
Japanese word prediction

Fredrik Lindh
frlindh@kth.se
850320-0290
073-6479325

Japanese studies, Lund University, Sweden.
Degree project in Japanese and linguistics, First Level.

Supervisors
Lars Larm (Lars.Larm@ostas.lu.se)

Arthur Holmer (Arthur.Holmer@ling.su.se)

Referat

Denna uppsats beskriver en implementation av en japansk ordprediktor skriven av
författaren. Eftersom en ordprediktor inte verkar existera för Japanska, så kan den bli
värdefull som ett mjukvaruverktyg inom assistiv teknik och kommunikation (AAC). Den
största fördelen som ett sådant system för med sig är förbättrad skrivhastighet, samt
att färre tangenttryckningar krävs för att producera text. Ordprediktion ställs ofta i
kontrast mot ordkomplettering; den teknologi som T9-systemet i många
mobiltelefoner och intellisense-motorer är baserade på. Det finns dock en skillnad då
ordprediktion handlar om att föreslå ett följande ord då ett ord skrivs klart, mot att
avsluta ett ord som håller på att skrivas. De fungerar oftast genom att tillhandahålla
en lista över bigramsfrekvenser viktade med användarens preferenser och korpusdata.
Ordprediktion tillsammans med ordkomplettering är bland de kraftfullaste assistiva
verktyg som finns för att hjälpa funktionsnedsatta med deras dagliga
kommunikationsbehov.

Huvudmålen för denna uppsats är:
1. Att röna ut de skillnader som uppstår i implementationen jämfört med andra språk
2. Undersöka vad som kvarstår att göra, både inom prototypen i sig och i allmänhet.

3. Skapa en fungerande prototyp av programmet för Japanska.

All kod i projektet är fritt tillgänglig och ligger för tillfället på:
http://www.mediafire.com/?rrhqtqsgp6ei6m3

Abstract

This report deals with the implementation of a Japanese word prediction engine written
by the author. As this type of software does not seem to exist for Japanese at the time
of writing, it could prove useful in Japanese augmentative and alternative
communication (AAC) as a software tool used to improve typing speed and reduce the
amount of keystrokes needed to produce text. Word prediction, in contrast to the word
completion software commonly found in mobile phones and word processor intellisense
engines etc. is a technique for suggesting a followup word after a word has just been
completed. This is usually done by providing a list of the most probable words to the
user, sorted by commonality (general and user-specific frequency). Combined with
good word completion software and a responsive user interface, word prediction is one
of the most powerful assistive tools available to movement impaired users today.

The main goals of the thesis will be to:
1. Answer as many of the questions raised by the language differences as possible.

2. Investigate further avenues of research in the subject.
3. Make a functional word prediction prototype for Japanese.

All project code is in the public domain and is currently hosted at:
 http://www.mediafire.com/?rrhqtqsgp6ei6m3

I would also like to thank Akino Kuwahara for checking my Japanese,
and Ragnar Mjelde for being helpful in regards to the Tobii SonoScribe software.

2

Contents

1. Introduction .4
1.1 Term glossary . 4
1.2 Background. 5
1.3 Problem statement. 6
1.4 A brief explanation of word prediction. 6
1.5 Other word prediction software . 7

2. Tools .8
2.1 The .net framework . 8
2.2 MeCab . 8
2.3 The Tanaka corpus. 9
2.4 Tobii Communicator / SonoScribe .9

3. Problems in Japanese word prediction .10
3.1 The wakachigaki problem. .10
3.2 Verb stemming. 11
3.3 Particle identification and placement. 12
3.4 Kanji, kana and IME henkan . 13
3.5 An overview of linguistic heuristics. 15

4. Program Implementation .17
4.1 Program architecture . 17
4.2 Corpus preprocessing and loading . 18
4.3 Data structures and plumbing . 19
4.4 Input processing and information retrieval 20
4.5 Performance vs. accuracy .20
4.6 Data marshaling. 20
4.7 User interface . 21

5. Conclusions .22

6. Further avenues of research . 23
6.1 UI. 23
6.2 Henkan engine or interface . 23
6.3 Heuristic improvements . 23
6.4 Support for other corpora . 24
6.5 Word variation handling . 24
6.6 The input wakachigaki problem . 24
6.7 Serialization engine . 25
6.8 Analyzing the performance of the prototype 25

7. References and notes .26

8. Bibliography .29
8.1 Literature .29
8.2 Internet links. .29
8.3 Corpus .29

3

1. Introduction

 1.1 Term glossary

This thesis is aimed at linguists and computer linguists in particular, but
recognizing that the terminology used might not be familiar to all readers, I
have opted to include this glossary over technical terms used in the following
chapters.

Heuristic
A heuristic is a method to optimize the way one might do something. In the
context of this thesis, a heuristic can be thought of as some way to make word
prediction go either faster or become more accurate by applying some known
characteristic of Japanese vocabulary, grammar or other linguistic knowledge
as a feature to the program.

Henkan
Is translating characters from one writing system to another on a computer.
This can for example be performed on a windows machine with the Japanese
IME installed by changing the language to Japanese / Kana input and then
typing some text. Then press space and select some transformed input in the
appearing combo box. By doing this, you have performed henkan on the input
text.

Data structure
A data structure is simply some way of storing data on a computer. Popular
ones include data lists, stacks, queues and tables.

Hash table
Is a type of data structure also known as a dictionary structure. This is
because it works much like a dictionary where you have a key to a value
object. The key is used to look up the value object in the data dictionary,
analogous to using the index in a common dictionary. The main components of
the software use this data structure for data lookup.

Serialization / marshaling
This is the technical term for saving and retrieving data to and from the hard
drive.

Token
A token is an object consisting of a word and its meta data. This data can be
many kinds of things, such as its part of speech, what topic it belongs to, what
particle it accepts, how many times it has appeared in some predetermined
scope and so on.

n-gram
are a general linguistic concept of treating n words as the same token. For

4

example, a bi-gram would be the token consisting of two words and their
eventual meta data, a tri-gram would be the three-word counterpart.

POS tagging
Part of speech tagging is used for a multitude of reasons in natural language
processing. Knowing what part of speech a particular word belongs to can help
understand its role in the sentence it is in. Or help the program understand its
semantic role, or even the words around it (using support vector machine
techniques). It is also valuable in many n-gram analysis situations.

Parsing
Is the act of exploring and processing text. The processing could be almost
anything but mainly pertains to syntactic analysis. It might involve preparing
the text for some other process (preprocessing), or creating tokens from the
text and loading them into some data structure. Or even mining the text for
semantic relations.

 1.2 Background

One of the more defining traits of the modern man compared to the other
fauna of the earth is our ability to use highly complex language. This is not
without problems however, since using audio signals for communication is both
error prone and difficult to store. Written language eventually allowed us to do
all these things and more, especially for speech and hearing impaired
individuals; the access to a writing system actually gave them a chance to
participate in the general social forum. Now, while it is true that literacy didn't
become widespread before the 19th century[1], it has always provided an
additional dimension of freedom to those who practice it. With the advent of
modern society, literacy is approaching 85% world wide, and we in the Western
world have a new companion to which we communicate almost exclusively with
written language in some form or the other. I speak of course of computers. As
of late, computers don't only provide us with an extended interface with which
to communicate with each other over vast distances as though we were next to
each other, they also give us the ability to put previously theoretical knowledge
in areas such as mathematics, linguistics and physics into practical use with
their immense computing power. Especially linguistics has seen a real jump in
application areas in the last few years such AACS (augmentative and
alternative communication systems), word completion, expert systems,
information retrieval systems and many more. This thesis will deal with a
certain type of AACS system called a word prediction engine, which can be of
great use to functionally impaired users, especially when coupled with other
cutting edge technology such as eye tracking and word completion.

5

 1.3 Problem statement

There are quite a few problems to solve when developing word prediction
software. This thesis will explore these problems using a primitive
implementation written by the author as basis for the study, and suggest
possible solutions to the problems encountered. The main components involved
in the project are:

• The corpus used as the bigram data source
• The architecture of the software in question
• The computer linguistic problems local to the Japanese language
• Optimizations and heuristics

The thesis will concentrate on the three first components and only briefly touch
the fourth since it's not really basal part of the problem and more of a means
to improve the implementation.

 1.4 A brief explanation of word prediction

Word prediction, not to be confused with word completion is a relatively new
application area. Although both of the technologies are used to speed up
typing speed the implementations and effects are quite different. Word
completion deals with prediction which word the user wants to type now. It
starts operating as soon as the user has typed the first letter in a word,
analyzing the letters and sometimes earlier context to determine which word
the user is trying to type. Good examples of word completion engines are the
common T9 systems found in commercial mobile phones, the word completion
found in word processors such as MS Office, and engines in integrated
development environments such as the intellisense functionality in MS visual
studio.
Word / phrase prediction on the other hand deals with the next word/words the
user will want to write. It is especially useful for movement impaired users who
need help writing very common social phrases[2] fast and often. Instances of
this type of software is harder to find, but the Tobii SonoScribe Communicator
suite is one good example.

Even though these two technologies do well on their own, they really are the
most effective when used together, reaching upwards 60-80% of keystrokes
saved[3], depending on the user and usage scenario. Word completion alone
reduces the amount of keystrokes needed by 50-60%[4]. While this can seem
like a lot even to the casual user, the perceived impact on the AAC prime users
is many times more since this is their only mode of communication. Imagine
being able to speak more than twice as fast when talking to your friends or co-
workers every day!

6

 1.5 Other word prediction software

There exist several commercial (e.g. the software used in Tobii Communicator
suite) as well as non-commercial (e.g. the FASTY[5] project) word predictors
today. There are several reasons why the author chose to not adapt one of the
existing ones to Japanese compared to writing a custom implementation, the
most relevant ones being:

• Many word prediction systems are completely integrated into their parent
systems, especially when it comes to proprietary systems, for example
the Tobii Communicator suite.

• Proprietary systems are ruled out completely because of monetary
reasons; the project does not possess the funds to acquire such a
license.

• All the systems found were more or less domain specific. The only really
promising technology was the FASTY word prediction engine which is an
EU-founded project aimed at creating a modular word prediction engine
with multiple language support, but the underlying engine still works
with the same parsing rules common to all Western languages, and it
seems that the only way to resolve some of that major problems that
comes of that (for example whitespace problems, more on that later in
the thesis) is to write a new grammatical module, which is far too
complex for one person to do under the time contraints. Using FASTY on
the other hand would enable the use of many powerful heuristics, so
exploring the possibility of writing a custom parsing filter for the
technology might be a good future project.

• Implementing a new feature into an existing technology is usually not a
simple undertaking. The same is true for NLP systems, and making a
stand alone implementation for educational purposes is more often than
not faster than the alternative since it avoids a lot of overhead work
(including reading documentation, familiarizing oneself with the new
system, finding all the quirks, etc. etc.). Simply put, the author did not
feel comfortable pursuing this alternative given the time constraints and
localization problems.

7

2. Tools

 2.1 The .net framework

The entire implementation is written using the .net framework developed by
Microsoft based on the common language infrastructure (CLI) in Windows. The
framework was chosen due to its automatic memory management capabilities
which enables more agile software development and less test time. The
framework also has an excellent library of stock data structures and GUI
creation tool sets which saves a lot of time developing an interface to the main
prediction engine. There are other reasons for choosing the framework as well,
such as one-click deployment and a first class IDE to name a few. The only real
drawback is that it only runs on Microsoft-compliant hardware and operating
systems. But since Microsoft still holds ~90% market share[6] and the thesis
only aims at completing and documenting a prototype, it's still acceptable.

 2.2 MeCab

MeCab is a Japanese Parts-Of-Speech-Tagger developed by Yuuichi Teranishi
and supports both n-best POS tagging[7], wakachigaki, encoding conversion
and several output modes as well as being platform independent. The only
function I'll be using in my implementation however is the wakachigaki
functionality since I suspect that some corpus elements might not be correctly
formatted. Its use could be extended to using POS meta data in the heuristics
of the program. That lies outside of the ambition scope of this thesis however
and will remain an anecdote for now.
The tagger software uses conditional random fields[8] which is a statistical
method of inferring relationships between words. It then uses this information
to determine which word class is the most likely one for each word in the data
set. The tagger is based on the older Japanese POS-tagger ChaSen. Both
implementations utilize the IPA corpus, while MeCab also makes use of the
Juman corpus as well as the Canna dic project.

8

 2.3 The Tanaka corpus

The Tanaka corpus is a corpus consisting of ~150.000 Japanese/English
sentence pairs compiled by professor Yasuhito Tanaka at Hyogo University and
his students in and before 2001, and was then later refined by a number of
professionals and volunteers. The corpus is currently hosted by the Tatoeba
project and is used as a source of example sentences for the WWWJDIC
translation service. The corpus was chosen due to it being freely available and
having a very consistent form which makes it easy to programmatically parse.
It's also relatively big which also made it a better candidate for the thesis. If
licensing time had not been an issue, a more comprehensive corpus such as
the Tokutei corpus might have been sought after instead. The Tanaka corpus is
not without its problems however. The quality of the sentences is oftentimes
very shoddy since they come from student assignments. Some of them are
taken from old English-textbooks, song lyrics or machine translated literature.
Since this makes the sentence structure differ a bit from natural spoken
Japanese, it will of course also affect the prediction accuracy of the prototype
since the prototype database will be built upon the statistical relationships
present in the corpus. The documentation even warns against using the corpus
for statistical analysis due to the risk of obtaining skewed data. But since the
goal of the project is not to build a commercial grade predictor, the good
qualities of the corpus still outweighs the bad.

 2.4 Tobii Communicator / SonoScribe

The word prediction engine will be roughly modeled after the one present in
Tobii Technology's Tobii Communicator Suite On Screen Keyboard Interpreter
called “SonoScribe”[9]. The Tobii Communicator Suite is the main product of
Tobii's assistive technology branch and is aimed at helping movement impaired
users with their day-to-day communication needs by providing speech
synthesis and other tools. The feature interesting to this thesis is the extensive
support for word / phrase completion and prediction coupled with a touch and
eye control interface. The graphical user interface lets the user type letters into
the main display box by using any of its input methods and then uses its
prediction engine to supply the user with the statistically most probable
followup words and phrases compiled from corpora.
The implementation will utilize some of the features present in the SonoScribe
software, mainly n-best suggestion methods and the statistical model used,
but will omit the GUI and localization as well as almost all of the heuristics.

9

3. Problems in Japanese word prediction

 3.1 The wakachigaki problem

One of the most difficult natural language processing (NLP) problems in
Japanese is the so called wakachigaki[10] (分かち書き) problem. In most Western
languages, words are delimited by white spaces and punctuation, which helps
a lot with artificial parsing of text. Computers know when to stop and read a
token from its current data set whenever it encounters a white space or period.
Having this crutch has helped early NLP development immensely over the
years by speeding up the general parsing process. Our Western white spaces
are not completely without problems however. Ambiguity over so called
“compound words” is aggravated because of increased use of white space over
using hyphens which continues to cause computers some duress. For example,
it is ambiguous whether the sentence:

I like chocolate chip cookies

is trying to convey a taste for slim chocolate cookies or a taste for the modern
chocolate-chip filled cookies. Taking current trends into consideration, a human
would most likely vote for the second alternative, but a computer has no way
to determine this by just looking at the sentence itself. Some languages, like
Swedish for example, is harsher when it comes to compounding words, writing
them in series without using delimiters at all. A translation of the English
sentence above would in consequence look like something in the lines of:

Jag gillar chokladflarnskakor

Notice how the last three words in English are compounded into one when
written in Swedish. This helps a computer to correctly treat “Chocolate chip
cookie” as its own token, but it also poses a new delimitation problem since
compounding with this type of agglutinative characteristic gives rise to a
combinatorial explosion of possible word permutations. Giving a logical token
to each such compound word would be impractical for statistical reasons (More
tokens means less increments per token which means less reliable results, not
to mention the extreme memory requirements!) and nonsensical since the
semantics and classification of a word like skomakargesällsarbetarorganisation
(cobbler apprentices' workers union) is unclear and it would be better in this
case to delimit it similar to the English translation to gain more usable
bigram[11] data.

The delimitation problems in Japanese relevant to this thesis is similar to the
ones presented in Swedish compound words, but the problem does not simply
extend to long word compounds, but to the entire Japanese writing system.
Japanese, like most other Eastern languages do not delimit their text with
white space and Japan did not even use punctuation before the Meiji era

10

(around the start of the 20th century)[12]. This means that before any type of
machine driven parsing can take place, delimitation of tokens first have to
been performed. That is where wakachigaki algorithms come into the picture.
Like most NLP problems, there are several ways to approach the problem. One
way is to split the text into manageable chunks and then crawl those chunks
one character at a time to determine which words are possible with the help of
a lexicon. A Viterbi search[13] can then be performed to determine the most
likely distribution and sequence of words. Since Japanese now uses
punctuation, this makes for an excellent basis of the initial chunking. Another
welcome feature pertaining to the wakachigaki problem in Japanese that
stands in contrast to other Asian languages is the combination of kanji
(Japanese ideographic characters) and kana (The syllabic Japanese alphabet)
used in common text. This is because there are certain patterns that can be
exploited by a wakachigaki engine. One of these patterns is the use of so
called “okurigana”; kana placed after a series of kanji that act as conjugation.
Another very common pattern is to identify singular kana in front of a kanji
compound as a particle. The presence of okurigana and particles leads to a
syntax that regularly switches between kana and kanji. A kanji character after
a kana character consequently usually means that a new token has begun.
Wakachigaki will be used in this thesis to tokenize some parts of the corpus in
preparation for further parsing.

 3.2 Verb stemming

Another problem in parsing is verb stemming. Japanese has a very rich
agglutinative conjugation system utilizing kana after verbs to add grammatical
markers such as tense and modality. The following example from
Tsujimura[(1999) p257] illustrates the conciseness of the Japanese particle and
inflection system very well:

Taroo-ga Hanako-ni Ziroo-o Mitiko-ni aw-ase-sase-ru.
Taro-NOM Hanako-DAT Jiro-ACC Michiko-DAT meet-cause-CAUS-PRES
“Taro will cause (make/let) Hanako to cause Jiro to meet Michiko.”

Even though most stemming operations deal with inflections, there are also
verb to verb stemming involved when dealing with Japanese, as in the
following example from Tsujimura[(1999) p297] where the verbs “eat” and “begin”
are compounded.

Tabe-hajime-ru
eat- begin- PRES
To begin eating

Stemming these verbs is necessary to correctly give correct word suggestions.
The most common method is to use a multi-pass system[14] to reduce complete
verbs in steps. The hardest part is not the stemming however, but reproducing
the correct verb form when suggesting words, since conjugation rules are
highly context bound. As the prototype written for this thesis does not use any

11

context analysis heuristics whatsoever, the GUI tackles this problem in a way
similar to the primary suggestion engine. It will simply provide an n-best list of
results, presenting the statistically most probable choice at the top. Also, the
current incarnation does not use the multi-pass system described here but
instead stems its verbs using corpus meta-data and simply cutting kanji
compounds where the okurigana starts. One major improvement would be to
change this to the multipass system, but to do this, changes in the okurigana
suggestion pipeline would also have to be made, as well as the underlying data
structures. This is because the current implementation only saves complete
sequences of okurigana, not the individual morphemes. A concrete example
would be that the verb tabesaseraremashita (食べさせられました) is saved as:

tabe saseraremashita
eat- suffix

and not as the more desirable

tabe sase rare mashi ta
eat- CAUS PASS HON PAST

 3.3 Particle identification and placement

Identifying particles and associating them with their parent words is the next
major problem to be dealt with. Japanese particles come in a variety of
different types, some comparable to Western counterparts, like the standard
locative, temporal and conjunctive particles with the main difference being that
Japanese particles are post-positions in contrast to for example the pre-
positions in English. Some of the more interesting particles in Japanese are
their modal and case varieties. I've listed two examples of those from
Tsujimura[(2007) p122] below. The case particles are of special interest for semantic
parsing since they mark sentence constituents.

Modal example:
Goji-made darou
five-to probably
“It is probably until 5 o'clock”

Case particle example:
Ziroo-ga Yosio-ni ringo-o age-ta
Ziro-NOM Yoshio-DAT apple-ACC give-PAST
“Jiro gave an apple to Yoshio”

Since Japanese employs post-positions, a reverse parsing pattern appeared the
most natural. This means that sentences is parsed back-to-forth. When a
particle is encountered, it is saved until its parent word is encountered. Parsing
in reverse also provides the additional benefit of making the verb stemming
easier, allowing the program to prune the okurigana and then couple the stem
with its particle and conjugations.

12

Another problem with particles local to the chosen corpus is that because of
the colloquial nature of the sentences, variations in the transcribed
pronunciations makes identifying particles hard in some cases. For example,
the interrogative particle ka (か) is sometimes transcribed as kaa (かぁ) or
even kaaa (かぁぁ) due to spoken emphasis. The only way to prune these
words correctly would be to either make a stop list associating every variation
with its base form, or use POS meta data. That is, MeCab or another similar
software could be used to tag the particles, and even though most of them
would be treated as unknown words, chances are pretty good that they would
be correctly tagged as particles due to their syntactic position and bigram
relationships. If they were correctly tagged, pattern matching could then take
place to decide which particle it is.

 3.4 Kanji, kana and IME henkan

Finally, some major differences in Western and Eastern input methods pose
additional problems. Japanese uses 4 different character sets:

• Romaji (ローマ字), which is our roman alphabet. Used for foreign names
and words.

• Hiragana (平仮名) is a syllabic alphabet used for native words and
conjugation.

• Katakana (片仮名) has the same set of phonemes as hiragana, but is
used for technical terms and loan words.

• Kanji (漢字) is a ideographic alphabet used interchangeably with hiragana
when the writer wants to disambiguate a word or add formality. The use
of kanji tightly coupled with Japanese culture. For example, an adult who
doesn't use kanji is looked down upon as childish.

 Keyboards are more often than not modeled after the English alphabet. This is
also true in Japan, where most computers use the English model coupled with
a so called Input Mode Editor (IME), even though keyboards accommodating
the Japanese syllabic alphabet exist. Input is created by first writing the
desired Japanese phonetically in roman letters, and then converting that text
into Japanese characters by pressing a certain button. This process of input
conversion is called henkan (変換) in Japanese and creates a few additional
problems. The first problem is that since Japanese uses several parallel
alphabets, the prototype would have to save all tokens either in one form, or in
some type of type-agnostic format. The best approach would be the type-
agnostic approach, maybe by representing the words in roman characters, and
saving references to possible transcriptions, or do the conversions with the
help of an IME application programming interface (API).

Trying to do automatic programmatical conversions using an API leads us to
our next problem; not all Japanese character conversion operations are
bijective! While conversions between romaji, hiragana and katanana all are,
kana to kanji conversion is not. This is because the kana->kanji relationship

13

isn't injective. In other words, there is no unambiguous way to convert kana
into kanji since most kana-sequences can be converted into several different
kanji compounds. This does not mean that the reverse is true though, kanji-
>kana conversion is for most intents and purposes injective. So what does this
mean for our prototype? While it is true that the lack of injective transforms
hinders for example kana input conversion, there are a few ways to try to
disambiguate kana into kanji. The first and foremost is using an input method
editor. Using such a software solves the conversion problem, but it still doesn't
solve the actual disambiguation problem (IME's can provide a list of possible
conversions, but it can not decide which suggestion is the most probable one
depending on context, and they are generally not good at wakachigaki). One
possible solution might be to check each suggestion from the IME, coupled
with its preceding word, against the relationship database to see which is the
most probable combination.
Using this technique might provide simple support for kana input conversion,
but using kanji when writing will probably still be more effective.

One other interesting feature of kanji is their idiomatic nature. Kanji are used
in two ways in Japanese. The first one is as stems for native words which are
then followed up by okurigana. The other use is as sino-Japanese compounds
where they usually indicate a more formal version of a native word. One
example can be demonstrated using the following three words:

 とる (to ru) 、採る (to ru) 、採取する (sai shu su ru).
The first two words are pronounced exactly the same. The only difference is
that the second one uses a kanji to replace the first “to”. This can be done for
several different reasons, one being to disambiguate the kana-sequence. If the
kanji is not used, the two kana could mean a lot of different things, for
example 盗る(to steal)、取る(to take something)、撮る(to take a picture)、録る
(to record a video), among others. But if the kanji is used, some ambiguity is
removed and the possible meanings are narrowed down to for example: “to
pick [e.g. a flower]” or ”to catch [an insect]”. Some ambiguity still remains
though, as it can still also mean “to take [an attitude] in addition to a few
other, very context related uses. The third variation of the word however is
very specific and no matter the context just means “to pick [a flower]” or “to
collect [an insect]”. If this unambiguity of kanji could be harnessed in for
example word prediction software, a lot of the decision trees involved could be
pruned, leading to better heuristic performance. But it could also be used for
other useful things such as semantic parsing.

14

 3.5 An overview of linguistic heuristics

There are many different ways to improve prediction speed and accuracy.
These methods are collectively known as heuristics and mainly come in the
form of learning and data processing algorithms. Most of the algorithms used
in natural language processing belong to one of the following basic categories.
Most of them are detailed in Jurafsky & Martin.

 Statistical heuristics (used in this project) [J&M P.910, 178, 208]
Encompasses methods that build upon statistical relationships between words
in the training set. A word is promoted if the words related to it exhibit
favorable characteristics and downgraded if they do not. Some things that can
be analyzed are for example: n-gram frequency, word frequency, phrase
frequency, morphological frequency (the ratio of certain morphemes) and so
on. Many implementations use n-gram Markov models.
 Example: If word A appears more often than word B, word A should be
prioritized.

 POS tagging with n-gram analysis [J&M P. 108, 157, 167,178, 181, 208, 218]
Is a type of statistical heuristic, but the training set is first part-of-speech
tagged before analyzed. The training set is therefore classified in a more
general and grammatical way instead of the standard lexical way. This is useful
when researching text characteristics and in language comparisons. Many
implementations use n-gram Markov models and the Viterbi algorithm.
 Example: If a word A has several different possible tags, the n-grams
associated with that word/tag can be used to decide which of the possible tags
is the most probable.

 Learning heuristics [J&M P.122, 265]
There are many kinds of learning heuristics. The most popular ones range from
simple user frequency lists (the system keeps a record of the user's favorite
words and promote them appropriately) to advanced cloud based internet
services hooked up to automated internet spiders that synchronizes a NLP
system with current language trends as seen online.
 Example: If a word A in the system has higher precedence than word B but
the user has typed word B more than A to some predefined degree, word B
might be suggested anyways.

 Topic guidance [J&M P.147, 502, 824]
Most discussions have topic. This heuristic works by annotating every word in
its dictionary with a topic tag. It then analyzes preexisting text and tries to
decide which topic is overrepresented in the text. It then promotes words
belonging to that topic to the user.
 Example: If the system splits all words into texts into topic domains and finds
that one domain is overrepresented, words from that domain might be
suggested with higher precedence compared to other domains.

15

 Word stemming (used in this project) [J&M P. 80, 102, 806]
Every word would become their own token in a system without a stemming
heuristic. This is bad for several reasons, more tokens means a larger search
space, and therefore lower accuracy. It also makes sense to sort semantic
tokens by stem when suggesting words (it becomes almost nonsensical to not
do so).
 Example: Two words that share the same stem (i.e. Eat, eaten) can be
reduced to a single token (i.e. eat-) with the help of stemming, instead of
retaining the two words as two separate tokens (eat, eaten).

 Stop list heuristics (used in this project) [J&M P.806]
We sometimes want to avoid parsing certain words in a training set, these
might be meta-data or some other word we're not interested in. It therefore
makes sense to create a stop list heuristic to skip those words.
 Example: Suppose a corpora contains a meta-data marker to indicate that a
sentence has low quality (The sentence header contains the marker {[LQ]}).
We could either just remove the marker if we add it to a word stop list
(suppose we still want the low quality sentence in the training set, but we don't
want the marker itself). Or we could implement a sentence stop list that
removes the entire sentence when it finds a meta-data marker in the list.

 Voting heuristics (usually using OTS software) [Beáta M.]
A system that is effective and demanded a lot of its hardware ten years ago
might only require a fraction of the computational power of a modern machine.
This fact can be exploited by employing the voting heuristic, where the same
problem is solved by several separate algorithms, choosing the best one (or an
aggregate of all solutions) as the answer candidate.
 Example: Suppose we have three different POS taggers. Further assume that
two out of three of them tag a certain word as tag A, and the third tags the
word as tag B. The rule of majority suggests that tag A should be chosen.

 Support vector machines [J&M P.237]
Is a method used to find similarities in words and can be used as a heuristic to
give hints of the nature of a certain token. In the context of NLP, in particular
in conjunction with the POS statistical heuristic, to decrease search space, the
method can be used to answer questions such as “what [kind of] words appear
near to this word?”. This could be used to resolve an ambiguous token, by
looking at it's support vector machine meta data.
 Example: Suppose that a word A is to be semantically parsed and we have to
resolve A between two possible candidates. We can determine which of these
are more likely by examining the support vector for the current word to the
support vectors of the two candidates and choosing the closest one (usually
using dot product, the closer the dot product of a pair is to zero, the closer the
vectors are).

16

 Particle heuristics [J&M P.160, 435]
Particles can, to some degree, help disambiguate the meaning of a word, so
keeping track of which word classes a certain particle accepts can easily
eliminate a number of different tokens. Particles in Japanese are very useful
especially in semantic parsing as they clearly point out sentence constituents
such as the sentence topic (ha|は), the subject (ga|が) and the accusative
object (wo|を).
 Example: Suppose a sentence in the training set is:
“Thomas built a floor by himself.”
The article a only accepts nouns, so the meaning of floor must be the noun (in
contrast to the verb “to floor”.

4. Program Implementation

 4.1 Program architecture

Most of the design choices were made to accommodate the time-constraints
present for the project. Since the goal was to both make a working prototype
and to produce this thesis, the foremost concern was to complete a fully
functional program within a couple of weeks and to concentrate on this text
after that while making adjustments to the software. This of course impacted
heavily on both the chosen base design as well as the heuristics used.

The implementation has a few core components:
• The preprocessing pipeline
• The corpus loading pipeline
• The back end relational database
• The input processing and word suggestion pipeline
• The UI

These components would be necessary for any implementation of a word
predictor, and I've tried to design the general architecture and the different
components to be as modular as possible to allow for easy replacement of any
one component. The components themselves are all hooked up to some part of
the UI and are therefore triggered by one of the several buttons there. So if
anyone would like to replace an algorithm, using the related events handlers
would be a good entry point. Be aware that even though the components
themselves are not very tightly coupled, the theme of the components are.
This means that, for example, changing from a bigram to a trigram database is
not as nicely decoupled[15] as letting a simple change in the parsing algorithm
do the trick, since the database would not support it. This should however be
familiar to any programmer willing to give the code a go. The following pages
will go over each of the components in more detail.

17

 4.2 Corpus preprocessing and loading

There are many different flavors of corpora available both free online and as
proprietary products, for a variety of languages. This means that finding a
corpus for a project like this isn't very hard; the problem is that the style and
quality of corpora vary with each instance. In other words, to make any type of
parsing software work with corpus data, customized data preprocessing has to
be performed on a per-corpus basis, with different algorithms for every corpus.
The amount of effort needed to make one of these custom preprocessors vary
as much as the corpora themselves as some high-quality ones (especially the
proprietary ones) are very standardized, while yet other free ones are littered
with errors and change internal notation every paragraph, or don't have any
notation at all. The corpus used for this project (The Tanaka corpus) falls
somewhere in-between of these two extremes. The preprocessing mainly
focused on singling sentences out, and replacing the kanji-kana variants
indicated by curly braces with a single type of notation (consecutive pipe
characters for each variation). Other preprocessing operations included
removing ~ characters and square brackets used by the WWWJDIC server, as
these hold no interesting semantic information usable by the word prediction
prototype. One interesting feature of these preprocessors that it would be very
easy to implement several preprocessors for different kinds of corpora that
could plug in to the same loading pipeline of the program (this is another perk
of using special preprocess passes). To implement this, one would simply have
to use a file-tag in each corpus to identify the type, or perhaps use a file
naming convention to differentiate them, and then to just write some code to
read the tag, and run the file through the appropriate algorithm.

The second part of preparation is the loading pipeline. If the preprocessors did
their job correctly, the loading pipeline should be completely corpus agnostic
and should simply be able to linearly run through the processed corpus to
consume its tokens. As hinted in the previous sentence; the main responsibility
of the loader should be to crawl each processed corpus, word by word,
analyzing the relationships found in each sentence, which in the case of this
implementation only extends to bigram relation counting and particles. It then
loads these relationships into the back end database. The interface between
the loader and the database was also designed to be as decoupled as possible,
so if someone would like to change the database module, they would do good
to start looking in the LoadObjectDatabases method.

18

 4.3 Data structures and plumbing

All the preprocessing and loading in the world won't do us any good without a
solid back end database to store and organize our gathered data into objects
and relations. The current prototype has two separate data containers that
together make up its back end database. The first container is called the
LexRefDatabase and the other the LexObjDatabase. The two containers have
distinct responsibilities and are orthogonally designed; any change in one
container should not necessarily have to impact the data in the other container.
The LexRefDatabase handles all relations in the database, storing bigram data
and an interface to access them in O(1)[16] time. The database is structured as
a data dictionary[17] where the keys are strings which represent the first word
in a particular bigram, and the values are objects wrapping the possible second
words in the bigram sequence; so called LexRefContainer objects. Each
LexRefContainer object maintains a list of LexicalReference objects, which are
the core components of the LexRefDatabase. Each LexicalReference embodies
a potential followup word, as well as its popularity. The popularity is simply the
number of occurrences of the key/value bigram pair.
The LexObjDatabase on the other hand, is responsible for keeping the closer
details for each word, such as variations of the word and it's most common
prepositions. This object was designed for extensibility as more heuristics
come into play, and is also implemented using a data dictionary. The
prepositions are mostly particles and are therefore embodied by the Particle
class. The Particle class is very similar to the LexicalReference class in that it
acts as a wrapper for the particle name and its popularity. One difference is
that the particle class also contains static properties for parsing particles into a
more manageable data format.
The so called “plumbing” of a software is an expression for how the different
components in the system fit together. These relationships are best expressed
with a dependency graph. The following graph was generated directly inside
Visual Studio, with the different colors indicating tier and the arrows indicating
dependencies. The thickness of each arrow indicates the degree of
dependency, so the main WordPredictor class is in other words heavily
dependent on the LexRefContainer and LexicalObject classes, but not as
much on the LexicalReference and Particle classes.

The prototype class diagram showing the dependencies of each component. In addition to
these concrete classes, the prototype also contains abstract components like the databases.

19

 4.4 Input processing and information retrieval

The last internal component of the prototype is the input processing and
information retrieval pipeline. This is the primary conduit by which the user
interacts with the underlying data model. The input box located on the
graphical user interface is hooked up to an event handler that detects any
changes in the text box. When a space is detected, a parse request is sent to
examine the content of the text box. The content is tokenized and the last
token is used to send a request to the LexRefDatabase. The LexRefContainer
returned by the request is then examined and the n most popular
LexicalReferences are returned to be processed. Each reference is then sent to
the LexObjDatabase to retrieve its corresponding LexicalObject. The returned
objects are all mined for their most popular particles and any available word
variations. All this information is then outputted to the suggestion matrix below
the input box.

 4.5 Performance vs. accuracy

In a full edition word prediction engine, the classic computer science problem
of performance vs. accuracy comes into play. Since the prototype is devoid of
most heuristics and the only computation-heavy operation is the database
load, this is hard to demonstrate without using proprietary software. However,
the problem basically boils down to deciding whether CPU-intensive heuristics
should be run or not to improve suggestion accuracy. Most heuristics are
variations on exhaustive searches or Viterbi algorithms with runtime
complexity touching on O(n2) or worse. This leads to scenarios where the
program might have to decide during runtime if, and which, heuristic should be
run. And if it is run, whether additional heuristics should be applied to the
heuristic itself to perhaps limit its maximum allowed running time, or to cut
down its search space.

 4.6 Data marshaling

It is recommended to load the prototype by using the “Parse and load” button
at present. This however is ridiculously slow and unfit for real world use. To
improve this load time, it would be effective to skip the loading parse logic
completely and simply serialize[18] an already loaded model to later be able to
deserialize it into memory again. There are a few problems with this, the first
one being that using the built-in serialization mechanism in the .net framework
is unacceptably slow since it serializes all data (object and overhead as well) in
the model. It would be more efficient to write a custom serializer to only
marshal the relevant data. Code would also have to be written to reverse the
process. This will be explored a bit further in the 6.7 Serialization engine
chapter.

20

 4.7 User interface

The user interface provides the means to the user to interact with the software
itself. Thanks to the tools present in the .net framework, the software was
developed with a graphical user interface from the offset. The interface
consists of 5 main components:

1. The Path control boxes. Input and output paths are defined here.
2. The Input area. Text is inputted here to be used as data for the

processing pipeline. Space initiates a parse.
3. The Suggestion matrix. Each column is a suggestion aspect while each

row contains different suggestions sorted in descending order by
popularity.

4. The Action buttons.
1. The Load button loads a previously marshaled database into memory

from the Source path. Currently does not work as intended as the
marshaling algorithm is not optimized whatsoever.

2. The Parse and load button first parses the Source file path and then
loads it into memory. This is currently the recommended way to load
the software.

3. The Marshal button marshals the currently loaded database into the
specified Target path. Currently does not work as intended as the
marshaling algorithm is not optimized whatsoever.

4. The Preprocess button preprocesses the Source path into the Target
path. Currently only works with the complete version of the Tanaka
corpus.

5. The Feedback area lists runtime feedback from the program such as
parsing or loading process and errors. The Verbose checkbox can be
checked to provide even more extensive information.

The graphical user interface of the prototype.

21

5. Conclusions

While there still remain many things to be done before the prototype included
in this report can be used as an assistive tool, it seems safe to say that word
prediction is plausible even in a language as different from English as
Japanese. Most of the problems faced when implementing this type of software
in Western languages seem to stay the same when applied to their Eastern
counterparts, such as the parsing methods, data structures and heuristics,
even though the heuristics part remains unproven. One additional unexpected
insight is that multipass conjugation pruning seems applicable even in
Japanese. This needs further testing before it is proven however.
Japanese did however pose a few additional problems; mostly in the context of
input conversion and the wakachigaki problem. There did not seem to be any
parts of the implementation that actually got easier in the Japanese
implementation compared to a Western language.
I do however think that word prediction software running on Eastern languages
have the potential to become more accurate than Western systems simply
because of the unambiguous nature of logograms. In the case of Japanese,
this of course requires that kanji is used as input, as the alternative (kana /
roman letters) are most likely less effective than Western systems because of
wakachigaki problems. These statements about the relative ambiguity of
Western writing systems compared to Eastern ones are all speculation
however, and require further scientific inquiry before any definitive conclusions
can be drawn.

22

6. Further avenues of research
I tried to summarize all potential improvements that I could think of, both for
the prototype itself, but also to the general theory as well as some anecdotes.

 6.1 UI

The user interface of the application could be greatly improved in many
different ways. The most obvious improvement might be to port it to a GUI
more similar to the one found in SonoScribe, since the primary users of the
software would be unable to use the current UI at all! For this to be done
however, it would be necessary to move the application core from the winforms
platform entirely. Maybe using the new Windows Presentation Foundation
(WPF) would be the best choice as it is almost as easy to implement compared
to winforms, but has much better styling support. The feedback window is
obviously also superfluous in a more application-oriented approach.

 6.2 Henkan engine or interface

One of the biggest flaws in the current prototype is that it only supports
parsing of kanji compounds and kanji-stemmed native words. As such, adding
kana and roman letter support would be warranted. This would probably be
harder than it might seem though since it would require changes in all levels of
the application, unless some type of IME API[19] could be leveraged to simply
convert inputted roman letters and kana into their kanji counterparts behind
the scenes! This would at least add partial kana-support but would have
several inadequacies. It would for example not parse kana/roman letters that
do not have a kanji representation, and would not have any heuristics
pertaining to which suggestion is chosen. This could of course be handled on
the applications side, perhaps by utilizing the LexRefDatabase and
LexObjDatabase to determine which of the suggested tokens is the most
popular in the current context.

 6.3 Heuristic improvements

As mentioned before; one interesting aspect of using kanji is the possibility to
lower the overall token ambiguity in the system. There doesn't seem to be a
whole lot of research on this subject, which seems strange considering the
implications. If for example written Japanese is easier to semantically parse
than say written English, it might be warranted to do directed experiments on
automated language acquisition systems on idiomatic languages first, before
trying them on “harder” languages. I'm very interested in finding any research
at all on this subject, so if any reader knows of any, I would be most grateful if
you could contact me about this by mail.

23

 6.4 Support for other corpora

As discussed in the beginning of the thesis, the corpus used was not really
optimized for this type of experiment, so using another base corpus might
have been a good idea. An even better solution, however, would be to simply
extend the program by adding preprocessors for more corpora. More
underlying data usually means better accuracy, so this will always remain as a
way to continually improve the software.

 6.5 Word variation handling

The way the prototype deals with morphological parts of speech is at the
moment sub-par and should be improved. This applies both to the parsing
aspect as well as the suggestion aspect. Dealing with morphology in word
prediction software is among the hardest problems present though since there
are few clear indications in the leading text on which conjugation the user
intends to use. Even advanced software like SonoScribe approaches the
problem more or less naively due to a lack of effective heuristics. It is still
better than the prototype's solution though. As described earlier in the thesis,
the prototype just saves complete lumps of conjugation morphology with no
semantic analysis whatsoever. As the morphological markers in Japanese have
many of the characteristics common to what linguists call “closed” word
classes, which means that there is only a finite amount of conjugations
available (you cannot make up new ones on the fly) it would be better to at
least use some technique, for example multipass pruning, or maybe even some
simple wakachigaki-algorithm to tokenize these lumps into a set of known
symbols. These tokens would then be treated much like the Particle class in
that each morpheme would be treated as a “word”, and the suggestion matrix's
second column would consequently be populated with these single morphemes
instead. To accommodate for the agglutinative nature of Japanese, one could
make sure that after completing a suggestion of a word where a morpheme
was used, the next suggested word would not be a stem, but another possible
morpheme until the most popular followup morpheme is null. This would lead
to a much more dynamic morphological suggestion system, and once again,
since we could treat the morphemes as a closed word class, it would also likely
save us a lot of memory usage.

 6.6 The input wakachigaki problem

The wakachigaki problem has been touched on several times in this thesis
already, but there is still some things that could be improved on. So far we've
only really talked about the wakachigaki problem in the context of text and
corpus parsing. With this paragraph, I just wanted to make the reader aware
of the other, less obvious wakachigaki input problem. The reader should be
familiar with the fact that written Japanese lacks delimiter characters, and that
this impairs computer based parsing by now. This applies to any text the
software has to parse, including the input string. Consider the following

24

example sentence:

 次 の 言葉 は 何
Tsugi no kotoba ha nani
Next poss. word topic. what

This sentence would be written into the input area as: 次の言葉はなに
The problem is now;
How is the program supposed to know which part of this sentence constitutes
its “last word”, i.e. which part of the sentence should be used as the candidate
string for the LexRefDatabase? The answer is of course to use wakachigaki!
The next problem is then;
How do we let the computer know that we want a suggestion procedure to
take place? The best way in a keyboard oriented software would probably be to
just assign a key to be the “suggestion key”. However, the ideal GUI for this
program doesn't have any buttons! This means that we either have to
introduce some kind of other delimiter into the system, which would defeat
much of the point of the system by slowing it down. Or, we could simply
prompt the suggestion matrix on any input. This of course, would be rather
slow, but still preferable to the alternative. It is, in other words, yet again an
accuracy vs. performance type of problem we are dealing with.
The prototype itself, however, uses neither approach as it does not employ the
desired GUI yet. To simplify development, space is simply used as the delimiter
that prompts a suggestion. This should be changed as soon as there is time.

 6.7 Serialization engine

To be viable as a truly usable software, the database loading time has to be
sped up considerably. The best way to achieve this would be with the use of a
dedicated serialization/deserialization engine that when prompted can serialize
only the most relevant data in each object onto disk. It should then be able to
reverse the process by recreating all objects and loading them with the stored
data.

 6.8 Analyzing the performance of the prototype

If I had been able to put a bit more work into the prototype itself, making a
performance analysis of the program would have been desirable to see if the
number of keystrokes saved in Japanese is comparable to that of English.
There is no real point in doing one at this point in time though for several
reasons. One of the reasons and perhaps the most obvious one is that it as a
prototype lacks almost all semantic heuristics present in a modern proprietary
engine. Another reason is the lack of time. I do however aim to continually
improve the software so that it might one day be worthy to be tested against
others of its kind. And since the source code will be made public, perhaps
some other programmers interested in linguistics will help me with this
endeavor to in the future make the Word Predictron a world class word
prediction engine.

25

7. References and notes
[1]. There are no real dates that indicates “when the world became literate”
but the last 200 years did a lot to Western literacy, and illiteracy halved in the
last 30 years according to Wikipedia:
http://en.wikipedia.org/wiki/Literacy

[2]. e.g. “Hello, my name is X”

[3]. Keystrokes saved is a mark used in AAC research that is measured using
the following formula:

[4]. Data from internal Tobii Technology documents and:
http://www.cis.udel.edu/~trnka/research/trnka08evaluating-presentation.pdf

[5]. The FASTY project
http://www.elearningeuropa.info/directory/index.php?
page=doc&doc_id=971&doclng=6

[6]. Market share info can for example be found here:
http://www.networkworld.com/community/blog/windows-drops-below-90-
market-share

[7]. Part of speech tagging:
http://en.wikipedia.org/wiki/Part-of-speech_tagging

[8]. Conditional random fields:
http://en.wikipedia.org/wiki/Conditional_random_field

[9]. A screen shot of SonoScribe:

26

[10]. Wakachigaki is a very interesting problem not found in Western
languages. Many research papers are as a consequence not available in
English. My paper of choice is “Morphological analysis and wakachigaki
processing” (形態素解析と分かち書き処理), by Yasuda Akio:
http://wordminer.comquest.co.jp/wmtips/pdf/H15_01-4.pdf

[11]. Bigrams are combinations of two word tokens used in statistical analysis
of for example corpora.
http://en.wikipedia.org/wiki/Bigram

[12]. According to the DTP Informe network (Japanese):
http://www.informe.co.jp/useful/character/character20.html

[13]. The Viterbi algorithm is widely used in NLP to make statistical decisions
on which the most likely sequence of tokens might be from a set of possible
sequences.
http://en.wikipedia.org/wiki/Viterbi_algorithm

[14]. Many systems use this approach, one example would be Martin Hassel's
stemming lab:
http://nlp.lacasahassel.net/stemminglab/

[15]. Coupling is a concept in software engineering to describe how much
dependency exists between two components. A lot of decoupling is generally
good since it allows for more maintainable code and less side-effects. When
performed correctly, it can also allow a third party to switch entire modules as
long as they respect the I/O conventions of the module.
http://en.wikipedia.org/wiki/Coupling_%28computer_science%29

27

[16]. Big O notation is a compact way to represent algorithm efficiency. O(1)
indicates that an operation can be performed in constant time (as opposed to
linear time or logarithmic or what have it). More information at:
http://en.wikipedia.org/wiki/Big_O_notation

[17]. Data dictionaries (the proper technical term is “associative array”) are
popular data structures used for fast lookup of objects using so called “keys”.
Refer to the following wiki-link for more information:
http://en.wikipedia.org/wiki/Associative_array

[18]. To read more about data serialization / marshaling, have a look at the
following link:
http://en.wikipedia.org/wiki/Serialization

[19]. There actually exists a good API for this!
http://technet.microsoft.com/en-us/library/ms970191.aspx

28

8. Bibliography

 8.1 Reference Literature (used when designing the implementation)

Tobii technology communicator suite documentation (SonoScribe)

Analysing performance in a word prediction system with multiple prediction
methods [An article from: Computer Speech & Language]
(2007) by P.A. Vayrynen, K. Noponen, and T. Seppanen

The handbook of japanese linguistics
(1999) by Natsuko Tsujimura [Blackwell publishing]

An introduction to japanese linguistics 2nd ed.
(2007) by Natsuko Tsujimura [Blackwell publishing]

Speech and language processing 2nd ed.
(2009) by Daniel Jurafsky and James H. Martin [Pearson Education]

Data-Driven Syntactic Analysis Methods and Applications for Swedish
(2002) by Beáta Megyesi [Centre for speech technology, KTH, Stockholm]

 8.2 Internet links (2011-04)

English:
http://www.wikipedia.org
http://www.cis.udel.edu/~trnka/research/trnka08evaluating-presentation.pdf
http://www.networkworld.com/community/blog/windows-drops-below-90-
market-share
http://nlp.lacasahassel.net/stemminglab/
http://technet.microsoft.com/en-us/library/ms970191.aspx

Japanese:
http://mecab.sourceforge.net/
http://www.informe.co.jp/useful/character/character20.html
http://wordminer.comquest.co.jp/wmtips/pdf/H15_01-4.pdf

 8.3 Corpus
http://www.edrdg.org/wiki/index.php/Tanaka_Corpus
http://www.tokuteicorpus.jp/

29

