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Abstract

On the ground of a highly dynamic economic envireninthe necessity for time-varying risk
measures emerged. Inclusion of higher-order canwitimoments in asset pricing models is a
very common topic in recent research articles. present essay was inspired by the seminal
work of Harvey and Siddique (1999), who proposetihregion of time-varying skewness and
pricing its explanatory power by a conditional #gs@oment CAPM. By estimating the first four
conditional return moments | confirm previous fingé about their high persistence, after which
these risk measures are employed in testing thenmfmment conditional CAPM. | analyze both
time-series and cross-sectional regression refult&5 portfolios formed on different criteria
(industry, size, momentum). In the time-series apph, conditional kurtosis is highly correlated
with covariance and adds no pricing power. Neitb@nditional skewness has a well-defined
impact in determining return compensation. Howewercross-sectional regressions, kurtosis
risk is priced in most of the crises years, butrigk premium has the opposite sign. Investors
prefer more kurtosis to less, suggesting that kistes still much underestimated in financial
markets during crises. Skewness is still insigaifity priced in cross-sectional CAPM.
Altogether the four-moment cross-sectional CAPM farens better than its two-moment

counterpart.

Keywords: Asset Pricing, CAPM, Time-varying Moments, Condiiib Skewness, Conditional
Kurtosis

Supervisor: Bjérn Hansson, Professor, Department of Econonhigsd University, Sweden

Acknowledgements

I would like to express my gratitude to ProfessgdrB Hansson for the great patience and
valuable suggestions during the elaboration ofék&ay.



Table of Contents

O [ ] 1 £ To [ o 1 o o HAR PP 1
R R = 7 T (o (o 10| T 1
1.2, Problem DiSCUSSION. .. ...ttt e et e e e e e e e e e e e e e e e e e e e 2.
L 3. PUIPOS . . ettt e e e e e e 3
I I 01 = 11 0] 0 3
(RS =T o (=] A €T {0 11 ] o PR 4
R ST O 11 111 = P 4

2. Previous RESEAICH. .. ... e e 5
2.1. Modeling Conditional MOMENTS.........oitiiiii i e e e e e e 5
2.2. Pricing of ConditioNal MOMENTS.......... .o eeeerrrerrerrererirerernrernerrereenerrrnrerrerere e 7

3. Methodology (Econometric MOdEelS).........coie i e 11
3.1. Jarque-Berra Normality TeSt. .. ....c. i e e e e 11
3.2. Engle Test for ARCH/GARCH EffeCtS. ... ..o e e e e 11
3.3. GARCH MOAEIS. .. et e e e e e e e e e e 12
3.4. Conditional Skewness and KUrtoSiS...........covuveiie i i emeae e e e 15
T o= T (o] gl o g Tod [T R =] £ 16

3.5.1. Conditional Two-Moment CAPM of Sharpe-Lintner (196465)................. 16
3.5.2. Harvey and Siddique (2000a) Model..........cccooeiiiiiiiiiiiii i i s 7.1
3.5.3. Fang and Lai (1997) MOdel..........cooiiiiii e e 17

4. EMPIMCal RESUILS. ... e e e e e e e e 18
I - | > 18
4.2. Summary Statistics and JB TeSt... ..ot e 19
4.3. Test for ARCH EffE@CES......uiriiii i e e s 21
4.4, Estimation of Conditional Variances and COMACES.............cc.vvvviierineiiiieninnns 21
4.5. Estimation of Conditional Skewness and KUBOSI...........ccoovviiiiiiiie i, 26
4.6. Pricing of Risk Factors in a Time-Series R8HIE............ocoiiriieiie e iiniaieninenns 28
4.7. Cross-Sectional ANalYSIS. .. ...t e e e ——- 30

G TR @0 o] U1 Lo o 32
5.1. CoNClUdING rEMAIKS. .. ... e e e e e e e e e e e e e e 32
5.2. POSSIDIE EXIENSIONS. ..\ttt et et e e e e e e e e e e e 33

References

Appendices

EViews Codes



1. Introduction

The introduction starts with a background for the present study, after which | discuss the posed
guestions and set a purpose for my work. | also mention the limitations of this paper, the target

group and the outline for the whole essay.

1.1. Background

Measuring risk in financial markets remains a vepical issue for analysts, fund managers and
different investor groups, becoming particularlievant during crashes and periods of financial
turmoil. Assuming that capital markets are effitjemn asset’'s return must reflect a
compensation for a given level of risk assumed by investor by holding that particular
security. Following this argument different measunave been proposed to quantify riskiness.
Starting with the seminal work of Markowitz (195&ptitled "Portfolio Selection”, where a
portfolio’s risk is measured by the second returonmant — variance, some years later (1964-
1965), Sharpe and Lintner developed a cornersteset @ricing model — the CAPM, which
continues to play a cardinal role in pricing settesi even nowadays, although numerous
extensions as well as critics of this model emergaade major weakness of Markowitz’ risk
measure is the assumption of normally distributetirns, under which the distribution is
symmetrical and has a kurtosis of 3. However, d-kwedwn truth about financial series is that
returns are most often negatively skewed and etimgbexcess kurtosis. Another drawback is
that the second return moment proved insufficiargxplaining returns of some asset categories
like small caps and momentum portfolios. Thesesfagtestion the risk measure based only on
the second return moment and it stimulated furtlesearch regarding how skewness and
kurtosis risks are priced in the market. In thespr¢ essay | will also analyze higher return

moments and look at their explanatory power fannreseries.



1.2. Problem Discussion

Based on utility theory investors manifest aversmnariance, preference for positive skewness
and aversion to excess kurtosis. Given these mmetes, from two assets an individual will

always choose the one with the lowest variancehitjgest skewness and the lowest kurtosis.

An important aspect concerning return momentseasctinice between moments themselves and
co-moments between an asset and the market. Fompéxatheory argues that variance itself is
not the most important when forming portfolios. Wha more relevant, is the asset’s
contribution to the overall risk of a portfolioei.its covariance with a well-diversified portfqlio
which shows the asset’'s systematic risk. Whetheasset's return moves in the same or in
opposite directions with the market plays greatargnce, because in the latter case it could

serve as a hedge and would certainly diminish trdqdio’s risk.

Another relevant conclusion based on the previasearch is that return moments are not
necessarily constant over time, but can exhibuis@rs” which are especially noticeable during
financial crises. In this respect the developmér@ARCH models (and their extensions) proved
successful in modeling time-varying conditionalisace (and even higher moments, e.g. Harvey
and Siddique (1999)). These models revealed twoavee featurespersistence (i.e. the
tendency of high conditional variance to be followey high variance and vice versa) and
asymmetry (negative news decrease returns more than increaset positive shocks of same
size — Nelson (1991); Glosten, Jagannathan, an&l&(1093); Engle and Ng (1993)).

Asymmetry is a very common feature of different economiciataes: stock returns, indices,
exchange rates. Negative return skewness implasntigative returns of a magnitude are more
probable than positive ones of the same magniBgeheory, investors are risk-averse and thus
prefer positively skewed portfolios to negative ragyetry. So, more left-skewed assets must
provide higher expected return to reward extra Wdko, securities that increase the skewness of
a portfolio, must have lower return. Harvey andd®jde (1999) build a model in which

skewness is proven to be time-varying just likdaraze.

Kurtosis or the fourth return moment can be interpretethasvariance of variance. Very often
financial series exhibit excess kurtosis (i.e.téals), which is also a source of excess risk. So,

investors would demand higher compensation on meptekurtic assets. According to Brooks et
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al (2002) non-normality in return distributions cesnprimarily from excess kurtosis rather than
skewness. So, extreme returns are more likely tarothan under normal distribution, which

leads to underestimating risk when measuring itvhyiance alone. Necessary to note that
allowing for time variation in the fourth moment piictitly presumes its dependence on
dynamics in conditional variance (potential highretation between conditional second and

fourth moments).

1.3. Purpose

Since the interest in researching conditional retapments has increased lately, in the present
essay | will also estimate conditional moments emanoments between an asset and the market
in order to quantify risk. My goal is to test thenditional four-moment CAPM, accounting for
conditional covariance, co-skewness and co-kurtdsis novelty of my study is that the model
is tested on a different group of assets, and naited portfolios formed by Fama-French
criteria, and not just country indices or excharages as performed in most of the past studies. |
also contribute to past research by a slightlyeddiit methodology in estimating conditional
moments. For the second moments | use the BEKK haftter which | combine it with Leon,
Rubio and Serna (2004) model to estimate higher embsn As stated in Harvey and Siddique
(1999), results are highly dependent on the appiezthodology, which is an additional

motivation to try a different methodology in thissay. Thus, | pose two research questions:

1) Determine whether the first four conditional monserare pricedover time when
considering portfolios formed by industry, size andmentum criteria;

2) Determine whether the same risk factors are pricess-sectionally;

1.4. Limitations

The present study is focused on one single markeéS—which is considered the most liquid.
Thus, portfolios formed by the same criteria busdzhon a different market might produce

different conclusions.



1.5. Target Group

This paper is aimed at different investor groupswell as students, professors, researchers
showing interest in pricing securities.

1.6. Outline
The remainder of the essay is organized as follows:
Part 2 presents the relevant previous research for fhie tonder consideration.

Part 3 presents the data used in our analysis and thébgtetep methodology followed to attain

the results mentioned in the next section.
Part 4 presents the results obtained by applying theqseg econometric models.

Part 5 is designed for conclusions and possible extessibithis essay.



2. PreviousResearch

First, the reader will be introduced to modeling methodologies for conditional return moments.

Next, we consider how the first four moments enter the asset pricing models.

2.1. Modeling Conditional M oments

According to Chunhachinda et al (1997) includingnmeaits higher than the second one into
investor’s portfolio choice influences the selectf the optimal portfolio. Most of the studies

mentioned below documented high persistence inittondl variance and higher moments (sum
of the ARCH and GARCH terms is close to unity). #m& common feature is the estimation of
models in steps (nested models) from the simplestication to the most complex one and

using coefficient estimates obtained in the presistep as starting values in the next model.

Several alternatives have been proposed to modefidbumented asymmetry in asset returns.
One approach is to use models for asymmetric vegia(il) asymmetric GARCH of Glosten,
Jagannathan and Runkle, 1993 (a dummy is usedptoireathe higher variance produced by
negative shocks); (2) Nelson, 1991 etc. An altéveatay is to model conditional skewness as
proposed by Harvey and Siddique (1999), where skewis proven to be time-varying just like
variance. The traditional GARCH(1,1) is extendedalso including conditional skewness into
the model and estimating jointly conditional valw#snean, variance and skewness. In addition,
Harvey and Siddique (1999) consider the interachetween conditional skewness from their
model and the asymmetric variance produced bywbemodels mentioned above (Glosten et al
(1993) and Nelson (1991)). Thus, conditional skessnie consistent with asymmetric variance

and its inclusion reduces persistence in conditivaaance.

Brooks et al (2002) present a similar method fodelimg autoregressive conditional kurtosis
(GARCHK, t-distributed errors), but without an el skewness equation. However,
asymmetry is captured through dummy variables &nance and kurtosis equations) similar to
Glosten et al (1993) and Nelson (1991). The asymyneetefficient in the variance equations is
significant for all series, but the same coeffitién kurtosis equation is insignificant in most

cases. The article also tests the significancendtding variance and kurtosis terms into the



mean return equation (GARCHK-M) to test the sigrrisk-return tradeoff. Both of them turn

out insignificant, but have the intuitive positisign (more return compensation for higher risk).

Ledn, Rubio and Serna (2004) present a GARCHSK wmdetbgy for modeling jointly the

second, third and fourth conditional moments. Theetty of this article consists in the fact that
it presents a much simpler likelihood function atdhe same time captures time variation in
both skewness and kurtosis based on Gram-Chasdgessexpansion of the normal density
function, while the previous two articles accountedy for one time-varying moment higher

than variance.

Jondeau and Rockinger (2003) studies stock indeexchange rate returns. Similar to the
previous article, this paper also includes bothdatonal skewness and kurtosis into the model,
concluding that conditional kurtosis is less pdesis than skewness. Authors also document
cross-sectional variability in skewness and kurtosis (extreme olet#gons occur simultaneously

in different markets). For all exchange rates tharas to be the same dynamics of asymmetry
coefficient, while kurtosis coefficient is constafor stock indices only some series have the
same evolution of kurtosis coefficient, while othexperience a complex evolution determined

by large re-occuring economic events (crashes maapthe same time in different markets).

Table 1 below summarizes the findings of the atichentioned above.

Article Year | Method Data Results
Harvey and | 1999 | GARCHS(1,1,1)-M with | Daily, weekly, monthly | Asymmetric variance is equivalent with
Siddique explicit  modeling of | stock returns conditional skewness;
conditional skewness; US, Germany, Japan, | Including conditional skewness reduces
Assumed non-central Chile, Mexico, Taiwan, | persistence in conditional variance;
t-distributed errors Thailand (excess | Time dynamics of moments also
returns) depends on data frequency
series length: (daily/monthly), seasonality (January
1969-1997; 1975- | effect, day-of-the-week effect) and
1997; 1980-1997 aggregation of stocks into portfolios.
Brooks et al | 2002 | GARCHK(1,1,1) and Four daily stock/bond | Conditional kurtosis is positively, but not
GARCHK(1,1,1)-M with | returns (US and UK) significantly related to returns
explicit  modeling of | 1990-2000 The response of kurtosis to good and




conditional kurtosis,
t-distributed errors

bad news is not significantly asymmetric
Kurtosis decreases with time- and cross-

sectional aggregation in returns

Jondeau & | 2003 | GARCH Five daily stock-index | Skewness is very persistent, but kurtosis
Rockinger Hansen's generalized t- | returns  and  four | is less persistent
distribution of errors exchange rates Cross-sectional variability in third and
Monte Carlo simulations | 1971-1999 fourth moments documented
to test model's validity US, Germany, Canada
Ledn, 2004 | GARCHSK(1,1,1) Five daily stock indices | Evidence of time-varying skewness and
Rubio & (US, Germany, Spain, | kurtosis;
Serna Mexico) and exchange | Models allowing for conditional third and
rates fourth moments outperform those based
1990-2003 on conditional variance alone
Skewness and kurtosis are less
persistent  than  variance  (lower
coefficients)

Table 1. Models for conditional return moments

2.2. Pricing of Conditional M oments

After development of Sharpe-Lintner CAPM (1965} fiirst work to include higher moments
into asset pricing (and namely skewness) belondgdos and Litzenberger (1976). Assuming
that investors have cubic utility function of wégrlthere should be aversion to variance and
preference for positive skewness. The derived thmement CAPM implies that in equilibrium

an asset’s excess return equals the sum of twaupteid(1) market beta times the market risk
premium (price of beta risk) and (2) systemationgkess (asset gamma, iye= %) times a

skewness premium (price of gamma risk). Pricesisif are the same for all investors due to
common beliefs. Kraus and Litzenberger (1976) amtelthat “the prediction of a significant
price of systematic skewness is confirmed (and ghee has the predicted sign) and the

prediction of a zero intercept for the security keatine in excess return space is not rejected”.



Bollerslev, Engle and Wooldridge (1988) presentoaditional version of covariance-based
CAPM, estimated by a multivariate GARCH-M. The nueths applied to bills, bond and stock
returns. Authors conclude that conditional covaztemare an important determinant of time-

varying risk premia. But there should exist additibvariables to explain variation in returns.

Harvey and Siddique (2000a) extend the three-mon@x®PM of Kraus and Litzenberger
(1976), by using conditional skewness instead afouaditional third moment. Due to low
explanatory power of the standard Sharpe-LintneP@Awhen working with cross-sectional
returns, Fama and French (1993) proposed two additfactors: size and book-to-market ratio,
which proved to capture very well cross-sectionaliation in returns. However, Harvey and
Siddique (2000a) conclude that conditional skewraekis explanatory power to cross-sectional
returns even when size and book-to-market fact@<ansidered. Authors also note that results
depend much on the used method, data, precisiasseft beta computation (estimation risk). In
addition, skewness is connected to momentum effeat return momentum portfolios have

higher asymmetry).

Fang and Lai (1997) presents a four-moment CAPMerestkurtosis risk is also priced. Authors

find positive risk premiums for conditional skewaesd conditional kurtosis.

Momentum, or “price continuation”, was commonly doented in financeoger time -
Jegadeesh and Titman, 1993, 2083 pss countries - Rouwenhorst, 1998; Griffin et al., 2003,
acrossindustries - Moskowitz and Grinblatt, 1999). Momentum persisten when including the
market risk (Jegadeesh and Titman, 1993), sizebao#-to-market value (Fama and French,
1996), and macro-factors (Griffin et al., 2003).

Similar to Harvey and Siddique (2000a), Fuertedfrliand Tan (2009) relate momentum effect
to non-normality risks (coskewness, cokurtosis).afking different momentum trading
strategies, authors conclude that risks vary owusiness cycles consistent with risk aversion.
Authors use the same factor construction procedsreFama and French (1993), creating
skewness- and kurtosis-mimicking portfolios. Altigbu non-normality risks partly explain
momentum returns, a large portion is still unexpddi. That opposes the market efficiency

hypothesis where return is a compensation for riskyving space for behaviorist views
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considering that momentum comes from a slow marksponse to news (incl. arbitrage
limitations). Fuertes, Miffre and Tan (2009) compknts Harvey and Siddique (2000) by
confirming that winner returns are more negativelgwed than loser returns. Also winners have
higher positive kurtosis than losers. So, “the mmadompensates investors with higher returns
for exposure to the negative skewness and lepimdisrof momentum returns"These findings
are also consistent with a recent literature sugggshat higher moments matter in theory but

may play a relatively small role in practice.

Smith (2007) also studies pricing of conditionask@wvness in cross-sectional stock returns. The
model is tested on 17 industry portfolios and 2%n&drench portfolios based on market
capitalization and book-to-market ratios (all talenm Kenneth French data library). Estimation
is carried out using GMM and instrumental variabl€ke article concludes that for positive
conditional market skewness investors sacrifice/%.8nnual return per unit of gamma, but
require only 1.80% premium when the market has thegyaskewness. These results are
consistent with Harvey and Siddique (2000a), whleeeaverage annual coskewness premium is
3.6%.

Table 2 below summarizes the findings of the above-mentioned articles in pricing conditional

moments.

Article Year | Method Data Results

Kraus & | 1976 | 3-moment CAPM Monthly portfolio returns | The price of systematic skewness is
Litzenberger (OLS) of NYSE stocks ranked | confirmed to be significant and has the
by betas and gammas predicted positive sign;

1926-1935 The prediction of a zero intercept for the
security market line in excess return

space is not rejected.

Bollerslev, 1988 | Multivariate Quarterly US returns on | Conditional covariances are important in
Engle & GARCH-M bills, bonds and stocks explaining time variation in risk premia,
Wooldridge (2-moment CAPM) | 1959-1984 but additional risk factors must exist

Fang & Lai 1997 | 4-moment CAPM Monthly portfolio returns | Positive risk premiums for conditional
(OLS and OLS with | (assets sorted by betas) | skewness and kurtosis

! Fuertes, Ana-Maria , Miffre, Joélle and Tan, Wooi-Hou (2009)
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instruments) 1969-1988
Harvey & | 2000a | 3-moment Monthly US stock returns | Conditional coskewness is important in
Siddique conditional CAPM | and their portfolios by | cross-sectional asset pricing even after
(OLS) different criteria: industry, | including size, book-to-market factors;
size, book-to-market | Momentum effect is related to systematic
ratios and momentum skewness
1963-1993 Measuring ex ante skewness is difficult
Smith 2007 | 2-moment and 3- | Monthly portfolio returns | When the market is negatively skewed,
moment conditional | (17 industry portfolios, 25 | investors demand 1.8% premium for
CAPM with | portfolios based on size | extra risk; when market is positively
instrumental and book-to-market | skewed they give up 7.87% annually;
variables ratios) The 2-moment CAPM is rejected, but the
Estimation by GMM | 1963-1997 3-moment CAPM cannot be rejected
Fuertes, 2009 | Fama & French 3- | Monthly momentum | Skewness and kurtosis mimicking
Miffre & Tan factor model | portfolios (on US stocks) | portfolios partly explain  momentum

complemented with
skewness and
kurtosis mimicking

portfolios

1973-2004

returns, but a large part is still attributed
to behavioral views
Risks vary over the business cycle,

consistent with risk aversion

Table 2. Pricing of conditional moments
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3. Methodology (Econometric M odels)

In this part of the essay | present the step-by-step procedure applied to obtain the estimation

results provided in chapter 4.

3.1. Jarque-Berra Normality Test

To motivate the explicit modeling of the first forgturn moments, | first test for the presence of

asymmetry and excess kurtosis in the chosen pdfaking the Jarque-Berra test:

T T
JB = . skew? + 2t (kurt —3)? ~ x%(2) T — no.of observations
oot Bl — LD o e ElG = Bl
sew—g— e urt—F— o

H,: skew~N (0;%) and kurt~N(O;2T—4) which impliesnormality

H;: non — normality

Considering a 5% significance levgf(2) = 5.991; so, the null is rejected ifB > x2(2).

3.2. Engle Test for ARCH/GARCH Effects

The next step is to perform the Engle (1982) testlie presence of ARCH/GARCH effects in
our return series, in order to make sure that vamed need a conditional-heteroskedasticity
model. | apply the test to raw (excess) returms,lirun a regression on a constant only, and then

regress its squared errors on their pdags (I assumed k=5):

k

Tme = Qo + Ny and Nme’ = Z AiMlpe-i® + &
i=1

So, we set the hypothesely: all ; = 0 (no ARCH effect)

Hy: at least one coef ficient a; =0

11



Extracting theR? measure from the residual regression, the teistitas TR?, which follows a

chi-squared distribution with k degrees of freedom.

3.3. GARCH models

Introduced in 1986 by Bollerslev and Taylor, thepecifications allow conditional variance to
depend on its previous lags and lagged past rdsiduaually a GARCH(1,1) is sufficient for
explaining all the variation in conditional volatty, so | also focus on this parsimonious model,
but in a bivariate setting, because univariate ifipattons model each asset apart from all the
other ones, which is not quite realistic takingoimtccount “volatility spillovers” occurring in
financial markets Considering the bivariate GARCH-M proposed by \égr and Siddique
(1999), it primarily focuses on modeling conditibnariance and skewness, but assumes a
constant kurtosis. However, | would like to alsdireate series of conditional fourth moments.
Second, this model implies maximizing a quite caogtéd likelihood function. Third, | would
like to focus on conditional covariance insteadafiance measure, because according to CAPM
this is the true measure of idiosyncratic (i.e. -dorersifiable) risk typical of a particular
security, which should be priced in equilibrium.&to these reasons, | decided to keep the bi-
variate GARCH methodology, but to estimate a BEK&del instead, in order to get an explicit
equation for conditional covariance. Later | usethar model to find conditional third and
fourth moments. Below | build three similar BEKK d&ls and choose the most appropriate for

my data.

The reason | selected a BEKK compared to a VECHaihsdits advantage of restricting the
variance-covariance matrix to be positive definisdyich is important for it in order to be

invertible. The simplest form of BEKK specificatipmoposed by Engle and Kroner (1995) is:
H,=WW'+ AH, ;A + BE,_1E, B’

WhereA andB are (2x2) matrices of parameters aMds a lower triangular (2x2) matriH; is

a (2x2) conditional variance-covariance matrg, is a (2x1) disturbance vector where

2 Brooks (2008), “Introductory Econometrics for finance”, 2" ed.
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E.~N(0; H;|2;_1). So, in the full bivariate BEKK, the equations fa@riances and covariances

are given by:
Rite = €11+ Qiihageg + Qoo g + izhige—q + bigufe_q + biaUfe g + izl qUpe
Raze = Co1 + Qprhire—1 + gaRope—1 + Ap3higeq + baqufe_q + bopude_q + bogliye qUpe4
Rige = €31+ 31hi1e—1 + Aaphope—q + Az3hige—1 + baquie—q + b3pude_q + b3sUyeqUpe4

However, the main disadvantage is the large numobeoefficients to estimate. For that reason,
we simplify our model by assuming a diagonal BEK&t, which each variance and covariance
depends only on its own past lags and lagged distwes. So, thBrst GARCH | estimate is
the simple diagonal BEKK: Tie= @o; + iy

Tme= Qo T Nme
hie = Boi+ Buihie-1 + B2iMit-1"
hye = Bom + Bimhme-1 + Boumme-1°
hine = Boim + BrimPime-1 + B2imMit-17m,e-1

For the second and third models | add some extnastdbased on the model proposed by Harvey

and Siddique:
GARCH 2 (add excess market return in the mean equation):
Tit = @g; + 1Ty + Nig
Tme = Com t+ MM
hie = Boi+ Buihie-1 + B2iMiz-—1°
hye = Bom + Bimhue-1 + Bomtlme-1?

hime = Boim + BrimPime—1 + B2imMit—1Mme-1

* In initial specifications | also tried to include the terms O1hyt + 6,Mit—1Mme—1 in all the equations of asset
variance (similar to Harvey and Siddique, 1999), but due to high correlation between variables they always turn out
insignificant

13



GARCH 3 (add variances in mean eq.)r;; = Qg; + @z ih;;—1 + 1,
Tye = Com + Qo phue—1 + N
hie = Boi+ Byihie-1 + B2,iMie-1°
hye = Bom + Bimhme-1 + Bammlme-1*
hime = Boim + BrimPime—1 + B2imMic-1Mm,e-1

For stationarity, in each model | restrict the sage and covariance equation coefficiepts;,

Bim: Bz,i» B2m: B1im andBy;y to lie between (0;1).

For simplicity and comparability reasons | assumeditionally normal distribution of errors in
all the models below. As these three models aréuttit-in in EViews (EViews 6 supports the
diagonal BEKK only for variance equations, but ot covariance equation also), | wrote

special programs for their estimation, whose c@degprovided in the appendix.

Since GARCH models are non-linear, we can no longer OLS to estimate them and need to
apply the maximum likelihood technique. So, we némduild a log-likelihood function and
maximize it with respect to each unknown parametarknown, this function can be highly
non-linear and it is cardinal to choose adequa#isy values for our parameters in order to
reach the global maximum of our likelihood functiand not just a local extreme point. In this
respect | use several steps. First, | estimatéhaltorresponding regressions by OLS and use the
computed coefficients as parameter initial valueslem similarunivariate GARCH models.
Finally, we use the coefficients estimated from tinévariate GARCH specifications as starting
values for estimation of all the bi-variate modélkis nested-model procedure also serves as a
diagnostic test for the estimated parameters. Tit&li values for conditional variance and

covariance are set to their unconditional values.

Assuming conditionally normal distribution of resals, the log-likelihood function for all the

bivariate models from above has the form:
TN 1w
L(0) = ——-log(2m) — 5 ) (loglHel + £, H, '8
t=1

14



where N = 2; |H,| is the determinant df,, andf are all the unknown parameters.

To conclude, the series we obtain from the modaty@ include: conditional portfolio variances

and conditional covariances between each portéoi the market.

3.4. Conditional Skewness and Conditional Kurtosis

The next step is to jointly estimate conditionaktdhand fourth moments. For this purpose, |
apply the methodology proposed by Ledén, Rubio aech& (2003), because it has an easier
likelihood function than Harvey and Siddique (1988J it also allows for time-varying kurtosis,

not just conditional skewness:

. =FE_1(rn) + & g~(0, he|Q2¢—1)

& = h%m n:~(0;1) E_ () =s. E1(n*) =k
he = Bo + Br&f—1 + P2hes
St = Yo +Villi-1 + V2St-1
ke = 6o + 81mg_q + 82k 4

To get stationary variance, skewness and kurt@dso (positive variance and kurtosis), some
constraints are set: 0<B{,B2,B1+P2) <1 ; -1<y1,Y2 (¥1+7v2) <1 and
0<6q,62 (81 +6,) <1.

This model is estimated using a Gram-Charlier segigpansion of the normal density function

for the standardized errors, which is truncateth@fourth moment:

o pdf: fMell-1) = <D(m)ll)(m)2/1}

_on2
(nt — 602 +3) andl; =1+2+ &2

ke—3
41

where () =1+ % (U? —3n.) +

e log — likelihood function: I, = —%lnht — %ntz +In(¥(1)?) — In (I})
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So, the likelihood function is similar to the nodnalstribution, but in addition it also has two

adjustment terms for time-varying skewness andokist

To conclude, this last model will provide series ¢onditional skewness and kurtosis for each

portfolio i.

3.5. Factor Pricing Tests

To test whether the first four return moments areeg in the market | use the CAPM models

summarized below.
3.5.1. Conditional Two-Moment CAPM of Sharpe-Lintner (1964-1965)

cove_1(Ti )T t)
Et_l(ri,t) = Bit-1Et-1 (Tm,t) Bit-1 = yar(;m,t)m

To estimate this relation in @me-series regression (excess asset returns against the market
excess return), we require that the intercept shbelzero, the betas - significant, and the market
risk premium — be the same for all assets. tnogs-sectional regression (excess returns against

betas), the slope (i.e. market risk premium), sthdwal significantly different from zero.

However literature (Campbell et al 1997) suggesés even theonditional CAPM with time-
varying covariances, betas and the market variagqaains insufficiently stock returns.
Moreover, the mean-variance CAPM require normailéyritbuted returns or quadratic utility. It
is well-known that returns are non-normal, whil@adtatic utility has the drawback of increasing
absolute risk aversion. Consequently, nonlineaetapsacing models (e.g. the three-moment
CAPM etc.) perform better. However, there is ongqere of even higher-moment CAPM. Post,
Levy, and van Vliet (2008) conclude that when w@siersion restriction is set, the implied cubic
utility function has an inverted “S” shape, whicleans that optimization might lead to a global

minimum rather than the needed maximum.
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3.5.2. Harvey and Siddique (2000a) M odel
They extend the three-moment CAPM of Kraus andelnberger (1976) to its conditional form:

_ CO0V¢—q ("1t Tm,t) _ cosky_y(Tit, Tm,t)

Et—l(ri,t) = Bit-1M1,t T Vie—1M2,t Bit-1 = var(rmg) Vit-1 = skew (o p)

3
SkeWt—l(Tm,t) = Et—l[(rm,t - Et—l(rm,t)) ]

2
COSkt—l(ri,t’ rm,t) = Et—l[(ri,t - Et—l(ri,t)) (rm,t - Et—1(7'm,t)) ]

U1 is the price of beta risk ang, ; is the price of gamma risk. Since investors prefesitive
skewness, the sign ¢f,; should be opposite to the sign of the conditiamatket skewness
skew(r,, ), because in equilibrium want to sacrifice retuon positive skewness, but would

require a premium for negatively skewed returns.

3.5.3. Fang and L ai (1997) M od€l

cov(r;, T cosk (1, 1m?) cokurt(r;, 1,,°)
i = b1Bi + bayi + b36; Bi=——"2° j= ——— = i = kurt(;m;n

var(y) skew (1)

r; IS expected excess return on assef; is the systematic betg; is the systematic skewness
and §; is the systematic kurtosis of asdetb,,b, and b; are the market risk premiums

corresponding to these risks (according to uttligoryb, < 0; by, bs > 0).
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4. Empirical Results

Initially the reader is introduced to the data sample used in this essay, after which | illustrate the
results obtained by applying the method described in the previous chapter.

4.1. Data

In the present essay | will focus on several agagesyreturn series, based on all NYSE, AMEX,
and NASDAQ stocks:

* 10 US Industry Portfolios;
* 5 quintile-based Size Portfolios;

* 10 Momentum Portfolios (value-weighted returns I0rprior-return portfolios (from (t-
12) to (t-2)).

All data is collected withmonthly frequency over the period: January 1970 — Decer2020. |
do not consider higher frequency in order to sifgpéinalysis and to avoid disturbing effects
from the possible day-of-the-week effect (Fosted aviswanathan (1993) conclude that

Mondays have higher volatility and trading costs).

| also consider a return series to represent thekehgortfolio. In order to ensure data
comparability, all the variables mentioned above extracted from the same data source, and
namely the Kenneth French data libfary

My choice of these particular portfolios is motedtby their representativeness for the economy
as a whole (the industry portfolios) and some CA#dlciencies when it comes for explaining
“the smallest market-capitalized deciles and retdrom specific strategies such as ones based

on momentunt.

Since all the series are already in returns fohare is no need for compounding. However, for
each series | use not the returns themselves hbugxcess portfolio returns over the risk-free

rate (one-month T-Bill rate from Ibbotson and Asates).

* http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data _library.html
> Harvey and Siddique (2000a)
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4.2. Summary Statisticsand JB test

Asafirst step, | analyze return seriesin order to conclude that a GARCH methodology is indeed
appropriate. As an example, the market excess returns are considered here, while table 1 in

appendix provides similar summary statistics for the other 25 portfolios.

Below | plot the market excess return along the time axis. As can be noted, there is indeed much
variability in this variable over the last 41 years (492 monthly observations) and its variance can
hardly be approximated by a constant. Intuitively, a GARCH methodology would work better in
this setting.

RM
20

10 -

10 |

-20 -

T B —————————————
1970 1975 1980 1985 1990 1995 2000 2005 2010

Further, we look at the summary statistics for this variable and formally test whether it is

normally distributed, by applying the joint Jarque-Berratest of normality®:

E[(x; — E[x])? —58.9744
skew :%: LCr 03[ ) ]: 103.8980 —0.568 negative skewness

g  E[(x; — E[x;])*] 2374.3383 _
kurt = = s - = 1884384 4861 >3 leptokurtosis

T T
JB = o skew? + T (kurt — 3)? ~ x2(2) T —no.of observations

JB =82%0.3226 + 20.5 * 3.4633 = 26.4532 + 70.9977 = 97.45

® Note: small differences between my Excel calculation and EViews values don’t affect the general conclusion and
are due to approximation and adjustment for degrees of freedom; asymptotically results must coincide
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Hy: skew~N (0;;) and kurt~N(O;2T—4) which impliesnormality
H;: non — normality

Considering a 5% significance levgf?(2) = 5.991 and obviously the null is strongly rejected
at this significance. So, market returns are notnadly distributed, being characterized by the

common features of negative skewness and excessiaur

120

Series: RM
| Sample 1970M01 2010M12
100 — Observations 492
80 Mean 0.456199
Median 0.860000
Maximum 16.05000
60 Minimum -23.14000
Std. Dev. 4.701132
40 Skewness  -0.569353
Kurtosis 4.880901
20 Jarque-Bera  99.10604
Probability 0.000000
0=

Table 1 in appendix shows that the normality hypst$ is also strongly rejected for all the 25
portfolios. As can be noted, most series have negakewness (except three industry and three
momentum portfolios). Moreover, all the series briexcess kurtosis.

Another conclusion from table 1 is that standardiaten (or variance) alone is not enough to
describe the risk-return relationship. For examplar,ables portfolio has the same mean return
as the market, but its standard deviation is mughen (6.54 compared to 4.70 for the market).
Also, Energy has a higher return thdburables, but a lower standard deviatioHitec has the
lowest mean excess return, but the highest risttgifg by variance. As a matter of fact,
accounting for the'3and 4" moments in asset pricing might be a reasonahlétiom behind the
methodology presented in the previous section. Wewat is still questionable whether this is
sufficient to fully explain the overall risk of aasset. For example, comparing the market
portfolio with Utilities, we note that they have the same mean returitittes have lower risk

judging by all three measures: Variance, Skewned<airtosis.
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4.3. Test for ARCH Effects

As mentioned in the methodology section, | applglEnest on raw excess return series. Table 2
in appendix shows results for k=5 residual lagssulsing a 5% significance level, the
corresponding chi-squared value isy?(5) = 11.07. Thus, at five lags the null (of
homoskedasticity) is rejected for most excess meteries (except 8 portfolios). Further, keeping
the same significance level and trying other lalyes, | also detected ARCH effects in four out
of these portfoliosShops (four lags, p-value=0.043R6 (one lag, p-val=0.020R7 (one lag, p-
val=0.036) and”9 (one lag, p-val=0.035). However, the remainingr fexcess portfolio returns
(Qnt2, Qnt3, Qnt4, P8) do not exhibit error autocorrelation. So, theaarignce could be roughly
approximated by a constant. However, in my analpsi®w | decided to apply the GARCH
methodology even on these returns, in order tokctiee model’s applicability to a more general
setting (because when we have a very large nunflessets, it might be cumbersome to check
for ARCH effects in each series).

4.4, Extimation of Conditional Variances and Covariances

When estimating models, | include the whole periower consideration (January 1970 —
December 2010) and do not leave the last yearfofecasting as usual, because, first, | want to
produce series of conditional covariances overwhele period and, second, the last years
incorporate the effect of the global financial iziand might be relevant in asset pricing using

higher moments.

As mentioned above, it is very important to chopseper starting values for coefficients when
maximizing the log-likelihood function. So, | estie the models in stages: first, | estimate the
mean equations alone using OLS, then use the ceeffs as starting values for the univariate
GARCH estimation, and finally use the obtained Itssas starting values for the bivariate
GARCH. Table 3 in appendix shows the estimatesddon all the three models (insignificant
coefficients at 5% level are highlighted), as wadl the corresponding log-likelihood value.
Initially, 1 will not look closely to interpretatio of coefficients, but on their overall significanc

in order to motivate the choice of the best GARGQ#¢csfication among the three proposed

models. So, for now | consider how many insignificeoefficients appear under each GARCH,
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and what is their relevance for depicting the stddportfolios. As can be noted, each model
generates quite consistent conclusions acros®gfiopos. Thus, almost all coefficients for the
first GARCH are highly statistically significant (under 1 %d only two portfolios Durables
andLow) have insignificant intercepts. Also we can ndtat teven the four portfolios which did
not exhibit ARCH effects under Engle te€dnf2, Ont3, Qnt4, P8) have highly significant
coefficients. It follows that this modeling proceduorks even for assets, whose variance can
be approximated by a constant.

Intercepts estimated through the GARCH can bepné¢ed as the long-run mean return on each
portfolio. So, we can compare them to mean retprasented in table 1. Since these figures are
quite close to each other, the first model seendeszribe well the portfolio returns. However,
by also looking at the intercepts in the second rmeguation, we conclude that the model
slightly overestimates the long-run market returecause almost all intercepts are higher than
0.46.

In order to make results more clear, for the secmd the third model specifications, | do not
present p-values, but just highlight the insigmifit coefficients under 5% level. This is because
below I will motivate my choice of the first modat the best to describe the data. However,

these missing p-values are available upon request.

Looking at the results of theecond GARCH, we conclude that including the market excess

return into the first mean equation makes mostintercepts insignificant at 5% level, while
the estimated coefficient for the market returmsuout highly significant for most portfolios
(consistent with CAPM theory, because regressingpgx asset returns on the market excess
return, the intercept shows mispricing and showdrsignificant in a time-series regression).
Here also, the intercept in the second mean equatightly overestimates the mean market
return. Additionally, omega(2) is insignificant fonost portfolios, and taking account that it
determines the intercept of covariance equatiaretseems to be no long-run trend component

in covariance series.

Making an overall comparison between coefficieduea for the first two models, we conclude
that there is not much change in them. As mentiporibd portfolio’s intercept becomes

insignificant, being totally captured by the markekcess return factor. Also due to
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insignificance of omega(2), it has an increasinfpafon omega(3). So, in conclusion, the

variance and covariance equations do not changé aueross these two models.

In the third model, | include conditional variande® the mean equations (building a GARCH-
M similar to Harvey and Siddique). As can be sekair coefficients turn out insignificant for
most of the portfolios, which implies very weak &mtory power for these factors. This result
might be attributed taggregation criteria, because Harvey and Siddique (1999) mention that
this factor, together with dateequency andseasonality, could have impact on results. As many
insignificant estimates produce noise in the mobdidave out this last GARCH and focus only

on the first two ones.

In order to choose the best specification, | ugdi®ihood ratio (LR) test, because GARCH 1
can be considered a restricted version of GARCHIEN the market coefficient is set to zero.
So, we can test whether the imposed restricticupported by the data. The hypotheses we set
are:

Hy: ay; = 0 (coefficient of market return) Hi:a;; #0
LR = =2(logL* — logL) ~ x?(1)

We have one restriction, because only one coeffficiethe first mean equation is set to zero. So,
considering a 5% significance level, | compare ¢bmputed LR value tg?(1) = 3.841. The
test results are illustrated in appendix (tableTéus, for most portfolios (except 4 on€xher,
Hi20, P3, High) the null cannot be rejected, implying that thetrietion is supported by the
datd. So, | decided to choose the most parsimoniouseimbe. the first GARCH.

Next, we look closer at coefficients of this choseodel. Table 5 in appendix presents its final
GARCH coefficients, which follow directly from thBEKK’s multiplication rules. In the final

columns (columns 2,3,4 counting from the rightloé table) | computed the sum of ARCH and
GARCH coefficients for each variance-covarianceatigm, in order to show that the model is
not “explosive” (stationarity), because each sures$s than one. Consistent with conclusions in

Harvey and Siddique (1999), | find high persisteiceonditional variance (and covariance),

”In some cases | got negative LR, which can be explained by the fact that sometimes the distribution of the test
statistic is complicated, being a combination of chi-square
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because the coefficiengs ; , B1m . B1,im are greater than 0.75 for most portfolios. For amrig
portfolio (Low) these coefficients are substantially lower, iatiitg weaker volatility
persistence. Theoretically, the coefficiegy, Bom, B1,m and B,y must be the same across
all portfolios, because they describe the same naeanvariance equations for market excess
return, but combined with different portfolios. Hewver, looking at their values in table 5, we
can note differences although for every portfolgtimation starts with the same initial values
coming from the univariate GARCH. For this reasgpidtted all conditional market variances
resulting from different portfolios within the sangeaph to compare their behavior over time.
The graph below shows results (Note: all the ptbsteries are variances for market portfolio, but

the names of series in the legend simply denot&#eCH model to which they belong).
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As can be noted all the lines nearly coincide, Whgca normal result and proves comparability
for our models. The line that departs mostly frdra others is “Durbl”, and for this reason this
market variance is not quite reliable for furthesting. So, to further represent market variance |
chose the portfolio “Other”, because as shown beatolaas most similarities with the market

return variability, and that is why | consider ibra trustworthy.
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The value offg; » = 0.8062 for portfolio “Other” shows that market volatilityy one period
consists of 81% of its value from the previous @er{high persistency). The remaining 19%
represent news entering the market. So, agentsaplymground their expectations on the

historical data, which is quite convenient for frasting future volatility.

Now, | consider coefficient$,; and By, which represent in each portfolio’s variance and
covariance respectively. The values of these ettsnalso show high dependence on past
information for most portfolios (over 70%). Consist with previous research, some momentum
returns are most difficult to explain and as a eguence they are characterized by the lowest
coefficients:Low, P3, P7 andHigh.

Another conclusion resulting from table 5 is tf5gl;, Bo» andpfy;u (representing intercepts in
variance-covariance equations) are all positived (am mentioned before highly significant).
These positive values are intuitive, because thggeast that there always exist a long-run trend
in variances and covariances, i.e. there is sonavaidable positive risk in each portfolio.
However, the absolute value of these coefficieatsnot be always used to compare risk across
portfolios. We can only judge about the riskinegsan asset after also taking account of
previously analyzed persistency coefficieis; , B1m . B1im- FOr example, portfolid.ow has
highest intercepts, but lowest persistency coeffits. Thus, the overall risk (represented by

variance and covariance) might happen to be corbfgata other industry portfolios (and not
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necessarily higher). This is an obvious result ttughe large number of coefficients estimated
under the BEKK model, and also imposing the add#laestriction to have a positive definite
variance-covariance matrix. Thus, | consider adpettay to compare riskiness of different
portfolios is to benchmark their mean returns (néerceptsx, ;) against the market mean return
ay m, because the highest return is expected to be assdonith higher risk. As mentioned
above, equations for market excess return diffgghy from each other, but that does not
impact the overall market volatility. So, to compaoortfolios, in the last column of table 5, |
compute the ratio between each portfolio interaapd the corresponding intercept for market
excess return. If the ratio is higher than uniyattportfolio is riskier than the market, otherwise
(if ratio is less than one) it is less risky. Theatios are also comparable across portfolios,
because the market mean return is a common benkHaraall of them. In addition, comparing
them to Mean returns from table 1, we can note they suggest similar conclusions across
portfolios.

So, analyzing these ratios, we conclude that jugioyn mean returns the riskiest portfolios are:
High, P8, Energy, Ont2 and Qnt3. The lowest risk is typical of portfolibow, which also has
insignificant intercept in our GARCH model, while table 1 it was the only asset to have a
negative mean return (also possibly not statisyichfferent from zero).

The next step is to estimate another model, whithpnoduce series of conditional skewness
and kurtosis.

4.5. Estimation of Conditional Skewness and Kurtosis

As mentioned above, | use Leon, Rubio and Sern@3j2@odel to compute series of conditional

third and fourth moments:

T‘t =w+ Et £t~(0, htlﬂt—l)

1
& = h2n, n:~(0; 1) Eceim®)=s:  Er(e*) =kt

he = Bo + Pref-1 + Bahe—1

26



St = Yo + Vi1 + VaSt-1
ke = 8o + 81n¢-1 + 82k¢—4

As can be noted, conditional variance is computeskt on usual residuals from the model, but
the conditional third and fourth moments are edtiausing standardized errors. To ensure
comparability between this model and the previoustyimated BEKK, | set the variance
equation coefficients to their estimated valuesagighe BEKK model. Initial skewness and
kurtosis are set to their unconditional sample @alaver the first three years (Jan 1970 — Dec
1972), because skewness and kurtosis change adogdhe studied period and it would be

more precise to use their values over a smallepkam

To maximize the log-likelihood function, which igny non-linear, | tried different initial values
for coefficients (with 0.1 increments) and the omesviding maximum likelihood value are
shown in appendix (table 6), together with the egponding estimation results. As before p-
values are shown in brackets. Imposing the necgssmtrictions on parameters, | get a

stationary model.

Looking at the skewness equation’s intercepts, areclade that for seven portfolios they turn
out insignificant at 5% level, which implies no tprun trend component in skewness for the
portfolios: Enrgy, HIth, Qnt4, Low, P4, P6 andP9. So, these assets’ skewness is only influenced
by past period’s asymmetry and news in the curpemiod. Also, two garch terms (skewness
equation forP7 and kurtosis eq. fddtils) are insignificant. For the rest, the coefficiestimates
are highly significant.

The last two columns show averages of each estimsdeies of conditional skewness and
kurtosis. Comparing them to the unconditional thardl fourth moments from table 1, we can
conclude that this model captures quite well theabaity of skewness and kurtosis over time

and across assets.

Analyzing estimated values fgr, and §,, we note that there is less persistence in thid a
fourth moment over time compared to previouslyneated variances and covariances. These
coefficients range from 0.5 to 0.8, which impligsitt 50-80% of current period skewness and

kurtosis is still due to their values in the pastipd. Also, coefficienty, and§; showing the
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skewness and kurtosis part attributable to erroes iinovations to the market) is higher. As
expected, all kurtosis intercepts are positiveahse they show the long-run component which is
independent on previous information. For skewnegsaon, some intercepts turn negative,
while others positive, which is normal taking acebwhat most portfolios exhibit negative

skewness in table 1.

4.6. Pricing of Risk Factorsin a Time-Series Regression

Before proceeding to test how the first four moreeate priced in return series, | examine
correlations between conditional covariances, (@ymess and (co)kurtosis (table 7). First, it
should be noted that covariance is more correlaféid co-moments (co-skewness, co-kurtosis)
rather than conditional moments (skewness, kupto$is avoid spurious results, in the time-
series regression | test the pricing of skewnesk lkamtosis instead of co-skewness and co-
kurtosis with the market. A second conclusion iatthconsistent with previous research,
(co)kurtosis exhibits high (but not perfect) coatedn with conditional covariance. So, either
kurtosis should be excluded from the study, or \ae apply principal component analysis to
build independent factors out of the conditionadosel and fourth moments, or we can use the
pricing errors from the second and third return raota to regress on kurtosis. To choose among
these options, | regressed portfolio returns onditmmal kurtosis alone. The results are not
presented in appendix, but they show that for nmmtfolios kurtosis risk is not priced.
Significant coefficients (under 10%) appear only $tx assetsEnrgy, Low, P2, P3, P4, P5. So,

by applying principal components we risk includimgelevant information in the model and
producing noise. However, excluding this variabienf the analysis might skip a potentially
relevant risk factor for the six portfolios mentezhabove. Thus, | decided to test kurtosis pricing
only for these six portfolios, based on errors &dter otherstatistically significant factors (i.e. if

no coefficient from the previous regression is digant, | regress the initial excess portfolio
return on kurtosis alone). The first three colunmable 8 show results from regressing excess
returns on conditional covariance and skewness.nexé column presents coefficient estimates
for kurtosis based on pricing errors from the firgbdel. Then, the last two columns illustrate

coefficients from a model based only on covariance.
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As can be noted, from all 25 portfolios, after takaccount of covariance risk, the fourth return
moment has no more explanatory power, except fer assetEnrgy. However, this unique
significant coefficient on kurtosis might appearcasionally and not be representative for
pricing assets. We should also note that it evers admt have the needed sign, because in theory
there should be a positive relation between retants the fourth moment (“fatter tails” imply
more risk and require a higher return compensati@ssides that the other five kurtosis
coefficients are insignificant at 10% level, theigns are also inconclusive, because some are
positive, others negative. According to these tssin a time-series regression kurtosis risk has

no pricing power after accounting for the secortdrremoment.

Next, | consider the covariance-based model inaketwo columns of table 8. As can be noted
this risk is priced for the market returns (in them of conditional variance), as well as 15 other
portfolios. Insignificant coefficients appear foouf high-momentum portfoliosPf, P8, P9,
High), the highest quintile when sorting assets by @#20), as well as five industry portfolios
(Energy, Hitech, Health, Telecommunications and Utilities). The results for momentum
portfolios are consistent with previous findingattthere might appear difficulties in pricing this
group of assets. However, for the portfolios fornigdsize, | obtained quite opposite results,
because it is not the lowest-cap assets that aldgunatic to explain, but on the contrary — the
highest quintile. That might be explained intuitiveif we assume that investors associate
highest cap companies with more financial healtth #ous lower risk, no matter of the size of
their covariance with the market return. It shob&noted that all covariance coefficients have
the expected positive sign (the higher risk meabkusg covariance, the higher must be
compensation as returninterestingly, all intercepts for portfolios wheosvariance risk is
priced, are negative, implying that investors atcemre covariance risk than they are
compensated for. Additionally, five assets withcpd second return moment still have

significant intercepts, showing that there is mispg left to be explained by other risk factors.

Finally, I look at the first three columns in tab8 which show results after additionally
including skewness into the model. Here covariaigleis priced for the same portfolios as in
the previous regression, which shows consistencsesalts. Overall, conditional skewness is
priced for eight assets and the market return.tidse significant coefficients have a positive

sign, although by theory gamma should be negaByealso looking to other assets where the
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skewness coefficient turned out insignificant, wadude that for only five portfolios the sign is
negative. This leads to conclusion that skewness gimilar to kurtosis is not accounted by
investors, because it has a significant slope cariglomly, and its sign is not the expected one.
As a matter of fact, | come to the same conclusieifruertes, Miffre and Tan (2009) (although
by a different model), and namely that higher netonoments are priced only in theory, while in
financial markets return compensation primarily esnfor accepting variance (covariance) risks.
A second conclusion is that there should exist rotisk factors to be priced in the market,
because a great part of returns still remains ua@ex. This last point is a motivation for

further research, in order to identify and testgheing of some different factors.

4.7. Cross-Sectional Analysis

| also perform a cross-sectional analysis by regyngs average yearly returns on yearly
conditional betas, gammas and deltas. Since, slewvia@d kurtosis risks are especially
noticeable during crises, | focus my analysis antthio most recent crises: the dot-com bubble
(2001, 2002) and the last financial crisis (2000920 together with the years following them

(2003, 2010). Table 9 in appendix shows the resilthe respective regressions (insignificant
coefficients at 10% level are highlighted). Inityalve consider the correlations between betas,
gammas and deltas in the last three columns. Abearen there are only two highly correlated
series corresponding to years 2009 and 2010. Tl &purious results, when | test the last two

regressions | only include three moments in the RIA@sts.

Now, we compare R-squared measures of the condittaro-moment CAPM (the middle three
columns) with the same measure for a four-momerK2Aresented in the initial columns. For
all years except 2010, the four-moment CAPM hagebetxplanatory power, because it is
associated with a higher R-squared. However, tteete only marginal for 2008 and there is no
rise in R-squared at all for 2010. Moreover, fothbthese years neither gamma nor delta risk is

priced. So, in most years the four-moment CAPMetdr than its two-moment version.

As expected, beta risk premium is significant @&clevel) for all years except 2001 (and 2007
in the four-moment CAPM when gamma premium provesenimportant). Another conclusion

is that in periods of crises (2001-2002, 2007-200@) risk premium for beta is negative or
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insignificant, while for calm periods it is posiv This result is intuitive taking account that

crises are characterized by negative returns fat stocks.

Looking at the gamma risk premiums we note thay #re insignificant for all series except year
2007, when the estimated premium is negative. 3igis is intuitive taking account that this year

was characterized by financial turmoil, which ingglia negative risk premium.

A third important conclusion is that kurtosis riskmore important in cross-sectional tests than
skewness, because it has more significant coaft&id his finding is consistent with Brooks et
al (2002). However, the sign for delta risk premiisnmegative for all the series which is against
the arguments presented by Fang and Lai (199impltes that investors behave irrationally and
prefer more kurtosis to less. This may be due ® féct that kurtosis risk is still much
underestimated in markets during periods of crigeglying an insufficient return compensation

for this risk.
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5. Conclusion

5.1. Concluding remarks

Consistent with Harvey and Siddique (1999), | fimgh persistence in conditional variance (and
covariance) series. So, agents primarily ground thek expectations on the historical data,
which is quite convenient for forecasting futurdatitity. The lowest persistence coefficients are
typical of some momentum portfoliosdw, P3, P7 andHigh), which confirm previous findings
that these portfolios are more difficult to explator conditional third and fourth moments | find
less persistence compared to variances. Howeve80%®-of current period skewness and
kurtosis is still due to their values in the pastipd. Conditional kurtosis is highly correlated
with the second return moment, and due to thaingb no new explanatory power into the time-
series CAPM tests. Overall, time-series regresswinshe four-moment CAPM reveal that
conditional skewness and kurtosis are priced oplyntaneously and their coefficients don'’t
have the expected sign in most of the cases. Highrditional moments remain important only
in theory, while in financial markets return compation primarily comes for accepting variance
(covariance) risks. | also obtain significant ictgts (measures of mispricing), suggesting that
other risk factors with substantial explanatory powhould exist, which is a motivation for

further research.

Testing the four-moment CAPM cross-sectionally ®mn crises periods), | conclude that
compared to time-series regressions, here kuntis$iss priced in most of the years, but its risk
premium has the opposite sign than expected (negask premium). Investors prefer more
kurtosis to less and accept a lower return compiemsgor portfolios exhibiting excess kurtosis.
This may be due to the fact that kurtosis riskti$ siuch underestimated in markets during
periods of crises. Skewness risk is still insigrafitly priced in cross-sectional CAPM. But
altogether in cross-sectional tests, CAPM versiaosounting for the third and fourth return

moments perform better than their two-moment capatés.
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5.2. Possible Extensions

As mentioned above, significant intercepts in tiseeies tests of the conditional CAPM suggest
that additional risk factors besides covarianceukhexist to explain better portfolio returns. So,
a potential extension of the present study mighugoon testing the significance of a different
group of factors. Another extension could consitle out-of-sample performance of the
presented models for estimating time-varying moméihis essay considered only the in-sample

results).
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Appendix

Table 1. Summary Statistics for Excess Portfolio Returns Table 2. Engle Test for ARCH Effects

The table presents main descriptive statistics (me@ximum, minimum, standard deviation, The table shows results for Engle’s tesARICH effects (in column four

unconditional sample skewness and kurtosis, argli@aBerra test value) for the studied 25 excess | assumed k=5 lags, but for the eight pdidfowith insignificant test value

US portfolio returns (10 industry portfolios, 5 gtiie-based portfolios formed by size and (are highlighted), | also tried otleeg values, and in case of a lower p-value

10 momentum portfolios), along with the market fmio. this is shown ir tlast column together with the corresponding alge).
Mean | Max | Min | Std dev | Skew | Kurt JB | p-val TR? | x%(5) | p-val | p-val (other k)

Rm 0.46 | 16.05 | -23.14 470 | -0.57 | 4.88 | 99.11 0 Rm 15.43 0.009

Durables 0.46 | 42.91 | -32.97 6.54 | 0.12 | 8.20 | 556.21 0 durbl 13.46 0.020

Energy 0.72 | 23.33 | -19.10 561 | 0.01 |4.28| 33.75 0 enrgy 17.80 0.003

HiTech 0.44 | 20.02 | -26.54 6.97 | -0.20 | 4.01 | 24.34 0 Hitec 69.30 0

Health 0.53 | 29.07 | -21.07 5.11 | 0.07 | 5.52 | 131.04 0 hith 20.83 0.001

Manufacturing 0.54 | 17.77 | -27.92 5.20 | -0.52 | 5.53 | 153.22 0 manuf | 11.23 0.047

Non-durables 0.65 | 18.15 | -21.63 451 | -0.32 | 5.04 | 93.66 0 nodur 16.26 0.006

Shops 0.56 | 25.22 | -28.91 5.52 | -0.30 | 5.21 | 107.18 0 shops 9.88 0.080 | 0.043 (4 lags)

Telecommunications 0.48 | 21.98 | -15.97 492 | -0.16 | 4.17 | 30.40 0 telcm 51.82 0

Utilities 0.46 | 18.22 | -12.94 421 | -0.13 | 3.96 | 20.52 0 utils 40.27 0

Other 0.45 | 19.65 | -24.28 549 | -0.48 | 4.84 | 87.93 0 other 31.98 0

Lo20 0.62 | 27.27 | -30.23 6.49 | -0.23 | 5.43 | 125.72 0 lo20 11.32 0.045

Qnt2 0.66 | 24.44 | -29.84 6.10 | -0.54 | 5.06 | 110.64 0 qnt2 4.56 11.07 0.472

Qnt3 0.65 | 22.01 | -27.64 5.61 | -0.58 | 5.07 | 115.31 0 qnt3 4.00 0.549

Qnt4 0.62 | 19.68 | -25.80 5.33 | -0.51 | 4.95| 98.75 0 qnt4 8.21 0.145

Hi20 0.42 | 17.57 | -20.92 451 -0.39 | 457 | 62.88 0 hi20 22.42 0

Low -0.30 | 45.76 | -26.18 855 | 0.70 | 7.14 | 391.09 0 low 145.18 0

P2 0.26 | 35.65 | -25.00 6.61 | 0.22 | 5.88 | 173.81 0 p2 62.81 0

P3 0.43 | 34.04 | -23.45 5.67 | 0.31 | 6.50 | 258.42 0 p3 35.36 0

P4 0.48 | 21.49 | -19.24 5.06 | -0.15 | 495 | 79.89 0 p4 45.05 0

P5 0.37 | 20.81 | -22.09 4.69 | -0.29 | 5.14 | 100.97 0 p5 42.18 0

P6 0.45 | 16.05 | -24.38 476 | -0.42 | 5.35 | 127.18 0 p6 9.35 0.096 0.020 (1 lag)

P7 0.52 | 18.39 | -24.89 457 | -0.50 | 5.74 | 175.14 0 p7 6.29 0.279 0.036 (1 lag)

P8 0.68 | 18.42 | -21.06 464 | -0.34 | 489 | 82.40 0 p8 6.418 0.268

P9 0.68 | 20.87 | -26.87 5.03 | -0.61 | 5.84 | 195.60 0 p9 6.385 0.271 0.035 (1 lag)

High 1.00 | 22.67 | -27.34 6.37 | -0.45 | 497 | 96.27 0 high 12.60 0.028




Table 3. Estimation Results for the Three Proposed GARCH Specifications

The tables below show estimation results for the three proposed BEKK models tested on 25 portfolios. By definition these models set restrictions in order to get
positive semi-definite covariance matrix; so, iast®f the original coefficients mentioned in theagstext, we estimate others, whose multiplicatidas are shown
below (after choosing the suitable model, | alsgspnt the original coefficients mentioned in theagk

_ _ _ 2 _ p2 _ 2
Qo; = mu, Qoy = MU, Boi = w1 B1i = B1 B2i = aj

_ 2., .2 _ p2 _ 2 _ _ _
Bom = 03 + w3 Bim = B2 Bau = a3 Boim = w1 * w3 Biim = B1* B2 B2im = a1 x a,

All p-values are from a two-sided test and are shown in brackets, insignificant coefficients at 5% are highlighted to follow easier the conclusions. For models
2 and 3, | do not present p-values, but simply highlight insignificant coefficients, because, as shown below, | chose the first model specification.

GARCH 1 mu, | a ‘az,i‘ mu, ‘aZ.M w4 | Wy | w3 | aq | a ‘ B1 | B2 ‘LOEL
Mean eq. (p-values* in brackets) Var-Cov eq. (p-values in brackets)

Durables 0.4819 | - - 0.5647 | - 1.6532 | 1.2497 | 0.5027 | 0.3481 | 0.1967 | 0.9082 | 0.9362 | -2757.60
(0.076) (0.006) (0) (0) (0) (0) (0) (0) (0)

Energy 0.8071 | - - 0.5279 | - 1.3103 | 0.7373 | 0.8144 | 0.2612 | 0.3140 | 0.9362 | 0.9235 | -2826.64
(0) (0.007) (0) (0) (0) (0) (0) (0) (0)

HiTech 0.5342 | - - 0.5462 | - 1.3897 | 0.9124 | 0.4993 | 0.2865 | 0.2978 | 0.9357 | 0.9301 | -2695.58
(0.045) (0.004) (0) (0) (0) (0) (0) (0) (0)

Health 0.6066 | - - 0.5391 | - 1.3917 | 0.8239 | 0.6004 | 0.3327 | 0.2855 | 0.9063 | 0.9349 | -2694.58
(0.005) (0.004) (0) (0) (0) (0) (0) (0) (0)

Manufacturing 0.5765 | - - 0.5259 | - 1.3262 | 1.1256 | 0.3652 | 0.2874 | 0.2952 | 0.9272 | 0.9237 | -2386.48
(0.009) (0.007) (0) (0) (0) (0) (0) (0) (0)

Non-durables 0.6890 | - - 0.5282 | - 0.9495 | 0.8550 | 0.4912 | 0.3164 | 0.3282 | 0.9275 | 0.9248 | -2519.55
(0) (0.006) (0) (0) (0) (0) (0) (0) (0)

Shops 0.5971 | - - 0.5642 | - 1.2940 | 0.9490 | 0.5430 | 0.3129 | 0.3110 | 0.9255 | 0.9223 | -2623.61
(0.009) (0.003) (0) (0) (0) (0) (0) (0) (0)

Telecommunications | 0.6007 | - - 0.5381 | - 0.9532 | 0.7765 | 0.6674 | 0.2845 | 0.3385 | 0.9393 | 0.9197 | -2683.53
(0.002) (0.004) (0) (0) (0) (0) (0) (0) (0)

Utilities 0.5948 | - - 0.5096 | - 0.9878 | 0.7041 | 0.9241 | 0.2715 | 0.2826 | 0.9291 | 0.9286 | -2705.18
(0) (0.012) (0) (0) (0) (0) (0) (0) (0)

Other 0.6744 | - - 0.6088 | - 1.6201 | 1.3165 | 0.4222 | 0.3643 | 0.3454 | 0.8901 | 0.8979 | -2406.27
(0.004) (0.002) (0) (0) (0) (0) (0) (0) (0)

Lo20 0.7869 | - - 0.7059 | - 1.5922 | 1.0637 | 0.3780 | 0.2501 | 0.3632 | 0.9390 | 0.9101 | -2738.57
(0.007) (0) (0) (0) (0.010) | (0) (0) (0) (0)

Qnt2 0.8710 | - - 0.6641 | - 1.4695 | 1.0611 | 0.3524 | 0.2516 | 0.3228 | 0.9401 | 0.9213 | -2599.12
(0.002) (0.001) (0) (0) (0) (0) (0) (0) (0)




Qnt3 0.8688 | - - 0.6502 | - 1.3387 | 1.1138 | 0.3205 | 0.2486 | 0.2963 | 0.9410 | 0.9251 | -2451.10
(0.001) (0.002) (0) (0) (0) (0) (0) (0) (0)

Qnt4 0.6833 | - - 0.5410 | - 1.0850 | 0.9571 | 0.1926 | 0.3040 | 0.3266 | 0.9361 | 0.9290 | -2244.60
(0.004) (0.009) (0) (0) (0) (0) (0) (0) (0)

Hi20 0.5268 | - - 0.5699 | - -1.7437 | -1.7309 | -0.2881 | 0.3263 | 0.3067 | 0.8602 | 0.8739 | -2006.14
(0.009) (0.007) (0) (0) (0) (0) (0) (0) (0)

Low 0.0860 | - - 0.7554 | - 3.2590 | 3.1406 | 1.1078 | 0.5192 | 0.4043 | 0.7503 | 0.5863 | -2836.23
(0.776) (0.001) (0) (0) (0) (0) (0) (0) (0)

P2 0.5910 | - - 0.7177 | - 1.7382 | 1.2245 | 0.5852 | 0.4890 | 0.3739 | 0.8399 | 0.8874 | -2657.33
(0.007) (0) (0) (0) (0) (0) (0) (0) (0)

P3 0.6058 | - - 0.6196 | - 1.6341 | 1.2771 | 0.4188 | 0.4978 | 0.3813 | 0.8310 | 0.8865 | -2538.17
(0.001) (0) (0) (0) (0) (0) (0) (0) (0)

P4 0.5398 | - - 0.5502 | - 1.5485 | 1.5030 | 0.4566 | 0.4384 | 0.3431 | 0.8544 | 0.8804 | -2431.54
(0.004) (0.004) (0) (0) (0) (0) (0) (0) (0)

P5 0.5211 | - - 0.6318 | - 1.3581 | 1.3336 | -0.4342 | 0.3969 | 0.3453 | 0.8797 | 0.8953 | -2359.46
(0.006) (0.001) (0) (0) (0) (0) (0) (0) (0)

P6 0.5297 | - - 0.5439 | - 1.0694 | 1.0707 | 0.3314 | 0.3272 | 0.3052 | 0.9241 | 0.9253 | -2344.05
(0.007) (0.005) (0) (0) (0) (0) (0) (0) (0)

pP7 0.6620 | - - 0.6006 | - 1.8674 | 1.5716 | 0.5172 | 0.3282 | 0.3711 | 0.8601 | 0.8646 | -2363.53
(0.001) (0.002) (0) (0) (0) (0) (0) (0) (0)

P8 0.6833 | - - 0.4949 | - 1.5117 | 1.2302 | 0.3766 | 0.3145 | 0.3560 | 0.8965 | 0.8995 | -2365.00
(0) (0.009) (0) (0) (0) (0) (0) (0) (0)

P9 0.5450 | - - 0.4435 | - 1.1913 | 1.1177 | 0.3364 | 0.3220 | 0.3848 | 0.9226 | 0.8956 | -2441.77
(0.007) (0.007) (0) (0) (0) (0) (0) (0) (0)

High 1.0516 | - - 0.5736 | - 2.5869 | 1.4410 | 0.7162 | 0.4351 | 0.3978 | 0.8148 | 0.8595 | -2675.73
(0) (0.003) (0) (0) (0) (0) (0) (0) (0)

GARCH 2 mu, | al’i | az’i | mu, | az'M wq (O} w3 | aq | a, | Bl | ﬂz | I_OgL
Mean equation Var-Cov equation

Durables 0.2113 | 0.4587 | - 0.5589 | - 1.1041 | 1.1306 | 0.9479 | 0.3693 | 0.1974 | 0.9089 | 0.9268 | -2759.15

Energy 0.5350 | 0.4862 | - 0.5294 | - 1.0080 | 0.3625 | 1.0475 | 0.2623 | 0.3141 | 0.9381 | 0.9228 | -2826.80

HiTech -0.1107 | 1.1760 | - 0.5448 | - 0.6481 | 0.0697 | 1.0481 | 0.2722 | 0.3163 | 0.9413 | 0.9244 | -2695.40

Health 0.2043 | 0.7410 | - 0.5255 | - 0.8319 | 0.1462 | 0.9387 | 0.3164 | 0.2878 | 0.9169 | 0.9382 | -2695.55

Manufacturing 0.0747 | 0.9502 | - 0.5278 | - 0.4408 | 0.4309 | 1.1058 | 0.2872 | 0.2957 | 0.9273 | 0.9234 | -2386.15

Non-durables 0.1499 | 1.0135 | - 0.5277 | - 0.5422 | -0.3088 | 0.8229 | 0.3285 | 0.3210 | 0.9203 | 0.9326 | -2518.86

Shops -0.0954 | 1.2340 | - 0.5284 | - 0.7082 | -0.2952 | 0.9329 | 0.2940 | 0.3341 | 0.9273 | 0.9240 | -2622.78

Telecommunications | 0.0674 | 0.9659 | - 0.5250 | - 0.6501 | -0.3798 | 1.0147 | 0.2755 | 0.3376 | 0.9422 | 0.9170 | -2682.79

Utilities 0.1024 | 0.9774 | - 0.5045 | - 0.8961 | -0.7658 | 1.0537 | 0.2748 | 0.2645 | 0.9350 | 0.9238 | -2703.70




Other -0.0289 | 1.1684 | - 0.5634 | - 0.5728 | -0.2690 | 1.0367 | 0.4103 | 0.3049 | 0.8606 | 0.9281 | -2403.53
Lo20 -0.6554 | 2.0691 | - 0.6334 | - 1.3797 | -0.9669 | 0.7206 | 0.3392 | 0.2637 | 0.9097 | 0.9305 | -2737.91
Qnt2 -0.3583 | 1.8439 | - 0.6383 | - 0.9622 | -1.0135 | 0.7760 | 0.3275 | 0.2528 | 0.9167 | 0.9285 | -2598.58
Qnt3 -0.0673 | 1.4243 | - 0.6419 | - 0.5236 | -0.7199 | 1.0572 | 0.2995 | 0.2697 | 0.9291 | 0.9240 | -2451.57
Qnt4 0.0059 | 1.2563 | - 0.5300 | - 0.2606 | -0.7345 | 1.0379 | 0.3442 | 0.2582 | 0.9284 | 0.9276 | -2243.97
Hi20 -0.0274 | 0.9688 | - 0.5187 | - 0.4510 | -0.3259 | 0.8294 | 0.3702 | 0.3342 | 0.7390 | 0.9284 | -2002.45
Low -0.0494 | 0.9114 | - 0.5734 | - 1.8545 | 0.6593 | 1.2215 | 0.6297 | 0.2466 | 0.7141 | 0.9213 | -2841.46
P2 0.0533 | 0.7529 | - 0.6995 | - 0.9569 | 0.6956 | 1.1660 | 0.5827 | 0.3292 | 0.8041 | 0.9003 | -2657.50
P3 0.2673 | 0.5381 | - 0.6129 | - 1.0133 | 1.0232 | 0.7454 | 0.5554 | 0.3461 | 0.8023 | 0.9030 | -2534.56
P4 0.2597 | 0.4931 | - 0.5265 | - 0.9087 | 1.3006 | 0.8284 | 0.4871 | 0.3100 | 0.8334 | 0.8911 | -2431.16
P5 -0.0161 | 0.8526 | - 0.5608 | - 0.5238 | 0.2077 | 1.1642 | 0.4647 | 0.3093 | 0.8415 | 0.9198 | -2359.51
P6 -0.0270 | 1.0290 | - 0.5155 | - 0.3502 | -0.2190 | 1.0410 | 0.3263 | 0.3126 | 0.9224 | 0.9266 | -2345.18
P7 0.0007 | 1.0766 | - 0.5943 | - 0.6777 | -0.4124 | 1.1154 | 0.4214 | 0.2989 | 0.8295 | 0.9212 | -2364.23
P8 0.0363 | 1.2815 | - 0.4759 | - 0.5951 | -1.0820 | 1.0760 | 0.3834 | 0.2851 | 0.8907 | 0.8992 | -2367.43
P9 0.2456 | 0.6726 | - 0.4412 | - 0.5669 | 0.9528 | 0.7598 | 0.3000 | 0.4231 | 0.9332 | 0.8810 | -2445.90
High 0.5353 | 0.9005 | - 0.5440 | - 1.5304 | 0.6022 | 1.0069 | 0.4948 | 0.3487 | 0.7619 | 0.9078 | -2673.47
GARCH 3 muy ey | @y | mu, | apm w, | w, | w3 | & | a | B | B |loal
Mean equation Var-Cov equation
Durables -0.5829 | - 0.0236 | 0.1514 | 0.0276 | 2.0571 | 2.5874 | 0.0028 | 0.3382 | 0.3921 | 0.8901 | 0.7450 | -2752.43
Energy 0.7140 | - 0.0048 | 0.1566 | 0.0197 | 1.3182 | 0.7544 | 0.8332 | 0.2622 | 0.3118 | 0.9357 | 0.9224 | -2825.64
HiTech 0.3117 | - 0.0065 | 0.4452 | 0.0066 | 1.4084 | 0.9290 | 0.5045 | 0.2880 | 0.2988 | 0.9345 | 0.9293 | -2695.21
Health 0.9164 | - -0.0113 | 0.2076 | 0.0159 | 1.3828 | 0.8375 | 0.6126 | 0.3368 | 0.2882 | 0.9060 | 0.9329 | -2691.85
Manufacturing 0.2155 | - 0.0158 | 0.2156 | 0.0168 | 1.3470 | 1.1468 | 0.3726 | 0.2899 | 0.2966 | 0.9254 | 0.9218 | -2385.70
Non-durables 0.5269 | - 0.0104 | 0.3647 | 0.0101 | 0.9548 | 0.8645 | 0.4951 | 0.3179 | 0.3288 | 0.9272 | 0.9239 | -2519.28
Shops 0.1985 | - 0.0138 | 0.6283 | -0.0019 | 1.3026 | 0.9515 | 0.5426 | 0.3126 | 0.3172 | 0.9246 | 0.9219 | -2621.76
Telecommunications | 0.5357 | - 0.0036 | 0.4708 | 0.0039 | 0.9552 | 0.7792 | 0.6739 | 0.2855 | 0.3364 | 0.9380 | 0.9198 | -2683.51
Utilities 0.6692 | - -0.0037 | 0.2487 | 0.0130 | 0.9918 | 0.7188 | 0.9394 | 0.2712 | 0.2813 | 0.9309 | 0.9278 | -2704.72
Other 0.5284 | - 0.0071 | 0.3346 | 0.0150 | 1.6255 | 1.3320 | 0.4272 | 0.3648 | 0.3458 | 0.8888 | 0.8952 | -2404.86
Lo20 -0.9200 | - 0.0428 | 0.4909 | 0.0092 | 1.6372 | 1.0343 | 0.3761 | 0.2671 | 0.3736 | 0.9328 | 0.9092 | -2732.81
Qnt2 -0.9741 | - 0.0516 | 0.3544 | 0.0147 | 1.4725 | 1.0494 | 0.3407 | 0.2666 | 0.3376 | 0.9361 | 0.9184 | -2593.24
Qnt4 -0.2593 | - 0.0358 | 0.1045 | 0.0215 | 1.0870 | 0.9666 | 0.1867 | 0.3062 | 0.3306 | 0.9351 | 0.9274 | -2234.85
Hi20 0.0024 | - 0.0309 | -0.2289 | 0.0411 | -1.8831 | -1.9828 | -0.3441 | 0.3427 | 0.3285 | 0.8396 | 0.8399 | -1997.91
Low -0.5512 | - 0.0162 | 0.5633 | 0.0143 | 3.2250 | 3.0531 | 1.1594 | 0.5079 | 0.4062 | 0.7546 | 0.5985 | -2830.73
P2 0.4656 | - 0.0068 | 0.9416 | -0.0068 | 1.6845 | 1.2041 | 0.5765 | 0.4790 | 0.3682 | 0.8459 | 0.8910 | -2554.52
P3 0.6077 | - 0.0040 | 1.0213 | -0.0149 | 1.6471 | 1.3574 | 0.3949 | 0.5049 | 0.3695 | 0.8255 | 0.8852 | -2534.32
P4 0.0397 | - 0.0302 | 0.2368 | 0.0217 | 1.6125 | 1.5381 | 0.4623 | 0.4420 | 0.3434 | 0.8465 | 0.8774 | -2425.96




P5 0.3675 0.0104 | 0.4467 | 0.0111 | 1.3527 | 1.3264 | -0.4276 | 0.3943 | 0.3401 | 0.8808 | 0.8973 | -2358.97
P6 0.3958 0.0073 | 0.3503 | 0.0103 | 1.0738 | 1.0774 | 0.3327 | 0.3272 | 0.3048 | 0.9238 | 0.9249 | -2343.72
P7 0.7253 0.0003 | 0.3392 | 0.0153 | 1.7676 | 1.5534 | 0.5213 | 0.3404 | 0.3806 | 0.8676 | 0.8634 | -2360.02
P8 0.5386 0.0106 | 0.1109 | 0.0230 | 1.4273 | 1.2138 | 0.3926 | 0.3102 | 0.3506 | 0.9044 | 0.9014 | -2361.68
P9 0.1048 0.0240 | -0.0177 | 0.0291 | 1.2080 | 1.1306 | 0.3394 | 0.3203 | 0.3818 | 0.9223 | 0.8958 | -2438.22
High 1.2453 -0.0040 | 0.3196 | 0.0132 | 2.5549 | 1.4471 | 0.7247 | 0.4386 | 0.3991 | 0.8164 | 0.8584 | -2673.88

Table 4. LR tests

The table shows results from the likelihood ratio test performed to choose between models 1 and 2, since the first specification is nested in the second GARCH.

Portfolio Model 1 versus 2

loglL* logL R [ x2(1) loglL* logL LR | x2(1)
Durables -2757.60 | -2759.15 | -3.1 Low | -2836.23 | -2841.46 | -10.46
Energy -2826.64 | -2826.80 | -0.32 P2 -2657.33 | -2657.50 | -0.34
HiTech -2695.58 | -2695.40 | 0.36 P3 -2538.17 | -2534.56 7.22
Health -2694.58 | -2695.55 | -1.94 P4 -2431.54 | -2431.16 0.76
Manufacturing -2386.48 | -2386.15 | 0.66 P5 -2359.46 | -2359.51 -0.1
Non-durables -2519.55 | -2518.86 | 1.38 P6 -2344.05 | -2345.18 | -2.26
Shops -2623.61 | -2622.78 | 1.66 P7 -2363.53 | -2364.23 -1.4
Telecommunications | -2683.53 | -2682.79 | 1.48 P8 -2365.00 | -2367.43 | -4.86
Utilities -2705.18 | -2703.70 | 2.96 3841 P9 -2441.77 | -2445.90 | -8.26
Other -2406.27 | -2403.53 | 5.48 | High | -2675.73 | -2673.47 4.52

3.841
Lo20 -2738.57 | -2737.91 | 1.32
Qnt2 -2599.12 | -2598.58 | 1.08
Qnt3 -2451.10 | -2451.57 | -0.94
Qnt4 -2244.60 | -2243.97 | 1.26
Hi20 -2006.14 | -2002.45 | 7.38
3.841




Table 5. Original GARCH coefficients

They follow directly from the BEKK multiplication rules applied to coefficients of model 1 (insignificant coefficients under 5% are highlighted as

before): @, = Muy oy = MUy Boi = ®F B1i = B3 B2 = af
Bom = w% + “’% Bim = ﬁ% By = “% Boim = w1 * w2 Biim = B1* B2 B2im = a1 xa;
@i | @m | Boi | Bom | Boim | Bui | Bzi | Bim | Bam | Brim | Bzim | Prit Bai | Bum +Bem | Brm+ Bom | %o
Ao.m
Durables | 0.4819 | 0.5647 | 2.7331 | 1.8145 | 2.0660 | 0.8248 | 0.1212 | 0.8765 | 0.0387 | 0.8503 | 0.0685 0.9460 0.9152 0.9187 | 0.85
Energy 0.8071 | 0.5279 | 1.7169 | 1.2069 | 0.9661 | 0.8765 | 0.0682 | 0.8529 | 0.0986 | 0.8646 | 0.0820 0.9447 0.9514 0.9466 | 1.53
HiTech 0.5342 | 0.5462 | 1.9313 | 1.0818 | 1.2680 | 0.8755 | 0.0821 | 0.8651 | 0.0887 | 0.8703 | 0.0853 0.9576 0.9538 0.9556 | 0.98
Health 0.6066 | 0.5391 | 1.9368 | 1.0393 | 1.1466 | 0.8214 | 0.1107 | 0.8740 | 0.0815 | 0.8473 | 0.0950 0.9321 0.9555 0.9423 | 1.13
Manuf 0.5765 | 0.5259 | 1.7588 | 1.4003 | 1.4928 | 0.8597 | 0.0826 | 0.8532 | 0.0871 | 0.8565 | 0.0848 0.9423 0.9404 0.9413 | 1.10
Nodurbl | 0.6890 | 0.5282 | 0.9016 | 0.9723 | 0.8118 | 0.8603 | 0.1001 | 0.8553 | 0.1077 | 0.8578 | 0.1038 0.9604 0.9630 0.9616 | 1.30
Shops 0.5971 | 0.5642 | 1.6744 | 1.1955 | 1.2280 | 0.8566 | 0.0979 | 0.8506 | 0.0967 | 0.8536 | 0.0973 0.9545 0.9474 0.9509 | 1.06
Telecom. | 0.6007 | 0.5381 | 0.9086 | 1.0484 | 0.7402 | 0.8823 | 0.0809 | 0.8458 | 0.1146 | 0.8639 | 0.0963 0.9632 0.9604 0.9602 | 1.12
Utilities 0.5948 | 0.5096 | 0.9757 | 1.3497 | 0.6955 | 0.8632 | 0.0737 | 0.8623 | 0.0799 | 0.8628 | 0.0767 0.9369 0.9422 0.9395 | 1.17
Other 0.6744 | 0.6088 | 2.6247 | 1.9114 | 2.1329 | 0.7923 | 0.1327 | 0.8062 | 0.1193 | 0.7992 | 0.1258 0.9250 0.9255 0.9251 | 1.11
Lo20 0.7869 | 0.7059 | 2.5351 | 1.2743 | 1.6936 | 0.8817 | 0.0626 | 0.8283 | 0.1319 | 0.8546 | 0.0908 0.9443 0.9602 0.9454 | 1.11
Qnt2 0.8710 | 0.6641 | 2.1594 | 1.2501 | 1.5593 | 0.8838 | 0.0633 | 0.8488 | 0.1042 | 0.8661 | 0.0812 0.9471 0.9530 09473 | 131
Qnt3 0.8688 | 0.6502 | 1.7921 | 1.3433 | 1.4910 | 0.8855 | 0.0618 | 0.8558 | 0.0878 | 0.8705 | 0.0737 0.9473 0.9436 0.9442 | 1.34
Qnt4 0.6833 | 0.5410 | 1.1772 | 0.9531 | 1.0385 | 0.8763 | 0.0924 | 0.8630 | 0.1067 | 0.8696 | 0.0993 0.9687 0.9697 0.9689 | 1.26
Hi20 0.5268 | 0.5699 | 3.0405 | 3.0790 | 3.0182 | 0.7399 | 0.1065 | 0.7637 | 0.0941 | 0.7517 | 0.1001 0.8464 0.8578 0.8518 | 0.92
Low 0.0860 | 0.7554 | 10.621 | 11.091 | 10.235 | 0.5630 | 0.2696 | 0.3437 | 0.1635 | 0.4399 | 0.2099 0.8325 0.5072 0.6498 | 0.11
P2 0.5910 | 0.7177 | 3.0213 | 1.8419 | 2.1284 | 0.7054 | 0.2391 | 0.7875 | 0.1398 | 0.7453 | 0.1828 0.9446 0.9273 0.9282 | 0.82
P3 0.6058 | 0.6196 | 2.6703 | 1.8064 | 2.0869 | 0.6906 | 0.2478 | 0.7859 | 0.1454 | 0.7367 | 0.1898 0.9384 0.9313 0.9265 | 0.98
P4 0.5398 | 0.5502 | 2.3979 | 2.4675 | 2.3274 | 0.7300 | 0.1922 | 0.7751 | 0.1177 | 0.7522 | 0.1504 0.9222 0.8928 0.9026 | 0.98
P5 0.5211 | 0.6318 | 1.8444 | 1.9670 | 1.8112 | 0.7739 | 0.1575 | 0.8016 | 0.1192 | 0.7876 | 0.1370 0.9314 0.9208 0.9246 | 0.82
P6 0.5297 | 0.5439 | 1.1436 | 1.2562 | 1.1450 | 0.8540 | 0.1071 | 0.8562 | 0.0931 | 0.8551 | 0.0999 0.9610 0.9493 0.9549 | 0.97
P7 0.6620 | 0.6006 | 3.4872 | 2.7374 | 2.9348 | 0.7398 | 0.1077 | 0.7475 | 0.1377 | 0.7436 | 0.1218 0.8475 0.8852 0.8654 | 1.10
P8 0.6833 | 0.4949 | 2.2852 | 1.6552 | 1.8597 | 0.8037 | 0.0989 | 0.8091 | 0.1267 | 0.8064 | 0.1120 0.9026 0.9358 0.9184 | 1.38
P9 0.5450 | 0.4435 | 1.4192 | 1.3624 | 1.3315 | 0.8512 | 0.1037 | 0.8021 | 0.1481 | 0.8263 | 0.1239 0.9549 0.9502 0.9502 | 1.23
High 1.0516 | 0.5736 | 6.6921 | 2.5894 | 3.7277 | 0.6639 | 0.1893 | 0.7387 | 0.1582 | 0.7003 | 0.1731 0.8532 0.8970 0.8734 | 1.83




Table 6. Leon, Rubio and Serna (2003) model

This model is used to compute series of conditional skewness and kurtosis, whose estimated coefficients are shown in the table, together with p-values in brackets
and initial values of parameters used to optimize the likelihood functions. The last 2 columns show average skewness and kurtosis computed for each obtained
series, which can be compared to unconditional values from table 1.

initial | initial | y,&6, | y1& & Logl Yo 12 Y1 I 8, o Y1+Y2 01 Avg Avg kurt
skew | kurt + 6, | skew
Best initial values Skewness eq. Kurtosis eq. Stationarity

rm -0.60 | 3.01 | 0.7 03,04 |-1161.11 | 0.0821 | 0.7583 | 0.1879 | 0.7248 | 0.6373 | 0.3188 | 0.9462 | 0.9561
(0) (0) (0) (0) (0) (0) -0.13 4.39

durbl | -0.10 | 2.23 | 0.7 0.3 -1306.92 | 0.0435 | 0.6492 | 0.2762 | 0.8481 | 0.6778 | 0.2545 | 0.9254 | 0.9323
(0) (0) (0) (0) (0) (0) 0.20 9.09

enrgy | -0.09 | 3.78 | 0.7 0.3 -1253.53 | 0.0079 | 0.7166 | 0.2275 | 0.7501 | 0.7256 | 0.1808 | 0.9441 | 0.9064
(0.409) | (0) (0) (0) (0) (0) 0.02 5.58

hitec -0.53 {290 | 0.8 0.15 -1336.51 | 0.0553 | 0.8297 | 0.1269 | 0.5078 | 0.7948 | 0.1061 | 0.9566 | 0.9009
(0) (0) (0) (0) (0) (0) 0.15 4.55

hith -0.88 [ 3.83 | 0.7 0.25 -1256.40 | 0.0016 | 0.7120 | 0.2140 | 0.1966 | 0.7088 | 0.2235 | 0.9260 | 0.9323
(0.616) | (0) (0) (0) (0) (0) 0.04 4.94

manuf | -0.47 | 2.66 | 0.6 0.3 -1166.40 | -0.0905 | 0.8043 | 0.1549 | 0.9502 | 0.6059 | 0.1681 | 0.9592 | 0.7740
(0) (0) (0) (0) (0) (0) -0.89 4.78

nodur | -0.28 | 3.42 | 0.8 0.15 -1146.62 | 0.0280 | 0.7974 | 0.1408 | 0.3554 | 0.7813 | 0.1277 | 0.9382 | 0.9090
(0) (0) (0) (0) (0) (0) -0.10 4.58

shops | -0.34 | 2.80 | 0.8 0.2 -1257.75 | 0.0349 | 0.7890 | 0.1622 | 0.4042 | 0.7927 | 0.1548 | 0.9512 | 0.9475
(0) (0) (0) (0) (0) (0) -0.08 5.82

telcm | 0.06 |2.71 | 0.6 0.4 -1170.05 | 0.0820 | 0.5449 | 0.3835 | 1.1752 | 0.5275 | 0.3873 | 0.9284 | 0.9148
(0) (0) (0) (0) (0.046) | (0) 0.03 5.82

utils 0.32 |2.18 | 0.6 0.4 -1078.82 | -0.0823 | 0.6122 | 0.3515 | 1.0448 | 0.5248 | 0.3588 | 0.9637 | 0.8836
(0) (0) (0) (0) (0.231) | (0) -0.34 5.19

other | -0.48 | 2.64 | 0.6 0.3 -1184.86 | 0.1397 | 0.5305 | 0.3024 | 0.9867 | 0.5796 | 0.2077 | 0.8329 | 0.7873
(0) (0) (0) (0) (0) (0) -0.03 4.74

Lo20 0.21 (3.09 |o0.7 0.3 -1375.70 | 0.0436 | 0.6932 | 0.2507 | 0.7661 | 0.7253 | 0.1879 | 0.9439 | 0.9132
(0) (0) (0) (0) (0) (0) -0.06 6.47

Qnt2 -0.23 | 3.27 | 0.7 0.25 -1371.60 | 0.1212 | 0.7080 | 0.2103 | 0.3311 | 0.7178 | 0.1880 | 0.9183 | 0.9058
(0) (0) (0) (0) (0) (0) 0.01 4.54

Qnt3 -0.42 {293 | 0.6 0.4 -1306.60 | -0.0347 | 0.6065 | 0.3141 | 0.5907 | 0.5979 | 0.2804 | 0.9206 | 0.8783
(0) (0) (0) (0) (0) (0) -0.57 5.01

Qnt4 -0.36 | 2.70 | 0.8 0.2 -1282.80 | 0.0163 | 0.7865 | 0.1825 | 0.2692 | 0.7866 | 0.1847 | 0.9690 | 0.9713
(0.103) | (0) (0) (0) (0) (0) -0.38 5.56




Hi20 [-063 [3.02 |07 0.25 -1138.30 | -0.0451 | 0.6936 | 0.2682 | 0.6298 | 0.6620 | 0.2582 | 0.9618 | 0.9202

(0) (0) (0) (0) (0) (0) -0.51 5.38
low |0.39 |3.28 |07 0.3 -1327.26 |-0.0274 | 0.6261 | 0.2897 | 1.4837 | 0.5922 | 0.1827 | 0.9158 | 0.7749

(0.168) | (0) (0) (0) (0) (0) 0.45 6.81
P2 0.02 [ 237 |08 0.2 -1314.71 | -0.0429 | 0.8467 | 0.1119 | 0.6568 | 0.7846 | 0.1275 | 0.9586 | 0.9121

(0) (0) (0) (0) (0) (0) -0.13 6.50
P3 0.10 |2.36 |08 0.2 -1241.45 | 0.0179 | 0.8443 | 0.0758 | 0.4351 | 0.8132 | 0.1186 | 0.9201 | 0.9318

(0) (0) (0) (0) (0) (0) 0.25 6.43
P4 0.15 | 460 |0.7 0.3 -1170.63 | 0.0096 | 0.6623 | 0.2252 | 1.0557 | 0.6457 | 0.2325 | 0.8875 | 0.8782

(0.546) | (0) (0) (0) (0) (0) -0.09 6.29
P5 037 | 264 |08 0.2 -1176.98 | 0.0482 |0.7997 | 0.1446 | 0.3586 | 0.7977 | 0.1445 | 0.9443 | 0.9422

(0) (0) (0) (0) (0) (0) 0.01 5.44
P6 0.36 | 2.66 | 0.6 0.4 -1180.25 | 0.0172 | 0.5834 |0.3739 |0.7113 | 0.5656 | 0.3363 | 0.9573 | 0.9019

(0.083) | (0) (0) (0) (0) (0) -0.35 5.83
P7 051 | 259 |06 0.4 -1163.73 | -0.1205 | 0.5140 | 0.4297 | 0.6826 | 0.5548 | 0.3670 | 0.9437 | 0.9218

(0) (0.229) | (0) (0) (0) (0) -0.71 6.28
P8 046 | 2.74 |06 0.4 -1174.02 | -0.0524 | 0.6753 | 0.2826 | 0.6676 | 0.6343 | 0.2889 | 0.9579 | 0.9232

(0) (0) (0) (0) (0) (0) -0.48 5.70
P9 -0.72 [ 3.09 |07 0.3 -1210.82 | 0.0148 | 0.5967 | 0.2637 | 0.8796 | 0.6995 | 0.2131 | 0.8604 | 0.9126

(0.116) | (0) (0) (0) (0) (0) -0.38 7.05
High |-061 352 [0.7 0.3 -1321.98 | -0.0723 | 0.6024 | 0.2703 | 0.4030 | 0.6889 | 0.2406 | 0.8727 | 0.9295

(0) (0) (0) (0) (0) (0) -0.50 5.14

The table shows computed correlation coefficients between series of conditional covariance, (co)skewness and (co)kurtosis for each portfolio.

Table 7. Correlations between moments

durbl enrgy hitec hith manuf nodur shops telcm utils other 1020 gnt2
corr(cov,skew) 0.13 -0.26 -0.53 0.17 -0.56 -0.37 -0.39 -0.09 0.02 -0.39 -0.33 -0.44
corr(cov,kurt) 0.69 0.69 0.81 0.73 0.65 0.82 0.79 0.57 0.58 0.80 0.68 0.72
corr(cov,cosk) 0.60 0.65 0.52 0.73 0.72 0.70 0.70 0.41 0.58 0.69 0.66 0.64
corr(cov,kokurt) 0.72 0.70 0.61 0.76 0.68 0.70 0.73 0.61 0.61 0.74 0.69 0.68

gnt3 gnt4 hi20 low p2 p3 p4 p5 p6 p7 p8 p9 high
corr(cov,skew) -0.38 -0.48 -0.51 0.32 0.04 0.10 -0.19 -0.38 -0.38 -0.49 -0.40 -0.52 -0.51
corr(cov,kurt) 0.63 0.77 0.83 0.62 0.73 0.66 0.87 0.85 0.62 0.74 0.77 0.73 0.79




0.68 0.70 0.82 0.46 0.66 0.63 0.71 0.64 0.62 0.82 0.81 0.78 0.85
corr(cov,cosk)

0.65 0.69 0.79 0.81 0.78 0.81 0.77 0.78 0.67 0.81 0.76 0.76 0.81
corr(cov,cokurt)

Table 8. Factor Pricing in a Time-Series Regression

The table presents coefficients estimated by regressing excess portfolio returns on the three studied conditional moments (covariance, skewness and kurtosis). For
comparison, the last two columns show the regression coefficients with conditional covariance as the only explanatory variable. Insignificant estimates under 10%
level are highlighted.

cov | skew | intercept | | kurt Cov | Intercept ‘
Rm 0.0593 | 0.2090 -0.8887 0.0340 -0.3301
(0.013) | (0.071) (0.125) (0.076) (0.501)
Durables 0.0761 | 0.0914 -1.4705 0.0825 -1.6117
(0.009) | (0.099) (0.062) (0.005) (0.040)
Energy -0.0077 | -0.1697 0.8589 -0.1163 0.0020 0.6856
(0.799) | (0.215) (0.145) (0.010) (0.945) (0.231)
HiTech 0.0434 | 0.4391 -0.8529 0.0203 -0.1332
(0.123) | (0.122) (0.331) (0.395) (0.858)
Health 0.0367 | -0.0931 -0.1536 0.0325 -0.0790
(0.136) | (0.313) (0.764) (0.181) (0.876)
Manufacturing 0.0755 | 0.2046 -1.0727 0.0494 -0.6342
(0.006) | (0.089) (0.095) (0.030) (0.281)
Non-durables 0.0478 | 0.1682 -0.2106 0.0378 -0.0438
(0.018) | (0.180) (0.615) (0.043) (0.913)
Shops 0.0802 | 0.2302 -1.2864 0.0616 -0.8724
(0.001) | (0.048) (0.033) (0.005) (0.123)
Telecommunications | 0.0196 | 0.1441 0.1381 0.0160 0.2056
(0.399) | (0.079) (0.764) (0.491) (0.655)
Utilities 0.0094 | 0.0612 0.3702 0.0099 0.3428
(0.756) | (0.393) (0.359) (0.742) (0.394)
Other 0.0528 | 0.2248 -0.8733 0.0353 -0.4384
(0.010) | (0.027) (0.126) (0.062) (0.415)
Lo20 0.0802 | 0.0980 -1.5469 0.0724 -1.3397
(0.003) | (0.375) (0.046) (0.004) (0.069)




Qnt2 0.0950 | 0.1694 -1.9096
(0.001) | (0.190) (0.020)
Qnt3 0.0935 | 0.1291 -1.6496
(0.001) | (0.126) (0.030)
Qnt4 0.0692 | 0.1920 -1.1193
(0.002) | (0.096) (0.063)
Hi20 0.0501 | 0.1054 -0.5502
(0.108) | (0.252) (0.396)
Low 0.0418 | 0.2506 -1.6724 0.0081
(0.062) | (0.003) (0.029) (0.739)
P2 0.0416 | 0.2677 -0.8402 0.0083
(0.005) | (0.115) (0.091) (0.777)
P3 0.0419 | 0.2533 -0.6539 -0.0002
(0.004) | (0.152) (0.133) (0.990)
P4 0.0613 | 0.1662 -0.8642 -0.0026
(0.001) | (0.135) (0.055) (0.920)
P5 0.0563 | 0.1800 -0.8396 0.0087
(0.003) | (0.137) (0.064) (0.726)
P6 0.0694 | 0.1377 -1.0294
(0.001) | (0.018) (0.043)
P7 0.0409 | 0.0167 -0.3170
(0.120) | (0.739) (0.576)
P8 0.0224 | -0.0425 0.1834
(0.367) | (0.607) (0.739)
P9 0.0150 | 0.0145 0.3400
(0.510) | (0.864) (0.538)
High 0.0019 | -0.0200 0.9431
(0.937) | (0.881) (0.165)

0.0786 -1.4646
(0.002) (0.049)
0.0767 -1.2957
(0.004) (0.074)
0.0517 -0.7326
(0.007) (0.187)
0.0318 -0.2282
(0.234) (0.696)
0.0633 -2.2110
(0.003) (0.003)
0.0425 -0.9012
(0.004) (0.069)
0.0439 -0.6394
(0.003) (0.142)
0.0562 -0.7673
(0.001) (0.086)
0.0458 -0.6145
(0.008) (0.150)
0.0503 -0.6568
(0.011) (0.177)
0.0367 -0.2408
(0.111) (0.643)
0.0275 0.0952
(0.225) (0.856)
0.0129 0.3812
(0.504) (0.442)
0.0037 0.9035
(0.856) (0.149)




Table 9. Cross-Sectional Asset Pricing Tests

The table shows estimation results from cross-sectional tests of the conditional four-moment CAPM (initial columns) and conditional two-moment CAPM (the
middle columns). The last three columns illustrate correlations between beta, gamma and delta risk factors. Insignificant estimates at 10% are highlighted.

B y é intercept | R-squared B intercept | R-squared corr(B,y)| corr(pB,d)| corr(y,d)

2001 | 0.5571 | 1.7989 | -36.662 | -0.4670 | 19% 0.0810 |-0.5837 | 1%
(0.264) | (0.649) | (0.071) | (0.268) (0.861) | (0.183) -0.28 0.43 -0.38

2002 | -2.353 | 0.1812 | -17.861 | 1.0538 58% -1.9375 | 0.1385 46%
(0) (0.774) | (0.025) | (0.170) (0) (0.755) 0.50 -0.32 0.06

2003 | 3.3135 | 0.0358 | -34.850 | -0.3968 | 59% 2.5199 | 0.0558 45%
(0) (0.877) | (0.020) | (0.574) (0) (0.928) -0.25 0.49 -0.39

2007 | -1.021 | -7.3834 | -35.544 | 1.6932 38% -1.4839 | 1.5237 13%
(0.182) | (0.029) | (0.910) | (0.028) (0.073) | (0.071) 0.22 0.32 0.57

2008 | -5.412 | 2.3582 | -0.5906 | 2.7005 76% -5.1892 | 1.2926 72%
(0) (0.217) | (0.846) | (0.015) (0) (0.068) 0.21 0.05 -0.62

2009 | 3.0429 | - -21.260 | 0.8765 66% 44729 |-1.5164 |57%
(0.004) (0.022) | (0.491) (0) (0.094) -0.81 -0.62 0.53

2010 | 2.6141 | 0.1484 | - -1.0559 | 56% 2.6267 | -0.9651 | 56%
(0) (0.638) (0.072) (0) (0.074) 0.05 -0.08 0.84




EViews Codes

' GARCH 1 bi-variate BEKK of Engle and Kroner (1995):
'y=mu +res
"res ~ N(O,H)
'H = omega*omega' + beta H(-1) beta' + alpha t¢sés(-1)' alpha’
"where y=2x1

mu=2x1

lambda=2x 1

H = 2 x 2 (symmetric)

' H(1,1) = variance of yl (saved as ya}

' H(1,2) = cov of y1 and y2 (saved as ¢dy?2)
H(2,2) = variance of y2 (saved as_yaj

' omega = 2 x 2 low triangular

' beta =2 x 2 diagonal

' alpha =2 x 2 diagonal

‘change path to program path

%path = @runpath

cd %path

" load workfile

load excess.wfl

"input data (dependent variables of both seriest fmel continuous)
smpl @all

series y1 = durbl

series y2 = rm

' set sample for GARCH estimation

sample sO 1970M01 2010M12



sample s1 1970M02 2010M12
' load data

smpl sO

'get starting values for parameters from univar@frCH (1,1)
equation egl.arch(m=100,c=1e-5) yl c
equation eg2.arch(m=100,c=1e-5) y2 c

" declare coef vectors to use in bi-variate GARCbtlel (please see introduction for details)
coef(2) mu

mu(l1) = eql.c(1)

mu(2)=eqg2.c(1)

coef(3) omega
omega(l)=(eql.c(2)*.5
omega(2)=0
omega(3)=eg2.c(2)".5

coef(2) alpha
alpha(1) = (eql.c(3))".5
alpha(2) = (eg2.c(3))*.5

coef(2) beta
beta(1)= (eql.c(4)™.5
beta(2)= (eq2.c(4))™.5

' constant adjustment for log likelihood (i.e. wefide 2log(2pi))
Imlog2pi = 2*log(2*@acos(-1))



‘old values

' use var-cov of sample in "s1" as starting valiuganiance-covariance matrix
series cov_yly2 = @cov(yl-mu(l), y2-mu(2))

series var_yl = @var(yl)

series var_y2 = @var(y2)

series res2 = y2-mu(2)

series sqgresl = (y1l-mu(1))"2

series sqres2 = (y2-mu(2))"2

series reslres2 = (yl1-mu(1))*(y2-mu(2))

' LOG LIKELIHOOD - set up the likelihood
' 1) open a new blank likelihood object (L.O.) nanvgarch

' 2) specify the log likelihood model by append

" squared errors and cross errors
logl bvgarch
bvgarch.append @logl logl
bvgarch.append sqgresl = (y1-mu(1))"2
bvgarch.append sqres2 = (y2-mu(2))"2
bvgarch.append reslres2 = (yl1-mu(1))*(y2-mu(2))
bvgarch.append res2 = y2-mu(2)

' calculate the variance and covariance series
bvgarch.append var_yl = omega(1)"2 + beta(1)Y2%&-1) + alpha(1)"2*sqres1(-1)

bvgarch.append cov_yly2 = omega(l)*omega(2) + Petagta(l)*cov_yly2(-1) +
alpha(2)*alpha(l)*reslres2(-1)

bvgarch.append var_y2 = omega(3)"2 + omega(2peta(2)"2*var_y2(-1) + alpha(2)"2*sqres2(-1)



' determinant of the variance-covariance matrix

bvgarch.append deth = var_yl*var_y2 - cov_yly2"2

"inverse elements of the variance-covariance matri
bvgarch.append invhl = var_y2/deth
bvgarch.append invh2 = -cov_yly2/deth
bvgarch.append invh3 = var_yl/deth

' log-likelihood series

bvgarch.append logl =-0.5*(!mlog2pi + (invh1*sqre&tinvh2*reslres2+invh3*sqres2) + log(deth))

' remove some of the intermediary series

bvgarch.append @temp invhl invh2 invh3 sqres1 &qteth

' estimate the model
smpl s1

bvgarch.mi(showopts, m=500, c=1e-5)

' change below to display different output
show bvgarch.output
graph varcov.line var_yl var_y2 cov_yly2

show varcov

GARCH 3:

''y=mu +res ->y = H*ambda + mu + res

' res ~ N(O,H)

' H = omega*omega' + beta H(-1) beta' + alpha1®s€s(-1)' alpha’
"where y=2x1

mu=2x1



‘ lambda=2x1

' H=2x2 (symmetric)
H(1,1) = variance of yl (saved as y&)__
H(1,2) = cov of y1 and y2 (saved as gdy?2)
H(2,2) = variance of y2 (saved as_yaj

' omega = 2 x 2 low triangular

beta = 2 x 2 diagonal

alpha = 2 x 2 diagonal

‘change path to program path

%path = @runpath

cd %path

" load workfile

load excess.wfl

"input data (dependent variables of both seriest tmel continuous)
smpl @all

series y1 = gnt3

series y2 =rm

' set sample for GARCH estimation (not the wholéese> leave some observations for forecasting)
sample sO 1970M01 2010M12

sample s1 1970M02 2010M12

' load data

smpl sO

'get starting values for parameters from univar@drCH-M (1,1); archm=var shows the inclusion of
var in the mean eq

equation egl.arch(archm=var,m=100,c=1e-5) y1 c
equation eg2.arch(archm=var,m=100,c=1e-5) y2 ¢

'save the conditional variances



egl.makegarch garchl

eg2.makegarch garch2

" declare coef vectors to use in bi-variate GARCbtlel (please see introduction for details)
coef(2) lambda
lambda(l) = eql.c(1)
lambda(2) = eg2.c(1)

coef(2) mu
mu(l) = eql.c(2)
mu(2)= eg2.c(2)

coef(3) omega
omega(1)=(eql.c(3)".5
omega(2)=0 'because we don't have iteruthivariate GARCH-M

omega(3)=(eq2.c(3))*.5

coef(2) alpha
alpha(1) = (eql.c(4))™.5
alpha(2) = (eg2.c(4))*.5

coef(2) beta
beta(1)= (eql.c(5))".5
beta(2)= (eq2.c(5))".5

' constant adjustment for log likelihood (i.e. wefide 2log(2pi))

Imlog2pi = 2*log(2*@acos(-1))

‘old values

' use var-cov of sample in "s1" as starting valiuganiance-covariance matrix

'series cov_yly2 = @cov(yl-mu(l), y2-mu(2))



'series var_yl = @var(yl)

'series var_y2 = @var(y2)

'series sgresl = (yl-mu(1))"2

'series sgres2 = (y2-mu(2))"2

'series reslres2 = (yl1-mu(1))*(y2-mu(2))

series cov_yly2 = @cov(yl-mu(l)-lambda(1)*gargf2-mu(2)-lambda(2)*garch?2)
series var_yl = @var(yl-lambda(1)*garchl)

series var_y2 = @var(y2-lambda(2)*garch?2)

series sgresl = (yl-mu(1)-lambda(1)*garch1)"2

series sgres2 = (y2-mu(2)-lambda(2)*garch2)"2

series reslres2 = (yl1-mu(l)-lambda(l)*garch®ytu(2)-lambda(2)*garch?2)

'LOG LIKELIHOOD

logl bvgarch

‘old values

'bvgarch.append @logl logl

‘bvgarch.append sqgresl = (y1-mu(1))"2
'‘bvgarch.append sqres2 = (y2-mu(2))"2
'‘bvgarch.append reslres2 = (y1-mu(1))*(y2-mu(2))

" squared errors and cross errors

bvgarch.append @logl logl

bvgarch.append sqgresl = (y1-mu(1)-lambda(1ytgby2

bvgarch.append sqgres2 = (y2-mu(2)-lambda(2tga2

bvgarch.append reslres2 = (y1-mu(l)-lambdaét¥tyl)*(y2-mu(2)-lambda(2)*garch?2)

' calculate the variance and covariance series

bvgarch.append var_yl = omega(1)"2 + beta(1)2%&(-1) + alpha(1)*2*sqres1(-1)



bvgarch.append var_y2 = omega(3)"2 + omega(2peta(2)"2*var_y2(-1) + alpha(2)"2*sqres2(-1)

bvgarch.append cov_yly2 = omega(l)*omega(2) + Betadta(l)*cov_yly2(-1) +
alpha(2)*alpha(1)*reslres2(-1)

' determinant of the variance-covariance matrix

bvgarch.append deth = var_yl*var_y2 - cov_yly2"2

"inverse elements of the variance-covariance matri
bvgarch.append invhl = var_y2/deth
bvgarch.append invh3 = var_yl/deth
bvgarch.append invh2 = -cov_yly2/deth

' log-likelihood series

bvgarch.append logl =-0.5*(!mlog2pi + (invh1l*sgre&tinvh2*reslres2+invh3*sqres2) + log(deth))

' remove some of the intermediary series

bvgarch.append @temp invhl invh2 invh3 sqgresl 8qesslres2 deth

" estimate the model

smpl s1

bvgarch.ml(showopts, m=100, c=1e-5)
Ledn, Rubio and Serna (2003) model
"r=m+res

' res ~ N(0,h)
" h=al + bl*h(-1) + lastl*res(-1)*res1(-1)'vafiance)

''s= a2+ b2*s(-1) + last2*e3(-1) (skew)
" 'k =a3 + b3*k(-1) + last3*e4(-1) (kurt)
"where r=1x1 m=1x1

' a=3x1 b=3x1 last=3x1



"input data (dependent variables of both seriest tmel continuous)
smpl sO

series r = p7

" declare coef vectors to use in bi-variate GARCbtlel (please see introduction for details)
coef(1) m

m(1) = mu(l1)

coef(3) a
a()=0
a(2=0
a(3)=0

coef(3) b

b(1) = beta(1)"2
b(2) = -log(1/0.6 -1)
b(3) = -log(1/0.6 -1)

coef(3) last

last(1) = alpha(1)"2
last(2) = -log(1/0.4 -1)
last(3) = -log(1/0.4 -1)

'set initial skew and kurt to their unconditionalwes
series h = @var(r)

series e=(resl-@mean(resl))/@stdev(resl)
series s =-0.51

series k =2.59



'LOG LIKELIHOOD

' squared errors and cross errors
logl lastgarch

lastgarch.append @logl logl
'lastgarch.append res = r-m(1)

lastgarch.append e=(resl-@mean(resl))/@stdev(resl)

' calculate the variance and covariance series

‘lastgarch.append h = a(1) + b(1)*h(-1) + last(&)*1)*2)*h(-1)
lastgarch.append s = a(2) + @logit(b(2))*s(-1) to@i(last(2))*(e(-1)"3)
lastgarch.append k = a(3) + @logit(b(3))*k(-1) to@it(last(3))*(e(-1)"4)
lastgarch.append x = 1+s/6*(e"3-3*e)+(k-3)/24*(84e"2)+3)
lastgarch.append y = x2

lastgarch.append gama = 1+ s"2/6 +(k-3)"2/24

' log-likelihood series

lastgarch.append logl =-0.5*log(var_y1) - 0.5*(e?2dg(gama) + log(y)

' remove some of the intermediary series

lastgarch.append @temp res e x y gama

" estimate the model

smpl s1

lastgarch.ml(showopts, m=500, c=1e-7)
genr b2=@logit(b(2))

genr b3=@Iogit(b(3))

genr last2=@logit(last(2))

genr last3=@logit(last(3))
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