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Abstract 
The use of remotely sensed data is an important method to indicate land use and land 

cover changes. Remote sensing can provide a better picture of monitoring land use and 

land cover changes. It makes it feasible to locate geographically changed areas in order to 

employ it further detailed studies on environmental changes (e.g. land degradation).   

The study area is a heterogeneous and small-structured agriculturally dominated 

prefecture in northern Greece.   

The core post-classification change detection analysis was based on two Landsat 5 TM 

and Landsat 7 ETM+ images. Maximum likelihood classification was applied on the 

satellite data. A basic arithmetic combination was used to compare the classification 

outcomes to detect and locate land use and land cover changes over a period of 14 years.  

The accomplished post-classification change detection analysis performed weakly.  

 

Key words: Physical Geography, Geography, Change Detection, Maximum likelihood 

classification, Remote Sensing, Land Use Land Cover, Greece, Imathia 

Sammanfattning 
Användandet av fjärranalysdata är en viktig metod för att bestämma markanvändning 

och visa på förändringar i marktäcke. Fjärranalys kan ge en bättre utgångspunkt för 

övervakning av markytstäcke. Det gör det möjligt att geografiskt lokalisera förändrade 

markområden för att vidare kunna utföra noggrannare undersökningar om 

miljöförändringar (t.ex. markdegradering).  

Studieområdet är ett administrativt distrikt i norra Grekland. Det är ett heterogent 

jordbruksdominerat område karakteriserat av småskaliga landskapsstrukturer.   

Markförändringsanalysen efter klassifikation baserades på två bilder från Landsat 5TM 

och Landsat 7 ETM+. Maximum likelihood classification användes för klassifikation 

av satellitdatan. En kombination av enkel aritmetisk matematik användes för att jämföra 

resultatet av klassifikationerna och lokalisera förändringar i markanvändning och 

markytstäcke över en period på 14 år. Den utförda markförändringsanalysen fungerade 

inte väl.     

 

Nyckelord: Naturgeografie, Geografie, Change Detection, Maximum likelihood 

classification, Fjärranalys, Markanvändning och markytstäckning, Grekland, Imathia  
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1. Introduction 

This bachelor thesis is written for taking exam in the bachelor program of Physical 

Geography and Ecosystem Analysis at the University of Lund. It deals with a land use 

and land cover (LULC) change study in northern Greece.  

I am grateful for the supervision of Professor Ulf Helldén, Department of Physical 

Geography and Ecosystem Analysis, Lund University, Sweden. 

 

The monitoring of LULC changes has become a major environmental research issue in 

scientific, political and popular discussions over the last decades. LULC changes are 

feasible to identify direct and indirect land degradation processes. The monitoring of 

LULC changes has been supported in several projects by governments and international 

organisation such as European Union and United Nations Organisation.  

The United Nations Conference on Environment and Development (1992) defines 

desertification as land degradation in arid, semi-arid and dry sub-humid areas resulting 

from various causes, including climatic variations and human activities.  

 

The chosen study area is a heterogeneous agricultural region in northern Greece. Its 

physical settings equates to the definition of Salvati and Zitti (2008) for areas that are 

potentially affected by land degradation processes. Therefore a monitoring of LULC 

changes is practicable.  

 

Remote sensing contributes to a better understanding of LULC changes. Consequently, a 

specific mathematical pixel-by-pixel pattern recognition algorithm is tested on Landsat 5 

TM and Landsat 7 ETM+ satellite data with the intention of classifying LULC in the 

study site. Pixel-by-pixel based classification algorithms were well applied to detect 

LULC in other study areas in Greece (Symeonakis et al., 2004 and Vasilakos et al., 2004).  

Eastman (2006) suggests the use of satellite imagery as an important input for land use 

and land cover change studies. It has the capability to provide timely and historical 

information that may be impossible to obtain in any other way.  
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2. Objectives 
The purpose of this thesis is to study the potential of a post-classification change 

detection analysis using remotely sensed data in order to identify changes of LULC in the 

prefecture of Imathia, northern Greece. This post-classification change detection 

approach will be based on maximum likelihood classification algorithm using Landsat 5 

TM and Landsat 7 ETM+ satellite data. The results will represent a qualitative 

measurement of LULC classes of two points in time.  

These qualitative data will be applied for a post-classification change detection analysis 

over a period of 14 years to quantify the spatial extent of each LULC change class.  

 

A change detection map will be produced with the intention of locating LULC change 

classes geographically. In addition, LULC change classes will be inspected for their 

informational value in order to figure out if a LULC change class makes sense. 

3. Study Area  
The case study area of Imathia is a prefecture situated in the periphery of Central 

Macedonia and its capital is Veria. Imathia covers an area of 1701 km2, has a total 

population of 144 354 and a population density of 85 per km2. Its geography consists 

mainly of the Central Macedonian lowland, which is abundant with water and 

mountainous parts of Pierian Mountains to the southeast as well as the Verminion 

Mountains to the west. It has a small coast of the Thermaikos Gulf. An overview map of 

Imathia is provided in Appendix Map I. 

 

The climate is classified as semi-arid to sub-humid with hot summers and cold wet 

winters. Figure 1 illustrates the monthly average precipitation and temperature at the 

climate station of Trikala (22° 33' 12"E/40° 15' 43"N) in the study area over the period 

of 1980 to 1997. Maximum precipitation takes place in spring and autumn, although 

strong precipitation events might happen in other periods. Trikala has an average annual 

precipitation of 506mm. The highest temperatures occur in July (26 °C) and the lowest in 

January (5°C). The driest and warmest conditions take place between May and 

September.  

Karyotis et al (2006) reveal that 88.2% of the soils belong to the order of Entisols, 

whereas the rest are of Inceptisols in the lowland of Imathia. Vegetation types are usually 
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agricultural crops in the lowland. Main irrigated perennial crops in Imathia are peach 

(Prunus persica), pear (Pirus communis) and apple trees (Pirus malus).  

The dominant annual crops in the study area are cotton (Gossypium hirsutum L.), corn 

(Zea mays L.), sugar beet (Beta vulgaris L.) and rainfed winter wheat (Triticum aestivum 

L.). About 82% of irrigation demands in the lowlands are covered by surface water via a 

dense collective network, the remaining 18% are supplied from groundwater (Karyotis et 

al.2006). Aliakmon river and the small rivers Tripotamos and Arapitsa form the main 

irrigation sources for the lowland of Imathia (Albanis et al. 1996). 

Climate Of  Trikala (Imathia) 

Monthly Averages (1980 -1997)
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Figure 1 Climate Data Of Trikala Obtained From Hellenic National 

Meteorological Service (2008) 

The rural economy of Imathia is strongly dependent on agricultural production and 

export of fruits such as peaches and grapes. Additional income sources are the industry 

sector that is related to agriculture (food industry), tourism and livestock grazing in 

mountainous rangeland areas. Intensive agriculture is practised and most crops are 

irrigated. In figure 7 (see Appendix Figures) is shown Central Macedonia’s distribution of 

major crops based on Albanis et al. (1998).  
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4. Methods and Data 

4.1 Data 

4.1.1 Data Acquisition 

It is essential for a change detection to choose appropriate calendar acquisition dates and 

temporal resolutions. Anniversary dates of satellite images have the capability to 

minimise discrepancies in reflectance caused by seasonal vegetation fluxes and Sun angle 

differences. Anniversary dates are recommended for bi-temporal change detection. On 

the other hand, on anniversary dates as well phenological disparities due to local 

precipitation and temperature variations can appear (Coppin et al., 2004). One should 

consider common seasonal varieties in beginning and end of a season. 

 

As satellite data provider was used the Global Land Cover Facility (GLCF) of the 

University of Maryland and distributes remotely sensed data exempt from charges. A 

Landsat 5 Thematic Mapper (TM) recorded in summer 1987 (19/07/1987) and a 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) gathered in late spring 2001 

(30/05/2001) were selected.   

 

Furthermore, digital data of Greece provided by ESRI® Data & Maps (2008) in order to 

process in a Geographical Information System (GIS) was utilised. 

4.1.2 Sensor Characteristics 

Landsat 5 TM was launched on 5th March 1985 into repetitive, circular, sun – 

synchronous and near polar orbit. These orbits have an inclination angle of 98.2° with 

respect to the equator and an orbital altitude of 705km. It is a swath width of 185km for 

imaging used. This spacecraft crosses the equator on the north – to – south portion of 

each orbit at 9:45 A.M. local sun time. Each orbit takes approximately 99 min, with over 

14.5 orbits being completed in a day and results in a 16 – day repeat coverage (Lillesand 

et al. 2000). It has the Thematic Mapper (TM) on board, which is a multi-spectral 

mechanically scanning optical imager operating in the visible and infrared ranges.  

The spectral and spatial ground resolution of TM can be found in table 1 (TM bands are 

superscripted with a). 
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Table 1 Landsat TM And ETM+ Specifications On The Basis Of Kramer (2001) 

And Lillesand et al. (2000) 

Band 
no. 

Wavelength 
(µm) 

Spectral light Pixel/ Ground 
resolution (m) 

Principal Applications 

1 0.45 – 0.52 Blue  30 Distinction of soil, water and 
vegetation 

2 a 0.52 – 0.60 

2 b 0.53 – 0.61 

Green    30 Distinction of vegetation  

3 0.63 – 0.69 Red   30 Distinction of vegetation and soils 

4a 0.76 – 0.90 

4b 0.78 – 0.90 

Near infrared   30 Biomass and urban areas 

5a 1.55 – 1.75 

5b 1.55- 1.78 

Shortwave 
infrared  

30 Distinction of vegetation and 
rocks 

6a 10.40 – 12.50 120 

6b 10.42 – 11.66 

Thermal 
infrared 

60 

Measuring of temperature 

7a 2.08 – 2.35 

7b  2.10 – 2.35 

Shortwave 
infrared 

30 Amount of water in vegetation 
and soils  

8 b 0.50 – 0.90 Panchromatic 15 Distinction of areas 

aBand specifications of Landsat 5 TM and bBand specifications of Landsat 7 ETM+ 

 

Landsat 7 ETM+ was launched on the 15th April 1999. The earth – observing instrument 

onboard this spacecraft is the Enhanced Thematic Mapper Plus (ETM+), which is a 

fixed across-track radiometer (Kramer 2001). The design of the ETM+ stresses the 

provision of data continuity with Landsat 5. Similar orbits and repeat patterns are used, 

as is the 185km swath width for imaging (Lillesand et al. 2000). Enhancements are the 

addition of a 15m-ground resolution panchromatic band and an improved thermal band 

with 60m- ground resolution.  The spectral and spatial ground resolutions of ETM+ are 

illustrated in table 2 (ETM+ bands are superscripted with b).  

A more detailed description of the spacecrafts and their sensors characteristics is 

available in the Landsat 5 and 7 Science Data Users Handbooks (NOAA 1984 and 

NASA 1999) and Kramer (2001). 

These similar sensor specifications of Landsat TM and ETM+ allow a meaningful 

comparison of the data sets. 
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4.2 Pre – processing 

4.2.1 Geometric Processing 

Pre-processing of satellite sensor images is necessary in order to establish more direct 

linkage between the data and biophysical phenomena, removal of data acquisition errors, 

image noise and masking of contaminated and irrelevant spots such as clouds or water 

bodies, which might lead to misinterpretation and detection of unreal change phenomena 

(Coppin et al., 2004). The satellite data was clipped to a subset of the case study area in 

order to focus on the relevant data. Cloud coverage was masked out in both subsets to 

exclude contaminated pixels. Approximately 3030 ha (2%) of satellite data was masked 

out. 

 

Landsat imagery provided by the GLCF include a UTM projection and a WGS84 datum 

and ellipsoid respectively. Thus a geometric correction was unnecessary. However the 

vector data in the GIS needed to be projected to the Landsat imagery UTM projection, 

WGS84 datum and ellipsoid.  

 

4.2.2 Radiometric Calibration 

It is important to calibrate raw sensor data to meaningful physical units prior to a post-

classification change detection. A radiometric calibration helps to be sure that detected 

changes can be taken for real instead of errors caused by differences in sensor calibration 

and Sun angles. Unreal change phenomena could be caused by temporal variations in the 

solar zenith and azimuth angles (Coppin et al. 2004). The radiometric calibration in this 

study includes a conversion from calibrated digital numbers to spectral radiance and a 

spectral radiance to top-of-atmosphere (TOA) reflectance as recommended by Chander 

and Markham (2003). A full atmospheric correction was not performed. This is 

recommended by Song et al. (2001), they described the very small effect of an 

atmospheric correction for a post-classification change detection accuracy. Each image 

should be classified individually with different signature training data on the same scale 

(see Chapter 4.3 – Supervised Classification) and then compared to monitor changes.   
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Spectral Radiance 

The calculation of spectral radiance in W/(m2*sr*µm) is used to place different imagery 

into a common radiometric scale and to take sensor related effects into account (Chander 

et al., 2003 and Pilesjö, 1992). A conversion from quantized calibrated pixel values to 

spectral radiance (Lλ) was accomplished trough Equation 1 (Chander and Markham 

2003).  

Equation 1 Conversion To Spectral Radiance From Chander and Markham (2003): 

λ
λλ

λ LMINQ
Q

LMINLMAX
L cal

cal

+






 −
= *

max  
Where:  

Lλ  Spectral radiance at the sensor’ s aperture in W/(m2*sr*µm); 

Qcal  Quantized calibrated pixel value in Digital Numbers (DNs); 

Qcalmin Minimum quantized calibrated pixel value (DN = 0) corresponding to 

LMINλ; 

Qcalmax Maximum quantized calibrated pixel value (DN = 255) corresponding 

to LMAXλ; 

LMINλ  Spectral radiance that is scaled to Qcalmin in W/(m2*sr*µm); 

LMAXλ  Spectral radiance that is scaled to Qcalmax in W/(m2*sr*µm). 

 

The used parameters of the corresponding sensor are illustrated in table 4 post-

calibration dynamic ranges for National Landsat Archive Production System (NLAPS) 

Data (Chander and Markham 2003 and Landsat 7 ETM+ Sciene Data Users Handbook 

(NASA), 1999).  

Table 2 Postcalibration Dynamic Ranges for NLAPS Data (Chander and 

Markham 2003 and, NASA, 1999) Spectral Radiance, Lminλ and Lmaxλ 

in W/(m2*sr*µm) and Solar Spectral Irradiance, Esunl, in W/(m2*µm) 

 Landsat 7 ETM+   Landsat 5 TM  

Band Lminλ Lmaxλ Esunl Lminλ Lmaxλ Esunl 

1 -6.20 191.60 1969.00 -1.52 152.10 1957 

2 -6.40 196.50 1840.00 -2.84 296.81 1826 

3 -5.00 152.90 1551.00 -1.17 204.30 1554 

4 -5.10 241.10 1044.00 -1.51 206.20 1036 

5 -1.00 31.06 225.70 -0.37 27.19 215 

6 0 17.04 N/A 1.2378 15.303 N/A 

7 -0.35 10.80 82.07 -0.15 14.38 80.67 

8 -4.70 243.10 1368.00 none none none 
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Top Of Atmosphere Reflectance 

Different sun angles and solar irradiance were normalised by calculating the TOA 

reflectance in unitless planetary reflectance. This computation was done with Equation 3 

according to Chander and Markham (2003). It needs the Earth-Sun distance in 

astronomical units and the Solar zenith angle. In table 3 one can see these parameters, 

which were computed with Equation 2 in Appendix Equations. Chander and Markham 

(2003) recommend these calculations as a reduction in between-scene variability, because 

the cosine effect of different solar zenith angles can be removed. On the other hand one 

should consider that it does not add new information to the image. 

Equation 2 Earth-Sun-distance From Seaquist (NGEN08 Course Materials, Lund 

University, 2008)  

( )( )365/5.932sin*0167.01 −+= Juliandayd π  

where: 

d  Earth-sun distance in astronomical units. 

 

Equation 3 Spectral Radiance To T-O-A Reflectance Chander and Markham 

(2003): 

sESUN

dL

θ
ρ

λ

λ

cos*

**
2Π

=Ρ

 
Where: 

ρΡ  Unitless planetary reflectance; 

Lλ  Spectral radiance at the sensor’ s aperture in W/(m2*sr*µm); 

d  Earth-sun distance in astronomical units; 

ESUNλ   Mean solar exoatmospheric irradiances in W/(m2*µm); 

θs  Solar zenith angle in degrees 

 

Table 3  Sun Elevation, Earth-Sun Distance And Solar Zenith Angles  

Satellite Scene of 
Imathia 

Sun elevation in 
degrees 

Earth-sun 
distance in 
astronomical 

units 

Solar zenith 
angle in 
degrees 

Solar zenith angle 
in radians 

Landsat 5 TM 57 1.01613 33 0.57596 
Landsat 7 ETM+ 63.76 1.00258 26.24 0.45797 
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4.2.3 Image Enhancement  

Image enhancement is valuable to detect and define LULC information classes since they 

have different spectral characteristics. A proper image enhancement includes multi-

spectral transformation, false colour composites and vegetation indices, which is 

important to achieve information of the area and spectral knowledge.  

 

Reflectance Characteristics 

Surfaces have different reflectance characteristics over the electromagnetic radiation 

spectrum as one can see in the figure 2, which is based on Baldridge et al. (2009), data of 

the Aster Spectral Library Version 2.0 provided by California Institute of Technology. In 

figure 2 are illustrated three occurring surfaces in Imathia and how they can be 

approximately detected within the Landsat 5 TM sensor system. Vegetation has its 

characteristic spectral signature with the green peak in visible green light, a decrease in 

the visible red light and a strong boost in the near infrared called red edge. The spectral 

signature of soil such as Entisol has a slight increase in the visible light, a short strong 

increase in the near infrared and then a slight increase in the whole infrared. Man-made 

surfaces such as asphalt have an almost constant spectral signature on a low reflectance 

level over the electromagnetic radiation spectrum.  

 

Figure 2 Comparison Of TM Bands And Selected Spectral Signatures (Baldridge, 

2009) 
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Principal Component Analysis 

A multi-spectral transformation is a common application by reason of inter-band-

correlation in multi-spectral image data. Moreover Fung and LeDrew (1987) mention 

that multi-spectral remote sensing data exhibit high inter-band-correlation. That means if 

reflectance are high at a particular spot in one band this spots are likely to be high in 

other bands. Multi-spectral transformation allow to generate new and fewer sets of image 

components. The outcome is an alternative description of the original data and new 

components are uncorrelated. In addition they carry new information and are ordered in 

terms of the amount of image variation they can explain (Eastman, 2006). In brief 

information is maximized in the first component and decrease successively in the 

following. In this study a principal component analysis (PCA) was performed.  

Mathematically a linear transformation was applied that defines new orthogonal 

components with their origin at the mean of the data distribution as one can see in figure 

3. This transformation describes linear combinations of the original data values 

multiplied by appropriate transformation coefficients, called eigenvectors. Eigenvectors, 

a statistical quantity, are derived from the variance or covariance matrix of the original 

data (Lillesand et al., 2000). 
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Figure 3 Orthogonal Rotation Of Axes Via PCA 
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However the new components of a pixel vector are related to its old DN in the original 

set of spectral bands. PCA is recommended by Lillesand et al. (2000) for scenes where 

little prior knowledge is available and to optimise the implementation of maximum 

likelihood classification. Kuemerle et al. (2006b) employed successfully PCA to enhance 

TM and ETM+ data in a classification approach. More detailed descriptions of PCA and 

its statistical terms can be found in remote sensing literature (Lillesand et al. 2000; 

Richards and Jia, 1998 and Eastman; 2006). 

 

Weighted Difference Vegetation Index 

A more simple multi-spectral transformation is the utilisation of vegetation indices (VI’s). 

Advantages of VI’s over single band radiometric responses are their capability to provide 

information not available in any single band (Coppin et al. 2004) and their possibility to 

reduce data (Richards and Jia, 1999). For each environment adequate indices can be 

applied. In the semi-arid environment of Imathia was a distance based vegetation index 

accomplished in order to detect appropriate training areas and to achieve knowledge of 

the area.  

According to Eastman (2006) distance based vegetation indices are appropriate for 

average reflectance, which are influenced by soil background. They help to take apart 

information about vegetation from information about soil. Distance based vegetation 

indices apply the concept of a soil line and distances from it. A soil line is a linear 

regression that describes the relationship between reflectance values in the red and near 

infrared bands for bare soil pixel. Bare soil pixels were digitised in both Landsat images. 

All pixels in the data that have the same reflectance relationship are assumed to be bare 

soils. Those, which are located far from the soil line are supposed to be vegetation or 

water (Eastman, 2006).  

Of interest in the study area are unknown pixels that have higher reflectance in the near 

infrared and are assumed to be vegetation (compare figure 2).  

A weighted difference vegetation index (WDVI) was applied in order to maximise the 

vegetation signal in the near infrared band and to minimise soil brightness. Equation 4 

describes the WDVI calculation (Eastman, 2006).  

Thus vegetation was enhanced and linked to the iterative spectral signature improvement 

procedure.  
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Equation 4 Weighted Difference Vegetation Index From Eastman (2006) 

rnWDVI ργρ ∗−=  

Where: 

ρn  Reflectance of near infrared band 

ρr  Reflectance of visible red band 

γ  slope of the soil line 

 

False Colour Composite 

A full colour image is based on the Red Green Blue system (RGB), which is an additive 

colour mixing. The RGB system allows using three corresponding colour guns that 

display available satellite spectral bands. This offers a possibility to combine bands and 

colour guns in a different way in order to enhance the image. 

For a true colour composite one uses the red colour gun for spectral bands in the visible 

red light, green colour gun for spectral bands within the visible green light and the blue 

colour gun for spectral bands in the visible blue light. For false colour composites (FCC) 

one can use each available satellite spectral band. It is common to include several spectral 

bands that are more targeted to a differentiation of specific surface materials according to 

Eastman (2006).  

FCC’s and an associated contrast stretching (compare Lillesand et al., 2000 and Richards 

and Jia, 1999) of both images were carried out. This method is recommended by 

Eastman (2006) as a useful tool of image enhancement for the reason that it allows a 

simultaneous visualisation of information from three separate spectral bands as well as 

information that are not visible to the human eye in the infrared wavelengths.  

By dint of TM sensor characteristics (compare figure 2 and table 1 above) and reflectance 

characteristics two FCC’s were used to detect surfaces in this study area. 

The first FCC has band 7 in the red colour gun, band 4 in the green colour gun and band 

3 in the blue colour gun (FCC R:7, G:4 and B:3). This composite is useful to distinguish 

between soil and urban areas because soils appear in a smooth rose colour whereas urban 

surfaces appear in blue violet colour. Thus it is practical in study area of Imathia.  

The second is a classic infrared FCC which is used to detect vegetation because it has 

band 4 in the red colour gun, band 3 in the green colour gun and band 2 in the blue 

colour gun (FCC is R:4, G:3 and B:2). Vegetated surfaces are displayed in reddish 

colours. 
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4.3 Supervised Classification 

4.3.1 Information Classes 

The achievement of sufficient spectral signatures is based on user digitised training sites 

and their corresponding information classes. In case of this study a determination of 

information classes needs to take knowledge of the area and seasonal independence into 

account. 

A good knowledge of the study area was achieved by a suitable image enhancement and 

literature studies. Furthermore Richards and Jia (1999) suggest fieldwork that develops 

knowledge of the area with interviews, photography of characteristic surfaces, spectral 

measurements and collecting of ground truth data in order to validate a classification. 

Fieldwork was not carried out. Seasonal independence of information classes means that 

classes should be free of seasonal variations because the satellite data were not recorded 

on an anniversary date. This might be the main error source at the later change detection 

analysis. The information classes are chosen by the help of the USGS land use and cover 

classification system recommended by Lillesand et al. (2000). The information classes are 

agriculture, forest, soil, water and urban. Agriculture is divided in sub classes to consider 

the different spectral signatures of cropland and arable-land as well as the seasonal 

differences in both images.  

The class soil includes bedrocks and sparse vegetated areas since soil signatures dominate 

the background signals in the Mediterranean basin and lead to confusion. Compare 

subsection 4.3.2 – Spectral Signature Classes as well as Hostert et al. (2003) and Röder et 

al. (2008). Rangelands were not taken into account for the reason that they are quite 

difficult to identify in the satellite images without fieldwork and reference data such as 

topographic maps and air photography. However, sparse vegetation and ruderal species 

that could be used for grazing are assumed to be in the soil class due to the dominating 

soil background signal. 

 

4.3.2 Spectral Signature Classes 

Creating spectral signature classes is an iterative process and its objective is to aggregate a 

set of statistical data that describe the spectral signature of each information class. For a 

MLC training statistics of spectral classes consist of their mean vectors and their 

covariance matrices (Richards and Jia, 1999).  
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Common image processing systems offer possibilities such as scatterplots to enhance 

those signatures. Scatterplots are two dimensional multi-spectral feature spaces with 

defined axes. In order to create satisfactory spectral signatures of each information class 

and subclass respectively an adequate amount of training sites were digitised in both 

satellite images. Lillesand et al. (2000) describe the determination of training sites as art 

and science, since it needs a close interaction between user and the image as well as 

adequate reference data. In addition the mixed pixel problem of TM and ETM+ data was 

considered. The ground resolution of 30m leads to a mixture of several spectral 

signatures in a pixel. Lillesand et al (2000) mention this problem of sensors to record and 

extract spatial and spectral detail in an image. Therefore training sites of the 

corresponding information class were made in explicit areas in order to be representative 

and complete, whereas the soil class is an exception as mentioned above.  The spectral 

signature class statistics were estimated in both Landsat images out of the bands 3,4,5 

and 7 as well as the principal components 1 and 2. Richards and Jia (1999) recommend 

this kind of selection if bands or features do not support discrimination significantly.  

Band 6 was excluded due to the inconsistency in the spatial resolution (Ediriwickrema 

and Khorram, 1997).  

4.3.3 Maximum Likelihood Classification 

Although many different methods have been devised to implement supervised 

classification, the MLC is still one of the most widely used supervised classification 

algorithms (Jensen, 1996). In this study a MLC algorithm was employed. It quantitatively 

evaluates the variance and covariance of the spectral response patterns of an unknown 

pixel (Lillesand et al., 2000). The algorithm is able to recognise the spectral characteristics 

of each class in an unknown data set via the statistical data obtained by digitised training 

sites beforehand (Richards and Jia, 1999). It assumes a multivariate normal distribution 

of each spectral class. The mean vector and covariance matrix of a distribution can be 

used to describe it completely. By dint of these parameters it is possible to estimate a 

statistical probability of a given pixel value being a member of a particular spectral class. 

The outcome is a probability density function for each spectral class. These probability 

density functions are employed to assign an unidentified pixel by computing the 

probability of the pixel value belonging to each spectral class. In the end a pixel would be 

assigned to the most likely spectral class or be assigned as unclassified if the probability 

values are below a user defined threshold (Lillesand et al., 2000).  

22



In brief it is an estimation of a class membership of an unknown pixel using multivariate 

normal distribution models for the classes. A MLC algorithm can model class 

distributions that are lengthened to different extents in different directions in the multi-

spectral feature space and leads to minimum average classification error if it is applied 

properly.  

 

On the other hand MLC is sensitive to the assumption of multivariate normal 

distribution. The spectral classes should be single distributions and often the classes are 

multimodal (Richards and Jia, 1999). Therefore the iterative step of determining spectral 

class signatures was repeated by dint of scatterplots to avoid multimodal training data. 

However, some spectral classes naturally have these characteristics and overlaps such as 

soil, arable-land and urban areas. A more detailed statistical explanation of the MLC 

algorithms and its statistical terms are described in Richards and Jia (1999) and Lillesand 

et al. (2000).  

The outcomes of the MLC were two thematic maps of Imathia in 1987 and 2001 

according to the spectral classes (cropland, arable-land, forest, soil, water and urban).  

 

4.3.4 Map Accuracy Assessment 

A map accuracy assessment should always follow a classification in order to test the 

quality of the classification. Different authors suggest such an accuracy assessment. It 

needs ground truth data of the corresponding study area. This data are preferably sample 

points measured with a Global Positioning System (GPS) device with information about 

the dominating LULC class at this point. In addition one should consider the ground 

resolution of the sensor system by describing the prevailing LULC type. Satisfactory 

ground truth data should be collected ideally in the same week where the satellite image 

was recorded.  

 

An assessment of this study would need ground truth data for both Imathia maps 

collected in 1987 and 2001. Ground truth points should be randomly distributed sample 

points over the study area. Each spectral class should be represented by at least 15 

sample points. A map accuracy assessment is used to employ an error matrix, which 

shows the frequency of pixels in each category. Out of an error matrix user accuracy and 

producer accuracy should be estimated.  
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The user accuracy is calculated from number of correct sample points in a class divided 

by number of sample of that class in the map. It illustrates the probability of an unknown 

point on the map of being correctly mapped.  

 

The producer accuracy is estimated from number of correct sample points in a class 

divided by number of points of that class in the ground truth data. It describes the 

probability of an unknown point in the field as well as of being correctly mapped.  

 

Furthermore the Kappa coefficient, see Equation 5, should be computed to explain 

proportional improvement of the classification over a random assignment of classes.  A 

detailed explanation of map accuracy assessment can be found in Richards and Jia (1999) 

and Lillesand et al. (2000).  

 

Equation 5 Kappa Coefficient From Lillesand et al. (2000) 

Kappa Coefficient: 
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Where: 

r  Number of rows in the error matrix; 

xii  Number of observations in row I and column i; 

xi+  Total of observations in row i; 

x+i   Total of observations in column i; 

N  Total number of observations included in matrix. 

 

A map accuracy assessment could not be carried out for the reason that no fieldwork was 

done out and no other ground truth data was available. 
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4.3.5 Post Classification Processing 

In this step the MLC outcomes were further processed in order to employ change 

detection. Due to the existence of agricultural subclasses these subclasses were merged to 

an agricultural land class in both outcomes. Furthermore a post-classification smoothing 

was applied. One applies such a smooth filtering if a thematic map has a somewhat salt 

and pepper appearance often caused by the used pixel-by-pixel classification algorithm.  

A typical example in this study is the presence of scattered pixels, classified as forest in 

an almost homogenous area labelled as agricultural land due to the approximately similar 

spectral signatures of forest and cropland. In order to exclude those scattered pixel a 

majority filter was applied based on logical operations. 

The majority filter employs a moving window that passes through the classification 

outcome. In this study the moving window was set to a 5x5 size. If the middle pixel does 

not belong to the majority class the pixel will be assigned to the majority class within the 

window. When the window moves through the data set the original pixel values are 

constantly used not the modified. If no majority class exists the middle pixel will not be 

changed (Lillesand et al., 2000). 

Additionally, all unclassified pixels in both MLC outcomes were masked out in order to 

segregate those pixel from the following change detection arithmetic operation. 

 

4.4 Change Detection 

A post classification change detection analysis was performed in a GIS. It is a 

comparative analysis of independently produced classifications of different dates via a 

simple mathematical combination pixel by pixel. The outcome was a matrix of change 

classes. The outcomes of both classifications were assigned to values ranging from 1-5, 

where 1 is forest, 2 is soil, 3 is water, 4 is agriculture and 5 is urban. In figure 4 is 

illustrated the employed change detection combination. It contains of the following three 

steps. The first step is a reclassification of the land cover map of 1987 by multiplying the 

original values with a factor of 10 in order to be able to carry out a subsequent 

comparison. In the second step a simple addition of both the reclassified outcome of 

1987 with values ranging from 10 – 50 and the outcome of 2001 with values ranging 

from 1-5 was applied. In the last step all pixel values, which indicate no change such as 

11, 22, 33, 44 and 55 were reclassified as 0. Thus one can detect changes from a LULC 

class to a different class due to the calculated cell values. A cell value 12 means that it was 
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classified as forest in 1987 and in 2001 as agriculture. In brief the cell changed from 

forestland in agricultural land over the observed period.  

The change detection outcome was transformed to vector data and implemented in a 

geodatabase for the reason that vector data warranties an improved mapping in a GIS.  

For cartographic visualisation a spatial threshold was used. The threshold was applied to 

exclude too small polygons that will make the outcome map unreadable. It is 

recommended by different authors and corresponds to proper cartographical editing. 

 

Figure 4 Post-Classification Change Detection Scheme 

 

The applied threshold was two hectares (ha) that means all polygons smaller than an area 

of two ha were kept out. That led to a total exclusion of change classes related to water 

due to their marginal spatial appearance and extent respectively.  

 In the end an adequate map was produced according to proper cartographical 

conventions in order to achieve a concise visualisation and a clear readability of the 

change detection map of Imathia. The change classes were coloured in appropiate 

colours by using an internet based colour brewer hosted by the Pennsylvania State 

University.  

 

 

 

26



5. Results 

5.1 Maximum Likelihood Classification 

The outcomes of both classification matrixes allow a comparison of the degree of spatial 

extent. This area knowledge helps to get an impression of the data distribution. Both 

MLC outcomes are mapped in the Appendix Maps II and III. Additionally, in figure 5 is 

displayed the land cover distribution of both classification results in ha (%). 

 

LULC OF Imathia 1987 

Apparently agriculture is the dominating LULC in 1987. It occupies 73455 ha (43.9%) of 

the area and it is located in the lowland of Imathia. The second largest LULC is forest 

and covers 48652 ha (29.1%). It is mainly situated in Imathias mountainous parts to the 

west and the southwest. Soil is the third largest LULC and is represented of 32475 ha 

(19.4%). It has a heterogeneous distribution and is classified mainly in the higher elevated 

mountainous parts to the west and southwest. In the lowlands it seems to have a 

scattered distribution with a slightly distribution trend along agricultural land.  

The fourth largest LULC is urban and has an area of 12404 ha (7.4%). It is mostly 

located in the lowland and valleys along the rivers. Additionally, a large urban spot next 

to the Thermaikos Gulf was classified. The smallest LULC class is water and has an area 

of 463 ha (0.3%) and is located in the valley in the southwest.  

 

LULC Of Imathia 2001 and differences from 1987 

Agriculture is the largest LULC and has a decreased area of 63822 ha (38.1%). It is 

mostly situated in the lowland but there are a lot of areas scattered in the mountainous 

parts of Imathia. The second largest LULC is forest with an increased area of 61848 ha 

(37%). Forest is extended located in the mountainous parts, whereas new areas occurred 

in the lowland. Soil is the third largest LULC class and increased faintly to an area of 

33127 ha (19.8%). It covers less area in the mountainous parts and more spots in the 

lowland. Urban decreased slightly to 7960 ha (4.8%) and contains changes in its 

distribution. The large urban spot next to the Thermaikos Gulf disappeared completely 

as well as infrastructure based structures (e.g. highways or urban fabrics along the rivers). 

Besides, it gained areas in the mountainous parts. The smallest LULC class is water and 

increased slightly to 562 ha (0.3%) and has no mentionable spatial distribution changes. 
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Land Cover Distribution Comparison Of Imathia

 Via Classification Outcomes 
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Figure 5  Land Cover Distribution Of Imathia Obtained Via Classification 

 

5.2 Post-classification Change Detection 

In order to locate the monitored LULC changes a change detection map is illustrated in 

the Appendix Maps IV. A detailed area change of each LULC class is listed in table 4. 

Figure 6 illustrates the areal gain and loss of the generalised LULC change classes over 

the observed time period. It should be considered slightly differences in the areas 

between figure 5 and 6 due to the transformation from raster into vector data. A 

subtraction of gain and loss of each class (see textboxes in figure 6) approximately equals 

to the observed differences in figure 5. 
 

General Loss 

The highest areal loss is detected in agricultural land by 23065 ha (43.5%). Secondly, soil 

lost area by an extent of 18622 ha (35.1%) followed by urban with 9308 ha (17.5%). 

Forest has the smallest area of 2083 ha (3.9%) that changed to a different class.  

 

General Gain 

Soil achieved the biggest area with an amount of 19188 ha (36.1%). The second highest 

gain is located in the forest class with an extent 15089 ha (28.4%) followed by the 

agriculture class 13831 ha (26.1%). The urban class obtained the smallest area with 4970 

ha (9.4%).   
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A comparison of gains and losses shows three main LULC changes. The first is a clear 

area gain of forest by approximately 13000 ha. The second change is an area loss of 

agriculture by an extent of approximately 9200 ha and of urban by an extent of 

approximately 4300 ha. The third change represents a little change of the soil class for 

the reason that it achieved a very small area of approximately 500 ha.  

 

Detailed LULC Changes  

Since some classes (e.g. soil) have a high gain and loss at the same instance it is feasible 

to provide a detailed representation of LULC class changes. A detailed illustration points 

how LULC has changed (i.e. from which class to which class). This is useful to control 

the informational value of a LULC change in order prove if a detected change make 

sense and its spatial extent. In table 1 is shown to what spatial extend each LULC classes 

changed.  

Major spatial extents have ‘agriculture to soil’ of 14646 ha (27.6%), ‘soil to forest’ of 9769 

ha (18.4%) and ‘soil to agriculture’ of (14.4%). Rather small changes have ‘urban to 

agriculture’ of 5172 ha (9.7%), ‘agriculture to forest’ 4827 ha of (9.1%), ‘urban to soil’ 

3644 ha of (6.9%) and ‘agriculture to urban’ of 3591 ha (6.8%). 

Whereas very small changes are located in ‘soil to urban’ of 1223 ha (2.3%), ‘forest to 

agriculture’ of 1029 ha (1.9%), ‘forest to soil’ of 898 ha (1.7%), ‘urban to forest’ of 493 ha 

(0.9%) and in the ‘forest to urban’ class of 156 ha (0.3%). 
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Figure 6 Areal Gain And Loss Of Generalised LULC Change Classes 

 

 

 

Table 4  Detailed Change of Detected LULC Classes 

LULC Change Classes Area in hectares Area in percentage 

Forest to Urban 156 0.3 

Urban to Forest 493 0.9 

Forest to Soil 898 1.7 

Forest to Agriculture 1029 1.9 

Soil to Urban 1223 2.3 

Agriculture to Urban 3591 6.8 

Urban to Soil 3644 6.9 

Agriculture to Forest 4827 9.1 

Urban to Agriculture 5172 9.7 

Soil to Agriculture 7630 14.4 

Soil to Forest 9769 18.4 

Agriculture to Soil 14646 27.6 
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6. Discussion 
This post-classification change detection offers a multitude of LULC changes in this 

study area. Two of the main LULC changes are chosen in order to discuss how and to 

what spatial extent they have changed. Furthermore will be discussed the 

representativeness and error sources that influence the result of this study. 

 

First Main Change (To Forest) 

The Results of the LULC class change show a high area achievement and a very small 

loss of the ‘to forest’ class. The change detection map helps to locate those spots of 

change and to use the detailed source classes. The spots consist of the source soil and 

agriculture class and are mostly located in the mountainous parts of the study area. This 

can be explained by forestation of former agricultural land or soil class spots (e.g. ruderal 

vegetation, shrub-land etc.), which were probably affected by wildfires and vegetated 

over time. The highest amount of achievement is based on ‘soil to forest’ (18.4%) what 

seems to be a possible LULC change in a logical point of view due to its location in the 

mountainous parts in southwest of Imathia.  

 

In contrast, the change of ‘agriculture to forest’ (9.1%) located in the lowland is difficult 

to interpret since the main irrigated crops in Imathia are peach, pear and apple trees 

(Albanis et al. 1996). This means a similar spectral signature of forest trees and those 

agricultural trees can be expected by using Landsat ground resolution. On the other 

hand, the detected changes can be caused of changes in financing support from 

European Union according to Vasilakos (personal communication, 08/01/2009). 

   

‘Urban to forest’ (0.9%) is a very small change and can be neglected. Moreover it occurs 

seldom in reality.  

On the other hand the seasonal difference of the satellite data should be taken into 

account as an error source. Related to that is the ground resolution of Landsat data. It 

implies a mixture of several spectral signatures in a pixel (compare Lillesand et al., 2000 

and Richards and Jia, 1999).  
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Second Main Change (To Agriculture)  

The ‘to agriculture’ change class is chosen to represent the second main change since it 

achieved more area than the ‘to urban’ class. The highest gain is mainly caused of ‘soil to 

agriculture’ (14.4%) and is basically located in the mountainous parts to the southwest 

(compare change detection map). This change should be handled with care since the sub-

classes of agriculture (i.e. crop-land and arable-land) have a mentionable probability of 

spectral signature overlapping with the soil class (e.g. ruderal vegetation and sparsely 

vegetated spots) in the multi-spectral feature space. That overlapping could not be 

excluded during the spectral signature developing process since some overlaps are natural 

according to Lillesand et al. (2000). Higher elevated areas, where the change took place, 

are uncommon for agricultural land use since it is difficult to provide and maintain 

infrastructure such as irrigation networks. Furthermore the mixture of several spectral 

signatures should be considered. Seasonal differences were tried to exclude due to the 

application of agricultural sub-classes but spectral signatures overlap between ruderal 

vegetation and young crops are likely and lead to misclassification.   

 

The second highest gain was achieved from ‘urban to agriculture’ (9.7%) and does not 

make sense in a logical point of view. It is very unlikely that urban areas are removed for 

agricultural land use. This unreal change phenomenon is caused by a misclassification of 

the TM imagery due similar spectral signatures of urban surfaces and agriculture (i.e. 

arable-land) in the dry summer. It is mainly located in the coastal area of Imathia and 

along the Aliakmon river.  

 

‘Forest to agriculture’ (1.7%) has a negligible small gain and its distribution is mainly 

located in the lower elevated areas of the mountainous parts in Imathia. It could be a 

result of deforestation in order to achieve arable land or a process of forest management. 

On the other hand it can be caused of spectral signature similarities between agriculture 

(i.e. cropland) and a newly planted forest. 

In other words no considerable change of agriculture can be assumed and this 

corresponds to Vasilakos (personal communication, 08/01/2009). Vasilakos mentioned 

that no major problems (e.g. land abandonment) exist in Imathia, which could lead to 

rapid LULC changes in Imathia.  
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Representativeness 

The main result of this study is an increase of forest since the main forest class has the 

highest increase of area. Basically, detailed LULC change classes that lead to forest make 

sense (e.g. ‘soil to forest’ and ‘agriculture to forest’).  

On the other hand, that conclusion is based on two points in time and rises the question 

of the representativeness. In figure 8 is illustrated (Appendix Figures) a fictional LULC 

change development over a period of 50 years in order to demonstrate this question. It 

contains increases and decreases of LULC change rates. Two points (1987 and 2001) are 

selected for a LULC study and the result will apparently show a decrease in LULC 

change rates (dashed line). Considering the whole time series there is no decrease in 

LULC change rate and the chosen two points in time are non-representative. That means 

more satellite data are needed for a representative LULC change detection analysis of 

Imathia. In an exemplary study Helldén and Tottrup (2008) observed steadily the loss of 

vegetation cover and the biomass productivity over a time period from 1981 to 2003 and 

consider the results as non-representative. 

 

Map Accuracy Assessment 

An Achilles' heel of this study is the missing map accuracy assessment. Unreal change 

phenomena possibly will occur in the change detection due to a low classification quality. 

Examining a map accuracy assessment is strongly recommended (Lillesand et al, 2000 

and Richards and Jia, 1999).  

Since no ground truth data are available one can refer to a case study of agricultural fields 

in Greece (Lesvos island). It was employed a MLC on TM data and the classification 

accuracy assessment performed well (Vasilakos et al., 2004). Differences of physical 

settings between the study areas cannot be neglected.  

Furthermore have been carried out studies by using TM and ETM+ data and applying 

MLC with adequate map accuracy assessments (Hall et al., 1991; Hall and Knapp, 1999 

and Her, Y. 2007).  

The classification accuracy of the LULC map of Imathia in 1987 is probably rather poor 

than well for the reason that areas were misclassified and an iterative spectral signature 

enhancement improved the MLC results marginal. As an example obviously agricultural 

land was classified as urban and led to unreal change phenomena (e.g. ‘urban to 

agriculture’). It is assumed such a poor accuracy for the MLC of 2001, as well.  
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Seasonal Difference 

Since the first image was recorded in July 1987 (19/07/1987) one can expect dry and hot 

climate conditions. The second image was gathered in May 2001 (30/05/2001) that 

implies for example more ‘greenness’ in the spectral signature due to higher water 

availability (i.e. precipitation) and lower temperatures compared to the summer season 

(see figure 1). A comparison of summer and spring images leads to a different 

appearance of the same LULC class or vegetation type. The approach of selecting 

seasonal independent spectral classes could reduce but not avoid errors. The acquisition 

dates of the imagery are apparently not anniversary dates and thus inadequate for the 

employed change detection analysis. In fact, this led to the mentioned errors in the 

change detection analysis. The image acquisition is one of the most important points of 

change detection analysis and even satellite data of anniversary dates do not ensure a 

representative comparison (Coppin et al. 2004).  

However, imagery acquisition was restricted due to limited Landsat data availability of 

the study area at GLCF. 

 

Ground Resolution and Spectral Mixture 

The classification quality is strongly limited on the spatial resolution of TM and ETM+ 

data and the quality of change detection results, consequently. This highlights the 

question if TM and ETM+ ground resolution enables an appropriate LULC mapping 

with MLC on this scale. Spectral mixtures of various features fall within a TM 30m pixel 

and act as error sources (Hall and Knapp, 1999) in heterogeneous and sparsely vegetated 

landscapes like the Mediterranean basin. Confusing background soil signatures occurred 

mostly in the mountainous parts of Imathia that are not covered with forest and tend to 

be sparsely vegetated.  

Resulting misclassifications can be placed in overlapping spectral signatures of the 

spectral classes since spectrally pure classes are seldom recorded in multi-spectral satellite 

data (Emmanouloudis et al., 2007). Therefore one should consider other approaches that 

can be used for LULC monitoring.  

Studies have been carried out and performed well involving a spectral mixture analysis 

(SMA) in order to solve the spectral mixing of various features, such as separating 

grassland and shrub vegetation in TM and ETM+ data (Hostert et al., 2003; Kuemmerle 

et al., 2006a and Röder et al., 2007). Detailed explanations of SMA are given in Lillesand 

et al. (2000) and Richards and Jia (1999). 
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Moreover it is possible to employ the technique of hybrid classification. Hybrid 

classification combines the advantages of supervised and unsupervised classification 

algorithms. In Lillesand et al. (2000) and Richards and Jia (1999) are specified detailed 

descriptions of hybrid classification. Kuemmerle et al. (2006b) applied an advanced 

hybrid classification technique in Eastern Europe using TM and ETM+ data and the 

approach performed well. 

 

Image Interpreter 

Carrying out a monitoring study is influenced by individual interpretations. Personal 

decisions manipulate data selection, workflow and interpretation of the results as well as 

comparison with different studies.  

MLC applied on remotely sensed data needs a lot of input variables, which are strongly 

influenced by the subjective opinion and determination of the image interpreter. In the 

following will be described the most important personal decisions that have influenced 

the results of this study.  

The selection of the used sensor system as well as the data acquisition is based on an 

individual decision. Information classes were defined subjectively. Image enhancement 

steps like PCA, WDVI (i.e. definition of the soil line) and FCC’s need input data that are 

selected individually. The determination of training sites in order to produce spectral 

signatures and their improvement were strongly influenced by the image interpreter. The 

determination of training sites is art and science (Lillesand et al., 2000). Post-classification 

procedures and decision of a threshold for excluding the vector data were defined 

subjectively. The same study performed by a different student might have disagreeing 

results. 

 

Potential Of Approach  

This study shows a weak potential of MLC, applied on TM and ETM+ data, in this 

heterogeneous study area to indicate LULC changes. On can assume one real change 

phenomenon of increased forest under the given conditions. However, missing map 

accuracy assessments and the question of representativeness lead to handle this 

assumption with care. So far no mentionable LULC studies, based on remotely sensed 

data, have been conducted in Imathia. Therefore a meaningful comparison of this study 

results and other results is hardly accomplishable. 
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The other discussed changes are assumed as unreal phenomena since they offer weak 

informational values. They could not be validated with map accuracy assessments and 

compared to other studies. 

The potential of this approach could be improved with adequate fieldwork data in order 

to define better information and spectral classes. Furthermore would be a focus either on 

the lowland or the mountainous parts helps to solve spectral signature overlapping 

problem due to the heterogeneity of this study area.   

 

On the other hand, it is suggested to employ more advanced classification techniques to 

monitor LULC changes (Ediriwickrema and Khorram, 1997; Symeonakis et al., 2004; 

Kuemmerle et al. 2006b; Emmanouloudis et al., 2007) and a higher temporal resolution 

(Hostert et al., 2003). In addition, higher-ground-resolution satellite imagery could be 

used to detect LULC changes in this small-structured study area. However, high-

resolution data would still have its imperfections.  
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7. Conclusion 
The post-classification change detection analysis monitored an increase of forest in this 

study area under the given data conditions. Other observed changes are assumed as 

unreal phenomena caused of uncertain source classes, spectral signature overlapping in 

the multi-spectral feature space during the classification and seasonal differences.  

 

The MLC of TM and ETM+ produced two qualitative measurements of the defined 

LULC classes. The performance of MLC could not be validated via a map accuracy 

assessment and a multitude of unreal change phenomena lead to the assumption of a 

poor classification quality.   

 

The chosen mathematical combination of the two classifications carried out well in order 

to detect gain and loss of LULC classes and to locate changes on a map. The vectorised 

LULC change areas can be used for further detailed investigations, such as land 

degradation studies. Provided that the classifications would perform well.  

 

The post-classification change detection analysis performed weakly to indicate changes of 

LULC in such a small-structured and heterogeneous study area. 
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Appendix Figures 
 

Major Crops Cultivated In Central Macedonia (1995-1996 Season)
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Figure 7 Distribution Of Main Crops in Central Macedonia (Albanis et al. 1998) 
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Appendix Maps I Overview Map Of Imathia, Nothern Greece In 2001

Coordinate System: WGS 1984 UTM Zone: 34N 
Projection:  Transverse Mercator 
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Appendix Maps II LULC Map Of Imathia In 1987
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Projection:  Transverse Mercator 
Datum:   D WGS 1984 
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Appendix Maps IV LULC Change Detection Map Of Imathia

Coordinate System: WGS 1984 UTM Zone: 34N 
Projection:  Transverse Mercator 
Datum:   D WGS 1984 
Author:   Florian Sallaba 
Date:   05/12/2008 
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