
Abstract

When inspecting the currently known pulsar population one finds a velocity distribution which is in
constrast to the galactic rotation curve. This has lead researchers to believe that the pulsars receive
linear momentum (a kick) at the SN event which produces these. In this work we try and see what can be
learned about these kicks by studying the existing double neutron star binary population. We investigate
the possible progenitors to these and study their implications for the possible kicks. Furthermore we
conduct a population synthesis and extrapolate from the statistics given by the current double neutron
star population what is implied statistically regarding the angular kick distribution. We find that the
population in fact implies a non-isotropic distribution with preference towards the orbital plane and we
argue that the currently published kick probability distribution functions are too biased towards higher
kick velocities.
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1 INTRODUCTION AND OVERVIEW

1 Introduction and overview

The first Double Neutron Star (DNS) binary was discovered by Hulse & Taylor (1975), a feat for which
they were awarded the Nobel Prize later in 1993. The DNS binaries carry great scientific interest; not
only are they very scarce, which in itself makes them interesting, but they relate to so many other rel-
evant, highly topical and important astrophysical phenomena. As will be mentioned below, the DNS
binaries are excellent laboratories for observations concerning General Relativity, with the gravitational
wave physics. They are also important as they can provide constraints on the progenitors; both the
formation channels as well as the supernova (SN) in which they are formed. The very likely progenitors
of Short Gamma Ray Bursts (SGRB) might be DNS binaries.

In this work we set out to answer the question

• What can be learned about the kicks from the observed DNS binary sample? In particular, what
can we learn about the kick angles?

In the first four chapters, the discussion concerns what is currently understood about DNS binaries.
Section 2 regards how they are formed from zams binaries, Section 3 concerns the SN event itself, more
specifically the kick, and Section 4 deals with the post-formation behavior.

The following chapters deals with the actual work done; Chapter 5 deals with deriving the necessary
mathematics, which will be used in the simulations. Sections 6 and 7 deal with the simulations and
description thereof, whereas the remaining section concludes the work and gives suggestions of how to
further proceed with this work.

The remainder of this section is devoted to introducing what is actually known about the DNS bina-
ries and NS kicks by direct observation.

1.1 Kick evidence

Dispersed throughout the galactic plane are pulsars with relatively high velocities, (see e.g. Lorimer
(2008)). The galactic rotation, which has a velocity curve of vrot ≈ 200 km/s1 given in e.g. Sofue et al.
(2009), does not correspond to these pulsar velocities which from e.g. Hansen & Phinney (1997) or Hobbs
et al. (2005) have a mean of about 450 km/s. This suggests that they must receive some sort of “kick”
at birth.

Figure 1: The pulsar demography as presented in Lorimer (2008).

1The Newtonian theory predicts a decline in velocity as the radius increases. What is measured is a ”constant” velocity
in radius (This is one of the main implications of exotic matter). The velocity is, of course, not perfectly constant, but
varies a bit in the orbital plane with radius. The major deviation from the given rotational velocity occurs at higher radii
than about 10kpc. From Figure 1 taken from Lorimer (2008) one sees that the pulsar population is essentially concentrated
within 10 kpc, where the rotational curve deviates less.
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1.2 Kick distribution 1 INTRODUCTION AND OVERVIEW

Note in Figure 1 the observational bias for pulsars towards the sun, placed roughly at (0, 8.5) kpc. As
neutron stars are relatively faint objects they are relatively hard to detect at greater distances, which in
turn gives rise to this selection effect. In reality, they probably follow a radially symmetric distribution.

1.2 Kick distribution

Studying the currently known pulsar population, various groups have found velocity distribution func-
tions of the Maxwellian1 type, both unimodal (Hansen & Phinney 1997), (Hobbs et al. 2005), as well
as a bimodal distributions (Arzoumanian et al. 2002). The average velocities with respect to the local
standard of rest are about 450 km/s in the distributions.

The Arzoumanian et al. (2002) PDF was found by population synthesis followed by comparison with
the known pulsar sample. The PDF has the following appearance:

P (v) = 4πv2
[

w1

(2πσ2
v1)3/2

e−v
2/2σ2

v1 +
(1− w1)

(2πσ2
v2)3/2

e−v
2/2σ2

v2

]
where they found the best fit with w1 = 0.4, σv1 = 90 km/s and σv2 = 500 km/s.

Figure 2: Plot of the PDF given by Arzoumanian et al. (2002).

There is, however, a slight ambiguity concerning the kick PDF; a later study by Hobbs et al. (2005) was
conducted and resulted in a non-bimodal PDF. The bimodal PDF is attractive as it would be consistent
with two different formation mechanisms for NS, which seems to be the case; e.g. Kiziltan et al. (2010)
has measured bimodality between MNS ∼ 1.35M� and MNS ∼ 1.50M�. This would hint of two different
formation scenarios for DNS. It is currently believed that these two remnant masses are dependent on
whether the system has been in a binary or not, (that is they have had the binary interactions of Roche-
lobe overflow and then had their binary system broken by the kick). This conclusion has been reached
as there are no single low-velocity NS.

1.3 The currently known DNS binaries

Throughout the below calculations and simulations, most of the data will be taken from Zhang et al.
(2011) and Kiziltan et al. (2010), with references therein. Inspiral time will be taken from Lorimer
(2008). The diversity of authors stems mainly from the fact that as observational techniques increase in
accuracy, the data tend to change, and only in the latest years have many of the masses been measured
with valuable accuracy.

1The PDFs of the type P (v) ∝ v2e−kv2
are also denoted Weibull-distributions, but within physics literature the con-

vention is to refer to these as Maxwellian.
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1.3 The currently known DNS binaries 1 INTRODUCTION AND OVERVIEW

Table 1 below presents the currently available data. Note that the binary B1820 − 11 is not a con-
firmed DNS binary and thus is not stated. For comparison with the merger time, the Hubble Time has
τHubble ≈ 13.7Gyr.

Table 1: Table of properties of the currently known DNS. The quantity Porb denotes the binary orbital
period. Ps denotes the pulsar spin frequency. Characteristic age is denoted by τc and merger time by
τinspiral. The pulsar mass is denoted MNS with its binary companion mass being Mcomp.

Designation Porb [d] Ps [ms] e τc [Myr] τinspiral [Gyr] MNS [M�] Mcomp. [M�]

J0737-3039 A 0.102 22.7 0.088 150 0.085 1.338± 0.01 1.249± 0.01
J0737-3039 B 0.102 2770 0.088 50 0.085 1.249± 0.01 1.338± 0.01
J1518+4904 8.63 40.9 0.25 20× 103 >10 1.56+.20−1.25 1.05+1.21

−0.14
J1811-1736 18.8 104.7 0.828 103 >10 1.5+0.1

−0.25 1.06+0.46
−0.15

J1829+2456 1.176 41.0 0.139 12.6× 103 >10 1.15+0.1
−0.25 1.35+0.46

−0.15
B1534+12 0.421 37.9 0.274 400 2.7 1.33± 0.0020 1.35± 0.0020
B1913+16 0.323 59.0 0.617 100 0.3 1.44± 0.0006 1.39± 0.0006

B2127+11C 0.335 30.5 0.681 100 0.2 1.35± 0.080 1.36± 0.080
J1756-2251 0.320 28.5 0.181 400 1.7 1.4+0.04

−0.06 1.18+0.06
−0.04

J1906+0746 0.166 144 0.085 0.13 0.3 1.25 1.27
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2 FORMATION CHANNELS

2 Formation channels

Since the discovery of the Hulse-Taylor pulsar in 1974 there have been various proposed formation channels
for double neutron star binaries. Binary evolution is of course more a complicated task to study, as it
depends on so much more than just the masses, as in the single component case. The most commonly
adopted formation channel is the “Standard formation channel” by Bhattacharya & van den Heuvel
(1991). This scenario, which will be explained below more in detail, will be adopted throughout this
work. An alternate scenario proposed by Brown (1995), which is equally possible given somewhat special
mass ratio conditions, will also be discussed.

2.1 The “standard channel”

The standard channel, depicted in Figure 3, assumes initially two close main sequence stars with masses
in the range of 8M�−25M�. This is the mass range for which stars are believed to form NS as remnants
(this is not as trivial in the binary case, as will be discussed below). The masses would correspond to a
spectral classification of Be-type1.

If the masses are different, the more massive companion will enter the red giant stage first. This would
almost certainly give rise to mass transfer. Assuming the masses are different enough, the “heavy” star
goes SN before the companion enters red giant phase. It receives a kick due to the SN. The effect on
the companion by the ejecta is assumed not to be of significance, following the arguments in Fryxell &
Arnett (1981). If the binary remains bound, it will now consist of a main sequence star and a neutron
star (NS). Between the time of the first SN and the second red giant phase the main sequence star will
lose mass through stellar wind, which in turn will be accreted onto the NS by Bondi-Hoyle accretion.
This will result in the system becoming a High-Mass X-ray Binary, or HMXB for short.

The main sequence star then enters red giant phase where its hydrogen envelope expands. The NS
will be engulfed by this and the system will share a common envelope (CE). Because of friction of the
NS orbiting in the hydrogen gas, the envelope will receive some of its angular momentum and dissipate
as the NS spirals in2. During this phase, the core and the NS might well merge depending on the initial
separation and envelope mass. It is believed that to prevent merger the initial separation has to be at
least 100 R�. The situation can be explained somewhat more mathematically as follows. In the (CE)
phase the envelope has potential and thermal energy. When the stars discard angular momentum and
energy into the envelope, causing it to dissipate, they give it some of their Newtonian energy. In order to
study what happens, one can equate the energy before and after CE-dissipation. Denote the separation
before and after with af and ai respectively. The energy before is given by

Ei = −GmMSmNS

2ai
+ Eenv

and after given simply by

Ef = −GmHemNS

2af

Denote the difference in orbital energy by ∆Eorb The problem here of course is to evaluate the final
separation af as a function of initial separation ai and the other parameters. The usual ansatz3 is to try
and formulate the envelope energy as a fraction of the pre-CE phase orbital energy, that is

Eenv = −GmHemenv

λaif(q)

where the constant λ is a ”free parameter” which is supposed to be determined by simulation and f(q)
is the well-known formula by Eggleton (1983) given by

f(q) =
RL,1
a

=
0.49q2/3

0.6q2/3 + ln(1 + q1/3)
, q =

m1

m2

1Be-type are B-stars with strong H emission lines
2This can be visualized in two ways; either the NS “peels” of the envelope slowly, that is if the time-scale of the expansion

of the CE is noncomparable to that of the mass expulsion, or the NS really becomes “engulfed” by the CE and lives as a
tighter binary inside. Which of these scenarios is the actual case is still an open question.

3This is the famous “Webbink-formalism” (or “αCE-formalism”) after its introducer Webbink (1984). Note that the
conventions are somewhat different here; e.g. instead of αCE (the reason for the alternate name) there is ηeff .
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2.1 The “standard channel” 2 FORMATION CHANNELS

and then equate this to the ∆Eorb modulo an efficiency parameter ηeff ranging between zero and one.
That is Eenv = ηeff∆Eorb.The efficiency parameter determines the capacity of the orbit to eject the
envelope instead of heating it up. The energy can be evaluated just when the donor fills its Roche-lobe,
that is RMS ≈ RL. In Dewi & Tauris (2000) they find for various masses different values for λ.

36

Fig. 16.15. Cartoon depicting the formation of a Be-star/HMXB and finally
a double neutron star system. Such a binary will experience two supernova
explosions. It is always the recycled pulsar which is observed in a double
pulsar system as a result of its very long spin-down timescale compared to
the young pulsar (a factor of ∼ 102). Tight NS-NS systems will coalesce
due to gravitational wave radiation. These collisions should be detected by
advanced gravitational wave detectors such as LIGO II/VIRGO.

Figure 3: Depiction of the ”standard channel”. In this case it is illustrated by the probable formation
scenario for B1913, the ”Hulse-Taylor” pulsar. Courtesy of Tauris & van den Heuvel (2003)

This was done by equating the above ansatz for Eenv to its classical energy

Ebind =

∫ Mdonor

Mcore

(−GM(r)

r
+ U)dm

That is to say, the envelopes binding energy as well as its thermodynamical energy. They reach typical
values between 0.2 and 0.8 for λ, but also extreme cases with e.g. λ > 5. The quote of pre- and post-CE
evolution separation can now be expressed as

af
ai

=
mHemNS

mMS

1

mNS + 2menv/(ηeffλf(q))
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2.2 The “double core channel” 2 FORMATION CHANNELS

for typical values of the parameters, the ratio becomes of order ∼ 100.

The scenario right up to the second supernova can safely be assumed to be circularized due to tidal
interaction between the NS and the He-core. The timescale for this circularization can be estimated
following Zahn (1989) to be

1

tcirc
= 21

λcirc
tf

q(1 + q)(
RHe
a

)8

where q the mass ratio, RHe the He-core radius, a the separation, tf = (m1R
2
He/LHe)

1/3 and λcirc can
be estimated with Zahns own recipe as λcirc ≈ 0.019α4/3(1 + η2/320)−1/2, with η = 2tf/Porb. In Wang
et al. (2006) they plugged in typical values and got tcirc to be of the order of a few hundreds of years.
This is much shorter than to the time between the first and second SN, and thus assuming complete
circularization before the second SN is correct.

The second SN will take place, and assuming that the second kick does not disrupt the binary it has now
become a double neutron star binary. Just as in the case of the first SN, the ejecta will probably not
be of significance as goes for the companion and will not be taken into account when constructing the
mathematics in the below sections.

At the time this channel was proposed, it was thought that the NS would undergo hypercritical ac-
cretion during the CE-phase and as a result perhaps collapse into a BH. As now is known from the
existing DNS binaries, the NS seldom exceed1 masses of 1.5 M� and thus this cannot have happened.
There has been proposed explanations for this. One of them being rotation as an inhibitor (Chevalier
1996); another that the accretion disc of the NS will give strong outflows (Armitage & Livio 2000).

2.2 The “double core channel”

An alternative formation channel, depicted in Figure 4, has been proposed by Brown (1995). Assuming
that the zero age main sequence (ZAMS) stars have very similar masses they will enter the giant branch
within very short time of each other. This is clearly not possible for the “standard channel” where the
later companion has to SN before CE of the former companion. The allowed mass difference is in itself
depending on the masses. In Dewi et al. (2006) they state that from single star models the allowed
difference for stars of 8M� is 3 %, and in case of 25M� the allowed difference is 7 %. The stars will enter
red giant phase within little time of each other, and thus form a double helium core binary within the
CE. They will eject the hydrogen envelope through friction. This is also here calculated with the usual
ansatz Eenv = ηeff∆Eorb, where ηeff ∈ (0, 1) is the efficiency parameter. The orbital energy is as usual

Eorb = −Gmcore,1mcore,2

2af
+G

mMS,1mMS,2

2af

The binding envelope energy is not the same as above, but restated as

Eenv = −GmMS,1menvelope,1

λR1
−GmMS,2menvelope,2

λR2

and as upon mass transfer the stellar radii can be approximated by their Roche-lobe radius RL one can
again use Eggletons formula with RL ≈ af(q).

1See e.g. Lattimer & Prakash (2010) for recent reports on discoveries of massive NS with mNS = 2M� or similar.
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2.3 Comparison 2 FORMATION CHANNELS

Figure 4: Depiction of the alternate formation channel. Courtesy of Dewi et al. (2006)

When the system has expelled the hydrogen CE there will remain a NS-He binary, just as in the
standard channel. The He-core will undergo SN and there will remain two NS in a DNS binary.

2.3 Comparison

As the “double core” scenario is dependent on the sharp constraint on masses, it is the more unlikely
scenario. The main difference between the two1 channels is that in the “standard channel” the binary
undergoes HMXB phase, whereas this does not occur in the “double core channel”. In our below work
we assume the former channel to have occurred.

1See e.g. Belczynski et al. (2002) for a rigorous comparison.
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3 THE KICKS

3 The kicks

Having an idea of how DNS binaries are formed we now move on to the kicks themselves. We start by
discussing the currently popular mechanisms themselves and the proceed to discuss some related topics.

3.1 Mechanisms

Once established that formation seems to involve the remnant pulsar to receive a kick, various mecha-
nisms have been proposed. The matter is to date not well understood and there has not yet been reached
consensus.

As the neutron star is rather a heavy object and has a high velocity, there must be something com-
pensating for its linear momentum. Today there are mainly two major mechanisms that explain this,
while some other ones are considered exotic or unlikely. The major two are the hydrodynamically driven
and magneto-neutrino driven mechanisms.

The hydrodynamical mechanisms is driven by asymmetries in the explosion. The shell has convective
instabilities prior the the explosion resulting in an asymmetric bounce, so that the ejecta is asymmet-
ric. Wongwathanarat et al. (2010) did 3D-simulations of this model and found that the produced kicks
might well receive velocities ∼ 1000 km/s. They did not however, find that the SN altered spin angular
momentum, or any preferred direction of the kick.

The neutrino-driven mechanism preserved linear momentum by asymmetric neutrino emission. Strong
B-fields couple to the neutrinos and induce the asymmetric emission. Simulating the SN event and con-
sidering this mechanism, Fryer & Kusenko (2006) found that this mechanism could explain the observed
velocities. Furthermore, they found that in contrast to the hydrodynamical mechanism, the ejecta and
the pulsar velocities would in this scenario be parallel, instead of anti-parallel. Also it seems that the
strength of the B-field has to be larger than the observed ones at B ∼ 107 − 1012 G, at the magnitude of
B ∼ 1015 G.

3.2 Spin period- eccentricity relation

When studying the current DNS binaries in a log(Ps)−e -diagram one observes a linear relation between
the variables. Using a very low kick-range 1 Dewi et al. (2005) found that this relation could be repro-
duced. This is taken as an implication of a low vkick in the formation of DNS binaries. 2 It should be
noted that there is still an uncertainty of this as there are very few known DNS binaries and thus more
would be very useful.

3.3 Spin alignment

An important factor when constraining the kick angle is the spin-orbit misalignment, that is the angle
between the orbital angular momentum vector L and the pulsar spin angular momentum vector SNS . As
intermediate-stage system undergoes Roche-lobe overflow, the spin vectors are aligned with the orbital
angular momentum vectors. Although SN event might well change the spin of the younger pulsar, the
older one remains undisturbed and can thus be used to provide constraints on the kick direction.

For some systems these angle have been measured, in particular in the tight binary system J0737.
In Farr et al. (2011) these angles are given with no more than 14◦ for the older pulsar and 130◦ for the
younger one, clearly showing that the SN must have altered the spin of the younger pulsar.

3.4 Various observed bimodalities

There are currently various bimodalities observed concerning the pulsar population, hinting of different
formation channels. As stated above, there is bimodality in pulsar velocities, but there is also bimodalities
in masses and spin alignments. In a study done by Kiziltan et al. (2010), they found that the masses of

1Maxwellian distribution with dispersion of σ = 20 km/s
2Later in Willems et al. (2008) it was found that this relation could be maintained even with very polarly inclined kicks,

albeit still not alleviating the need for a low kick-distribution.
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3.4 Various observed bimodalities 3 THE KICKS

the remnant NSs where bimodally distributed around 1.35M� and 1.5M�. Furthermore, it has also been
observed that NSs have bimodally distributed spin alignments (Johnston et al. 2005), being either very
polarly inclined or planarly so. It has been argued that these bimodalities could be consistently explained
if there were essentially two formation mechanisms for NSs; one being that the lower mass and low kick
NS remnants originate from an electron capture SN having evolved in an interacting binary, whereas the
other is a single star evolution (or non-interacting binary) of the progenitor with a somewhat higher zams
mass (∼ 12M� or higher).
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4 POST-FORMATION BEHAVIOUR OF DNS BINARIES

4 Post-formation behaviour of DNS binaries

After the DNS binary has formed the subsequent evolution will proceed as follows. As the system is
spherically asymmetric in motion, it will emit gravitational waves and its orbital separation will reduce.
This in turn will eventually result in the stars merging. As argued, they probably receive a natal kick
which alters the system velocity, and the binary might travel away from the host galaxy or globular
cluster. The merging event is thought to result in a SGRB. As will be discussed below, the demographics
of DNS binaries can give hints of the occurrence of SGRB, but also vice versa.

4.1 Gravitational waves

The effect of GW emission on a binary system was predicted by Peters (1964) in terms of differential
equations relating the decrease of orbital separation a and eccentricity e:

da

dt
= −64G3m1m2(m1 +m2)

5a3c5
(1 + e2 73

24 + e4 37
96 )

(1− e2)
7
2

and
de

dt
= −304

15

G3

c5
m1m2(m1 +m2)

a4
e

(1− e2)5/2
(1 +

121

304
e2)

Solving for inspiral time, an analytic solution can be found in the circular case to be

τinspiral = a40
5

256

c5

G3

1

m1m2

1

m1 +m2

whereas the non-circular case can be given to first order (Lorimer 2008) by:

τinspiral = 107yrP
8/3
orb,h(

m

M�
)−2/3(

µ

M�
)−1(1− e2)7/2

These predictions carry important implications for our work. Inspecting the last equation it follows that
an eccentric system has a quicker inspiral rate. Conversely the reverse statement also holds; that is
two systems with the same characteristic age but differing in eccentricity will have had a considerable
difference in initial separation and eccentricity. Although trivial, the latter statement will become more
important when integrating these equations backwards in time over the binary age.

Evidence for GW was not observationally indirectly confirmed until Hulse & Taylor (1975) reported
the discovery of the famous “Hulse-Taylor pulsar”.

Figure 5: The observed inspiral of the famous “Hulse-Taylor pulsar”. Courtesy of Lorimer (2008).
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Figure 5 gives the cumulative decrease of the periastron time. Recall that B1913 is a rather eccentric
system with e ≈ 0.6. As the system loses angular momentum by GW emission, the orbital period will
shrink. The line corresponds to this prediction by GR. As can be seen, the subsequent observations have
been in very good agreement with the prediction.

Figure 6: The interferometer setup for LIGO. Courtesy of www.ligo.org.

Currently various detectors try to detect GW directly but so far there have been no results (Abbott
et al. 2010). The most sensitive detector so far is LIGO (Figure 6), but two other detectors also in action
are VIRGO and GEO600. LIGO works roughly as follows: the laser sends out light to the test masses
which is reflected by mirrors and the registered by the photodetector. When the gravitational wave passes
by, space-time will be slightly distorted yielding a slight phase shift in the returning light. Thus one can
register a gravitational wave.

It should be noted that the space-time distortion is rather small and that to register a GW would
require high sensitivity. The detector sensitivity is currently increasing and it is thought that gravita-
tionally violent events will soon be within the observational grasp. Advanced LIGO, an upgrade, will
likely be operational around 2015 and it is believed that this upgrade will make the observation of events
such as SGRB to be possible. Waldman (2011) estimate the likely binary coalescence detection rate to
be 1− 1000 /yr.

4.2 Merger rates and SGRB

Short Gamma Ray Bursts are very intense gamma ray flashes with duration less than ∼ 2 s, as opposed
to the Long GRB that have longer durations. The difference between Short and Long GRB is, besides
duration, also their demography. Whereas the LGRB are exclusively found in younger galaxies, the
SGRB are found in all types of galaxies, even those where star formation has ceased. From this one
would draw the conclusion that as the LGRB progenitors are likely to be connected with the death of
massive stars, the SGRB progenitors involve much older objects and might be the result of the merging
of compact objects.

The SGRB are related to DNS binaries from a demographic point of view. As the SGRB is believed
to be a merging of a DNS binary, the merger rate would give hints of the frequency of DNS binaries.
One can estimate DNS mergers mainly in two ways; either to use populations synthesis, or to extrapolate
from the observed DNS binaries. Kalogera et al. (2004) estimated the DNS merger rate by extrapolating
the known DNS binaries and found a merger rate of 1.7× 10−5 − 2.9× 10−4 yr−1 in the Milky Way. An
estimate from population synthesis done by O’Shaughnessy et al. (2008) gave 3 × 10−5 yr−1. After the
second SN they system will travel along a trajectory in the galaxy and perhaps the coalescence will occur
out of the galactic disc, as has been modelled e.g. by Church et al. (2011).
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4.3 Spindown

For a physical quantity φ, its time-scale is defined as τts = φ

φ̇
. Analogously for rotating NS, their

characteristic age τchar, which is used to approximate their age, is defined as τchar = P
2Ṗ

. P denotes as

usual the spin period, and the factor 1/2 is conventional. Studying the pulsar demography for NS one
finds that they are non-randomly distributed. The pulsar ages are usually of the order of 1 − 10 GY r,
but with certain exceptions.

Figure 7: Plot of the currently known pulsar demography in log Ṗ − P -diagram. The dots with circles
represent binaries. Courtesy of Lorimer (2008).

Note in Figure 7 above that the binaries are occur at higher rotation velocities and the singleton stars
are concentrated around spins of P ∼ 1 s and Ṗ ∼ 10−15 s/s. This should not be suprising as in the
binary it is believed (Dewi & Pols 2003) that the subsequent Roche-lobe overflow will “spin up” the older
pulsar and thus giving a higher rotation velocity, whereas the singleton stars are non-recycled.

Moreover, the Ṗ − P relation can be used to estimate the magnetic field of the NS. Following the
dipole model, the model which is used to describe a pulsar, it can be theoretically shown that B ∝ PṖ .
This relation gives typical field-strengths of order 107 − 1012 G, which implies certain difficulties for the
above mentioned neutrino-driven kick mechanism.
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5 Some useful definitions and some pre- and post-SN relations

This section contains derivations of some mathematical formulas that will be used later in the simula-
tions. We have as input a two-body system with given masses and separation which upon SN will have
one star lose mass and receive an additional velocity, and we wish to express the change in quantities
mathematically. This will be done for various quantities such as energy and angular momentum. The
calculations will be based on the formalism used by Brandt & Podsiadlowski (1995).

5.1 Defining the coordinate system

As argued in above sections, the system prior to the SN event is circularized. The coordinate frame will
be chosen so as to have the center of mass (CM) at the origin. The NSs will be placed on the y-axis with
velocity vectors parallel and anti-parallel to the x-axis. The older pulsars is denoted m2, the He-core
m1 and the newly formed NS m1′. They have distances from the origin a1 and a2, respectively. This is
depicted below.

CM
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Figure 8: A geometrical picture of the framework

5.2 Definitions and some derivations of useful relations

First, for further calculation, the following definition will be useful:

vorb = v1 − v2

and

ṽ =
|vkick|
|vorb|

The use for the definitions become apparent after the following calculations:

v2orb = |v1 − v2|2 = |v1|2 − 2v1 · v2 + |v2|2
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Considering the geometry of the system, the scalar product becomes the absolute values times a minus
sign. Furthermore, the definition of the origin O at the CM gives the following result:

v2orb = |v1 − v2|2 = |v1|2 + |v2|2 + 2|v1||v2| = |v1|2(1 +
a2
a1

)2 = |v1|2(1 +
m1

m2
)2

But there is also from the force equation Fcentrifugal = Fgravity the relation

Fcentrifugal =
m1

a1
v21 = G

m1m2

(a1 + a2)2
= Fgravity ⇔ v21 = a1G

m2

(a1 + a2)2
, v1 m1 a1 ↔ v2 m2 a2

This combined gives

v2orb = v21(1 +
a2
a1

)2 = G
m2

(a1 + a2)2
a1(1 +

a1
a2

)2 = G
m2

(a1 + a2)
(1 +

m1

m2
) =

=
G

(a1 + a2)
(m1 +m2) = G

m1 +m2

a

where the relation (1 + m1/m2) = (1 + a2/a1) has been used. Consider now the well-known Kepler’s
third law for circular orbits:

P 2

a3
=

4π2

G(m1 +m2)

with P being the binary period, and a the semi-major axis. Inserting the above result for vorb gives

4π2

P 2
= G

m1 +m2

a3
=
v2orb
a2
⇒ v2orb =

4π2

P 2
a2 →

→ v3orb =
8π3

P 3
a3 =

8π3

P
G
m1 +m2

a34π2
a3 =

2πG(m1 +m2)

P

5.3 Derivation of post-supernova center of mass velocity

The first star m1 undergoes explosion and as a result loses mass and gets a kick vkick. The mass loss will
be denoted

m1 → m1′ = m1 −∆m, ∆m > 0

The kick vector vkick will be parametrized in polar coordinates, projected along v1, with the polar coor-
dinate system having φ = 0 along the x-axis, and θ ∈ (−π/2, π/2) with θ = 0 in the x-y plane, just as
shown in Figure 8.

As the binary undergoes the SN, the CM will get a non-trivial velocity in the labframe S. To eval-
uate the energy in the in the new CM-frame S′, the CM-velocity must first be calculated. The generic
definition of center of mass velocity is

vCM =

∑
imivi∑
imi

As the coordinate system were defined such that the velocities were parallel (or anti-parallel) with the
x-axis, the y- and z-axes of vCM will follow directly from the kick-velocity projection:

vCM, y =
m1′

m1′+m2
vkick, y =

m1′
m1′+m2

ṽvorb sinφ cos θ

as vkick = ṽvorb. The z-axis has only contributions from vkick and is thus given by

vCM, z =
m1′

m1′+m2
vkick, z =

m1′
m1′+m2

ṽvorb sin θ

The x-components are somewhat more complicated, as the second star also gives a contribution.

vCM, x =
m1′(v1 + vkick, x)−m2v2

m1′+m2
=
m1′(v1 + ṽvorb cosφ cos θ)−m2v2

m1′+m2
=

= vorb
m1′( m2

m1+m2
+ ṽ cosφ cos θ)−m2

m1

m1+m2

m1′+m2
=
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=
vorb

m1′+m2

[
m2

m1 +m2
(m1′ −m1) +m1′ṽ cosφ cos θ

]
The absolute value of vCM can be also be calculated:

|vCM |2 = v2CM, x + v2CM, y + v2CM, z =

= (
vorb

m1′+m2
)2
[

m2

m1 +m2
(m1′ −m1) +m1′ṽ cosφ cos θ

]2
+

+

[
m1′

m1′+m2
ṽvorb sinφ cos θ

]2
+

[
m1′

m1′+m2
ṽvorb sin θ

]2
=

= (
vorb

m1′+m2
)2
[
(

m2

m1 +m2
)2(m1′ −m1)2 + 2

m2

m1 +m2
m1′ṽ cosφ cos θ +

+ (m1′ṽ cosφ cos θ)2 + (m1′ṽ sinφ cos θ)2 + (m1′ṽ sin θ)2
]

=

= (
vorb

m1′+m2
)2
[
(ṽm1′)2 − 2

∆mµm1′
m1

ṽ cosφ cos θ + (
µ∆m

m1
)2
]

with the usual definitions
µ ≡ m1m2

m1 +m2
, ∆m ≡ (m1 −m1′)

5.4 An expression of the post-SN CM-frame energy

The new energy can in the be split up into terms of kinetic energy and a term for the potential energy.
The potential energy Epot is trivially given by

Epot = −Gm1′m2

a

The kinetic terms will be given after a Galilean transformation to the CM system. The general transfor-
mation is

vi → vi′ = vi − vCM
The first star velocity in the new frame will be calculated below. The y- and z-components of v1 are all
zero. Thus,

|v1′|2 = |v1 + vkick − vCM |2 =

=

[
v1, x + vorbṽ cosφ cos θ − vorb

m1′+m2
(

m2

m1 +m2
(m1′ −m1) +m1′ṽ cosφ cos θ)

]2
+

+

[
ṽvorb sinφ cos θ − m1′

m1′+m2
ṽvorb sinφ cos θ

]2
+

[
ṽvorb sin θ − m1′

m1′+m2
ṽvorb sin θ

]2
=

=

[
v1, x + ṽvorb cosφ cos θ(1− m1′

m1′+m2
) +

m2

m1 +m2
(
m1 −m1′
m1′+m2

)

]2
+

+

[
ṽvorb sinφ cos θ(1− m1′

m1′+m2
)

]2
+

[
ṽvorb sin θ(1− m1′

m1′+m2
)

]2
Now break out the vorb term and use the relation vorb = v1(1 +m1/m2).

|v1′|
v2orb

=

[
m2

m1 +m2

]2
+ 2

m2

m1 +m2
ṽ cosφ cos θ(1− m1′

m1′+m2
) +

[
ṽ cosφ cos θ(1− m1′

m1′+m2
)

]2
+

+2

[
(

m2

m1 +m2
) + ṽ cosφ cos θ(1− m1′

m1′+m2
)

]
m2

m1 +m2
(
m1 −m1′
m1′+m2

)+

[
m2

m1 +m2
(
m1 −m1′
m1′+m2

)

]2
+

[
ṽ sinφ cos θ(1− m1′

m1′+m2
)

]2
+

[
ṽ sin θ(1− m1′

m1′+m2
)

]2
=
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=

[
ṽ(

m2

m1′+m2
)

]2
+ 2ṽ cosφ cos θ(

m2

m1′+m2
)

m2

m1 +m2
(
m1 +m2

m1′+m2
)+

+(
m2

m1 +m2
)2
[
1 + 2

m1 −m1′
m1′+m2

+ (
m1 −m1′
m1′+m2

)

]2
=

=

[
ṽ(

m2

m1′+m2
)

]2
+ 2ṽ cosφ cos θ(

m2

m1′+m2
)2 +

[
(

m2

m1 +m2
)(1 +

m1 −m1′
m1′+m2

)

]2
The last factor in the last term will simplify according to

(
m2

m1 +m2
)2(1 +

m1 −m1′
m1′+m2

)2 = (
m2

m1 +m2
)2(

m1 +m2

m1′+m2
)2 = (

m2

m1′+m2
)2

The same calculation as above will be done for v2′. Here it is simpler as the second star doesn’t receive
a kick. Thus, with v2 having negative sign as above,

|v2′|2
v2orb

=
[
(−v2 − vCM, x)2 + (−vCM, y)2 + (−vCM, z)

2
]

=

=

[
m1

m1 +m2
+

1

m1′+m2
(

m2

m1 +m2
(m1′ −m1) +m1′ṽ cosφ cos θ)

]2
+

+

[
m1′

m1′+m2
ṽ sinφ cos θ

]2
+

[
m1′

m1′+m2
ṽ sin θ

]2
=

= (
m1

m1 +m2
)2 + 2

m1

m1 +m2

1

m1′+m2

[
m2

m1 +m2
(m1′ −m1) +m1′ṽ cosφ cos θ

]
+

+(
1

m1′+m2
)2
[
(

m2

m1 +m2
(m1′ −m1))2 + 2

m1′m2

m1 +m2
(m1′ −m1)ṽ cosφ cos θ+

+(m1′)2ṽ2 cos2 φ cos2 θ
]

+ (
m1′

m1′+m2
)2(sin2 φ cos2 θ + sin2 θ) =

= (
m1′

m1′+m2
)2ṽ2(cos2 φ cos2 θ + sin2 θ + sin2 φ cos2 θ)+

+2ṽ cosφ cos θ

[
(

m1′
m1′+m2

)(
m1

m1 +m2
) + (

m2

m1 +m2
)(

m1′
m1′+m2

)(
m1′ −m1

m1′+m2
)

]
+

+(
m1

m1 +m2
)2 + 2(

m1

m1′+m2
)(

m2

m1′+m2
)(
m1′ −m1

m1′+m2
) +

[
(

m2

m1′+m2
)(
m1′ −m1

m1′+m2
)

]2
After this algebra and further simplifications, the expression becomes

|v2′|2
v2orb

=

[
(

m1′
m1′+m2

)ṽ

]2
+ (

m1

m1 +m2
)2
[
1 + 2

m2

m1

m1′ −m2

m1′+m2
+ (

m2

m1

m1′ −m2

m1′+m2
)2
]

+

+2ṽ2 cosφ cos θ(
m1′

m1′+m2
)2 =

=

[
(

m1′
m1′+m2

)ṽ

]2
+ 2ṽ2 cosφ cos θ(

m1′
m1′+m2

)2 + (
m1

m1 +m2
)2
[
1 +

m2

m1
(
m1′ −m2

m1′+m2
)

]2
Analogously as for the first velocity, the last term simplifies as

(
m1

m1 +m2
)2
[
1 +

m2

m1

m1′ −m2

m1′+m2

]2
= (

m1

m1 +m2
)2
[
m1(m1′+m2) +m2(m1′ −m1)

m1(m1′+m2)

]2
=

= (
m1

m1 +m2
)2
[
m1′(m1 +m2)

m1(m1′+m2)

]2
= (

m1′
m1′+m2

)2

Now from section 2 there is the expression for v2orb. The total kinetic energy becomes

Ekin′ =
m1′
2
|v1′|2 +

m2

2
|v2′|2 =
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=
v2orb

2
m1′

[
ṽ2(

m2

m1′+m2
)2 + (

m2

m1′+m2
)2 + 2ṽ cosφ cos θ(

m2

m1′+m2
)2
]

+

+
v2orb

2
m2

[
(

m1′
m1′+m2

)2ṽ2 + 2ṽ2 cosφ cos θ(
m1′

m1′+m2
)2 + (

m1′
m1′+m2

)2
]

=

=
v2orb

2
(1 + 2ṽ cosφ cos θ + ṽ2)

[
m2(

m1′
m1′+m2

)2 +m1′(
m2

m1′+m2
)2
]

=

=
vorb

2
(1 + 2ṽ cosφ cos θ + ṽ2)

[
m1′m2

(m1′+m2)2
(m1′+m2)

]
=

=
vorb

2
(1 + 2ṽ cosφ cos θ + ṽ2)

m1′m2

(m1′+m2)

In earlier sections, it was shown that

v2orb = G
m1 +m2

a

and that the potential component Epot′ was the same except for the change in m1. The total energy
Etot′ can be thus written in neat form:

Etot′ = −G
m1′m2

a
+
vorb

2
(1 + 2ṽ cosφ cos θ + ṽ2)

m1′m2

(m1′+m2)
=

−Gm1′m2

a
+G

m1 +m2

2a
(1 + 2ṽ cosφ cos θ + ṽ2)

m1′m2

(m1′+m2)
=

= −Gm1′m2

2a

[
2− m̃(1 + 2ṽ cosφ cos θ + ṽ2)

]
, m̃ =

m1 +m2

m1′+m2

5.5 The relation between pre- and post-SN orbit angular momentum

L is defined as usual by L ≡ r × p. In the pre-SN system, as the orbits were assumed to be circular, the
vectors r and p are orthogonal giving straight-forward calculations. With the system as in the previous
sections, L is trivially given by

L = L1 + L2 = r1 × p1 + r2 × p2 = (a1m1v1 + a2m2v2)ez

with absolute value squared given by

|L|2
v2orb

= (a1m1v1 + a2m2v2)2 = (a1 + a2)2(
m1m2

m1 +m2
)2

As the system undergoes supernova the momenta will change as in previous sections. The second star
does not undergo a SN and its angular momentum is thus unchanged, up to Galilean transformation.
Define L′ to be the post supernova angular momentum in the new frame of rest, that is the angular
momentum evaluated after having done a Galilean transformation with the vCM calculated in previous
sections. The following calculations yield L′.

L→ L′ = L1′+ L̂2′ = r1 ×m1′(v1 + vkick − vCM ) + r2 ×m2(v2 − vCM )

As vkick,y||r1 the y-component of vkick does not contribute to L′. Also, for the second star, vCM has
negative sign because of the definition of angular momentum. Thus,

L′ = r1 ×m1′(v1 + vkick,x) + r2 ×m2(v2 + vCM ) =

=

[
m1′a1(vorbṽ sin θ − vorbṽ

m1′
m1′+m2

sin θ) +m2a2vorbṽ sin θ

]
ex+

+a1m1′
[
v1 + vkick cosφ cos θ − vorb

m1 +m2
(

m2

m1 +m2
(m1′ −m1) +m1′ṽ cosφ cos θ)

]
ez+

a2m2

[
v2 +

vorb
m1 +m2

(
m2

m1 +m2
(m1′ −m1) +m1′ṽ cosφ cos θ)

]
ez =
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= ṽvorb sin θ(
m1′

m1′+m2
) [(m2a2 −m1′a1) +m1′a1] ex+

+

[
m1′a1vorb

m1

m1 +m2
+m1′a1vorbṽ cosφ cos θ +m2a2vorb

m1

m1 +m2

]
ez+

+(m1′a1 +m2a2)
vorb

m1 +m2

[
m2

m1 +m2
(m1′ −m1) +m1′ṽ cosφ cos θ

]
ez

This can be simplified accordingly:

L′ = ṽvorb sin θ(
m1′

m1′+m2
) [(m2a2 −m1′a1) +m1′a1(m1′+m2)] ex+

[
a1

m1′m2

m1 +m2
− (

m1′
m1′+m2

)a1(
m2

m1 +m2
)(m1′ −m1) +m2a2(

m1

m1 +m2
)+

+m2a2(
m1′ −m1

m1′+m2
)(

m2

m1 +m2
)

]
ez+

+ṽ cosφ cos θ

[
m1′a1 − (

m1′
m1′+m2

)m1′a1 +m2a2(
m1′

m1′+m2
)

]
ez =

= ṽvorb sin θ(
m1′m2

m1′+m2
)(a1 + a2)ex+

+

[
a1

m1′m2

m1 +m2
− a1(

m1′
m1′+m2

)(
m2

m1 +m2
)(m1′ −m1)+

+a2m2(
m1

m1 +m2
) + a2m2(

m1′ −m1

m1′+m2
)(

m2

m1 +m2
)

]
ez+

+ṽ cosφ cos θ(
m1′

m1′+m2
)[a1m1′+ a1m2 −m1′a1 +m2a2]ez+

Now simplify the factors individually. The factor of the term with ṽ cosφ cos θ becomes

ṽ cosφ cos θ(
m1′

m1′+m2
)(a1m2 +m2a2) = ṽ cosφ cos θ(

m1′m2

m1′+m2
)(a1 + a2)

The second term requires a bit more work;

a1

[
m1′m2

m1 +m2
− (

m1′
m1′+m2

)(
m2

m1 +m2
)(m1′ −m1)

]
+

+a2

[
(
m1m2

m1 +m2
) +m2(

m1′ −m1

m1′+m2
)(

m2

m1 +m2
)

]
=

= a1(
m1′

m1′+m2
)(

m2

m1 +m2
) [(m1′+m2)− (m1′ −m1)] +

+a2(
1

m1′+m2
)(

m2

m1 +m2
) [m1(m1′+m2) +m2(m1′ −m1)] =

=
m1′m2

m1′+m2
(a1 + a2)

Now there is a common term which can be taken out, and the resulting expression for the L′ becomes

L′ = m1′m2

m1′+m2
(a1 + a2)vorb[(ṽ sin θ)ex + (1 + ṽ cosφ cos θ)ez]

The angle ν between the initial and final angular momentum vectors can now be calculated using the
ordinary Euclidian scalar product. Observe that as the initial angular momentum vector L is parallel to
the z-axis, the final angular momentum L′ can be split up in x- and a z-components, where the former is
orthogonal to the L and thus does not contribute to the scalar product. The angle is thus given by

cos ν =
L · Lz′
|L||L′|
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Thus, calculate first the above scalar product:

L · Lz′ = (a1m1v1 + a2m2v2)ez ·
m1′m2

m1′+m2
(a1 + a2)vorb(1 + ṽ cosφ cos θ)ez =

v2orb
m1m2

m1 +m2
(a1 + a2)

m1′m2

m1′+m2
(a1 + a2)(1 + ṽ cosφ cos θ)

From the above calculated absolute value of L and taking the absolute value of L′, the angle ν is now
given by

cos ν =
L · Lz′
|L||L′| =

1 + ṽ cosφ cos θ√
(ṽ sin θ)2 + (1 + ṽ cosφ cos θ)2

5.6 Post-supernova eccentricity

It can be shown from Classical Mechanics that the eccentricity e of a Newtonian potential orbit follows

e2 = 1 +
2EL2(m1 +m2)

G2m3
1m

3
2

where L being |L|. For the post-supernova case and with the above expressions for energy E′ and angular
momentum L′, the eccentricity becomes

e2 = 1 +
2E′L′2(m1′+m2)

G2m1′3m3
2

=

= 1−
2Gm1′m2

2a (2− m̃(1 + 2ṽ cosφ cos θ + ṽ2))( m1′m2

m1′+m2
(a1 + a2)vorb)

2

G2m1′3m3
2

×

× [(ṽ sin θ)2 + (1 + ṽ cosφ cos θ)2](m1′+m2)

G2m1′3m3
2

=

= 1− aGm1+m2

a

G(m1′+m2)
(2− m̃(1 + 2ṽ cosφ cos θ + ṽ2))[(ṽ sin θ)2 + (1 + ṽ cosφ cos θ)2] =

= 1− m̃(2− m̃(1 + 2ṽ cosφ cos θ + ṽ2))[(ṽ sin θ)2 + (1 + ṽ cosφ cos θ)2]

where the relation v2orb = Gm1+m2

a was used.

5.7 Some equations for the bound post-supernova system

Generally if a classical system is to be bound, it has to have Etot < 0. This condition can easily extract
bounds from the total energy in the CM-system, calculated in previous sections

Etot′ = −G
m1′m2

2a
(2− m̃(1 + 2ṽ cosφ cos θ + ṽ2))

Putting this negative, or said differently, putting the right product positive, gives

0 < (2− m̃(1 + 2ṽ cosφ cos θ + ṽ2))⇔ 1 + 2ṽ cosφ cos θ + ṽ2 <
2

m̃
⇔

⇔ cosφ cos θ <
1

2ṽ
(

2

m̃
− 1− ṽ2)

Furthermore, assuming spherical symmetry in randomizing φ and θ, the following probability can easily
be shown:

P (cosφ cos θ < A) =
1

2
(1 +A), −1 < A < 1

Combining this and the inequality requirement above for a bound post SN system gives

Pbound =
1

2
(1 +

1

2ṽ
(

2

m̃
− 1− ṽ2))

Furthermore, there can be put constraints on ṽ if the post-SN system is to be bound. Denote the
upper bound ṽmax. This ṽmax is, of course, when the kick-direction is anti-parallel from v1. This gives
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cosφ cos θ = −1. The maximum ṽmax occurs precisely when E′ = 0. Thus it follows, from the energy
formula derived above, that

0 = E′ = −Gm1′m2

2a
[2− m̃(1− 2ṽmax + ṽ2max)]⇔ 2 = m̃[1− ṽ]2

→ ṽmax = 1±
√

2

m̃

with the plus sign corresponding to the maximum.

Another constraint can be found in the special case of m̃ > 2. In this case a very low vkick would
perhaps not result in a bound system, and thus there must be a minimum vkick,min for which the system
remains bound. It is geometrically clear that this minimum would have to occur when the kick velocity
vkick is anti-parallel to the initial v1. Imitating the previous calculation it follows that this minimum is
attained with the corresponding minus sign (as 1 −

√
2/m̃ is now positive, and thus an allowed root),

accordingly:

vkick,min = 1−
√

2

m̃
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6 Constraining kicks from known DNS binaries

This section presents some of the first results. The results are some constraints on the kicks given by
examining the existing DNS binary population.

The section begins with giving the “pre-requisite” values needed to simulate, that is the constraints
on the progenitors. Later an example binary is studied, namely the well-known binary J0737. The
results are discussed and some plots are presented.

After this is presented similar results for other DNS systems, gained through analogous analysis.

6.1 Constraining the progenitors of existing DNS binaries

From Table 1 in the introductory section, one can take values of existing DNS binaries and use these
to put constraints on the progenitor systems. There are many degrees of freedom determining the final
state, and of course, different combinations of these might give the same post-SN parameters. To get a
good idea of the kick a very natural idea is thus to simulate all over the allowed progenitor phase space.
This is in fact easier than it would appear as many of the pre- vs. post-SN relations are monotonic.
That is, having the “corners” of the allowed phase space, it suffices to simulate these, as any post-SN
parameter value would lie between the resulting “corner”-values.

So, to study the allowed kicks, one must thus first understand what possible progenitors phase space
there is. As mentioned in previous sections, there is a fixed He-core mass range of 2.1 − 8 M� that
give rise to NSs with the lower-mass progenitors yielding a white dwarf, and the higher-mass progenitors
yielding a black hole. Furthermore, it is believed that the systems with He-core masses above 6.5 M�
will undergo unstable Roche-lobe overflow and merge. One can also constrain the separation; consider a
circularized binary progenitor with semi-major axis a and the massive companion going SN. At the time
of SN, the then separation has to correspond to a point on the post-SN trajectory. That is, a can be at
most the apastron of the post-SN system, and at least the periastron. Thus, the post-SN system has to
obey the following constraint:

a′(1− e′) ≤ a ≤ a′(1 + e′)
where a denotes the pre-SN system semi-major axis and a′ that of the post-SN system.1 With this
constraint on the progenitor semi-major axis, one can obtain an upper bound on the allowed mass by
demanding that the He-core does not fill its Roche-lobe. To follow this argument, one of course needs to
know the radius of the He-core as a function of mass, which is rather a non-trivial matter.

Finally, by considering the age of the system, one must take into account the inspiral due to gravitational
wave emission and that the currently observed values of a′ and e′ have been reduced by this.

6.2 Description of simulation methodology for the kick-constraints

Having understood the above problematics, we can now now consider simulation methodology. This is
done by assuming the above mass range for the progenitors, combined with them not filling their Roche-
lobe. To investigate whether the He-cores fill their Roche-lobes we use a radial formula given by Tauris
& van den Heuvel (2003), which is

RHe = 0.212(
MHe

M�
)0.654R�

. Initially however, another formula was used, given in Fryer & Kalogera (1997):

log(RHe) =

{
3.0965− 2.013 log(MHe), MHe < 2.5M�

0.0557(log(MHe)− 0.172)−2.5 MHe > 2.5M�

1For a more “mathematical” derivation than the above intuitive one, see e.g. Flannery & van den Heuvel (1975)
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Figure 9: Plotted radial functions of the He-core. The red function is the formula given in Fryer &
Kalogera (1997) whereas the green one is that of Tauris & van den Heuvel (2003).

When using the Roche-lobe formalism in Eggleton (1983), it follows from Figure 9 that the minimum
separations correspond to twice that of the widest J0737 bound if the latter radial function is used and
thus this formula was discarded.

As mentioned above, the functions relating the pre- and post-SN event are continuous and monotonic
and this means that taking the “extrema” is sufficient to constrain the kicks. For each of these extrema
we model some number of SNs with randomized values of θ, φ and vkick. Following the pre- and post-
SN relations derived in Section 5, the program StarSim.java decides whether it is bound or not and in
the case of it being bound, whether it is “close” to the desired system or not. This latter condition is
determined only by the post-SN eccentricity and separation in terms of |a′−asys| < εa and |e′−esys| < εe.

As many systems exhibit similar properties, the above procedure is applied to some systems with varied
observed properties (e.g. similar separation but varying eccentricity and vice versa).

6.3 Inspiral integration

Using a simple solver program the current system parameters can be integrated backwards in time over
their characteristic age. Note that in the case of the very eccentric system J1811 − 1736 the initial
separation and eccentricity corresponds in practice to an unbound system and this result is thus not
possible to use. It is important to stress here the approximative nature of likening τc to the true age of
the system, as it is in the above case much younger. We recall that the characteristic age is merely a
probable true age of the system.

Table 2: Table values of current DNS binaries after integrating the GW emission.

Designation a [R�] e

J0737-3039 1.438 0.104
B1534+12 3.410 0.288
B1913+16 3.288 0.666
J1811-1736 21877 0.999
J1756-2251 2.86 0.197
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6.4 The Roche-lobe constraint

From the Table 1, J0737 has a′ ≈ 1.290R� and e = 0.088, which, not taking inspiral into account, gives
the bound

1.177R� ≤ a ≤ 1.403R�

for the progenitor system.

Figure 10: Plotted radial functions RHe(MHe)/f(q) with f(q) being the usual Eggleton quote and the
radial function taken to be that of Tauris & van den Heuvel (2003). The red line corresponds to the
minimum separation for the system not to fill its Roche-lobe. The two straight lines are those of a′(1−e′) =
1.177R� and a′(1 + e′) = 1.404R�. Intersections correspond to 4.5M� and 6.5M�

In Figure 10 we see the intersections corresponding to m1 = 4.5 M� and m1 = 6.5 M�. Thus, the
above constraints give rise to a bounded allowed subset of the phase space consisting of the pairs (m1, a),
with “corners” in (2.1 M�, 1.177 R�), (2.1 M�, 1.404 R�), (4.5 M�, 1.177 R�) and (6.5 M�, 1.404 R�)
where we recall that 2.1M� is the lowest He-core mass which is believed to yield a NS remnant.

6.5 Simulating the J0737 phase space

For J0737 the system is very special. It is the tightest of the binaries and it has a very low eccentricity,
which has yielded very useful constraints. With the above constraints on phase-space we conducted the
below plots. The remnant masses were taken from Table 1, with m1 = 1.25M� and m2 = 1.34M�.
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Figure 11: Plot of the progenitor system of J0737 with a = 1.18 R� and m1 = 2.1 M�. Green plots are the unbound systems, the red plots are the bound
ones and the blue plots are close to J0737 with |e′ − eJ0737| < 0.05 and |a′ − aJ0737| < 0.1.
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Figure 12: Plot of the progenitor system of J0737 with a = 1.40 R� and m1 = 2.1 M�. Green plots are the unbound systems, the red plots are the bound
ones and the blue plots are close to J0737 with |e′ − eJ0737| < 0.05 and |a′ − aJ0737| < 0.1.
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Figure 13: Plot of the progenitor system of J0737 with a = 1.18 R� and m1 = 4.5 M�. Green plots are the unbound systems, the red plots are the bound
ones and the blue plots are close to J0737 with |e′ − eJ0737| < 0.05 and |a′ − aJ0737| < 0.1.
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Figure 14: Plot of the progenitor system of J0737 with a = 1.40 R� and m1 = 6.5 M�. Green plots are the unbound systems, the red plots are the bound
ones and the blue plots are close to J0737 with |e′ − eJ0737| < 0.05 and |a′ − aJ0737| < 0.1.
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6.5.1 The plots and their implications

As can be seen, the constraints on φ and θ are rather strong, in particular for φ which has to be directed
so as to be very anti-parallel. Furthermore the plots are clear concerning θ; there cannot have been a
polar kick, as speculated by Willems et al. (2008). In the two first cases, that is with m1 = 2.1M�, low
kicked stars remain bound. This is of course consistent with the mathematics, which states that vkick,min
only exists when m̃ > 2, as is not the case with this mass. For the latter two plots this is the case and
consequently they can not have had lower velocity kicks. These examples are very interesting taking
into account the spin-period eccentricity relation described in above sections, stating a PDF with with
low dispersion. Such a kick magnitude would not have resulted in a bound system, implying that either
the upper masses is not a possible progenitor or that the system did not follow the low kick magnitude
distribution. The main observation is hence that the SN must have been asymmetric.

The “bifurcation” that is visible in the vkick-φ diagram can at first sight appear surprising. The simu-
lations where redone with loosened constraints and as a result the ”bifurcations” disappeared, whereas
for strong enough constraints there could be no “close” systems with φ = π. The phenomenon might
not be too surprising; one could argue that given a fixed kick angle (that is fixed θ and φ), there are two
parameters to fix “close” to the sought for post-SN parameters (a′ and e′), but only one degree of freedom
with ṽ. Thus, to fix a′ within the ”close” range, there is by continuity of the eccentricity equation only
a limited allowed range of ṽ and this range does not necessarily correspond to the corresponding range
of “close” e′. This can be seen mathematically; Taking the equations from Section 5 for eccentricity and
energy and fixing φ = π as in a anti-parallel kick one gets

a

a′ = 2− m̃(1− 2ṽ cos(θ) + ṽ2)

and
e2 = 1− m̃(2− m̃(1− 2ṽ cos(θ) + ṽ2))(ṽ2 sin2(θ) + (1− ṽ cos(θ))2)

with parameters from e.g. case one in the J0737 situation the values are a/a′ ≈ 1.088 and e2 = 0.007744.
These equations can now be equated to form a new function F of the two variables ṽ and θ, with the
corresponding post-SN parameters corresponding to F = 0.

F = − a
a′ + 2− m̃(1− 2ṽ cos(θ) + ṽ2)−

−e2 + 1− m̃(2− m̃(1− 2ṽ cos(θ) + ṽ2))(ṽ2 sin2(θ) + (1− ṽ cos(θ))2)

This function is graphed in Figure 15.

Figure 15: Plotting the above defined function F (ṽ, θ) and a constant plane at z = 0. The intersection
corresponds to allowed solutions for the kick to be considered ”close”.
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As can be seen, F = 0 corresponds to a rather polarly inclined kick. In the above plots, the high
velocity kicks are the ones corresponding to the wider θ, which is precisely what this plot says; a planar
(θ = 0) kick would correspond to low kick velocities, and there there can be no solution.

The vkick-θ have its bound systems forming a “ring” in the plot. The same explanation as above holds
also here. The limited degrees of freedom only allow for certain solutions for a sufficient constraint on
the post-SN parameters.

We also comment on the fact that in certain systems the plots show a “false” vkick,max, meaning that
the true maximum kick velocity in fact supercedes that of the highest plotted bound kicked system. The
reason is merely due to probability; a high-kick bound system is much more unlikely.

6.5.2 The role of the system age

One must know the difference between the current data and the implications of the data integrated back-
wards in time. Using the same methods by Roche-lobe constraints we found, after integrating J0737
back in time over its characteristic age τc, the separation and eccentricity. These are stated in Table 2.
The progenitor separation range in this case is 1.29 ≤ a ≤ 1.59. This yields for the above mass in the
case of a = 1.29R� a maximum of 5.5M� from the Roche-lobe contraint.

Comparing the phase space point of (1.18 R�, 2.1 R�) to the same corresponding point one finds the
result in the below plot:

Figure 16: Comparison of the plots with the lowest allowed mass and lowest allowed separation for the
available data of J0737 with and without having integrated back along the systems characteristic age τc.
The right plot has values after backwards integration.

As can be seen in Figure 16, the difference is negligible. The same result is, of course, obtained when
investigating the other extrema, with maximum separation and masses, as depicted below. The result
is hardly surprising as one could already have seen in the previous plots, where the difference between
maximum and minimum separation was very small.

The one noticeable difference is the slightly lowered allowed range for the systems to remain “close”.
It can be explained by considering the difference generically; as the system is integrated backwards it has
a wider orbit. This in turn, leads to vorb getting lower. If the system is to retain its separation there is
in the wider orbit now a lower requirement of vkick so as to compensate for the mass loss. Conversely
the same argument holds when considering the maximum for the system to be “close”.
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Figure 17: Comparison of the plots with the maximum allowed mass and maximum allowed separation
for the available data of J0737 with and without having integrated back along the systems characteristic
age τc. The right plot has values after backwards integration.

6.6 Simulating other sample progenitors

Having described the procedure for an example binary, we now proceed by merely stating the results
of the entire binary run. Similar analysis was done for other systems, in particular the mentioned ones
J1811, J1756, B1534 and the “Hulse-Taylor”-pulsar (it would not add much to the understanding by e.g.
simulating both B1913 and B2127 as these have very similar eccentricity, orbital period and characteristic
age). The results are stated below in terms of statistics.
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Table 3: Statistics for the data obtained by simulating the progenitors. Note that the values for φ̄ = π
and θ̄ = 0 are just as would be expected, (that is antiparallel to v1). The systems have not been integrated
back in time. Close denotes as usual a limited deviation from the observed corresponding binary.

Designation v̄kick [km/s] σvkick
[km/s] φ̄ [rad] σφ [rad] θ̄ [rad] σθ [rad]

J0737 m1 = 2.1M�, a = 1.18R� 276.26 252.16 3.14 1.48 0.00 0.67
J0737close m1 = 2.1M�, a = 1.18R� 221.81 171.54 3.12 0.97 0.00 0.53
J0737 m1 = 2.1M�, a = 1.40R� 257.04 232.39 3.13 1.47 0.00 0.67

J0737close m1 = 2.1M�, a = 1.40R� 223.94 160.17 3.13 0.70 0.01 0.48
J0737 m1 = 6.5M�, a = 1.40R� 702.24 283.31 3.14 0.45 0.00 0.42

J0737close m1 = 6.5M�, a = 1.40R� 696.66 220.14 3.14 0.24 -0.02 0.42
J0737 m1 = 4.5M�, a = 1.18R� 462.05 333.10 3.14 0.57 0.00 0.51

J0737close m1 = 4.5M�, a = 1.18R� 577.81 275.67 3.17 0.39 -0.02 0.53

B1913 m1 = 2.1M�, a = 1.07R� 293.60 266.67 3.14 1.54 0.00 0.67
B1913close m1 = 2.1M�, a = 1.07R� 639.11 219.78 3.18 1.15 0.09 0.52
B1913 m1 = 2.1M�, a = 4.66R� 164.76 112.82 3.14 1.40 0.00 0.69

B1913close m1 = 2.1M�, a = 4.66R� 242.07 68.47 3.16 0.46 -0.04 0.26
B1913 m1 = 3.7M�, a = 1.07R� 340.53 313.34 3.14 1.10 0.00 0.66

B1913close m1 = 3.7M�, a = 1.07R� 710.90 214.43 3.34 0.96 0.14 0.42
B1913 m1 = 6.5M�, a = 4.66R� 348.18 218.23 3.14 0.45 0.00 0.42

B1913close m1 = 6.5M�, a = 4.66R� 519.67 107.51 3.25 0.23 0.00 0.19

J1811 m1 = 2.1M�, a = 7.0R� 144.50 82.79 3.14 1.29 0.00 0.69
J1811close m1 = 2.1M�, a = 7.0R� 241.07 78.15 3.34 1.29 0.07 0.37
J1811 m1 = 2.1M�, a = 74.2R� 84.36 33.8 3.13 0.81 0.02 0.59

J1811close m1 = 2.1M�, a = 74.2R� 75.01 13.80 3.16 0.23 0.02 0.19
J1811 m1 = 6.5M�, a = 74.2R� 118.20 42.01 3.14 0.44 0.01 0.40

J1811close m1 = 6.5M�, a = 74.2R� 125.72 15.21 3.12 0.15 0.01 0.12
J1811 m1 = 6.5M�, a = 7.0R� 268.51 161.82 3.14 0.44 0.01 0.41

J1811close m1 = 6.5M�, a = 7.0R� 311.66 72.27 3.10 0.83 0.15 0.30

B1534 m1 = 2.1M�, a = 2.37R� 210.46 174.73 3.15 1.45 0.01 0.68
B1534close m1 = 2.1M�, a = 2.37R� 288.8 169.5 3.06 1.17 -0.02 0.45
B1534 m1 = 2.1M�, a = 4.17R� 167.43 117.74 3.15 1.36 -0.01 0.69

B1534close m1 = 2.1M�, a = 4.17R� 197.65 86. 63 3.09 0.69 0.00 0.40
B1534 m1 = 6.5M�, a = 4.17R� 382.03 225.89 3.14 0.42 0.00 0.40

B1534close m1 = 6.5M�, a = 4.17R� 483.60 153.03 3.13 0.29 0.03 0.30
B1534 m1 = 6.5M�, a = 2.37R� 542.31 275.73 3.13 0.43 0.00 0.40

B1534close m1 = 6.5M�, a = 2.37R� 694.78 280.36 3.08 0.46 -0.03 0.40

J1756 m1 = 2.1M�, a = 2.20R� 215.3 181.5 3.13 1.47 0.00 0.68
J1756close m1 = 2.1M�, a = 2.20R� 242.7 154.7 3.20 1.15 0.00 0.49
J1756 m1 = 2.1M�, a = 3.18R� 186.3 142.9 3.13 1.42 0.00 0.69

J1756close m1 = 2.1M�, a = 3.18R� 210.7 122.1 3.11 0.75 0.00 0.45
J1756 m1 = 6.5M�, a = 3.18R� 466.3 251.4 3.14 0.42 0.00 0.39

J1756close m1 = 6.5M�, a = 3.18R� 582.0 188.0 3.14 0.27 0.00 0.38
J1756 m1 = 6.5M�, a = 2.20R� 573.4 279.9 3.14 0.43 0.00 0.40

J1756close m1 = 6.5M�, a = 2.20R� 639.6 236.0 3.12 0.40 0.00 0.45

From Table 3 above we can make a couple of observations. The mean deviations for the three kick
parameters are invariably lower for the close systems. This is intuitively not surprising as the constraints
impose a tighter range for the allowed kicks. We also comment that in all cases the close systems required
an asymmetric (vkick being non-zero) SN and that the angles φ and θ had to be within some range (they
could not have been polar).
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The difference of mean value for vkick for the bound population compared to the close population can
be both negative and positive. It seems that in the eccentric systems, that is B1913 and J1811, that
the mean velocity is somewhat higher for the close systems. Furthermore, tighter systems have a higher
v̄kick. This is of course not too surprising as a tighter binary would have a higher orbital velocity, thus
requiring a higher kick magnitude to remain bound.

6.7 The role of the kick PDF

Having understood the above results with a given kick PDF, the we now vary the assumption of the
kicks being distributed bimodally. Table 4 below gives the fractions of bound systems for the kick PDF
presented by Hansen & Phinney (1997).

Table 4: Comparison of fraction of bound systems between the kick PDFs given by Arzoumanian et al.
(2002) and Hansen & Phinney (1997).

Designation Properties fHansen,Phinneybound fArzoumanianbound

J0737 m1 = 2.1M�, a = 1.17R� 65.2 % 53.1 %
m1 = 2.1M�, a = 1.40R� 61.7 % 50.2 %
m1 = 4.5M�, a = 1.17R� 30.7 % 23.4 %
m1 = 6.5M�, a = 1.40R� 12.2 % 10.4 %

B1534 m1 = 2.1M�, a = 2.37R� 54.7 % 42.%
m1 = 2.1M�, a = 4.17R� 43.6 % 34.2 %
m1 = 6.5M�, a = 2.37R� 17.2 % 11.0 %
m1 = 6.5M�, a = 4.17R� 18.8 % 9.9 %

J1811 m1 = 2.1M�, a = 6.97R� 33.7 % 29.0 %
m1 = 2.1M�, a = 74.0R� 2.7 % 6.8 %
m1 = 6.5M�, a = 6.97R� 21.5 % 14.5 %
m1 = 6.5M�, a = 74.0R� 3.5 % 5.5 %

B1913 m1 = 2.1M�, a = 1.06R� 72.7 % 58.0 %
m1 = 2.1M�, a = 4.48R� 42.5 % 34.5 %
m1 = 3.8M�, a = 1.06R� 48.6 % 42.1 %
m1 = 6.5M�, a = 4.48R� 20.5 % 11.2 %

J1756 m1 = 2.1M�, a = 2.20R� 56.5 % 44.6 %
m1 = 2.1M�, a = 3.17R� 49.4 % 38.3 %
m1 = 6.5M�, a = 2.20R� 15.8 % 10.5 %
m1 = 6.5M�, a = 3.17R� 17.4 % 9.9 %

Also here the result is rather straight forward; in most cases the fraction of bound systems is some-
what higher for the unimodal PDF. This is not too surprising as the main range for the systems to
remain bound are at lower kick velocities, which in the unimodal PDF have a higher probability density.
Conversely, if one inspects the large separation of J1811 the result is the reverse. This is also explicable in
terms of different probability densities, as the bimodal PDF has somewhat a higher density distribution
at very low kicks.

We observe that in general the difference of bound systems are around 10 %, which gives us an esti-
mate of the uncertainties caused by the kick PDFs. Furthermore they give implications for the Short
gamma ray bursts. Depending on the kick PDF one would from population synthesis obtain a difference
in merger rates, although the order of magnitude would probably not change.
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7 Population synthesis

With the results in the above section we understand which progenitors produce the binaries that are
actually observed. In this section we present results trying to compare the above results with some ac-
tual physics. We aim at comparing that which is expected from the known physics to what is actually
observed. Using population synthesis, we derive the statistics of what the known physics imply. With
this we then proceed by comparing this to the observed statistics of the current DNS population.

The first subsections concern discussion and description about the methodology, whereas the following
sections present the results and then compare with above results.

7.1 Population synthesis

In order to do population synthesis, one must obviously start at a certain point in the formation channel.
As the point is to obtain statistics in the post-SN1 variables and the intermediate stage is assumed to cir-
cularize the system, the first SN-event will not play importance. Thus, the population synthesis can start
with having the system consist of an already formed NS and an MS star. This limits to an incomplete
population synthesis, with the main reason being that by starting at this point we have neglected all the
previous interaction, such as the MS-MS interaction through e.g. Roche-lobe overflow. As mentioned we
however are only interested in the statistics for DNS binaries, which is essentially only determined by the
intermediate stage separation and He-core mass.

Assuming this is the starting point, there are a couple of parameters that need to be assigned prob-
ability functions. At first there is the pre-SN separation a, which is a non-trivial matter. Most sources in
the literature use a distribution constant in log(a), (that is P (a) ∝ 1

a ), to simulate the zams separation.
We use separations between (100− 1000)R�, where it is argued that the below the lower limit the stars
will merge during the CE phase, whereas the upper limit ensures interaction between the RG envelope
and the companion star. To coarse approximation, this distribution can be extended to the intermediate
stage separation as well. As the NS mass can well be constantly given its “canonical” value of 1.4 M�,
the MS star is somewhat more non-trivial. One can assume that the MS mass distribution at the pre-SN
event is proportional to the Kroupa (2002) distribution, although this is rather simplistic; as the zams
mass follows this distribution, the amount of mass lost through stellar wind2, which depends on mass
and metallicity among other things, the subsequent mass distribution a somewhat different form. Fur-
thermore there is also the binary interaction before the first supernova, involving Roche-lobe overflow
and Bondi-Hoyle accretion.

Furthermore one must take into account the CE phase. There are mainly two issues here; first the
amount of lost mass due to envelope expulsion, and secondly the inspiral. The second issue can be done
by following the above mentioned Webbink formalism with suitable values for λ and ηeff . The first issue
however, is somewhat less trivial. To understand the He-core mass as a function of zams mass is difficult,
given the binary interaction, stellar wind mass expulsion and later hydrogen fraction.

Finally the kick-distribution can be simulated using either of the above mentioned distributions.

7.2 Description of methodology for population synthesis

The population synthesis simulations are somewhat more straight-forward. Assuming a circularized sys-
tem with an NS of mNS = 1.4 M� and a MS star, the separation is taken from the above mentioned
distribution, the mass is taken from the ordinary IMF-distribution.

The common envelope is simulated using the Webbink formalism following the formulas in Section 2,
with values for λ and ηeff being 0.5 and 1.0 respectively. The He-core mass as function of the zams
mass is crudely taken to be a linear function from the mass range (12− 25)M�, which is the presumed
mass range for binaries to give rise to NS, to the He-core mass range (2.1− 8)M�. The system has must

1In this context, the SN denotes the second supernova event.
2Massive NS progenitors, that is O- and B-type stars, lose mass in the order of Ṁ∗ ∼ 10−5M�/yr, which is considerably

more than e.g. that of the sun, which has a yearly mass loss of Ṁ∗ ∼ 10−14 M�/yr. Thus, when the older companion has
passed through its MS-phase the mass lost through stellar wind will be considerable.
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not suffer inspiral-merging, and thus a system is discarded if it fills its Roche-lobe after inspiral. This
is done by using the He-core radial function of mass given by Tauris & van den Heuvel (2003), which
considering that this formula is a zero age He-core radial formula should be a very good fit. The system
is also discarded if the He-core has a mass superceding 6.5M� as this is thought to lead to unstable mass
transfer and merging in the intermediate stage.

From here the systems are kicked, with the same technique used for the progenitors. The program
PopSynth.java keeps the bound systems and thus produces a population of DNS binaries.

7.3 The obtained statistics

With the above code the below results were obtained. The fraction of systems yielding a DNS binary
were ≈ 28.7 %.

Figure 18: Cumulative plot of post-SN eccentricity.
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Figure 19: Comparisons of cumulative plots for the kick parameters. The vkick PDF is given by Arzoumanian et al. (2002). The red line denotes the cumulative
distribution of the synthesized bound systems. The green line gives the corresponding kick PDF or in the case of the angles, the isotropic distribution.
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Figure 20: Statistical relations between various parameters for the conducted population synthesis. a′ denotes the binary separation after the second SN kick
and a the separation after the common envelope.
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The above results show interesting morphology; in the case of the cumulative plots, presented in
Figure 19 we observe that the difference in vkick is that the population synthesized bound systems show
a preference towards lower kick-velocities. One would not be surprised over such a result; any kick PDF
would be “distorted” in this way since there will always be a preference towards lower kick-velocities due
to the lower kicks having higher probability of not disrupting the system.

Perhaps the nontrivial observation concerns that of the angles. We observe that in φ there is a non-
isotropic preference towards the kicks being anti-parallel. The reason is trivially that for the anti-parallel
case a higher fraction of the systems remain bound. As one would expect, the φ plot shows of a more con-
centrated distribution around φ = π. The θ distribution show effectively no deviation from the isotropy.

The most important observation however, is that the plots show that indeed, although the cumulative
plots show a higher concentration around the backwards direction, there are still systems being bound
with φ = 0 or polarly inclined kicks.

7.3.1 The role of the kick PDF

Having the above results for the Arzoumanian et al. (2002) kick PDF we now investigate whether the
role of the kick PDF is of importance in the population synthesis. Using the same methodology as above,
except with the kick PDF presented by Hansen & Phinney (1997), the results presented in Figure 21
were obtained. The fraction of systems becoming DNS binaries were ≈ 34.2 %.

Figure 21: Population synthesis plot comparing a′, the post-SN separation, to the post-SN eccentricity,
but now with the kick PDF given by Hansen & Phinney (1997).

The difference is perhaps trivial in the a′-vkick diagram; the distribution of vkick resembles the density
profile of the kick PDF by Hansen & Phinney (1997) as one would expect. The second diagram however
yields a slight hint; compared to the same plot, but with the bimodal distribution the case seems to be
that the “underside” of the shape is missing. As the main difference between the unimodal PDF and the
bimodal PDF is the higher probability density for higher kicks in the bimodal one, the difference must
correspond to lack of high velocities. See Figure 22 for a comparison of PDFs.
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Figure 22: Plot of both the PDF given in Arzoumanian et al. (2002) and Hansen & Phinney (1997). Note
the relatively high probability density of the bimodal distribution at high velocities.

7.4 Comparison to observation

We now proceed by comparing the the expected statistics from the population synthesis with the observed
physics. The comparison is made as follows. Consider two systems with merger time ratio of 10. Then
one would expect there to be ten more of the systems with the shorter merger time to have been around.
Thus, to conduct the comparison we take the “close” systems of each progenitor and do weighted plots
with these in cumulative diagrams. The weights are a product of two under-weights. First for each
observed binary we weight with 1/τmerger so as to correspond to the statistics one would expect from
the observed DNS population. Furthermore we weight with 1/Ni where Ni are all the “close” systems
for some observed binary i (needless to say we also normalize the weight). The latter weight makes sure
the statistics are unaffected by the number of “close” systems obtained for one binary. Thus the weight,
given an observed binary, will be

∆P ij =
(1/τmerger)(1/Ni)∑

k(1/τmergerk)

where i is an observed binary, j is a “close” system and k runs over all the observed binaries. Note that
the weight is equal for all “close” systems.

Below are presented the results.
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Figure 23: Comparison of cumulative distributions for the PDF given by Arzoumanian et al. (2002),
the population synthesis conducted and the weighted progenitor systems becoming close to the observed
current DNS systems. The first is depicted in blue, the second in green and the latter in red.

Figure 24: Comparison between the isotropic distribution of φ, the cumulative plots of φ for the synthesis
and that of the close populations. The first is depicted in blue, the second in green and the latter in red.
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Figure 25: Comparison between the isotropic θ distribution, the cumulative plots of θ for the population
synthesis and that of the close populations. The first is depicted in blue, the second in green and the
latter in red.

The plots show interesting deviations from the population synthesis. The angular cumulative plots
show in the case of φ a strong preference towards φ = π, whereas that of θ shows a less strong planar
preference. If one inspects the φ plot, one sees that the back-wards direction φ = π is very unlikely. This
is in agreement with the observed morphology in the φ − vkicks-diagrams showing preference for close
systems to be dense somewhat “outside” of φ = π.

Some of these results are not suprising with the plots presented in previous sections in mind. The
presented plots for J0737 give a clear maximum deviation from φ = π and θ = 0 for the system to remain
close, which explains why there are absolutely no systems outside of a given angular interval.

The vkick cumulative diagram is also interesting. As mentioned, the PDF given by Arzoumanian et al.
(2002), the vkick of the population synthesis as well as the 1/τmerger weighted systems are plotted. The
difference between the population synthesized distribution and that of Arzoumanian et al. (2002) is not
too great; obviously the former shows preference to low kicks, which is not surprising and would have
been the result of any kick PDF. This difference is rather a consequence of the rather obvious bimodal
formation channel for the singleton NS used as sample by Arzoumanian et al. (2002). The difference be-
tween these two and that of the weighted progenitors close to the observed systems are, however, the less
trivial observation. An inspection immediately yields the conclusion that essentially half of the systems
have kicks ranging between (100 − 200) km/s, with the above velocities not diverging too much from
the bimodal PDF. We interpret this as an indication that the currently available PDFs are too biased
towards higher kick velocities.

Although our performed population synthesis gives that we should observe systems with very high polar
kicks and parallel kicks we do not observe these in Nature. The plots hint that the angular PDF may
not be isotropic, at least not from the observed sample. It should be noticed however, that the currently
known DNS binary sample is rather scarce and a better analysis could be obtained if one had better
knowledge of the unusual systems.

Furthermore, the results seem not to comply with the Dewi et al. (2005) spin-period eccentricity re-
lation, as the major contribution of kicks comes from higher kick velocities. Furthermore the currently
observed systems have, besides the three highly eccentric systems J1811, B1913 and B2127 in general a
low eccentricity, which is hinting of a lower kick (< 100 km/s), which also seems not to be in agreement
with the above result. It should me emphasized also here, that this result is likely due to the scarce
nature of the observed DNS binaries.
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8 Summary and Conclusions

With the results in the above two sections we are now ready to draw our conclusions and summarize
what we have done. We begin with the results regarding the progenitor analysis and continue concluding
the population synthesis.

8.1 Kick constraints

We have constrained the kicks by first contraining the allowed progenitor phase space. This was done
by constraining the phase space by mass and separation. We investigated our plotted results and found
that the systems that had post-SN parameters sufficiently close to the corresponding system in all cases
must have had a roughly anti-parallel kick, with the difference being comparatively small.

From here we proceeded by considering various effects by varying our assumptions. We first investi-
gated the role of the systems age; that is to say we integrated the systems backwards in time, following
the Peters (1964) differential equations for loss of separation and eccentricity through emission of GW.
The results showed very little difference. We concluded that our analysis was on the whole affected very
little by correcting for inspiral time.

8.2 Population synthesis

Furthermore, we have conducted population synthesis. Having understood the progenitor phase space
and seen what they imply for the kicks, we proceeded by trying and reproduce certain relations throught
the already known physics. We took as “starting point” in the binary evolution the circularized NS plus
He-core situation were we simulated the separation and MMS by the commonly used PDFs. The CE
phase was simulated following the Webbink formalism, with typical values for λ and ηeff . We coarsely
approximated the mass loss from zams star to He-core by a linear mass loss fit and kicked the systems
using the bimodal PDF given by Arzoumanian et al. (2002). The results showed, when comparing the
cumulative distribution of vkick a preference towards lower kicks. We concluded that this was as would
be expected as the population synthesis would, for any PDF, reduce the probability density of the higher
kicks as these would have a lower probability of being bound. Furthermore there was distortion in the
cumulative frequency of the angles, that is the angular distributions did not remain isotropic through the
population synthesis. We varied the kick PDF and found that there was a little difference in the fraction
of bound systems, agreeing with what we did in section 6.7. We conclude that this does not alter the
results of the population synthesis much.

We compared our population synthesis with weighted simulated systems. This was done by taking
the “close” systems of each simulation and weighting these with 1/τmerger so as to give a more realistic
population. We found a rather interesting distinction between the population synthesis and the weighted
close observed population. The angles showed a preference towards the anti-parallel direction, with no
specimen outside some fixed range around φ = π and θ = 0. We concluded that this was not in dis-
agreement with the expectations, but also argued that since our population synthesis implied that there
should exist binaries with very polarly or parallel kicks, the fact that we have yet to observe this implies
that the current DNS population points towards a non-isotropic distribution.

We argued further that these results have interesting implications for the spin period - eccentricity
relation found by Dewi et al. (2005). We saw that the main population from the weighted observed close
systems are within (100 − 200) km/s, which is in direct disagreement with their initial assumption of
very low magnitude second SN kicks. We mentioned that this may be due to the fact that the observed
DNS population may be completely coincidental, as argued in the mentioned paper. Furthermore we
mentioned that this is probably due to a bias towards high kick velocities in the current kick PDFs.

8.3 On the question set out to be answered

We recall now the question set out to be answered in the introductory section about what we can learn
about the kicks from the observed DNS binary sample and in particular the angular distribution. We
conclude that we have learned a lot, and in particular that the kick-distribution seems not to be isotropic.
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9 Biases in assumptions and possible extensions

Having concluded our work, we now consider the validity of the assumptions used. We discuss certain
simplifications and propose improvements and extensions.

9.1 Errors in data

As stated in Table 1, the various NS data have rather uncomfortably large error margins, in particular
the companion masses of binaries J1811 − 1736 and J1518 − 4904, which are 1.06 M� and 1.05 M�
respectively. These values are rather low for NSs and are with great certainty wrong. Following Kiziltan
et al. (2010) the likely mass would be, with slight possible deviation, around 1.35 M�. It is another
matter however, whether these data would change the outcome of statistics. Comparing the m̃ for either
m1′ = 1.05 M� and m1′ = 1.40 M� gives for e.g. m1 = 4.5 M� the approximate values 2.4 and 2.1
respectively. Inspecting the post-SN total energy equation from Section 5 it we draw the conclusion that
it probably is of importance, but that our main conclusions remain the same.

Analogously the error margin in separation is negligible; as we saw when comparing the systems with
and without time-integrated values the differences was very small and thus every conclusion remains
unchanged.

9.2 The PDFs and isotropy

We varied our choice of kick PDF between that of Arzoumanian et al. (2002) and Hansen & Phinney
(1997) and found in some cases considerable differences. It should be noted that the PDFs as given by
the above authors do not really correspond to that of the kick velocity. The reasons are mainly two-fold;
first any NS escaping the systems potential would lose some of its kinetic energy escaping the potential
of the binary. Secondly, in the case of the bimodal distribution the bimodality is with all likelihood due
to two different evolutionary scenarios. This would imply for our case that it might be better to choose
one of the two distributions1.

Furthermore we used an isotropic kick PDF and concluded that the angular distribution was not isotropic.
This is of course a simplification. It is however not likely that the altering of the angular distribution
would change the results much. Most systems in the observed population was probably produced by a
planarly inclined kick and thus the number of “close” systems would only increase. The change would
lead to the cumulative distribution given in Figure 19 being more concentrated around θ = 0, which in
turn would only strengthen our conclusion.

We propose as a next step to do an iteration process to find our own PDF for both the kicks and
the angular distribution. The PDF iteration process should converge to a self-consistent solution; i.e.
when conducting population synthesis with the PDFs the results should preserve the PDFs.

9.3 Spin alignment

Another thing to extend the analysis with is the spin alignment. As already discussed, the intermediate
stage Roche lobe overflow tends to align the spin angular momentum vectors of the He-core and the NS
to the orbital angular momentum plane. When the He-core undergoes SN its angular momentum will
probably change (as it did in J0737). The older NS will however not change its angular momentum.
This can be used to constrain the θ angle in the second SN kick. That is, if the angle between the
post-SN orbital angular momentum and the older pulsar spin is known, one could use the older SN spin
angular momentum angle as the indicator of how the pre-SN plane was configured, and thus measure the
difference between the pre- and post-SN orbital angular momentum. Whence this relation is obtained,
one could just include this into the code we used in the above simulations, thus constraining the kick
further. The problematics here is that the angle ν is not known for all systems.

1Recall that the Arzoumanian et al. (2002) distribution is a linear combination of two Maxwellian distributions.
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9.4 Weighted phase space simulation

In the above simulations the progenitors were taken from the “corners” of the given phase space. There
are essentially two things wrong with this. First, the corners were equally weighted, which is an over-
simplification, and secondly a better approach should be to simulate over the entire phase space and not
only the corners. The natural extension to the latter one would be to randomize pairs of m1 and a. For
each such pair one would then construct the system, as done for each of the four cases individually in the
above used code, and then run many kicks.

The issue would be sharpened even more if one could weight the systems. The higher mass would,
of course, be less probable according to the Kroupa (2002) IMF distribution and the same goes for the
separation. The weighting procedure would be somewhat non-trivial, but since the procedure would only
concern relative probability one could do the weights as follows. Construct the phase space into a discrete
space, that is m1 and a on a lattice. Denote the weight of the lowest separation and lowest mass point
w0. The problem now is how to construct the weights for the other points on the lattice relative to w0.
For each of the phase space points (m?, a?) one can choose the square K? with the phase space point at
its center. Given probability functions Pm(m) and Pa(a), for the mass and separation respectively, one
could consequently integrate these over the square. Do this for the square around w0 and the arbitrary
one and divide, such that

w?
w0

=

∫ ∫
K?

PaPm dm da∫ ∫
K0
PaPm dm da

If the probability functions for a and m1 are independent of each others variables, the double integral
will simply the products of the integrals.

From here and on the methodology would be simple: For the lowest corner in the lattice, simulate
N binary systems as above, where N is chosen large enough so as to get good statistics. Proceed by for
each other phase space pair on the lattice, simulate w?

w0
N number of systems.

The probability functions could coarsely be taken to be the IMF for the mass and the inverse function for
a. Knowing the envelope mass loss as a function of zams mass, one could then relate the probability of a
He-mass directly to the IMF. Furthermore, the same arguments could be applied to a. Using the Webbink
formalism one could find the final separation as a function of the zams mass (knowing the subsequent
loss of hydrogen) and thus relate the inverse PDF for separation to the He-core NS system separation PDF.

With these simulations, one would have better understanding of the mass and separation dependence,
but the main consequence would be the comparison to the population synthesis.

9.5 Intermediate stage binary interaction

With the understanding that the intermediate stage binary interaction is of importance, we now propose
how one could do this. The intermediate stage (IS) interaction has been modeled by various authors,
in particular by Dewi & Pols (2003). In their paper they describe, for various masses and separations,
the subsequent evolutionary scenario. They present results in tables, with each entry giving the contact
time, and the transferred mass. With the above recommended lattice approach, this would work very
nicely as one could approximate for each phase space point the nearest corresponding table entry. They
give the value of ṀHe,max for each case, and also the interaction time. The effect on the system of mass
transfer can be described by the change of angular momentum. The effect of non-conservative mass loss
of one of the components in a circularized system can be described by taking the logarithmic derivative.
From section 5 there follows that the orbital angular momentum is

Lorb = vorb(a1 + a2)
m1m2

m1 +m2
=

m1m2

m1 +m2

√
G(m1 +m2)/a3a2

Denote the orbital angular momentum by Lorb = J . The logarithmic derivative gives

ȧ

a
= 2

J̇

J
− 2

ṁ1

m1
− 2

ṁ2

m2
+
ṁ1 + ṁ2

m1 +m2
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Moreover, J̇ have contributions from gravitational waves emission of angular momentum, and the non-
conservative mass loss. That is1 J̇ = J̇massloss+ J̇GW . It is reasonable to assume that J̇GW << J̇massloss
in the Roche-lobe overflow case. Following the arguments given in Tauris & van den Heuvel (2003) the
latter term can be approximated with

J̇massloss
J

=
α+ βq2 + δγ(1 + q)2

1 + q

ṁ2

m2

where α, β, γ and δ are constants in the paper and q the usual mass ratio. Assuming that the orbit
remains circular the change in angular momentum can be used to model the effect of the IS Roche-lobe
overflow.

This would increase the accuracy of the population synthesis and it is possible that the statistics would
be somewhat altered; as the IS interaction give rise to non-conservative mass-transfer the allowed final
mass range for the He-core will change somewhat.

9.6 Improving on the Webbink formalism

In the above simulations we used, without exception, the values ηeff = 1.0 and λ = 0.5. Though most
sources in the literature use these values, they are somewhat of an oversimplification; there are different
values for these parameters depending on the situation. This would be e.g. the metallicity of the stars, or
the stage of which the star is in when interacting with the NS. An improvement could be to split up the
different areas of the phase space and for each argue where what the proper parameters are. Although
more accurate, it is doubtful whether this would to greater extent alter the conclusions.

1There are other interactions too; the mentioned paper gives that there is also effect due to magnetic braking and
exchange due to one star expanding. We don’t mention these here as they have been completely neglected throughout the
work and furthermore they can also be neglected in this context as the GW-effect can.
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A Derivation of inspiral-time formula from General Relativity

It can be shown from General Relativity, as done by Peters (1964), that the decrease of the semi-major
axis a by emission of gravitational waves in a compact binary satisfies the following relation

da

dt
= −64G3m1m2(m1 +m2)

5a3c5
(1 + e2 73

24 + e4 37
96 )

(1− e2)
7
2

For the circular case, that is e = 0, this equation can be integrated analytically to give the inspiral time.
The above differential equation for circular orbits reduces to

da

dt
= −64G3m1m2(m1 +m2)

5a3c5
⇔ a3

da

dt
= −64G3m1m2(m1 +m2)

5c5

which can easily be integrated as follows:∫ t=τinspiral

t=0

a3
da

dt
dt =

1

4
(a(τinspiral)

4 − a40) = −1

4
a40

as a(τinspiral) = 0 per definition. But there is also∫ t=τinspiral

t=0

a3
da

dt
dt =

∫ t=τinspiral

t=0

−64G3m1m2(m1 +m2)

5c5
dt =

= −τinspiral
64G3m1m2(m1 +m2)

5c5

This manipulated gives

τinspiral = a40
5

256

c5

G3

1

m1m2

1

m1 +m2
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B Lagrangian mechanics of a two-body system

Consider a two-body system with two masses m1 and m2 in a Newtonian potential with U ∝ r−1. As
is well known within Classical Mechanics, this potential leads to elliptic orbits. In order to derive the
eccentricity as a function of the variables one could consider the Lagrangian, which is in the natural terms

L = Ek − Ep =
1

2
m1ṙ1 +

1

2
m2ṙ2 −G

m1m2

|r1 − r2|

The calculations will become simpler after a transformation to the CM frame, in which the Lagrangian
has the following appearence:

LCM =
1

2

m1m2

m1 +m2
ṙ2 +G

m1m2

|r| =
1

2
µṙ2 +G

m1m2

|r|

with the definitions r ≡ r1 − r2 and m1m2

m1+m2
= µ as usual being the reduced mass. The interpretation

of the above Lagrangian is that of a particle with mass µ moving around a body at rest with mass
(m1 + m2). Since the Lagrangian contains only radial terms, it carries SO(3)-symmetry and Noethers
theorem thus guaranties a conserved current. In this case it is the angular momentum. Thus one can
choose to represent the system in a plane and in particular the masses by planar-polar coordinates.
Therefore, put r = (x, y) = (r cosφ, r sinφ) where it follows that

ṙ = (ẋ, ẏ) = ṙ(cosφ, sinφ) + r(− sinφφ̇, cosφφ̇)

As the two vectors in ṙ are orthonormal, the absolute value is simply the sum of the squares of the
individual linear coefficients: |ṙ|2 = ṙ2 + r2φ̇2. The Lagrangian then becomes

L =
1

2
µ(ṙ2 + r2φ̇2) +G

µ(m1 +m2)

r

Since the system now has only two generalized coordinates in φ and r, the Lagrangian has to satisfy for
both these variables, the generic Euler-Lagrange equation of motion;

∂L
∂p
− d

dt
(
∂L
∂ṗ

) = 0

where p is some generalized coordinate. For r, this becomes

0 =
∂L
∂r
− d

dt
(
∂L
∂ṙ

) = µrφ̇2 −Gµ(m1 +m2)

r2
− d

dt
(µṙ) = µrφ̇2 −Gµ(m1 +m2)

r2
− µr̈

With the usual definition of angular momentum, L = mrv = µr2φ̇, and the above interpretation of the
Lagrangian, the above equation becomes

0 = r̈ − L2

r3µ2
+G

m1 +m2

r2

Now do the change of variables u(φ) ≡ 1
r(φ) . It follows that

ṙ = − 1

u2
du

dt
= − 1

u2
du

dφ

dφ

dt
= −L

µ

du

dφ

where dφ
dt = L

µr2 was used. Moreover, there is

r̈ =
d

dt
ṙ =

d

dφ
(−Ldu

dφ
)
dφ

dt
= −u

2L2

µ2

d2u

dφ2

These equations give, for the above equation of motion, that

0 =
d2u

dt2
+ u−G (m1 +m2)µ2

L2
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This ODE has the solution

u = A cos(φ− φ0) +G
(m1 +m2)µ2

L2
⇒ r =

L2

G(m1 +m2)µ2

1

1 + L2A
G(m1+m2)µ2 cos(φ− φ0)

The latter function can be expressed more neatly with the definitions e = L2A
G(m1+m2)µ2 and rmin =

L2

G(m1+m2)µ2(1+e) so that

r = rmin
1 + e

1 + e cos(φ− φ0)

Comparing with the hamiltonian H gives that the energy of the system is

E =
1

2
(ṙ2 + r2φ̇2)µ−G (m1 +m2)µ

r
=

1

2

L2

µ
(
du

dφ
)2 +

1

2
u2
L2

µ
−Gu(m1 +m2)µ

so that with the solution for r above the energy becomes

E =
1

2

L2A2

µ
− G2(m1 +m2)2µ3

2L2
=

1

2

L2A2

µ
− G2m3

1m
3
2

2L2(m1 +m2)

so that solving for e gives

e2 = 1 +
2EL2(m1 +m2)

G2m3
1m

3
2
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