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ABSTRACT 

This research aims at studying continuous time models within different stock market 

environments. We assume that the modeling of continuous time processes may be altered 

whether an equity market is experiencing a crisis or a pre-crisis period. As a benchmark 

index, the S&P500 has been chosen for this study and the sampling periods in question 

include the Black Monday of 1987, the Dot-Com of 2001, and the more recent 2007 

Financial Crisis. Among the continuous time processes family, this study covers the 

Geometric Brownian Motion (GBM) and the Constant Elasticity of Variance (CEV). After 

estimating and analyzing their respective parameters using the Maximum Likelihood 

Estimation method, both the Jarque-Bera normality test and the Likelihood Ratio are 

performed on the two models. Unlike most research that support the use of CEV over GBM, 

this research test outcomes show that there is no strong argument that could favor the 

addition of a discount factor i.e. CEV over the Black-Scholes based process, the GBM model. 



Continuous Time Processes in Times of Crisis: GBM versus CEV models 

 

Bendkia & Giversen, 2010 Page 1 

 

TITLE  Continuous Time Processes in Times of Crisis: GBM versus CEV 

SEMINAR DATE February 9
th

, 2010 

COURSE  Master Thesis II in Finance (15 ECTS Points) 

AUTHORS  Mehdi Bendkia & Jesper Giversen 

ADVISOR  Frederik Lundtofte 

KEY WORDS Geometric Brownian Motion, GBM, Constant Elasticity of 

Variance, CEV, Continuous Time Processes, Financial Markets, 

Financial Crisis 

PURPOSE Two of the most popular models in option pricing and market 

predictions are the so called Geometric Brownian Motion (GBM) 

and the Constant Elasticity of Variance (CEV). This study is 

aimed at identifying and comparing their degree of signaling of 

equity market collapse. The S&P500 is taken as the case study for 

equity market because of its recognized influence on world stock 

markets. In assessing the GBM and CEV level of accuracy, the 

two mentioned models have their equivalent estimators and 

stochastic processes being put under scrutiny using maximized 

likelihood estimation method, likelihood ratio test and Jarque-

Bera normality test. 



Continuous Time Processes in Times of Crisis: GBM versus CEV models 

 

Bendkia & Giversen, 2010 Page 2 

 

Table of Contents 

I. Introduction .......................................................................................................................... 3 

II. Literature Review ............................................................................................................... 4 

i. Geometric Brownian Motion Model ................................................................................................ 4 

ii. Constant Elasticity of Variance Model ........................................................................................... 5 

III. Theoretical Framework .................................................................................................... 9 

i. Brownian Motion ............................................................................................................................. 9 

ii. Logarithmic Return ......................................................................................................................... 9 

iii. Geometric Brownian Motion ....................................................................................................... 10 

iv. Constant Elasticity of Variance ................................................................................................... 12 

v. GBM Model vs. CEV Model ........................................................................................................ 12 

IV. Methodology ..................................................................................................................... 14 

i. Data Collection .............................................................................................................................. 14 

ii. Itô’s Lemma .................................................................................................................................. 15 

a. GBM Model .......................................................................................................................... 15 

b. CEV Model ........................................................................................................................... 16 

iii. Discretization Scheme ................................................................................................................. 17 

a. GBM model .......................................................................................................................... 17 

b. CEV model ............................................................................................................................ 17 

iv. Maximum Likelihood Estimation ................................................................................................ 18 

v. Likelihood Ratio Test ................................................................................................................... 20 

vi. Normality Tests ............................................................................................................................ 21 

V. Results Summary .............................................................................................................. 22 

i. Parameters Estimation ................................................................................................................... 22 

Table 1 – Estimated Parameters of GBM and CEV for Pre-Crisis and Crisis ......................... 22 

ii. Likelihood Ratio Test ................................................................................................................... 23 

Table 2 – LR Test Statistics and Critical Values....................................................................... 23 

iii. Normality Tests ........................................................................................................................... 24 

Figure 1- Distribution of the Wiener Process ........................................................................... 24 

Table 3 – Jarque-Bera Test Results .......................................................................................... 26 

VI. Analysis ............................................................................................................................. 27 

VII. Conclusion and Recommendation for Further Studies .............................................. 29 

Reference List 



Continuous Time Processes in Times of Crisis: GBM versus CEV models 

 

Bendkia & Giversen, 2010 Page 3 

 

I. Introduction 

What started as a US mortgage and housing market crisis spread out to the rest of the 

financial world to become known as the global financial crisis, the most severe crisis within 

the post world war II era according to many top economists (Business Wire, 2009). Many 

theoretical foundations within the fields of financial economics started to be more questioned 

regarding their predictability and accuracy. Nouriel Rubini, one of the few economists who 

predicted the upcoming of a worldwide crisis to the International Monetary Fund’s 

conference in front of his peers, has claimed that the large majority of economists failed to 

identify recessionary signals. According to Rubini, in 97% of the cases, forecasts from top 

economists fail to predict the coming of a recession a year before of its occurring. Many 

economists have failed to signal recessionary behaviors two months before the start of the 

downturn. Within the rare cases that economists predict an economic downturn, its impact is 

highly underestimated (New York Times, August 15, 2008). This lack of predictability 

among top economists raises questions on the validity of conventional models under usage. 

Two of the most popular models in option pricing and market predictions are the so-

called Geometric Brownian Motion (GBM) and the Constant Elasticity of Variance (CEV). 

This study is aimed at identifying and comparing their degree of signaling equity market 

collapse. The S&P500 is taken as the case study for equity market because of its recognized 

influence on world stock markets. In assessing the GBM and CEV level of accuracy, the two 

mentioned models have their equivalent estimators and stochastic processes being put under 

scrutiny using maximized likelihood estimation method, likelihood ratio test and Jarque-Bera 

normality test.  

The first part of this paper lists the different recent studies on the models in question 

under the literature review section. The theoretical background comes next and is related to 

the GBM and CEV models. Section 3 presents the methodology used in this study and the 

different assumptions being taken to build the financial models. The fourth section presents 

charts and graphs summarizing the different calculation and distribution outcomes as well as 

additional comments about the results. The next part of this study analyses and compares the 

performed tests, parameters estimation results and hypothesis testing on both the GBM and 

CEV across the various sampling periods. The final section, Conclusion and 

Recommendations for Further Studies, sums up the results of this study and suggests 
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proposals and methods to improve the models, the estimation techniques, and the stochastic 

process distributions. 

II. Literature Review 

i. Geometric Brownian Motion Model 

Since Osborne (1959) introduced the Brownian motion to be used on common stock 

prices, the geometric Brownian motion has been widely accepted as “the model” for growth 

in the price of a stock over time. In fact, Hull (2000) refers to it as 'the model for stock 

prices'. The GBM uses are well known in the Black-Scholes Model, one of the most 

important concepts in modern financial theory. Black and Scholes (1973) mentioned their 

option pricing formula for the first time in their paper, "The Pricing of Options and Corporate 

Liabilities". One of the assumptions for their conceptual framework which is of interest for 

our research is that stock prices follow a geometric Brownian motion with constant drift and 

volatility. 

 

Hassett and Metcalf (1995) argue that mean-reverting processes are appropriate for 

most "real option" investment models. They further argue that using a GBM process is 

justified since mean-reversion has two opposing effects. Firstly, it brings the investment 

trigger closer, and secondly it reduces the conditional volatility, which thereby lowers the 

likelihood of reaching that trigger. They concluded in their work that cumulative investment 

in general is unaffected by the use of a mean reversion process rather than geometric 

Brownian motion.  

 

Sarkar (2002) extends on the work by Hassett and Metcalf (1995) and adds a third 

factor, the effect of mean-reversion on systematic risk. One of the major findings by Sarkar is 

that mean-reversion does have a significant impact on investment. It is also found that it is 

inappropriate to use the GBM process to approximate a mean-reverting process. 

 

A considerable number of studies have suggested the need to generalize the GBM 

model by introducing the possibility of jumps and allowing the volatility to be a stochastic 

process. The first jump-diffusion model was introduced by Merton (1976). The work by 

Merton included an addition of a compound Poisson process as a model for the jumps to the 

Brownian motion part of the GBM model. In Merton’s model the jumps occur randomly, 

with a certain average frequency, at the time when the jump occurs, the logarithmic price 
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jump is drawn independently from a normal distribution with two parameters describing the 

mean jump size and jump size volatility.  

 

Lewis (2002) argues that there are some problems with the use of the geometric 

Brownian motion. On the plus side, the author mentions that the GBM: 1) is consistent with 

securities having limited liabilities 2) has uncorrelated returns and 3) is very tractable 

computationally. The problem according to Lewis (2002) is that it relies on normal 

distribution, and that there are too many outliers for this assumption to hold.  

 

In Leon et al. (2002), they center their research on a very simple Lévy process, where 

they take the sum of a Brownian motion and k independent Poisson processes, as to obtain a 

weak derivative interpretation and useful formulas for their work. Additionally, they also 

approximate the Lévy process used as a jump-diffusion model by the means of a simple Lévy 

process. 

 

In Espinosa and Vives’ (2006), the authors present a generalization of the traditional 

Lévy-Merton jump diffusion model, allowing discrete stochastic volatility. They use a 

method which is based on quadratic variation. This is done in order to estimate jump instants 

and jump amplitudes. 

ii. Constant Elasticity of Variance Model 

Concerning the literature covering the CEV, a large number of studies have covered its 

use within the finance and financial economics fields. Research on CEV has mainly focused 

on the application of CEV models to price hybrid options, as well as an alternative for 

lognormal processes.  

In their pricing method of convertible bonds and American credit spread options, 

Ruxing and Shenghong (2009) have used the CEV process within an extended model. The 

latter accounts for movements in equity prices and interest rates, which affect the default 

probability, as well as for the negative correlation between the volatility of the stock and its 

price. For this purpose, they suggested to use a trinomial tree model with embedded call and 

put options. As mentioned by authors, the model can also be applied to other hybrid 

derivatives such credit default swaps.  
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Das and Sundaram (2007) have studied the effect of adding a leverage component to 

different cases of CEV models on credit default swaps spreads. They concluded that increases 

in the leverage component are accompanied by increases in the spreads. The authors also 

found out that the total volatility is a more important factor than the leverage effect on the 

credit default swaps pricing.  

Chan, Choy and Lee (2007) contested the use of normal distribution in the 

discretization of the CEV diffusion process for interest rate data, with the case of two popular 

CEV processes, Ornstein–Uhlenbeck and the square-root processes. Several heavy-tailed and 

symmetrical distributions; namely the Student-t distribution, the logistic distribution and the 

exponential family of distributions; had their robustness tested relative to the normal 

distribution to identify their validity as alternative distributions. The outcome of the research 

was that normality assumption in the CEV model diffusion process may be less appropriate 

than the above-mentioned heavy tails distributions. 

Svoboda-Greenwood (2009) studied alternatives to the lognormal process in modeling 

the dynamics of interest rates and equity prices. Using CEV process as an alternative to 

lognormal process, she came up with the conclusion that the CEV option pricing method 

holds similar results and is appropriate for valuing vanilla derivatives. In fact, significant 

pricing errors seem to appear after the 10 year maturity level. However, the CEV process 

pricing may be inaccurate in determining the values of more complex forms of derivatives. 

Ren-Raw et al. (2009) test for the accuracy of CEV model relative to the stochastic 

volatility model in pricing European and American options. The CEV model appears to have 

better results for in-sample, out-of-the-sample and implied volatility tests than the stochastic 

volatility model within the category of short term and out-of-the-money European options. 

For pricing American options, the simple CEV model is considered being a better alternative 

than more complex stochastic volatility models in terms of applicability, implementation cost 

and computational speed. The authors recommend the use of CEV models while dealing with 

complex path-dependent options and credit risk models. 

Chan and Ng (2007) have proposed a CEV model that account for the long-memory 

pattern exhibited in financial markets. For this purpose, they constructed a fractional CEV 

model and replaced the Wiener process with a fractional Brownian motion. The added 

component does not depend on the strike price, but hold the same implied volatility pattern as 

the classical CEV model. With this fractional transformation of the classical CEV model, the 
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authors identified a European option pricing formula with volatility skew pattern also being 

revealed. 

Davydov and Linetsky (2001) have studied the significant errors in hedging and pricing 

originated from the use of the standard geometric Brownian motion for pricing path-

dependent options such as barrier and lookback options. They argue that the implied 

volatilities of the option prices with different strike prices are “not constant but vary with 

strike price”, implying the presence of an implied volatility smile that cannot be captured by a 

lognormal process. With the use of the CEV model, the authors have identified significantly 

deviating results of the barrier and lookback option prices and hedge ratios from the 

lognormal process models. The closed form CEV pricing formula for the path-dependent 

options allow for faster and more accurate prices and hedge ratios outcomes. 

Under the same basis, Boyle and Tian (1999) have used trinomial method for CEV 

process approximation and test its accuracy for the determination of lookback and barrier 

options prices. Testing different parameter values of the CEV model to measure the accuracy 

of their model, the authors concluded that the difference between CEV and Black and 

Scholes is minimal for standard options, but widens for path-dependent options, making the 

CEV model a much better alternative than the Black and Scholes for lookback and barrier 

options. 

In their pricing of warrants, Lauterbach and Schultz (1990) have studied the Black and 

Scholes model, in parallel with its alternatives, which included the CEV model. They argue 

that the constant variance assumption of the Black and Scholes model allow for biases in the 

pricing of almost all the sampling warrants and periods. Using different changes to the Black 

and Scholes model to find the alternative for warrant pricing, Lauterbach and Schultz could 

only find more accurate predictions when adjusting the model to implied equity standard 

deviations. This adjustment is equivalent to the CEV model, in this study a square-root CEV, 

since the Black and Scholes is considered to be a special case of the CEV model. In addition, 

the authors identified an important drawback of the CEV model is that it may not be accurate 

when the parameters are not known. In their own words, “the relevant empirical question is 

whether the CEV model provides sufficient improvement in price forecasts to overcome the 

noise associated with estimating an additional parameter”. They recommend the use of CEV 

model rather than Black and Scholes for pricing warrants. 
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Beckers (1980) extended the Black and Scholes’ log-normality assumption testing to 

two special cases of the CEV model, the square root and the absolute models. Although 

Beckers’ results show in general that the two CEV class cases are better models to describe 

the stock price movements than the Black and Scholes’ lognormal model, none of the model 

can be applied uniformly among all the stock prices series. 
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III. Theoretical Framework 

This section states the theories, as well as previous research, associated with the 

process models, index price transformations, stochastic integral calculations and estimation 

methods used in this index price study.  

i. Brownian Motion 

In 1828, the botanist Robert Brown was the first to identify the random movements of 

pollen in water. Since then, the Brownian movement has been widely used in the fields of 

biology, physics, economics and management systems. It also holds a primary role in 

theoretical finance. In fact, the movements described by the Brownian motion can be 

replicated to forecast the stock market movements. The Brownian motion has the following 

properties (Karatzas & Shreve, 1991, pp.169-175): 

• }{ , ;0
t t

W W F t= ≤ < ∞  

• 0 0W =  

• : is independent of ;0t S sW W F s t− ≤ ≤  

• [ ] [ ]0 and ;0t s t sE W W V W W t s s t− = − = − ≤ ≤  

tW denotes the Wiener process, also referred to as Brownian motion, which is a type of 

Markov stochastic process. The Markov process is particularly fundamental in theoretical 

finance since historical data are irrelevant but rather the present value of a variable. In other 

words, the likelihood of any future state does not depend on the past states but only on the 

present states, which is of particular importance while using memoryless series. From the 

properties of the Wiener process, it can be seen that mean change is equal to zero and the 

variance of change is equal to the time interval (Hull, 2000).  

ii. Logarithmic Return 

As early as the first financial empirical studies, Working (1934) and Kendall (1953) 

identified that stock and commodity prices are nearly impossible to forecast starting from 

historical data of the price series. To overcome the difficulty of predicting movement of 

prices that resides in their non-stationarity characteristic, with very high correlation and 
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increasing variance with time, Osborne (1959) suggested the use of the logarithmic return. 

Thus, instead of using the prices process, the returns process ( )tX  is more suitable: 

( ) ( )

( )

1log log

index price at time t

X independent series of errors; 0

t t t

t

t t

S S X

S

E X

−= +

≡

≡ =

 

t
X is then independent of the past index prices changes. In other terms, 

t
X can be 

expressed as the logarithmic change of the index price as such: 

( ) ( ) ( )1log log logt t t tS S S X−∆ = − =  

Therefore and in parallel with Osbourne’s study about the subject (1959), the 

logarithmic index prices changes are generated from a normally distributed random error with 

zero mean and constant variance.  

iii. Geometric Brownian Motion 

In financial time series, the literature and research have focused on the determination of 

a model on three major families of price processes: the autoregressive conditional 

heteroscedasticity (ARCH) model group, the stochastic volatility (SV) model group, and the 

random walk model group.  

Samuelson (1965) was the first to suggest the use of the GBM model as a method to 

illustrate price behavior. The GBM is of particular use for this study because this stochastic 

process only allows for non-negative values, as it is the case for index price of an equity 

market. Here is the form of the stochastic differential equation (SDE) of the geometric 

Brownian motion: 

instantaneous expected return (constant)

instantaneous volatility (constant)

t t t tdS S dt S dWµ σ

µ

σ

= +

≡

≡

 

By using logarithmic return on Samuelson’s model, the following is obtained: 

21
log

2
t td S dt dWµ σ σ

 
= − + 
 

 

Recently, geometric Brownian motion has been extensively used as a model for the 

stock prices, commodity prices and growth in demand for products and services. The 
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geometric Brownian motion is also the model behind the Black-Scholes European options 

pricing formula as well as far more complex derivatives. Various recent studies invoked the 

geometric Brownian motion in real options analysis (Nembhard et al., 2002; Thorsen, 1998; 

Benninga & Tolkowsky, 2002…), in representing future demand in capacity studies (Whitt, 

1981; Lieberman, 1989; Ryan, 2004…). In general, its popularity was motivated from the 

assumption that random changes over time follow a geometric Brownian motion process 

(Marathe & Ryan, 2005). The geometric Brownian motion is particularly useful for this index 

price study because the process in question assumes that percentage changes are independent 

and identically distributed over equal and non-overlapping time length (Luenberger, 1995; 

Ross, 2000). Unlike the standard Brownian motion's constant drift term, the geometric 

Brownian motion assumes that the instantaneously expected rate of return is constant. 

Therefore, the constant instantaneous expected drift assumption of the standard Brownian 

process is substituted with the constant expected rate of return in the geometric Brownian 

process (Hull, 2000). This is of particular importance since the drift function is substituted 

with observable quantities, the rate of return and the index price. 

On the other hand, the accuracy of the geometric Brownian motion has been put into 

question and has constituted the subject of debate between scholars. Watteel-Sprague (2000) 

questioned the normality assumption of the geometric Brownian motion stochastic process in 

past studies by showing that the high kurtosis of the returns process implies non-normal 

distribution (p.11). She adds that the assumption of independence of the geometric Brownian 

motion is invalid because of the autocorrelations identified in squared returns process (p.15), 

making the GBM real option pricing and predictability of price movements null. In fact, daily 

returns are characterized by volatility clustering, refuting the argument of constant volatility 

of returns (p.93). A study by Ross (1999) revealed that the data on the price of crude oil are 

not compatible with the geometric Brownian motion assumptions. Thorsen (1998) stated that 

the geometric Brownian motion process assumptions should be tested first. Marathe & Ryan 

(2005), checked for the geometric Brownian motion process fit. Likewise, they tested for the 

normality and independence of the logarithmic returns. They found out that the geometric 

Brownian motion assumptions were consistent with some data sets and inconsistent with 

others, concluding for the necessity of assumptions' testing.  

One of the main objectives of this study is to confirm or refute the different mentioned 

studies about the validity of GBM processes in predicting stock market movements. On one 

side of the literature review on the GBM, it reveals that the process is a good tool for real 
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option pricing as the random changes over time follows a GBM process. Other authors, cited 

in the second paragraph of this section, doubt the accuracy of the assumptions surrounding 

GBM models such as the normality of the distribution and the constant volatility of returns. 

This study is aimed at testing the validity of GBM processes, which are widely popular 

within the financial economics community in option pricing. 

iv. Constant Elasticity of Variance 

In finance, a large part of the academic literature assumes that asset prices follow a 

geometric Brownian motion. This assumption implies that the future price of the asset follow 

a log-normal distribution. Work done by Davydov & Linetsky (2001) on path dependent 

options, and thereby the underlying assets, show that implied volatilities computed from 

market prices are not constant, but vary with the strike price. The same variation is observed 

over the underlying assets. The variation is known as the implied volatility smile or frown, 

depending on the shape. This variation is not captured by the log-normal assumption with 

constant elasticity, and hence the geometric Brownian motion. In fact, several authors (Black, 

1976; Christie, 1982; Nelson, 1991) have empirically identified a short-term phenomenon to 

stock prices, consisting of negative correlation between index price movements and the 

volatility. Davydov & Linetsky (2001) went further in extending the basic model by the use 

of a CEV model, to include the variation. The results from Davydov & Linetsky (2001) 

shows that financial institutions that use the standard geometric Brownian motion assumption 

are exposed to significant pricing and hedging errors. The use of CEV diffusion to model 

asset prices was introduced to finance for the first time by Cox back in 1975. The advantage 

of the CEV model relative to the geometric Brownian motion (GBM) model is that it allows 

for the leverage effect (Engle & Lee, 1992; Gallant et al. 1993). The SDE form of the CEV 

model with the leverage effect, or discount factor, is as follows: 

 

            0 1

  

t t t t
dS S dt S dW

discount factor

δµ σ δ

δ

= + < <

≡
 

v. GBM Model vs. CEV Model 

The proponents of the CEV model over the GBM argue that the GBM is invalid only 

because the latter lacks to capture the implied volatility smile, implying a reverse relationship 

between the price movements and the volatility. In other words, adding a discount factor 

strengthens the model. As matter of fact, this study tries to answer the question whether one 
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of the models is mostly suitable to predict the price movements of an equity market in the 

caliber of the S&P500 index or none of them.  

Both the GBM and the CEV models belong to the following general continuous-time 

specification (Chan et al., 1992): 

 ( )
t t t t

dS S dt S dW
δλ µ σ= + +  

In the case of the GBM, 0 and =1λ δ=  while the CEV only displays 0λ = . From the 

stochastic differential equation forms of the GBM and CEV models, it could be observed that 

the GBM is a special case of the CEV. In fact, the GBM model is equivalent to the CEV form 

when =1δ . A testing of the two models is thus necessary to assess the strength of the specific 

model (GBM) relative to the more general one (CEV).  Another objective aimed from the 

testing of the GBM over the CEV is to assess whether or not the presence of an additional 

parameter, namely the discount factor, reinforces or simply doesn’t add any strength to the 

model. The testing of the GBM over the CEV will identify whether today’s stock price 

affects the stochastic process component of the CEV model or not. To evaluate the strength 

of a model relative to another two tests are suggested: the Likelihood Ratio Test and the 

Jarque-Bera Test. Those two tests are described in more details in the next section of the 

paper. 
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IV. Methodology 

The Methodology section presents the data sampling methods to identify the different 

stages of the S&P500 as well as the logarithmic transformation on the input data. Then, both 

the models under scrutiny, the GBM and the CEV, are assumed to be in discrete time using a 

discretization scheme.  

i. Data Collection 

The data used in this study consist of time series of the daily S&P500 index at the close 

of the market (4:00 pm Eastern Time). The data has been obtained from DataStream’s 

database, covering the period of March 31
st
, 1979 to September 8

th
, 2009. It consists of the 

“S&P500 COMPOSITE - PRICE INDEX”, which is a value-weighted index of a large cross-

section of listed stocks. It is comprised of the 500 largest publicly held companies. Almost all 

of the stocks included in the index are among the 500 American stocks with the largest 

market capitalizations. The index does also include a minority of non-U.S. companies (9 as of 

March 26
th

, 2009). The companies included in the S&P500 are selected by a committee and 

they have to live up to certain requirements of sufficient liquidity and being publicly traded, 

leaving out some of the largest U.S. companies. The committee selects the companies in the 

S&P500 so they are representative of various industries in the United States economy. This 

justifies using the S&P500 as an overall health indicator of the overall economy, and it is 

actually one of ten key variables included in the Index of Leading Indicators. 

After a careful analysis of the stock index graph, three post-World War II periods when 

the S&P500 index declined sharply were identified: 1987, 2001 and 2007. In order to better 

measure the effect of the model within different stock environments (bull and bear markets); 

the data samples were split into two time periods: the "pre-crisis period" which is referred to 

as the bull market period of each of the crises and the "crisis period" for the bear market. For 

the three identified stock market crises, the pre-crisis and crisis periods include 500 trading 

days each. One full business year is assumed as being equivalent to 250 trading days.  

After observing the evolutionary stock movements of the S&P500, the following 

process for the determination of the bull (pre-crisis) and bear (crisis) markets were identified. 

The first step is to look for the peak stock index day in 1987, 2001 and 2007. This day is 

called Day 0. After that, the sampling periods prior and subsequent to Day 0 were chosen. 
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The period prior to Day 0 is the pre-crisis period and the period subsequent to Day 0 is the 

crisis period.  

Again, each of the pre-crisis and crisis periods is split in two sub-periods: period I and 

II. Period I and II are equally divided: 250 trading days each. 

Derived from the daily index price of the S&P500 Composite, the logarithmic return is 

preferably used as a basis for future calculations, illustrated in the following: 

1

ln                                                                             

logarithmic return

price index at time t

t
t

t

t

t

S
r

S

r

S

−

 
=  

 

≡

≡

 

In the calculations of the daily stock returns, the period log returns 
1

ln t

t

S

S −

 
 
 

 are used 

rather than simple discrete returns 1

1

t t

t

S S

S

−

−

 −
 
 

. The major reason behind the use of log returns 

within quantitative finance is that unlike the simple discrete returns, log returns are time 

additive. So, if the log-return for period n is needed, the sum of each of the consecutive daily 

returns summed will equal the return of period n. More or less all financial assets have 

limited liability, meaning that the maximum loss one can incur is a negative 100%. This 

constitutes a problem since the arithmetic Brownian motion r(t), the price of some financial 

asset over any time interval follows a normal distribution, and over real time the r(t) could 

become negative, which would contradict the assumption that any financial asset’s maximum 

loss would be -100%. Hence, the price r(t) would be negative. This problem is easily 

eliminated by defining the price of the financial asset r(t) as the natural logarithm of S(t). By 

using this definition, the Brownian motion no longer violates the assumption of non-

negativity, since the price S(t)= e
 r(t)

 is always non-negative (Campbell et al., p.347-348, 

1997).  

ii. Itô’s Lemma 

a. GBM Model 

Even in continuous time, the standard Brownian motion cannot be differentiated and 

cannot be monotonic with probability 1 (Karatzas & Shreve, 1991). The need of a stochastic 

integral is necessary. The Itô's integral has been one of the most popular stochastic integrals 
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in theoretical finance since it "reflects the notion that agents cannot anticipate future price 

movements" (Watteel-Sprague, 2000, p.21). Applying the Itô's change of variable on the 

continuous geometric Brownian motion: 

2
2 2

2

1

2

f f f f
df S S dt SdW

t S S S
µ σ σ

 ∂ ∂ ∂ ∂
= + + + 

∂ ∂ ∂ ∂ 
 

Using Itô's lemma, the geometric Brownian motion model can be solved to get: 

2

2
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tt W

tS S e

σ
µ σ

  
− +      =  

Assuming that the dynamics of the index price process is ( ) ln tr t S=  and by using Itô's 

lemma stochastic differential equation, a GBM with a mean and standard deviation 

proportional to the index price S is obtained as such: 
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 Therefore, the index price change 
dS

S
behaves as a random walk process, with 

µ being the constant instantaneous mean return (expected return) and 2σ  being the constant 

instantaneous return variance. The following illustrates the index price change dynamics: 

( )

2

                                                                  

1
ln                                                        

2

;

t
t

t

t t

dS
dt dz

S

d S dt dz

µ σ

µ σ σ

θ µ σ

= +

 
= − + 
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=

 

b. CEV Model 

The same steps of Itô’s integral on the GBM model can be applied on the CEV model 

with one significant difference. Unlike the GBM model and as mentioned in the theoretical 
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framework section of this study, the stochastic differential equation of the CEV model 

includes a leverage effect, or discount factor ( )δ , so the corresponding index price dynamics 

is as follows: 

( )

1

2
1 1

 

1
ln  

2

0 1

t
t t

t

t t t t

dS
dt S dW

S

d S S dt S dW
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− −
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 
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< <

 

iii. Discretization Scheme 

a. GBM model 

To be able to transfer the continuous process into a discrete form, a discretization 

scheme is needed. The finite element discretization is considered to be the most used method 

for dynamic analysis of complex structures. Discretization is used in this study as a 

simplification of continuous time processes and thus allowing for the numerical evaluation 

needed. Applied first on the GBM model, the discretization scheme performed is represented 

as follows: 
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b. CEV model 

Basically, the same discretization steps applied with the GBM model can be applied for 

the CEV model: 
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iv. Maximum Likelihood Estimation 

The next step is to perform an estimation of the parameter vectorθ , with θ̂  being the 

estimator of the parameter vector ( ),θ µ σ= for the GBM model and ( ), ,θ µ σ δ= . In order to 

estimateθ , the maximum likelihood estimation method is performed. The maximum 

likelihood estimation is useful for calculations based on historical data, as well as for data 

which are not equally sp 

aced, like S(t) sampled at non-stochastic dates t0 < t1 < … < tn. This is the case for 

financial time series such as stock prices since markets are closed during weekends and 

holidays, which yields to irregular sampling intervals. S(t) being by assumption a continuous 

time Markov process, irregular sampling does not create any conceptual problem. The joint 

density function f  of the sample is given by the following product: 

0 0 0 1 1

1

( , , ; ) ( ; )  ( , , ; )
n

n k k k k

k

f P P f P f P t P tθ θ θ− −

=

…  = ∏  

In order to define the maximum likelihood estimatorθ , let ln ( )L θ  denote the log-

likelihood function. The logarithm of the joint density function of P0, …, Pn viewed as a 

function of θ  is: 

0

ln ( ) ln
n

k

k

L fθ
=

≡∑  
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arg max ln ( )

parameter space of parameters 

Lθ θ

θ

θ

≡

∈Θ

Θ ≡

 

As previously mentioned, the Wiener process ( )tW∆  is assumed to follow a normal 

distribution with mean 0 and variance t∆ . Starting from the corresponding continuous density 

function of the Wiener process, a general formulation of the log-likelihood function is 

obtained: 
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In this study, the estimation of the parameters is derived through the Excel Solver 

application. This is due to the fact that the expression ( )ln 2
2

T
tπ

 
− ∆  

is unrelated to the 

parameters under study within the ( )ln L θ . Thus, the ( )ln 2
2

T
tπ

 
− ∆  

expression does not 

hold any importance for the parameters estimation, which explains that it has been removed 

from the log-likelihood function so that its transformed version becomes: 

( ) ( )
2

1

1
ln

2

T

tr t

t

L W
t

θ
=

= − ∆
∆
∑  

After identifying the general formulation of the log-likelihood function and letting 

1t∆ = , the specific log-likelihood function of the GBM and CEV models can be found by 

replacing the equivalent Wiener process such that: 
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To be able to find the optimal estimators for each of the models, the log-likelihood has 

to be maximized with respect to each of the estimators
( )ln

0
trL θ

θ

∂
=

∂
. The latter allows 

identifying the optimal parameters for the models in use.  

v. Likelihood Ratio Test 

The likelihood ratio test measures the validity of a model over another in terms of the 

number of parameters and the level of restriction. It judges the relative strength of models 

with different numbers of parameters. In this study, the likelihood ratio test assesses whether 

adding a discount factor strengthens the CEV model relative to the GBM model or not. The 

likelihood ratio test also aims at testing the unrestricted model, namely the CEV model 

with 0 1δ< < , against the restricted model, namely the GBM model with 1δ = . The GBM is 

the restricted one since it constitutes a special case of the CEV with 1δ = .The distribution of 

the likelihood ratio is asymptotically ( )2 1χ  and is measured as follows: 

( ) ( ) ( ), ,2 ln lntr GBM GBM tr CEV CEVD L Lθ θ θ = − −     

The result of the likelihood ratio is tested on each of the periods for statistical 

significance within a chi-square distribution, with degree of freedom equaling 1 and three 

different significance levels (10%, 5% and 1%). In this study, a simple-vs.-simple hypothesis 

test is used (Mood et al., 1974) with the following null and alternative hypotheses: 

0

1

: 1       for the GBM

: 1       for the CEV

H

H

δ

δ

=

≠
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vi. Normality Tests 

In order to determine whether the errors are normally distributed, a normality test is 

needed. Based on Rakotomalala’s (2008) study on different normality tests, it was decided to 

choose the Jarque-Bera normality test for our data series. The test is based on the coefficient 

measures of the skewness and kurtosis. It evaluates the spread degree between the observed 

skewness and kurtosis with the expected ones for a normally distributed series. Since the 

Jarque-Bera test lacks precision for small number of observations, which is compensated by 

the 250 observations on each of the series in this study. Under the null hypothesis 

(normality), the test statistic is distributed according to a chi-square distribution with 2 

degrees of freedom. The null hypothesis is a joint hypothesis that the skewness is 0 and the 

kurtosis is 3.  
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V. Results Summary 

i. Parameters Estimation 

The results displayed on the chart summarize the estimated parameters for both the 

GBM and CEV models after the maximum likelihood estimation: 

Table 1 – Estimated Parameters of GBM and CEV for Pre-Crisis and Crisis 

Pre-Crisis 87 Day 0 Crisis 87 

GBM CEV 

05-10-1987 

GBM CEV 

σ 0,5970 1,5448 0,8036 2,8516 

µ 0,1773 0,4324 0,3161 1,3732 

δ _ 0,91 _ 0,90 

lnL(θ) -0,02961 -0,01724 -0,09981 -0,02837 

Date 04-11-1985 ...  02-10-1987 06-10-1987 ... 04-09-1989 

Pre-Crisis 01 Day 0 Crisis 01 

GBM CEV 

03-09-2001 

GBM CEV 

σ 0,4648 3,2110 0,7471 2,1603 

µ 0,1044 0,9585 0,2732 0,7322 

δ _ 0,88 _ 0,92 

lnL(θ) -0,10446 -0,01415 -0,05447 -0,02430 

Date 04-10-1999 ... 31-08-2001 04-09-2001 …  04-08-2003 

Pre-Crisis 07 Day 0 Crisis 07 

GBM CEV 

09-10-2007 

GBM CEV 

σ 0,3802 2,2860 0,7116 2,5575 

µ 0,0707 0,7113 0,2469 0,8805 

δ _ 0,91 _ 0,91 

lnL(θ) -0,03738 -0,00370 -0,05808 -0,01975 

Date 08-11-2005 … 08-10-2007 10-10-2007 … 08-09-2009  

Various observations could be raised regarding the parameters results, but let us first 

say that for the CEV model, we consider its estimated σ as a better comparison tool against 

the GBM’s standard deviation since the CEV standard deviation has both price and discount 

factor components integrated in it, while the GBM’s standard deviation does not.  

Regardless of the crash years, the estimated µ and σ of the GBM model, within the 

same period, are smaller than their CEV counterparts. The GBM estimated µ and σ also show 

lower values during pre-crisis, than during the crisis period. In that sense, the CEV figures 

display less consistency than the GBM numbers, possibly because of the additional factor (δ). 

The latter is both close to 1 and relatively stable from the pre-crisis to the crisis. The case of 

2001, where δ moved from 0,88 to 0,92, had the pre-crisis µ and σ higher than the crisis 
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period. On the other hand, the 1987 and 2007 cases where the discount factor was more or 

less constant, the estimated mean and σ of the pre-crisis were smaller than the crisis figures. 

This may suggest that a small change in the discount factor from a period to another has a 

significant effect on the rest of the CEV parameters. Also, it seems that the introduction of 

the discount factor leads to magnified figures of µ and σ relative to the GBM parameters 

results. 

Related to the figures obtained after calculating the max likelihood estimation that all 

the cases display negative numbers close to zero. The corresponding results for the GBM are 

always smaller than their CEV equivalents. 

ii. Likelihood Ratio Test 

The likelihood ratio test results on the strength of the CEV model (unrestricted model) 

relative to the GBM model (restricted model) are shown in the following chart: 

Table 2 – LR Test Statistics and Critical Values 

LR Test 

Pre-Crisis 87 0,0247 

Crisis 87 0,1429 

Pre-Crisis 01 0,1806 

Crisis 01 0,0603 

Pre-Crisis 07 0,0674 

Crisis 07 0,0767 

   
Critical Values 

Χ²(10%;1)* 2,70554 

Χ²(5%;1)** 3,84146 

Χ²(1%;1)*** 6,63490 

 

First, the numbers are all positive which correspond to the chi-distribution that goes 

from 0 to infinity. The results of the likelihood ratio test show that the LR test statistics are 

smaller than the critical values in the three significance levels: 1%, 5% and 10%. This 

tendency includes the results covering the pre-crises and crises periods under scrutiny. Not 

only is there a prevalence in the acceptance of the null hypothesis (δ=1), but also the LR test 
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statistics seem to be very close to the minimum figure in the chi-square distribution curve, 

namely zero. 

iii. Normality Tests 

The graphs below illustrate the distribution of the Wiener process according the 

sampling period and the model in question. The X-axis of the graphs represents the bin, while 

the Y-axis represents the frequency of the Wiener process calculated from the maximum 

likelihood estimation of the parameters:  

Figure 1- Distribution of the Wiener Process 
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From the graphs, it could be seen that some of the cases look closer to a bell shaped 

curve than others. Yet, a simple graph observation could not lead to the conclusion that the 

Wiener process of each of the distributions holds normality properties or not. The Jarque-

Bera test is necessary to test the assumed normality of the Wiener process under study. The 

chart below indicates the outcomes obtained from the Jarque-Bera test on the tdW  as well as 

the critical values ( ) ( ) ( )2 2 2

1% 5% 10%2 , 2  and 2χ χ χ : 
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Table 3 – Jarque-Bera Test Results 

Jarque-Bera 

Pre-Crisis 87 
GBM*** 6,2858 

CEV*** 6,1398 

Crisis 87 
GBM 13,2981 

CEV 12,9845 

Pre-Crisis 01 
GBM 16,2863 

CEV 16,5214 

Crisis 01 
GBM* 2,2599 

CEV* 2,0690 

Pre-Crisis 07 
GBM 114,7913 

CEV 113,2306 

Crisis 07 
GBM 64,2357 

CEV 67,0959 

 

A number of remarks can be drawn from the Jarque-Bera test chart. Few of the cases 

display normality, namely the pre-crisis period of 1987 and the crisis period of 2001. The 

former failed to reject normality at 1% significance level (P-value of 4,32% for GBM and 

4,64% for CEV), while the latter accepted the null hypothesis of normality as high as 10% 

significance level (P-value of 32,31% for GBM and 35,54% for CEV). Within the normality 

period cases, the CEV model shows slightly more strength than the GBM, but not strong 

enough to imply a conclusion from it. In general, whether showing normality or not, it can be 

seen that both the GBM and CEV’s P-values are nearly similar within the same study period.  
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VI. Analysis 

This section analyses the different outcomes obtained from the log-likelihood 

estimation, the likelihood ratio test and the Jarque-Bera normality test. 

An analysis of the parameters’ results from the maximum likelihood estimation of the 

GBM and CEV models among the different time-series provides with the followings. First 

and from the ML estimated parameters, the mean returns of the CEV relative to the GBM 

show that the CEV model is effectively having a tendency of estimated mean returns higher 

than the GBM’s. The addition of the discount factor in the model has a tradeoff effect on the 

mean. Not only does the discount factor have a supposed leverage effect on the standard 

deviation, but also on the mean return within the different series.  

The standard deviation results show that, the CEV’s estimated σ is higher than the 

GBM’s. This allows saying that the leverage effect added to the CEV model has an impact on 

the estimated standard deviation. In other words, adding the discount factor leads to a higher 

estimated standard deviation, confirming the leverage effect property of δ. The GBM’s 

estimated standard deviation, also display a rise from the pre-crisis to the crisis ranges. The 

expansionary period of the S&P500 index held a more volatile logarithmic return than during 

the recessionary period. The pre-crisis times had experienced sharper movements of the 

equity market, which can be interpreted as a sign for an upcoming general decline in stock 

markets, and subsequently, to a crisis. Both the GBM and CEV’s estimated σ increases from 

the pre-crisis to the crisis ranges. Remarks related to the discount factor results could be that 

it tend to display values close to the GBM case of δ=1. The lowest discount factor among the 

pre-crisis series is δ=0.88 and among the crisis series is δ=0.90. In a recessionary 

environment for the equity market, the CEV model is more inclined to the special case of the 

GBM, although the difference seems unsubstantial. 

The last analysis of the table of parameters’ results concerns the mean return-variance 

movements. Both for the GBM and CEV, an increase in the logarithmic mean returns is 

accompanied with a rise in the estimated standard deviation. The intuition behind this result 

is that the higher return, the higher the risk.  

Concerning the likelihood ratio test, the results are straightforward in the sense that they 

convey to the same conclusion. The null hypothesis model is considered to be better than the 

model related to the alternative hypothesis. As such, the CEV model is a better predictor for 
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the movements of the S&P500 index according to the LR tests. The addition of a parameter 

relative to the GBM model reinforces the strength of the CEV model. However, the LR test 

statistics are also relatively low and close to the lower-tail, and thus to the rejection area of 

the null hypothesis. This can be due to the Type II error, where there is a tendency for failing 

to reject rather than rejecting the null hypothesis. A general consensus about the CEV being a 

better model than the GBM cannot be affirmed. 

Both the Jarque-Bera normality test results and the distribution graphs show that the 

Wiener process of the CEV model and the GBM model does not show normality. Both the 

CEV & GBM Jarque-Bera test statistics hold values that are beyond the critical value for 

most of the series, and thus rejects the null hypothesis of normality, except for the 2001 crisis 

and pre-crisis of 2007. The Wiener process of the CEV is not normally distributed in 4 out of 

6 series. For the GBM model, the CEV model test statistic fall within the rejection area for 4 

out of 6 series, so both the CEV and GBM show normality in 2 out of 6 series, and for both 

of them it applies that it is the 2001 crisis and pre-crisis of 2007. From simple graph 

observation and test statistic, it can observed that the GBM and CEV model, show similar 

trends, and the test statistics are too close to make any conclusions on, they only thing that 

can me mentioned is the fact that the CEV test statistic is lower than the corresponding GBM 

statistic in 4 out of 6 series, but in terms of statistical significance, the conclusion was as the 

above mentioned, 2 out of 6 series show normality for both the CEV and GBM.  

To sum up, the addition of the discount factor seems to strengthen the CEV model relative to 

the GBM model. The likelihood ratio test confirms that the CEV model is a good alternative 

to the GBM model for S&P500 market predictions. Moreover, the Wiener process of the 

CEV model is as normally distributed as the GBM model and nothing can be said as to one 

model being closer to normality than the other. 
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VII. Conclusion and Recommendation for Further Studies 

Although this study partly illustrated the limitations of two popularized models within 

the fields of option pricing and financial economics, various outcomes cam be implied from 

the log-likelihood estimation, the likelihood ratio test and the Jarque-Bera normality test. The 

Geometric Brownian motion is of particular interest within the financial research community 

as it is the basis for the widely-used Black and Scholes method for option pricing, while the 

Constant Elasticity of Variance has been presented as a better alternative to Black and 

Scholes mainly because it breaks the unlikely assumption of constant equity volatility, but 

rather supports that the equity volatility should move in an opposite direction than the equity 

prices. 

Indeed, this study tried to compare and contrast the two models in three different stock 

market periods in terms of their predictability of such exceptional movements in the S&P500 

equity market, namely the 1987, the 2001 and the 2007 crises. The CEV model seems to 

exhibit a better model, from the LR test, than the GBM with the addition of the leverage 

effect factor, the strength of the results also imply that this can be considered as a sufficient 

and strong argument for the adoption of the CEV relative to the GBM. Another conclusion 

concerns the distribution of the corresponding Wiener process. In overall, the GBM models 

have shown normality features in 2/6 cases, with a test statistic being relatively close for a 

statistical adoption of normality, and the CEV model has exhibited the exact same normality 

properties for its stochastic process.  

Few recommendations for further studies on lognormal processes for financial market 

modeling can be stated. 250 trading days as a sampling period can be behind inaccuracies 

estimating parameters, especially in high volatility environments, before and during stock 

market crashes. Considering the use of a discretization scheme in this study as a 

simplification of continuous time processes, two limitations can be raised. Shorter samples 

should then be considered for a better accuracy of the parameters’ estimation. The necessity 

of applying a comparison of the CEV and GBM on continuous time should be recognized. 

Another recommendation could be the use of non-parametric estimation methods. These 

methods could solve the problems related to sensitive leverage effect estimation, being 

ranged from 0 to 1 while maximized likelihood functions can hold high numerical values. In 

addition, the distribution testing of the Wiener process could be extended to non-normal 

distributions. 



Continuous Time Processes in Times of Crisis: GBM versus CEV models 

 

Bendkia & Giversen, 2010 Page 30 

 

Reference List 
 

Beckers, S., The Constant Elasticity of Variance Model and Its Implications for Option 

Pricing, The Journal of Finance, Vol. 35, No. 3 (Jun., 1980), pp. 661-673 

 

Benninga, S. and E. Tolkowsky, Real Options – An Introduction and an Application to 

R&D Evaluation, The Engineering Economist, Vol. 47, No. 2, (2002), pp. 151-168 

 

Black, F., Studies in Stock Price Volatility Changes, Proceedings of the 1976 Business 

Meeting of the Business and Economic Statistics Section, American Statistical 

Association (1976), pp. 177-181 

 

Black, F. and M. Scholes, The Pricing of Options and Corporate Liabilities, The Journal of 

Political Economy, Vol. 81, No. 3 (May - Jun., 1973), pp. 637-654 

 

Boyle, P.P. and Y.S. Tian, Pricing Lookback and Barrier Options under the CEV Process, 

The Journal of Financial and Quantitative Analysis, Vol. 34, No. 2 (Jun., 1999), pp. 

241-264 

 

Campbell, J.Y., A.W. Lo and A.C. MacKinlay, The Econometrics of Financial Markets, 

Princeton, N.J. : Princeton Univ. Press, (1997) 

 

Chan, J.S.K., S.T.B. Choy and A.B.W. Lee, Bayesian Analysis of Constant Elasticity of 

Variance Models, Applied Stochastic Models in Business and Industry, Vol. 23, No. 1, 

(2007), pp. 83-96 

 

Chan, K., G. Karolyi, F. Longstaff and A. Sanders, An Empirical Comparison of Alternative 

Models of the Short-Term Interest Rate, Journal of Finance, Vol.47, (1992), pp. 1209-

1227 

 

Chan N.H. and C.T. Ng, Fractional Constant Elasticity of Variance Model, IMS Lecture 

Notes, University of Hong Kong, Vol. 52, (2007), pp. 149-164 

 

Christie, A.A., The Stochastic Behaviour of Common Stock Variances: Value, Leverage, 

and Interest Rate Effects, Journal of Financial Economics, Vol. 10, pp. 407-432 

 

Cox, J.C, Note on Option Pricing I: Constant Elasticity of Variance Difussions, Stanford 

University, Working Paper, (1975) 

 

Das, S.R. and R.K. Sundaram, An Integrated Model for Hybrid Securities, Management 

Science, Vol. 53, No. 9, (Sep., 2007), pp. 1439-1451 

 

Davydov, D. and V. Linetsky, Pricing and Hedging Path-Dependent Options under the CEV 

Process, Management Science, Vol. 47, No. 7, (Jul., 2001), pp. 949-965 

 

Engle, R. F. and G. G. J. Lee, A Permanent and Transitory Component Model of Stock 

Return Volatility, Manuscript (Dept. of Economics, University of California, San 

Diego, CA), (1992) 

 



Continuous Time Processes in Times of Crisis: GBM versus CEV models 

 

Bendkia & Giversen, 2010 Page 31 

 

Espinosa, F. and J. Vives, A Volatility-Varying and Jump-Diffusion Merton Type Model of 

Interest Rate Risk, Insurance: Mathematics and Economics, Vol. 38, (2006), pp. 157-

166 

 

Gallant, A.R., P.E. Rossi and G. Tauchen, Nonlinear Dynamic Structures, Econometrica, 

Vol. 61, (1993), pp. 871-907 

 

Hassett, K.A. and G.E. Metcalf, Investment under Alternative Return Assumptions 

Comparing Random Walks and Mean Reversion, Journal of Economic  Dynamics and 

Control, Vol. 19, (1995), pp. 1471-1488 

 

Hull, J.C., Options, Futures, and Other Derivatives, 4
th

 Edition Prentice Hall, Upper Saddle 

River, NJ, (2000) 

 

Karatzas I. and S.E. Shreve, Brownian Motion and Stochastic Calculus, 2
nd

 Edition Springer 

Verlag, New York, (1991) 

 

Kendall, M.J., The Analysis of Economics Time Series, Part I: Prices, Journal of The Royal 

Statistical Society, Vol. 96, (1953), pp. 11-25 

 

Lauterbach, B. and P. Schultz, Pricing Warrants: An Empirical Study of the Black-Scholes 

Model and Its Alternatives, The Journal of Finance, Vol. 45, No. 4 (Sep., 1990), pp. 

1181-1209 

 

Leon, J.A., J.L. Sole, F. Utzet and J. Vives, On Lévy Processes, Malliavin Calculus and 

Market Models with Jumps, Finance and Stochastics, Vol. 6, No. 2 (2002), pp. 197-225 

 

Lewis, A.L., The Mixing Approach to Stochastic Volatility and Jump Models, (2002) 

 

Lieberman, B.M., Capacity Utilization: Theoretical Models and Empirical Tests, European 

Journal of Operational Research, Vol. 40, (1989), pp. 155-168 

 

Luenberger, D., Investment Science, Oxford University Press, New York, (1995) 

 

Marathe, R.R. and S.M. Ryan, On The Validity of The Geometric Brownian Motion 

Assumption, The Engineering Economist, Vol. 50, No. 2, (2005), pp. 159-192 

 

Merton, R.C., Option Pricing when Underlying Stock Returns are Discontinuous, Journal of 

Financial Economics, Vol. 3, (1976), pp. 125-144 

 

Mood, A.M., A.G. Franklin, C.B. Duane and G.V. Kaas, Introduction to the Theory of 

Statistics, 3
rd

 Edition, Journal of The American Statistical Association, Vol. 69, No. 

348, (1974), pp. 1050-1051 

 

Nelson, D.B., Conditional Heteroscedasticity in Asset Returns: A New Approach, 

Econometrica, Vol. 59, (1991), pp. 347-370 

 

Nembhard, H.B., L. Shi and M. Aktan, A Real Options Design for Quality Control Charts, 

The Engineering Economist, Vol. 47, No. 1, (2002), pp. 28-50 

 



Continuous Time Processes in Times of Crisis: GBM versus CEV models 

 

Bendkia & Giversen, 2010 Page 32 

 

Osborne, M. F. M., Brownian Motion in The Stock Market, Operations Research, Vol. 7, 

No. 2, (Mar. – Apr., 1959), pp. 145-173 

 

Rakotomalala, R., Test De Normalité: Techniques Empiriques et Tests Statistiques, Lumière 

University of Lyon 2, (2008), pp. 1-53 

 

Ren-Raw, C., C.F. Lee and H.H. Lee, Empirical Performance of The Constant Elasticity 

Variance Option Pricing Model, Review of Pacific Basin Financial Markets and 

Policies, Vol. 12, No. 2, (2009), pp. 1-18 

 

Ross, S., An Introduction to Mathematical Finance, Cambridge University Press, 

Cambridge U.K., (1999) 

 

Ross, S., Introduction to Probability Models, 7
th

 edition, Harcourt Academic Press, New 

York, (2000) 

 

Ruxing, X. and L. Shenghong, A Tree Model for Pricing Convertible Bonds with Equity, 

Market and Default Risk, 2009 International Conference on Business Intelligence and 

Financial Engineering, (2009), pp. 673-677 

 

Ryan, S.M., Capacity Expansion for Random Exponential Demand Growth with Lead 

Times, Management Science, Vol. 50, No. 6, (2006), pp. 740-748 

 

Samuelson, P.A., Proof That Properly Anticipated Prices Fluctuate Randomly, Industrial 

Management Review, Vol. 6, (1965), pp. 41-49 

 

Sarkar, S., The Effect of Mean Reversion on Investment under Uncertainty, Journal of 

Economic Dynamics and Control, Vol. 28, (2003), pp. 377-396 

 

Svoboda-Greenwood, S., Displaced Diffusion as an Approximation of the Constant 

Elasticity of Variance, Applied Mathematical Finance, Vol. 16, No. 3, (2009), pp. 269 

 

Thorsen, B.J., Afforestation as A Real Option: Some Policy Implications, Forest Science, 

Vol. 45, No. 2, (1998), pp. 171-178 

 

Watteel-Sprague, R., Investigations in Financial Time Series: Model Selection, Option 

Pricing, and Density Estimation, The University of Western Ontario, (Jun. 2000) 

 

Whitt, W., The Stationary Distribution of A Stochastic Clearing Process, Operations 

Research, Vol. 29, No. 2, (1981), pp. 294-308 

 

Working, H., A Random-Difference Series for Use in The Analysis of Time Series, Journal 

of The American Statistical Association, Vol. 29, (1934), pp. 11-24 

 

 


