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Abstract 

On the ground of a highly dynamic economic environment, the necessity for time-varying risk 

measures emerged. Inclusion of higher-order conditional moments in asset pricing models is a 

very common topic in recent research articles. The present essay was inspired by the seminal 

work of Harvey and Siddique (1999), who proposed estimation of time-varying skewness and 

pricing its explanatory power by a conditional three-moment CAPM. By estimating the first four 

conditional return moments I confirm previous findings about their high persistence, after which 

these risk measures are employed in testing the four-moment conditional CAPM. I analyze both 

time-series and cross-sectional regression results for 25 portfolios formed on different criteria 

(industry, size, momentum). In the time-series approach, conditional kurtosis is highly correlated 

with covariance and adds no pricing power. Neither conditional skewness has a well-defined 

impact in determining return compensation. However, in cross-sectional regressions, kurtosis 

risk is priced in most of the crises years, but its risk premium has the opposite sign. Investors 

prefer more kurtosis to less, suggesting that kurtosis is still much underestimated in financial 

markets during crises. Skewness is still insignificantly priced in cross-sectional CAPM. 

Altogether the four-moment cross-sectional CAPM performs better than its two-moment 

counterpart.  
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1. Introduction 

The introduction starts with a background for the present study, after which I discuss the posed 

questions and set a purpose for my work. I also mention the limitations of this paper, the target 

group and the outline for the whole essay. 

 

1.1. Background 

Measuring risk in financial markets remains a very topical issue for analysts, fund managers and 

different investor groups, becoming particularly relevant during crashes and periods of financial 

turmoil. Assuming that capital markets are efficient, an asset’s return must reflect a 

compensation for a given level of risk assumed by the investor by holding that particular 

security. Following this argument different measures have been proposed to quantify riskiness. 

Starting with the seminal work of Markowitz (1952) entitled "Portfolio Selection", where a 

portfolio’s risk is measured by the second return moment – variance, some years later (1964-

1965), Sharpe and Lintner developed a cornerstone asset pricing model – the CAPM, which 

continues to play a cardinal role in pricing securities even nowadays, although numerous 

extensions as well as critics of this model emerged. One major weakness of Markowitz’ risk 

measure is the assumption of normally distributed returns, under which the distribution is 

symmetrical and has a kurtosis of 3. However, a well-known truth about financial series is that 

returns are most often negatively skewed and exhibiting excess kurtosis. Another drawback is 

that the second return moment proved insufficient in explaining returns of some asset categories 

like small caps and momentum portfolios. These facts question the risk measure based only on 

the second return moment and it stimulated further research regarding how skewness and 

kurtosis risks are priced in the market. In the present essay I will also analyze higher return 

moments and look at their explanatory power for return series. 
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1.2. Problem Discussion 

Based on utility theory investors manifest aversion to variance, preference for positive skewness 

and aversion to excess kurtosis. Given these preferences, from two assets an individual will 

always choose the one with the lowest variance, the highest skewness and the lowest kurtosis.  

An important aspect concerning return moments is the choice between moments themselves and 

co-moments between an asset and the market. For example, theory argues that variance itself is 

not the most important when forming portfolios. What is more relevant, is the asset’s 

contribution to the overall risk of a portfolio, i.e. its covariance with a well-diversified portfolio, 

which shows the asset’s systematic risk. Whether an asset’s return moves in the same or in 

opposite directions with the market plays great importance, because in the latter case it could 

serve as a hedge and would certainly diminish the portfolio’s risk.  

Another relevant conclusion based on the previous research is that return moments are not 

necessarily constant over time, but can exhibit “clusters” which are especially noticeable during 

financial crises. In this respect the development of GARCH models (and their extensions) proved 

successful in modeling time-varying conditional variance (and even higher moments, e.g. Harvey 

and Siddique (1999)). These models revealed two variance features: persistence (i.e. the 

tendency of high conditional variance to be followed by high variance and vice versa) and 

asymmetry (negative news decrease returns more than increases due to positive shocks of same 

size – Nelson (1991); Glosten, Jagannathan, and Runkle (1993); Engle and Ng (1993)). 

Asymmetry is a very common feature of different economic variables: stock returns, indices, 

exchange rates. Negative return skewness implies that negative returns of a magnitude are more 

probable than positive ones of the same magnitude. By theory, investors are risk-averse and thus 

prefer positively skewed portfolios to negative asymmetry. So, more left-skewed assets must 

provide higher expected return to reward extra risk. Also, securities that increase the skewness of 

a portfolio, must have lower return. Harvey and Siddique (1999) build a model in which 

skewness is proven to be time-varying just like variance. 

Kurtosis or the fourth return moment can be interpreted as the variance of variance. Very often 

financial series exhibit excess kurtosis (i.e. fat tails), which is also a source of excess risk. So, 

investors would demand higher compensation on more leptokurtic assets. According to Brooks et 
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al (2002) non-normality in return distributions comes primarily from excess kurtosis rather than 

skewness. So, extreme returns are more likely to occur than under normal distribution, which 

leads to underestimating risk when measuring it by variance alone. Necessary to note that 

allowing for time variation in the fourth moment implicitly presumes its dependence on 

dynamics in conditional variance (potential high correlation between conditional second and 

fourth moments).    

 

1.3. Purpose 

Since the interest in researching conditional return moments has increased lately, in the present 

essay I will also estimate conditional moments and co-moments between an asset and the market 

in order to quantify risk. My goal is to test the conditional four-moment CAPM, accounting for 

conditional covariance, co-skewness and co-kurtosis. The novelty of my study is that the model 

is tested on a different group of assets, and namely the portfolios formed by Fama-French 

criteria, and not just country indices or exchange rates as performed in most of the past studies. I 

also contribute to past research by a slightly different methodology in estimating conditional 

moments. For the second moments I use the BEKK model, after which I combine it with Leon, 

Rubio and Serna (2004) model to estimate higher moments. As stated in Harvey and Siddique 

(1999), results are highly dependent on the applied methodology, which is an additional 

motivation to try a different methodology in this essay. Thus, I pose two research questions: 

1) Determine whether the first four conditional moments are priced over time when 

considering portfolios formed by industry, size and momentum criteria; 

2) Determine whether the same risk factors are priced cross-sectionally; 

 

1.4. Limitations 

The present study is focused on one single market – US, which is considered the most liquid. 

Thus, portfolios formed by the same criteria but based on a different market might produce 

different conclusions.    
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1.5. Target Group 

This paper is aimed at different investor groups, as well as students, professors, researchers 

showing interest in pricing securities. 

 

1.6. Outline  

The remainder of the essay is organized as follows: 

Part 2 presents the relevant previous research for the topic under consideration. 

Part 3 presents the data used in our analysis and the step-by-step methodology followed to attain 

the results mentioned in the next section. 

Part 4 presents the results obtained by applying the proposed econometric models. 

Part 5 is designed for conclusions and possible extensions of this essay. 
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2. Previous Research 

First, the reader will be introduced to modeling methodologies for conditional return moments. 

Next, we consider how the first four moments enter the asset pricing models.  

 

2.1. Modeling Conditional Moments 

According to Chunhachinda et al (1997) including moments higher than the second one into 

investor’s portfolio choice influences the selection of the optimal portfolio. Most of the studies 

mentioned below documented high persistence in conditional variance and higher moments (sum 

of the ARCH and GARCH terms is close to unity). Another common feature is the estimation of 

models in steps (nested models) from the simplest specification to the most complex one and 

using coefficient estimates obtained in the previous step as starting values in the next model.  

Several alternatives have been proposed to model the documented asymmetry in asset returns. 

One approach is to use models for asymmetric variance: (1) asymmetric GARCH of Glosten, 

Jagannathan and Runkle, 1993 (a dummy is used to capture the higher variance produced by 

negative shocks); (2) Nelson, 1991 etc. An alternative way is to model conditional skewness as 

proposed by Harvey and Siddique (1999), where skewness is proven to be time-varying just like 

variance. The traditional GARCH(1,1) is extended by also including conditional skewness into 

the model and estimating jointly conditional values of mean, variance and skewness. In addition, 

Harvey and Siddique (1999) consider the interaction between conditional skewness from their 

model and the asymmetric variance produced by the two models mentioned above (Glosten et al 

(1993) and Nelson (1991)). Thus, conditional skewness is consistent with asymmetric variance 

and its inclusion reduces persistence in conditional variance. 

Brooks et al (2002) present a similar method for modeling autoregressive conditional kurtosis 

(GARCHK, t-distributed errors), but without an explicit skewness equation. However, 

asymmetry is captured through dummy variables (in variance and kurtosis equations) similar to 

Glosten et al (1993) and Nelson (1991). The asymmetry coefficient in the variance equations is 

significant for all series, but the same coefficient in kurtosis equation is insignificant in most 

cases. The article also tests the significance of including variance and kurtosis terms into the 
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mean return equation (GARCHK-M) to test the sign of risk-return tradeoff. Both of them turn 

out insignificant, but have the intuitive positive sign (more return compensation for higher risk). 

León, Rubio and Serna (2004) present a GARCHSK methodology for modeling jointly the 

second, third and fourth conditional moments. The novelty of this article consists in the fact that 

it presents a much simpler likelihood function and at the same time captures time variation in 

both skewness and kurtosis based on Gram-Charlier series expansion of the normal density 

function, while the previous two articles accounted only for one time-varying moment higher 

than variance. 

Jondeau and Rockinger (2003) studies stock index and exchange rate returns. Similar to the 

previous article, this paper also includes both conditional skewness and kurtosis into the model, 

concluding that conditional kurtosis is less persistent than skewness. Authors also document 

cross-sectional variability in skewness and kurtosis (extreme observations occur simultaneously 

in different markets). For all exchange rates there turns to be the same dynamics of asymmetry 

coefficient, while kurtosis coefficient is constant. For stock indices only some series have the 

same evolution of kurtosis coefficient, while others experience a complex evolution determined 

by large re-occuring economic events (crashes happen at the same time in different markets). 

Table 1 below summarizes the findings of the articles mentioned above. 

Article Year Method Data Results 

Harvey and 

Siddique 

1999 GARCHS(1,1,1)-M with 

explicit modeling of 

conditional skewness; 

Assumed non-central  

t-distributed errors  

Daily, weekly, monthly 

stock returns 

US, Germany, Japan, 

Chile, Mexico, Taiwan, 

Thailand (excess 

returns) 

series length: 

1969-1997; 1975-

1997; 1980-1997 

Asymmetric variance is equivalent with 

conditional skewness; 

Including conditional skewness reduces 

persistence in conditional variance; 

Time dynamics of moments also 

depends on data frequency 

(daily/monthly), seasonality (January 

effect, day-of-the-week effect) and 

aggregation of stocks into portfolios. 

Brooks et al 2002 GARCHK(1,1,1) and 

GARCHK(1,1,1)-M with 

explicit modeling of 

Four daily stock/bond 

returns (US and UK) 

1990-2000 

Conditional kurtosis is positively, but not 

significantly related to returns 

The response of kurtosis to good and 
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conditional kurtosis, 

t-distributed errors 

bad news is not significantly asymmetric 

Kurtosis decreases with time- and cross-

sectional aggregation in returns 

Jondeau & 

Rockinger 

2003 GARCH 

Hansen’s generalized t-

distribution of errors 

Monte Carlo simulations 

to test model’s validity 

Five daily stock-index 

returns and four 

exchange rates 

1971-1999 

US, Germany, Canada 

Skewness is very persistent, but kurtosis 

is less persistent 

Cross-sectional variability in third and 

fourth moments documented 

León, 

Rubio & 

Serna 

2004 GARCHSK(1,1,1) Five daily stock indices 

(US, Germany, Spain, 

Mexico) and exchange 

rates 

1990-2003 

Evidence of time-varying skewness and 

kurtosis; 

Models allowing for conditional third and 

fourth moments outperform those based 

on conditional variance alone 

Skewness and kurtosis are less 

persistent than variance (lower 

coefficients) 

Table 1. Models for conditional return moments 

 

2.2. Pricing of Conditional Moments 

After development of Sharpe-Lintner CAPM (1965), the first work to include higher moments 

into asset pricing (and namely skewness) belongs to Kraus and Litzenberger (1976). Assuming 

that investors have cubic utility function of wealth, there should be aversion to variance and 

preference for positive skewness. The derived three-moment CAPM implies that in equilibrium 

an asset’s excess return equals the sum of two products: (1) market beta times the market risk 

premium (price of beta risk) and (2) systematic skewness (asset gamma, i.e. � � �����,	
��
�	

) times a 

skewness premium (price of gamma risk). Prices of risk are the same for all investors due to 

common beliefs. Kraus and Litzenberger (1976) conclude that “the prediction of a significant 

price of systematic skewness is confirmed (and the price has the predicted sign) and the 

prediction of a zero intercept for the security market line in excess return space is not rejected”. 
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Bollerslev, Engle and Wooldridge (1988) present a conditional version of covariance-based 

CAPM, estimated by a multivariate GARCH-M. The method is applied to bills, bond and stock 

returns. Authors conclude that conditional covariances are an important determinant of time-

varying risk premia. But there should exist additional variables to explain variation in returns. 

Harvey and Siddique (2000a) extend the three-moment CAPM of Kraus and Litzenberger 

(1976), by using conditional skewness instead of unconditional third moment. Due to low 

explanatory power of the standard Sharpe-Lintner CAPM when working with cross-sectional 

returns, Fama and French (1993) proposed two additional factors: size and book-to-market ratio, 

which proved to capture very well cross-sectional variation in returns. However, Harvey and 

Siddique (2000a) conclude that conditional skewness adds explanatory power to cross-sectional 

returns even when size and book-to-market factors are considered. Authors also note that results 

depend much on the used method, data, precision of asset beta computation (estimation risk). In 

addition, skewness is connected to momentum effect (low return momentum portfolios have 

higher asymmetry). 

Fang and Lai (1997) presents a four-moment CAPM, where kurtosis risk is also priced. Authors 

find positive risk premiums for conditional skewness and conditional kurtosis. 

 

Momentum, or “price continuation”, was commonly documented in finance (over time - 

Jegadeesh and Titman, 1993, 2001, across countries - Rouwenhorst, 1998; Griffin et al., 2003, 

across industries - Moskowitz and Grinblatt, 1999). Momentum persists even when including the 

market risk (Jegadeesh and Titman, 1993), size and book-to-market value (Fama and French, 

1996), and  macro-factors (Griffin et al., 2003).  

Similar to Harvey and Siddique (2000a), Fuertes, Miffre and Tan (2009) relate momentum effect  

to non-normality risks (coskewness, cokurtosis). Examining different momentum trading 

strategies, authors conclude that risks vary over business cycles consistent with risk aversion. 

Authors use the same factor construction procedure as Fama and French (1993), creating 

skewness- and kurtosis-mimicking portfolios. Although non-normality risks partly explain 

momentum returns, a large portion is still unexplained. That opposes the market efficiency 

hypothesis where return is a compensation for risk, leaving space for behaviorist views 



9 

 

considering that momentum comes from a slow market response to news (incl. arbitrage 

limitations). Fuertes, Miffre and Tan (2009) complements Harvey and Siddique (2000) by 

confirming that winner returns are more negatively skewed than loser returns. Also winners have 

higher positive kurtosis than losers. So, “the market compensates investors with higher returns 

for exposure to the negative skewness and leptokurtosis of momentum returns”1. These findings 

are also consistent with a recent literature suggesting that higher moments matter in theory but 

may play a relatively small role in practice.  

Smith (2007) also studies pricing of conditional coskewness in cross-sectional stock returns. The 

model is tested on 17 industry portfolios and 25 Fama-French portfolios based on market 

capitalization and book-to-market ratios (all taken from Kenneth French data library). Estimation 

is carried out using GMM and instrumental variables. The article concludes that for positive 

conditional market skewness investors sacrifice 7.87% annual return per unit of gamma, but 

require only 1.80% premium when the market has negative skewness. These results are 

consistent with Harvey and Siddique (2000a), where the average annual coskewness premium is 

3.6%.  

Table 2 below summarizes the findings of the above-mentioned articles in pricing conditional 

moments. 

Article Year Method Data Results 

Kraus & 

Litzenberger 

1976 3-moment CAPM 

(OLS) 

Monthly portfolio returns 

of NYSE stocks ranked 

by betas and gammas 

1926-1935 

The price of systematic skewness is 

confirmed to be significant and has the 

predicted positive sign; 

The prediction of a zero intercept for the 

security market line in excess return 

space is not rejected. 

Bollerslev, 

Engle & 

Wooldridge 

1988 Multivariate 

GARCH-M  

(2-moment CAPM) 

Quarterly US returns on 

bills, bonds and stocks 

1959-1984 

Conditional covariances are important in 

explaining time variation in risk premia, 

but additional risk factors must exist 

Fang & Lai 1997 4-moment CAPM 

(OLS and OLS with 

Monthly portfolio returns 

(assets sorted by betas) 

Positive risk premiums for conditional 

skewness and kurtosis 

                                                           
1
 Fuertes, Ana-Maria , Miffre, Joëlle and Tan, Wooi-Hou (2009) 
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instruments) 1969-1988 

Harvey & 

Siddique 

2000a 3-moment 

conditional CAPM 

(OLS) 

Monthly US stock returns 

and their portfolios by 

different criteria: industry, 

size, book-to-market 

ratios and momentum 

1963-1993 

Conditional coskewness is important in 

cross-sectional asset pricing even after 

including size, book-to-market factors; 

Momentum effect is related to systematic 

skewness 

Measuring ex ante skewness is difficult 

Smith 2007 2-moment and 3-

moment conditional 

CAPM with 

instrumental 

variables 

Estimation by GMM 

Monthly portfolio returns 

(17 industry portfolios, 25 

portfolios based on size 

and book-to-market 

ratios)  

1963-1997 

When the market is negatively skewed, 

investors demand 1.8% premium for 

extra risk; when market is positively 

skewed they give up 7.87% annually; 

The 2-moment CAPM is rejected, but the 

3-moment CAPM cannot be rejected 

Fuertes, 

Miffre & Tan 

2009 Fama & French 3-

factor model 

complemented with 

skewness and 

kurtosis mimicking 

portfolios 

Monthly momentum 

portfolios (on US stocks)   

1973-2004 

Skewness and kurtosis mimicking 

portfolios partly explain momentum 

returns, but a large part is still attributed 

to behavioral views 

Risks vary over the business cycle, 

consistent with risk aversion 

Table 2. Pricing of conditional moments 
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3. Methodology (Econometric Models) 

In this part of the essay I present the step-by-step procedure applied to obtain the estimation 

results provided in chapter 4. 

 

3.1. Jarque-Berra Normality Test 

To motivate the explicit modeling of the first four return moments, I first test for the presence of 

asymmetry and excess kurtosis in the chosen portfolios using the Jarque-Berra test: 

�
 � �
6 � ����� � �

24 � ����� � 3��   ~  "��2�              � � #$. $& $'���()�*$#� 

���� � +,
-, � ./�01 � ./012�,2

-,                             ���� � +3
-3 � ./�01 � ./012�32

-3  

45: ����~7 80; ;
<=  )#>  ����~7�0; �3

< �  which implies ?@ABCDEFG 

4H:  ?@? � ?@ABCDEFG 

Considering a 5% significance level: "��2� � 5.991; so, the null is rejected if  �
 L "��2�. 

 

3.2. Engle Test for ARCH/GARCH Effects 

The next step is to perform the Engle (1982) test for the presence of ARCH/GARCH effects in 

our return series, in order to make sure that we indeed need a conditional-heteroskedasticity 

model. I apply the test to raw (excess) returns, i.e. I run a regression on a constant only, and then 

regress its squared errors on their past k lags (I assumed k=5): 

MN,O �  PQ � RN,O               and                  RN,OV � W PXRN,OYXV
Z

X[\
� ]O 

So, we set the hypotheses:  45:  )^^ _1 � 0 �`a bcde fggfhO� 

                                                   4H:  )� ^�)�� $#� i$�&&*i*�#� _1 � 0  
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Extracting the j� measure from the residual regression, the test-statistic is �j�, which follows a 

chi-squared distribution with k degrees of freedom. 

 

3.3. GARCH models 

Introduced in 1986 by Bollerslev and Taylor, these specifications allow conditional variance to 

depend on its previous lags and lagged past residuals. Usually a GARCH(1,1) is sufficient for 

explaining all the variation in conditional volatility, so I also focus on this parsimonious model, 

but in a bivariate setting, because univariate specifications model each asset apart from all the 

other ones, which is not quite realistic taking into account “volatility spillovers” occurring in 

financial markets2. Considering the bivariate GARCH-M proposed by Harvey and Siddique 

(1999), it primarily focuses on modeling conditional variance and skewness, but assumes a 

constant kurtosis. However, I would like to also estimate series of conditional fourth moments. 

Second, this model implies maximizing a quite complicated likelihood function. Third, I would 

like to focus on conditional covariance instead of variance measure, because according to CAPM 

this is the true measure of idiosyncratic (i.e. non-diversifiable) risk typical of a particular 

security, which should be priced in equilibrium. Due to these reasons, I decided to keep the bi-

variate GARCH methodology, but to estimate a BEKK model instead, in order to get an explicit 

equation for conditional covariance. Later I use another model to find conditional third and 

fourth moments. Below I build three similar BEKK models and choose the most appropriate for 

my data.   

The reason I selected a BEKK compared to a VECH model is its advantage of restricting the 

variance-covariance matrix to be positive definite, which is important for it in order to be 

invertible. The simplest form of BEKK specification proposed by Engle and Kroner (1995) is:  

eO � kk′ � beOY\b′ � lmOY\mOY\′ l′ 

Where A and B are (2x2) matrices of parameters and W is a lower triangular (2x2) matrix, eO is 

a (2x2) conditional variance-covariance matrix, mO is a (2x1) disturbance vector where 

                                                           
2
 Brooks (2008), “Introductory Econometrics for finance”, 2

nd
 ed. 
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mO~n�Q; eO|pOY\�. So, in the full bivariate BEKK, the equations for variances and covariances 

are given by: 

qHHr � iHH � )HHqHHrYH � )H�q��rYH � )H,qH�rYH � 'HH�HrYH� � 'H���rYH� � 'H,�HrYH��rYH 

q��r � i�H � )�HqHHrYH � )��q��rYH � )�,qH�rYH � '�H�HrYH� � '����rYH� � '�,�HrYH��rYH 

qH�r � i,H � ),HqHHrYH � ),�q��rYH � ),,qH�rYH � ',H�HrYH� � ',���rYH� � ',,�HrYH��rYH 

However, the main disadvantage is the large number of coefficients to estimate. For that reason, 

we simplify our model by assuming a diagonal BEKK, for which each variance and covariance 

depends only on its own past lags and lagged disturbances. So, the first GARCH  I estimate is 

the simple diagonal BEKK 3:                  MX.O �  PQ,X � RX,O                       

MN.O �  PQ,N � RN,O 

sX.O �  tQ,X � t\,XsX,OY\ � tV,XRX,OY\V 

sN.O �  tQ,N � t\,NsN,OY\ � tV,NRN,OY\V 

sXu.O �  tQ,XN � t\,XNsXu,OY\ � tV,XNRX,OY\RN,OY\ 

For the second and third models I add some extra terms, based on the model proposed by Harvey 

and Siddique: 

GARCH 2 (add excess market return in the mean equation): 

MX.O �  PQ,X � P\,XMN,O � RX,O       

MN.O �  PQ,N � RN,O 

sX.O �  tQ,X � t\,XsX,OY\ � tV,XRX,OY\V 

sN.O �  tQ,N � t\,NsN,OY\ � tV,NRN,OY\V 

sXu.O �  tQ,XN � t\,XNsXu,OY\ � tV,XNRX,OY\RN,OY\ 
                                                           
3
 In initial specifications I also tried to include the terms δHhx,y � δ�η{,yYHηx,yYH in all the equations of asset 

variance (similar to Harvey and Siddique, 1999), but due to high correlation between variables they always turn out 

insignificant 
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GARCH 3 (add variances in mean eq.):    MX.O �  PQ,X � PV,XsX,OY\ � RX,O 

            MN.O �  PQ,N � PV,NsN,OY\ � RN,O 

             sX.O �  tQ,X � t\,XsX,OY\ � tV,XRX,OY\V 

          sN.O �  tQ,N � t\,NsN,OY\ � tV,NRN,OY\V 

         sXu.O �  tQ,XN � t\,XNsXu,OY\ � tV,XNRX,OY\RN,OY\ 

For stationarity, in each model I restrict the variance and covariance equation coefficients: t\,X, 

t\,N, tV,X, tV,N, t\,XN and tV,XN to lie between (0;1). 

For simplicity and comparability reasons I assume conditionally normal distribution of errors in 

all the models below. As these three models are not built-in in EViews (EViews 6 supports the 

diagonal BEKK only for variance equations, but not for covariance equation also), I wrote 

special programs for their estimation, whose codes are provided in the appendix.  

Since GARCH models are non-linear, we can no longer use OLS to estimate them and need to 

apply the maximum likelihood technique. So, we need to build a log-likelihood function and 

maximize it with respect to each unknown parameter. As known, this function can be highly 

non-linear and it is cardinal to choose adequate starting values for our parameters in order to 

reach the global maximum of our likelihood function and not just a local extreme point. In this 

respect I use several steps. First, I estimate all the corresponding regressions by OLS and use the 

computed coefficients as parameter initial values under similar univariate GARCH models. 

Finally, we use the coefficients estimated from the univariate GARCH specifications as starting 

values for estimation of all the bi-variate models. This nested-model procedure also serves as a 

diagnostic test for the estimated parameters. The initial values for conditional variance and 

covariance are set to their unconditional values.  

Assuming conditionally normal distribution of residuals, the log-likelihood function for all the 

bivariate models from above has the form: 

|�}� � � �7
2 log�2�� � 1

2 W�log|4r| � mO′
<

r[H
4rYHmO�                  
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 where N � 2; |4r| is the determinant of 4r, and } are all the unknown parameters. 

To conclude, the series we obtain from the models above include: conditional portfolio variances 

and conditional covariances between each portfolio and the market. 

 

3.4. Conditional Skewness and Conditional Kurtosis 

The next step is to jointly estimate conditional third and fourth moments. For this purpose, I 

apply the methodology proposed by León, Rubio and Serna (2003), because it has an easier 

likelihood function than Harvey and Siddique (1999) and it also allows for time-varying kurtosis, 

not just conditional skewness: 

�r � .rYH��r� � �r                �r~�0, qr|�rYH� 

�r � qH
��r                �r~�0; 1�              .rYH��r,� � �r       .rYH��r3� � �r 

qr � �5 � �H�rYH� � ��qrYH 

�r � �5 � �H�rYH, � ���rYH 

�r � �5 � �H�rYH3 � ���rYH 

To get stationary variance, skewness and kurtosis (also positive variance and kurtosis), some 

constraints are set:      Q � t\, tV, �t\ � tV� � 1  ;     �\ � �\, �V, ��\ � �V� � 1  and 

Q � �\, �V, ��\ � �V� � 1.  

This model is estimated using a Gram-Charlier series expansion of the normal density function 

for the standardized errors, which is truncated at the fourth moment: 

• �>&:    &��r|�rYH� � ���r����r��/�r 

where ���r� � 1 � ��
,! ��r, � 3�r� � ��Y,

3! ��r3 � 6�r� � 3�  and  �r � 1 � ��
,! � ���Y,��

3!  

• ^$� � ^*��^*q$$> &�#i�*$#:   ̂ r � � H
� ^#qr � H

� �r� � ln����r��� � ln ��r� 
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So, the likelihood function is similar to the normal distribution, but in addition it also has two 

adjustment terms for time-varying skewness and kurtosis. 

To conclude, this last model will provide series for conditional skewness and kurtosis for each 

portfolio X.  

 

3.5. Factor Pricing Tests 

To test whether the first four return moments are priced in the market I use the CAPM models 

summarized below.  

3.5.1. Conditional Two-Moment CAPM of Sharpe-Lintner (1964-1965) 

.rYH��1,r� � �1,rYH.rYH���,r�                �1,rYH � i$(rYH��1,r, ��,r�
()����,r�  

To estimate this relation in a time-series regression (excess asset returns against the market 

excess return), we require that the intercept should be zero, the betas - significant, and the market 

risk premium – be the same for all assets. In a cross-sectional regression (excess returns against 

betas), the slope (i.e. market risk premium), should be significantly different from zero. 

However literature (Campbell et al 1997) suggests that even the conditional CAPM with time-

varying covariances, betas and the market variance explains insufficiently stock returns. 

Moreover, the mean–variance CAPM require normally distributed returns or quadratic utility. It 

is well-known that returns are non-normal, while quadratic utility has the drawback of increasing 

absolute risk aversion. Consequently, nonlinear asset pricing models (e.g. the three-moment 

CAPM etc.) perform better. However, there is one critique of even higher-moment CAPM. Post, 

Levy, and van Vliet (2008) conclude that when risk aversion restriction is set, the implied cubic 

utility function has an inverted “S” shape, which means that optimization might lead to a global 

minimum rather than the needed maximum. 
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3.5.2. Harvey and Siddique (2000a) Model 

They extend the three-moment CAPM of Kraus and Litzenberger (1976) to its conditional form: 

.rYH��1,r� � �1,rYH+H,r � �1,rYH+�,r           �1,rYH � i$(rYH��1,r, ��,r�
()����,r�        �1,rYH � i$��rYH��1,r, ��,r�

�������,r�  

����rYH���,r� � .rYH/8��,r � .rYH���,r�=,2 

i$��rYH��1,r, ��,r� � .rYH/8�1,r � .rYH��1,r�= 8��,r � .rYH���,r�=�2 

+H,r is the price of beta risk and +�,r is the price of gamma risk. Since investors prefer positive 

skewness, the sign of +�,r should be opposite to the sign of the conditional market skewness 

�������,r�, because in equilibrium want to sacrifice return for positive skewness, but would 

require a premium for negatively skewed returns.  

 

3.5.3. Fang and Lai (1997) Model 

�1 � 'H�1 � '��1 � ',�1             �1 � i$(��1 , ���
()�����        �1 �  i$����1 , ����

��������        �1 � i$������1 , ��,�
��������  

�1 is expected excess return on asset i;  �1 is the systematic beta, �1 is the systematic skewness 

and �1 is the systematic kurtosis of asset i; 'H, '� and ', are the market risk premiums 

corresponding to these risks (according to utility theory '� � 0;  'H, ', L 0). 
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4. Empirical Results 

Initially the reader is introduced to the data sample used in this essay, after which I illustrate the 

results obtained by applying the method described in the previous chapter. 

 

4.1. Data 

In the present essay I will focus on several aggregated return series, based on all NYSE, AMEX, 

and NASDAQ stocks:  

• 10 US Industry Portfolios; 

• 5 quintile-based Size Portfolios; 

• 10 Momentum Portfolios (value-weighted returns for 10 prior-return portfolios (from (t-

12) to (t-2)). 

All data is collected with monthly frequency over the period: January 1970 – December 2010. I 

do not consider higher frequency in order to simplify analysis and to avoid disturbing effects 

from the possible day-of-the-week effect (Foster and Viswanathan (1993) conclude that 

Mondays have higher volatility and trading costs).  

I also consider a return series to represent the market portfolio. In order to ensure data 

comparability, all the variables mentioned above are extracted from the same data source, and 

namely the Kenneth French data library4.  

My choice of these particular portfolios is motivated by their representativeness for the economy 

as a whole (the industry portfolios) and some CAPM deficiencies when it comes for explaining 

“the smallest market-capitalized deciles and returns from specific strategies such as ones based 

on momentum”5. 

Since all the series are already in returns form, there is no need for compounding. However, for 

each series I use not the returns themselves, but the excess portfolio returns over the risk-free 

rate (one-month T-Bill rate from Ibbotson and Associates). 

                                                           
4
 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html  

5
 Harvey and Siddique (2000a) 



 

4.2. Summary Statistics and JB test

As a first step, I analyze return series in order to conclude that a GARCH methodology is indeed 

appropriate. As an example, 

appendix provides similar summary statistics 

Below I plot the market excess return along the time axis. As can be noted, there is indeed much 

variability in this variable over the last 41 years (492 monthly observations) and i

hardly be approximated by a constant. Intuitively, a GARCH methodology would work better in 

this setting. 

Further, we look at the summary statistics for this variable and formally test whe

normally distributed, by applying the 

                                                          
6
 Note: small differences between my Excel calculation and EViews values don’t affect the general conclusion and 

are due to approximation and adjustment for degrees of freedom; asymptotically results must coincide 
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and JB test 

return series in order to conclude that a GARCH methodology is indeed 

 the market excess returns are considered here, while table 1 in

appendix provides similar summary statistics for the other 25 portfolios. 

market excess return along the time axis. As can be noted, there is indeed much 

variability in this variable over the last 41 years (492 monthly observations) and i

hardly be approximated by a constant. Intuitively, a GARCH methodology would work better in 

we look at the summary statistics for this variable and formally test whe

, by applying the joint Jarque-Berra test of normality6: 

                   

Note: small differences between my Excel calculation and EViews values don’t affect the general conclusion and 

are due to approximation and adjustment for degrees of freedom; asymptotically results must coincide 

return series in order to conclude that a GARCH methodology is indeed 

s are considered here, while table 1 in 

market excess return along the time axis. As can be noted, there is indeed much 

variability in this variable over the last 41 years (492 monthly observations) and its variance can 

hardly be approximated by a constant. Intuitively, a GARCH methodology would work better in 

 

we look at the summary statistics for this variable and formally test whether it is 

 

 

 

 

 

Note: small differences between my Excel calculation and EViews values don’t affect the general conclusion and 

are due to approximation and adjustment for degrees of freedom; asymptotically results must coincide  
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45: ����~7 80; ;
<=  )#>  ����~7�0; �3

< �  which implies ?@ABCDEFG 

4H:  ?@? � ?@ABCDEFG 

Considering a 5% significance level, "��2� � 5.991 and obviously the null is strongly rejected 

at this significance. So, market returns are not normally distributed, being characterized by the 

common features of negative skewness and excess kurtosis.  

 

Table 1 in appendix shows that the normality hypothesis is also strongly rejected for all the 25 

portfolios. As can be noted, most series have negative skewness (except three industry and three 

momentum portfolios). Moreover, all the series exhibit excess kurtosis.  

Another conclusion from table 1 is that standard deviation (or variance) alone is not enough to 

describe the risk-return relationship. For example, Durables portfolio has the same mean return 

as the market, but its standard deviation is much higher (6.54 compared to 4.70 for the market). 

Also, Energy has a higher return than Durables, but a lower standard deviation. Hitec has the 

lowest mean excess return, but the highest risk, judging by variance. As a matter of fact, 

accounting for the 3rd and 4th moments in asset pricing might be a reasonable intuition behind the 

methodology presented in the previous section. However, it is still questionable whether this is 

sufficient to fully explain the overall risk of an asset. For example, comparing the market 

portfolio with Utilities, we note that they have the same mean return, but Utilities have lower risk 

judging by all three measures: Variance, Skewness and Kurtosis. 
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4.3. Test for ARCH Effects 

As mentioned in the methodology section, I apply Engle test on raw excess return series. Table 2 

in appendix shows results for k=5 residual lags. Assuming a 5% significance level, the 

corresponding chi-squared value is:  �V��� � \\. Q�.  Thus, at five lags the null (of 

homoskedasticity) is rejected for most excess return series (except 8 portfolios). Further, keeping 

the same significance level and trying other lag values, I also detected ARCH effects in four out 

of these portfolios: Shops (four lags, p-value=0.043), P6 (one lag, p-val=0.020), P7 (one lag, p-

val=0.036) and P9 (one lag, p-val=0.035). However, the remaining four excess portfolio returns 

(Qnt2, Qnt3, Qnt4, P8) do not exhibit error autocorrelation. So, their variance could be roughly 

approximated by a constant. However, in my analysis below I decided to apply the GARCH 

methodology even on these returns, in order to check the model’s applicability to a more general 

setting (because when we have a very large number of assets, it might be cumbersome to check 

for ARCH effects in each series).   

 

4.4. Extimation of Conditional Variances and Covariances  

When estimating models, I include the whole period under consideration (January 1970 – 

December 2010) and do not leave the last years for forecasting as usual, because, first, I want to 

produce series of conditional covariances over the whole period and, second, the last years 

incorporate the effect of the global financial crisis and might be relevant in asset pricing using 

higher moments.  

As mentioned above, it is very important to choose proper starting values for coefficients when 

maximizing the log-likelihood function. So, I estimate the models in stages: first, I estimate the 

mean equations alone using OLS, then use the coefficients as starting values for the univariate 

GARCH estimation, and finally use the obtained results as starting values for the bivariate 

GARCH. Table 3 in appendix shows the estimates found for all the three models (insignificant 

coefficients at 5% level are highlighted), as well as the corresponding log-likelihood value. 

Initially, I will not look closely to interpretation of coefficients, but on their overall significance, 

in order to motivate the choice of the best GARCH specification among the three proposed 

models. So, for now I consider how many insignificant coefficients appear under each GARCH, 
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and what is their relevance for depicting the studied portfolios. As can be noted, each model 

generates quite consistent conclusions across all portfolios. Thus, almost all coefficients for the 

first GARCH are highly statistically significant (under 1 %), and only two portfolios (Durables 

and Low) have insignificant intercepts. Also we can note that even the four portfolios which did 

not exhibit ARCH effects under Engle test (Qnt2, Qnt3, Qnt4, P8) have highly significant 

coefficients. It follows that this modeling procedure works even for assets, whose variance can 

be approximated by a constant.   

Intercepts estimated through the GARCH can be interpreted as the long-run mean return on each 

portfolio. So, we can compare them to mean returns presented in table 1. Since these figures are 

quite close to each other, the first model seems to describe well the portfolio returns. However, 

by also looking at the intercepts in the second mean equation, we conclude that the model 

slightly overestimates the long-run market return, because almost all intercepts are higher than 

0.46. 

In order to make results more clear, for the second and the third model specifications, I do not 

present p-values, but just highlight the insignificant coefficients under 5% level. This is because 

below I will motivate my choice of the first model as the best to describe the data. However, 

these missing p-values are available upon request. 

Looking at the results of the second GARCH, we conclude that including the market excess 

return into the first mean equation makes most of its intercepts insignificant at 5% level, while 

the estimated coefficient for the market return turns out highly significant for most portfolios 

(consistent with CAPM theory, because regressing excess asset returns on the market excess 

return, the intercept shows mispricing and should be insignificant in a time-series regression). 

Here also, the intercept in the second mean equation slightly overestimates the mean market 

return. Additionally, omega(2) is insignificant for most portfolios, and taking account that it 

determines the intercept of covariance equation, there seems to be no long-run trend component 

in covariance series. 

Making an overall comparison between coefficient values for the first two models, we conclude 

that there is not much change in them. As mentioned, the portfolio’s intercept becomes 

insignificant, being totally captured by the market excess return factor. Also due to 
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insignificance of omega(2), it has an increasing effect on omega(3). So, in conclusion, the 

variance and covariance equations do not change much across these two models.  

In the third model, I include conditional variances into the mean equations (building a GARCH-

M similar to Harvey and Siddique). As can be seen, their coefficients turn out insignificant for 

most of the portfolios, which implies very weak explanatory power for these factors. This result 

might be attributed to aggregation criteria, because Harvey and Siddique (1999) mention that 

this factor, together with data frequency and seasonality, could have impact on results. As many 

insignificant estimates produce noise in the model, I leave out this last GARCH and focus only 

on the first two ones. 

In order to choose the best specification, I use the likelihood ratio (LR) test, because GARCH 1 

can be considered a restricted version of GARCH 2, when the market coefficient is set to zero. 

So, we can test whether the imposed restriction is supported by the data. The hypotheses we set 

are:                  

45: P\,X � Q �coef icient of market return�                4H: P\,X ¦ Q 

|j � �2�^$�|� � ^$�|�     ~   "��1� 

We have one restriction, because only one coefficient in the first mean equation is set to zero. So, 

considering a 5% significance level, I compare the computed LR value to "��1� � 3.841. The 

test results are illustrated in appendix (table 4). Thus, for most portfolios (except 4 ones: Other, 

Hi20, P3, High) the null cannot be rejected, implying that the restriction is supported by the 

data7. So, I decided to choose the most parsimonious model, i.e. the first GARCH. 

Next, we look closer at coefficients of this chosen model. Table 5 in appendix presents its final 

GARCH coefficients, which follow directly from the BEKK’s multiplication rules. In the final 

columns (columns 2,3,4 counting from the right of the table) I computed the sum of ARCH and 

GARCH coefficients for each variance-covariance equation, in order to show that the model is 

not “explosive” (stationarity), because each sum is less than one. Consistent with conclusions in 

Harvey and Siddique (1999), I find high persistence in conditional variance (and covariance), 

                                                           
7
 In some cases I got negative LR, which can be explained by the fact that sometimes the distribution of the test 

statistic is complicated, being a combination of chi-square 
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because the coefficients t\,X , t\,N , t\,XN are greater than 0.75 for most portfolios. For only one 

portfolio (Low) these coefficients are substantially lower, indicating weaker volatility 

persistence. Theoretically,  the coefficients PQ,N, tQ,N, t\,N and tV,N must be the same across 

all portfolios, because they describe the same mean and variance equations for market excess 

return, but combined with different portfolios. However, looking at their values in table 5, we 

can note differences although for every portfolio estimation starts with the same initial values 

coming from the univariate GARCH. For this reason I plotted all conditional market variances 

resulting from different portfolios within the same graph to compare their behavior over time. 

The graph below shows results (Note: all the plotted series are variances for market portfolio, but 

the names of series in the legend simply denote the GARCH model to which they belong).   

 

As can be noted all the lines nearly coincide, which is a normal result and proves comparability 

for our models. The line that departs mostly from the others is “Durbl”, and for this reason this 

market variance is not quite reliable for further testing. So, to further represent market variance I 

chose the portfolio “Other”, because as shown below it has most similarities with the market 

return variability, and that is why I consider it more trustworthy. 
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The value of t\,N � Q. ¨Q©V for portfolio “Other” shows that market volatility in one period 

consists of 81% of its value from the previous period (high persistency). The remaining 19% 

represent news entering the market. So, agents primarily ground their expectations on the 

historical data, which is quite convenient for forecasting future volatility.  

Now, I consider coefficients t\,X and t\,XN, which represent in each portfolio’s variance and 

covariance respectively. The values of these estimates also show high dependence on past 

information for most portfolios (over 70%). Consistent with previous research, some momentum 

returns are most difficult to explain and as a consequence they are characterized by the lowest 

coefficients: Low, P3, P7 and High.  

Another conclusion resulting from table 5 is that tQ,X, tQ,N and tQ,XN (representing intercepts in 

variance-covariance equations) are all positive (and as mentioned before highly significant). 

These positive values are intuitive, because they suggest that there always exist a long-run trend 

in variances and covariances, i.e. there is some unavoidable positive risk in each portfolio. 

However, the absolute value of these coefficients cannot be always used to compare risk across 

portfolios. We can only judge about the riskiness of an asset after also taking account of 

previously analyzed persistency coefficients: t\,X , t\,N , t\,XN. For example, portfolio Low has 

highest intercepts, but lowest persistency coefficients. Thus, the overall risk (represented by 

variance and covariance) might happen to be comparable to other industry portfolios (and not 
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necessarily higher). This is an obvious result due to the large number of coefficients estimated 

under the BEKK model, and also imposing the additional restriction to have a positive definite 

variance-covariance matrix. Thus, I consider a better way to compare riskiness of different 

portfolios is to benchmark their mean returns (i.e. intercepts PQ,X) against the market mean return 

PQ,N, because the highest return is expected to be associated with higher risk. As mentioned 

above, equations for market excess return differ slightly from each other, but that does not 

impact the overall market volatility. So, to compare portfolios, in the last column of table 5, I 

compute the ratio between each portfolio intercept and the corresponding intercept for market 

excess return. If the ratio is higher than unity, that portfolio is riskier than the market, otherwise 

(if ratio is less than one) it is less risky. These ratios are also comparable across portfolios, 

because the market mean return is a common benchmark for all of them. In addition, comparing 

them to Mean returns from table 1, we can note that they suggest similar conclusions across 

portfolios.   

So, analyzing these ratios, we conclude that judging by mean returns the riskiest portfolios are: 

High, P8, Energy, Qnt2 and Qnt3. The lowest risk is typical of portfolio Low, which also has 

insignificant intercept in our GARCH model, while in table 1 it was the only asset to have a 

negative mean return (also possibly not statistically different from zero).  

The next step is to estimate another model, which will produce series of conditional skewness 

and kurtosis. 

 

4.5. Estimation of Conditional Skewness and Kurtosis 

As mentioned above, I use León, Rubio and Serna (2003) model to compute series of conditional 

third and fourth moments: 

�r � ª � �r                �r~�0, qr|�rYH� 

�r � qH
��r                �r~�0; 1�              .rYH��r,� � �r       .rYH��r3� � �r 

qr � �5 � �H�rYH� � ��qrYH 
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�r � �5 � �H�rYH, � ���rYH 

�r � �5 � �H�rYH3 � ���rYH 

As can be noted, conditional variance is computed based on usual residuals from the model, but 

the conditional third and fourth moments are estimated using standardized errors. To ensure 

comparability between this model and the previously estimated BEKK, I set the variance 

equation coefficients to their estimated values using the BEKK model. Initial skewness and 

kurtosis are set to their unconditional sample values over the first three years (Jan 1970 – Dec 

1972), because skewness and kurtosis change a lot during the studied period and it would be 

more precise to use their values over a smaller sample. 

To maximize the log-likelihood function, which is very non-linear, I tried different initial values  

for coefficients (with 0.1 increments) and the ones providing maximum likelihood value are 

shown in appendix (table 6), together with the corresponding estimation results. As before p-

values are shown in brackets. Imposing the necessary restrictions on parameters, I get a 

stationary model.  

Looking at the skewness equation’s intercepts, we conclude that for seven portfolios they turn 

out insignificant at 5% level, which implies no long-run trend component in skewness for the 

portfolios: Enrgy, Hlth, Qnt4, Low, P4, P6 and P9. So, these assets’ skewness is only influenced 

by past period’s asymmetry and news in the current period. Also, two garch terms (skewness 

equation for P7 and kurtosis eq. for Utils) are insignificant. For the rest, the coefficient estimates 

are highly significant.   

The last two columns show averages of each estimated series of conditional skewness and 

kurtosis. Comparing them to the unconditional third and fourth moments from table 1, we can 

conclude that this model captures quite well the variability of skewness and kurtosis over time 

and across assets. 

Analyzing estimated values for �� and ��, we note that there is less persistence in third and 

fourth moment over time compared to previously estimated variances and covariances. These 

coefficients range from 0.5 to 0.8, which implies that 50-80% of current period skewness and 

kurtosis is still due to their values in the past period. Also, coefficients �H and �H showing the 
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skewness and kurtosis part attributable to errors (i.e. innovations to the market) is higher. As 

expected, all kurtosis intercepts are positive, because they show the long-run component which is 

independent on previous information. For skewness equation, some intercepts turn negative, 

while others positive, which is normal taking account that most portfolios exhibit negative 

skewness in table 1. 

 

4.6. Pricing of Risk Factors in a Time-Series Regression 

Before proceeding to test how the first four moments are priced in return series, I examine 

correlations between conditional covariances, (co)skewness and (co)kurtosis (table 7). First, it 

should be noted that covariance is more correlated with co-moments (co-skewness, co-kurtosis) 

rather than conditional moments (skewness, kurtosis). To avoid spurious results, in the time-

series regression I test the pricing of skewness and kurtosis instead of co-skewness and co-

kurtosis with the market. A second conclusion is that, consistent with previous research, 

(co)kurtosis exhibits high (but not perfect) correlation with conditional covariance. So, either 

kurtosis should be excluded from the study, or we can apply principal component analysis to 

build independent factors out of the conditional second and fourth moments, or we can use the 

pricing errors from the second and third return moments to regress on kurtosis. To choose among 

these options, I regressed portfolio returns on conditional kurtosis alone. The results are not 

presented in appendix, but they show that for most portfolios kurtosis risk is not priced. 

Significant coefficients (under 10%) appear only for six assets: Enrgy, Low, P2, P3, P4, P5. So, 

by applying principal components we risk including irrelevant information in the model and 

producing noise. However, excluding this variable from the analysis might skip a potentially 

relevant risk factor for the six portfolios mentioned above. Thus, I decided to test kurtosis pricing 

only for these six portfolios, based on errors left after other statistically significant factors (i.e. if 

no coefficient from the previous regression is significant, I regress the initial excess portfolio 

return on kurtosis alone). The first three columns in table 8 show results from regressing excess 

returns on conditional covariance and skewness. The next column presents coefficient estimates 

for kurtosis based on pricing errors from the first model. Then, the last two columns illustrate 

coefficients from a model based only on covariance. 
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As can be noted, from all 25 portfolios, after taking account of covariance risk, the fourth return 

moment has no more explanatory power, except for one asset: Enrgy. However, this unique 

significant  coefficient on kurtosis might appear occasionally and not be representative for 

pricing assets. We should also note that it even does not have the needed sign, because in theory 

there should be a positive relation between returns and the fourth moment (“fatter tails” imply 

more risk and require a higher return compensation). Besides that the other five kurtosis 

coefficients are insignificant at 10% level, their signs are also inconclusive, because some are 

positive, others negative. According to these results, in a time-series regression kurtosis risk has 

no pricing power after accounting for the second return moment. 

Next, I consider the covariance-based model in the last two columns of table 8. As can be noted 

this risk is priced for the market returns (in the form of conditional variance), as well as 15 other 

portfolios. Insignificant coefficients appear for four high-momentum portfolios (P7, P8, P9, 

High), the highest quintile when sorting assets by size (Hi20), as well as five industry portfolios 

(Energy, Hitech, Health, Telecommunications and Utilities). The results for momentum 

portfolios are consistent with previous findings that there might appear difficulties in pricing this 

group of assets. However, for the portfolios formed by size, I obtained quite opposite results, 

because it is not the lowest-cap assets that are problematic to explain, but on the contrary – the 

highest quintile. That might be explained intuitively, if we assume that investors associate 

highest cap companies with more financial health and thus lower risk, no matter of the size of 

their covariance with the market return. It should be noted that all covariance coefficients have 

the expected positive sign (the higher risk measured by covariance, the higher must be 

compensation as return). Interestingly, all intercepts for portfolios where covariance risk is 

priced, are negative, implying that investors accept more covariance risk than they are 

compensated for. Additionally, five assets with priced second return moment still have 

significant intercepts, showing that there is mispricing left to be explained by other risk factors. 

Finally, I look at the first three columns in table 8, which show results after additionally 

including skewness into the model. Here covariance risk is priced for the same portfolios as in 

the previous regression, which shows consistency in results. Overall, conditional skewness is 

priced for eight assets and the market return. All these significant coefficients have a positive 

sign, although by theory gamma should be negative. By also looking to other assets where the 
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skewness coefficient turned out insignificant, we conclude that for only five portfolios the sign is 

negative. This leads to conclusion that skewness risk, similar to kurtosis is not accounted by 

investors, because it has a significant slope only randomly, and its sign is not the expected one. 

As a matter of fact, I come to the same conclusion as Fuertes, Miffre and Tan (2009) (although 

by a different model), and namely that higher return moments are priced only in theory, while in 

financial markets return compensation primarily comes for accepting variance (covariance) risks. 

A second conclusion is that there should exist other risk factors to be priced in the market, 

because a great part of returns still remains unexplained. This last point is a motivation for 

further research, in order to identify and test the pricing of some different factors. 

 

4.7. Cross-Sectional Analysis 

I also perform a cross-sectional analysis by regressing average yearly returns on yearly 

conditional betas, gammas and deltas. Since, skewness and kurtosis risks are especially 

noticeable during crises, I focus my analysis on the two most recent crises: the dot-com bubble 

(2001, 2002) and the last financial crisis (2007-2009), together with the years following them 

(2003, 2010). Table 9 in appendix shows the results of the respective regressions (insignificant 

coefficients at 10% level are highlighted). Initially we consider the correlations between betas, 

gammas and deltas in the last three columns. As can be seen there are only two highly correlated 

series corresponding to years 2009 and 2010. To avoid spurious results, when I test the last two 

regressions I only include three moments in the CAPM tests.  

Now, we compare R-squared measures of the conditional two-moment CAPM (the middle three 

columns) with the same measure for a four-moment CAPM presented in the initial columns. For 

all years except 2010, the four-moment CAPM has better explanatory power, because it is 

associated with a higher R-squared. However, the effect is only marginal for 2008 and there is no 

rise in R-squared at all for 2010. Moreover, for both these years neither gamma nor delta risk is 

priced. So, in most years the four-moment CAPM is better than its two-moment version. 

As expected, beta risk premium is significant (at 10% level) for all years except 2001 (and 2007 

in the four-moment CAPM when gamma premium proves more important). Another conclusion 

is that in periods of crises (2001-2002, 2007-2008) the risk premium for beta is negative or 
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insignificant, while for calm periods it is positive. This result is intuitive taking account that 

crises are characterized by negative returns for most stocks.  

Looking at the gamma risk premiums we note that they are insignificant for all series except year 

2007, when the estimated premium is negative. This sign is intuitive taking account that this year 

was characterized by financial turmoil, which implies a negative risk premium. 

A third important conclusion is that kurtosis risk is more important in cross-sectional tests than 

skewness, because it has more significant coefficients. This finding is consistent with Brooks et 

al (2002). However, the sign for delta risk premium is negative for all the series which is against 

the arguments presented by Fang and Lai (1997). It implies that investors behave irrationally and 

prefer more kurtosis to less. This may be due to the fact that kurtosis risk is still much 

underestimated in markets during periods of crises, implying an insufficient return compensation 

for this risk.    
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5. Conclusion 

 

5.1. Concluding remarks 

Consistent with Harvey and Siddique (1999), I find high persistence in conditional variance (and 

covariance) series. So, agents primarily ground their risk expectations on the historical data, 

which is quite convenient for forecasting future volatility. The lowest persistence coefficients are 

typical of some momentum portfolios (Low, P3, P7 and High), which confirm previous findings 

that these portfolios are more difficult to explain. For conditional third and fourth moments I find 

less persistence compared to variances. However 50-80% of current period skewness and 

kurtosis is still due to their values in the past period. Conditional kurtosis is highly correlated 

with the second return moment, and due to that it brings no new explanatory power into the time-

series CAPM tests. Overall, time-series regressions of the four-moment CAPM reveal that 

conditional skewness and kurtosis are priced only spontaneously and their coefficients don’t 

have the expected sign in most of the cases. Higher conditional moments remain important only 

in theory, while in financial markets return compensation primarily comes for accepting variance 

(covariance) risks. I also obtain significant intercepts (measures of mispricing), suggesting that 

other risk factors with substantial explanatory power should exist, which is a motivation for 

further research. 

Testing the four-moment CAPM cross-sectionally (focus on crises periods), I conclude that 

compared to time-series regressions, here kurtosis risk is priced in most of the years, but its risk 

premium has the opposite sign than expected (negative risk premium). Investors prefer more 

kurtosis to less and accept a lower return compensation for portfolios exhibiting excess kurtosis. 

This may be due to the fact that kurtosis risk is still much underestimated in markets during 

periods of crises. Skewness risk is still insignificantly priced in cross-sectional CAPM. But 

altogether in cross-sectional tests, CAPM versions accounting for the third and fourth return 

moments perform better than their two-moment counterparts.  
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5.2. Possible Extensions 

As mentioned above, significant intercepts in time-series tests of the conditional CAPM suggest 

that additional risk factors besides covariance should exist to explain better portfolio returns. So, 

a potential extension of the present study might focus on testing the significance of a different 

group of factors. Another extension could consider the out-of-sample performance of the 

presented models for estimating time-varying moments (this essay considered only the in-sample 

results). 
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Appendix 

Table 1. Summary Statistics for Excess Portfolio Returns                                              Table 2. Engle Test for ARCH Effects 

The table presents main descriptive statistics (mean, maximum, minimum, standard deviation,                   The table shows results for Engle’s test of ARCH effects (in column four  

unconditional sample skewness and kurtosis, and Jarque-Berra test value) for the studied 25 excess           I assumed k=5 lags, but for the eight portfolios with insignificant test value  

US portfolio returns (10 industry portfolios, 5 quintile-based portfolios formed by size and                        (are highlighted), I also tried other lag values, and in case of a lower p-value  

10 momentum portfolios), along with the market portfolio.                                                                             this is shown in the last column together with the corresponding lag value).  

 Mean Max Min Std dev Skew Kurt JB p-val         ��� ����� p-val p-val (other k) 

Rm 0.46 16.05 -23.14 4.70 -0.57 4.88 99.11 0                   Rm 15.43 

11.07 

0.009  

Durables 0.46 42.91 -32.97 6.54 0.12 8.20 556.21 0        durbl 13.46 0.020  

Energy 0.72 23.33 -19.10 5.61 0.01 4.28 33.75 0        enrgy 17.80 0.003  

HiTech 0.44 20.02 -26.54 6.97 -0.20 4.01 24.34 0        Hitec 69.30 0  

Health 0.53 29.07 -21.07 5.11 0.07 5.52 131.04 0        hlth 20.83 0.001  

Manufacturing 0.54 17.77 -27.92 5.20 -0.52 5.53 153.22 0        manuf 11.23 0.047  

Non-durables 0.65 18.15 -21.63 4.51 -0.32 5.04 93.66 0        nodur 16.26 0.006  

Shops 0.56 25.22 -28.91 5.52 -0.30 5.21 107.18 0        shops 9.88 0.080 0.043 (4 lags) 

Telecommunications 0.48 21.98 -15.97 4.92 -0.16 4.17 30.40 0        telcm 51.82 0  

Utilities 0.46 18.22 -12.94 4.21 -0.13 3.96 20.52 0        utils 40.27 0  

Other 0.45 19.65 -24.28 5.49 -0.48 4.84 87.93 0        other 31.98 0  

Lo20 0.62 27.27 -30.23 6.49 -0.23 5.43 125.72 0        lo20 11.32 0.045  

Qnt2 0.66 24.44 -29.84 6.10 -0.54 5.06 110.64 0        qnt2 4.56 0.472  

Qnt3 0.65 22.01 -27.64 5.61 -0.58 5.07 115.31 0        qnt3 4.00 0.549  

Qnt4 0.62 19.68 -25.80 5.33 -0.51 4.95 98.75 0        qnt4 8.21 0.145  

Hi20 0.42 17.57 -20.92 4.51 -0.39 4.57 62.88 0        hi20 22.42 0  

Low -0.30 45.76 -26.18 8.55 0.70 7.14 391.09 0        low 145.18 0  

P2 0.26 35.65 -25.00 6.61 0.22 5.88 173.81 0        p2 62.81 0  

P3 0.43 34.04 -23.45 5.67 0.31 6.50 258.42 0        p3 35.36 0  

P4 0.48 21.49 -19.24 5.06 -0.15 4.95 79.89 0        p4 45.05 0  

P5 0.37 20.81 -22.09 4.69 -0.29 5.14 100.97 0        p5 42.18 0  

P6 0.45 16.05 -24.38 4.76 -0.42 5.35 127.18 0        p6 9.35 0.096 0.020 (1 lag) 

P7 0.52 18.39 -24.89 4.57 -0.50 5.74 175.14 0        p7 6.29 0.279 0.036 (1 lag) 

P8 0.68 18.42 -21.06 4.64 -0.34 4.89 82.40 0        p8 6.418 0.268  

P9 0.68 20.87 -26.87 5.03 -0.61 5.84 195.60 0        p9 6.385 0.271 0.035 (1 lag) 

High 1.00 22.67 -27.34 6.37 -0.45 4.97 96.27 0        high 12.60 0.028  



Table 3. Estimation Results for the Three Proposed GARCH Specifications 

The tables below show estimation results for the three proposed BEKK models tested on 25 portfolios. By definition these models set restrictions in order to get 
positive semi-definite covariance matrix; so, instead of the original coefficients mentioned in the essay text, we estimate others, whose multiplication rules are shown 
below (after choosing the suitable model, I also present the original coefficients mentioned in the essay):  

                              �	,� � 
��                    �	,� � 
��               �	,� � ��
�             ��,� � ��

�           ��,� � ��
� 

�	,� � ��
� � ��

�            ��,� � ��
�               ��,� � ��

�            �	,�� � �� � ��              ��,�� � �� � ��            ��,�� � �� � �� 

All p-values are from a two-sided test and are shown in brackets, insignificant coefficients at 5% are highlighted to follow easier the conclusions. For models 

2 and 3, I do not present p-values, but simply highlight insignificant coefficients, because, as shown below, I chose the first model specification. 

GARCH 1 
�� ��,� ��,� 
�� ��,� �� �� �� �� �� �� �� logL 

Mean eq. (p-values* in brackets) Var-Cov eq. (p-values in brackets) 

Durables 0.4819 

(0.076) 

- - 0.5647 

(0.006) 

- 1.6532 

(0) 

1.2497 

(0) 

0.5027 

(0) 

0.3481 

(0) 

0.1967 

(0) 

0.9082 

(0) 

0.9362 

(0) 

-2757.60 

Energy 0.8071 

(0) 

- - 0.5279 

(0.007) 

- 1.3103 

(0) 

0.7373 

(0) 

0.8144 

(0) 

0.2612 

(0) 

0.3140 

(0) 

0.9362 

(0) 

0.9235 

(0) 

-2826.64 

HiTech 0.5342 

(0.045) 

- - 0.5462 

(0.004) 

- 1.3897 

(0) 

0.9124 

(0) 

0.4993 

(0) 

0.2865 

(0) 

0.2978 

(0) 

0.9357 

(0) 

0.9301 

(0) 

-2695.58 

Health 0.6066 

(0.005) 

- - 0.5391 

(0.004) 

- 1.3917 

(0) 

0.8239 

(0) 

0.6004 

(0) 

0.3327 

(0) 

0.2855 

(0) 

0.9063 

(0) 

0.9349 

(0) 

-2694.58 

Manufacturing 0.5765 

(0.009) 

- - 0.5259 

(0.007) 

- 1.3262 

(0) 

1.1256 

(0) 

0.3652 

(0) 

0.2874 

(0) 

0.2952 

(0) 

0.9272 

(0) 

0.9237 

(0) 

-2386.48 

Non-durables 0.6890 

(0) 

- - 0.5282 

(0.006) 

- 0.9495 

(0) 

0.8550 

(0) 

0.4912 

(0) 

0.3164 

(0) 

0.3282 

(0) 

0.9275 

(0) 

0.9248 

(0) 

-2519.55 

Shops 0.5971 

(0.009) 

- - 0.5642 

(0.003) 

- 1.2940 

(0) 

0.9490 

(0) 

0.5430 

(0) 

0.3129 

(0) 

0.3110 

(0) 

0.9255 

(0) 

0.9223 

(0) 

-2623.61 

Telecommunications 0.6007 

(0.002) 

- - 0.5381 

(0.004) 

- 0.9532 

(0) 

0.7765 

(0) 

0.6674 

(0) 

0.2845 

(0) 

0.3385 

(0) 

0.9393 

(0) 

0.9197 

(0) 

-2683.53 

Utilities 0.5948 

(0) 

- - 0.5096 

(0.012) 

- 0.9878 

(0) 

0.7041 

(0) 

0.9241 

(0) 

0.2715 

(0) 

0.2826 

(0) 

0.9291 

(0) 

0.9286 

(0) 

-2705.18 

Other 0.6744 

(0.004) 

- - 0.6088 

(0.002) 

- 1.6201 

(0) 

1.3165 

(0) 

0.4222 

(0) 

0.3643 

(0) 

0.3454 

(0) 

0.8901 

(0) 

0.8979 

(0) 

-2406.27 

Lo20 0.7869 

(0.007) 

- - 0.7059 

(0) 

- 1.5922 

(0) 

1.0637 

(0) 

0.3780 

(0.010) 

0.2501 

(0) 

0.3632 

(0) 

0.9390 

(0) 

0.9101 

(0) 

-2738.57 

Qnt2 0.8710 

(0.002) 

- - 0.6641 

(0.001) 

- 1.4695 

(0) 

1.0611 

(0) 

0.3524 

(0) 

0.2516 

(0) 

0.3228 

(0) 

0.9401 

(0) 

0.9213 

(0) 

-2599.12 



Qnt3 0.8688 

(0.001) 

- - 0.6502 

(0.002) 

- 1.3387 

(0) 

1.1138 

(0) 

0.3205 

(0) 

0.2486 

(0) 

0.2963 

(0) 

0.9410 

(0) 

0.9251 

(0) 

-2451.10 

Qnt4 0.6833 

(0.004) 

- - 0.5410 

(0.009) 

- 1.0850 

(0) 

0.9571 

(0) 

0.1926 

(0) 

0.3040 

(0) 

0.3266 

(0) 

0.9361 

(0) 

0.9290 

(0) 

-2244.60 

Hi20 0.5268 

(0.009) 

- - 0.5699 

(0.007) 

- -1.7437 

(0) 

-1.7309 

(0) 

-0.2881 

(0) 

0.3263 

(0) 

0.3067 

(0) 

0.8602 

(0) 

0.8739 

(0) 

-2006.14 

Low 0.0860 

(0.776) 

- - 0.7554 

(0.001) 

- 3.2590 

(0) 

3.1406 

(0) 

1.1078 

(0) 

0.5192 

(0) 

0.4043 

(0) 

0.7503 

(0) 

0.5863 

(0) 

-2836.23 

P2 0.5910 

(0.007) 

- - 0.7177 

(0) 

- 1.7382 

(0) 

1.2245 

(0) 

0.5852 

(0) 

0.4890 

(0) 

0.3739 

(0) 

0.8399 

(0) 

0.8874 

(0) 

-2657.33 

P3 0.6058 

(0.001) 

- - 0.6196 

(0) 

- 1.6341 

(0) 

1.2771 

(0) 

0.4188 

(0) 

0.4978 

(0) 

0.3813 

(0) 

0.8310 

(0) 

0.8865 

(0) 

-2538.17 

P4 0.5398 

(0.004) 

- - 0.5502 

(0.004) 

- 1.5485 

(0) 

1.5030 

(0) 

0.4566 

(0) 

0.4384 

(0) 

0.3431 

(0) 

0.8544 

(0) 

0.8804 

(0) 

-2431.54 

P5 0.5211 

(0.006) 

- - 0.6318 

(0.001) 

- 1.3581 

(0) 

1.3336 

(0) 

-0.4342 

(0) 

0.3969 

(0) 

0.3453 

(0) 

0.8797 

(0) 

0.8953 

(0) 

-2359.46 

P6 0.5297 

(0.007) 

- - 0.5439 

(0.005) 

- 1.0694 

(0) 

1.0707 

(0) 

0.3314 

(0) 

0.3272 

(0) 

0.3052 

(0) 

0.9241 

(0) 

0.9253 

(0) 

-2344.05 

P7 0.6620 

(0.001) 

- - 0.6006 

(0.002) 

- 1.8674 

(0) 

1.5716 

(0) 

0.5172 

(0) 

0.3282 

(0) 

0.3711 

(0) 

0.8601 

(0) 

0.8646 

(0) 

-2363.53 

P8 0.6833 

(0) 

- - 0.4949 

(0.009) 

- 1.5117 

(0) 

1.2302 

(0) 

0.3766 

(0) 

0.3145 

(0) 

0.3560 

(0) 

0.8965 

(0) 

0.8995 

(0) 

-2365.00 

P9 0.5450 

(0.007) 

- - 0.4435 

(0.007) 

- 1.1913 

(0) 

1.1177 

(0) 

0.3364 

(0) 

0.3220 

(0) 

0.3848 

(0) 

0.9226 

(0) 

0.8956 

(0) 

-2441.77 

High 1.0516 

(0) 

- - 0.5736 

(0.003) 

- 2.5869 

(0) 

1.4410 

(0) 

0.7162 

(0) 

0.4351 

(0) 

0.3978 

(0) 

0.8148 

(0) 

0.8595 

(0) 

-2675.73 

 

GARCH 2 
�� ��,� ��,� 
�� ��,� �� �� �� �� �� �� �� logL 

Mean equation Var-Cov equation 

Durables 0.2113 0.4587 - 0.5589 - 1.1041 1.1306 0.9479 0.3693 0.1974 0.9089 0.9268 -2759.15 

Energy 0.5350 0.4862 - 0.5294 - 1.0080 0.3625 1.0475 0.2623 0.3141 0.9381 0.9228 -2826.80 

HiTech -0.1107 1.1760 - 0.5448 - 0.6481 0.0697 1.0481 0.2722 0.3163 0.9413 0.9244 -2695.40 

Health 0.2043 0.7410 - 0.5255 - 0.8319 0.1462 0.9387 0.3164 0.2878 0.9169 0.9382 -2695.55 

Manufacturing 0.0747 0.9502 - 0.5278 - 0.4408 0.4309 1.1058 0.2872 0.2957 0.9273 0.9234 -2386.15 

Non-durables 0.1499 1.0135 - 0.5277 - 0.5422 -0.3088 0.8229 0.3285 0.3210 0.9203 0.9326 -2518.86 

Shops -0.0954 1.2340 - 0.5284 - 0.7082 -0.2952 0.9329 0.2940 0.3341 0.9273 0.9240 -2622.78 

Telecommunications 0.0674 0.9659 - 0.5250 - 0.6501 -0.3798 1.0147 0.2755 0.3376 0.9422 0.9170 -2682.79 

Utilities 0.1024 0.9774 - 0.5045 - 0.8961 -0.7658 1.0537 0.2748 0.2645 0.9350 0.9238 -2703.70 



Other -0.0289 1.1684 - 0.5634 - 0.5728 -0.2690 1.0367 0.4103 0.3049 0.8606 0.9281 -2403.53 

Lo20 -0.6554 2.0691 - 0.6334 - 1.3797 -0.9669 0.7206 0.3392 0.2637 0.9097 0.9305 -2737.91 

Qnt2 -0.3583 1.8439 - 0.6383 - 0.9622 -1.0135 0.7760 0.3275 0.2528 0.9167 0.9285 -2598.58 

Qnt3 -0.0673 1.4243 - 0.6419 - 0.5236 -0.7199 1.0572 0.2995 0.2697 0.9291 0.9240 -2451.57 

Qnt4 0.0059 1.2563 - 0.5300 - 0.2606 -0.7345 1.0379 0.3442 0.2582 0.9284 0.9276 -2243.97 

Hi20 -0.0274 0.9688 - 0.5187 - 0.4510 -0.3259 0.8294 0.3702 0.3342 0.7390 0.9284 -2002.45 

Low -0.0494 0.9114 - 0.5734 - 1.8545 0.6593 1.2215 0.6297 0.2466 0.7141 0.9213 -2841.46 

P2 0.0533 0.7529 - 0.6995 - 0.9569 0.6956 1.1660 0.5827 0.3292 0.8041 0.9003 -2657.50 

P3 0.2673 0.5381 - 0.6129 - 1.0133 1.0232 0.7454 0.5554 0.3461 0.8023 0.9030 -2534.56 

P4 0.2597 0.4931 - 0.5265 - 0.9087 1.3006 0.8284 0.4871 0.3100 0.8334 0.8911 -2431.16 

P5 -0.0161 0.8526 - 0.5608 - 0.5238 0.2077 1.1642 0.4647 0.3093 0.8415 0.9198 -2359.51 

P6 -0.0270 1.0290 - 0.5155 - 0.3502 -0.2190 1.0410 0.3263 0.3126 0.9224 0.9266 -2345.18 

P7 0.0007 1.0766 - 0.5943 - 0.6777 -0.4124 1.1154 0.4214 0.2989 0.8295 0.9212 -2364.23 

P8 0.0363 1.2815 - 0.4759 - 0.5951 -1.0820 1.0760 0.3834 0.2851 0.8907 0.8992 -2367.43 

P9 0.2456 0.6726 - 0.4412 - 0.5669 0.9528 0.7598 0.3000 0.4231 0.9332 0.8810 -2445.90 

High 0.5353 0.9005 - 0.5440 - 1.5304 0.6022 1.0069 0.4948 0.3487 0.7619 0.9078 -2673.47 

 

GARCH 3 
�� ��,� ��,� 
�� ��,� �� �� �� �� �� �� �� logL 

Mean equation Var-Cov equation 

Durables -0.5829 - 0.0236 0.1514 0.0276 2.0571 2.5874 0.0028 0.3382 0.3921 0.8901 0.7450 -2752.43 

Energy 0.7140 - 0.0048 0.1566 0.0197 1.3182 0.7544 0.8332 0.2622 0.3118 0.9357 0.9224 -2825.64 

HiTech 0.3117 - 0.0065 0.4452 0.0066 1.4084 0.9290 0.5045 0.2880 0.2988 0.9345 0.9293 -2695.21 

Health 0.9164 - -0.0113 0.2076 0.0159 1.3828 0.8375 0.6126 0.3368 0.2882 0.9060 0.9329 -2691.85 

Manufacturing 0.2155 - 0.0158 0.2156 0.0168 1.3470 1.1468 0.3726 0.2899 0.2966 0.9254 0.9218 -2385.70 

Non-durables 0.5269 - 0.0104 0.3647 0.0101 0.9548 0.8645 0.4951 0.3179 0.3288 0.9272 0.9239 -2519.28 

Shops 0.1985 - 0.0138 0.6283 -0.0019 1.3026 0.9515 0.5426 0.3126 0.3172 0.9246 0.9219 -2621.76 

Telecommunications 0.5357 - 0.0036 0.4708 0.0039 0.9552 0.7792 0.6739 0.2855 0.3364 0.9380 0.9198 -2683.51 

Utilities 0.6692 - -0.0037 0.2487 0.0130 0.9918 0.7188 0.9394 0.2712 0.2813 0.9309 0.9278 -2704.72 

Other 0.5284 - 0.0071 0.3346 0.0150 1.6255 1.3320 0.4272 0.3648 0.3458 0.8888 0.8952 -2404.86 

Lo20 -0.9200 - 0.0428 0.4909 0.0092 1.6372 1.0343 0.3761 0.2671 0.3736 0.9328 0.9092 -2732.81 

Qnt2 -0.9741 - 0.0516 0.3544 0.0147 1.4725 1.0494 0.3407 0.2666 0.3376 0.9361 0.9184 -2593.24 

Qnt4 -0.2593 - 0.0358 0.1045 0.0215 1.0870 0.9666 0.1867 0.3062 0.3306 0.9351 0.9274 -2234.85 

Hi20 0.0024 - 0.0309 -0.2289 0.0411 -1.8831 -1.9828 -0.3441 0.3427 0.3285 0.8396 0.8399 -1997.91 

Low -0.5512 - 0.0162 0.5633 0.0143 3.2250 3.0531 1.1594 0.5079 0.4062 0.7546 0.5985 -2830.73 

P2 0.4656 - 0.0068 0.9416 -0.0068 1.6845 1.2041 0.5765 0.4790 0.3682 0.8459 0.8910 -2554.52 

P3 0.6077 - 0.0040 1.0213 -0.0149 1.6471 1.3574 0.3949 0.5049 0.3695 0.8255 0.8852 -2534.32 

P4 0.0397 - 0.0302 0.2368 0.0217 1.6125 1.5381 0.4623 0.4420 0.3434 0.8465 0.8774 -2425.96 



P5 0.3675 - 0.0104 0.4467 0.0111 1.3527 1.3264 -0.4276 0.3943 0.3401 0.8808 0.8973 -2358.97 

P6 0.3958 - 0.0073 0.3503 0.0103 1.0738 1.0774 0.3327 0.3272 0.3048 0.9238 0.9249 -2343.72 

P7 0.7253 - 0.0003 0.3392 0.0153 1.7676 1.5534 0.5213 0.3404 0.3806 0.8676 0.8634 -2360.02 

P8 0.5386 - 0.0106 0.1109 0.0230 1.4273 1.2138 0.3926 0.3102 0.3506 0.9044 0.9014 -2361.68 

P9 0.1048 - 0.0240 -0.0177 0.0291 1.2080 1.1306 0.3394 0.3203 0.3818 0.9223 0.8958 -2438.22 

High 1.2453 - -0.0040 0.3196 0.0132 2.5549 1.4471 0.7247 0.4386 0.3991 0.8164 0.8584 -2673.88 

Table 4. LR tests 

The table shows results from the likelihood ratio test performed to choose between models 1 and 2, since the first specification is nested in the second GARCH. 

Portfolio Model 1 versus 2 

 

  logL* logL LR  ���1�   logL* logL LR  ���1� 

Durables -2757.60 -2759.15 -3.1 

3.841 

 Low -2836.23 -2841.46 -10.46 

3.841 

Energy -2826.64 -2826.80 -0.32  P2 -2657.33 -2657.50 -0.34 

HiTech -2695.58 -2695.40 0.36  P3 -2538.17 -2534.56 7.22 

Health -2694.58 -2695.55 -1.94  P4 -2431.54 -2431.16 0.76 

Manufacturing -2386.48 -2386.15 0.66  P5 -2359.46 -2359.51 -0.1 

Non-durables -2519.55 -2518.86 1.38  P6 -2344.05 -2345.18 -2.26 

Shops -2623.61 -2622.78 1.66  P7 -2363.53 -2364.23 -1.4 

Telecommunications -2683.53 -2682.79 1.48  P8 -2365.00 -2367.43 -4.86 

Utilities -2705.18 -2703.70 2.96  P9 -2441.77 -2445.90 -8.26 

Other -2406.27 -2403.53 5.48 
 

 High -2675.73 -2673.47 4.52 

Lo20 -2738.57 -2737.91 1.32 

3.841 

      

Qnt2 -2599.12 -2598.58 1.08       

Qnt3 -2451.10 -2451.57 -0.94       

Qnt4 -2244.60 -2243.97 1.26       

Hi20 -2006.14 -2002.45 7.38       



Table 5. Original GARCH coefficients 

They follow directly from the BEKK multiplication rules applied to coefficients of model 1 (insignificant coefficients under 5% are highlighted as 

before):                                            �	,� � 
��              �	,� � 
��               �	,� � ��
�             ��,� � ��

�           ��,� � ��
� 

�	,� � ��
� � ��

�            ��,� � ��
�               ��,� � ��

�            �	,�� � �� � ��              ��,�� � �� � ��            ��,�� � �� � �� 

 �	,� �	,� �	,� �	,� �	,�� ��,� ��,� ��,� ��,� ��,�� ��,�� ��,� � ��,� ��,� � ��,� ��,�� � ��,�� �	,�

�	,�

 

Durables 0.4819 0.5647 2.7331 1.8145 2.0660 0.8248 0.1212 0.8765 0.0387 0.8503 0.0685 0.9460 0.9152 0.9187 0.85 

Energy 0.8071 0.5279 1.7169 1.2069 0.9661 0.8765 0.0682 0.8529 0.0986 0.8646 0.0820 0.9447 0.9514 0.9466 1.53 

HiTech 0.5342 0.5462 1.9313 1.0818 1.2680 0.8755 0.0821 0.8651 0.0887 0.8703 0.0853 0.9576 0.9538 0.9556 0.98 

Health 0.6066 0.5391 1.9368 1.0393 1.1466 0.8214 0.1107 0.8740 0.0815 0.8473 0.0950 0.9321 0.9555 0.9423 1.13 

Manuf 0.5765 0.5259 1.7588 1.4003 1.4928 0.8597 0.0826 0.8532 0.0871 0.8565 0.0848 0.9423 0.9404 0.9413 1.10 

Nodurbl 0.6890 0.5282 0.9016 0.9723 0.8118 0.8603 0.1001 0.8553 0.1077 0.8578 0.1038 0.9604 0.9630 0.9616 1.30 

Shops 0.5971 0.5642 1.6744 1.1955 1.2280 0.8566 0.0979 0.8506 0.0967 0.8536 0.0973 0.9545 0.9474 0.9509 1.06 

Telecom. 0.6007 0.5381 0.9086 1.0484 0.7402 0.8823 0.0809 0.8458 0.1146 0.8639 0.0963 0.9632 0.9604 0.9602 1.12 

Utilities 0.5948 0.5096 0.9757 1.3497 0.6955 0.8632 0.0737 0.8623 0.0799 0.8628 0.0767 0.9369 0.9422 0.9395 1.17 

Other 0.6744 0.6088 2.6247 1.9114 2.1329 0.7923 0.1327 0.8062 0.1193 0.7992 0.1258 0.9250 0.9255 0.9251 1.11 

Lo20 0.7869 0.7059 2.5351 1.2743 1.6936 0.8817 0.0626 0.8283 0.1319 0.8546 0.0908 0.9443 0.9602 0.9454 1.11 

Qnt2 0.8710 0.6641 2.1594 1.2501 1.5593 0.8838 0.0633 0.8488 0.1042 0.8661 0.0812 0.9471 0.9530 0.9473 1.31 

Qnt3 0.8688 0.6502 1.7921 1.3433 1.4910 0.8855 0.0618 0.8558 0.0878 0.8705 0.0737 0.9473 0.9436 0.9442 1.34 

Qnt4 0.6833 0.5410 1.1772 0.9531 1.0385 0.8763 0.0924 0.8630 0.1067 0.8696 0.0993 0.9687 0.9697 0.9689 1.26 

Hi20 0.5268 0.5699 3.0405 3.0790 3.0182 0.7399 0.1065 0.7637 0.0941 0.7517 0.1001 0.8464 0.8578 0.8518 0.92 

Low 0.0860 0.7554 10.621 11.091 10.235 0.5630 0.2696 0.3437 0.1635 0.4399 0.2099 0.8325 0.5072 0.6498 0.11 

P2 0.5910 0.7177 3.0213 1.8419 2.1284 0.7054 0.2391 0.7875 0.1398 0.7453 0.1828 0.9446 0.9273 0.9282 0.82 

P3 0.6058 0.6196 2.6703 1.8064 2.0869 0.6906 0.2478 0.7859 0.1454 0.7367 0.1898 0.9384 0.9313 0.9265 0.98 

P4 0.5398 0.5502 2.3979 2.4675 2.3274 0.7300 0.1922 0.7751 0.1177 0.7522 0.1504 0.9222 0.8928 0.9026 0.98 

P5 0.5211 0.6318 1.8444 1.9670 1.8112 0.7739 0.1575 0.8016 0.1192 0.7876 0.1370 0.9314 0.9208 0.9246 0.82 

P6 0.5297 0.5439 1.1436 1.2562 1.1450 0.8540 0.1071 0.8562 0.0931 0.8551 0.0999 0.9610 0.9493 0.9549 0.97 

P7 0.6620 0.6006 3.4872 2.7374 2.9348 0.7398 0.1077 0.7475 0.1377 0.7436 0.1218 0.8475 0.8852 0.8654 1.10 

P8 0.6833 0.4949 2.2852 1.6552 1.8597 0.8037 0.0989 0.8091 0.1267 0.8064 0.1120 0.9026 0.9358 0.9184 1.38 

P9 0.5450 0.4435 1.4192 1.3624 1.3315 0.8512 0.1037 0.8021 0.1481 0.8263 0.1239 0.9549 0.9502 0.9502 1.23 

High 1.0516 0.5736 6.6921 2.5894 3.7277 0.6639 0.1893 0.7387 0.1582 0.7003 0.1731 0.8532 0.8970 0.8734 1.83 

 

 



Table 6. León, Rubio and Serna (2003) model 

This model is used to compute series of conditional skewness and kurtosis, whose estimated coefficients are shown in the table, together with p-values in brackets 

and initial values of parameters used to optimize the likelihood functions. The last 2 columns show average skewness and kurtosis computed for each obtained 

series, which can be compared to unconditional values from table 1. 

 initial 

skew 

initial 

kurt 

��&�� ��& �� Logl �� �� �� �� �� �� ��+�� ��

� �� 

Avg 

skew 

Avg kurt 

   Best initial values  Skewness eq. Kurtosis eq. Stationarity   

rm -0.60 3.01 0.7 0.3, 0.4 -1161.11 0.0821 

(0) 

0.7583 

(0) 

0.1879 

(0) 

0.7248 

(0) 

0.6373 

(0) 

0.3188 

(0) 

0.9462 0.9561 

-0.13 4.39 

durbl -0.10 2.23 0.7 0.3 -1306.92 0.0435 

(0) 

0.6492 

(0) 

0.2762 

(0) 

0.8481 

(0) 

0.6778 

(0) 

0.2545 

(0) 

0.9254 0.9323 

0.20 9.09 

enrgy -0.09 3.78 0.7 0.3 -1253.53 0.0079 

(0.409) 

0.7166 

(0) 

0.2275 

(0) 

0.7501 

(0) 

0.7256 

(0) 

0.1808 

(0) 

0.9441 0.9064 

0.02 5.58 

hitec -0.53 2.90 0.8 0.15 -1336.51 0.0553 

(0) 

0.8297 

(0) 

0.1269 

(0) 

0.5078 

(0) 

0.7948 

(0) 

0.1061 

(0) 

0.9566 0.9009 

0.15 4.55 

hlth -0.88 3.83 0.7 0.25 -1256.40 0.0016 

(0.616) 

0.7120 

(0) 

0.2140 

(0) 

0.1966 

(0) 

0.7088 

(0) 

0.2235 

(0) 

0.9260 0.9323 

0.04 4.94 

manuf -0.47 2.66 0.6 0.3 -1166.40 -0.0905 

(0) 

0.8043 

(0) 

0.1549 

(0) 

0.9502 

(0) 

0.6059 

(0) 

0.1681 

(0) 

0.9592 0.7740 

-0.89 4.78 

nodur -0.28 3.42 0.8 0.15 -1146.62 0.0280 

(0) 

0.7974 

(0) 

0.1408 

(0) 

0.3554 

(0) 

0.7813 

(0) 

0.1277 

(0) 

0.9382 0.9090 

-0.10 4.58 

shops -0.34 2.80 0.8 0.2 -1257.75 0.0349 

(0) 

0.7890 

(0) 

0.1622 

(0) 

0.4042 

(0) 

0.7927 

(0) 

0.1548 

(0) 

0.9512 0.9475 

-0.08 5.82 

telcm 0.06 2.71 0.6 0.4 -1170.05 0.0820 

(0) 

0.5449 

(0) 

0.3835 

(0) 

1.1752 

(0) 

0.5275 

(0.046) 

0.3873 

(0) 

0.9284 0.9148 

0.03 5.82 

utils 0.32 2.18 0.6 0.4 -1078.82 -0.0823 

(0) 

0.6122 

(0) 

0.3515 

(0) 

1.0448 

(0) 

0.5248 

(0.231) 

0.3588 

(0) 

0.9637 0.8836 

-0.34 5.19 

other -0.48 2.64 0.6 0.3 -1184.86 0.1397 

(0) 

0.5305 

(0) 

0.3024 

(0) 

0.9867 

(0) 

0.5796 

(0) 

0.2077 

(0) 

0.8329 0.7873 

-0.03 4.74 

Lo20 0.21 3.09 0.7 0.3 -1375.70 0.0436 

(0) 

0.6932 

(0) 

0.2507 

(0) 

0.7661 

(0) 

0.7253 

(0) 

0.1879 

(0) 

0.9439 0.9132 

-0.06 6.47 

Qnt2 -0.23 3.27 0.7 0.25 -1371.60 0.1212 

(0) 

0.7080 

(0) 

0.2103 

(0) 

0.3311 

(0) 

0.7178 

(0) 

0.1880 

(0) 

0.9183 0.9058 

0.01 4.54 

Qnt3 -0.42 2.93 0.6 0.4 -1306.60 -0.0347 

(0) 

0.6065 

(0) 

0.3141 

(0) 

0.5907 

(0) 

0.5979 

(0) 

0.2804 

(0) 

0.9206 0.8783 

-0.57 5.01 

Qnt4 -0.36 2.70 0.8 0.2 -1282.80 0.0163 

(0.103) 

0.7865 

(0) 

0.1825 

(0) 

0.2692 

(0) 

0.7866 

(0) 

0.1847 

(0) 

0.9690 0.9713 

-0.38 5.56 



Hi20 -0.63 3.02 0.7 0.25 -1138.30 -0.0451 

(0) 

0.6936 

(0) 

0.2682 

(0) 

0.6298 

(0) 

0.6620 

(0) 

0.2582 

(0) 

0.9618 0.9202 

-0.51 5.38 

Low 0.39 3.28 0.7 0.3 -1327.26 -0.0274 

(0.168) 

0.6261 

(0) 

0.2897 

(0) 

1.4837 

(0) 

0.5922 

(0) 

0.1827 

(0) 

0.9158 0.7749 

0.45 6.81 

P2 0.02 2.37 0.8 0.2 -1314.71 -0.0429 

(0) 

0.8467 

(0) 

0.1119 

(0) 

0.6568 

(0) 

0.7846 

(0) 

0.1275 

(0) 

0.9586 0.9121 

-0.13 6.50 

P3 0.10 2.36 0.8 0.2 -1241.45 0.0179 

(0) 

0.8443 

(0) 

0.0758 

(0) 

0.4351 

(0) 

0.8132 

(0) 

0.1186 

(0) 

0.9201 0.9318 

0.25 6.43 

P4 -0.15 4.60 0.7 0.3 -1170.63 0.0096 

(0.546) 

0.6623 

(0) 

0.2252 

(0) 

1.0557 

(0) 

0.6457 

(0) 

0.2325 

(0) 

0.8875 0.8782 

-0.09 6.29 

P5 -0.37 2.64 0.8 0.2 -1176.98 0.0482 

(0) 

0.7997 

(0) 

0.1446 

(0) 

0.3586 

(0) 

0.7977 

(0) 

0.1445 

(0) 

0.9443 0.9422 

0.01 5.44 

P6 -0.36 2.66 0.6 0.4 -1180.25 0.0172 

(0.083) 

0.5834 

(0) 

0.3739 

(0) 

0.7113 

(0) 

0.5656 

(0) 

0.3363 

(0) 

0.9573 0.9019 

-0.35 5.83 

P7 -0.51 2.59 0.6 0.4 -1163.73 -0.1205 

(0) 

0.5140 

(0.229) 

0.4297 

(0) 

0.6826 

(0) 

0.5548 

(0) 

0.3670 

(0) 

0.9437 0.9218 

-0.71 6.28 

P8 -0.46 2.74 0.6 0.4 -1174.02 -0.0524 

(0) 

0.6753 

(0) 

0.2826 

(0) 

0.6676 

(0) 

0.6343 

(0) 

0.2889 

(0) 

0.9579 0.9232 

-0.48 5.70 

P9 -0.72 3.09 0.7 0.3 -1210.82 0.0148 

(0.116) 

0.5967 

(0) 

0.2637 

(0) 

0.8796 

(0) 

0.6995 

(0) 

0.2131 

(0) 

0.8604 0.9126 

-0.38 7.05 

High -0.61 3.52 0.7 0.3 -1321.98 -0.0723 

(0) 

0.6024 

(0) 

0.2703 

(0) 

0.4030 

(0) 

0.6889 

(0) 

0.2406 

(0) 

0.8727 0.9295 

-0.50 5.14 

 

Table 7. Correlations between moments 

The table shows computed correlation coefficients between series of conditional covariance, (co)skewness and (co)kurtosis for each portfolio. 

  durbl enrgy hitec hlth manuf nodur shops telcm utils other lo20 qnt2   

corr(cov,skew) 0.13 -0.26 -0.53 0.17 -0.56 -0.37 -0.39 -0.09 0.02 -0.39 -0.33 -0.44   

  
corr(cov,kurt) 0.69 0.69 0.81 0.73 0.65 0.82 0.79 0.57 0.58 0.80 0.68 0.72 

corr(cov,cosk) 0.60 0.65 0.52 0.73 0.72 0.70 0.70 0.41 0.58 0.69 0.66 0.64 

 corr(cov,kokurt) 0.72 0.70 0.61 0.76 0.68 0.70 0.73 0.61 0.61 0.74 0.69 0.68 

   qnt3 qnt4 hi20 low p2 p3 p4 p5 p6 p7 p8 p9 high 

corr(cov,skew) -0.38 -0.48 -0.51 0.32 0.04 0.10 -0.19 -0.38 -0.38 -0.49 -0.40 -0.52 -0.51 

corr(cov,kurt) 0.63 0.77 0.83 0.62 0.73 0.66 0.87 0.85 0.62 0.74 0.77 0.73 0.79 



corr(cov,cosk) 
0.68 0.70 0.82 0.46 0.66 0.63 0.71 0.64 0.62 0.82 0.81 0.78 0.85 

corr(cov,cokurt) 
0.65 0.69 0.79 0.81 0.78 0.81 0.77 0.78 0.67 0.81 0.76 0.76 0.81 

 

Table 8. Factor Pricing in a Time-Series Regression 

The table presents coefficients estimated by regressing excess portfolio returns on the three studied conditional moments (covariance, skewness and kurtosis). For 

comparison, the last two columns show the regression coefficients with conditional covariance as the only explanatory variable. Insignificant estimates under 10% 

level are highlighted. 

 cov skew intercept  kurt   Cov Intercept 

       

Rm 0.0593 

(0.013) 

0.2090 

(0.071) 

-0.8887 

(0.125) 

   0.0340 

(0.076) 

-0.3301 

(0.501) 

Durables 0.0761 

(0.009) 

0.0914 

(0.099) 

-1.4705 

(0.062) 

   0.0825 

(0.005) 

-1.6117 

(0.040) 

Energy -0.0077 

(0.799) 

-0.1697 

(0.215) 

0.8589 

(0.145) 

 -0.1163 

(0.010) 

 0.0020 

(0.945) 

0.6856 

(0.231) 

HiTech 0.0434 

(0.123) 

0.4391 

(0.122) 

-0.8529 

(0.331) 

   0.0203 

(0.395) 

-0.1332 

(0.858) 

Health 0.0367 

(0.136) 

-0.0931 

(0.313) 

-0.1536 

(0.764) 

   0.0325 

(0.181) 

-0.0790 

(0.876) 

Manufacturing 0.0755 

(0.006) 

0.2046 

(0.089) 

-1.0727 

(0.095) 

   0.0494 

(0.030) 

-0.6342 

(0.281) 

Non-durables 0.0478 

(0.018) 

0.1682 

(0.180) 

-0.2106 

(0.615) 

   0.0378 

(0.043) 

-0.0438 

(0.913) 

Shops 0.0802 

(0.001) 

0.2302 

(0.048) 

-1.2864 

(0.033) 

   0.0616 

(0.005) 

-0.8724 

(0.123) 

Telecommunications 0.0196 

(0.399) 

0.1441 

(0.079) 

0.1381 

(0.764) 

   0.0160 

(0.491) 

0.2056 

(0.655) 

Utilities 0.0094 

(0.756) 

0.0612 

(0.393) 

0.3702 

(0.359) 

   0.0099 

(0.742) 

0.3428 

(0.394) 

Other 0.0528 

(0.010) 

0.2248 

(0.027) 

-0.8733 

(0.126) 

   0.0353 

(0.062) 

-0.4384 

(0.415) 

Lo20 0.0802 

(0.003) 

0.0980 

(0.375) 

-1.5469 

(0.046) 

   0.0724 

(0.004) 

-1.3397 

(0.069) 



Qnt2 0.0950 

(0.001) 

0.1694 

(0.190) 

-1.9096 

(0.020) 

   0.0786 

(0.002) 

-1.4646 

(0.049) 

Qnt3 0.0935 

(0.001) 

0.1291 

(0.126) 

-1.6496 

(0.030) 

   0.0767 

(0.004) 

-1.2957 

(0.074) 

Qnt4 0.0692 

(0.002) 

0.1920 

(0.096) 

-1.1193 

(0.063) 

   0.0517 

(0.007) 

-0.7326 

(0.187) 

Hi20 0.0501 

(0.108) 

0.1054 

(0.252) 

-0.5502 

(0.396) 

   0.0318 

(0.234) 

-0.2282 

(0.696) 

Low 0.0418 

(0.062) 

0.2506 

(0.003) 

-1.6724 

(0.029) 

 0.0081 

(0.739) 

 0.0633 

(0.003) 

-2.2110 

(0.003) 

P2 0.0416 

(0.005) 

0.2677 

(0.115) 

-0.8402 

(0.091) 

 0.0083 

(0.777) 

 0.0425 

(0.004) 

-0.9012 

(0.069) 

P3 0.0419 

(0.004) 

0.2533 

(0.152) 

-0.6539 

(0.133) 

 -0.0002 

(0.990) 

 0.0439 

(0.003) 

-0.6394 

(0.142) 

P4 0.0613 

(0.001) 

0.1662 

(0.135) 

-0.8642 

(0.055) 

 -0.0026 

(0.920) 

 0.0562 

(0.001) 

-0.7673 

(0.086) 

P5 0.0563 

(0.003) 

0.1800 

(0.137) 

-0.8396 

(0.064) 

 0.0087 

(0.726) 

 0.0458 

(0.008) 

-0.6145 

(0.150) 

P6 0.0694 

(0.001) 

0.1377 

(0.018) 

-1.0294 

(0.043) 

   0.0503 

(0.011) 

-0.6568 

(0.177) 

P7 0.0409 

(0.120) 

0.0167 

(0.739) 

-0.3170 

(0.576) 

   0.0367 

(0.111) 

-0.2408 

(0.643) 

P8 0.0224 

(0.367) 

-0.0425 

(0.607) 

0.1834 

(0.739) 

   0.0275 

(0.225) 

0.0952 

(0.856) 

P9 0.0150 

(0.510) 

0.0145 

(0.864) 

0.3400 

(0.538) 

   0.0129 

(0.504) 

0.3812 

(0.442) 

High 0.0019 

(0.937) 

-0.0200 

(0.881) 

0.9431 

(0.165) 

   0.0037 

(0.856) 

0.9035 

(0.149) 

 

 

 

 

 

 



Table 9. Cross-Sectional Asset Pricing Tests 

The table shows estimation results from cross-sectional tests of the conditional four-moment CAPM (initial columns) and conditional two-moment CAPM (the 

middle columns). The last three columns illustrate correlations between beta, gamma and delta risk factors. Insignificant estimates at 10% are highlighted. 

 � � � intercept R-squared  � intercept R-squared  � !!��, �� � !!��, �� � !!��, �� 

2001 0.5571 

(0.264) 

1.7989 

(0.649) 

-36.662 

(0.071) 

-0.4670 

(0.268) 

19%  0.0810 

(0.861) 

-0.5837 

(0.183) 

1%  

-0.28 0.43 -0.38 

2002 -2.353 

(0) 

0.1812 

(0.774) 

-17.861 

(0.025) 

1.0538 

(0.170) 

58%  -1.9375 

(0) 

0.1385 

(0.755) 

46%  

0.50 -0.32 0.06 

2003 3.3135 

(0) 

0.0358 

(0.877) 

-34.850 

(0.020) 

-0.3968 

(0.574) 

59%  2.5199 

(0) 

0.0558 

(0.928) 

45%  

-0.25 0.49 -0.39 

2007 -1.021 

(0.182) 

-7.3834 

(0.029) 

-35.544 

(0.910) 

1.6932 

(0.028) 

38%  -1.4839 

(0.073) 

1.5237 

(0.071) 

13%  

0.22 0.32 0.57 

2008 -5.412 

(0) 

2.3582 

(0.217) 

-0.5906 

(0.846) 

2.7005 

(0.015) 

76%  -5.1892 

(0) 

1.2926 

(0.068) 

72%  

0.21 0.05 -0.62 

2009 3.0429 

(0.004) 

- -21.260 

(0.022) 

0.8765 

(0.491) 

66%  4.4729 

(0) 

-1.5164 

(0.094) 

57%  

-0.81 -0.62 0.53 

2010 2.6141 

(0) 

0.1484 

(0.638) 

- -1.0559 

(0.072) 

56%  2.6267 

(0) 

-0.9651 

(0.074) 

56%  

0.05 -0.08 0.84 

 



EViews Codes 

 

' GARCH 1  bi-variate BEKK of Engle and Kroner (1995): 

' y = mu + res 

' res ~ N(0,H) 

' H = omega*omega' + beta H(-1) beta' + alpha res(-1) res(-1)' alpha' 

' where    y = 2 x 1 

'               mu = 2 x 1 

'               lambda = 2 x 1 

'      H = 2 x 2 (symmetric) 

'          H(1,1) = variance of y1   (saved as var_y1) 

'          H(1,2) = cov of y1 and y2 (saved as cov_y1y2) 

'          H(2,2) = variance of y2   (saved as  var_y2) 

'  omega = 2 x 2 low triangular  

'  beta = 2 x 2 diagonal 

'  alpha = 2 x 2 diagonal 

 

'change path to program path 

%path = @runpath 

cd %path 

' load workfile 

load excess.wf1 

' input data (dependent variables of both series must be continuous) 

smpl @all 

series y1 = durbl 

series y2 = rm 

 

' set sample for GARCH estimation  

sample s0 1970M01 2010M12 



sample s1 1970M02 2010M12 

' load data  

smpl s0 

 

'get starting values for parameters from univariate GARCH (1,1) 

equation eq1.arch(m=100,c=1e-5) y1 c 

equation eq2.arch(m=100,c=1e-5) y2 c 

 

' declare coef vectors to use in bi-variate GARCH model (please see introduction for details)  

coef(2) mu 

 mu(1) = eq1.c(1) 

 mu(2)= eq2.c(1) 

 

coef(3) omega 

 omega(1)=(eq1.c(2))^.5 

 omega(2)=0 

 omega(3)=eq2.c(2)^.5 

 

coef(2) alpha 

 alpha(1) = (eq1.c(3))^.5 

 alpha(2) = (eq2.c(3))^.5  

 

coef(2) beta  

 beta(1)= (eq1.c(4))^.5  

 beta(2)= (eq2.c(4))^.5 

 

' constant adjustment for log likelihood (i.e. we define 2log(2pi)) 

!mlog2pi = 2*log(2*@acos(-1)) 

 



'old values 

' use var-cov of sample in "s1" as starting value of variance-covariance matrix 

series cov_y1y2 = @cov(y1-mu(1), y2-mu(2)) 

series var_y1 = @var(y1) 

series var_y2 = @var(y2) 

 

series res2 = y2-mu(2) 

series sqres1 = (y1-mu(1))^2 

series sqres2 = (y2-mu(2))^2 

series res1res2 = (y1-mu(1))*(y2-mu(2)) 

 

' LOG LIKELIHOOD - set up the likelihood  

' 1) open a new blank likelihood object (L.O.) name bvgarch 

' 2) specify the log likelihood model by append 

 

    ' squared errors and cross errors 

 logl bvgarch 

bvgarch.append @logl logl 

bvgarch.append sqres1 = (y1-mu(1))^2 

bvgarch.append sqres2 = (y2-mu(2))^2 

bvgarch.append res1res2 = (y1-mu(1))*(y2-mu(2)) 

bvgarch.append res2 = y2-mu(2) 

 

' calculate the variance and covariance series 

bvgarch.append var_y1  =  omega(1)^2 + beta(1)^2*var_y1(-1) + alpha(1)^2*sqres1(-1) 

bvgarch.append cov_y1y2 = omega(1)*omega(2) + beta(2)*beta(1)*cov_y1y2(-1) + 
alpha(2)*alpha(1)*res1res2(-1) 

bvgarch.append var_y2  = omega(3)^2 + omega(2)^2 + beta(2)^2*var_y2(-1) + alpha(2)^2*sqres2(-1) 

 



' determinant of the variance-covariance matrix 

bvgarch.append deth = var_y1*var_y2 - cov_y1y2^2 

 

' inverse elements of the variance-covariance matrix 

bvgarch.append invh1 = var_y2/deth 

bvgarch.append invh2 = -cov_y1y2/deth 

bvgarch.append invh3 = var_y1/deth 

 

' log-likelihood series 

bvgarch.append logl =-0.5*(!mlog2pi + (invh1*sqres1+2*invh2*res1res2+invh3*sqres2) + log(deth)) 

 

' remove some of the intermediary series 

bvgarch.append @temp invh1 invh2 invh3 sqres1 sqres2 deth  

 

' estimate the model 

smpl s1 

bvgarch.ml(showopts, m=500, c=1e-5) 

 

' change below to display different output 

show bvgarch.output 

graph varcov.line var_y1 var_y2 cov_y1y2 

show varcov 

 

GARCH 3: 

'  y = mu + res -> y = H*lambda + mu + res 

'  res ~ N(0,H) 

'  H = omega*omega' + beta H(-1) beta' + alpha res(-1) res(-1)' alpha' 

' where       y = 2 x 1 

'                  mu = 2 x 1 



'                  lambda = 2 x 1 

'      H = 2 x 2 (symmetric) 

'          H(1,1) = variance of y1   (saved as var_y1) 

'          H(1,2) = cov of y1 and y2 (saved as cov_y1y2) 

'          H(2,2) = variance of y2   (saved as  var_y2) 

'  omega = 2 x 2 low triangular  

'  beta = 2 x 2 diagonal 

'  alpha = 2 x 2 diagonal 

 

'change path to program path 

%path = @runpath 

cd %path 

' load workfile 

load excess.wf1 

' input data (dependent variables of both series must be continuous) 

smpl @all 

series y1 = qnt3 

series y2 = rm 

' set sample for GARCH estimation (not the whole series > leave some observations for forecasting) 

sample s0 1970M01 2010M12 

sample s1 1970M02 2010M12 

' load data  

smpl s0 

 

'get starting values for parameters from univariate GARCH-M (1,1); archm=var shows the inclusion of 
var in the mean eq  

equation eq1.arch(archm=var,m=100,c=1e-5) y1 c 

equation eq2.arch(archm=var,m=100,c=1e-5) y2 c 

'save the conditional variances 



eq1.makegarch garch1 

eq2.makegarch garch2 

' declare coef vectors to use in bi-variate GARCH model (please see introduction for details)  

    coef(2) lambda 

    lambda(1) = eq1.c(1) 

    lambda(2) = eq2.c(1) 

 

    coef(2) mu 

    mu(1) = eq1.c(2) 

    mu(2)= eq2.c(2) 

 

    coef(3) omega 

    omega(1)=(eq1.c(3))^.5 

    omega(2)=0     ' because we don't have it in the univariate GARCH-M 

    omega(3)=(eq2.c(3))^.5 

 

    coef(2) alpha 

    alpha(1) = (eq1.c(4))^.5 

    alpha(2) = (eq2.c(4))^.5 

 

    coef(2) beta 

    beta(1)= (eq1.c(5))^.5 

    beta(2)= (eq2.c(5))^.5 

 

' constant adjustment for log likelihood (i.e. we define 2log(2pi)) 

!mlog2pi = 2*log(2*@acos(-1)) 

'old values 

' use var-cov of sample in "s1" as starting value of variance-covariance matrix 

'series cov_y1y2 = @cov(y1-mu(1), y2-mu(2)) 



'series var_y1 = @var(y1) 

'series var_y2 = @var(y2) 

'series sqres1 = (y1-mu(1))^2 

'series sqres2 = (y2-mu(2))^2 

'series res1res2 = (y1-mu(1))*(y2-mu(2)) 

 

    series cov_y1y2 = @cov(y1-mu(1)-lambda(1)*garch1, y2-mu(2)-lambda(2)*garch2) 

    series var_y1 = @var(y1-lambda(1)*garch1) 

    series var_y2 = @var(y2-lambda(2)*garch2) 

    series sqres1 = (y1-mu(1)-lambda(1)*garch1)^2 

    series sqres2 = (y2-mu(2)-lambda(2)*garch2)^2 

    series res1res2 = (y1-mu(1)-lambda(1)*garch1)*(y2-mu(2)-lambda(2)*garch2) 

 

' LOG LIKELIHOOD  

logl bvgarch 

'old values 

'bvgarch.append @logl logl 

'bvgarch.append sqres1 = (y1-mu(1))^2 

'bvgarch.append sqres2 = (y2-mu(2))^2 

'bvgarch.append res1res2 = (y1-mu(1))*(y2-mu(2)) 

 

    ' squared errors and cross errors 

    bvgarch.append @logl logl 

    bvgarch.append sqres1 = (y1-mu(1)-lambda(1)*garch1)^2 

    bvgarch.append sqres2 = (y2-mu(2)-lambda(2)*garch2)^2 

    bvgarch.append res1res2 = (y1-mu(1)-lambda(1)*garch1)*(y2-mu(2)-lambda(2)*garch2) 

 

' calculate the variance and covariance series 

bvgarch.append var_y1  =  omega(1)^2 + beta(1)^2*var_y1(-1) + alpha(1)^2*sqres1(-1) 



bvgarch.append var_y2  = omega(3)^2 + omega(2)^2 + beta(2)^2*var_y2(-1) + alpha(2)^2*sqres2(-1) 

bvgarch.append cov_y1y2 = omega(1)*omega(2) + beta(2)*beta(1)*cov_y1y2(-1) + 
alpha(2)*alpha(1)*res1res2(-1) 

 

' determinant of the variance-covariance matrix 

bvgarch.append deth = var_y1*var_y2 - cov_y1y2^2 

 

' inverse elements of the variance-covariance matrix 

bvgarch.append invh1 = var_y2/deth 

bvgarch.append invh3 = var_y1/deth 

bvgarch.append invh2 = -cov_y1y2/deth 

 

' log-likelihood series 

bvgarch.append logl =-0.5*(!mlog2pi + (invh1*sqres1+2*invh2*res1res2+invh3*sqres2) + log(deth)) 

 

' remove some of the intermediary series 

bvgarch.append @temp invh1 invh2 invh3 sqres1 sqres2 res1res2 deth 

 

' estimate the model 

smpl s1 

bvgarch.ml(showopts, m=100, c=1e-5) 

León, Rubio and Serna (2003) model 

'  r = m + res 

'  res ~ N(0,h) 

'  h = a1 + b1*h(-1) + last1*res(-1)*res1(-1)'    (variance) 

'  s = a2 + b2*s(-1) + last2*e3(-1)                      (skew) 

'  k = a3 + b3*k(-1) + last3*e4(-1)                       (kurt) 

' where        r = 1 x 1             m = 1 x 1 

'                   a = 3 x 1            b = 3 x 1            last = 3 x 1 



' input data (dependent variables of both series must be continuous) 

smpl s0 

series r = p7 

 

' declare coef vectors to use in bi-variate GARCH model (please see introduction for details)  

coef(1) m 

 m(1) = mu(1) 

 

coef(3) a 

 a(1)= 0 

 a(2)= 0 

 a(3)= 0 

 

coef(3) b 

 b(1) = beta(1)^2 

 b(2) = -log(1/0.6 -1) 

 b(3) = -log(1/0.6 -1) 

 

coef(3) last 

 last(1) = alpha(1)^2 

 last(2) = -log(1/0.4 -1) 

 last(3) = -log(1/0.4 -1) 

 

'set initial skew and kurt to their unconditional values 

series h = @var(r) 

series e=(res1-@mean(res1))/@stdev(res1) 

series s = -0.51 

series k = 2.59 

 



' LOG LIKELIHOOD 

' squared errors and cross errors 

 logl lastgarch 

lastgarch.append @logl logl 

'lastgarch.append res = r-m(1) 

lastgarch.append e=(res1-@mean(res1))/@stdev(res1) 

 

' calculate the variance and covariance series 

‘lastgarch.append h  = a(1) + b(1)*h(-1) + last(1)*(e(-1)^2)*h(-1) 

lastgarch.append s  = a(2) + @logit(b(2))*s(-1) + @logit(last(2))*(e(-1)^3) 

lastgarch.append k  = a(3) + @logit(b(3))*k(-1) + @logit(last(3))*(e(-1)^4) 

lastgarch.append x = 1+s/6*(e^3-3*e)+(k-3)/24*(e^4-6*(e^2)+3) 

lastgarch.append y = x^2 

lastgarch.append gama = 1+ s^2/6 +(k-3)^2/24 

 

' log-likelihood series 

lastgarch.append logl =-0.5*log(var_y1) - 0.5*(e^2) - log(gama) + log(y)  

 

' remove some of the intermediary series 

lastgarch.append @temp res e x y gama 

 

' estimate the model 

smpl s1 

lastgarch.ml(showopts, m=500, c=1e-7) 

genr b2=@logit(b(2)) 

genr b3=@logit(b(3)) 

genr last2=@logit(last(2)) 

genr last3=@logit(last(3)) 
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