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Desertification mapping of Horgin Sandy Land, Inner Mongolia, by means of remote sensing

ABSTRACT

The extent of today’s land degradation and desertification in the arid, semi-arid. and sub humid regions of
China is a serious threat to the social and economic development in these areas. A national programme for
monitoring and classification of drylands has been implemented by the Chinese Academy of Science. Areas
are classified into degrees of desertification on the basis of vegetation cover, biomass change, deflation, and
deposition. This study evaluates the use of Landsat MSS derived vegetation indices for desertification
mapping as an alternative to the labour intensive field measurements used in the currently used classification
system. Ratio-, difference-, normalized-, and soil adjusted vegetation indices images, together with MSS
band 6, the first principal component, and maximum likelihood classified images are used and compared.
Accuracy is evaluated using a thematic desertification map of Horgin Sandy Land, Inner Mongolia (1991),
compiled by the Lanzhou Institute of Desert Research, Chinese Academy of Science, for validation. The
green vegetation cover estimates images all showed comparable results, and no one stood out as superior to
the others. Total accuracy is approximately 48% for all indices, while mean accuracy varies between 26.8%
and 64.1%for individual classes. Annual plants are theorised to be the cause of the class confusion, hence
the low accuracy.
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1. INTRODUCTION
During the fall of 1995 as I was about to sum up my years at the Department of Physical

Geography, at Lund University, with a Master’s thesis, I was introduced fo a research
project dealing with the semi-arid regions of northern China. The project appealed to me,
and my supervisor Ulf Helldén gave me some literature on the on-going debate on land
degradation and desertification. As I decided to complete my thesis as a first step to more
in-depth studies, I was given some more literature, maps and satellite images over the
western part of Horqin Grassland in Inner Mongolia, northeastern China. The material
included a thematic map of the Horqin Grassland, showing land parcels divided into four
degrees of desertification. A classification scheme based on multiple criteria had been
constructed by the Chinese Academy of Science for mapping purpose. I was curious to
discover whether it was possible to use Landsat MSS data to classify an image over the
same area as the map in the four desertification degrees, using only 1 criteria; vegetation
cover estimates. I opted to use and test different vegetation indices against each other in
the classification scheme. My goal, therefore, was to find a short-cut following a rather
simple classification procedure, to the more rigorous classification scheme used in
compiling the desertification map, not simply to achieve aéﬁgood a classification as

possible.

The study is thus a methodological one, and most effort has been put on the theoretical

background and the evaluation of the classifications derived from the vegetation indices.

1.1 AIM OF THE STUDY
This study involves the application of remote sensing methodologies in developing a land

cover mapping scheme for the western Horqin Sandy Land in Inner Mongolia, China. Tt
represents an introductory step leading to a more comprehensive study of the regions of

northeastern China.

The principal aim of the study is to explore and evaluate different approaches to vegetation
green cover estimation, by means of remote sensing, in an effort to find an easy and
efficient method to classify vegetation cover into desertification degree classes in

accordance with the Chinese academy of science classification system (see section 1.4). If
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successful, it would enable continuous monitoring on a yearly basis, rather than on a

decadal base as is now the case.

1.2 BACKGROUND

The Chinese semi-arid steppe ecosystem has been subject to direct human manipulation
two to three thousand years (Dregne, 1983), but the scale and extent of today's land
degradation is without parallel. Nutritionally stressed livestock, degraded vegetation, and
water and wind eroded range-, and cropland all indicate a decline in the land’s agricultural
production. The present desertification trend owes its cause to the adverse agricultural
production practices that are associated with overriding socio-economic and political
agendas (Sheeny, 1992). A low awareness of the severity of the current situation amongst
the government prohibits any rapid solution as long as no convincing practical policies are

formulated.

Mei (1985) in studying the Horgin Sandy Land in the northeastern Inner Mongolia
concluded that the main cause of the current desertification problem in the semi-arid
steppe grazing lands is the land-use shift from highly productive grazing land to marginal
farmland adjacent to rivers and villages, overgrazing by livestock, cultivation of formerly

stabilized sand dunes, and conversion of loess uplands to rainfed farming.

The meteorological record of the last half century showing decreasing annual rainfall in
the province (Zhu et al., 1988a) is in no way promising for the struggle to overcome the

increasingly acute land degradation.

The literature reveals different trends in land degradation/desertification processes over the
years. The 1950s to 70s period was characterised by loss of total land productivity due to
the development of severely desertified land from already moderately desertified land. The
land degradation process in the recent decade has been characterised by serious wind
erosion in newly reclaimed land and range-land due to over-cultivation, over-grazing,
fuelwood gathering, and misuse of water resources (Walker, 1982; Wang and Imagawa;

Zhu and Liu, 1983; Zhu et al., 1988a; Zhu and Wang, 1990).
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Desertification is considered a major problem for economic development and
environmental protection in northern China and improved methods for monitoring and
assessing the current status and trends is required if the national programme for combating
desertification is to obtain satisfactory results (Walls, 1982; Wang and Imagawa; Zhu and

Liu, 1983)

To better understand the processes at hand, a national research project was implemented
under the direction of professor Zhu Zhenda in the early 1980's. One of the objectives was
to put forth principles and methods for compiling maps of the status or degree of
desertification in China, to allow for continuous monitoring of arid, semi-arid, and sub-
humid regions. A scheme for classifying the status of the land into degrees of
desertification based on multiple criteria was set up, dividing the degree of severity into
four classes (Wang and Imagawa; Zhu and Liu, 1983; Zhu, 1984; Zhu er al., 1988b). The
word desertification, rather than land degradation, will be used throughout this paper, as it
is the word most commonly used in the Chinese literature available in English. The word
desertification is used with the same definition adopted by the UN (1977), and UNEP
(1984), and most recently, Agenda 21 at the 1992 UN Conference on Environment and
Development (UNCED). That is: ...land degradation in arid, semi-arid and dry sub-humid

areas resulting from various factors, including climatic variations and human activities.

1.3 STUDY AREA
Horqin Steppe, also called Horqin Grassland, is situated in the western part of the

Northeastern Plains in the eastern Inner Mongolia (41°41°40°’- 47°39°20°°N, and
116°21°30- 126°14°46"°E). It is one of the largest and most important range-land areas in
China. The Horqin Sandy Land (the area studied here) is the arid to semi-arid area of the
Horgin Grassland region. It mainly comprises the alluvial plains of the Xiliao River and its
tributaries southeast of the Da Hinggan Ling (Great Hinggan mountain ranges) and to the
north of the Liaoning mountains and loess hills. Figure 1 shows the study area delineated

on a sketch map typically used in Chinese reports and papers (Zhu et al. 1988a).

(9]
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Figure 1. Sketch map of Horqin sandy Land (from Zhu et al. 1988a), with an approximate outline of the |
area studied with Landsat data. Classes: 1. mobile barchan dunes and sand ridges, 2. semi fixed longitudinal

dunes, 3. semi fixed honeycomb dunes and sand ridges, 4. semi fixed bush vegetated dunes, 5. fixed

longitudinal dunes, 6. fixed honeycomb dunes on sand ridges, 7. mountains and hills, 8. lakes.

The area belongs to the continental monsoon climate, and lies in the transitional zone
between the semi-arid and sub-humid zones. Relative proximity to the ocean and the
influence of the summer monsoon brings copious amounts precipitation in Horqin Sandy
Lands compared to many of the other desertification prone areas in China. The annual
precipitation is in the range 315 - 490 mm, and the annual evaporation is 1800 mm. The
precipitation is primarily controlled by the southeast summer monsoon, and its regional
distribution controlled by topography. Most rain falls in the summer, often in the form of
erratic thunderstorms and conventional fronts, with July and August accounting for 70 per
cent of the annual total. Winters are cold and windy. The prevailing wind direction,
controlled by the Siberian anticyclone, is northwest. Strong winds that causes dust storms
and dust devils occur mainly from March through May, (Zhu ef al. 1986, Zhu et al. 1988).

This very unfortunate meteorological feature means that the end of the dry season

coincides with the most windy season.
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1.4 THE DESERTIFICATION MAP OF HORQIN SANDY LAND, AND THE
DESERTIFICATION DEGREE CLASSIFICATION SYSTEM

One objective of the national programme "Combating Desertification in China" is to
repeatedly monitor the north China drylands, in order to identify regions at risk as well as
identifying areas of change. This phase of the programme included the compilation of the
so called desertification maps. The first step was to select the case study areas from the
arid to semi-arid steppe in north China. Twelve areas, together covering 500,000 sq. km,
were mapped in scale 1:350,000 or 1:500,000 according to the following classification
scheme; latent, slight, moderate, and severe. The mapping is based on (i) visual image
interpretation of aerial photographs and satellite images, (ii) evaluation of physical and
socio-economic data, and (iii) field monitoring and investigations. A robust classification
system, not influenced by local variability of data availability, but based on strictly defined
criteria was constructed. This prerequisite, together with the fact that most affected areas
are subject to aeolian activities, formed a classification scheme based on the four criteria

in table 1 (Wang and Imagawa).

Table 1. Criteria for sandy desertification used in compiling the desertification mapping of north China
(source: Wang and Imagawa). * Biomass decline is measured in comparison to control plots with known
biomass.

Vegetation Biomass Area of wind Spread of wind erosion
cover (%) decline (%)* erosion/deposition /deposition per unit
per unit area (%) area and year (%)
Latent >60 % <1.5 <5 <1
Slight 60-30 1.5-3.5 5-25 1-2
Moderate 30-10 3.5-7.5 25-50 2-5
Severe <10 >7.5 >50 >5

From an inventory standpoint, the most accessible studied criterion in the classification
scheme is the vegetation cover. Vegetation cover is also the heaviest weighted variable
(Zhao, pers. com.; Zhu and Liu, 1983). Zhu et al. (1988a) describes typical vegetation

status within the different desertification degree classes. Latent desertified land is

characterised by dense, mostly perennial, vegetation and unaffected topsoil. A great
variety of plant species that may be used for livestock fodder flourish here. Typical species
are Artemisia halodendron, Caragana microphylla, and Hedysarum fruticosum. The

slightly desertified land resembles the latent class but with a less dense complement of

perennial species such as A. halodendron, and C. microphylla. In the moderate desertified
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class, vegetation density decreases relative to the former. The annual variation is great,
with 60 to 70 per cent of the fresh biomass accounted for by annual plants. such as Setaria
viridis, which blooms in July and August. In April, however, the land reverts to shifting

sand dunes. The average plant cover is 20 to 30 per cent. The severely desertified land has

lost all its utilisation value. Vegetation cover is less than 10 per cent, and plants are found
scattered on the dunes and in the inter dune depressions. Species include Agriophyllum

squarrosum, and Salix gorgejevii.

The map used in this study is the "Map of Land Desertification in Horqin Grassland,
1:500,000", (Lanzhou Institute of Desert Research, Academia Sinica, 1991. Chengdu
Cartographic Publishing House). Both a digitised version and a hard copy of the map was
used in the study in identifying class-typical areas for the computer aided interpretation of

the images, and for the final evaluation of the classification result.

An older desertification map, from the early 1980's (Zhao, pers. com) was to aid in the
selection of training sites for the automated classification of the satellite image. This older

map is probably classified according to the somewhat different criteria given in Zhu and

Liu (1983)

2. METHODOLOGICAL BACKGROUND
This section is a review of the theoretical background to the image processing methods

used in the study. The methods as applied to this study is presented in section 3,

Methodology

2.1 GEOMETRIC CORRECTION
The following description of the geometric correction of satellite data is mainly compiled

from Jensen (1985) and Richards (1993). Raw satellite data most often contains geometric
distortions. Those distortions that can be corrected through analysis of sensor
characteristics and ephemeris include scan skew, mirror-scan velocity nonlinearities,

panoramic distortion, spacecraft velocity, and perspective geometry. Errors that can only
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be corrected through the use of ground control points (GPC) are sensor system attitude
(roll, pitch, and yaw) and/or altitude (Bernstein, 1983). A thorough discussion is given in
Richards (1993). The objective of a geometric correction is to render temporal sequences
of image data comparable and/or to make that data comparable to a map of any given

projection. The latter is referred to as image-to-map rectification or registration.

Landsat MSS data is system corrected. To make the data comparable to the thematic map
an image-to-map registration was performed. The method relies upon establishing a
mathematical relationship between locations of pixels in an image and the corresponding
coordinates of those points on the ground (i.e. a map). The approach allows the image
analyst to make geometric corrections irrespective of knowledge of the sources and types

of distortions.

2.2 IMAGE REGISTRATION USING MAPPING POLYNOMIALS AND GROUND
CONTROL POINTS

In establishing an image-to-map relationship, we first define two Cartesian coordinate
systems. One describing the position of points on the map (x,y) and the other coordinate
system defining the location of pixels in the image (u,v). These two coordinate systems

can be related via a pair of mapping functions f and g such that:

u = flx,y) (forward polynomial)
v=g(xy) (backward polynomial)

When these function are known, it is possible to locate a point in the image knowing its
position on the map. The form of the mapping functions that are not known are usually
chosen as simple, first to fourth order, polynomial functions. A second order function be

described as:

u=aptajx+aly+azxy+ a.,tx2 + arjy‘2

v=>b0+bx+ by +b3xy + byl + bs5y?
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The coefficients a; and b; are unknown, but can be estimated by identifying features in the

map, such as road intersections or other prominent landscape features, which can also be
identified in the satellite image (GCP's). Enough GCP's must be chosen to fulfill the
requirements of the polynomial function used, six in the case of second order function.
Considerably more control points than the minimum requirement are, however, used to
obtain a reasonable distribution over the whole image. Before the registration is
performed, it is necessary to check how well the coefficients derived account for the
geometric distortion in the input image. The evaluation used involves computation of a

root mean square error (RMSerror) for each GCP.

RMSerror = SORT((u-x)+(v-y))

Those GCP's that exhibit the greatest RMSerror are not included in the analysis. A sum of

all RMSerrors are calculated to check that it does not exceed a user specified threshold.

2.3 RESAMPLING OF PIXEL BRIGHTNESS VALUES
The registration takes care of the geometric correction. The next step is to chose a suitable

method for brightness value interpolation or resampling. With the nearest neighbour
resampling method the brightness value of the pixels closest to the specified input
coordinates is assigned to the output coordinate. This method is usually preferred if the
image is to be classified as original pixel brightness values are retained (Richards, 1993).
The nearest neighbour resampling might result in a somewhat jagged appearance of the

image if there is significant rotation or scale change.

2.4 RADIOMETRIC CORRECTION

When image data is recorded by a satellite sensor it may contain errors in the measured
brightness values of the pixels. These radiometric errors can result from the actual

instrumentation, and from the effect of the atmosphere through which the radiation is

transmitted. The atmosphere might alter the true ground reflectance values significantly by

scattering and absorption. Absorption by molecules of oxygen, carbon dioxide, ozone and

water is a selective process that tends to lower the measured brightness from landscape

10
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measurements (Jensen, 1986). The effects are usually minimised by sensors being
designed to operate away from the interfering regions. Scattering is thus the dominant
source of radiometric distortion in image data, leading to increases in the brightness
measurements. Methods for correcting the influence of the atmosphere have to be taken
into consideration for accurate application of the image data. An absolute radiometric
calibration is usually not possible, as the computation involves optic, climatic and
atmospheric parameters not easily available for any given region at any given time.
Therefore the relative calibration method, described by Robinove (1982), Nelson (1985),
and Markham and Barker (1986), is usually a more realistic way to covert image data into
scientifically meaningful units, such as at-satellite reflectance. Performing a simple haze
removal will lower the distortion resulting from scattering (Richards, 1993). These
operations also make image data suitable for band-ratioing and multi-terﬁporal studies.
Robinove et al. (1981) points out that the reflectance equation assumes (i) a Lambertian
(diffuse) reflecting surface, and (ii) a flat terrain. The computation is a three-step
operation, first involving the conversion of the absolutely calibrated digital numbers to
spectral radiance (L), which is accomplished with the equation provided by Markham
and Barker 1986):

LmaxA—LminA

LA =LminA + DN max x DN
where:
DN = Digital Number on CCT
DNmasx = Maximum digital number
LminA = Minimum spectral radiance (mW/cm2 sr pum)
LmaxA = Maximum spectral radiance (mW/cm2 sr pum)
LA = Spectral radiance (mW/cm2 sr pm)

The next step is to adjust for effects of varying sun angle, sun distance and irradiance.
Given these parameters and the spectral radiance, we can calculate the more tangible at-
satellite reflectance values. These parameters are specific for the sensor and the receiving

station. The at-satellite reflectance is calculated in accordance with Markham and Barker

(1986):

11




Desertification mapping of Horqin Sandy Land, Inner Mongolia, by means of remote sensing

rx LAxd’

ppA = EsunA x cos®s
where:
ppA = Unitless effective at-satellite reflectance
LA = Spectral radiance (mW/cm?® sr pum)
d = Earth-sun distance in astronomial units (from astronomical almanac)
Esuni = Mean solar exoatmospheric spectral irradiance (mW/cm?* pm)
G5 = Solar zenith angle in degrees

The resulting at-satellite reflectance values are then rescaled to a tangible format, i.e. 8 bit
data with whole numbers ranging from 0 to 255. Bands are scaled uniformly to retain the

inter-band relationship.

A third radiometric preprocessing step might be to perform a haze removal method. There
are three approaches to this method. One assumes that the longest waveband is essentially
unaffected by atmospheric scattering, and that this band can function as a yardstick to the
amount of atmospheric effect to all the band’s of the scene at hand (Ahlcrona, 1988;
Robinove et al., 1981). Thus the minimum DN value of that band is subtracted from all
pixel values in all bands. Another method (Jensen, 1986, and Richards, 1993) is to use
each bands minimum value to subtract from each pixel value in that band. A third
approach described by Helldén (1984) assumes there are at least two pieces of land with
non-changing spectral properties. One dark area, e.g. non vegetated bedrock in shadow, is
set to zero, and a light area, e.g. non vegetated quartzitic sand, is set to 255. The data is

then linearly stretched.

2.5 SPECTRAL REFLECTANCE OF VEGETATION

The absorption, reflection, and transmission of electromagnetic radiation from green
vegetation is dependent upon pigmentation, physiological structure, and water content. In
the visible wavelengths, the chlorophyll pigmentation is the major factor affecting the
reflectance properties. A large part of the incident radiation is absorbed, especially at
approximately 0.45 pm (blue region) and 0.65 pum (red region). In the near infrared, the

plant’s physiological structure gives rise to the unique spectral reflectance characteristics
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of healthy green vegetation. About half the incident energy is reflected, very little is
absorbed, and the rest transmitted. In the middle infrared portion of the spectra, water
content reduces the reflectance by light absorption. The different characteristics between
red and near infrared reflectance provides the basis for most vegetation indices. Figure 2

depicts the reflectance characteristics of vegetation, senescent grass, and green grass.
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\./ . = ’
0- / . green grass (modified from Jensen,
0.5 0.6 0.7 0.8 1.1 1986).
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The reflectance does not, however, solely depend on the plant itself, but also depends on
the amount of senescent vegetation, soil background properties, sun angle, and canopy
geometry. Differences in soil properties and its influence on spectral signatures are
thoroughly discussed in Huete (1989). Sun angle and canopy geometry combines to make
discrepancies in canopy shadows, that dampens the reflectance in all wavebands. The
influence is greater in the visible than in the near infrared wavebands. A band ratio will
thus not entirely normalise the amount of shadow (Colwell, 1974). Graetz and Gentle
(1982), Otterman and Robinove (1983), and Printer et al. (1985) discussed the effect of

shadow on reflectance in great detail.

2.6 VEGETATION INDICES

The spectral reflectance characteristics of green vegetation has promoted the development
of indices that attempt to enhance the spectral contribution of vegetation while minimising
the influence of soil background, solar irradiance, sun angle, senescent vegetation, and

atmosphere (Tucker, 1979; Rouse, 1973; Colwell, 1974; Kauth and Thomas, 1976;
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Richardson and Wiegand, 1977; Ashley and Rea, 1975). Several vegetation indices have
been developed that utilise red- and NIR reflectance in the form of ratios or in linear
combinations. More recently a hybrid set of vegetation indices has emergéd. The formulae

and notable references of the vegetation indices used in this study are found in Table 2.

Table 2. Red and NIR vegetation index formulae.

NDVI NDVI = (NIR-Red)/ (NIR+Red) Rouse et al., 1973
RVI RVI = NIR/Red Jordan, 1969
DVI DVI = a X NIR-Red Tucker, 1979
SAVI SAVI = (NIR-Red)/ (NIR+Red+L) X (1+L) Huete, 1988

The value of these indices lie in their potential ability to estimate vegetation variables such
as percent green cover, leaf area index , productivity, biomass, and absorbed
photosynthetically active radiation (Jordan,1969; Colwell, 1974; Tucker, 1979; Hatfield et
al., 1985; Asrar ef al., 1984; Sellers, 1989).

When remotely sensing vegetation in arid in semi-arid climates, one usually deals with
rather sparse vegetation cover. Hence the substrate will have a significant effect in the
response of a vegetation index. Different soil properties, such as moisture content, texture,
organic matter, iron oxide amount and roughness affect the amplitude rather than the shape
of the spectral signatures. In general, increased moisture and iron oxide content, and
increased organic matter content dampens the reflectance. Decreased mean particle size
and a smoother surface will increase the reflectance. A detailed discussion of the concept
is given in Huete (1989). Several indices are designed specifically to minimise this
influence of the soil background. Those used in this study are described below. The
performance of different vegetation indices and the influence of soil background are
thoroughly described in Baret ef al., (1989), Elvidge and Lyon (1985), Elvidge and Chen
(1995), Graetz and Gentle (1982), Huete (1989), Olsson (1985), and Richardson and
Wiegand (1977).

14
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2.6.1 The ratio vegetation index, RVI

A simple ratio of the spectral band recording visible red with that recording near-infrared
produces the Ratio Vegetation Index, RVI, and was used by Jordan (1969). Tucker (1979)
and Richardson and Wiegand (1977). The latter evaluated this index as an estimator of

several different vegetation parameters.

2.6.2 The normalized difference vegetation index, NDVI
One of the oldest and the most used vegetation indices is the Normalized Difference

Vegetation Index proposed by Rouse et al. (1973), who then called it the Vegetation
Index, and also derived a transformed version by adding 0.5 to the index and then taking
the square root of the sum. Both indices have shown good correlation with wet biomass
and interrelated biophysical parameters (Tucker, 1979) and crop cover (Richardson and
Wiegand, 1977). The NDVI normalises the difference between the NIR and the red
channels so that the values ranges from -1 to +1. It has also proven effective in

normalising soil background spectral variations (Colwell, 1974), and irradiance variations

(Tucker, 1979).

An asymptotic behaviour of the NDVTI in estimating high green vegetation parameters has
been pointed out by several authors (Tucker, 1979; Holben et al., 1980). This means that
the NDVI will produce nonlinear, thus erroneous, estimations of high quantities of

vegetation.

There is an ongoing debate on the usefulness of the NDVI and what can actually be
estimated from it. The literature points out NDVI correlation with the full gamut of

vegetational biophysical states as well as biophysical rates. A thorough discussion is given

in Sellers (1989).

2.6.3 The difference vegetation index, DVI, and the perpendicular vegetation index,
PVI

Kauth and Thomas (1976). in developing their Tassled Cap transformation, found that soil
reflectance variation in a multi-dimensional data space formed a plane, and that vegetation

lies perpendicular to this soil plane. Richardson and Wiegand (1977) used this concept of
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perpendicular distance to the soil line as an indicator of vegetation development. They
estimated the soil line equation by linear regression. The more dense the vegetation, the
further away from the soil line one would find its corresponding pixel in the red-NIR
space. Constant levels of vegetation covering soil with differing characteristics would be
found at the same orthogonal distance from the soil line but at different distances from the

origin (Fig. 3).

This computationally awkward vegetation index induced Richardson and Wiegand to
propose the difference vegetation index (DVI) which achieves the same end. DVI is

calculated by subtracting red from NIR multiplied with the slope of the soil line.

2.6.4 The soil adjusted vegetation index, SAVI
Huete (1988) proposed a soil adjusted vegetation index to minimise the influence of soil

brightness from red and NIR spectral vegetation indices. Vegetation indices in general rely
on the concept of a soil line in the red and NIR reflectance space (fig 3). Variation in soil
characteristics, primarily moisture content, is explained by this line. The variation in soil
colour, especially red and yellow tones (Kauth and Thomas, 1976), results in a non-
parallel secondary axis in the red and NIR space, hindering the detection of very low
amounts of vegetation (Huete et al., 1984). Therefore, with a truly varying soil
background, the soil line will look more like an elongated oval shape than an actual line.
Most soil spectra however, fall on or close to the soil line, making values of bare soil with
different conditions, nearly identical for vegetation indices using the concept (Huete,
1988). The variation in vegetation amount is then described by vegetation isolines which
explain constant vegetation amount for differing soil characteristics. The ratio-based
vegetation indices can be graphically displayed as isolines with increasing slopes
diverging out from the origin, while the orthogonal indices' isolines lay parallel to the soil
line. Figure 3 shows how a pixel (A) describing a partial vegetation cover over a dry soil
would behave if the soil became wet, and the pixel were to conserve its index value. In the
case of a ratio vegetation index, the pixel would shift towards the origin to (C), and being
a orthogonal based index, it would be bound to shift parallel to the soil line to (B). Huete
et al. (1985) and Huete and Jackson (1987) used controlled ground measurements to

describe soil lines in the red-NIR reflectance space. They found vegetation isolines
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occurring in-between those of ration- and orthogonal-based isolines, such as shown by the

broad lines in Figure 3.

Huete (1988) thus modelled the NDVT to shift its origin to the empirically derived
convergence point (D in Fig. 3). This can be achieved by simply add a constant, L, to the

denominator of the NDVI equation. To maintain the bounded conditions (-1 to +1) of the
NDVI a multiplication factor (1+L) is needed (Huete, 1988). Huete (1988) concludes that
there might be a couple of optimal constant values, depending on if one studies low,
intermediate or high vegetation densities. With varying vegetation densities or no prior
knowledge of vegetation cover, an adjustment factor of L = 0.5 was shown to substantially

reduce soil noise problems.

NIR| 0.66

Figure 3. Vegetation spectra isolines in NIR-Red
wavelength space as predicted by the Normalized
Difference-, and Perpendicular Vegetation Index
(Modified from Huete, 1988). For details and

description of the figure, see text above. |

2.6.5 The principal components analysis, PCA

Principal components analysis of Landsat MSS data has shown results similar to Kauth ‘
and Thomas’ (1976) Tassled cap transformation in constructing new axes describing

vegetational variation (Misra and Wheeler, 1977). The similarities between the two

methods are quite remarkable considering that the technique underlying them are quite

different. With principal components analysis one does not impose any prior order on the

principal directions, as is the case with the Kauth and Thomas approach. PCA successively

factors the total variation in the data into mutually orthogonal components, each

successively describing the maximum of remaining variation (Jensen, 1986).
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Principal component analysis (PCA), also referred to as Karhunen-Loeve or Hotelling
transform, has proven to be useful in many aspects of remote sensing. The method
transforms raw image data into as many principal components as there are original bands.
Each component describing the maximum remaining variance within the data. In the case
of MSS data with four bands, the first two components are usually meaningful, but the

remaining components are usually left to explain just the noise inherent in the data.

PC2 PC1

Sy 7

A X B X C

Figure 4. Graphical representation of the spatial relationship between the first principal components. (A) A
scatterplot of a two-dimensional data space with the means of the distribution labeled px and py. (B) A new
coordinate system is created by shifting the axes to the x” and y’ system. (C) The x’ and y’ axes system is
then rotated about its origin (ux, pLy) so that PC1 is projected through the semimajor axis of the distribution,
and that the variance of PC1 is a maximum. PC2 is perpendicular to PC1. The PC axes are the principal
components of the two-dimensional data space (modified from Jensen, 1986).

The following description of the principal components is taken from Richards (1993),

where more thorough presentation and numerical examples are given.

The principal component analysis (PCA) is performed by applying a transformation to a
correlated set of multispectral data, so that we get a new uncorrelated set of data with
ordered variance properties. This is accomplished by a translation and rotation of the
original coordinate system (Figure 4). In practice, when applying PCA to image data, three
basic steps are taken (usually supported within modern image analysis packages). The first
is to compute a n x n covariance matrix, where n is the dimensionality of the data set. The
second step involves determination of eigenvalues (the diagonal elements of the matrix)
and eigenvectors of the covariance matrix. The eigenvalues are used to assess the
distribution of data variance over the components. A rapid fall in the magnitude of the
eigenvalues indicates a high correlation between the original spectral band data. The final
step is to compute the components using the eigenvectors of the covariance matrix as

weighting coefficients. The components (eigenvalues) of the eigenvectors act as

18
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coefficients in determining the principal component brightness values for pixels as the
weighted sum of its original brightness. The translation and rotation therefore results in a
new coordinate system, shown in Figure 4, where the major axis is associated with the
maximum amount of variance of the data space. This new axis is called the first principal

component (PC1). The second principal component (PC2) is perpendicular (orthogonal) to |

PC1 and explains the second most variance of the data.

In practical image analysis use of PCA, with Landsat MSS data, it will be noticed that
only the first couple of principal components inhabit meaningful information. The last
PC's will describe noise inherent in the data, such as striping, speckles or random noise.
PCA thus give us a powerful measure in reducing the often redundant information in the
well correlated Landsat MSS data. In addition the eigenvalues can be used to determine
the percent of total variance explained by each of the principal components (%p), using

the equation (Jensen, 1986):

eigenvaluel
Yp = —x 100

n

Z eigenvaluel,,

p=1
It will most often be shown that the first two components describe about 95% of the total

variance. What the components represent, or are associated with, can be illustrated by |

computing the correlation of each band with each component (Jensen,1986).

Byrne et al.(1980) and Ingbritsen and Lyon (1985) successfully used PCA in land cover
change studies. Walker (1982) used the second PC to describe variation in vegetation

when studying deserts in China.

2.7 IMAGE CLASSIFICATION

In order to make use of a supervised classification routine, image data information on the

spectral properties of each desired land-cover type must be gathered to allow for
calculations of variables crucial for the automated classification process. This information

is referred to as training data.

| o -




Desertification mapping of Horqin Sandy Land, Inner Mongolia, by means of remote sensing

Training data is collected by delineating areas of the desired land cover classes on the
image or according to data gathered from ancillary or field data. These areas are chosen to
contain as pure signals as possible for each class. One class can be described by several
training areas for the same cover type. This might be desired as the same land cover can
give rise to non-identical spectral responses throughout the image (Lillesand and Kiefer,
1987). Sufficient training samples for each training class must be collected to fulfill the
statistical requirements of the classification algorithm. Richards (1993) states that N+1
samples are needed for an N dimensional multispectral space. It is, however, desirable to
have rather large training samples in order to represent the's’pectral variation for each class.
Swain and Davies (1978) recommend that a minimum of 10N samples per training set are
used, but strongly endorse 100N if possible. Training areas are usually chosen with some «
priori knowledge of the area, but can also be chosen on the basis of visual image

interpretation.

In this study the maximum likelihood classification algorithm (MLC) was chosen to
classify the four original MSS-bands to be compared with the single band classification of
the various vegetation indices. The MLC assumes that the classification training data is
normally distributed. Under this assumption, the distribution of training data can be
described by its mean vector and covariance matrix. Given these parameters the MLC
computes the statistical probability of each pixel being a member of a specified class

(Lillesand and Kiefer, 1987). The concept is illustrated in figure 5.

Class C

Equi-
probability

contours Figure 5. Equiprobability contours in a two

dimensional data space as defined by the maximum
likelihood classifier (modified from Lillesand and
Kiefer, 1987).

L Class D
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Before the image data is classified the training data should be evaluated. The spectral
classes must not overlap, but should describe as much as possible of the natural variation
within each land-cover class. The training data set is assessed either statistically or
graphically. The latter involves the display of histograms or box plots for data points
included in the training areas for each land cover type. Therefore, the amount of overlap
between classes may be easily detected. An analysis of variance approach can be used to
determine whether or not there is a significant difference among class means. The F-test
statistics (F) is a ratio of the summary measure of the variability among sample means,
and the summary measure of the variability within the sample (Hawkes, 1993; Berenson e?
al. 1983). With an increasing variability among the sample means relative to the
variability within the sample observations, the value of F will become large casting doubt
on an assumption that the class means are the same. Therefore the vegetation indices may

be ranked in ascending class separability.

In order to classify the different vegetation indices, a limit on all classes that spectrally
overlap must be found. Assuming the pixels are normally distributed around the mean, this
limit value (G) can easily be found (Eklundh and Pilesjs. 1987), see figure 6. The standard
deviations for each class are represented by sl and s2, and the mean value for the class by
x1 and x2. The distance to G, in standard deviations from each class mean, are calculated

from the formula:

Ix1-x2|

Distance to G = m

Class 1

|

; »>
X4 G Xy DN-value

Figure 6. Schematic illustration to find the limit (G) between two normally distributed classes. At G the
probabilities of a pixel belonging to class 1 and class 2 are equal (source: Eklundh and Pilesls, 1987).
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2.8 POST CLASSIFICATION FILTERING e

Classification of digital images can result in rather speckled images with unnaturally
inhomogenous areas. A mode filter will clean up the images and produce more
homogenous areas, but will also remove many linear and small features. The mode filter
computes the most frequent occurring DN-value within the filter window surrounding
each pixel. A 5 x 5 pixel mode filter window was chosen in this study to clean the

classified images to visually resemble the generalisation of the desertification map.

2.9 ESTIMATING ACCURACY ON THE CLASSIFIED IMAGES
After having classified satellite image data it is necessary to evaluate the resemblance of

the produced thematic map with the landscape it is supposed to describe. This is most
often accomplished by comparing classified image pixels with ground truth data collected
at the time of the image registration in the field (control paints). In this study, where
Landsat MSS data is used in order to map desertification degree areas in accordance with
the Chinese classification system, a thematic map (Desertification map of Horqin
Grassland 1:500.000) rather than field data is used to evaluate the accuracy of the

classification results.

Several schemes for control point sampling and statistical accuracy evaluation has been
suggested (Lillesand and Kiefer, 1987). Van Genderen et al. (1977; 1978) argued for a
sample size of at least 20 per vegetation or land cover category for an interpretation
accuracy of 80% and a minimum of 30 points for 90% accuracy at the 5% probability
level. Hay (1979) and Congalton (1991) use a minimum of 50 samples for each category
as a rule of thumb. Numerous recommendations on how to sample control points in the
field or from any other source to be used as validation in the evaluation procedure are to
be found, such as; random, systematic or stratified samplirié. A good and up-to-date

review on accuracy assessment of remote sensing data can be found in two articles by

Congalton (1988; 1991).

The standard procedure for representing accuracy, recommended by Helldén (1980) and
Congalton (1991), is in the form of an error matrix. An error matrix is a square array of

numbers in rows and columns which express the number of sampled pixels assigned to a
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particular class relative to the actual class as verified from the source of truth. The

columns represent the classification result and the rows the reference data. Hereafter the

error matrices can be used as the starting point for a number of descriptivé statistical

techniques for the evaluation of accuracy. The simplest measure is the total accuracy

which is computed by dividing the total correctly classified pixels (the sum of the major

diagonal) by the total number of pixels in the error matrix. In a similar way the accuracy of

each class can be computed. This, however, offers several different options; The correct

classified pixels can be divided either by the total number of pixels in the corresponding

column or row. In addition to this, a combination of the two will give a mean accuracy.

The mean accuracy is the probability that a randomly chosen point of a specific class on

the generated image has a correspondence of the same class and in the same position in

the

truth source and that a randomly chosen point in the truth source of the same class has a

correspondence of the same class in the same position on the image. Helldén (1977) also

introduced an indicator called areal difference to accompany the indicators of individual

class accuracy. The areal difference describes how many per cent a specific class on the

generated images has been over- or underestimated in relation to the sampled truth.
Most commonly the "producer’s accuracy" also called "classification accuracy" is used.
is calculated by dividing the total number of correct pixels in a category by the total

number of pixels of that category in the reference data. This measure indicate the

the same class, at the same position, in the generated image. On the other hand, if the to

It

probability that a point chosen at random from the truth source has a correspondence of

tal

number of correct pixels in a class is divided by the by the total number of pixels that were

classified into that category, we produce the "user's accuracy” or "object accuracy". This

category in the truth source, rather than describing how much of the environment has a
resemblance on the image. The statistical formulas used in the evaluation of the

classification accuracy are presented in table 3.

Table 3. Definition of the indicators of mapping accuracy (source: Helldén 1980)

measure denotes the probability that a pixel classified on the image actually represent that

N = total number of control points

A = the number of correctly mapped data for a specific class

YA = the total number of correctly mapped data (all classes included)
B = the number of sampled truth source data for a specific class

C = the number of map data for a specific class
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Producer's accuracy, classification accuracy: (A /B) x 100, denotes the probability that a randomly chosen
point of a specific class in the truth source has a correspondence of the same class in the same position on
the map/image

User's accuracy, object accuracy: (A / C) x 100, denotes the probability that a randomly chosen point of a
specific class on the map/image has a correspondence of the same class in the same position in the truth
source.

Areal difference: ((C - B) / B) x 100, denotes with how many per cent a specific class on the map/image has
been overestimated(+) or underestimated(-) in relation to the sampled truth source data for that particular
class.

Mean accuracy: (2 x A/ (B + C) x 100, denotes the probability that a randomly chosen point of a specific
class on the map/image has a correspondence of the same class in the same position in the truth source
and that a randomly chosen point in the truth source of the same class has a correspondence of the same
class in the same position on the map/image.

Total accuracy: (A / N) x 100, denotes the probability that a randomly chosen point on the map/image has
a correspondence of the same class in the same position in the truth source and that a randomly chosen
point in the truth source has a correspondence of the same class in the same position on the map/image.

3. METHODOLOGY
In effort to clarify the practical aspect of the theoretical background given in the previous

section, the working procedure is stated step-by-step below.

. The satellite data is read to an EASI/PACE PCI database from magnetic CCT tapes.

. The satellite image bands are then checked for systematic errors such as line drops or
striping.
. Ground control points for the geometric registration are identified on both the image

and the desertification map. A geometric correction package within the image
processing software, together with a digitizing tablet, are used to geometrically
register the image to the desertification map via a polynomial function.

. Four different vegetation indices are computed, and MSS band 6 alone is used as a
vegetation index as well.

. Principal component analysis is run on the raw satellite data, and the two first
components are used as vegetation indices in the evaluation.

. A digitized version of the desertification map (digitised at the Institute of Remote
Sensing Applications, Beijing) is imported to the image processing software. This

will allow for easy training site selection and accuracy assessment.
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. The polygon contours from the map are laid over the satellite image and training
sites are chosen from areas in the center of polygons identified as any of the four
desertification risk classes on the desertification map.

. Numerical data from the training sites of all vegetation indices are read and
statistically and graphically evaluated.

. The DN-value width of classes in standard deviation from the mean value of the
training data are decided upon, and thresholds between classes with spectral overlap
are calculated to allow for classification of the vegetation indices.

. The vegetation indices are single band classified and the four original MSS bands
are classified with the maximum likelihood algorithm.

. Each classified image is mode filtered to produce more homogenous areas that
resembles the degree of generalisation on the desertification map.

o Control points are systematically sampled from the desertification map for accuracy
evaluation of the classified images.

. Finally, error matrices are constructed for all classified vegetation index images, and

accuracy indicators are calculated and evaluated.

3.1 PREPROCESSING

The satellite image data in this study was selected to coincide with the peak growing
season and the compilation of the desertification map of the Horqin Sandy Land. The
Landsat5 MSS image data from August 22nd, 1991 (path 121, row 30, approximate image
centre, 121°E / 41°N) was bought from the Remote Sensing Technology Centre of Japan
(RESTEC), where the information in table 4 was acquired. Earth-sun distance values were
read from The Astronomical Almanac (1991). All image data analysis was conducted with

the EASI/PACE PCI software (V 5.2 on UNIX station, V5.3 and V6.0 on PC platform)

Table 4. Bandwidths (nm), post-calibration dynamic ranges (mW/cm?*pm/sr), DN maximum values, and
mean solar exoatmospheric spectral irradiances (mW/cm*/um) for the Landsat 5 MSS-data used in this study
(RESTEC pers. com.).

Platform MSS Band Band Width Lmin Lmax Esun DNmax
Landsat 5 1 116.2 0.34 20.48 184.9+0.2 127
RESTEC 2 98.8 0.48 16.60 159.5+0.3 127
910822 3 116.3 0.43 12.21 125.3+ 0.1 127
4 275.2 0.44 12.68 87.03+0.7 127
25
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The radiometric correction was performed by employing the equations provided by

Markham and Barker (1986). Maximum and minimum at satellite reflectance for the four
MSS bands were computed, and then uniformly rescaled to 8-bit data by multiplying with
a gain of 417.1804 and subtracting by an offset of 6.006. When these calculations have

been performed the actual image data was radiometrically corrected by a simple linear

stretch. The 32-bit at satellite reflectance values for bands 2 and 4 were retained for

calculation of NDVI and SAVI as recommended by Goward ef al. (1991).

The image was geometrically corrected by registering it to the 1:500,000 scale
desertification map via a second order polynomial transformation with a pixel estimate
standard error of 4.2 pixels, and a line estimate standard error of 4.6 pixels. A total of 23
ground control points were used in the transformation. Reflectance values were
interpolated using the nearest neighbour resampling method. The registration procedure
reduced the pixel size to 64.8 meters in both x and y directions. A total of 6,045,298 pixels

makes up a study area of 25,384 km”.

3.2 IMAGE PROCESSING
The four vegetation indices; NDVI, RVI, DVI, and SAVI were computed from the at-

satellite reflectance values (not rescaled for the NDVI and the SAVI). An adjustment
factor of 0.5 was used to calculate the SAVI. The soil line slope in the NIR-red wavebands
spectral plot was estimated to 1.0, and the index was thus unchanged by its multiplication

constant.

The first two principal components of the raw image data were calculated, and the image
data was rescaled to 8-bit data with data midpoint value of 127.5. The first component
(PC1) was found to contain 88.4% of the variation, and the second component (PC2)

10.7%.

To check the interrelation between image channels, a correlation matrix was computed for
the four original wavebands, and for the vegetation indices (Table 5). High inter-band

relationship was found in the typically high correlated MSS bands. High correlation was

also found between the vegetation indices, apart from MSS band 6 and the first principal
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component (PC1), which were also used as estimators of vegetation cover. PC1, on the

other hand, is highly correlated to the original wavebands.

Table 5.Correlation matrix for the original bands and the vegetation indices.

MSS4 MSS5 MSS6 MSS7 DVI RVI PC1 NDVI
MSS5 0.983
MSS6 0.823 0.821
MSS7 0.654 0.641 0.938
DVI -0.849 -0.878 -0.465 -0.196
RVI -0.661 -0.709 -0.291 -0.036 0.884
PC1 0.971 0.975 0.924 0.790 -0.754 -0.571
NDVI | -0.674 -0.705 -0.207 0.069 0.944 0.907 -0.542
SAVI -0.678 -0.710 -0.206 0.080 0.957 0.903 -0.542 0.992

3.3 IMAGE CLASSIFICATION

The digitized desertification map was laid over the image to assist in training site
selection. Eight sites distributed over the entire image for each of the four desired classes
were identified. These sites were chosen such that they were in the centre of desertification
class polygons on the 1991 desertification map and at the same time coinciding with the
same class on the older desertification map (early 1980’s). This procedure was used to
ensure that training sites were chosen, from a vegetation status point of view, relatively

stable areas.

An iterative single band classification approach of the vegetation indices was used to
decide upon the DN value width of each class. Ninety-five per cent (+ 1.96 standard
deviations from the mean) of the sampled training data for each class was used to classify
the images. Where spectral overlap between classes was found, the limit was calculated
according to the equation provided by Eklundh and Pilesjs, (1987). Table 5 (section 4)
shows the DN range for each class in the six vegetation indices.

DN values from each desertification class, for the six vegetation indices, were extracted
for descriptive statistic evaluation. Boxplots were made for visual interpretation of spectral
overlap, and F-test statistics gives a pointer to the separability between classes in the

vegetation indices.
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3.4 ACCURACY ASSESSMENT

A systematic sampling was chosen to draw control points from the thematic desertification
risk map of Horgin sandy land (1991). A total of 432 samples separated by 120 pixels in
both x and y directions were taken from the classification results. Control points not
falling within the area defined as the alluvial plain of Xiliao River, together with the
unclassified pixels were excluded from the analysis, as the objective was only to study the
plain affected by wind erosion. The result of the sampling was put into error matrices.
User's, producer’s, mean, and total accuracy was chosen to be used as accuracy estimates

|
together with the areal difference measure. |

4. RESULTS
The results of the separability analysis and the class limits calculations used for the

vegetation indices images are presented in boxplots (fig. 8) and in Table 6. The overlap
between classes in the different vegetation indices vary quite a bit. The training statistics
for the second principal component image showed the greatest overlap, and will not allow
for acceptable separation between classes, and was therefore excluded from the analysis.
Based on the F-test statistics, the indices show separability between classes in the

following ascending order: PC1, Band 6, DVI, NDVI, SAVI, RVL

Table 6. Descriptive statistics, and F-test statistics from the analysis of variance for the four desertification
degree classes in all vegetation indices. N is the total number of training data pixels for each class.

Band 6
F-test = 3463
Class N Mean Median StDev Min Max -1.96*

+1.96*
Latent 309 119.5 116 12.5 91 157 95 128
Slight 456 133.9 133 7.8 113 158 129 139
Moderate 299 159.3 160 9.7 138 181 140 175
Severe 319 192.2 194 9.5 166 214 176 211
DVI
F-test = 2136
Class N Mean Median StDev  Min Max -1.96*

+1.96*
Latent 309 145.3 145 13.8 112 193 133 172
Slight 456 124 1 126 9.1 92 147 118 132
Moderate 299 109.1 108 10.2 86 139 93 117
Severe 319 84.5 85 4.9 72 99 75 92
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RVI
F-test = 835
Class N Mean Median StDev  Min Max -1.96*

+1.96*
Latent 309 30.4 29 7.5 18 59 24 45
Slight 456 21.2 21 23 14 29 19 23
Moderate 299 18.4 18 1.8 15 25 17 18
Severe 319 15.9 16 0.6 14 18 15 16
PC1
F-test = 4627
Class N Mean Median StDev  Min Max -1.96*

+1.96*
Latent 309 107.2 104 10.9 85 137 86 118
Slight 456 125.8 125 7.6 110 149 119 136
Moderate 299 151.4 152 10.3 130 172 137 171
Severe 319 188.0 190 8.8 164 206 172 205
NDVI
F-test = 1026
Class N Mean Median StDev  Min Max -1.96*

+1.96*
Latent 309 155.3 155 10.0 135 186 147 175
Slight 456 141.3 142 5.4 119 156 139 146
Moderate 299 135.8 136 4.6 126 151 132 138
Severe 319 129.3 129 2.0 121 135 125 131
SAVI
F-test = 878
Class N Mean Median StDev  Min Max -1.96*

+1.96*
Latent 309 144.6 144 6.2 132 167 140 167
Slight 456 136.8 137 3.7 121 145 135 139
Moderate 299 133.4 133 3.5 125 145 131 134
Severe 319 128.4 128 1.8 122 134 125 130

* Values given as + 1.96 standard deviations from the mean if no overlap between classes were found. In

case of overlap the values are in italic.
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Figure 8. Boxplots showing the separability the four desertification classes in the six vegetation indices. The
boxes describe the interquartile range Q1 to Q3 (i.e. 75% of the data within each class). The lines that
extend from the top and bottom of the boxes, are defined as Q1 - 1.5 (Q3 - Q1) for the lower limit, and Q1
+ 1.5 (Q3 - Q1) for the upper limit. Outliers are points outside the lower and upper limits, plotted with
asterisks (*).

4.1 THE CLASSIFICATION
The maximum likelihood classification (of the four original wave bands) and the

classification of the vegetation indices resulted in four desertification risk classes: latent,
slight, moderate, severe, and no-identified pixels that seems to include water bodies,
marshlands, mountainous areas, urban areas, and some cultivated land. The areal extent of
each class are rather different among the different vegetation indices. The area of latent
risk makes up 31-43% of the total area, slight risk 22-31%, moderate risk 13-33%, severe

risk 6-12%, and unclassified 1-10%.

A5 x 5 pixels mode filter was used to clear the images and produce more homogenous
areas of the five classes. Filtering the images had quite a small influence of the areal extent
of classes within the images. No more than a 2% change in area was found when

comparing filtered with non-filtered classified images.

. |
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Figure 9 shows subscenes and reference data, approximately 53 by 39 kilometers in size,
of the classified and filtered vegetation indices images. The reference data is a taken from

the digitised desertification map. Polygon vectors from the reference data is overlaid the

vegetation indices for comparison.
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Figure 9. Selected subscenes for visualisation of the filtered classification results, and the reference data.
White through dark gray depicts severe, moderate, slight, and latent desertification degree. Black is
unclassified pixels .

4.2 ACCURACY ASSESSMENT
Table 7 shows fourteen error matrices for the classified images, including both raw

classified image data and the filtered image data. Rows represent the control data, and
columns the classified image data. Total accuracy was calculated in two ways. One where
only the four desertification classes are included, an one where areas classified as latent
but coinciding with areas marked as farmland on the reference map were included as
belonging to the latent desertification class. The total accuracy differs from 39.6% to
54.8%, with most results at about 48%. Including the farmland areas in the latent
desertification class improved the result with up to 7.4% (DVI). Filtering the images did
improve accuracy for all classification results, except for the DVI with farmlands included
in the latent desertification class. The improvement for the total accuracy was however

low, no more than 4.5%.

Individual class accuracy estimates, on the other hand, were greatly affected by the mode
filtering procedure. This is most striking for the severe desertification class which in most
cases increased user’s accuracy by about 12%, and as much as 15.4% for PC1. User’s
accuracy above 70% for the severe class was found for all classification results, apart from
NDVI and SAVI. The improvement of user's accuracy for the severe class was mostly

accounted for by the reduction of misclassified pixels in the latent, slight, and moderate
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categories, and only to a small extent by the reduction of misclassified pixels to the
moderate and slight classs. The producer’s accuracy measurements did not show the great
inter class differences. This is reflected in the difference between user’s and producer’s
accuracy for the severe class, which is greatly underestimated (se areal difference) with all

vegetation indices.

The moderate and slight desertification classes showed very low accuracy in the range of
19.6% (RVI) to 46.7% (SAVI). Latent desertification accuracy was about 60% for all
classification results. No vegetation index accuracy stands out as particularly good in

comparison to the others. It is, however, worth noticing that both the NDVI and SAVI has

much lower inter-class user's accuracy differences than any of the other vegetation indices.

NDVI and SAVI also show the least areal difference, about +12% for NDVI and +5% for
SAVI.

Tendencies for misclassification becomes clear when studying the error matrices in detail.
The latent desertification class is misclassified tothe slight category, and vise versa. The

moderate desertification class, however, is not confused by its neighbouring classes, but to
an equal extent misclassified as slight and latent. The severe desertification class is mostly

misclassified as moderate.

Table 7. Error matrices for all vegetation indices, both the raw classified data and the mode filtered,
classified data. Rows represents the control data, and columns the actual classified data. Farmland (from the
reference data) is counted as belonging to the latent class in the classified data. Total does include only the
four desertification degree classes. Indicators of accuracy are given in per cent: UA = user’s accuracy, PA =
producer’s accuracu, MA = mean accuracy, AD = areal difference, and TA = total accuracy.

Band6
latent slight moderate severe unclass. Total UA PA MA AD TA

latent 56 36 39 1 2 133 56.6 421 48.3 -34.3

slight 32 26 30 3 0 91 32.9 28.6 30.6 -13.2

moderate 9 13 21 6 1 50 19.6 42.0 26.8 114

severe 2 4 17 24 0 47 70.6 51.1 59.3 -27.7

unclass. 22 23 23 0 6 74

farmland 17 14 6 0 0 37

Total incl. 116 93 113 34 358 402

farmland

Total 99 79 107 34 9 321 39.6
21
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Bandé6 filtered

latent slight moderate severe unclass. Total UA PA MA AD TA
latent 50 29 42 0 2 133 58.3 45.1 50.8 -22.6
slight 35 25 31 0 0 91 38.5 275 64.1 -28.6
moderate 7 9 29 4 1 50 23.2 58.0 33.1 150
severe 1 2 24 19 1 47 82.6 40.4 54.3 -51.1
unclass. 21 22 26 0 5 74
farmland 17 14 6 [¢] o] 37
Total incl. 120 79 131 23 9 358 419
farmland
Total 103 65 125 23 9 321 41.4
DVI
latent slight moderate severe unclass. Total UA PA MA AD TA
latent 72 34 17 2 8 133 60.0 54.1 56.9 -9.8
slight 33 36 18 2 2 91 40.4 39.6 40.0 -2.2
moderate 13 10 23 4 0 50 315 46.0 37.4 46.0
severe 2 9 15 21 0 47 72.4 44.7 55.3 -38.3
unclass. 41 19 8 2 4 74
farmland 24 3 1 1 8 37
Total incl. 144 92 74 30 20 358 548
farmland
Total 120 89 73 29 22 321 47 .4
DVI filtered
latent slight moderate severe unclass. Total UA PA MA AD TA
latent 74 33 15 1 10 133 59.7 55.6 57.6 5.8
slight 35 39 16 0 1 91 44.8 42.9 43.8 -4.4
moderate 10 12 25 3 0 50 34.2 50.0 40.7 46.0
severe 5 3 17 22 0 47 84.6 46.8 60.3 -44.7
unclass. 42 16 9 2 5 74
farmland 22 2 2 0 11 37
Total incl. 146 89 75 26 22 358 50.8
farmland
Total 124 87 73 26 11 321 49.8
RVI
latent slight moderate severe unclass. Total UA PA MA AD TA
latent 65 44 8 4 12 133 58.6 48.9 53.3 -16.5
slight 31 45 11 2 2 91 38.8 49.5 43.5 27.5
moderate 13 15 16 6 0 50 34.0 32.0 33.0 6.0
severe 2 12 12 20 1 47 62.5 42.6 50.6 -31.9
unclass. 40 21 1 4 8 74
farmland 22 4 0 0 11 37
Total incl. 133 120 47 32 26 358 45.9
farmland
Total 111 116 47 32 15 321 455
RVI filtered
latent slight moderate severe unclass. Total UA PA MA AD TA
latent 59 43 7 2 12 133 60.0 51.9 55.6 -13.5
slight 32 44 11 1 3 91 38.3 48.4 42.7 26.4
moderate 11 19 15 4 1 50 34.1 31.9 31.9 -12.0
severe 3 9 12 23 0 47 76.7 48.9 59.7 -36.2
unclass. 39 22 0 3 10 74
farmland 21 3 1 0 12 37
Total incl. 136 118 45 30 28 358 48.0
farmland
Total 115 115 44 30 16 321 47.0
PC1
latent slight moderate severe unclass. Total UA PA MA AD TA
latent 63 48 20 1 1 133 53.8 47.4 50.4 -12.0
slight 40 29 21 1 0 91 29.3 31.9 30.5 8.8
moderate 13 15 17 5 0 50 22.7 34.0 27.2 50.0
severe 1 7 17 22 0 47 75.9 46.8 57.9 -38.3
unclass. 31 34 6 0 3 74
farmland 25 6 2 0 0 37
Total incl. 145 105 77 29 1 358 447
farmland
Total 117 99 75 29 1 321 40.8
PC1 filtered
latent slight moderate severe unclass. Total UA PA MA AD TA
latent 57 44 22 0 0 133 60.9 50.4 551 -17.3
slight 34 35 22 0 0 91 357 385 37.0 7.7
moderate 7 15 25 2 1 50 28.1 50.0 36.0 78.0
severe 2 4 20 21 0 47 91.3 447 60.0 -51.1
unclass. 32 33 6 0 3 74
farmland 28 9 0 0 0 37
Total incl. 138 107 89 23 1 358 492
farmland )
Total 110 98 89 23 1 321 46.1
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NDVI

latent slight moderate severe unclass. Total UA PA MA AD TA
latent 69 33 1 7 13 133 59.5 51.9 55.4 12.8
slight 31 38 13 7 2 91 43.7 418 42.7 -4.4
moderate 13 10 20 6 1 50 339 400 36.7 18.0
severe 3 6 15 20 3 47 50.0 428 46.0 -14.9
unclass. 42 16 4 2 10 74
farmland 23 3 1 0 10 37
Total incl. 139 90 60 40 29 358 47.5
farmland
Total 116 87 59 40 19 321 45.8
NDVI filtered

latent slight moderate severe unclass. Total UA PA MA AD TA
latent 72 32 12 5 12 133 60.0 541 56.9 -9.8
slight 33 41 12 2 3 91 456 451 453 -1.1
moderate 10 13 19 5 3 50 44.2 38.0 40.9 -14.0
severe 5 4 15 22 1 47 64.7 46.8 543 -27.7
unclass. 41 16 4 3 10 74
farmland 22 1 1 0 13 37
Total incl. 142 91 44 34 358 49.2
farmland
Total 120 90 43 34 19 321 48.0
SAVI

latent slight moderate severe unclass. Total UA PA MA AD TA
latent 70 38 6 9 10 133 57.9 52.6 55.1 -9.0
slight 35 34 13 7 2 91 37.0 37.4 37.2 11
moderate 11 14 18 6 1 50 37.5 36.0 36.7 4.0
severe 5 6 11 22 3 47 50.5 46.8 48.4 6.4
unclass. 43 15 3 0 9 74 |
farmland 24 4 0 0 9 37
Total incl. 145 96 48 44 25 358 46.9
farmland
Total 121 92 48 44 16 321 44.9
SAVI filtered

latent slight moderate severe unclass. Total UA PA MA AD TA
latent 73 32 10 6 12 133 59.8 549 57.3 -8.3
slight 32 42 12 2 3 91 46.7 46.2 46.4 -1.1 ‘
moderate 12 11 15 10 2 50 31.9 30.0 30.9 6.0
severe 5 5 10 26 1 47 59.1 55.3 57.1 5.4
unclass. 44 12 4 4 10 74
farmland 23 2 0 0 12 37
Total incl. 145 92 47 44 30 358 50.0
farmland
Total 122 90 47 44 18 321 48.6
ML

latent slight moderate severe unclass. Total UA PA MA AD TA
latent 64 44 17 2 6 133 61.0 48.1 538 -21.1 ‘
slight 28 40 19 2 2 91 38.8 44.0 41.2 13.2 (
moderate 11 14 18 4 3 50 25.7 36.0 30.0 40.0
severe 2 5 16 22 2 47 733 46.8 57.1 -36.2
unclass. 39 22 5 1 7 74
farmland 31 4 1 0 1 37
Total incl. 136 107 71 30 14 358 48.9
farmland
Total 105 103 70 30 13 321 449
ML filtered

latent slight moderate severe unclass. Total UA PA MA AD TA
latent 72 35 22 0 4 133 61.0 54 57.4 -11.3
slight 33 38 19 0 1 91 44.2 418 42.9 -55
moderate 11 1 21 4 3 50 259 42.0 321 62.0
severe 2 2 19 21 3 47 84.0 447 58.3 -46.8
unclass. 42 17 i 1 7 74
farmland 34 3 0 0 0 37
Total incl. 152 89 81 25 1 358 52.0
farmland
Total 118 86 81 25 11 321 47 4
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5. DISCUSSION

5.1 GEOMETRIC PRECISION

The image to map registration resulted in an error of as much as 300 meters in the y-
direction. This is not an acceptable error in many image analysis applications. The scale of
the map (1:500.000) to which the image was registered is the source of the large errors.
Ground control points such as road and railroad intersections were carefully chosen, but
the degree of generalisation in the map made precision at MSS data pixel level virtually
impossible. Roads, 0.7 mm in width on the map represents 350 meters in reality. The
result was not considered crucial for the study, and no extra effort was put into increasing
the precision. If images from other time periods were to be used in a change study it would

be preferable to carry out an image to image registration rather than image to map.

5.2 CLASSIFICATION TRAINING DATA
In this study the desertification map of the Horqin grassland (1991) was used as the source

both for training data, for the classifications, and as reference data for the accuracy
assessment. This approach might be argued as dubious, but was considered appropriate
since different samples were used for training data and accuracy evaluation. The map
should be used as reference data for estimating accuracy as the aim was to see whether or
not it was possible to produce a result similar to the map. The method employed assumes
that the classes found on the map can be estimated solely from the vegetation cover over a
specific area, and that satellite image derived vegetation indices can be used as indicators.
One should bear in mind that the collected training data were not only based on vegetation
cover but also on biomass change, and deflation and deposition. Undoubtedly, the most
rigid way to select training areas would be from field measurements on green vegetation
cover. And, if continuous monitoring methods like the one presented here were to be
implemented, several of the research field stations in the area could be used for supplying
training data from well defined locations that are vegetationally stable from one year to

another.
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5.3 ACCURACY EVALUATION
A total accuracy measure of about 50% does not show any convincing results for any of

the classified vegetation indices. The total accuracy of 54.8% for the DVI; with farmland
included in the latent desertification class was the best result. Farmlands were included in
the latent class in the accuracy assessment because it coincides with latent desertified areas
on the map. The slight increase in total accuracy by mode filtering the images can
probably be explained by the confusion between the latent, slight, and moderate classes.
Bare patches within these classes will be classified as severe, but will disappear after the
image is mode filtered to produce more homogenous areas. This is also the explanation for

the great increase of user's accuracy of the severe class after applying the mode filter.

The severe desertification class is characterised by semi-fixed and drifting sand dunes, and
a vegetation cover of less than 10%. But during the rainy season, interdune depressions
become waterlogged and vegetation can flourish for a short while. During this period
misclassification of pixels that describe dense vegetation within bare sand dune areas may
result. This problem was however successfully overcome with the application of a mode

filter.

The moderate desertification class showes the overall lowest user's accuracy. Itisto a
large degree confused with both the latent and the slight class. This can be explained by
the vegetation characteristics of the areas classified as moderate according to the Chinese
classification system. Annual plants contribute up to 70% of the fresh biomass. primarily
occurring in July and August. These areas will therefore, during the peak growing season,
easily be confused with the vegetationally more dense slight and moderate classes. It could
thus be argued that images registered at another time should be used. Without trying the
same classification approach on images from earlier or later in the growing season, it is
impossible to render which could perform better. One should, however, stick to the
growing season. Otherwise, due to the low amount of perennial vegetation, the moderatelv

desertified land would probably be confused with more severely degraded land.

There is no clear evidence to the low accuracy of the slight class. It is however clear that it

is greatly confused with the latent class. Annual plants might again be the culprit. As the
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|
image was registered at the peak growing season, the possibility exists that the vegetation "
characteristics of the latent and slight classes even out, due to the blooming of annual |

plants. : \

The maximum likelihood classification showed very similar results to the classification of 1
the vegetation indices and the first principal component. This points to the vegetation
being the contributor to the main variation of reflectance values inherent in the original

image data.

6. CONCLUSION

A straight forward classification approach to continuous monitoring of land degradation
severity in the Horqgin Sandy Land has been put forth, but the study did not show any
convincing results. The vegetation indices used for green cover estimation did not give
large differences when classifying the images (c.f Perry and Lautenschlager, 1984). These
classifications also showed equal results with the first principal component, and the
maximum likelihood classification. No single classification proved to be superior to the

others.

The results did, however, give hints to what could be done to improve the remote sensing
mapping. Training areas, with known vegetation cover, should preferably be chosen from
the field. Choosing images registered at the beginning of the growing season might also
improve the result, as the peak of annual vegetation could lead to an evening out of the
desertification degree classes as observed from a vegetation status standpoint. Also,
Landsat TM data derived vegetation indices may perform better. Elvidge and Chen (1995)
compared vegetation indices produced from different satellite sensors and found a 10%

increase in estimating green vegetation cover with TM data as compared to MSS data.
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7. SUMMARY
The Chinese steppe ecosystem has been subject to destructive impact from man for at least

the two last thousand years. In recent times the situation has worsened, and a national
programme for monitoring of arid, semi-arid and sub-humid areas has been implemented
by the Chinese academy of science. Under this programme several regions have been
thematically mapped in a scale of 1:500,000. Areas have been classified into four degrees
of desertification (latent, slight, moderate, and severe) on the basis of vegetation cover,
biomass change, deflation, and deposition. In this study it is hypothesised that the Chines
classification scheme can be reproduced only by studying the green vegetation cover as
estimated with Landsat MSS data derived vegetation indices. A efficient way to classify
the regions by using solely satellite data would enable monitoring on a yearly basis of the

areas, rather than on a decadal basis which is now the case.

A straight forward procedure for classifying the vegetation indices is put forth. The ratio-,
difference-, normalized-, and soil adjusted vegetation indices are tested together with MSS
band 6, the first principal component, and the maximum likelihood algorithm in
classifying the images in accordance with the Chinese classification system. The results
are evaluated for accuracy using The Map of Desertification in Horqin Grassland,
1:500,000 (1991), Lanzhou Institute of Desert Research, Chinese Academy of Science, as
reference data. The different vegetation indices show very similar classification accuracy
results, and no single index stand out as superior to the others. Total accuracy at about
48% is found for most indices. Individual class accuracy estimates are highly variable,

with mean accuracy in the range of 26.8% to 64.1%.

The low accuracy can probably be related to the fact that the image was registered at the
peak growing season when annual vegetation makes distinguishing of different stages of

land degradation on the basis of green vegetation cover virtually impossible.

It is concluded that if monitoring by satellite remote sensing are to be implemented as a
complement to the currents mapping schemes, refinements to the classification procedure

presented here has to be done.
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