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Abstract

It has been known for some time that neutron stars receive kicks (so-called natal kicks)
when they are formed in core-collapse supernovae. Whether black holes receive these kicks
too is still a matter of debate. We study Galactic low-mass X-ray binaries containing a
black hole as the accreting object and look at their position within the Galaxy: some
systems are almost coplanar, while others are found in the halo. Starting from sensible
guesses on the initial binary properties and assuming the objects to be originated in the
plane of the Galaxy, we perform a series of Monte Carlo simulations in which we calculate
the trajectories of low-mass X-ray binary systems that receive a kick when the progenitor
of the black hole explodes as a supernova, and determine their resulting location in the
Galaxy. The comparison between the simulated distribution and the observed one leads
us to conclude that a natal kick is indeed required for the formation of the systems.






We shall not cease from exploration
And the end of all our exploring

Will be to arrive where we started
And know the place for the first time.
T.S. Eliot
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1 Introduction

Since black holes don’t emit visible radiation, we have to look for indirect ways of inves-
tigating their formation scenario.

X-ray binaries, in particular, harbor a wealth of information on how black holes are formed.
They allow us to measure natal kicks, i.e. the velocities that a compact object might re-
ceive at birth due to asymmetries in the supernova event.

X-ray binaries containing a neutron star as the compact object have been largely investi-
gated in the past. The more systematic analysis is the one done by Brandt & Podsiadlowski
[6]: they study the effects of high supernova kick velocities on the orbital parameters of
neutron-star binaries, both in the case of low-mass companion (LMXB) and in the case
of high-mass companion (HMXB). Their LMXBs simulations highlight the consistency of
the observed Galactic distribution with a normal Galactic disc population that has been
widened because of significant kick the systems received at birth. This result is consistent
with the measured high space velocities of radio pulsars. Instead, HMXBs tend to be much
more coplanar, because of their younger age, and because of the lower kicks received at
birth.

Assuming that black holes are born in the same way as neutron stars, that is in core-
collapse supernovae, one legitimate question is whether they suffer of kicks comparable to
the ones typical of neutron stars. The investigation of the kick distribution is important
since it affects our interpretation of the space distribution of black-hole candidates in the
Milky Way (in particular of their Galactic scale height) as well as our understanding of
how black holes are formed.
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2 Generalities on binary systems

2.1 The two-body problem

About half of all stars in the Milky Way are found in systems consisting of two or more
stars, the so called binary (or multiple) stellar systems. Stellar binary systems in which the
mutual separation is much larger than the stellar radii can be approximated as systems of
two point masses M7 and Ms, interacting via gravitational force. Let’s call r1, ra, Rops the
position of the bodies and of the center of mass, and r = ro — ry the vector connecting the
two bodies. The total kinetic energy can be expressed as the sum of the energy associated
to the motion of the center of mass and the energy associated to the motion with respect
to the center of mass (Landau [17]). The Lagrangian £ then becomes:

£ = SO0+ )R + 5 V() 1)
Since the center of mass is either stationary or moving with constant speed, we can neglect
its motion and study the system in the center of mass reference frame. In this frame, the
problem is reduced to the problem of a single fictitious body of reduced mass y = 1\]4\/1[149]4\;2
moving in the external field V' (r) with orbital speed:

. G(M; + M-
UO?"b =7r = (]"a2) (2)
and energy:
1 GuM
E = Elufvorbz - l; (3)

The total orbital angular momentum is

J = p\/GaM (1 — e?) (4)

Since it is conserved, therefore the orbit is restricted to a plane and, provided that the
energy is negative, it is closed and bound between r,,;, and 7.,4.. The ellipse is fully
determined by its eccentricity e and by its semi-major axis a (Goldstein [13]):

2E.J2
e= 1+7M3G2M2 (5)
a = (Tmin + rmax)/2 (6)

We can express the minimum and maximum distance of the two stars in terms of the
semi-major axis and of the eccentricity:
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Tmin = a(l =€) Tmaer = a(l+€) (7)

The orbit becomes circular when the energy is minimum.
The third Kepler’s law gives the binary separation a in terms of the binary period P, which
is the fundamental observable quantity.

P= 2%\/57;[ (8)

After solving the equation of motions for the fictitious body, we return to the original
bodies through: vepp1 = (Ma/M )Vory and vorp2 = (M1 /M )Vorp, Where vopp 1 and vy 2 are
the orbital speeds of the two stars.

2.2 X-ray binary systems

X-ray binaries harbor either a neutron star or a black hole that has a non-compact com-
panion close enough to transfer mass. They are detected through their X-ray emission,
while their optical counterpart is very faint compared to X-ray luminosity.

Accretion onto a compact object is the most powerful source of energy we know. Consider
a compact object of mass M and radius R.omp accreting material at a rate M, then the
accretion rate can be estimated as the gravitational energy which is released at the surface
of the compact object per unit of time.

 GMM

Rcomp

Lacc (9)
For an accreting object of one-solar mass, M needs only to be about 1078 M, per year to
release a luminosity of 10%®erg/s, which is the order of magnitude of the X-ray galactic
sources luminosity.

Using the Einstein mass-energy relation, it becomes clear how the efficiency of the process
strongly depends on the compactness of the star:

. 1 R
— 2 —— s
Lace = chompc , €= 9 Rcomp

(10)

(where Ry is the Schwarzschild radius of the star 2G Mpmp/c?). As a consequence (since
withe dwarf radius is 1000 times bigger than a neutron star/black hole radius) the efficiency
is larger for neutron stars and black holes than for white dwarfs ({xg ~ 0.1, gy~
0.06 — 0.42, &wp ~ 0.001).

We showed that the luminosity of an accreting source is proportional to the accretion rate,
but this does not mean that the accretion power can increase arbitrarily, since radiation
itself provides a pressure, the so-called radiation pressure.

Let’s assume that matter is fully ionized and that it is composed only of Hydrogen. Plasma
electrons and photons are subjected to the gravitational force from the compact object,
which is much bigger for protons (the mass of the proton is 1836 larger than the mass of

the electron):
GM(my+me) GMm
z 2 R (11)

F rav —
g r2 r
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For an emitting source of luminosity L, the number of out-flowing photons per unit of
surface and unit of frequency is equal to:

L
 dmrZhy
assuming that the photons are emitted isotropically. Upon interaction with an electron, a
photon transfers its momentum p = hv/c to the electron via Thomson effect. The effective

area presented by a proton or an electron to a photon is the Thomson cross section o,
which, for a particle of charge e and mass m, is:

2
2/ e?
or==-|— 13
73 <mc2> (13)
Therefore, the outward radiation pressure on the in-falling matter is mainly exerted by
the photons scattering off the electrons. The overall outward force exerted by radiation is:

(12)

v

orL

Frad = orFyp = (14)

4mr2e
Electrostatic attraction keeps electrons and protons coupled so that a proton-electron pair
experiences both forces. Now, equating F.q, and F,4 yields a limiting luminosity of:

ArGMmyc M M _
Leqa = Tp ~3x 10 <M®> Lo ~ 1.3 x 10% <M®> ergs ™t (15)

which is called Fddington Luminosity.
Typical accretion rates are 4 x 107!% Mg /yr for accretion onto a black hole and 1 x
10~2 My /yr onto a neutron star (Tauris & van den Heuvel, 2003).

In a binary where tidal forces have circularized the orbit and brought the two stellar
components into syncronized co-rotation, one can define fixed equipotential surfaces in a
comoving frame with angular frequency w, in which both stars lie on the x-axis and the
common center of mass is at the origin. A test particle in such a non-inertial frame feels
a force VO Rocne, where @ poepe is the Roche potential ([28]):

GMl GM2 1 2

® — _ Lo
ROChe(r) ’I‘ — 1‘1\ |I‘ — I'2| 9 (w I')

(16)

where ris the position of the test particle. The last term takes into account the fact that
the reference frame is not inertial.
The equipotential surfaces are called Roche surfaces and the surface that passes through
the inner Lagrangian point L is the so-called Roche lobe (see figure 1). At the Lagrangian
point, the forces on a test particle from both stars cancel out. Mass that happens to be
close to Ly will then be transferred to the other star.
The geometry of the Roche potential for a binary system with a mass ratio of ¢ = My /M,
where My is the donor and Mj is the neutron star or black hole is shown in figure 1
Since the lobes are not spherical we need some average radius to characterize them; a
suitable measure is the radiusRj, of a sphere having the same volume as the lobe. It is a
function of the orbital separation a and of the mass ratio ¢, and it can be approximated
as (Eggleton, 1983 [9]):

0.49¢%/3

R prm— pr—
L f(q)a’ O6q2/3 + ln(l + q1/3)a

(17)
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Figure 1: Roche potential. (Tauris & van den Heuvel, 2003 [30])

Setting ¢ = Ma/M; we get the donor’s Roche radius, while taking the inverse of it we obtain
the accretor’s Roche radius. Material that passes L; has a specific angular momentum
with respect to the accreting compact object of L ~ bv| = b%w, where b is the distance
of the accretor from Li and v, is the velocity perpendicular to the line joining the two
stars. Since angular momentum of the overflowing matter has to be conserved, it cannot
be directly accreted onto the compact star, instead it piles up forming an accretion disk.
If we assume that the material moves on nearly Keplerian orbits, the differential velocity

of the disk is vy = rw = T\/iiy 3.

Adjacent orbits couple to each other via viscous processes, hence, the faster inner orbits
lose angular momentum to the slower outer orbits. It’s the loss of angular momentum that
allows matter to be accreted and it’s the friction in the disk that leads to energy radiation.
More precisely, according to the Virial Theorem, half of the liberated potential energy is
converted to kinetic energy. The other half is converted to internal energy, i.e. heat. If a
mass m moves in from a radius r + Ar to r, an energy

GMm

AFE =~ 5

. Ar (18)

is released. A ring of thickness Ar will then produce a luminosity of
GMM

2r2
If the accretion disk is optically thick, both sides of the disk radiates as a black body:

AL ~

Ar (19)

AL =2 x 2nrArogpT(r)? (20)
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By combining equations (19) and (20), we get the radial profile of the temperature:

1

T(r) ~ <GMM> (21)

S8togprd

A more careful derivation, with a proper modeling of the friction, brings an additional

correction factor: )
3GMM \*

T = —7 22

(r) (87TO'SBT3> (22)

Locally, the spectrum of the disk, i.e. the energy emitted per unit of surface and of
frequency, is the Planck spectrum F, pg. The overall monochromatic luminosity L, is
obtained integrating the Planck distribution over the whole disk:

Tmax
LV = 2/ FMBBQ’/TTdT (23)

Tmin

It turns out that for a given r/Rg, the temperature decreases with the mass of the compact
object, because Rg o< Mcomp; this explains why, for a neutron star or a stellar black hole,
the spectrum has a peak in the X-ray band.

HMXB & M

1.3 M

F'm_h=3-_1 days

a=23 Rg
—2

=28 ., P, =56 hours

Figure 2: Example of a typical HMXB and LMXB. Tauris & van den Heuvel, 2003 [30])
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X-ray binaries are divided into two main class, as according to the mass of the non-
compact star: low-mass X-ray binaries (LMXBs) and high mass X-ray binaries (HMXBs)
([29]). In both cases, the accreting star can be either a neutron star or a black hole.

% HMXB: the donor is a young and massive O/B star with strong winds that sustain
the accretion. The orbital periods range from a few hours to several hundreds days.
The spectra have characteristic temperatures kgT 2 15keV As the donor has only
a very limited lifetime, they still reside close to their birth place: therefore, HMXBs
are found near star-forming regions in the Galactic disk.

% LMXB: the donor is a slowly evolving low-mass (M < 1.4M) star: it does not have
strong winds, hence, it cannot power the X-ray source by the same mechanism as
the previous sources. The accretion is driven instead by the Roche Lobe Overflow
(RLO), caused by the donor overflowing its Roche lobe, either if the binary separation
shrinks (as aresult of orbital angular momentum losses), or the the donor increases
its radius. The orbital period range from a few minutes up to several days. The
typical photon energy in LMXBs are kT < 10keV, and they are usually lower than
in the HMXB case.

See figure 2 for a a view of the two types of X-ray binaries.
In the next table we indicate some of the features that help to discriminate between a
low-mass and a high-mass X-ray binary ([28]).

Property LMXB HMXB

Accreting Object Low B-field NS or BH High B-field NS or BH
Companion Low-mass star, Loy/Lx < 0.1 High-mass star, Ly,/Lx > 1
Stellar population Old: > 10%yr Young: < 107yr

Accretion mechanism  Roche lobe overflow Wind

Angular momeptum of High Low

accreted material

Accretion timescale 107 — 10%r 105yr

X-ray spectra Soft, kT < 10keV Hard, kgT 2 15keV

Table 1: Summary of the differences between LMXB and HMXB
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2.2.1 Black hole X-ray binary system

There are 23 confirmed black holes X-ray binaries in our Galaxy (Ozel et al., 2010). Black
holes X-ray binaries provide astronomers with the chance of investigating stellar black
holes candidates: as a matter of fact, the so-called mass function gives a lower limit on
the mass of the unseen companion.

The mass function is a function of the masses of the two stars and of the inclination angle
of the system; it’s an observable quantity, since it can also be expressed as a combination
of the orbital period and the semi-amplitude of the orbital velocity. These two parameters
are determined dynamically studying the radial velocity curve of the optical counterpart.
The mass function is derived below.

If spectral lines of the companion star can be measured, we have a single-line spectro-
scopic binary. In this case it is possible to measure the orbital velocity of the companion
star, projected onto the line of sight, vy 4, via the Doppler effect. If My is the mass of
the companion star, M; the mass of the black hole and M the total mass, we can express
the semi-amplitude of the radial curve, K, as:

M
K = vy gpp Sini = ﬁlvwb sin g (24)

If the velocity along the line of sight is plotted against time, we can directly infer the
orbital period P and the semi-amplitude of the velocity K. Taking a special combination
of these two parameters, we get the mass function:

3
fny =T

(25)

Once we measure the mass function, we get a handle of the unseen object. As a matter
of fact, it can also be expressed in terms of the mass ratio:
_ Mysin®i

f(M) = U+a? (26)

As (sini®) < 1 and (1 4+ ¢)~2 < 1, the mass function of the observed star gives a lower
limit for the mass of the black hole: M; > f(M).

The identification of a compact object as a black hole requires not only an accurate ob-
servational estimate of its mass, but also knowledge of the maximum mass of a neutron
star for stability against collapse into a black hole. The maximum mass of a neutron star
depends on the equation of state for dense matter. Rhoades & Ruffini ([27]), assuming
the Tolman-Oppenheimer-Volkoff equations as the equations of state for a neutron star,
derives a maximum limit for the mass of a neutron star: M,; < 3.2 Mg.

Ozel et al. (2010) used the dynamical mass measurements of black holes in low-mass X-ray
binaries to infer the stellar black hole mass distribution in the Galaxy. They found that the
observations are best described by a narrow mass distribution centered at 7.8 £ 1.2 M.
More precisely, the cut-off of the distribution at the low end is 2 5 My, indicating a sig-
nificant lack of black holes in the ~ 2 —5 Mg, range; at the high-mass end the distribution
declines rapidly for M = 14 M.

Of the 23 BH candidates, 17 are found in LMXBs. In table 2 we present the mentioned
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population (Ozel et al., 2010 [24]). For each of them, we indicate their X-ray intensity,
their latitude b,longitude [ and orbital period P, and the current constraint on their dis-
tance.

For most of the BH-LMXBs it is not feasible to obtain a trigonometric parallax measure-
ment. Instead the distance is generally determined by comparing the derived absolute
magnitude of the optical counterpart with the apparent magnitude (Nelemans & Jonker,
2004 [15]). A first guess of the distance can be obtained by assuming that the absolute
magnitude is that of a main-sequence star of the observed spectral type. Specifying the
distance to the object and its longitude [ and latitude b, its position is univocally deter-
mined. We would like to remind that the galactic longitude is measured in the plane of
the Galaxy using an axis pointing from the Sun to the galactic center, while the galactic
latitude is measured from the plane of the galaxy to the object using the Sun as vertex

([4])-

Common name Coordinate Name Max. Int. 1 b P d

or prefix (Crab)  (deg) (deg)  (hr) (kpc)
1 GS 1354-64 0.12 310.0 -2.8 61.1 >25
2 4U 1543-47 15 330.9 +54 268 75+0.5
3 XTEJ 1550-564 7.0 3259 -1.8 37.0 4.44+0.5
4 GROJ 1655-40 3.9 345.0 +2.5 629 3.2+ 0.5
5 GX339-4 1659-487 1.1 338.9 4.3 421 943
6 V4641 Sgr 1819.3-2525 13 6.8 -48 677 99+24
7 GRS 1915+105 3.7 454  -0.2 739 943
8 GS 20234338 20 73.1 -2.1 155.3 2.394+0.14
9 GROJ 0422+32 3 166.0 -12.0 5.1 2+1
10 A 0620-003 50 210.0 -6.5 7.8 1.06+0.12
11 GRS 1009-45 0.8 275.9 494 6.8  3.8240.27
12 XTEJ 1118+480 0.04 1576 +62.3 4.1 1.7+ 0.1
13 Nova Mus 91 1124-683 3 295.3 -7.1 10.4  5.89 £0.26
14 XTEJ 1650-500 0.6 336.7 -3.4 7.7 2.6 £0.7
15 Nova Oph 77 1705-250 3.6 358.2 +9.1 125 8.6+2.1
16 XTEJ 1859-+226 1.5 54.1 +8.6 9.2 8+3
17 GS 20004251 11 63.4 -3.0 8.3 2.7+0.7

Table 2: Properties of 17 BH-LMXBs. (Ozel et al. 2010 [24]).
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3 Binary Stellar Evolution from ZAMS to SN:
the LM XB case

A LMXB is only a snapshot in the life of a binary system. So how did such systems form
and how do they evolve?

Low mass X-ray binary systems are initially formed by two main sequence stars with an
extreme mass ratio. One star is much more massive than the other, it will then evolve
much more rapidly: this means that it will leave the main-sequence on a shorter time
scale. The full evolutionary history of a LMXB can be summarized as follow:

% Due to the evolution of the progenitor of the BH, a first stage of mass transfer begins.
At this stage, the mass transfer is violent and leads to the formation of a common
envelope.

% The Helium star explodes as a supernova. The explosive mass loss, and possibly a
natal kick imparted to the compact object at the time of the core collapse, affects
the orbital properties of the binary.

% Once the compact object is formed, the binary will then evolve in the Galactic potential
up to the present day for the main sequence time of the companion star. In the
meantime, binary properties are subjected to changes, due to the tidal evolution.

% Today, after the binary is visible through its X-ray radiation: a second stage of mass-
transfer is now at work.

In figure 3 we show a representation for a binary system that leads to a NS-LMXB: from
ZAMS to the observed X-ray emission. Throughout the next discussion, by M; we mean
the mass of the progenitor of the black hole, and by Ms we mean the star that is currently
transferring mass.
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ZAMS [ ] . 1500 days
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Roche-lebe overflow 1930 days
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13.9 Myr

13.9 Myr
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150 Myr

2.24 Gyr

Figure 3: Evolution of a binary system eventually leading to a NS-LMXB. Tauris & van den Heuvel,

2003 [30]
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3.1 What happens before the Supernova explosion

Before investigating how stellar evolution affects the orbital properties of a binary sys-
tem, we would like to overview three fundamental timescales that characterize single star
evolution (Tauris & van den Heuvel, 2003 [30]). When the thermal equilibrium of a star
happens to be disturbed, the star will restore it on the so-called thermal timescale, which
is the time it takes to emit all of its thermal energy content at the present luminosity L:

GM?
RL

~ 30(M/Mg)~* Myr (27)

Tth =

where the current luminosity L can be approximated as L ~ (Mﬂe)&sL@ (which is the
mass-luminosity relation for a main-sequence star. When is the hydrostatic equilibrium
of a star to be disturbed (e.g. because of mass loss), the star will restore this equilibrium
on a dynamical timescale:

R3

ang = 30(R/Re)*?(M/Mo)~"* min (28)

Tdyn =
The nuclear timescale, instead, which is the time needed for the star to exhaust its nuclear
fuel reserve:

Tnuc = 10(M®/M)25 Gyr (29)
This is, in other words, the main-sequence time of the star.

Initially, on the ZAMS, the binary consists of two stars in wide circular orbits and with
a large mass ratio. When the progenitor of the compact object, which evolves much faster
then the other, runs out of Hydrogen in its core, it evolves off the main sequence reaching
the red giant branch, while the companion star, which is far less massive, is still on the
main sequence. Thanks to the expansion of its outer layers, the red-giant star overflows
its Roche lobe and mass transfer sets in.
We will always refer to the donor star as My and to the accreting star as M;. The time
scale of the MT depends on how the Roche radius dependence from time compared with
the star radius time dependence:

. OR; M,

R = — Ricvg— 30
T |y, ey (302)

: ORy, M,

R, = —= Rrpap— 30b
L It ; + Rpop, M, ( )

The second term on the right-hand sides takes into account the change in R; and Ry,

due to the mass transfer. These relations are usually fit by a power-law, Ry ~ M{"*,

where the power-law indexes are:
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_ Olog Ry

Olog Ry,
a1 = =
! aIOng

= 31
aL aIOng ( )

The first term in the first equation is due to the expansion of the donor star as a result
of nuclear burning (e.g. shell Hydrogen burning on the RGB) and the first term in the
second equation represents changes in Ry, which are not caused by mass transfer-such as
orbital decay due to gravitational wave radiation. We will now consider what happens to
the orbital separation (and, consequently, to the Roche radius).

Mass transfer tends to change the orbital separation too, because of redistribution of
angular momentum between the two stars: logarithmically differentiating eq. (4) with
respect to time, we obtain the equation for the time evolution of the binary separation

([r1)):

i _yJ MMy My .
a J M, Moy M

At this stage mass transfer happens to be from the more massive star to the less massive
one: it shrinks the Roche lobe down (and any angular momentum loss accentuates the
shrinking). As a matter of fact, if momentum is conserved and the more massive star is
becoming less and less massive, the companion star has to move further in in order to
keep the center of mass fixed. The shrinking of the orbital separation causes a shrinking
of the Roche radius, while the radius of the star keeps expanding. The overflow becomes
then very violent, proceeding on a dynamical or thermal timescale, depending on whether
the star’s envelope is convective or radiative. Since matter is transferred to the accretor
more rapidly than the latter one can accept it, it cannot be accreted, instead, it forms an
envelope which engulfs both stars (the so-called common envelope). The envelope exterts
a drag force on the orbiting stars and thereby extracts energy at the expense of the orbital
energy. The energy extracted from the orbit is deposited in the envelope as thermal energy
and can help the system to get rid of the envelope.
A simple estimation of the reduction of the orbital separation can be found assuming that
a fraction n of the gravitational binding energy released by the spiraling together of the
non-evolved star and the giant core is used to overcome the gravitational bond between
envelope and core.
The binding energy of the envelope to the giant core can be expressed as (Davies et al.,
2001 [7]):

G(MHe + Me)Me
ARL1(q, ai)
where )\ is a parameter which depends on the stellar mass-density distribution (A ~ 0.5

from detailed stellar models).
The change in binding energy of the secondary is given by:

Eepy = (33)

- GMyM, B GMQ(Me + Mc)

2apost—ce 2apre—ce

AE, (34)
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where M is the main sequence star, M, is the mass of red-giant envelope, M. is the mass
of the Helium core, Ry, is the Roche-lobe of the evolved star. Then M, ; = M. + M..
Thus, we can find the orbital separation by solving:

Eeny = UAEg (35)

We get:

" . Q(Ml,iMe)apre—ce Ml,i -
t-ce = -
post-ce pre-ce ’17)\MHeM2RL,1(Q7 apre—ce) MHe

(36)

What is left after the common envelope phase, is a naked Helium star of mass My, and
a companion star of mass almost unchanged Ms, provided that n is sufficiently large and
that main-sequence star doesn’t fill its Roche lobe at the end of the CE (otherwise the
two stars will merge):

Ry > RL,Q(onsthE7apost—ce) (37)

Tauris & van den Heuvel [30] fitted the helium star radius as a function of the mass:
Ry, = 0.212(MH6/M®)0‘654R@, while the radius of the companion, that is still on the

0.8
main sequence, is Ry ~ (MM®> Rs. The orbital separation has decreased considerably

thanks to the common envelope: it is quite often reduced by a factor ~ 100, causing the
final orbital separation

to be 2 few Rg. Typical orbital velocities associated to this separation are of the order
of ~ few 100 km/s.

3.2 Effects of a supernova explosion (What we know from
neutron stars)

Since the suggestion of Baade and Zwicky (|2]) and the discovery of pulsars in the Crab
and Vela supernova remnant, it is accepted that neutron stars are formed in a supernova
explosion (SN). This is also believed to be true for black holes.

A brief discussion on how black holes and neutron stars are formed is needed.

A massive star (M 2 10 M) evolves through cycles of nuclear burning alternating with
stages of exhaustion of nuclear fuel in the stellar core until its core is made of iron, at
which point further fusion requires, rather than releases, energy. The core mass of such
a star become larger than the Chandrasekhar limit, the maximum mass possible for an
electron-degenerate configuration (~ 1.4 Mg). Therefore the core implodes to form a neu-
tron star or black hole. The gravitational energy released in this explosion (4 x 10>3erg)
is far more than the binding energy of the stellar envelope, causing the collapsing star to
violently explode and eject the outer layers of the star, in the supernova event. The final
stages during and beyond carbon burning are very short lasting (~ 60yr for a 25 Mg
star), because most of the nuclear energy generated in the interior is liberated in the form
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of neutrinos which freely escape without interaction with the stellar gas and thereby low-
ering the outward pressure and accelerating the contraction and nuclear burning.

To make a black hole, the initial ZAMS stellar mass must exceed at least 20 M), or possi-
bly, 25 Mg and the mass of the Helium core greater than 8 Mg (Tauris & van den Heuvel,
2003 [30]): neutron degeneracy pressure cannot manage to sustain the core against grav-
itational collapse. It should be stressed that the actual values that discriminate between
one compact object and another are only known approximately due to the considerable
uncertainty in our knowledge of the evolution of massive star.

What happens when the supernova occurs in a binary system?
After the binary red-giant star has lost its H-envelope (and possibly also its He-envelope)
during the CE evolution, it will collapse and explode as a supernova. All observed neu-
tron stars in binary pulsars seem to have been born with a canonical mass of 1.3 — 1.4M,.
Neutron stars in LMXBs might afterwards possibly accrete up to ~ 1My before collapsing
further as a black hole.
The supernova will of course be asymmetric in the center of mass frame of reference: the
system will then suffer a recoil due to the instantaneous mass loss. Precisely, the center
of mass of the ejected matter will continue to move with the orbital velocity of the black
hole progenitor. To conserve momentum, the binary has to move in the opposite direction.
We will call the velocity of the new center of mass with respect to the old one as system
velocity, while with mass loss kick (MLK) we will be referring to its modulus.
Asymmetries in the explosion can instead impose large velocities to the remaining black
hole itself: we will refer to these velocities as natal kicks. What happens is that, if the
mass is ejected non-isotropically, the remaining compact star suffers a recoil; asymmetries
don’t need to be high: it is possible to show that even a small asymmetry of 1% can lead to
very large natal kicks of few hundreds km/s. We then have three velocities interplaying:
mass-loss kick, natal kick and system velocity: systems surviving the SN will receive a
recoil velocity vsys from the combined effect of instant mass loss and a kick.

In the next two sections we will investigate the effects of mass loss on the orbital properties
of the binary, starting from some assumptions: the initial orbit is circular, we neglect the
change in the companion star’s velocity due to the impact of the ejected shell, we assume
that the explosion is instantaneous (which means that gravitational decoupling time scale
of the ejecta star is short in comparison with the orbital timescale). Our calculations will
be held in a reference frame centered at the center of mass, with both of the two stars
lying on the y-axis.
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3.2.1 Symmetric supernova explosion: Mass-loss kick (MLK)

Consider a binary with orbital separation a, companion star My and progenitor of the
compact object of mass M;. After the explosion, the compact object has mass M;, we
will call the mass loss AM = M; — M;. Generally, primed quantities will refer to post-SN
quantities. In first approximation, we assume that the relative velocity between the non-
exploding star and the remnant is still close to its original value: vy, = /GM /apre-sn-
We can then compute the energy of the system immediately after the explosion:

1 Gu'M' Gy M
E = plog?— 22 = R (g (38)
2 Gpre-sn 2apresn \ 2
where M is the initial total mass, M’ is the final total mass and a is the separation between

the stars at the moment of the explosion.

In order for the energy to be negative, we must have:

AM < % (39)
This means that the binary only survives if less than half of its total mass is ejected.
Generally, a high companion mass makes the survival of the binary more probable. We
will see how natal kicks might weaken this strong constraint.
We can compute the velocity of the new center of mass with respect to the old one (that
is, the mass-loss-kick):

M, o + Mavgy,
Vags = —0mb! orb2 (40)
My + M

After expressing the orbital velocity in terms of the semi-major axis, we get:

AM Mo GM
Vays = -
°ve M M Gpre-sn

(41)

The mass loss changes of course the orbital parameters. As a matter of fact, as matter is
lost from the system, the bounding energy of the system decreases: this means that the
the orbit becomes eccentric. The new orbital parameters are entirely determined by the
amount of mass lost from the system during the explosion.

In particular, we can estimate the post-SN semi-major axis via conservation of energy.
Since the post-SN energy (cf. (19)) can also be expressed as —Gu'M'/2a’, we then have
an expression for the post-SN semi-major axis in terms of the initial semi-major axis:

Apre-
pre-sn
Apost-sn — m (42)
M/
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It is straightforward to estimate the binary eccentricity, if we assume, reasonably, that the
distance a; between the two stars before the supernova is the periastron distance after the
explosion (Bhattacharya & van den Heuvel, 1991 [3]):

AM
M

e= (43)
Due to tidal interaction between the two stars, the orbital separation tends to circularize.
In the simplistic hypothesis that angular momentum is conserved in the process, we get
an expression for the circularized semi-major axis in terms of the post-SN one:

Acire = (1 - 6)(1 + e)aJpost—sn (44)

For e ~ 1, we get:

Acire ™~ 2apost—sn(l - 6) (45)

At a first glance, one could infer the pre-SN binary separation from the observed cir-
cularized one, as if the binary experienced just two phases, the SN explosion and the
circularization after it. Yet, this is too naive: the binary, during its secular evolution in
the Galactic potential, might experience the shrinking of its orbit due to different mech-
anism (such as tidal interaction or gravitational wave emission). We have to take into
account these effects if we want to have a sensible estimate on the initial parameters of
the binary.

It is interesting to highlight that a high-mass X-ray binary system will suffer from a
smaller recoil compared to a low-mass one, because of the higher mass of the companion
star. We then expect HMXBs to be much closer to the Galactic plane, while LMXBs to
be more spread around the Galactic plane. Also, we should not forget that HMXBs are
younger than LMXBs: they did not have the time yet to move significantly out of the
Galactic plane.
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3.2.2 Asymmetric supernova explosion: Natal Kick (NK)

It is almost universally accepted that neutron stars receive a substantial kick when they
are born: this scenario fits well the high space velocities (typically ~ 400 kms™ ') inferred
from the observed distribution of pulsars (Lyne & Lorimer, 2004 [18]). However, neither
the exact distribution of kick velocities nor the physical origin of these kicks are properly
understood.
It is still an open question whether black holes receive kicks as well. We will now investi-
gate in detail what it is known to happen when a star collapses into a neutron star.
If the supernova ejects mass non isotropically, the remnant will suffer from a recoil, whose
magnitude follows directly from conservation of momentum. The natal kick adds vecto-
rially to the orbital velocity of the compact star with no preferred direction with respect
to the orbital plane: this hypothesis is very much acceptable, since the escaping neutrinos
from deep inside the collapsing core are not aware that they are members of a binary sys-
tem. Geometrically, the direction is univocally defined via 6, which is the angle between
the natal kick and the orbital plane, and ¢, which is the direction between the direction of
natal kick projection on the orbital plane and the direction of the initial orbital speed. In
the next figure the geometry of the vectors is clear: The new orbital speed of the remnant
will then be:

Vi = Vi + Vi (46)

This effect will then combine with the effect of the mass loss kick to give the space velocity
of the system with respect to the old center of mass.

Because of the received kick, the orbit of the compact star will become eccentric and,
generally speaking, the closer in magnitude is the kick to the orbital velocity, the more
it will affect the binary properties. Crucial is the direction of the kick: when the kick
happens to be in the good direction, they can help the system to stay bound, even if more
than half of the mass is lost from the system. .

We will call M the total initial mass, M’ the total post-SN mass, M; the mass of the
compact star and My the mass of the companion star and p/ the post-SN reduced mass.

The post-SN energy of the system is:

1 Gu' M’
El = §NI|Vorb + Vnk‘Q - a
Gpre-sn

(47)

Expressing the orbital velocity in terms of a, we get:

Unk

2
cos ¢ cosf + <vnk> ] } (48)
Vorb Vorb

For the energy to be negative, we need the whole expression between curly brackets to be
positive: we obtain a condition on the direction of the kick.

1w | 2M' Onk \ 2
0 <= —1- 4
cos ¢ cos b < 5 [ i ( (49)

/
E = 2700

G M, M. M
12{ 1+2

2apre—sn

Unk Vorb

Then, since cos ¢ cos f cannot be less than —1, we have also to require that:
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Figure 4: Sketch showing the binary system and supernova kick geometry.

2M'

Unk < (1 + M > Vord (50)
in case the mass loss is more than half of the total initial mass, the last condition has to
be valid together with:

2M'
Unk > (1 - M > Vorb (51>

Here we evidently see how the system might remain bound thanks to the kick. Let’s
calculate now the dynamical changes of a binary surviving the explosion.

We can express the system velocity, vsys, i.e the velocity that the binary received as a
result of the explosion. It just the velocity of the post-SN CM relative to the initial CM
frame. It is not a unique function of the natal kick velocity, of the mass loss and of the
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initial orbital velocity, since it depends also on the direction of the kick. In terms of the
initial masses, the mass loss and the angles # and ¢, as follows.
Here are the x,y,x-components of the space velocity:

M (Vorb,1 + Uni €08 0 cos ¢) — Mavorp,2

Usys,x = — (52a)
SYS,T M+ My
M (v + U cos 0 cos
Veysy = 1( orb,lN nk (b) (52b)
My + My
]\Zv Lsin @
Usy&z = Nni (52C)
My + My
Combining this three components, we get:
v AM\? AMM; v ~ 2]1/?
Vsys = oy (,u) _ HE2RT T Unk cos ¢ cos 6 + <M1 nk> (53)
My + My My My Vorb Vorb
We can compute the new semi-major axis remembering that the E' = —Gp' M’ /2ap0st-sn
and equating it to the expression in equation (48):
Apre-
Apost-sn — b 2 (54>
M n n
2— 45 [1 + QﬁcosqbcosO—F (ﬁ) }

This equation reduces to equation (42) when v, = 0.

Because of the kick given to the remnant star, the system becomes highly eccentric (e ~ 1),
since the orbital energy increases. If the eccentricity of the post supernova system is
measured, we can have an estimate on the post-SN separation, without having to take
into account the angle between the natal kick and the orbital speed. As a matter of fact,
it is fair claiming that the pre-SN orbital separation must be larger then the new periastron
separation and smaller than the new apastron distance:

CLpost—sn(l - 6) < Opre-sn < apost—sn(l + 6) (55)

Currently, neither the exact distribution of kick velocities nor the physical origin of these
kicks are properly understood. Neutron star kicks have been modeled since the early
nineties, when Lyne and Lorimer, looking at the sky distribution of radio pulsars and
reassessing pulsars distances, derive a mean pulsar birth velocity of ~ 450 + 90 km/s,
with very few low-velocity pulsars. Since then, there have been other attempts to infer
the intrinsic natal kick distribution from the observed pulsar velocities. In my work, I am
referring to the natal kick distribution proposed by Hansen & Phinney ([14]). For the mod-
ulus of the kick velocity they proposed a maxwellian probability distribution with velocity
dispersion o, = 190 km/s (implying a mean velocity of ~ 300 km/s), again containing
very few low-velocity pulsars:

2 vy, g
f(onk) = \/;;5,6 2 (56)

We plot in the next figure the distribution function.
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Figure 5: Hansen & Phinney distribution for the natal kick (|14]).
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Natal kicks of magnitude ~ few hundreds km/s happen to be of the same order of
magnitude of the typical orbital binary speed. For a system consisting of a black hole of
mass My = 6M and of a companion star of mass My = 1.5 at a distance of 10 R, we get
(using equation eq. (2) and expressing the masses in units of solar mass and the orbital
separation in terms of the radius of the sun):

~ 436

Vorp = \/ GMg (M + Mp) ~ 300 km/s (57)

(M + Ma)
Ro a a
If natal kicks were much lower, let’s say around tens km/s, they wouldn’t affect signifi-
cantly the binary properties: this would affect the probability for the system to remain
bound after the explosion.
Recently (Podsiadlowsky et al. 2005 [26]) it has been proposed a dichotomous scenario
for neutron star kicks, in order to solve the retention problem in globular cluster. There
is good observational and theoretical evidence that some of the massive globular clusters
in our Galaxy contain more than ~ 1000 neutron stars. However, assuming a natal kick
of few hundreds km/s, neutron stars would not be retained, since the escape velocity from
a Globular cluster is < 50 km/s. Within this framework, the natal kick distribution is
modeled as two maxewellians, one picked at lower velocities, the other picked at higher
ones.



35

4 The potential of our Galaxy

The potential of a galaxy is usually represented as the superposition of several potentials.
Once we have the density profile, we obtain the correspondent potential via the Poisson
equation: V2®(r) = 47Gp(r).

For our Galaxy, we refer to the model presented by Paczynski ([25]): the total mass
distribution is made up of three components, the disk, the spheroid and the halo. The
overall potential is cylindrically symmetric, hence it is convenient to use a cylindrical
coordinate system (R, z, ¢) with the Galactic center at the origin; R is the distance of the
object projected over the Galactic plane, z is the height over the plane and ¢ is the polar
angle in the plane (we set ¢ = 0 for the Sun). The distance d is then v R? + 22.

For the disk and the spheroid, Paczynski uses the superposition of two Miyamoto-Nagai
potentials:

My o
Du(R,2) = - CMas : (582)
\/R2 + (adﬁ + /22 + bg,s)
M,
Bo(R, ) = — ¢ (58b)

VR (VTR

This kind of potential is used in the case of symmetry about the z-axis. The parameters
a and b have the dimension of a length and determine the size and the flattening of the
system. The parameter M is the total mass of the component. Here are the parameters
for the Paczynski model:

ag = 3.Tkpc, bg = 0.20kpc, My =8.07 x 10'°M, (59a)
as = 0, bs = 0.277kpe, M, = 8.07 x 1.121%M, (59b)
(59c¢)

A double Miyamoto-Nagai potential is not enough to represent the overall Milky Way.
Astronomers realized this looking at the rotation curve in the Galaxy; we will see how the
radial dependence of the circular velocity differs from the rotation curve we would obtain
if all the mass was concentrated in the center. One must add a third component: the
so-called halo component, which is mainly formed by dark matter and whose outer limit
is ~ 41kpc.

The halo is modeled as a softened isothermal sphere (here r? = R? + 22):

P
) = T (60)

This model leads to a potential:

By (r) = SMe [1 In (1 + :i) + ’;—Carctan (7")] (61)

Te 2 = Tc
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The central density is p., and the two parameters are connected via M, = 4mp.rS, where
re = 6.0kpc and M, = 5.0 x 10'°M. The overall potential is then given by:

O(r) = Pa(R, z) + Ps(R, 2) + Pp(r) (62)

The parameters of the model are set so that the Sun is in circular orbit around the Galactic
center (see section 4.1.)

4.1 Trajectories in the Galactic potential

Investigating trajectories of stars in the Milky Way means integrating the motion of a
particle in the above-mentioned potential. In order to do so, we need to solve a system of
coupled three second-order ordinary differential equations (ODE). Since the potential is
cylindrically symmetric, we can use the constant z-component of the angular momentum
in order to reduce the number of equations: we get to four first-order ODEs.

(63)

a v dt — \OR),

R¥
dz _ dv. __ (0%
at — " ar - \oz ),

Setting the initial conditions, we can then compute the forward trajectory of the binary
by numerical integration (in particular, 4th-order Runge-Kutta method will be used). As
concerning the units, it is common practice to express distances in kpc, time in 10® year
(Sun’s orbital period is ~ 3 x 10® years), velocities in km/s and mass in solar mass (1M =
1.989 x 10%3%kg).

Using the equation for the time evolution of the radial velocity, it is possible to obtain the
rotation curve, i.e. the circular velocity as a function of the distance R: vy = vg(R). For

a perfectly circular orbit, it is legitimate to put %R = 0; expressing then the z-component
of the angular momentum as j, = Ruvg and calculating the R-derivative of the potential
for z =0, we get:

We show in the next figure the rotation curve for the Milky Way up to a distance of 12 kpc
from the Galactic center.
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Figure 6: Rotation curve in the Galactic potential

In the last section we dealt with the velocity acquired by the center of mass of the sys-
tem because of the SN explosion. This velocity will then add, with no preferred direction,
to the Galactic rotation velocity: we will call the overall velocity as space velocity.

Vspace = Vsys T V¢ (65)

Typical rotational velocities in the Milky Way are of the order of few hundreds km/s (at
R = 8.0 kpc, we get vy ~ 220 km/s, which is the rotational velocity of the Sun). It’s
very interesting to note that this velocities are of the same order of magnitude of the
binary orbital velocities; in this respect, we see how the common envelope, shrinking the
orbital separation, increases the orbital speed: if orbital speeds were much higher than
the typical velocities in the Milky Way potential, many systems would become unbound.
In section 3.2.2, we have seen how the natal kick has just the same order of magnitude as
the previously investigated velocities: a lucky circumstance that allows us to see LMXBs
still bound in the Milky Way.
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We now show some examples that have been used to test the integration code.

The orbit of the Sun in the Galactic potential is circular (fig. 7). If the sun received a kick
in the Galactic plane, its orbit would turn into a rosette orbit (fig. 8). When a particle
follows a rosette orbit, it oscillates between a minimum and maximum distance from the
Galactic center while it revolves around the center, without the orbit being necessarily
closed. This type of orbit is the most general trajectory for a particle with negative energy
in a spherically symmetric potential, as the Galactic potential is provided that the particle
is confined to the equatorial plane.

y[kpc]
o
\
\

X[kpc]

Figure 7: Sun trajectory in the Galactic potential. Integration for 5 solar orbit.
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The situation is more interesting for stars whose motions carry them out of the equa-
torial plane of the system. For example, if the Sun received a kick perpendicular to the
Galactic plane, it would move out from the disk, and the projection of its orbit on the
(R,z) plane would be the so-called boz orbit (fig. 9). The box orbit clearly shows the
oscillation of z between a minimum and a maximum value; projecting the motion over the
equatorial plane we obtain the star revolving around the galactic center ([5]).

Rlkpc]

Figure 9: Sun that receives a kick of ~ 50km/s perpendicular to the galactic plane. Integration for 10
solar orbit.
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We could wonder what would be the velocity that a perpendicular kick should have
in order for the star to get to a certain observed z. This is computed via conservation of
energy, neglecting the effect of Galactic rotation:

1

51}22 + @ (Ry,0) = @ (Ro, Zmaz) (66)
In figure 10 we show the dependence of 2,4, from v,: it’s evident the tendency to escape for
vy 2 250 km/s. We would like to remind the reader that the escape speed is ~ 500 km/s
at the solar neighborhood.

v_z(km/s)

Figure 10: Maximum z reached by an object that receives a kick perpendicular to the Galactic plane.
Solid line if for Ry = 8 kpc; long-dash line is for Ry = 2.0 kpc; short dash line is for Ry = 0.5 kpc
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5 Binary stellar evolution: what happens after the
SN

After the formation of the BH, the binary system will then evolve in the Galactic potential
up to the present day. The z-component of the space velocity determines its maximum
distance from the Galactic plane.

Right after the BH formation up to the present day the system is subjected to effects that
might shrink the post-SN orbital separation, such as tidal interactions and gravitational
wave emission.

We now see the system thanks to its X-ray emission: mass transfer is currently due to
the non-compact star expansion during the red-giant phase. At this stage, mass transfer
happens to be from the less massive to the more massive one. Unlike the previously type of
mass transfer, this time the orbital separation is caused to increase. Referring to equation
(19) and assuming that the mass transfer is conservative (this means that both the mass
and the orbital angular momentum are conserved), we get to:

N Sl YY) (67)

Since the mass ratio is in this case less than 1, we see that the time derivative of the orbital
separation is positive. Consequently, the Roche radius gets larger. Mass transfer will start
again when the star overflows its Roche lobe again thanks to its evolutionary expansion.
Because of the low mass of the donor star, its nuclear timescale is long and accretion can
go on for hundreds of millions years.
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6 Observed systems: 16 BH candidates in LM XBs

Our Galaxy contains 23 black-hole candidates in binaries, of which 16 are found in LMXBs.
For all of these 16 candidates, distances are known. Referring to Orosz 2003 (|23]) and to
Orosz 2010 (]24]), we present in the following table some of the observational properties
of the 16 BH-LMXBs: the distance projected on the Galactic plane R, the height above
he Galactic plane z, the mass function f(M), the mass ratio ¢ = Ma/M, the inclination
of the orbital plane with respect to the line of sight ¢ and constraint on the mass of the
black hole Ms. (We have taken the central values of the error bars in writing down R and

z).

Object R Z f(M) q i Mbh
2 3.92 0.70 0.25£0.01 0.25-0.31 20.7£1.5 9.4£1.0
3 5.0 -0.14 7.73+£0.40 0.0-0.040 74.7+£3.8 9.1£0.6
4 498 0.13 2.73+£0.09 0.37-0.42 70.2+1.9 6.3£0.27
3 3.25 -0.67 5.84£0.5 0.0-0.4 - -
6 2.14 -0.82 3.13+£0.13  0.42-0.45 7H5E2 7.1£0.3
7 6.62 -0.03 9.5£3.0 0.025-0.091 66£2 -
8 7.65 -0.09 6.0840.06 0.056-0.063 5544 1242
9 991 -0.41 1.194£0.02 0.076-0.31 - -
10 8.92 -0.12 2.76£0.01 0.056-0.064 51.0£0.9 6.6£0.25
11 8.48 0.62 3.17£0.12 0.12-0.16 - -
12 8.73 150  6.1£0.3 0.035-0.044 - -
13 7.63 -0.73 3.01£0.15 0.11-0.21 - -
14 5.71 -0.15 3.01£0.15 0.11-0.21 - -
15 0.55 1.36 4.86£0.13 0.0-0.053 - -
16 723 120 T74+£1.1 - - -
17 721 -0.14 5.01+0.12 0.035-0.053 - -

Table 3: Properties of 16 LMXBs. (For object names refer to table 2).

In order to convert galactic coordinate into cylindrical ones, we use:
x =dg — dg cosbcosl

Yy = de cosbsinl

R = /22 +y?
z=desinb

where dg is the distance of the Sun from the Galactic center.

In figure 11 we show the (R,z distribution) of our systems. Interestingly, we find that
some systems are still in the disk, while other are found far out from the Galactic plane
(at |z| 2 1kpc). We also plot the (x, y) distribution for the observed systems (fig. 12),
taking the Galactic center as the origin of the coordinate system. We notice that our
sample lack sources that have z > 2 as their x-coordinate: one legitimate question is then
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whether our sample is sufficiently representative of BH candidates in LMXBs. We leave
this question for future developments.
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Figure 11: Galactic distribution in the (R,z) plane for the 16 systems. Lines corresponds to error bars
due to the uncertainty in the distance. The blue dot corresponds to the Sun. The reference frame is
centered at the Galactic center.
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Figure 12: Galactic distribution in the (x,y) plane for the 16 systems. The blue dot corresponds to
the Sun. The reference frame is centered at the Galactic center.
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7 Study of the sources

We now aim at simulating the observed systems starting from some assumptions on the
binary properties as well as on the initial conditions of the motion in the Galactic potential.

Before the supernova takes place, the typical orbital separation of the two stars is ~ 10 Rg.
This can be easily seen using equation (36), which gives the post-CE orbital separation in
terms of the separation at the onset of the CE.

The system is assumed to be initially circular. In our first study, we computed the initial
separation of the system assuming that the circularized post supernova orbital separation
was coincident with the observed period (Nelemans 1999 [22]). We then realized that this
assumption was far too simplistic. As a matter of fact, we cannot neglect the effects of
the secular evolution on the binary properties, as well as of the mass transfer.

We guess the initial separation so that it fits both the radius of the Helium star (Ry. =
0.212(Mpe/M)"%*Re) (Tauris & van den Heuvel, 2003) and the radius of the unevolved

8
companion star (Ra ~ (MMQ) Rs). We also require the Roche lobe of the non-evolved

star to be bigger than the star radius: this is to prevent mass transfer from starting before
the supernova explosion.

Information on the binary properties at the onset of the Roche lobe overflow are available
for obj 12 (Fragos et al., 2009 [10]) and obj 4 (Willems et al., 2005 [31]). The orbital
evolution of these two systems since the onset of the RLO has been followed through bi-
nary evolution codes, both in the case of conservative mass transfer and in the case of non
conservative mass transfer. The result is a grid of evolutionary sequences for binaries in
which a black hole is accreting mass from a Roche lobe-filling companion; each grid differs
from another in the initial parameters chosen (mass of the black hole, mass of the donor
and orbital separation). Then the best parameters are the ones that match the observed
ones.

Thanks to this information, we put further constraints on the orbital separation. In case
no natal kick is imparted to the compact object, it is possible to compute the post SN
separation via equation (42), starting from our guess on the initial separation. We require
its consistency with the orbital separation at the onset of the RLO: precisely, since it is
legitimate to assume that secular evolution takes place, we ask that it is larger than the
separation at the onset of RLO.

Regarding the components mass, we have to bear in mind that the masses inferred from
the observational properties are different from the masses at the onset of the RLO, since
mass transfer has already taken place. When mass transfer simulations are not available,
we guess onset masses in order for them to be consistent with the observed ones. As
concerning the mass of the Helium star, we require (in the case of symmetric supernova)
that the mass loss is not larger than half of the initial mass.

As we said before, mass transfer changes the orbital separation. We can get an idea of the
change in the simple hypothesis of conservative mass transfer. In this case, it is possible to
compute the new orbital separation via conservation of angular momentum between the
onset of the RLO and the current time:

a _ <M1M2>2 (69)
a MiMé

where primed variables refer to post mass-transfer values.
Nevertheless, this hypothesis fails when angular momentum is carried away from the sys-
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tem (for example through the emission of jets).

After making sure that the binary orbital energy is still negative after the explosion,
we proceed to the integration of the object in the Galactic potential, bearing in mind that
the natal kick direction is uncorrelated with the orientation of the binary plane and that
the system velocity that the object acquires because the explosion is uncorrelated with
the rotation in the Galaxy.

We assume that our systems were born in the Galactic disk, taking z=0 as their initial
distance from the Galactic plane. They orbit circularly around the Galactic centre at a
distance R ~ R, from it. We then apply to the black hole a kick drawn randomly from
Hansen € Phinney distribution (and directed in a random direction with respect to the
orbital velocity). The overall system velocity combines with the original velocity within
the Galaxy, with no preferred directions. Since we are now observing the system within
the Galaxy, its energy in the Galactic potential must be negative right after the explosion.
Starting from these initial conditions, we integrate the equations of motion in the Galactic
potential, for the main-sequence time of the companion star (it’s important to stress that
we assume stellar evolution to be not affected by the presence of the companion star). We
consider 100 trajectories and for each trajectory we write down the positions (in cylindri-
cal coordinates) for ten times drawn randomly from a uniform distribution over the whole
integration time.

For all of the systems, we carry simulations both in the case of no natal kick imparted to
the compact object and in the case of natal kick, and we present the simulated positions
of the objects in the (R, z) plane.
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7.1 XTEJ1118+480 (Object 12)

This object is observed high above the Galactic plane (z ~ 1.5) and has a period P=0.17
days (Mirabel et al., 2001 [20]). We kick the system at 7 kpc and we integrate its trajec-
tory for ~ 10years.

For this object, information on the properties at the onset of the RLO are available (Fragos
et al. (2009)).

The first simulation refers to the no natal kick case, while in second one Hansen & Phinney
kick has been imparted to the black hole. The two simulations differ in the quantity of
mass ejected in the supernova event, while the initial separation is unchanged. In the
second one, the mass loss is lower compared to the first; as a consequence, the mass loss
kick will be smaller: ~24 km/s for a mass loss of 3 Mg and ~ 36 km/s for a mass loss of
5 M.

We present in table our guesses on the initial binary properties, as well as available infor-
mation on the binary at the onset of the RLO and on the observed properties. In the first
three columns, there are our guesses on the initial properties of the binary; in the middle
one the properties of the binary when Roche lobe overflow sets in. When simulations of
the mass transfer are not available, it is fair to guesses the RLO parameters so that they
match both the initial ones and the observed ones. In the last column we have a gasp of
how the system looks now. Most of the systems lack strong constraints on the inclination
angle or on the mass of the companion star (see table 6): the mass of the black hole is
generally constrained to be within an interval of uncertainty.

initial parameters observed
parameters at the onset of RLO parameters
MHe M2 a; M M2 Qrlo Mbh M2 Qobs
(Me)  (Mo)  (Ro) (Mo) (Mo) (Ro) (Mo)  (Mo)  (Ro)
Siml 11 1 6 6 1 5 6.79 021 25
Sim2 9 1 6 6 1 5 6.79 021 25

Table 4: Selected properties for object 12, calculated to satisfy observational and RLO constraints
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Figure 13: Object 12. (R,z) distribution for 100 trajectories. Top figure: no natal kick imparted to
the black hole. Bottom figure: Hansen & Phinney natal kick.
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7.1 XTEJ1118+480 (OBJECT 12)

In the next figure we show an example of a trajectory for object 12; a Hansen &
Phinney natal kick has been imparted to the black hole. We see that the observe position
is well within the area covered by the box orbit.
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Figure 14: Example of a trajectory for Obj 12.
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7.2 1705-250 (Obj 15)

This object is observed high above the Galactic plane (z ~ 1.4) and has a period P=0.52
days (Ozel et al., 2010 [24]).

In figure 11 we can see that object 15 has a quite large error bars on the distance R from
the Galactic center. We decide then to kick the system both from 2 kpc and from 0.5 kpc,
and we integrate the trajectory for ~ 3 x 10%years.

In table we show the binary properties, guessed and observed.

initial parameters observed
parameters at the onset of RLO parameters
MHe M2 a; J/\Zl M2 Qrlo Mbh M2 Qobs
(Mo) (M) (Ro) (Mo) (Mo) (Ro) (Mo) (M) (Ro)
10 1.7 7 6.7 1.7 - 7 1.5 5.49

Table 5: Selected properties for object 15 calculated to satisfy observational constraints.

We plot the cumulative for the simulated z separating the natal kick case from the no

natal kick case (see figure 15). We evidently see how the no natal kick scenario is not
consistent with the observed position of the system, since the maximum z reached by the
100 simulated objects is well below the observed height from the Galactic plane.
From figure 15 it is also evident how a system kicked at R = 0.5 kpc reaches smaller z
if compared to the same system kicked at R = 2 kpc. This is due to the dependence of
the Galactic potential from R: the deeper we are in the potential well, the higher are the
required velocities vgys » to get to a fixed distance from the Galactic plane (see figure 10).
In figure 16 we show the (R,z) distribution of the simulated objects, both in the case of
no natal kick and in case a Hansen & Phinney natal kick is imparted to the black hole.
The initial distance from the Galactic center is taken to be 2 kpc.
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Figure 15: Object 15, cumulative for z. Top figure: no natal kick imparted. Bottom figure: Hansen &
Phinney natal kick. Solid line corresponds to R(tg) = 0.5kpc; dotted line corresponds to R(ty) = 2kpc.
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Figure 16: Object 15, (R, z) distribution for 100 trajectories. Black dots corresponds to Hansen &
Phinney natal kick; blue dots correspond to the no natal kick case.



7.3 GRO1655-40 (OBJECT 4)
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7.3 GRO1655-40 (object 4)

This object is almost coplanar (z ~ 0.13) and has a period P=2.62 days (Mirabel et al.,
2002 [21]). This object is one of the few well-constrained between the 16 systems: strong
limits on the mass function, on the inclination angle and on the mass of the black hole are

available.

We kick the system at 5 kpc and we integrate its trajectory for ~ 10'%years. We performed
simulations both in case of no natal kick and in case of natal kick.

initial
parameters

parameters
at the onset of RLO

observed
parameters

My, M, Q;

(Me)  (Me) (Ro)
10 2.5 10

Ml M2 Qrlo

(Me)  (Mo)  (Ro)
6 2.5 15.5

My, M, Aobs

(Me)  (Me) (Ro)
6.3 2.3 16

Table 6: Selected properties for object 4 calculated to satisfy observational constraints
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Figure 17: Object 4. Top figure: no natal kick imparted to the black hole. Bottom figure: Hansen &
Phinney natal kick.
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7.4 GRS1915+105 (Object 7)

This object is coplanar (z ~ —0.03) and has a period P=34 days (Dhawan et al., 2007
[8]). We kick the system at 6.7 kpc and we integrate its trajectory for ~ 4 x 10%ears.

The two simulations, one for the no natal kick case and one for the natal kick case, differ
in the guess on the initial orbital separation, while the mass loss is chosen to be equal. For
fixed mass loss and initial masses, we know (see eq) that the square of the recoil velocity
scales as the inverse of the orbital separation: the tighter the binary is, the bigger the

recoil.
initial parameters observed
parameters at the onset of RLO parameters
MHe M2 Q; M M2 Qrlo Mbh M2 Qobs
(Mo) (M)  (Ro) (Mo) (Mo) (Ro) (Mo) (M) (Ro)
Siml 18 1.5 50 13.5 1.5 - 14 1.2 109
Sim2 18 1.5 80 13.5 1.5 - 14 1.2 109

Table 7: Selected properties for object 7 calculated to satisfy observational constraints
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Figure 18: Object 7. Top figure: no natal kick imparted to the black hole. Bottom figure: Hansen &
Phinney natal kick.
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8 Discussion & Conclusion

From our simulations, we learn the difficulty in reproducing the high-z objects (in our
case, obj 12 and 15) inside a no natal kick scenario. Instead, if the black hole receives a
kick, the observed position is well inside the range of the simulated positions.

In the previously showed work, we treated each object singularly and independently. Each
one has been kicked at a distance from the Galactic center comparable to the observed
one, without taking into account the formation rate of binaries in our Galaxy.

From the surface density of stars (R) ~ Sge™ /4 (see appendix for details), we compute
the number of stars located between R and R+ dR multiplying the mentioned density for
the area 2mRdR of the ring. The radial density distribution is then f(R):

f(R)dR x Re F/RagR (70)

where R is the distance from the Galactic center. In the next figure we show the radial
density function:
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Figure 19: Radial density distribution of stars in the Galactic disk
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We can legitimately assume that the radial distribution of binaries is proportional to
the disk distribution of stars f(R) (Kolb et al., 2000 [16]). What’s more, looking at the
radial density distribution, it’s evident how most massive stars are born with R < 10 kpc
from the Galactic centre.

We build our population of 100 low mass X-ray binaries according to the previously
showed radial distribution and constraining the initial distance form the Galactic cen-
ter to be within R = 10 kpc, and then we kick each member of our population assuming
z=0 as the initial distance of each system from the plane. We assign to each binary of
our population the following typical orbital parameters: M; = 11 Mg, M7 = 7.8 Mg,
My =1.5 Mg and a; =10 Rg.

One simulation is carried drawing kicks from the Hansen & Phinney distribution (ref. fig.
21), while in the second one the black hole doesn’t suffer from a natal kick (see fig. 20).
We investigate also another possibility (ref. fig. 22). If we assume black holes and neutron
stars to be born in the same way, that is, as previously seen, in core-collapse supernovae,
we can legitimately suppose that the momentum they suffer from it is of the same order
of magnitude. Due to their different masses, the natal kick will then be smaller for black
holes:

M,
Unk,bh = ﬁvnk,ns (71)

We will call this kick "momentum conserving kick" (MCK). For a neutron star mass of
1.4 Mg, and a black-hole mass of 7.8 M, (this is the pick of the observed black hole mass
distribution in the Galaxy), black holes kicks are ~ 6 times lower. The correspondent
natal kick distribution will then be obtained by shifting the neutron star kick distribution
towards lower velocities.

For each of the 100 binaries, we compute the trajectory in the Galactic potential, carrying
the integration for the main-sequence time of the companion star (~ 4 x 10? years), and
we write down the R and z coordinates of the binary at 10 random times over the whole
trajectory. We plot the correspondent (R,z) distribution for each scenario and compare it
with the observed sample (see figure 11).
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Figure 20: (R,z) distribution for a sample of 100 LMXBs. No Natal kick has been imparted.
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Figure 21: (R,z) distribution for a sample of 100 LMXBs. Kicks have been drawn from Hansen &
Phinney distribution. 866,/1000 points fall in the plotted R-z range.
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Figure 22: (R,z) distribution for a sample of 100 LMXBs. A momentum conserving kick has been
imparted to the black hole. 997/1000 points fall in the plotted R-z range.
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Plotting the correspondent cumulative for the z-values for all of the three scenarios and
comparing it with the observed one (see figure 23), we see how all of the systems belonging
to the no natal kick simulation have distance from the Galactic plane much lower than 1
kpc: the no-natal kick scenario evidently fails in reproducing the highest-z systems. The
reduced kick also fails in reproducing the z-distribution of the observed systems.

Figure 23: Cumulative for the z-values, both simulated and observed. Solid line refers to the observed
distribution. Dotted line corresponds to H&P natal kick. Long-dash line corresponds to MCK and
short-dash line corresponds to no natal kick.
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One thing we would like to highlight is the fact that all our simulations for the differ-

ent types of scenario contain much more systems further in towards the direction of the
Galactic center: these systems are not observed in the Galaxy. On one hand, we don’t
actually see reasons for the presence of bias effects towards X-ray sources. On the other
hand, the result is not surprising since we have decided to build our population assuming
a surface density of stars centered around 3 kpc from the Galactic centre.
This issue lead us to re-evaluate the birth place of our systems: assuming a birth rate pro-
portional to the surface density of stars is really consistent with the population of LMXBs?
Or do we need to take spiral arms formation into account? We leave this question for fur-
ther investigation.

We also compare the Hansen & Phinney natal kick scenario with a bimodal natal kick
scenario. i.e. we associate to the newly formed compact object a kick randomly drawn
from a distribution which is the superposition of two maxwellian distributions, one picked
at lower velocities, the other one picked at higher velocities. We refer to Arzoumanian et
al. 2002 ([1]) for our choice of the distribution:

szean(—v3/20%) | +

f(vnr) = 4mv,? { [w1

(2mo7y) (2mo7y)

(72)

where 0,1 = 90 km/s is the dispersion of the low-velocity component, o,2 = 500 km/s
is the dispersion of the high-velocity component and w; = 0.4 is the fraction of compact
objects with a parent gaussian of width ..

We plot in figure the function, which show how the first peak is at ~ 100 km/s, while the
second is at ~ 700 km/s:

(- wﬂlmexp(—vik)/zaﬁg)] }
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Figure 24: Bimodal distribution for the natal kick.
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Comparing the cumulative for the associated z-values with the correspondent cumula-
tive for the Hansen & Phinney scenario (see figure 26), we see that the a bimodal natal
kick scenario has somewhat fewer systems with extreme value for z (i.e. with z > 1.5 kpc).
Nevertheless, it’s pretty evident from the shape of the cumulatives, that the cumulative
associated with the Hansen & Phinney scenario better fits the observed one. This could
be proved carrying a Kolmogorov-Smirnov test in order to compare our simulated samples
with the observed one. Also, it’s more difficult, within a bimodal kick scenario, to repro-
duce object 15, that is located further in over the Galactic center and at a large distance
from the Galactic plane.

z(kpc)

R(kpce)

Figure 25: (R,z) distribution for a sample of 100 LMXBs. Kicks are drawn from a bimodal distribution.
960/1000 points fall in the plotted R-z range.
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Figure 26: Cumulative for the z-values, both simulated and observed. Solid line refers to the observed
distribution. Dotted line corresponds to H&P natal kick. Long-dash line corresponds to a bimodal
distribution.
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While carrying our simulations, we realized that populating our sample taking z = 0

as the initial distance from the Galactic plane for all of the systems, is not reasonable: we
have to take into account the thickness of the disk. We can see this from our simulations:
if we zoom in our simulated distributions closer to the plane, we see that most of our
systems are almost in the plane. A more accurate choice is to consider a spread for the
initial distance from the Galactic plane of the systems, for example drawing randomly from
a uniform distribution between z = —0.12 kpc and z = 0.12 kpc (bearing in mind the the
scale height of the thin disk, where most young stars are, is ~ 0.3 kpc [19]). We present
the results in the following pictures. In figure 27 the (R,z) distribution of the simulated
objects is shown: the kick that the black hole receives at birth is drawn from the Hansen
& Phinney distribution and positions have been written dawn at uniform times over the
trajectory. In the simulation correspondent to figure 28 kicks have been drawn from the
Arzoumanian et al. distribution.
As previously seen, it is very difficult to make object 15 drawing kicks from a bimodal
distribution: we need a Hansen & Phinney-like kick. This necessity becomes more evident
if we plot the cumulative for z-values for the two types of scenario (see figure 29): again,
the cumulative associated to the Hansen & Phinney scenario happens to fit better the
observed data.
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Figure 27: (R,z) distribution for a sample of 100 LMXBs. H&P kick has been imparted to the black
hole and thickness of the disk has been taken into account.
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Figure 28: (R,z) distribution for a sample of 100 LMXBs. Kicks are drawn from a bimodal distribution

and thickness of the disk has been taken into account.



73

f(z)

Figure 29: Cumulative for the z-values, both simulated and observed. Solid line refers to the observed
distribution. Dotted line corresponds to H&P natal kick. Long-dash line corresponds to a bimodal
distribution. The thickness of the disk has been taken into account.



74

Looking at the cumulative plot (see fig. 29), we see how, taking into account the thick-
ness of the disk, we get for free the objects that have a distance from the Galactic plane
< 0.3 kpe.

Considering the small observational sample and the simplicity of our model, the thing
we can conclude is that a natal kick has to be imparted to the black hole for the simulated
BH-LMXBs distribution to be consistent with the observed one. Also, it’s very important
to stress that this kick has to be of the same order of magnitude as neutron star kicks; as
a matter of fact, from our simulations it is evident how the momentum conserving kick
fails in reproducing the observed systems. Further analysis is needed in order to model
correctly the natal kick distribution for black holes.

We want to acknowledge one important piece of information that it’s missing in our work:
the current space velocity of the system. A number of proper motions have been measured
for Galactic X-ray binaries; when they are supplemented with measurements of the cen-
ter of mass radial velocity as well as of the distance, the overall 3-dimensional kinematic
can be reconstructed. All this wealth of information provide interesting insights into the
formation history of the system. For instance, the backwards integration of the object in
the Galaxy help to put constraints on the post supernova velocity of the system, which in
turn helps to discriminate between the different formation scenario for black holes. This
has been done by Fragos et al. (2009) for binary XTEj118+480: they conclude that a
natal kick is indeed required for the formation of the system.

What’s more, if an high peculiar velocity with respect to the Galactic rotation is detected,
we can infer that the object is on a very eccentric orbit around the Galactic center. This
can be due to a system velocity after the explosion almost in the plane of the Galaxy.
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9 Appendix

9.1 The surface density of stars

The Milky way’s disk is usually considered to have two major components: a thin disk and
a thick disk (Gilmore & Reid, 1983 [12]). These are generally modelled as exponential:

paltz) = 520 (-2 - 21 (73)

224

where z4 is the scale height, Ry is the scale length and ¥, the central surface density.
The surface density of stars in the plane of the Galaxy is obtained evaluating the previous
expression for z = 0:

S(R) ~ Soe T (74)

The scale length of the thin disk, that has a younger population than the thick one, is
R thin = 2.6 = 0.52kpc (McMillan, 2011 [19]).

Integrating the surface density of stars over the whole disk, we get the radial density
distribution:

f(R)dR = arRe"T/Ra)gR (75)

where apg is the normalization factor.
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