

hempster hampster

a multiplayer car simulation engine

Supervisors
Magnus Bondesson

Computing Science Department, Chalmers University

Joakim Eriksson
Department of Design Sciences, Lund University

Eero Piitulainen

Magnus Österlind
ISRN: LUTMDN/TMAT-5071-SE

2

To our supervisors, past and present, for their infinite patience, thank you.

3

Abstract
This thesis describes the implementation of a multiplayer car simulator. The purpose of this
work is to create a realistic car simulator framework. The framework can easily be extended
to a platform for different test environments. Possible implementations could be behavior
research and driver training.

Advantage has been taken of the continuing increase in computing power of personal
computers to make the simulations of the vehicle dynamics as realistic as possible. The
graphics engine takes advantage of the unprecedented increase in the capabilities of graphics
cards over recent years.

4

1 ..INTRODUCTION 6

1.1 LAYOUT OF THE DOCUMENT .. 6
1.2 GOAL ... 6
1.3 RELATED WORKS ... 6
1.4 LIMITATIONS ... 7

2 METHOD .. 8

3 RESULTS .. 9

3.1 APPLICATION .. 9
3.2 MAIN LOOP ... 9
3.2.1 CONTEXTS AND TRANSITIONS ... 9
3.3 THE CLIENT-SERVER MODEL ... 11
3.3.1 CLIENT .. 11
3.3.2 SERVER .. 11
3.4 OTHER IMPORTANT COMPONENTS .. 11
3.4.1 ID DATABASE .. 11
3.4.2 GAME DATABASE .. 12
3.5 PHYSICS ... 13
3.6 STRUCTURE OF PHYSICS OBJECTS ... 13
3.6.1 DATA STORAGE ... 13
3.6.2 CURRENT OBJECTS DERIVED FROM CENTITY ... 13
3.6.3 ENTITIES AND ENTITY OWNERSHIP.. 13
3.7 MAIN PHYSICS LOOP ... 14
3.8 OBJECT CREATION.. 14
3.8.1 VEHICLE .. 14
3.8.2 CMYFIRSTCAR.. 14
3.8.3 CGEARBOX ... 14
3.8.4 CSIMPLEENGINE ... 14
3.8.5 CSUSPENSION .. 15
3.8.6 CPRISMATICSUSPENSION .. 15
3.8.7 FACTORY ... 15
3.9 WORLD SPACE SYSTEM .. 15
COLLISION SYSTEM .. 17
3.9.1 WORLD MESH STRUCTURE .. 17
3.9.2 COLLISION OBJECT STRUCTURE .. 17
3.9.3 COLLISION PRIMITIVES ... 17
3.9.4 COLLISION OBJECT HANDLE .. 18
3.9.5 CONTACTS ... 18
3.9.6 CONTACT KEY. .. 18
3.10 RIGID BODY DYNAMICS .. 19
3.10.1 CALCULATION OF BODY ACCELERATION .. 19
3.11 TYRE MODEL ... 20
3.12 PRISMATIC SUSPENSION MODEL .. 23

4 THE GRAPHICS ENGINE ... 25

4.1 INTRODUCTION ... 25

5

4.2 COMPONENT DESCRIPTION .. 25
4.2.1 WORLD .. 25
4.2.2 ANIMATIONMANAGER .. 25
4.2.3 CAMERA MANAGER .. 25
4.2.4 SHADERBREAKER .. 26
4.2.5 SCENE LOADER ... 26
4.3 3D OBJECT STRUCTURE ... 26
4.4 RENDERING ... 26
4.5 NOTABLE TECHNOLOGIES .. 27
4.5.1 SHADOW VOLUMES ... 27
4.5.2 ATMOSPHERIC SCATTERING.. 27
4.6 EXPORTING OBJECTS FROM 3DSTUDIO MAX ... 28

5 DISCUSSION .. 29

5.1 CONCLUSION ... 29
5.1.1 PHYSICS ... 29
5.1.2 COLLISION SYSTEM ... 29
5.1.3 NETWORK .. 29
5.1.4 ENGINE ONE .. 29
5.2 FUTURE WORK ... 29
5.2.1 PHYSICS ... 29
5.2.2 COLLISION SYSTEM ... 30
5.2.3 NETWORK .. 30
5.2.4 ENGINE ONE .. 30

6 REFERENCES .. 31

7 APPENDIX .. 32

7.1 BUILDING HEMPSTER HAMPSTER ... 32
7.2 EXTERNAL DEPENDENCIES .. 32
7.3 USERS GUIDE ... 33
7.4 USED ABBREVIATIONS .. 36
7.5 BLUEPRINT FORMAT ... 36
7.5.1 CAR ASSEMBLY ... 36
7.5.2 CAR ... 37
7.5.3 WHEEL WITH TYRE .. 38

List of Figures
FIGURE 1. APPLICATION MAIN LOOP 9
FIGURE 2. SINGLE PLAYER LOOP 10
FIGURE 3. MULTIPLAYER LOOP 10
FIGURE 4. ARRANGEMENT OF CELLS IN THE WORLD SPACE SYSTEM 16
FIGURE 5. RIGID BODY WITH ATTACHED REFERENCE SYSTEM, THE BODY FRAME. 19
FIGURE 6. LATERAL DEFLECTION OF TYRE. 20
FIGURE 7. SIDEVIEW OF TYRE, SHOWING THE TORSION OF THE CARCASS. 20
FIGURE 8. FORCE AND SLIPPAGE RELATIONSHIP OF TYRE. 22
FIGURE 9. MODEL OF A PRISMATIC SUSPENSION ATACHED TO A RIGID BODY. 24
FIGURE 10 IN GAME 25
FIGURE 11. DISPLAY OPTIONS 33
FIGURE 12. MAIN MENU 33
FIGURE 13. MAIN MENU 34
FIGURE 14. HOST GAME MENU 34
FIGURE 15. REMOTE GAME MENU 35

6

1 Introduction

1.1 Layout of the document
We begin by describing the goals, methods and limitations of Hempster Hampster (HH). A
conclusion and final thoughts section rounds off the first chapter.

This is followed by a technical description of the three main parts of HH, the application, the
physics, and the graphics engine.

Finally, an appendix containing instructions for building HH, along with a user’s guide, and
the format of the XML [2] files is presented.

Doxygen1

 generated documentation for the source code is included on the source code CD.

1.2 Goal
The goal of Hempster Hampster (HH) was to create a working multiplayer car simulator, that
was easily extendable, both in terms of physics, logic and graphics.

We have implemented a simple multi player racing game as a proof of concept, but we think
that the framework we have created can be used as the base of a lot more interesting projects.

Possible expansions include using the simulator as an aid for driving students and instructors
etc. The simulation can also be expanded to conduct various types of research, such as,
simulating different traffic environments, the effects of impaired peripheral vision [1].

The simulation could also provide a safe environment for otherwise dangerous tests, such as
the effects of alcohol on a driver.

1.3 Related Works
There are a few other open-source game engines available, for example

- Crystal Space (http://crystal.sourceforge.net/tikiwiki/tiki-view_articles.php)
- Genesis 3D (http://www.genesis3d.com)
- Racer (http://www.racer.nl)

Despite this, we choose to implement everything in Hempster Hampster from scratch. The
reasons for this choice are

- Various limitations in existing packages such as lack of control of numerical precision
in large worlds.

- Control of the code base
- Many packages are geared mainly towards entertainment applications.

1 http://www.stack.nl/~dimitri/doxygen/

http://crystal.sourceforge.net/tikiwiki/tiki-view_articles.php�
http://www.genesis3d.com/�
http://www.racer.nl/�
http://www.stack.nl/~dimitri/doxygen/�

7

1.4 Limitations
When we first drew up a list of features we wanted to implement in HH, it soon became
apparent that this list was beyond the scope of the thesis.

Instead we focused on core functionality, while making sure the system was open ended, and
could easily be extended in the future.

The core of Hempster Hampster consists of the following

- An application frame work, and a simple game model.
- A client/server implementation allowing for network play.
- A physics simulation
- A collision system
- A rendering engine, capable of rendering the car and the environment on different

graphics cards.

The ideas and features we didn’t implement are specified under each section’s “Future Work”
heading under conclusion.

8

2 Method
HH was coded in C++ under Microsoft Visual Studio .NET 2003. The 3d models were
created in 3dsmax 5/6.0 and exported with a custom exporter. All parameters that are
tweakable are stored in .XML files.

We choose Direct3D [4] as the graphics API to use, because it was the one we were most
familiar with.

FMOD2

 was used for the sound playback. This made it possible to get a stable sound system
running with very little effort.

We also used a number of free source code libraries to avoid reinventing several wheels. See
the appendix for a complete list of libraries used.

When writing the code, we used a special commenting format to enable Doxygen to generate
better source code documentation, along with class hierarchies and call graphs. The generated
documentation is useful both in getting an overview of Hempster Hampster, and in the case of
expanding upon this work.

2 http://www.fmod.org/

http://www.fmod.org/�

9

3 Results
The HH program is split into three different parts, the application, the physics and the
graphics engine.

3.1 Application
The application handles most of the “essential” functions, networking, updating inputs and
sound and game logic. It also tells the physics to run the simulation and the 3d-engine to
render.

3.2 Main Loop
The applications main loop is as follows (see figure 1):

Figure 1. Application main loop

The application can be thought of as a state machine, and at any given point in time, is in
exactly one of many different states (or contexts). Today “many” is just two.

3.2.1 Contexts and transitions
A context is a well defined state in the application. Each context has method to update (tick)
and a method to render. The contexts also have a method for reporting if they are done (along
with a return code).

10

Context Transitions
When a context reports that it is finished, it also returns a return code. This return codeis used
to determine the next context.

Main Menu Context
When HH starts, the application is in the “Main Menu” context.

This context handles drawing the main menu, and handling the user input until the context
exists. The main menu context can with either a “Quit game” return code, in which case we
exit HH, or with the “Start” return code, which will transfer control to the “Game” context.

Game Context
The game context handles everything game related. Its update method ticks the simulation,
processes network data and updates player information. Its render method calls Engine One’s
World to render the environment.

Two slightly different loops are run, one for single player mode, and one for multi player (See
figure 2 and 3).

The single player loop:

Figure 2. Single player loop

The multi player loop:

Figure 3. Multiplayer loop

11

3.3 The client-server model
HH implements a simple client-server model for the network play.

One player starts HH in host mode, selecting the track to be played, and waits for other
players to connect using HH’s remote game mode. When the players have connected, the one
acting as server presses “start”, and initial user and track data is sent to all the connected
players.

Each players HH handles the simulation of the local player, and sends the local player’s
position to the server. The server sends each player’s position to all the connected clients.
There is thus no direct client to client communication.

3.3.1 Client
The client is only used when HH is connected to a remote game (i.e. the local application isn’t
acting as a server). Each frame, the client sends the local player’s position to the server, and
also to collects incoming player data, and sends it to the simulation (for collision detection,
dead reckoning etc).

3.3.2 Server
The server acts as the hub, collecting all the player and race information and sending it on the
connected clients. The server is also responsible for deciding who wins the race, and sending
this data to the clients.

3.4 Other important components
Here we describe two other vital components used in the application.

3.4.1 Id Database
Because both the physics and the 3d-engine need to talk about the same objects, we need a
way to ensure that both components have the same id for the same object. This is done via the
id database.

Before an object is created, the id database’s CreateIds method is called, which will create a
number of ids for the specified object type. A car, for example, has five ids; one for the body,
and one for each wheel. Components can then query the id database for a specific object id by
sending in the objects name and group id3

.

3 A group id is just a construct to be able to load several instances of the same object. Each
player has a unique group id, so that several players can have the same car etc.

12

3.4.2 Game Database
The game database is a global store where the player and track data is kept. Having a central
store saves us a lot of headache by ensuring that there is only one instance of important data
to keep up to date. This also makes loading and saving a lot easier to implement.

13

3.5 Physics

The main physics class, CPhysics can be seen as the physical world. It contains all objects
that reside in the world, as well as methods for accessing and manipulating these objects.

3.6 Structure of physics objects
All objects residing in the world derive from CEntity. This class contains identification and
type information about the object. The entity has an interface that is used in the main physics
loop for integration.

3.6.1 Data storage
All objects in the physics world that should use the following naming convention for internal
structures that store runtime data.

SBlueprint
Contains all data needed to create the object, such as mass and inertia for a rigid body.

SState
The canonical state of the object. All redundant information can be resolved from this state
together with the blueprint.

SAuxState
Redundant state information. If a property is frequently derived from the canonical state it can
be added to this structure. This is mainly to avoid doing the same calculations multiple times.

3.6.2 Current objects derived from CEntity

Rigid body
An object that behaves as a rigid body, it is derived from an Entity.

MyFirstCar
This is a test class for a simple car. It is derived from a rigid body.
It can be controlled by user inputs.

Wheel
The wheel class is derived from a rigid body.

3.6.3 Entities and entity ownership
All references to all created entities are contained in a binary tree, called the entity map.
If an object, under local server control, is activated, it’s added to the active entity list.
The physics engine is free to manipulate these objects without any restrictions.

14

An activated object that is not under the control of the local server is added to the non owned
active entity list. These objects are also manipulated by the physics engine, mainly for dead
reckoning purposes. Their states will however be replaced by incoming states from their
respective owners.

3.7 Main physics loop
The physics state is progressed in a discreet time step, the size of which is set at the
initialization of the world.

For each tick, the following is done in the given order:

− The state derivative is calculated for all active objects.
− All active objects are integrated.
− Collisions between objects and between the world mesh and objects are detected.
− Collisions are handled.

3.8 Object creation
Objects are created by calling the CreateObject function, and supplying object identification
and state information.

The object database is used to find the blueprints required to build the object. The blueprints
are sent to the object factory, which creates the objects and returns a reference to the object.

3.8.1 Vehicle
At the moment there is only one vehicle class, CMyFirstCar. It is however relatively easy to
expand this to other types of vehicles.

3.8.2 CMyFirstCar
CMyFirstCar consists of:

− A finite number of suspensions. CSuspension.
− An engine. CSimpleEngine.
− A gearbox. CGearbox.

3.8.3 CGearBox
A gearbox has a finite number of gears, each with their own gear ratio, and a final drive.
The velocity of the outgoing axis is engine velocity * gear ratio * final drive.

3.8.4 CSimpleEngine
This is a simple engine class, which will return an output torque as a function of engine speed
and throttle position.

15

To determine this, it uses two torque curves, i.e. a table with output torque from the engine as
a function of velocity. One of the curves is for full throttle, and the other is for zero throttle
input. The final output torque is an interpolated value between the two curves, depending on
throttle input and engine velocity.

3.8.5 CSuspension
CSuspension is an abstract base class for all supported types of suspensions. The suspension
can be mounted on any rigid body. It contains functions for calculating the state derivative
and to forward project the state, as well as functions for mounting a wheel onto the
suspension.

3.8.6 CPrismaticSuspension
This is a simple suspension class derived from CSuspension. The mounted wheel can move
along a prismatic joint. A spring and a damper are working on the wheel along the joint axis.

3.8.7 Factory
All physics objects are created in the physics factory, which is a set of public functions in the
NPFactory namespace. The factory functions are called with a blueprint, and will return the
objects created.

The blueprint is an XML document, containing information needed to create the object.
There are two types of blueprints.
The object blueprint, this type contains the definition for a specific object to be created.
The assembly blueprint, this is a collection of object blueprints with instructions on how to
assemble the created objects.

Factory functions called with an object blueprint will return a pointer to the created object,
while functions called with an assembly blueprint will return a list of created objects.

Each object type requires its own factory function. The function holds information on how to
parse the XML file and how to fill out the SBlueprint struct for the created object.

Factory functions currently exist for these objects

− CMyFirstCar, created with BuildCar
− CWheel, created with BuildWheel.

Only the AssembleCar assembly function is currently supported. It assembles a CMyFirstCar
and a finite number of wheels.

If new entity classes are created, factory functions that support the creation of them have to be
implemented.

3.9 World space system
To be able to handle very large worlds and at the same time keep numerical precision errors at
acceptable levels we have chosen to implement a world space system (WSS).

16

WSS is basically a grid of fixed size boxes in space, each containing their own local
coordinate system (See figure 4). By representing points in the local frame of its container
box, we can maintain an acceptable numerical precision.

A point in WSS is represented by a 32 bit index and a vector of three floats. The index can
easily be converted to integer offsets in the direction of each axis. Thus points are
conveniently transformed between the world frame and the local frame of a box or between
two boxes.

Figure 4. Arrangement of cells in the world space system

17

 Collision system
The collision system contains all collision objects and performs collision tests between
objects.

The system holds a static polygon mesh representing the world and dynamic objects
consisting of collision primitives representing rigid bodies.

3.9.1 World mesh structure
A world chunk is a set of triangles all represented by the same WSS index.

The triangles in a world chunk are stored in a binary tree of axis aligned bounding boxes
(AABB). A leaf consists of a bucket containing a fixed number of polygons.

All the world chunks are also stored in binary AABB tree, which makes up the world mesh.

When collision queries are made, the tree is traversed and tested against the AABB of the test
object. A candidate set is retrieved and all shapes in the candidate set are then tested against
the object.

3.9.2 Collision object structure
All collision objects are derived from the CColObj base class. It holds type and identification
information about the collision object.

Currently we support the following collision types:

− Sphere a simple sphere object.
− Sphere cluster a cluster of spheres.
− Box an object aligned box.

Additional types require implementation of new collision routines for the added types.

3.9.3 Collision Primitives
All collision objects are built by collision primitives. The collision primitives are simple
geometric shapes.

Currently these types are implemented.

− Sphere a point and a radius.
− Triangle three vertices.
− Axis aligned bounding box a max and min vector.
− Object aligned bounding box a position, extent vector and a transform.

Collision tests
A brute force method is used at this time to test collisions between objects. All interactive
objects are tested against each other. This is not very efficient method, but at this stage there
are so few interactive objects in the world that it does not matter.

18

All interactive objects are also tested against the static world mesh, through bounding box
tests and traversal of the AABB tree of the mesh.

3.9.4 Collision object handle
When the physics interacts with the collision system it does so via a handle to a collision
object, CColObjHandle. Among other things the handle is used when registering and
removing objects from the collision system. Object transforms are also updated via the
handle.

3.9.5 Contacts
When a collision occurs a contact is created. The contact holds information about which
objects collided, where the collision point is located and a collision normal.

3.9.6 Contact key.
To aid sorting of contacts, a contact key is created. The key is a 64 bit integer created by a
merger of the indices of the colliding objects, with the lowest index first.

19

3.10 Rigid body dynamics
The rigid body is idealized as an object with a fixed mass and a fixed inertia.

The body is not deformable, i.e. the relations of points on the body are fixed in a reference
system attached to the body. If not constrained the rigid body has six degrees of freedom. It
can both move and rotate around all three axes of a reference system. Torques and forces
acting on arbitrary points can be applied to the body.

To aid operations on the rigid body, a body frame is defined.

The origin of the body frame coincides with the body’s center of gravity. The xyz-unit axes
coincide with the three principal axes of inertia of the rigid body (See figure 5). In this frame
the inertia matrix becomes a diagonalized matrix.

Figure 5. Rigid body with attached reference system, the body frame.

3.10.1 Calculation of body acceleration
The linear acceleration of the body is determined by a = F / m along all axes.
The angular acceleration is determined by Euler’s equations. [5]

20

3.11 Tyre model
In our approximation of the tyre, all forces and torques are applied to the wheel via a spring
system.

The system consists of a rigid ring, which approximates the carcass tread. If this ring is in
contact with the ground there exists a contact point. The ring can be displaced with regard to
the wheel in three ways, vertical-, lateral- and torsion-displacement (See figures 6 and 7). All
these are attached to a damped spring and will result in reaction forces and torques.

Figure 6. Lateral deflection of tyre.

Figure 7. Sideview of tyre, showing the torsion of the carcass.

The system of springs governs the dynamic properties of the wheel and tyre. However they do
not dictate the maximum force between the tyre to ground contact. This is governed by the
steady state tyre model.

In the steady state model the forces on the tyre are a function of slippage. Two definitions are
introduced. The lateral side slip angle (α) is the angle between the forward direction of the
hub and the velocity direction of the hub. The longitudinal slip ratio (SR) is the ratio between
the longitudinal velocity of the contact patch in relation to the ground and the longitudinal

21

velocity of the hub. The lateral force can be plotted as a function of slip angle and
respectively the longitudinal force can be plotted as a function of slip ratio (See figure 8) [3]

Empirical tests have been carried out to gather data to better understand the properties of these
relations.

Longitudinal forces
The tyre is studied under constant vertical load and changing slip ratio. For modest slip ratios
the relationship between longitudinal force and slip ratio is linear.
Fy = Ky * SR
Where Fy is longitudinal force, and Ky is the traction/braking stiffness. If the slip ratio is
increased the relationship will no longer be linear, and eventually the longitudinal force will
reach a maximum. A continued increase of slip ratio will decrease the force and eventually
move the tyre into a sliding state.

Lateral forces
The relationship between slip angle and cornering force is analogous to the relationship
between longitudinal force and slip ratio. The cornering force is the lateral force exerted on
the tyre.
Fx = Kx * α
Where Fx is the cornering force and Kx is the cornering stiffness.

Two sets of forces and torques are generated in this scheme, one set for the spring model, and
one set for the steady state model.

The steady state model is a closer approximation to reality during steady state motion4

, but
does not work very well for sudden changes. Therefore the two are coupled together.

The forces transmitted by the spring model are clamped to not exceed the values obtained
from the steady state model. This way the springs are the dominant model during transitional
states5

4 The monitored state does not change with time.

, but as soon as a steady state has settled in the slip method is dominant.

5 The monitored state changes with time.

22

Figure 8. Force and slippage relationship of tyre.

23

3.12 Prismatic suspension model
This is a very simple suspension model.

Contrary to what its name might suggest, it is not a pure prismatic joint between the wheel
and vehicle body.

In relation to the vehicle, the wheel can revolve around the hub axis and, in the case of a
steered wheel, around the prismatic joint axis as well. The wheel can also move along the
prismatic joint within certain limits. These constraints govern the position and orientation of
the wheel in relation to the vehicle.

The motion of the wheel along the joint axis is governed by an imaginary constraint, the body
roll center and body roll axis (See figure 9). The reason for not using the prismatic joint to
constrain the motion is to allow the roll center to be altered, without introducing more
complicated suspension models. The relation between the roll centers of the front and rear
axles can be used to alter the balance of the car, i.e. making it understeer or oversteer.

All torques and forces applied to the wheel which are not forming a torque around the body
roll axis are directly transmitted to the vehicle. The remaining forces and torques accelerate
the wheel in relation to the vehicle body. These are used for solving the equations of motion
of the wheel.

Mounted along the joint axis is spring damper system, which also exerts forces on the wheel.
The spring is a simple spring with a relaxation length, and a constant stiffness.

The dampers have two coefficients of damping, one value for negative velocities along the
axis, bump damping, and another for positive velocities, rebound damping. The right
relationship between these is important in achieving a smooth ride over irregularities in the
road surface.

24

Figure 9. Model of a prismatic suspension atached to a rigid body.

25

4 The Graphics Engine

4.1 Introduction
The graphics engine, called Engine One, is the rendering and animation part of HH. It takes
care of the loading, updating and rendering of all 3d objects in HH.

4.2 Component description
Next follows a description of the principal components of Engine One.

4.2.1 World
The world is the main engine. It contains the shaders and objects, and has public methods for
updating and rendering. All external manipulation of the 3d-engine is also done through the
World.

Figure 10 In game

4.2.2 AnimationManager
The animation manager serves as the link between the 3d objects and the “real world”.

The objects per se don’t have any code for updating their own positions in the world, instead
they rely on the animation manager to do this. When the objects are created, they are given an
animation handle and every frame, the objects use this handle to ask the animation manager
for their current transformation.

By gathering all the transformation data in one place, it becomes trivial to gather data both
from the network and from the simulation, and the objects don’t have to know how they were
modified.

4.2.3 Camera Manager
The camera manager contains the cameras, along with logic for sending user input to the
cameras.

26

There are two types of cameras in HH, free fly and target cameras.

Free fly cameras take user inputs and move accordingly. Free fly cameras can also be locked
in a certain position.

Target cameras are created with function pointers to functions returning a position, a look at
and an up vector. At each frame, the camera calls these functions and gets new data. By
connecting the position and look at to the position stored in the player data, we can easily
create a camera that follows the players car.

4.2.4 Shaderbreaker
A shaderbreaker is a combination of a shader (read from an .FX file) and the face blocks that
use that shader. All the setting of parameters, textures etc needed for rendering is taken care
of by the shaderbreaker. For more information, see the truly excellent article in ShaderX3 [6].

4.2.5 Scene Loader
The scene loader handles the loading of scenes, and adding the loaded objects to the world.

The file format is node based, where each node has a super type and a sub type. The super
type specifies the type of node in general, for example “geometry”, “shape”, “light”, while the
sub type has more detail: “tri_mesh”, “poly_line”, “directional”.

To use the loader, we specify callback methods that handle the particular type of nodes we’re
interested in.

4.3 3D Object Structure
All 3d entities (including cameras and dummy6

class, CNode. CNode contains transformations between local (object) and world space, as
well as hierarchy information, and handles for referencing animation data.

 objects) in HH derive from a common base

Objects containing actual renderable geometry are called GeomObjects. GeomObjects contain
the actual vertex and index buffers used for rendering, along with bounding volumes for
culling, and eventual shadow geometry.

Because a single object in 3dstudio max can have multiple materials, each GeomObject in
Engine One has one or more face blocks, where each face block is a collection of faces that
share the same material.

4.4 Rendering
To get proper interaction between lights and shadows, the objects are rendered in several
passes [7]:

- Render the ambient pass of all the shaderbreakers. This in turn calls the render method
of all the visible face blocks using that shader.

- For each light (we only have a single directional light in HH at the moment)

6 A dummy object is an object with no geometry, but it just serves as a node in an object hierarchy.

27

o Render the shadow volumes into the stencil buffer for all objects, using the
current light

o Add the diffuse and specular contribution for each shaderbreaker for the
current light, using the stencil buffer to mask off pixels that aren’t lit.

- Render the transparent parts of each shaderbreaker.

4.5 Notable technologies

4.5.1 Shadow Volumes
To achieve real time shadows, we use the shadow volume technique. Shadow volumes work
by extruding a volume based on the silhouette of the object from the light source, along the
light direction. By counting how many times a ray from the eye to a pixel on screen enters and
leaves the shadow volume, we can determine if that pixel is shadowed or not.

To solve the case where the camera is inside the shadow volume, we use the technique
commonly know as “Carmack’s reverse”.

Links
http://developer.nvidia.com/object/robust_shadow_volumes.html

References
“Real Shadows, Real Time”, Tim Heidmann, IRIS Universe, #18
“Shadow Algorithms for Computer Graphics”, Frank Crow, Proceedings of Siggraph 1977

4.5.2 Atmospheric Scattering
In order to get a more realistic lighting model, we use a model called atmospheric scattering.

This model takes into account the interaction between particles in the air and the light heading
towards the eye. The model gives us two terms, a multiplicative and an additive.

The multiplicative term, called the extinction term, tells us to what degree the particles either
absorb the light, or reflect (scatter) it another direction, hence reducing the amount of light
that reaches the eye.

The additive term, called inscattering, is the amount of scattered light that has been reflected
into the current viewing direction, and is added to the final pixel color.

Links
http://www.ati.com/developer/demos/r8000.html

References
 “Rendering Outdoor Light Scattering in Real Time”, N. Hoffman, A. Preetham, Proceedings
of Game Developer Conference 2002

http://developer.nvidia.com/object/robust_shadow_volumes.html�
http://www.ati.com/developer/demos/r8000.html�

28

4.6 Exporting objects from 3dstudio max
Exporting objects and tracks from 3dstudio max should not cause too many problems, but
there are a few caveats.

Scale
When exporting, the scale used is one unit equals one meter. Also, don’t forget to use the
“Reset Xform” button before exporting. This will propagate all transformations stored in the
objects transformation matrix onto the actual vertices. This is needed because some objects
receive transformation matrices from the simulation, and will thus loose any previous
transformations.

Required Objects
Car
When exporting a car, the following objects need to be present:

- Body, the body of the car
- Wheel_FL, Wheel_FR, Wheel_RL, Wheel_RR, the front left, front right, rear left and

rear right wheels of the car.
o Optional shadow meshes. Any object starting with “s_” will be treated as a

shadow mesh, and be used in the shadow volume extrusion. Shadow meshes
should be child objects under the meshes they represent.

Neither the body nor the wheel objects should have any parents, as the transforms for these
objects are in world space.

Track
The following objects must be present for a track to be exported correctly:

- DriveLine, a poly line (called “DriveLine”) representing the actual track. This is used
to track the progress of the cars. The first knot of the line should be just after the
starting point. The line must also be closed

- Starting positions. Point helpers that mark the starting position of the players. These
must be called “startposXX” where XX goes from 00 to the number of players
allowed.

- A sky dome. This is just a simple sphere enclosing the whole track, called “Sky”.

Setting the shaders
Texture mapped and diffuse shaded objects are exported correctly from 3dstudio max.

To get the correct shader on the sky dome, the track’s .ini file should be edited. The
FaceBlock0_Shader part of the sky should be set to SkyDome (this will make the sky dome
object use the SkyDome.fx shader).

[Sky]
FaceBlock0_Material = 13 - Default
FaceBlock0_Shader = SkyDome

29

5 Discussion

5.1 Conclusion

5.1.1 Physics
A basic system for physics simulation is in place and works as intended. Expansion of new
types of objects should be rather straight forward. Existing packages such as ODE
(http://www.ode.org) were evaluated. Most packages however are mainly geared towards
rigid body dynamics, and multi body dynamics. In a vehicle simulator the rigid body
dynamics is only a small part of the total simulation. With this in mind together with other
issues, such as control of numerical errors in large worlds, we came to the conclusion to
create a completely new physics system.

5.1.2 Collision system
A basic collision system has been implemented, and works as intended. Again the need for
control of numerical errors in large worlds made us implement our own system.

5.1.3 Network
DirectPlay was a pain to get working. A lot of the problems had to do with unclear
documentation and samples. In hindsight, we should probably have evaluated RakNet
(http://www.rakkarsoft.com) or HawkNL (http://www.hawksoft.com/hawknl/) first.

5.1.4 Engine one
We’re quite happy with the structure of Engine One. It does what it’s supposed to do, in a
way that balances generality with efficiency, and should be easy to expand upon when the
need arises.

5.2 Future Work
Possible expansions include using the simulator as an aid for driving students and instructors
etc. The simulation can also be expanded to conduct various types of research, such as,
simulating different traffic environments, the effects of impaired peripheral vision [Sara04].

The simulation could also provide a safe environment for otherwise dangerous tests, such as
the effects of alcohol on a driver.

5.2.1 Physics
More accurate suspension models, such as MacPherson struts and double A-arm could be
implemented. Camber effects and velocity effects could be added to the tyre model.

http://www.ode./�
http://www.rakkarsoft.com/�
http://www.hawksoft.com/hawknl/�

30

5.2.2 Collision system
Use of temporal coherence could be used to speed up collision queries. More primitives and
more complex object types should be added.

5.2.3 Network
The network code should be made more robust, being able to handle disconnected players,
players connecting mid game etc.

Stand alone server mode, were the server doesn’t have its own car, but only acts as an
observer should also be added.

Synchronized starting of races. At the moment, each player is able to drive when his track and
car are loaded, but there should really be some kind of synchronization going on here.

5.2.4 Engine one
The first thing that comes to mind is more specialized shaders. Shaders for car paint and glass,
along with shaders for the road surface (complete with bump mapping) should be straight
forward to implement and add.
Handling lost devices is also something that should be handled gracefully.

31

6 References
[1] S. Rowell, Perifera seendets rörelsedetektion i trafiksimulator TSim, 2004
[2] Don Box, Essential XML, 1999
[3] G. Genta, Motor Vehicle Dynamics – Modeling and Simulation, World scientific
publishing 1998
[4] K. Gray, DirectX 9 Programmable Graphics Pipeline, 2003
[5] J.L Meriam, Engineering Mechanics - Dynamics, Wiley 1998
[6] “Shader breaker”, Magnus Österlind, ShaderX3, 2004
[7] A. Watt, 3D Computer Graphics, 2000

32

7 Appendix

7.1 Building Hempster Hampster
Hempster Hampster compiles “out-of-the box”, providing that DirectX Summer Update 2004
is installed (included on the CD).

Just open the solution file Server.sln, under HempsterHampster/Server, and build.

7.2 External Dependencies
To avoid having to reinvent several wheels, Hempster Hampster uses a few external libraries
(all of which are included on the CD):

Boost
http://www.boost.org
A collection of invaluable C++ templates and classes, smart pointers, signal systems, type
safe formatting etc.

Loki
http://www.moderncppdesign.com/
Andrei Alexandrescu’s library of useful stuff, singletons, factories etc.

Crazy Eddies GUI System
http://crayzedsgui.sourceforge.net/
An open-source, cross platform GUI system. Under development, but pretty stable, none-the-
less.

TinyXML
http://www.grinninglizard.com/tinyxml/
A simple, small and free C++ XML parser. Just four files needed to be added to the project,
and we had XML support.

http://www.boost.org/�
http://www.boost.org/�
http://www.moderncppdesign.com/�
http://crayzedsgui.sourceforge.net/�
http://www.grinninglizard.com/tinyxml/�

33

7.3 Users guide

When HH is first started, the user is presented with a display options screen. It usually
suffices just to press enter, using the default settings.

Figure 11. Display options

The main menu is pretty intuitive.
Choose “Start Local Game” to play by yourself.
“Host Game” if you’re going to be the server, and “Remote Game” to connect to someone
who’s already hosting a game.
“Quit” will exit back to Windows.

Figure 12. Main menu

34

To play a local game, just select the car and track, and press start.

Figure 13. Main menu

To host a game, select the track to play, and the car you want to use. Press “Accept Players”
to start hosting a game. As remote players connect, their names will appear in the “Connected
Players” list. When everyone has connected, press the “Start” button to start the game.

Figure 14. Host game menu

To connect to a remote game, choose the car you want (along with your player name), and
press “Enum Servers” to look for servers hosting games. As servers are found, they appear in

35

the servers list. To select a server, highlight it, and press connect. Note that it might take a
while (around 30 seconds) to look for servers.

Figure 15. Remote game menu

36

7.4 Used abbreviations

HH – Hempster Hampster

7.5 Blueprint format

Here follows examples of supported blueprints. With blueprint syntax in verbatim and
comments in italic.

7.5.1 Car assembly

<?xml version='1.0'?>
<HH>
<Blueprint type="assembly" name="CarAssembly1">

 <Car name="Body" file="Cars/Blueprints/p917.xml"/>

 <Wheels>

<Wheel
name="Wheel_FL"
file="Cars/Blueprints/WheelFront.xml"
mount ="Left Front"
/>

<Wheel
name="Wheel_FR"
file="Cars/Blueprints/WheelFront.xml"
mount ="Right Front"
/>

<Wheel
name="Wheel_RL"
file="Cars/Blueprints/WheelRear.xml"
mount ="Left Rear"
/>

<Wheel
name="Wheel_RR"
file="Cars/Blueprints/WheelRear.xml"

 mount ="Right Rear"
/>

 </Wheels>

</Blueprint>
</HH>

37

7.5.2 Car

<?xml version="1.0" ?>
<HH>
 <Blueprint id="p917">
 <MyFirstCar name="Porsche 917">

 <RigidBody
 mass="1000.0"
 inertia="900.0 300.0 1000.0" />

 <Engine
 torque="700.0"
 maxspeed="700.0" />

 <Gearbox autogears="1" />

 <Suspension>
 <Prismatic
 name="Left Front"
 vJointMount_VRF="-0.78 1.22 0.25"
 vJointAxis_VRF="0.0 0.0 -1.0"
 vRollPoint_VRF="0.0 1.42 0.3"
 vRollAxis_VRF="0.0 1.0 0.0"

 DefaultRotation="3.14659265"

 MaxSteeringRotation="0.2"
 Drive="0.0"
 Brake="1.0"
 HandBrake="0.0"
 BrakeTorque="1500.0"
 Inertia="1.0"
 Mass="30.0"
 SpringLength="0.3"

 SpringStiffness="50000.0"
 DampingBump="3000.0"

 DampingRebound="5000.0" />

 <Prismatic … />
 <Prismatic … />
 <Prismatic … />

 </Suspension>
 </MyFirstCar>
 </Blueprint>
</HH>

38

7.5.3 Wheel with tyre

<?xml version='1.0'?>
<HH>
<Blueprint id="FrontTyre">
 <Wheel
 name ="Front Wheel"

 Width ="0.2"
 HubOffset ="0.0"
 Radius ="0.3"
 />

 <Tyre
 name ="A Front Tyre"
 Radius ="0.3"
 LateralStiffness ="2.3e5"
 VerticalStiffness ="2.0e5"
 TorsionalStiffness ="3.0e4"

 MyLat ="1.4"
 MyLong ="1.5"
 MySlide ="1.2"

 SlipPeakLat ="0.2"
 SlipSlideLat ="0.5"
 StiffnessLat ="3.5e4"

 SlipPeakLong ="0.15"
 SlipSlideLong ="0.5"
 StiffnessLong ="8.0e4"
 />

</Blueprint>
</HH>

	hempster hampster
	1 Introduction
	1.1 Layout of the document
	1.2 Goal
	1.3 Related Works
	1.4 Limitations

	2 Method
	3 Results
	3.1 Application
	3.2 Main Loop
	3.2.1 Contexts and transitions

	3.3 The client-server model
	3.3.1 Client
	3.3.2 Server

	3.4 Other important components
	3.4.1 Id Database
	3.4.2 Game Database

	3.5 Physics
	3.6 Structure of physics objects
	3.6.1 Data storage
	3.6.2 Current objects derived from CEntity
	3.6.3 Entities and entity ownership

	3.7 Main physics loop
	3.8 Object creation
	3.8.1 Vehicle
	3.8.2 CMyFirstCar
	3.8.3 CGearBox
	3.8.4 CSimpleEngine
	3.8.5 CSuspension
	3.8.6 CPrismaticSuspension
	3.8.7 Factory

	3.9 World space system
	 Collision system
	3.9.1 World mesh structure
	3.9.2 Collision object structure
	3.9.3 Collision Primitives
	3.9.4 Collision object handle
	3.9.5 Contacts
	3.9.6 Contact key.

	3.10 Rigid body dynamics
	3.10.1 Calculation of body acceleration

	3.11 Tyre model
	3.12 Prismatic suspension model

	4 The Graphics Engine
	4.1 Introduction
	4.2 Component description
	4.2.1 World
	4.2.2 AnimationManager
	4.2.3 Camera Manager
	4.2.4 Shaderbreaker
	4.2.5 Scene Loader

	4.3 3D Object Structure
	4.4 Rendering
	4.5 Notable technologies
	4.5.1 Shadow Volumes
	4.5.2 Atmospheric Scattering

	4.6 Exporting objects from 3dstudio max

	5 Discussion
	5.1 Conclusion
	5.1.1 Physics
	5.1.2 Collision system
	5.1.3 Network
	5.1.4 Engine one

	5.2 Future Work
	5.2.1 Physics
	5.2.2 Collision system
	5.2.3 Network
	5.2.4 Engine one

	6 References
	7 Appendix
	7.1 Building Hempster Hampster
	7.2 External Dependencies
	7.3 Users guide
	7.4 Used abbreviations
	7.5 Blueprint format
	7.5.1 Car assembly
	7.5.2 Car
	7.5.3 Wheel with tyre

