
Department of Design Sciences
Lund Institute of Technology,
Lund University, 2005

A PRESENTATION TOOL FOR IKEA-STORES USING
VIRTUAL REALITY BASED ON OPEN SOURCE

A Master's Thesis

by

Nils Hellstrand

 ii

 iii

Preface

This master's project is part of a cooperation between RE-FLEX, the flexible reality
centre at Lund Institute of Technology (LTH), and Inter IKEA in Helsingborg,
Sweden.

The thesis is part of the requirements for a degree from a 4.5 year physical
engineering program. As it’s my personal conviction that good engineering not only
requires knowledge about the technology, but also the people and the environment
involved, I’m happy to present the key words in this thesis being; computer graphics,
open source programming and usability, rather than simply physical engineering.
The work was mostly carried out at RE-FLEX, at Ingvar Kamprad DesignCentrum,
Lund, with occasional visits to Inter IKEA in Helsingborg.

Supervisor: Dr Roy Davies
Commission assigner at Inter IKEA: Cenneth Bäckman.

I would like to thank Cenneth Bäckman and Mads Lundberg at Inter IKEA in
Helsingborg for making it possible to study the non-academic, real world aspects of
virtual reality, and for the interest and help given. I also want to thank Roy Davies
and Joakim Eriksson at RE-FLEX for all the academic and technical support.

Lund, January 2005

Nils Hellstrand

 iv

 v

Contents

Preface…………………………………………………………………………………...iii
Abstract……………………………………………………………………………..…...vii
Sammanfattning på svenska..ix
1 Introduction... 1

1.1 Presentation of the problem .. 1
1.2 Presentation of “one room” and the given task... 1
1.3 Limitations .. 3

2 Background theory ... 5
2.1 Introduction to virtual environments .. 5
2.2 Introduction to usability.. 6
2.3 Introduction to user-centred design .. 8
2.4 Iterative design and prototyping ... 9

3 Background for the implementation process ... 11
3.1 Introduction to 3D modelling and computer graphics 11

3.1.1 Polygons.. 11
3.1.2 Texturing... 12
3.1.3 Level of detail.. 13
3.1.4 Skybox ... 13
3.1.5 Stereovision... 13

3.2 Presentation of software suitable for the task ... 15
3.2.1 OpenGL... 15
3.2.2 OpenSceneGraph (OSG)... 15
3.2.3 What is a Scene Graph?.. 16
3.2.4 3DStudioMAX ... 18
3.2.5 AutoCAD... 19
3.2.6 WorldUp.. 19
3.2.7 EON... 19

4 Methods and Procedure ... 21
4.1 Applied methods and theory ... 21
4.2 Results... 22

4.2.1 The first meeting ... 22
4.2.2 The second meeting... 22
4.2.3 Results from the second meeting... 23
4.2.4 Choosing software .. 23
4.2.5 Decision on software... 23
4.2.6 The first prototype... 23
4.2.7 The resulting first prototype.. 25
4.2.8 The third meeting .. 26
4.2.9 Results from the third meeting .. 26
4.2.10 The SOVRI workshop.. 26
4.2.11 Results of the SOVRI workshop .. 26
4.2.12 The second prototype .. 27
4.2.13 The resulting second prototype... 27

 vi

4.2.14 The fourth meeting .. 28
4.2.15 Results from the fourth meeting .. 28
4.2.16 The third prototype ... 29
4.2.17 The resulting third prototype .. 29
4.2.18 The fifth meeting ... 30
4.2.19 Results from the fifth meeting ... 30
4.2.20 The fourth prototype ... 30
4.2.21 The resulting fourth prototype .. 30

4.3 Summary of the model development process ... 32
5 Presentation of the final application ... 33

5.1 Supported features .. 33
5.2 Technical description .. 34
5.3 Theory connections to the final result... 35

5.3.1 Learnability: ... 35
5.3.2 Flexibility:... 35
5.3.3 Robustness: ... 36
5.3.4 Overall evaluation: ... 36

6 Conclusions.. 39
References…………………………………………………………………………..…...41
Appendix………………………...………...…………………………………………….43

 vii

Abstract

This project began with the question:
“Is virtual reality of interest when designing and presenting new IKEA-stores?”

The question was first formulated by the management at Inter IKEA (Helsingborg,
Sweden) which is the division of the IKEA corporation that designs and presents new
IKEA-stores to contractors all over the world. As a result, a cooperative scheme was
introduced between Inter IKEA and RE-FLEX at Lund Institute of Technology
(LTH). This master's project is the first product of this cooperation.

One objective in this master's project was to create an application for virtual
reality that featured the entrance of an IKEA-store, another to establish (or at
least try out) a method to design virtual environments representing IKEA stores.
The method applied is to convert already existing CAD models of IKEA-stores using
open source software to obtain the virtual environment; as a result much of this thesis
concerns OpenSceneGraph, which is an open source software for virtual reality.

Inter IKEA provided the CAD model and 3D Studio Max was used to adjust and
export the model into the OpenSceneGraph format. The result is a virtual reality
software application featuring both a predefined model of the entrance to an IKEA-
store and the ability to load any other future model. Interactivity is provided by the
ability to explore the scene (using the keyboards arrow keys like in a 3D computer
game) and to select and move specified objects in the scene. A model that has been
changed using the supported interactivity can be saved. An animation path can be
saved and will appear as a movie when loaded together with the model. The
application has a user interface written in Visual Basic and can be run on both
ordinary desktop computers or more advanced virtual reality hardware systems
supporting stereovision.

This thesis discusses the challenges that appeared during the development of the
model and application, and gives a small introduction to virtual reality, 3D computer
graphics and usability. The final analysis concerns the pros and cons with using open
source.

 viii

 ix

Sammanfattning på svenska

Det här examensarbetet har sitt ursprung i frågeställningen:
”Är virtual reality av något intresse när man ritar och pressenterar nya IKEA-
varuhus?”

Frågan ställdes av ledningen på Inter IKEA i Helsingborg, vilket är den del av IKEA-
koncernen som ritar och säljer nya IKEA-varuhus till olika agenturhållare världen
över. Som svar på frågan inleddes ett samarbete med Reflex Reality Center vid Lunds
Tekniska Högskola (LTH). Det här examensarbetet är det första resultatet av
samarbetet.

Ett mål med det här examensarbetet var att göra en virtual reallity modell av
entrén till ett IKEA-varuhus, ett annat var att ta fram en metod (eller i alla fall
att testa en metod) för att åstadkomma virtual reality modeller av IKEA-
varuhus. Metoden som använts i det här projektet går ut på att omvandla en redan
befintlig CAD-modell av ett IKEA-varuhus till en virtual reality-modell, samt att
använda open source-mjukvara för att programmera applikationen. Som ett led av
detta har en stor del av den här rapporten ägnats åt OpenSceneGraph (vilket är just
ett virtual reality-program baserat på open source).

Till det här projektet tillhandahöll Inter-IKEA en CAD-modell som kunde anpassas i
3DStudioMAX, och sedan exporteras till OpenSceneGraphs eget filformat. Resultatet
är en virtual reality-applikation som innehåller en fördefinierad modell av entrén till
ett IKEA-varuhus, men även ger möjligheten att visualisera eventuella framtida
modeller. Applikationen är interaktiv så till vida att man kan använda tangentbordets
piltangenter för att förflytta sig i modellen (på samma sätt som man vanligen
förflyttar sig i 3D-datorspel), samt även markera och flytta på fördefinierade objekt.
Flyttar man på objekt i modellen kan resultatet sparas, det går även att spara en
”animation path”, vilken upplevs som en film om den exekveras tillsammans med
modellen. Applikationen har ett användargränssnitt skrivet i Visual Basic och kan
köras på både vanliga persondatorer och på mer avancerad virtual reality-hårdvara
som klarar stereoseende.

Rapporten tar upp utmaningar och problem som uppstått under utvecklandet av
modellen och applikationen, samt behandlar kortfattat virtual reality, 3D-datorgrafik
och användarvänlighet. Den slutliga diskussionen behandlar för- och nackdelar med
open source.

 x

 1

1 Introduction
This chapter gives a short background to the project.

1.1 Presentation of the problem

Being a worldwide furniture corporation, IKEA needs to spread its concept and
developed service image to many partners on a regular basis. Among temporary
partners are architects and contractors designing and building new stores. The usual
way to communicate with this group of professionals is through ordinary drawings,
printings and texts. The need for a better way to communicate building concepts has
been pronounced from the IKEA headquarter. This project aims to present a possible
solution using virtual reality as an information/impression transmitter to these new
partners.

In recent years there has been an explosive development in inexpensive technologies
for computer graphics and display devices, and new application areas for these
technologies steadily develop. From having been found only in research laboratories
or occasional show-off investments by big companies, 3D accelerated graphic cards
and projectors have become standard office equipment in many companies. But
having access to this new hardware is not enough to integrate it in everyday work;
one needs to know both how and when to use it, which includes knowledge about
both the technology and the goal that it should help to achieve. The aim of this thesis
has been not only to present a software solution to the particular problem but also to
study, through this case, how best to transfer know-how about Virtual Environments
(VEs). Another important aspect is the use of open source software and the pros and
cons of this.

1.2 Presentation of “one room” and the given task

The IKEA project “one store” is an ambition to develop and visualize the “ultimate”
IKEA store as a guideline for new buildings. For practical reasons, such as the
specific plot, scale and national laws, it is not possible to build exactly identical stores
all over the world, but the aim to make the customer recognize the IKEA concept
independently of setting is important to strengthen the trademark. There are also
economical big scale advantages when ordering building materials for say ten new
stores instead of one at a time.

The IKEA project “one room” is part of the bigger “one store” project and aims to
describe the “ultimate entrance/exit” to the “ultimate IKEA-store”. The entrance/exit
is of great importance as it is the customer’s first, and last, contact with the whole
store. The entrance/exit is also the connection between the store and its surroundings.

The current existing presentation forms for the “one room” project were rendered
computer images, ordinary drawings, PowerPoint presentations and descriptions of

 2

which impressions the environment should make (see Fig. 1, 2 and 3). Unfortunately
the level of transmitted information and “overall feeling” had proved not to be
satisfactory.

The given task was to explore the possibilities of using Virtual Environments as a
way to communicate the ideas of the one room project.

Figures 1, 2 and 3: Examples from the original printed documentation of the One Room project.

 3

1.3 Limitations

As VE is a relatively new and fast growing field (due to the explosion in hardware
development), commercial application is a relatively unexplored area with many
possibilities. As this was a one-term university thesis several limitations had to be
applied, one limit being the number of user scenarios considered.

VE can be a fantastic tool when designing new objects and environments due to the
immediate feedback of changes. However, the first defined problem for the project
was to find a better way to communicate already designed environments. As a
consequence the limit of interaction with the one room model was set to the ability to
move the interior and exchange it, but not to reshape it within the program. The
building itself was considered static.

Another limitation was the hardware. Even if expensive high frequency projectors,
motion detectors and graphic cards are available in many laboratories all over the
world, they are not likely to be found in the average IKEA conference room (Fig. 4).
A restriction to an average laptop computer and LCD/DLP projectors was made. Due
to the capacity of modern graphic cards and processors the last restriction was not as
tough as one might think.

Figure 4: The thought of user environment was set to an average conference room, in contrast to a
dedicated virtual reality show room. Picture taken from http://globalecology.stanford.edu.

 4

 5

2 Background theory
This chapter is intended to present a theoretical framework for the project. First comes a
short introduction to virtual environments, a more technical introduction to computer
graphics in general is given in the section “3.1 introduction to 3D modelling and
computer graphics” in the next chapter. The rest of this chapter describes theories and
methods that were suitable for the project.

2.1 Introduction to virtual environments

Virtual reality (VR) aims to give a multimodal feeling of being in another world,
place or situation, and to be able to interact with its environment, a virtual
environment (VE). For the interested reader “Handbook of Virtual Environments”
(Stanney, 2002) can be recommended.

Sometimes there are advantages with using a virtual environment instead of the real
environment. Such cases can be training specific tasks in a dangerous environment or
simulation of a not yet existing environment. VE is also useful in rehabilitation and
treatment of psychological problems, such as fear of flying, acrophobia (fear of
heights), fear of public speaking etc (North et al, 2002). A great advantage of VE is
that it can be independent of the user’s location and thus connect people (or people
and machines) at different locations in a shared, or personal, multimodal
environment. Teleportation using a haptic device (see Fig. 5, 6 and 7), can serve as an
example (Kheddar et al, 2002).

Figures 5, 6 and 7: The surgeon receives force
feedback when he moves the handle representing the
scalpel, this is the essence of a haptic device. In the
binoculars he can see a real time updated virtual
image of the eye.

Pictures from Kheddar et al, (2002), page 981-982.

 6

There are numerous different kinds of VR solutions, spanning over a broad range of
hardware costs. Essentially it is a question of how many, or which, of the human
senses one wants to support and how well this should be done; haptic devices are
used to give force feedback to the user, stereo vision can be created for example with
a head mounted display, perhaps connected to a tracking system, and 3D sound can
be achieved using a multi-channel surround sound system. One of the more cost
effective variants is “desktop VR” where an ordinary desktop computer is used and
the VE is simulated with 3D computer graphics.

2.2 Introduction to usability

This project originated from a specific task and included an attempt to a technical
solution in the form of a product; this meant that the end user had to be considered.
The word usability is often used when describing the support a system, or product,
gives a user as he or she tries to accomplish a task.
One definition of usability is “a measure of the ease with which a system can be
learned or used, its safety, effectiveness and efficiency, and the attitude of its users
towards it” (Preece et al, 1994). Dix et al (1997) however refers to the international
standard ISO 9241, entitled Ergonomic requirements for office work with visual
display terminals (VDT)s, which includes one part that applies equally to both
hardware and software design. In the beginning of that document the following
definition of usability is given:

Usability: The effectiveness, efficiency and satisfaction with which specified users
achieve specified goals in particular environments.

Effectiveness: The accuracy and completeness with which specified users can
achieve specified goals in particular environments.

Efficiency: The resources expended in relation to the accuracy and completeness of
goals achieved.

Satisfaction: The comfort and acceptability of the work system to its users and other
people affected by its use.

 7

In order to support usability when designing an interactive system Dix et al (1997)
propose the attention to three general principles:

Learnability: the ease with which users can begin effective interaction and achieve
maximal performance.

Flexibility: the multiplicity of ways the user and system exchange information.

Robustness: the level of support provided to the user in determining successful
achievement and assessment of goals.

Dix et al. then break down each of these principles into further principles that affect
them:

 (Tables exactly referred)
Principles affecting learnability:
Principle Definition
Predictability Support for the user to determine the

effect of future actions based on past
interaction history

Synthesizability Support for the user to assess the effect of
past operations on the current state

Familiarity The extent to which a user’s knowledge
and experience in other real-world or
computer-based domains can be applied
when interacting with a new system

Generalizability Support for the user to extend knowledge
of specific interaction within and across
applications to other similar situations

Consistency Likeness in input-output behavior arising
from similar situations or similar task
objectives

Table 1.

 8

Principles affecting flexibility:
Principle Definition
Dialog initiative Allowing the user freedom from artificial

constraints on the input dialog imposed
by the system

Multi-threading Ability of the system to support user
interaction pertaining to more than one
task at a time

Task migratability The ability to pass control for the
execution of a given task so that it
becomes either internalized by user or
system or shared between them

Substitutivity Allowing equivalent values of input and
output to be arbitrarily substituted for
each other

Customizability Modifiability of the user interface by the
user or the system

Table 2.

Principles affecting robustness:
Principle Definition
Observability Ability of the user to evaluate the internal

state of the system from its perceivable
representation

Recoverability Ability of the user to take corrective
action once an error has been recognized

Responsiveness How the user perceives the rate of
communication with the system

Task conformance The degree to which the system service
support all of the tasks the user wishes to
perform and in the way that the user
understands them

Table 3.

2.3 Introduction to user-centred design

A method called user-centred design is often utilised to support usability when
designing a system or product. “User-centred design is a development methodology
that focuses on people, their work and environment, and how available technology
can be best applied to support them in this context” (Preece, 1994). Thus, it is the user
and his or her needs that are in focus rather than the actual product. Naturally, human
cognitive factors (such as perception, memory, learning, problem solving, etc.) play
an important role in the development process. The main objective of user-centred
design is to produce systems that are easy to learn and use, but also systems that are

 9

effective in terms of performance and maintenance. To require information about the
user and their needs, different methods can be applied. Apart from just asking or
observing the user, methods such as brainstorming, workshops and advanced role-
plays can be used to extract the problems the user might face in the future system
(Dix et al, 1997).

2.4 Iterative design and prototyping

A problem when designing interactive systems is that the requirements cannot be
completely specified from the beginning of the design process. The only way to be
sure about some features of the potential design is to build them and test them out on
real users (Dix et al, 1997). If the design is modified to correct any false assumptions
that were revealed in the testing, hopefully a better design will be achieved. “This is
the essence of iterative design, a purposeful design process which tries to overcome
the inherent problems of incomplete requirements specification by cycling through
several designs, incrementally improving upon the final product with each pass” (Dix
et al, 1997).
These problems in a design process, which can lead to an iterative philosophy, are not
unique to the usability features of an intended system. The problem holds for
requirements specification in general, and so it is a general software engineering
problem, together with technical and managerial issues.
On the technical side, iterative design is described by use of prototypes, artefacts that
simulate or animate some but not all features of the intended system. Dix et al (1997)
categorize three main approaches to prototyping:

Throwaway: The prototype is built and tested. The design knowledge gained from
this exercise is used to build the final product, but the actual prototype is discarded.

Incremental: The final product is built as separate components, one at a time. There
is no overall design for the final system, but it is partitioned into independent and
smaller components. The final product is then released as a series of products, each
subsequent release including one more component.

Evolutionary: Here the prototype is not discarded and serves as the basis for the next
iteration of design. In this case, the actual product is seen as evolving from a very
limited initial version to its final release.

Even if the end product in this project was most likely going to be more of a
prototype itself, rather than a release product, the use of some sort of prototype
probably had to be considered. The theories described above in this chapter form a
basis for the methods and procedures in this thesis.

 10

 11

3 Background for the implementation process
This chapter aims to give the reader the necessary vocabulary and technical background
required to understand the next chapter, concerning the actual implementation of the
model. For the interested reader it’s free to initially skip the first section (3.1
Introduction to 3D modelling and computer graphics) and only use it as a glossary when
needed.

3.1 Introduction to 3D modelling and computer graphics

3.1.1 Polygons

Two points in a coordinate system can represent the endpoints of a straight line
segment. Two line segments can have one point in common and thus be connected
and form a polyline (see Fig. 8). Computer graphics work this way to define lines; a
curved line is usually represented with a polyline where the points are located very
close to each other to make the line look smoothly curved and not angular.

Figure 8, taken from Angel, 2003 page 49.

Line segments and polylines can model the edges of objects, but closed objects also
may have interiors (see Fig. 9). Usually the name polygon is reserved to refer to an
object that has a border that can be described by a line loop, but has an interior.
Polygons play a special role in computer graphics because they can be displayed
rapidly and be used to approximate curved surfaces. The performance of graphics
systems is measured by the number of polygons per second that can be displayed.
(Angel, 2003)

Figure 9, taken from Angel, 2003 page 50.

 12

Usually in 3D modelling all objects are subdivided into triangles or rectangles, which
form surfaces that build up the object (see Fig. 10 and 11).

Figures 10 and 11, taken from Angel,
(2003), page 294 and 519.

3.1.2 Texturing

As all 3D objects in computer graphics are built up of flat surfaces, usually triangular
shaped, it’s quite easy to attach an image to the object. The Image can be artificial or
originate from a real photograph. Different methods to decide exactly how each pixel
on the display device shall be rendered can be used, but they all relate to some sort of
map that describes the original image (see Fig. 12). Texturing can be a powerful way
to induce references to the real world.

+ =

 polygon texture-map textured object

Figure 12.

 13

3.1.3 Level of detail

Level of detail (LOD) is pretty much what it sounds like, it’s a measurement of how
detailed the scene is represented in the graphics, compared to reality. An important
aspect of LOD is Level-of-Detail Management:
“Level-of-detail management, or distancing, is a widely used technique, whereby if a
virtual object is more than a specified distance from the viewpoint of the participant it
is replaced by a simpler model or else disappears altogether, thus reducing the amount
of processing time required to render that object” (e.g., Rafferty et al, 1998).

LOD can refer both to geometry aspects, such as to replace a complex object with a
box, and to texturing aspects such as using a plain colour instead of the texture when
viewed from far away.

3.1.4 Skybox

Skyboxes are used to induce a sense of space and skylight. Normally a skybox
consists of a half sphere that is textured on the inside portraying the sky (see Fig. 13),
the half sphere is made big enough to cover the whole model as a lid. The image that
is used for the texture has to be modified in a way that it fits the inside of the sphere
without any visible artefacts.

Figure 13: Skybox based on photographs taken from the roof of AF-borgen in Lund, Ludvig Ljungqvist
2003.

3.1.5 Stereovision

Stereovision is not something that necessarily has anything to do with 3D modelling
or computer graphics; normally we use it in our daily life without even thinking of it.
The basic idea is that if your brain gets visual input from two eyes, and knows the
distance between them, it can compare the two images and calculate information
about the depth in the viewed scene. However if the viewed scene is two dimensional,
as when projected on a screen, the images will be identical. To benefit by
stereovision, when viewing a 2D display device, one has to produce two different
images and separate them to each eye.

 14

Computers can do the computation of the two different images, portraying a 3D scene
from two viewing positions separated by the distance between your eyes. The
separation of the two images to your eyes, when viewing a computer screen or a
projected image, is usually done with glasses. Three methods are mainly used:

 Two projectors can be used to produce the two images, but with different
polarization of the light. If the glasses contain polarization filters, one for each
eye, it is possible to decide which projected image each eye should see (see
Fig. 14 and 15). This method is suitable when the system is intended for many
viewers, as the glasses are of relatively low cost. The method is often referred
to as passive stereo.

Figures 14 and 15. Pictures from www.visbox.com and http://astronomy.swin.edu.au, 2005.

 Another way to separate the images is to blacken out each eye at a time; using

semi transparent LCD shutters in the glasses (see Fig. 17). This method is
more suitable when few viewers are intended, as the glasses are considerably
more expensive. On the other hand one projector alone can be used to project
the two images, synced and with the same frequency that the glasses switches
between the eyes. As one frame of the original material is projected two times
using this method, the projector needs to accomplish double the frame rate
relative to the frame rate of the original material. This method is called active
stereo.

Figures 16 and 17. Pictures from www.barco.com, 2005.

 The last, kind of sneaky way to view stereo material, is to separate the images

using colour filters, often red and bluegreen (Fig. 18). The two images then
have to be rendered in either red or bluegreen tones (Fig. 19), which of course
reduces the quality significantly. Nevertheless this is a cheap and easy way to
achieve a stereo effect. This method is called anaglyphic stereo.

 15

Figures 18 and 19. Pictures from www.crystalmaker.co.uk and www.bigbug.com, 2005.

3.2 Presentation of software suitable for the task

3.2.1 OpenGL

The interface between an application program and a graphics system can be specified
through a set of functions that resides in a graphics library. These specifications are
called the application programmer’s interface (API) (Angel, 2003). OpenGL is
such a graphics software system, or API, and has become a widely accepted standard
for developing graphics applications. OpenGL is very fundamental and close to the
hardware, a more user-friendly, high-end interface, on top of OpenGL is desirable for
developing more detailed 3D applications. OpenGL is not object-oriented but more of
a “state” machine, which means that an object cannot be accessed directly. Instead of
telling the system to raise one hand of a rendered robot, one has to tell the system to
erase the hand and draw it again in the new position.

3.2.2 OpenSceneGraph (OSG)

“The OpenSceneGraph is a portable, high level graphics toolkit for the development
of high performance graphics applications such as flight simulators, games, virtual
reality or scientific visualization. Providing an object-oriented framework on top of
OpenGL, it frees the developer from implementing and optimizing low-level graphics
calls, and provides many additional utilities for rapid development of graphics
applications.” (OpenSceneGraph, 2004).

In short OSG helps you keep track of your viewing position, and different 3D objects,
in the world of a real-time application like a computer game. OSG can also compute
the right images for stereovision when the hardware is supported.

One of the most important aspects of OSG is that it is open source, which means that
you don’t have to pay for a licence and that you are free to modify it any way you
want. The OSG project was once started as a hobby by Don Burns in 1998, aimed to
be used when programming hang gliding simulators, but has since gained ground in
both the commercial and scientific world.

OSG is written and handled in C++, which means that normally no graphical
interface is used. This requires that the user possesses some fundamental C++

 16

programming skills. The downside is that this limits the number of possible users, and
the learning process of OSG is quite substantial, the up side is that once you master
the OSG fundamentals you can quickly accomplish pretty much what ever you want
and have total control over it.

3.2.3 What is a Scene Graph?

“It’s a tree! Quite simply one of the best and most reusable data structures invented.
Typically drawn schematically with the root at the top, leaves at the bottom. It all
starts with a top-most root node which encompasses your whole virtual world, be it
2D or 3D. The world is then broken down into a hierarchy of nodes representing
either spatial groupings of objects, settings of the position of objects, animations of
objects, or definitions of logical relationships between objects such as those to
manage the various states of a traffic light. The leaves of the graph represent the
physical objects themselves, the drawable geometry and their material properties. ”
(OpenSceneGraph, 2004). Also see Fig. 19.

The modules/libraries that OSG is composed of are:

 osg - core scene graph

 osgUtil - utility library for useful operations and traversers

 osgDB - plugin support library for managing the dynamic plugins
- both loaders and NodeKits

 osgText - NodeKit which adds support for TrueType text rendering

 osgParticle - NodeKit which adds support for particle systems

 osgPlugins - 28 plugins for reading and writing images and 3D
databases

 osgGA - GUI adapter library - to assist development of viewers

 osgGLUT - GLUT viewer base class

 17

Important nodes in OSG are the osg::Drawables which contains the actual 3D object
and osg::Transform which contains a matrix that tells where in the world (relative to
the origin) the object is located.

A typical structure of the scene graph in memory can be:

 osg::Group at the top containing the whole graph
 LOD's, Transform, Switches in the middle
 osg::Geode/Billboard Nodes are the leaf nodes which contain...
 osg::Drawables which are leaves that contain the geometry and can

be drawn.
 osg::StateSets attached to Nodes and Drawables, state inherits

from parents only.

To create the objects that should be stored in the scene graph one can use a 3D modelling
software program, like 3DstudioMAX, that has an exporter to the OSG format.

Figure 19 displaying the three main levels of a scene graph tree.

Root-node holding the
whole scene graph.

Transform nodes, each containing a matrix
that defines a distance and direction relative
the parent nodes location.

The actual geometry
exported from a
modeling program.

 18

“A scene graph isn't a complete game or simulation engine, although it may be one of
the main components of such an engine; it's primary focus is representation of your
3d worlds, and efficient rendering thereof. Physics models, collision detection and
audio are left to other development libraries that a user will integrate with. The fact
that scene graphs don't typically integrate all these features is actually a really good
thing: it aids interoperability with clients' own applications and tools and allows it to
serve many varied markets from games, visual simulation, virtual reality, scientific
and commercial visualization, training through to modeling programs.”
(OpenSceneGraph, 2004)

OSG consists of a number of node kits, and libraries of functions that can be used on
these nodes. It’s up to the user to write an executable program using these libraries. In
the additional node kit osgProducer a standard OSG-viewer module is provided. This
viewer can be used to view the scene by traversing the scene graph. The standard
viewer holds some special features such as saving the current scene graph tree to a
file called saved_model.osg, and to save an animation path through the scene to a file
called saved_animation.path. If this animation path is loaded back into the viewer
together with the right model (scene graph) it will appear as a movie.

3.2.4 3DStudioMAX

3DStudioMAX (3DSMAX) by Discreet is probably the most used and well-known
3D modelling software (along with Maya by Alias). 3DSMAX provides good features
for creating, twisting, bending and overall modifying of 3D objects. It also has a good
material editor for texturing objects. 3DSMAX can also be used to arrange light
sources in the scene and render pictures or movies. It’s important though to
distinguish this kind of time consuming rendering, where the appropriate shadows are
computed and a 2D image is saved for future display, from the real-time rendering
that takes place in VR or a computer game.

3DSMAX uses the 3DS format but models of various different other formats,
including CAD and DWG, can be loaded into the program. In the process the file is
converted into the 3DS format, which sometimes causes some information loss.

 19

3.2.5 AutoCAD

AutoCAD by AutoDesk is the most well-known and used CAD program on the
market. The application is mostly used for construction development and drawing of
construction details. AutoCAD was initially intended for 2D drawings, even if it
nowadays supports 3D modelling. IKEA uses a tailor-made version of a CAD
program called AUTO DECO.

3.2.6 WorldUp

WorldUp by Sense8 is just like OSG a VR visual programming platform. WorldUp is
a licensed product and possesses a graphical user interface; it also supports
stereovision and importing models of the 3DS format.

When this project was started WorldUp was the mainly used VR-software at the
research centre.

3.2.7 EON

EON is another commercially available software solution for 3D VR application, but
was not available at the research centre when this project started.

 20

 21

4 Methods and Procedure
This chapter describes the actual implementation process of the model, first comes a
more general description of the applied methods and theory. Then comes the results
section, which is based on some key points in the process of developing the model.

4.1 Applied methods and theory

In order to develop any product, two major activities have to be undertaken: the
designer must understand the requirements of the product, and must develop the
product. Understanding requirements involves looking at similar products, discussing
the needs of the people who will use the product, and analyzing any existing systems
to discover the problems with current designs. Development may include producing a
variety of representations until a suitable artefact is produced (Preece, 1994).

The aim was to apply user centred design in order to produce a VE that supported the
specific information needed to describe the store entrance in a satisfying way. The
information about the building itself was pretty much predefined as the original
material was a CAD model and rendered drawings. The question was how this
information best could be presented in a VE, and how the experience of the material
presented this way compared to the usual way through rendered drawings. An
obvious difference is that a VE can support different levels of interaction, such as to
move objects in the scene, but the ability to choose your own viewing angle can in
itself be very important for the perception of space. As these issues strongly connect
to the specific model, and the situation when the application is used, user centred
design was a desirable method to use.

Another aspect of applying user-centred design was the attempt to establish a method,
or working scenario, for accomplishing VEs out of future building models. Even if
this specific project was about one room and the entrance, it can also be seen as a
pilot case about incorporating VR in the process of developing new IKEA-stores. Of
course this meant that the ordinary working scenario had to be known.

The main methods used to gather information about the user in this project has been
brainstorming and storyboarding. Storyboarding in this case means putting up a
scenario in the context of the user’s everyday work where the thought of system could
have a role. As time is a big issue when the incorporated user is a fulltime working
person with other obligations, these methods were more suitable than attending an
actual situation where the system is supposed to be used. Moreover an official
business meeting is a fragile situation, which it is not very appropriate to disturb as an
outsider. To get the most out of every meeting with the assigners, questions and
subjects to discuss were written down before the meeting.

The evolutionary process has been based around prototypes and meetings discussing
these. The whole process has been very iterative and even the thought of user
scenario for the final application has been altered throughout the process. This has
complicated the attempt to support usability due to the change of users and goals, but

 22

as VR was a fairly new area to the commission assigners the possible situations of
when to use it had to develop over time.

Concerning the prototypes the applied method can be described as evolutionary (see
2.3 Introduction to user-centred design). The main reason was that implementation
of a VE is time consuming and there simply wasn’t enough time to start all over again
for every iteration cycle. The disadvantage of this method is that bad design decisions
in the beginning of the process may steer the whole process in the wrong direction. It
is often useful to use simple paper mockups as throwaway prototypes in the
beginning of a designing process, they are cheap and the test users tend to be more
honest if they don’t think too much effort lies behind the prototype. However, as
mentioned above, VE was a relatively new, unknown and exotic area to the assigners
so a simple paper mockup was not thought to be able to represent the appearance of
the end product well enough. Instead, the first prototype was designed to show as
many possibilities with VE as possible rather than suggest a final result.

In the next section the result, in the form of some key points in the developing
process, are listed. They are not only intended to describe the iterative process, but
also concern the choice of using open source software.

4.2 Results

This section presents the results of the project. As the subject is an iterative process
which not only concerns a final result, the section is based on some key points in the
development process.

4.2.1 The first meeting

The first project meeting with IKEA was mostly spent defining the task. Some initial
time had to be spent introducing different fields of knowledge and brainstorming the
subject. A problem with new technologies is that the people who master them are
often not the same people who know the situation were the technologies best could be
used. Different user scenarios were discussed and essential demands on the solutions
were discussed. Specific technical solutions were avoided at this early stage as this
might inhibit the discussion of the problem.

4.2.2 The second meeting

At the second meeting the hardware at the reality center was introduced and
demonstrated. Even if the envisaged solution should be applicable to the “desktop
VR” kind, it was good to broaden the mind and look at previous projects with
interactive worlds. The main reason for the meeting was to demonstrate what could
be done with the available hardware and to brainstorm different user scenarios where

 23

VR could have a role within the process of designing and presenting new IKEA-
stores.

4.2.3 Results from the second meeting

The conclusion after the second meeting was that some sort of VE of the entrance
described in the one room project should be achieved. A 3D-model of the building
was available in the 3DS-format, converted from a CAD-model, but the specific
interaction the system should support was not specified.

4.2.4 Choosing software

At this point a decision of witch VE-software to use was crucial. World Up (see
Section 3.2.6) was the first choice as it was implemented and well known in the
reality lab, it also has a user-friendly graphic interface.

The other choice was OpenSceneGraph (see Section 3.2.2). The most important
advantage of OSG is that it is an open source program and can be adjusted in a way
that is suitable for the specific task. This also means that it is possible to make an
executable file that doesn’t require a specific player or viewer. Other advantages of
OSG are that it is free and has an exporter from 3DStudioMAX.

4.2.5 Decision on software

The choice fell on OSG as it seemed to be more flexible. The disadvantage of using a
code-based freeware is that it can be badly documented and have a long initial
learning time. The latter proved soon to be very true as no person in the reality lab, or
even the building, had any experience of OSG. The only way to learn how to put
together an OSG application was thus to search the web. However the possibility to
create a standalone application for IKEA was considered more important than the
graphical user interface of World Up.

4.2.6 The first prototype

Once the decision on software base was taken the next step was to start programming.
A major question that had to be answered in the beginning was how to navigate the
VE. The standard OSG-application, based on the OSG-viewer module (see Section
3.2.2 about OSG), has three ways to navigate a scene; trackball, flying and driving
mode. In the driving mode the system keeps you to the ground due to gravity, uses
collision detection and was obviously the mode that was best suited to simulate a
walk in a store building. The problem was that all motion is controlled by the mouse
and all input resulted in a continuous acceleration in a chosen direction. This meant

 24

that it would be hard to use the mouse to interact and move an object in the
environment; moreover it was very difficult to move with an appropriate speed and to
stop.

Apart from the programming that had to be
done, the application needed a model to load
and visualize. A big problem with the existing
one room model was that it was not originally
in the 3DS format, but rather a CAD model
converted into a number of 3DS objects. As a
result of the fact that an infinitely thin surface
has two sides in the CAD world, but only one
in the 3DS world, the model had been
deformed in the conversion process.
Moreover, the initial model had a level of
detail that showed the internal building
structure and was unnecessarily heavy to be
used as a visualization model for volumes (se
Fig. 20). The intention with this initial
prototype was more to present options and
possibilities with VE than producing a final model.

Above right Figure 20: Rendered picture from the model displaying visual artefacts due to double surfaces
in the internal structure.
Below Figure 21: View from 3DStudioMAX displaying wrong pointing surfaces, no polygon is actually
missing but the surfaces are invisible if viewed from behind.

 25

4.2.7 The resulting first prototype

The navigation problem was solved by modifying the driving mode provided by
OSG-viewer so the user could navigate with the arrow keys on the keyboard, and so
the motion speed was constant while the key remained pressed and went to zero as
soon as the key was released. This way it was easier to navigate the scene and the
mouse could be used for other purposes.

A time-consuming analysis of the model had to be done, flipping wrong-faced
surfaces and removing unnecessary internal polygons (see Fig. 20 and 21). Some
materials (or colours) from the original CAD model were kept in the conversion
process to the 3DS format, but additional colours and textured materials were also
added to the scene. The use of a skybox (see Section 3.1.4) was presented and the
possibility to create a sense of ongoing spaciousness using a photo as a side-scene
(see Fig. 22-24).

Figures 22, 23 and 24: Computer renderings displaying a photo used as a side-scene, the picture below
shows the effect when viewed from the inside.

 26

4.2.8 The third meeting

The exact specifications and limitations of the task were not decided until a third
meeting had occurred. At this point the commission assigners could for the first time
see a prototype of the model and navigate in it. It was now easier to specify the
commission.

4.2.9 Results from the third meeting

It was decided that the system should support interaction with the interior of the
building but not the building itself. The interaction should contain moving or
exchanging objects and maybe the possibility to display stored information about the
object (se the 1.3 limitations section). Furthermore it was decided that the architects
and designers already had suitable tools for the construction of new objects, but
lacked a good way to see how they would all work together in a store environment. A
conclusion of the third meeting was thus that the choice of LOD, lighting
circumstances and the overall impression were very important; a reference to
computer games was made. The importance of LOD was unanimous among the
commission assigners, but what the LOD should be was more arguable. It was
obvious that the LOD on most of the textures in the prototype was way to high and
that it distracted the user from what was important. On the other hand, it was also
considered very important that some company-specific trademarks in the scene
should have a high LOD.

Another important result of the third meeting was that the IKEA tailor-made CAD
version AUTO DECO, had to be explored and incorporated to get a meaningful user
scenario for the application.

4.2.10 The SOVRI workshop

As mentioned above the available information about OSG was quite limited in the
beginning. The consequences of this were shown when the VR lab in Lund hosted a
Scandinavian conference (SOVRI, see references) about VR and open source. Among
the participants were representatives from Umeå University, which has a longer
history with OSG.

4.2.11 Results of the SOVRI workshop

After having consulted the new expertise it was obvious that parts of the
programming job had to be redone, making the application more compatible with
future upgrades of the OSG library. A basic example of a “walk-manipulator” was
also provided, as well as usable basic information about how to program an OSG

 27

application. In the first prototype the standard drive mode of OSG-viewer had been
manipulated to simulate walk. The right thing to do would instead have been to make
a new camera manipulator that could be loaded into the viewer. This way the same
camera manipulator could be used when a new OSG-viewer is released. Afterwards it
is easy to be smart but OSG is open source and the difference between the bricks in
the wall and the wall itself can sometimes be difficult to discern, especially due to the
bad documentation.

4.2.12 The second prototype

Even if the first prototype was supposed to be of the evolutionary type, most of the
code was thrown away due to the new knowledge achieved at the VR conference.
However when making the second prototype the user interface was pretty much
retained and parts of the model could be used again, even though the One Room
project had been developed further by the commission assigners. The second
prototype became of the true evolutionary type and was just complemented and
iterated through the development process until the end. One challenge when
programming the second prototype was how to implement the interactivity.

4.2.13 The resulting second prototype

For the user, the most notable difference from the first prototype was the addition of
interactivity, i.e. the possibility to select and move objects in the scene (see Fig. 25-
27). To do this the transform matrix (see Section 3.2.2 about OSG) that belongs to a
selected object has to be detected. The transform matrix defines where in the world
the object will be located. OSG supports an easy way to select an object in the scene
using the mouse pointer. This is done by “shooting a ray” from the mouse pointer into
infinity in the viewing direction; the first object that the ray meets is detected. The
objects are represented as leaves on the scene graph tree (see Fig. 19) and will all
have a parent node that contains the transform matrix. If the matrix is manipulated the
object can be translated or rotated relative to the origin of the transform matrix.

The user interface used the mouse pointer and a dedicated key on the keyboard to
select an object, which made it possible to move it with the navigation keys. Due to
possible hardware limitations the collision detection during navigation was skipped in
order to increase the frame rate.

Another new feature was the possibility of “mouse look”, where the mouse is used to
change the viewing direction in all degrees i.e. makes it possible to look around for
instance at the ceiling. Also the possibility to double speed by pressing the shift bar
was added.

 28

4.2.14 The fourth meeting

The intention of the fourth meeting was to achieve an exact vision about where in the
development process of a new IKEA-store the application could play a role. This was
necessary in order to provide exactly the right interaction and features of the program.
Even if it seems good to have as many opportunities as possible, too many features
can affect the usability and intuitive understanding of the program.

4.2.15 Results from the fourth meeting

As mentioned before, the intention was
not to create a new modelling or
construction program, but rather to
enhance the impressions of a predefined
model describing a future building in
reality. It was decided that the
application should be seen as “a way of
walking around in one of the currently
used printed pictures featuring
renderings of models created in AUTO
DECO”. This means that the application
should be used in a symbiosis with
AUTO DECO via 3DSMAX. It should
be mentioned that at the time of writing,
a new exporter to OSG from Auto CAD
is being developed which might
eliminate the use of 3DSMAX in the
future.

Even if interaction with the model is not
necessary for visualising how the model
might appear in reality, it supports the
working process in AUTO DECO if one
immediately can see the consequences
of, say, moving an info counter to the
other end of the room. The importance
of keeping some parts of the model
unmoveable (such as building
constructions) was also emphasised.
However the possibility to export any
chosen model from 3DSMAX to the
application is also appreciable, which
raised the question of how to define the
unmoveable parts of the model.

Figures 25, 26 and 27: The second prototype
included interactivity i.e. the possibility to
select and move objects in the scene, in this
case the desk.

 29

OSG provides an easy way to save an animation path in the model, which will appear
as a movie when being replayed. This can also be performed in 3DSMAX but will be
much more time-consuming as this is done by pre rendering every frame in the
movie. The ability to predefine exactly which parts of the model the user will see can
be a powerful tool in a presentation, and it was decided that some sort of
communication clearly should inform the user how to create such an animation path
in the loaded model.

Also it was concluded that “mouse look” should not be selected by default as some
users tend to lose track of directions using this mode.

4.2.16 The third prototype

One way to identify moveable and non-moveable objects would be by name, or to
“tag” all the objects in the scene. If the process of dividing the model into
moveable/non-moveable parts is done in the code it will make it hard to integrate a
new model in the application, and if it is done in 3DSMAX it will be highly
dependent on the current 3DSMAX version and its exporter to OSG.
An appealing way to identify the moveable parts would be to tag them directly in the
loading process to the application; this way all moveable parts could be loaded in one
model and all the unmoveable parts in another. The solution is dependent on the
ability to integrate two model parts, and make it appear as one model without any
scaling or displacement problems.

4.2.17 The resulting third prototype

Fortunately OSG allowed the integration of differently loaded parts of a model in the
same scene very well, using the OSG modules for reading arguments (osgDB). From
the third prototype and on, the application reads the model as arguments to the
executable file. The first argument is added as the first child of a super root-node in
the scene graph (see Section 3.2.3 about scene graph), and the second and third
arguments are added as the second and third children of the super root-node. When
the user selects an object, the application traverses up in the scene graph hierarchy
tree to the super root-node, and detects which child branch the object belongs to. This
way the application can detect the model loaded in the first argument as unmoveable
and the rest of the arguments as moveable objects.

Also the user interface was improved so moveable objects were selected and moved
by drag and drop, using only the mouse and no keyboard.

 30

4.2.18 The fifth meeting

The fifth meeting most concerned details regarding the user controls and the visual
appearance, and not so much defining a user scenario. The prototype was fully
working and the project assigners could navigate the scene and move selected objects.
This made it possible to more exactly define parameters such as with what speed one
should move in the model, which options should be selected by default, and what sort
of help information should be available.

4.2.19 Results from the fifth meeting

It was concluded that the walking speed applied when moving around in the model
had to be increased. Also the gravity system should be improved providing a more
continuous movement when walking in staircases. The model should be even more
abstract without so many distracting textures. Better models of customers would be
appreciable, especially children.

4.2.20 The fourth prototype

So far, writing the executable file name and the arguments in the command prompt
had been the only way to start the application. The two remaining big parts of the
project were now to create a user interface for loading the right model, and writing a
user’s manual.

4.2.21 The resulting fourth prototype

After the fifth meeting the prototype was adjusted according to what had been said.
Also an optional collision detection was implemented and the ability to manually
change the eye height (which made it possible to explore the loaded model the way a
child would see it).

A user interface was written in Visual Basic and provided both shortcuts to load the
One Room model (Fig. 29) and an advanced part (Fig. 30) that could be used to load
any other model. Also buttons for loading the saved_model.osg file and to play the
saved_animation.path were added (see Section 3.2.2 about OSG).

A user’s manual was written (see appendix A) which covered both handling the
application and how to use it together with 3DSMAX.

 31

Figures 29 and 30: A user interface was written in Visual Basic and provided both shortcuts to
load the One Room model, and an advanced part that could be used to load any other model.

 32

4.3 Summary of the model development process

The process of developing the model, or application, started off in pretty undefined
ideas of what should be accomplished. However the reason for the project was clear;
“it’s much cheaper to change the design of a building before it’s built than
afterwards”, and maybe VR can be a way to discover undesired results, or to transmit
the ideas, of the current design. The evolutionary way of deciding the user scenario
for the application was probably necessary due to the mutual exchange of knowledge
about VR, and the knowledge about building IKEA-stores, with the commission
assigners. The method of using iterative prototypes when approaching the final design
was also a result of the need to establish a common platform to discuss around. The
time schedule was violated and in a future project it may be easier to decide upon a
final design sooner. The violation of the time schedule also concerns the choice of
software; open source has a big advantage in the ability to support individual
requirements, but the advantage is more obvious in the long run when one wants to
expand systems or incorporate them with each other. For separate small projects the
initial learning phase can become quite steep due to the insufficient documentation;
however this of course changes if one has already mastered the software.

Even if the project originated in the one room project, the final prototype makes it
pretty easy to load any other model. The result of the project can be seen as a method
of converting a CAD model into a VE. This change of focus is a result of the
evolutionary way of defining the task. During the process it has become quite obvious
that the commission assigners and architects at Inter IKEA are the ones who are best
suited to design the visual aspects of the model, and for an engineer the task is to help
displaying and exploring the model.

 33

5 Presentation of the final application
This chapter presents the final application; maybe “final application” should be
exchanged for “latest prototype based on the last iteration process”, meaning the
commission assigners to this project have most likely only just started their quest for the
right VR application for them. But this is how far the project is taken at this time. At the
end of the chapter is a short section for the interested reader called “5.3 Theory
connections to the final result” where references to the initial theory and an evaluation of
the prototype are made.

5.1 Supported features

The final application has an interface written in Visual Basic and consists of two
parts, one concerning the predefined One Room model and one advanced part, which
supports the loading of any other model. The One Room part has three choices; to
load the whole building with moveable interior and moveable customers, to load the
building and the moveable interior without customers, or to only load the non
moveable building. The advanced part supports in the same way three possibilities to
load parts of a model, the first loaded part will be fixed and the optional two other
parts will be moveable. To choose parts of the model an explore window is used,
opened by default to the MODEL catalogue of the application. The features for
saving or loading an animation path to saved_animation.path, or the displayed
model to saved_model.osg, are present in both parts.

The Visual Basic interface is merely a light cover for the real OSG application, and in
a future version it will most likely only consist of the advanced part in the case of the
application used as a developing tool together with a 3D-modeling program.
Alternatively a new interface like the One Room part can be written for any specific
model and the whole application can be saved on a cd-rom and distributed as a VR
brochure of the featured model.

When an option in the Visual Basic interface is selected the OSG application reads
the chosen model as arguments and execute. The program initially always puts the
user in the middle of the world, facing north; in the One Room model this is set to the
entrance of the building. The up, down, left, right keys are used to move around;
pressing the shift bar doubles the speed. To display help and key settings the user can
press "h" or "H". Drag and drop with the mouse is used to select and move the parts
of the model that has been chosen to be moveable. A moved object always keeps the
same vertical position, but can be moved around or rotated in the horizontal plane.

The user has the option to toggle different settings such as collision detection, mouse
look (to use the mouse to move around your virtual head), a simulated "trotting"
walking style and different rendering options.

Other features are instant return to the start location, or save a new start location, and
to change the eye height over ground. The original osg-viewer ways to navigate the
scene (trackball, flying mode and driving mode) are still available.

 34

5.2 Technical description

The OSG application consists of two classes, WalkManipulator which extends
osgGA::MatrixManipulator and PickHandlerInteractive which extends
osgGA::GUIEventHandler. A main program (IKEA-Viewer.exe) starts an osg-viewer
instance and adds an instance of Walkmanipulator which has an instance of
PickHandlerInteractive.

Walkmanipulator handles a matrix representing the viewer (a model-view matrix) and
uses input from the keyboard and mouse in its "WalkManipulator::handle" method to
calculate the movements in the scene. As WalkManipulator extends
osgGA::MatrixManipulator, which in turn extends osgGA::GUIEventHandler, it can
handle events from osgGA::GUIEventAdapter such as
osgGA::GUIEventAdapter::FRAME, in FRAME the calculated movements from the
"handle" function is used to update the scene.

WalkManipulator also includes the WalkManipulator::setPositionWithHeight
function which uses a osgUtil::IntersectVisitor (can be described as an invisible beam
that can detect if it crosses an object in the model) for adding gravity to the system
and keeping the viewer to the ground. An instance of IntersectVisitor is also used
when the collision detection is activated; in this case the "beam" shoots horizontally
instead of vertically. If the "trotting" walking style is activated a sine function is used
to modify the position over ground in setPositionWithHeight.

PickHandlerInteractive handles the interaction in the scene and uses an
IntersectVisitor to detect the object that the user selects with the mouse pointer. Once
the object is selected PickHandlerInteractive can traverse the scene graph upwards
and detect if the object belongs to a branch that is supposed to be moveable. If the
object is moveable the transform matrix, which defines where in the world the object
is located, is detected so WalkManipulator can use the input from the user to move it.

IKEA-Viewer simply reads the up to three arguments containing the model, and puts
them in up to three different branches in the scene graph tree. When
PickHandlerInteractive traverses the tree it knows that the first branch is supposed to
contain fixed objects and the rest moveable objects. IKEA-Viewer also continually
calls the activity defined in WalkManipulators FRAME part so the window gets
updated correctly.

 35

5.3 Theory connections to the final result

In order to talk about usability one has to specify a user, goal and environment. In this
specific project the user and the goal were initially very loosely defined. The
environment was specified due to the hardware available in a conference room, i.e. a
laptop and a projector. However the only specification of the user at the start of the
project was that he or she could not be assumed to have any specific computer skills,
but if the user was involved in the designing, construction or marketing business was
unspecified. These three categories of users were the most likely but they had very
different goals in their use of the system. No more specific description of the assumed
profession of the user was actually decided, but the tasks the system should support in
general was better specified later in the project.

Concerning usability aspects there are however general guidelines, or principles, that
can be attended to in order to support usability when designing an interactive system
(see Section 2.2 introduction to usability).
Next come some examples of how the final application relates to these general
guidelines that were presented in Tables 1-3.

5.3.1 Learnability:

The levels of supported Predictability and Synthesizability are in this case heavily
depending on the computer hardware that the application is running on. If the graphic
card is not up to the task and the system runs slowly, the user will lose the connection
between his/her actions and the effect they have. Otherwise Familarity,
Generalizability and Consistency are supposed to be well supported due to
similarities in computer games most of all. One weakness might be the way objects
are selected and moved around. In a windows based, 2 dimensional, computer
environment the “drag and drop” system never has to support rotating an object, this
makes it difficult to use the reference in a 3 dimensional environment.

5.3.2 Flexibility:

Dialog initiative and Multi-threading are thought to be automatic in an environment
like this where the main feature is to visualize a 3D-model. Task migratability can
be considered supported by the provided option of both ”mouse look” and normal
viewing; in the mouse look mode the viewing angle can be chosen arbitrary, and
when going back to normal mode the system simply sets the viewing direction to the
move forward direction horizontally. One example of substitutivity can be that to
unmark an object, either the right mouse button, or simply trying to select something
else with the left mouse button, will work. Customizability is not generally thought
of but an initial choice of keyboard bindings like the ones present in many computer
games might be an idea. The options to change drawing mode, to for example wire

 36

frame, or to show frame rate, is however provided by OSG-viewer from the
beginning.

5.3.3 Robustness:

Observability and responsiveness are the reasons why a notification, telling the user
that the system is ”loading”, was added when a model in the start-up interface is
chosen (se Fig. 31). The loading time can be quite long and test users wondered why
the screen suddenly turned black. Recoverability might be the correct motivation for
the added option to return to the start position, but a way to exactly restore moved
objects without reloading the model would be desirable. This would however require
some sort of saved initial data, or a memory of the actions, which might cost a lot of
computer power.
Task conformance is the major point that this thesis aimed to evaluate, over time the
tasks themselves have changed but hopefully this project has been a step forward for
the commission assigners.

Figure 31 showing the command prompt displayed when a model is loaded into the application.

5.3.4 Overall evaluation:

To do an overall evaluation of the final result from this project, the most desirable
thing would be to construct some sort of user test. However, the resulting application
was never intended to be a release product. To really evaluate the use of virtual reality
in the process of designing and presenting new IKEA-stores a release product would
be necessary as well as time to incorporate it in a new store construction project.
There are however optional evaluation methods that don’t require user tests, such as
expert analyses and cognitive walkthroughs. Expert analyses have been performed
both with the author of this thesis (who has specialized in human computer
interaction) as an expert, and with the commission assigners as experts in how to
perform the task of designing and selling IKEA-stores. A cognitive walkthrough is a
mental test performance of how the system would work in a real situation, this has
also been done continuously as one objective was to evaluate a method, or working
scenario, for producing and using VR applications of IKEA-stores. Finally some sort
of unofficial user tests have been performed when the commission assigners have
tried and commented on the prototypes.

The resulting overall evaluation, done under the premises described above, is that the
resulting prototype probably has the right features. The initial intention to display
predefined data connected to the objects in the model was never implemented, but the

 37

possible advantage with this is obvious as one major problem has been to define the
user and the ideal level of detail the model should obtain. In this way users would be
able to obtain different amounts of information about a selected object in the scene.
The only debatable feature of the final prototype is the interactivity added for moving
objects in the scene; it is not necessary that this feature is essential for the user.

The conclusion to concentrate on the possibility to support future models was
probably right; the importance of fast cycles was concluded by the commission
assigners when incorporating virtual reality in there everyday work.

The usability aspects of the selected features also seemed to be satisfying; the
commission assigners were able to run the system without too much introduction and
training. This holds for the assumption that the system worked the way it was
supposed to do, and no delay due to hardware incompatibility occurred. However
OpenSceneGraph seems to be poorly compatible with certain graphic cards, which is
a major and lately found disadvantage.

Finally it should be said that the commission assigners at the end of the project still
thinks that the right project and question at issue was chosen at the beginning, and
that the assumption that virtual reality can have a role when designing, building and
selling IKEA store was correct.

 38

 39

6 Conclusions

This project started with an intention to orient the staff at Inter IKEA into the world
of virtual reality. At this stage it is possible to conclude that OpenSceneGraph is
probably not the right software for this type of applications, as the initiation process is
way too long and the documentation and support is bad. The situation might however
be another if the task was to build a bigger separate system, say a special show room,
with a group of people specially dedicated to support and maintenance. One solution
for IKEA might be to do as in the case with AUTO DECO, which is an in-house
interface for CAD programming. The same type of interface could be ordered for
OSG, and in this way the advantages with open source can be combined with the
support of a commercial software.
It is obvious that IKEA can gain advantages by coordinating the used CAD standards
so a quick conversion into a VR application can be achieved. This might require a
material library where the standard wall, floor, furniture etc are defined. A major
conclusion from this project has been that converting CAD models can be very time
consuming, but this can be avoided if the original CAD model is intended to be used
both as a 3D-object in a VR application, and rendered into a 2D drawing.

Finally it’s my conviction that a fast-cycle, simple interface standardised method for
converting CAD models into VR-models will be of great importance when both
designing, selling and building new IKEA-stores in the future.

 40

 41

References

Angel, Edward, (2003), INTERACTIVE COMPUTER GRAPHICS A Top-Down Approach with OpenGL
(third edition).
Addison Wesley

Dix, Alan; Finlay ,Janet; Abowd, Gregory; Beale, Russell , (1997), Human-computer interaction (second
edition).
Prentice Hall

Kheddar, Abderrahmane; Chellali, Ryad; Coiffet, Philippe, (2002), Virtual Environment-Assisted
Teleoperation, chapter 48 in Handbook of Virtual Environments (2002) edited by Kay M. Stanney.
Lawrence Erlbaum Associates, Pubblishers.

Ljungqvist, Ludvig, (2003), Establishing Methods of 3D City Modeling based on Multiple Data Sources.
Master Thesis, Department of Design Sciences, lund Institute of Technology, Lund, Sweden.

North ,Max M.; North, Sarah M.; Coble, Joseph R., (2002), Virtual Reality Therapy: An Effective
Treatment for Psychological Disorders, chapter 51 in Handbook of Virtual Environments (2002) edited by
Kay M. Stanney.
Lawrence Erlbaum Associates, Pubblishers.

Preece, Jenny; Rogers, Y.; Sharp, H.; Benyon, D.; Holland, S.; Carey, T. ,(1994), Human-Computer
Interaction.
Addison-Wesley

Rafferty, M.M., Aliaga, D.G., Popescu, V., & Lastra, A.A.,(1998), Images for accelerating architectural
walkthroughs. IEEE Computer Graphics and Applications.

Internet references

Openscenegraph (2004)
http://www.openscenegraph.org/ [2005-01-17]

SOVRI
http://www.reflex.lth.se/sovri

The final prototype and a digital version of this thesis can be found under this web link:
http://www.reflex.lth.se/idc/

 42

 43

Appendix

The user's manual for IKEA Viewer…

 I

Manual for IKEA-Viewer

IKEA-Viewer is an application that can load and visualize any 3D-model of the
OpenSceneGraph (OSG) format. IKEA-Viewer also provides some interactive
functions, such as to move around objects in the scene, and the ability to create or
play a movie (animation path) in the loaded model. Any 3D-model that can be opened
in 3D Studio MAX can easily be exported to the OSG format using the open source
program OSGexp provided at: http://osgexp.vr-c.dk
This means that also models stored in various CAD formats can be exported to the
OSG format. Learn more about the open source program OpenSceneGraph at:
http://openscenegraph.sourceforge.net.

To open up and run IKEA-Viewer

Download and unzip the entire “IKEA VIEWER” zip file where you want it on your
hard drive.

The unzipped file includes, in addition to a couple of dll files needed by the IKEA-
Viewer.exe file, a RUN IKEA VIEWER.exe file which should have an IKEA logo.

A folder named Models is also included containing the One Room OSG models. This
is also the location to where you should export any of your own models.

 II

Double click the RUN IKEA VIEWER.exe file to start the interface that controls
the IKEA-viewer program. A window like the one below should pop up.

In the One Room part of the interface three versions of the One Room model are
provided. Simply make your choice by pressing the appropriate button. The
application may need some time to load the model but you should soon find yourself
at the start of the One Room model.

Use the up, down, right, left -keys to move around. By pressing “h” you can always
view help.

To play a pre-stored animation path
Press the “Play SAVED ANIMATION” button to run the saved animation path. The
program will follow the animation path stored in the file saved_animation.path and
load the model saved_model.osg (note that these files are located directly in the
IKEA-Viewer folder and not in the Models folder). To view the model stored in
saved_model.osg, press the “Load SAVED MODEL” button.

To store an animation path
When the program is running, press “z” to start recording and “Z” to stop recording.
The animation path will automatically be stored in the saved_animation.path file and
will start looping from the beginning as soon you pressed “Z”. If you want to save the
currently viewed model in the saved_model.osg file you should press “o”. This is
necessary if you want the currently loaded model to be used when you press the “Play
SAVED ANIMATION” button.

 III

To load your own model
When you have installed the OSGexp program to your 3ds MAX version (se page ?)
you can export selected parts of a 3ds MAX scene using the “export selected”
function in 3ds MAX. You can also export the entire scene by simply using “export”
instead of “export selected”.

If your model was not created in 3ds MAX you have to start with importing it to 3ds
MAX. Below is a DWG file imported to 3ds MAX and then exported to IKEA-
Viewer as an osg-file.

Select “Import” in the “File” menu in 3ds MAX.

 IV

A “Select File to Import” window pops up where you can navigate to the model you want to import.
Select the format for the file in the “Files of type:” menu, then select the model.

.

You might get several option windows when you import your model. The two windows presented below
pop up when you import a DWG file into 3ds MAX 5 and can be selected as shown.

 V

You may have to scale your model so it doesn’t appear to big or small in IKEA-Viewer.
To get the “selection floater” in 3ds MAX press “h” or get it manually from the “Tools” menu.

In the “selection floater” mark all with the “ALL” button, then press “Select”.

 VI

Right click the scale button in the top toolbar of 3ds MAX to get the scaling window. The proper scale
for IKEA-Viewer is 1:1000.

You also have to decide where in the scene model the start position for IKEA-Viewer should be. IKEA-
Viewer will always initially place you in origo (x = 0, y = 0, z = 0) of the 3ds MAX world, facing
north. This means that you should select the whole scene in the “selection floater” and translate it so
that origo is located where you want to start in IKEA-Viewer.

Use the translation tool by pressing the translation icon:

 VII

You can now select which parts of the model you want to export to the Models folder in IKEA-Viewer,
converted to the osg-format. Use the selection floater:

Bluemark the objects in the scene you want to export and press “Select”. Use the CONTROL button on
the keyboard to select more than one object.

Then choose “Export Selected” in the “File” menu.

 VIII

You then get a “Select File to Export” window looking like this.

Navigate to the Models folder in IKEA-viewer. Name the file and select “OpenSceneGraph Exporter
(*.IVE, *.OSG)” in the “Save as type:” menu.

If you name the file as an xx.osg file it will be stored as an OSG file, if no suffix is set after the name it
will be an IVE file by default.

Press the “Save” button and the OSGexp interface pops up:

You can select various options using OSGexp but the above selected options can stand as a standard
example.

Press “OK” to export the selected objects to the Model folder in IKEA-VIEWER.

 IX

In the IKEA-Viewer interface you can now under the “advanced” part load up to
three parts of a model

Press the “Load …” buttons to get the Open window where you can select the objects
in the Models folder.

 X

Press “RUN” to start the program. The three model-parts will load over each other
and appear as one model, but they will be loaded in three different branches of the
open scene graph tree. This makes it possible for IKEA-Viewer to decide whether it
should be possible to select and move an object or not.

The selection of objects loaded in the first part will always be fixed, while up to
two other selections of objects will be moveable. If only one selection of objects is
loaded (as when using “export” instead of “export selected”) the whole scene will be
non-moveable.

In the One Room example the building is loaded in the “Load fixed model” branch
and the interior is loaded in the “Load first moveable model” and the customers in
the “Load second moveable model” branches.

MONO or STEREO?
OSG and IKEA-Viewer supports in addition to normal mono viewing, also both
active stereo and anaglyphic (red/green) stereo.

Mono is the normal viewing mode and should be selected when no stereo glasses are
present.

Active stereo means that you need active stereo glasses that can switch from right to
left eye synchronized to the appropriate image display by the screen or projector .

Anaglyphic stereo means that you can use cheap red/green glasses that can be found
in any hobby-store.

 XI

Tips when exporting your own models

As understood from the above you should use 3ds MAX to make your selections of
which parts of your model should be moveable. Note that if a couple of objects in 3ds
MAX is grouped together, say a couple of chairs, all chairs will move if you move
one of them in IKEA-Viewer. You’ll have to ungroup them in 3ds MAX before you
export them in order to move just one chair in IKEA-Viewer.

IKEA-Viewer will always initially place you in origo (x = 0, y = 0, z = 0) of the 3ds
MAX world, facing north. This means that you should select the whole scene in 3ds
MAX and translate it so that origo is located where you want to start in IKEA-Viewer.

If the model seems to be too big or too small when you open it in IKEA-Viewer you
should rescale it in 3ds MAX. The ideal scale for IKEA-Viewer is 1:1000.

OSG is a real-time player which means that exported lights will not cast any
shadows. When you walk out of the region of a light everything will simply suddenly
look darker. An easy way to make things look normal is simply to not export any
lights and let OSG use its own default light, or to light up the whole scene by using
four “direct lights” from above and one direct light from down under the model. This
way you can set the color of the light to be a little bit yellow to get a warmer feeling
in the scene.

By using textures and experimenting with the material editor in 3ds MAX you can
also induce a specific atmosphere in the scene. Try out the controls for specular level,
glossiness, soften, self illumination and opacity in the 3ds MAX material editor.

Try to keep the model as simple as possible; the frame rate when you run IKEA-
Viewer will be highly dependent on the number of polygons in the scene. Moreover
an infinitely thin object in 3ds MAX has only one surface, whereas it has two in the
CAD format. This means that models converted from CAD to 3ds sometimes get
double, or wrongly directed, surfaces. There are commercially available converter
programs that are supposed to be exceptionally good at converting CAD models to the
3ds format, but in most cases opening up the CAD model in 3ds MAX will work
sufficiently well.

 XII

Keyboard bindings when running IKEA-Viewer:

Basic keys
Up, Down, Right, Left: Move around, if an object is selected-rotate

it.
Shift bar Double speed.
Ctrl Hold down and use left, right to move

sideways.

Left Mouse button Select a moveable object.
Left Mouse button and Drag: Select and move a moveable object.
Right Mouse button Unselect
m Toggle mouse-look (use the mouse to look

around).
Space bar Return to start position.
q Save new start position.
c Toggle collision detection.
p Toggle walking style.
PgUp, PgDn: Change eye height.
h View help.
Escape button Quit

Animations and graphics
z Start recording camera path
Z If recording camera path - stop recording

camera path and save to
 saved_animation.path.
o Write scene graph to saved_model.osg.
f Toggle full screen.
l Toggle lightning.
s Toggle instrumentation.
b Toggle backface culling.
t Toggle texturing.
v Toggle block and vsync.
w Toggle polygon fill mode.

Camera manipulators
1 Select ‘trackball’ manipulator.
2 Select ‘flight’ manipulator.
Flight: a No yaw when banked.
Flight: q Automatically yaw when banked (default).
3 Select ‘drive’ manipulator.
Drive: a Use mouse left, right mouse button for

speed.
Drive: q Use mouse y for controlling speed.
4 Select ‘terrain’ manipulator.
5 Select ‘walk’ manipulator (default).

