the values of 

the right flame front displayed with circles. In the same figure, uu  at the flame front position 

is visualized with the values of the left flame front as triangles and the values of the right 

flame front with plus signs. Both *

TS  and uu  are considered to be stabilized in the interval 

between times s.  947818  and s.  786871 . After time s.  786871 , the wrinkling of the two 

flame fronts became quite different, as can be seen in figure 34, which also makes the flame 

speed evolve in different directions. The turbulent flame speed was therefore estimated as the 

mean of the stabilized values i.e.  

 

Figure 33. FSD for case1 over the domain width at time s 3255.96 . 
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The FSD was calculated for time s 307.96  and plotted in figure 36 to visualize the 

difference in wrinkling for the two flame fronts. Just as in case 1, the degree of wrinkling of 

the left flame front is higher than the one of the right flame front. As can be seen at the end of 

figure 35, the more severe wrinkling of the left flame front in comparison to the right one 

makes the flame speed higher and allows the left flame front to travel longer, making its 

position in figure 36 closer to the boundary.  

The absolute value of the vorticity in the burned region was calculated, averaged and plotted 

as a function of time in figure 37. The vorticity in the burned region of the flame is both 

consisting of non dissipated turbulence from the initial field and flame generated turbulence 

due to baroclinic torque. Initially, the measured vorticity is zero since there is no burned side. 

Shortly after ignition, the vorticity in the center region was quickly lowered due to the  

 

Figure 34. Time sequence of the 2HO  layer propagation along with vorticity for case 2. The frames corresponds to the 

elapsed times of s .73824 , s .430728 , s 1.86836  and s 1.32399  respectively. 
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Figure 35. 
*

T
S  for case 2 displayed as stars and circles and 

u
u  at the flame front position displayed as triangles and plus 

signs for the left and right flame front respectively. 

 

Figure 36. FSD for case 2 over the domain width at time s 307.96 . 
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viscosity increase. It was then quite rapidly stabilized at a somewhat constant level. At later 

times, the high peak of vorticity left at the position of the flame front, which in early time was 

quickly lowered to the stabilized value, became broader. This is probably due to wrinkling 

effects, that the vorticity in the burned region is calculated as an average through division by 

the number of contributing cells. 

4.1.4. Case 3 in 2D 

For the third case, the Reynolds number and the integral length scale was increased and the 

turbulent scales were spread over a wider range. A time sequence of the propagation of the 

2HO  species layer along with vorticity is shown in figure 38. An additional phenomenon 

visualized in this case is the propagation of an eddy pair through the flame front. This is 

clearly seen in the center of the flame front on the left hand side where the eddy pair starts to 

create an erosion in frame 2 and continues with the roll up in frame 3. Zoomed visualizations 

of the roll up at times s 2.63912  and s 4.95024  are shown in figure 39. When the eddy pair 

passes through the flame front, it leaves an unburned pocket of fuel and air on the burned side 

of the flame. It is eventually also burned, but the consumption of the fuel air pocket is 

relatively slow and at time s 4.95024 , remainings of the eddy pair cavity is still discernable. 

*

TS  was estimated through the method described in section 4.1 and plotted as a function of 

time in figure 40 with the values of the left flame front displayed with stars and the values of 

the right flame front displayed with circles. In the same figure, the  

 

Figure 37. Vorticity on the burned side of the left flame front displayed for different times. 
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mean flow velocity at the flame front position is visualized with the values of the left flame 

front as triangles and the values of the right flame front with plus signs. The figure clearly 

shows the uncertainty of the turbulent flame speed when a very high turbulent intensity is 

contained in a small volume. The flame speed increases and drops very quickly and even 

becomes negative at one point. The interval of stability is considered to be located between 

times s.  998135  and s.  396717 . The turbulent flame speed was therefore estimated as the 

mean of the stabilized values i.e. 
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The FSD was calculated for time s 1.6033  and plotted in figure 41 to visualize the 

difference in wrinkling for the two flame fronts. As can be seen in frame 4 in figure 38, due to 

a small region with high propagation speed in the center of the domain height, the two flame 

fronts has almost merged. In figure 41 this is also shown as the nonzero part of the region  

 

Figure 38. Time sequence of the 2HO  layer propagation along with vorticity for case 3. The frames corresponds to the 

elapsed times of s .118444 , s 3.47481 , s 2.63912  and s 1.6033  respectively. 
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Figure 39. The roll up of the flame front by an eddy pair at time s 2.63912  and s 4.95024 . 

 

 

Figure 40. 
*

T
S  for case 3 displayed as stars and circles and 

u
u  at the flame front position displayed as triangles and plus 

signs for the left and right flame front respectively. 
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between the flame fronts. As previously shown, the left flame front was more wrinkled than 

the right one. 

4.1.5. Case 4 in 2D 

The fourth case is similar to the third one. The Reynolds number is practically the same, but 

the Karlovitz number is, like in the case 1/case 2 comparison, drastically lowered. A time 

sequence of the propagation of the 2HO  species layer along with vorticity is shown in figure 

42 and as can be seen, the large scale distortion does not differ significantly from the one 

obtained in case 3. The pocket creation by eddy pairs is also similar to the case 3 study, but 

the vorticity near and inside the flame front is more obvious in case 3. Both the gradients and 

the actual maximum value of the vorticity is much higher in case 3. 

*

TS  was estimated through the method described in section 4.1 and plotted as a function of 

time in figure 43 with the values of the left flame front displayed with stars and the values of 

the right flame front displayed with circles. In the same figure, uu  at the flame front position 

is visualized with the values of the left flame front as triangles and the values of the right 

flame front with plus signs. Between times s 05062.5  and μs.  504322 , the difference 

between *

TS  and uu  was considered to be stabilized and the turbulent flame speed was 

therefore calculated as 

 

Figure 41. FSD for case 3 over the domain width at time s 1.6033 . 
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The FSD was calculated and plotted for time s 9.12434  in figure 44 to visualize the 

difference in wrinkling for the two flame fronts. The FSD is very similar to the one plotted for 

case 3 and no further conclusions could be drawn. 

 

 

Figure 42. Time sequence of the 2HO  layer propagation along with vorticity for case 4. The frames corresponds to the 

elapsed times of s .05065 , s 2.50432 , s 9.47553  and s 9.12434  respectively. 
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Figure 43. 
*

T
S  for case 4 displayed as stars and circles and 

u
u  at the flame front position displayed as triangles and plus 

signs for the left and right flame front respectively. 

 

Figure 44. FSD for case 4 over the domain width at time s 1243.49 . 
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4.1.6. Case 5 in 2D 

In case 5, all the available parameters were increased, making the flame highly turbulent. A 

time sequence of the propagation of the 2HO  species layer along with vorticity is shown in 

figure 45. The overall flame turbulence interaction is similar to the one in case 3, but the large 

scale distortion is more intense. 

Due to even higher rate of pocket formation and instabilities in the fuel distribution, the 

constant defining the flame front position was lowered to  

  2.0, txc .              (128) 

*

TS  was estimated through the method described in section 4.1 and plotted as a function of 

time in figure 46 with the values of the left flame front displayed with stars and the values of 

the right flame front displayed with circles. In the same figure, uu at the flame front position is 

visualized with the values of the left flame front as triangles and the values of the right flame 

front with plus signs. Between times s 05062.5  and s 8239.29 , the difference between *

TS  

and uu  was considered to be stabilized for the left flame front and the turbulent flame speed 

was therefore calculated as 
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The FSD was calculated and plotted for time s 8.4821  in figure 47 to visualize the 

difference in wrinkling for the two flame fronts. The wrinkling is very severe, but the two 

different flame fronts are still possible to observe. 
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Figure 45. Time sequence of the 2HO  layer propagation along with vorticity for case 5. The frames corresponds to the 

elapsed times of s 1.55906 , s 8.08016 , s 0647.13  and s 482.18  respectively. 
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Figure 46. 
*

T
S  for case 5 displayed as stars and circles and 

u
u  at the flame front position displayed as triangles and plus 

signs for the left and right flame front respectively. 

 

Figure 47. FSD for case 5 over the domain width at time s 1.6033 . 
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4.1.7. Case 6 in 2D 

In case 6, the Reynolds number was raised close to the limit of sufficient resolution. A time 

sequence of the propagation of the 2HO  species layer along with vorticity is shown in figure 

48. The hot band for flame initiation was almost shattered and it is doubtful whether a 

turbulent flame front could be considered to be achieved. To make this case physically 

interesting as a propagating planar flame, a larger physical domain is needed to make the 

flame stabilized.  

*

TS  was estimated through the method described in section 4.1 and plotted as a function of 

time in figure 49 with the values of the left flame front displayed with stars and the values of 

the right flame front displayed with circles. In the same figure, uu at the flame front position is 

visualized with the values of the left flame front as triangles and the values of the right flame 

front with plus signs. Equation (128) was used in case 6 as well due to the heavy pocket 

formation. The flame speed fluctuations were extreme in case 6 and the right flame front 

transportation speed varied over a span of /s 003 m , making a stable interval difficult to find.  

 

Figure 48. Time sequence of the 2HO  layer propagation along with vorticity for case 6. The frames corresponds to the 

elapsed times of s 0.776923 , s 2.64122 , s .728756  and s 93823.8  respectively. 
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It was nevertheless considered that the difference between *

TS  and uu  between times 

s.  669771  and s .136714  for the left flame front reached some kind of steady state and the 

turbulent flame speed was calculated as 
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The FSD was calculated and plotted for time s 93823.8  in figure 50 to visualize the 

difference in wrinkling for the two flame fronts. At this point of the flame propagation, the 

flame front was heavily wrinkled and distributed over the entire domain width. 

4.2. 3D simulations 

To obtain more physical results, turbulence should be simulated in three dimensions and, as 

written in section 3.2, the cases 3 and 4 were also simulated in 3D using 128128128   grid 

resolution. 

4.2.1. Case 3 in 3D 

A visualization of a 3D simulation of case 3 through the 2HO  layer along with the 2D 

temperature distribution in the x-y plane and the vorticity in the x-z plane at time s 384.42  is 

 

Figure 49. 
*

T
S  for case 6 displayed as stars and circles and 

u
u  at the flame front position displayed as triangles and plus 

signs for the left and right flame front respectively. 
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shown in figure 51. A 2D time sequence of the propagation of the 2HO  species layer along 

with vorticity is shown in figure 52. Due to a plotting issue, the vorticity lines follow the 

edges of the domain parts when shown in 2D. 

The shape of the 2HO  layer is very different from the one obtained in section 4.1.4. Both 

small scale and large scale distortion is less severe and the 2HO  layer appears more smudged. 

The unclear shape of the 2HO  layer is probably due to the low resolution. The vorticity lines 

also show the 3D effect. In the burned region it is most clear and the vorticity lines overlap 

each other in a way not visible in the 2D simulated case 3 in figure 38. 

*

TS  was estimated through the method described in section 4.1, but to obtain a 1D distribution 

of the fuel, an averaging over the z-axis through integration was also performed. *

TS  was then 

plotted as a function of time in figure 53 with the values of the left flame front displayed with 

stars and the values of the right flame front displayed with circles. In the same figure, uu  at 

the flame front position was visualized with the values of the left flame front as triangles and 

the values of the right flame front with plus signs. The figure clearly shows the lack of 

resolution in the 3D simulation. The flame front position is determined by a certain grid 

number, which has lower accuracy at a coarse 3D grid compared to 2D. This means that 

initially the flame front only moves one cell each time step and while the time steps grows, 

the flame transportation speed shrinks. At approximate time s.   522 , the flame fronts start 

to move two cells each time step and therefore suddenly increases. Due to equal time steps  

 

Figure 50. FSD for case 6 over the domain width at time s 93823.8 . 
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and flame transportation for most times, this also explains why the flame transportation speed 

is identical for the two fronts at many times. The flame speed was calculated as a mean from 

time s.  342376  i.e. 
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The turbulent flame speed is higher in 3D than in 2D. Which one of the two values that is 

better is not easy to guess without experimental comparison. 2D has the advantage of more 

exact determination of the flame front position, but a very fluctuating flame speed over time. 

3D has the advantage of averaging over a larger amount of cells, but the poor determination of 

the flame front position gives a high uncertainty for each value. 

In the 3D cases, the FSD was not calculated through equations (108) and (109). The flame 

being a surface instead of a line and the control cell being a volume instead of an area, the  

 

Figure 51. 2HO  layer along with the temperature distribution at the x-y plane and the vorticity at the x-z plane at time 

s 384.42 . 
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FSD variable   in cell k,j,i    was calculated by  
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where k,j,iA  is the flame front area in cell k,j,i    and z  the cell size in the z direction. The 

FSB average over the entire flame front is then calculated by 
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The FSD was calculated and plotted for time s.  762732  in figure 54 to visualize the 

difference in wrinkling for the two flame fronts. A comparison between the 3D FSD, figure 

54, and the 2D FSD, figure 41, who are taken at approximately the same time, shows 

similarities. If the height of the peaks in figure 41 is approximated to somewhere in the 

 

Figure 52. Time sequence of the flame propagation for case 3, simulated in 3D. The frames corresponds to the elapsed times 

of s 1.80827 , s 9.5067 , s 2.80192  and s 2.3844  respectively. 
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Figure 53. 
*

T
S  for case 3 in 3D displayed as stars and circles and 

u
u  at the flame front position displayed as triangles and 

plus signs for the left and right flame front respectively. 

 

Figure 54. FSD for case 3 in 3D over the domain width at time s..  762732 . 
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interval 
m

1
 50004000 , both the width, height and position of the peaks are almost identical 

for 2D and 3D. What differs is the shape. In the 3D simulation, a nearly perfect Gaussian 

distribution was obtained, while the one in 2D was much more chaotic and a Gaussian shape 

was difficult to observe. The reason for the Gaussian shape in 3D is probably due to the 

averaging over 16 times more cells in comparison to 2D. An additional similarity is that the 

left flame front has some kind of a tail in both 2D and 3D due to pocket formation and 

remainings of flame front on the burned side of the flame. 

4.2.2. Case 4 in 3D 

A visualization of a 3D simulation of case 3 through the 2HO  layer along with the 2D 

temperature distribution in the x-y plane and the vorticity in the x-z plane at time s.  81226  is 

shown in figure 55. A 2D time sequence of the propagation of the 2HO  species layer along 

with vorticity is shown in figure 56. Due to a plotting issue, the vorticity lines follow the 

 

Figure 55. 2HO  layer along with the temperature distribution at the x-y plane and the vorticity at the x-z plane at time 

s 812.26 . 
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edges of the domain parts when shown in 2D. 

*

TS  was estimated through the method described in section 4.1 along with averaging of the 

fuel distribution over the z-axis through integration. *

TS  was then plotted as a function of time 

in figure 57 with the values of the left flame front displayed with stars and the values of the 

right flame front displayed with circles. In the same figure, uu  at the flame front position was 

visualized with the values of the left flame front as triangles and the values of the right flame 

front with plus signs. The interval of stability is considered to be located between times 

s.  972697  and s.  226741 . The turbulent flame speed was estimated as the mean of the 

stabilized values i.e. 
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Figure 56. Time sequence of the flame propagation for case 4, simulated in 3D. The frames corresponds to the elapsed times 

of s 3.07437 , s 10.4458 , s 6.8122  and s 8.94244  respectively. 
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Figure 57. 
*

T
S  for case 4 in 3D displayed as stars and circles and 

u
u  at the flame front position displayed as triangles and 

plus signs for the left and right flame front respectively. 

 

Figure 58. FSD for case 4 in 3D over the domain width at time s.  027149 . 
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As for case 3, the turbulent flame speed for case 4 in 3D is quite high compared to the 2D 

measured one.  

The FSD was calculated and plotted for time s.  027149  in figure 58 to visualize the 

difference in wrinkling for the two flame fronts. Like in the 3D case 3, if the 3D FSD, figure 

58, is compared with the 2D FSD for case 4, figure 44, both width, approximate height and 

position are very similar for 2D and 3D.  

5. Conclusions and future work 

5.1. Initial field 

The initial turbulence field can be created through different methods. When the methods 

described in sections 3.1.2 and 3.1.3 were tested, differences were not discerned with the 

naked eye and which one to prefer was not obvious. Since the FFT method is much faster, the 

results indicate that this is the method to prefer. It was therefore the method used in all 

computations. 

To assure a physically reliable energy spectrum, the high Reynolds number energy spectrum 

function with Reynolds number dependant modeling parameters should be used. With the low 

Reynolds number energy spectrum function, a too small amount of energy is distributed to the 

smallest scales and more importantly; it is completely independent of Reynolds number. 

5.2. Turbulent combustion 

Through simulations of turbulent combustion at various turbulent intensity and integral length 

scale, a few fundamental phenomenons were observed. 

2HO  and 22OH  are good indicators of the position of the preheat zone, both for laminar and 

turbulent flames. This also proves that the preheat zone is not free from reactions. The rates of 

high temperature reactions are low, but the preheat zone is clearly not free from low 

temperature reactions. 

The eddy pair rollup and the species distribution within the reaction zone were clearly 

visualized. The rollup is a large scale phenomenon and was very clear for cases 3-6 where the 

integral length scale became a quite large part of the domain length. 

The 2D flame speed measurements did not benefit from the clear visualization of the flame 

front rollup. The measurements became difficult to perform through the kind of statistically 

averaging method used in this thesis. The turbulent flame speed was found to be very 

dependent on the turbulent intensity as well as the integral length scale. On what scale the 

largest flame wrinkling occurs is important, since the flame speed increase due to wrinkling is 

mainly a large scale phenomenon. 

DNS results are very dependent on the resolution. Comparisons between 2D and 3D 

simulations, where the resolution differ by a factor 8, show differences in the fundamental 

physical phenomenon visualized. Simulations performed in 2D lacks the important conditions 
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of turbulence being three dimensional and when averaging through the method used in this 

thesis, 3D gives 16 times better statistics.  

High resolution is, as discussed previously, of major importance in studies of fundamental 

physics through DNS. The increased resolution in 2D therefore makes it, with current 

computational power and accessible memory, highly interesting. 

5.3. Future work 

After performing high resolution 2D simulations and low resolution 3D simulations, the 

vision is obviously to perform 3D with high resolution. The computational requirements for 

this is however extremely high and will probably remain a vision for several years. The future 

work more close by, before the vision is fulfilled, might be introducing some turbulence 

feeding for the largest scale during the solving process to keep the initial turbulence from 

dissipating before combustion. An interesting method to be able to perform longer simulations 

could be the introduction of inlet and outlet boundary conditions in the x-direction along with 

the feeding of unburned turbulent gas mixture at the inlet. After the initiation of the two flame 

fronts, one of them is designated to blow off and the other one is stabilized in the center of the 

domain. With varying inlet feeding velocity, the turbulent flame speed could in this way be 

better estimated by conditioning a stable flame front. Through this method for better 

estimating the turbulent flame speed, simulations for fixed values of the turbulent intensity 

and varying integral length scales, or vice versa, could be perform, expanding, and determine 

with higher precision, the tables presented in this work. 

The definition of the flame front through fuel distribution requires a larger physical domain to 

obtain a statistically well positioned flame surface. This will for sure improve the 

measurements of the flame speed. 

To be sure that flame induced vorticity is observed, the decay due to viscosity raise has to be 

subtracted from the vorticity field. If this is not done, separation of the flame induced and the 

initial field remaining vorticity can not be done. 

To detect flame holes, the reaction rate in the oxidation layer has to be studied. In places 

where the rate of formation of water is low, a flame hole could be present. 
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