
ADAPTABLE ANDROID APPLICATIONS

FOR PALCOM BASED SYSTEMS

Björn A. Johnsson

Master's Thesis at the department of Computer Science
Examiner : Boris Magnusson

Lund, 2011

Abstract

The aim of this thesis is to make it simple and e�cient to
produce applications for smartphones. The main area of
application is within the health care sector, where alarm
receiving devices are needed to inform personnel of pend-
ing situations. Most medical alarm systems are unique
and hence require a unique GUI (Graphical User Inter-
face). However, at the core, the main functionality is to
communicate with the medical equipment, and therefore
the needed smartphone applications would at the core be
very similar.

To address this issue, this thesis establishes the similar-
ity between the di�erent alarm systems by assuming that
they are based on a service based system called PalCom.
This ensures that the communication between the smart-
phone application and the system, as well as other basic
functionality, is done in the same way for all applications.
With a common core that can be reused for all applica-
tions for PalCom based systems, the issue of creating the
context unique GUIs remained. This was resolved by de-
veloping a GUI language specialized for PalCom systems.
The generic nature of the language ensures simplicity and
the possibility of ports for multiple platforms.

By combining the concept of service based systems with a
platform generic GUI language, this thesis resulted in an
Android application with a context adaptable GUI. The
GUIs are de�ned in �les using the developed language,
and by using these as input, an application with a GUI
customized for a speci�c scenario is obtained without the
need to rebuild from scratch every time.

Acknowledgments

I would like to thank my examiner Boris Magnusson for
the opportunity to work on this project, and for all the
support and advice he provided along the way.

Contents

1 Introduction 11

2 Problem description 13

3 Background 15
3.1 Introduction . 15
3.2 Ground work . 15
3.3 PalCom . 16

3.3.1 Palpable computing . 16
3.3.2 Architecture . 17
3.3.3 Devices . 17
3.3.4 Services . 17
3.3.5 Assemblies . 18
3.3.6 Communication . 18
3.3.7 Example scenario . 18

3.4 NetBeans . 19
3.5 GUI languages . 20

4 Objective 23
4.1 Introduction . 23
4.2 System control . 23

4.2.1 BrowserGUI tool . 24
4.2.2 Custom GUI . 25
4.2.3 Description based GUI . 27

4.3 Requirements . 27
4.3.1 Description language . 27
4.3.2 Description interpreters . 28
4.3.3 Example of use . 29

5 PalCom User Interface Markup Language 33
5.1 Introduction . 33
5.2 Overview of PUIML . 34

5.2.1 Structure of PUI Descriptions . 34
5.2.2 The universe block . 36
5.2.3 The discovery block . 38
5.2.4 The structure block . 38
5.2.5 The style block . 40
5.2.6 The behavior block . 42

5.3 Summary . 43

6 Interpreters for PUI Descriptions 45
6.1 Introduction . 45
6.2 PUID Interpreters . 45

6.2.1 Swing/AWT PUID Interpreter . 46
6.2.2 Android PUID Interpreter . 47

6.3 Details . 48

7 Validation 49
7.1 Introduction . 49
7.2 Example of PUI use . 49

7.2.1 System con�guration . 49
7.2.2 Comparison . 52

7.3 Validation of PUI Markup Language . 53
7.4 Validation of PUID Interpreters . 55

8 Future work 57
8.1 Introduction . 57
8.2 PUI Markup Language extensions . 57

8.2.1 Variables in PUIML . 57
8.2.2 Translatable constants in PUIML . 58
8.2.3 Property templates in PUIML . 58

8.3 Android PUID Interpreter . 58
8.4 Graphical PUI Description editor . 59
8.5 Real-life application . 59
8.6 PalCom integration . 59
8.7 Summary . 60

9 Evaluation 61

10 Conclusion 63

References 65

Appendices 65

A PUIML speci�cation 67
A.1 Units . 67

A.1.1 P:Device . 67
A.1.2 P:Service . 67
A.1.3 P:Command . 69
A.1.4 P:Param . 70

A.2 Parts . 70
A.2.1 G:TopContainer . 70
A.2.2 G:Area . 71
A.2.3 G:Tabbed . 72
A.2.4 G:Label . 72
A.2.5 G:TextArea . 74
A.2.6 G:TextField . 75
A.2.7 G:Image . 75

A.2.8 G:Button . 77
A.3 Layout properties . 79
A.4 Font properties . 80
A.5 Filename values . 81

B Implementation 83
B.1 Model . 83
B.2 Java front-end . 84

B.2.1 se.lth.cs.xbjorn.java_fe_puidi.parser.parts 84
B.2.2 se.lth.cs.xbjorn.java_fe_puidi.parser.units 85
B.2.3 se.lth.cs.xbjorn.java_fe_puidi.builder 86
B.2.4 se.lth.cs.xbjorn.java_fe_puidi.connector 86
B.2.5 se.lth.cs.xbjorn.java_fe_puidi.parser 86

B.3 Android back-end . 87
B.4 Swing/AWT back-end . 87

C Installation 89
C.1 Android PUID Interpreter . 89

C.1.1 Application . 89
C.1.2 PUI Descriptions . 89
C.1.3 Tunnels . 90

C.2 Swing/AWT PUID Interpreter . 90

D User's manual 91
D.1 Android PUID Interpreter . 91
D.2 Swing/AWT PUID Interpreter . 95

E PUIML code samples 99
E.1 Android PUID Interpreter . 99

E.1.1 Photo Printer . 99
E.1.2 Alarm Receiver . 102

E.2 Swing/AWT PUID Interpreter . 106
E.2.1 Photo Printer . 106
E.2.2 Photo Printer (BrowserGUI imitation) 109

Chapter 1

Introduction

The development of a Graphical User Interface (GUI) is a well established and time con-
suming stage in many software development projects. The purpose of the GUI is to enable
the possibly inexperienced end user to use the software as e�ectively as possible. How-
ever, as many developers will point out, the development of a GUI is no simple task. The
problems are varied, but mainly relate to the fact that describing the visual aspects of
the interface using code is not very intuitive. This problem can be addressed by using a
graphical editor, such as Interface Builder [1] or NetBeans [2]. With this kind of tools,
GUIs are created graphically, and the need to use code is very low, thereby simplifying the
development process.

When developing applications for smartphones, a good amount of special skills are required.
However, when one examines the available applications, one realizes that many of these
are very simple in their nature. Many applications are simply shells, used to display data
provided by a server which is doing all the actual computing. The technically challenging
cores of these shell application are in many cases very similar, but still have to be rebuilt
for every new application. This is one of the central problems addressed in this thesis.
The problem is particularly evident in service based systems, where the communication
between applications and services is done in the same manner.

In a service based system, each piece of functionality is represented by a service. These
services can be used directly, or combined to create new services. Working with a service
based system, this thesis aims to simplify the process of creating smartphone applications
that serve as shells for one or more services. By using a common service based system, a
common core for multiple applications can be formed. To further simplify the development
process, the GUIs will not be designed using the platform native language, but rather a
language that describes GUIs in a platform generic manner. This will not only ensure that
the complexity of the code, and therefore, the amount of special skills needed to create the
GUIs is kept low, but also that the applications can easily be ported to other platforms in
the future.

The need for a simpler method of developing smartphone applications was observed in
the health care sector. In a hospital, there are many situations when there is a need to
contact a speci�c professional, e.g. when a patient presses the call button, or goes into
cardiac arrest. Today, most hospitals use primitive systems, such as beepers, to alert the
personnel. Such devices provide little to no information about the patient or the situation

11

CHAPTER 1. INTRODUCTION

at hand. By using smartphones instead, considerably more information could be provided
and presented in a easily digestible way. However, di�erent hospitals and even di�erent
departments within the same hospital might need alarm system for di�erent purposes.
Therefore, many di�erent smartphone applications are needed.

By combining the concept of service based systems with a platform generic GUI language,
it is the aim of this thesis to produce a system that can create smartphone applications
with a context adaptable GUI. In doing so, it will be possible to create a uniform framework
that can be used for both patient calls and alarms.

12

Chapter 2

Problem description

In health care there are many situations when there is a need to contact professionals, for
example:

• when a patient consciously and explicitly wants to attract attention

• when some piece of supervising equipment detects a potential problem with a patient

• when a specialist needs to be called in during an emergency

There are various solutions to this problem in use today, such as di�erent visual queues
provided by �ashing lights in hallways and other spaces, or so-called pagers that invites
the wearer to dial the number provided. The power of such technologies are limited to
informing the receiver that there is a problem, but cannot to any useful extent explain the
nature of the problem. This issue argues for some solution based on so-called smartphones.
Such a solution would provide a number of immediate bene�ts. The medical personnel
already carry the equipment � a phone � with them. The phone can function both
within the premises of the hospital (over WLAN) and outside (over the 3G-network), e.g.
when on standby duty. A noti�cation may contain essential information including text,
pictures and graphs, and the same equipment can be used to react to the noti�cation, e.g.
respond to whoever raised the alarm.

Since the need to communicate alarms with smartphones has been identi�ed in a number
of medical situations, a general solution that works for di�erent kinds of alarms is sought
in order to avoid that multiple solutions are developed. Listed below are some medical
situations that might have di�erent alarm structures and would require di�erent formatted
alarm messages, but that all the same should be handled by the same solution:

Patient request A hospitalized patient needs to get in contact with the med-
ical sta�. Today, buttons are strategically placed around the hospital
rooms, and when pressed a nurse is summoned. In case of an emergency,
the nurse then contacts the doctor.

Sta� request There may be cases when the present sta� members need to
inform more competent personnel about a pending situation. Today, this
is done with primitive technologies that provide little to no information
on the case.

13

CHAPTER 2. PROBLEM DESCRIPTION

Patient monitoring To monitor the status of a patient there is a lot of su-
pervising equipment available. Whenever the equipment detects that the
patient is having problems the proper personnel must be informed of the
situation. Today, this is all handled manually.

Incoming patient In some cases, the sta� of the ambulance transporting the
patient can collect data on his/her vitals, and forward them to the future
doctor in charge. This way, decisions and arrangements can be made
before the patient even arrives at the hospital.

Standby duty When caring for patients in critical situations, around the
clock monitoring of their vitals might be necessary. It would be of great
value for a doctor on standby duty to be able to monitor the values pro-
vided by the supervision equipment directly in his/her smartphone.

As seen so far, there is a need to create Graphical User Interfaces (GUI) for smartphones,
the main reason being the need to present medical alarm messages in a graphically rich
manner. Because of the multiple medical situations where these GUIs need to be applied,
creating custom smartphone applications from scratch for each one would require a vast
amount of resources. Not only that, but working on the assumption that the medical
environment has an established internal structure connecting the medical equipment, the
applications would internally be very similar in terms of functionality, whilst the GUIs
themselves might be radically di�erent. Hence, a major part of the process of creating
the GUI for a new alarm system would be wasted on replicating (with minor changes) the
functionality of previously developed applications for other alarm systems. From this, the
two major problems that need to be resolved in order to create a solution that can be
shared between several medical alarm systems can be deduced:

1. Since the smartphone applications share many similarities internally, there is a great
need for a common base in order to avoid unnecessary redevelopment.

2. Since the solution will be applied to multiple alarm systems, the amount of resources
that goes into developing the GUIs should be kept as low as possible.

It is the aim of this master's thesis to address the problems discussed above.

14

Chapter 3

Background

3.1 Introduction

This chapter will provide background information and introduce concepts that are needed
to understand the rest of this thesis. The work on which this thesis builds upon is discussed,
followed by a rundown of the PalCom framework. Lastly, the GUI builder of NetBeans
and the concept of GUI languages are introduced and considered for the purpose of this
thesis.

3.2 Ground work

In order to further specify the target problem of this thesis, as well as narrow down its
scope, a study of a related master's thesis is appropriate. The work that will be discussed
in this chapter section was carried out by Erik Johansson and Thomas Persson at Lunds
University in 2010 [3].

In the report, the authors take on the task of introducing a new device to distribute alarm
messages to the sta� at hospitals in Region Skåne. As in this thesis, the new device in
question was a smartphone. However, unlike this thesis the authors were only interested
in a single source of alarms, namely a newly developed, wireless alarm button. To connect
the alarm buttons with the smartphones they had to develop an entire new patient alarm
system. This system also had to be connected to several medical databases to be able to
get information on patients, so that relevant information could be included in the alarm
messages. The system was built upon a framework called PalCom (see chapter 3.3), and
a major part of the work was to connect all the di�erent parts of the system to this
framework. Once the system was in place, a GUI was developed for the smartphone in
order to display the data sent in the alarm messages. However, this GUI was tailor built
for this system alone, making it useless in the context of a di�erent, although perhaps
similar, medical alarm system.

The thesis proves that a viable alarm system can be developed using PalCom to connect
some alarm source (alarm button, heart rate monitor, etc.), one or more medical databases
and smartphones to display the alarm messages produced by the system. The problem is

15

CHAPTER 3. BACKGROUND

that the thesis solves the problem for a speci�c case, and if a similar system was to be
developed for another case there would be a lot to redo, from two perspectives:

1. System connectivity

2. Smartphone GUI

Perspective 1 refers to the aspect that in a di�erent system, their is likely to be di�erent
alarm sources, databases and di�erent alarm message formatting. While much of the work
of the authors can be reused in a new system, there is bound to be key di�erences that
require major redesign of the system.

Perspective 2 refers to the fact that in a new system, the alarm messages will certainly
contain di�erent kinds of data and di�erent formatting, i.e. were and how information is
displayed in the GUI. Since the included data and formatting of the alarm messages are
tightly bound to the producing alarm system, no two GUIs are likely to be the same, and
from this perspective, non of the authors work is reusable. New system, new GUI.

Above we have seen two perspective were the work of Johansson and Persson would need
to be reworked to make it dynamic enough to be reused in a new system. To narrow the
scope of this thesis, only the second perspective will be treated. That implies that for all
intents and purposes, the actual system producing the services can be substituted by the
simulated system for the duration of this thesis. It also implies that the product of this
thesis will be a customizable GUI that can be used for most, if not all, future systems of
the kind described in [3].

3.3 PalCom

In the work of Johansson and Persson [3], which future systems will be based on, the
components of the system are connected using a framework called PalCom. Since the
customizable GUI proposed in this thesis will be tightly bound with PalCom, a basic
understanding of the purpose of PalCom as well as its primary components is essential for
this thesis, and will be covered in this chapter section.

3.3.1 Palpable computing

Ubiquitous computing [4] refers to a new type of computing in which computers (in di�erent
forms) completely penetrates all aspects of the life of the users. Instead of just having multi-
purpose personal computers in the form of desktop computers and laptops, a seemingly
endless array of other computing devices are emerging. Examples of such ubiquitous
devices are smartphones, digital cameras, GPS-devices, etc. What distinguishes this new
type of computers from the traditional ones is that these devices are usually built to solve
a limited set of problems, and therefore only o�er one or a few speci�c services. In the case
of a GPS-device, its sole purpose is to calculate the global position of the user, and will
most likely o�er this position as a service to the user. An issue that arises with these new
devices is that to fully take advantage of their power, communication amongst one or more
devices is often necessary. Since most devices o�er only one or a few prede�ned methods
of communication, connecting any number of devices with each other is guarantied to be
a challenging and time consuming task.

16

3.3. PALCOM

The problem of having di�erent devices communicate with each other was addressed by the
PalCom (Palpable Computing) project, which ran from 2004 through 2007. The project
aimed to solve this problem by introducing the concept of palpability to the emerging
computing devices. The term �palpable� denotes systems (here: devices) that can be both
noticed and logically understood [5]. This means that palpable systems should support the
user in understanding and controlling the services provided by their devices, by o�ering
a coherent interface. The project extended to how services on any type of device may be
logically interlinked with each other, providing not only the means to control individual
devices, but actually combining several devices to provide entirely new possibilities [6].

3.3.2 Architecture

The fruit of the PalCom project was the PalCom framework � the implementation of
the open PalCom architecture. The framework is implemented in Java and consists of
a set of communication protocols and logical structures representing the various parts of
a palpable system. The most central of these are devices, services and assemblies. The
interaction between these three is achieved through discovery, connections and tunnels.
These concepts are discussed in the subsequent chapter sections.

3.3.3 Devices

A PalCom device represents any kind of device. A devices can be a piece of hardware, like
a digital camera, or a software simulation. Ideally, the PalCom devices should run on the
physical devices' own system and communicate directly with its interface. However, this
is not always possible, and therefore it is sometimes useful to run the PalCom device on
a simulated device (on a computer). The simulated device then serves as a layer between
the PalCom environment and the system of the psychical device.

The purpose of the device is to host services and manage their identity in the PalCom
environment. The devices also run several managers to function in the environment.

3.3.4 Services

A PalCom service is hosted on a PalCom device and typically represents some kind of
computation or action that can be performed by the device. The services can have a
direct link to something in the physical world, such as displaying a text on the screen of
the device, but may also be strictly con�ned to the software environment, such as updating
an internal counter in the device. A service is de�ned by its service description, which
de�nes the interface towards which the user will operate. The description speci�es a list
of commands that the service provides for the user. It is through sending (and receiving)
commands that the user manipulates a given service.

A command is a message that can be passed to, or received from, a service. They are
identi�ed by a name (ID), a direction which speci�es whether the service wants to receive
or send the command, and an optional list of parameters. It is in parameters (params)
that the data being passed to or from a service is actually stored. A param is identi�ed
by its name (ID), and may contain di�erent kinds of data, such as plain text, images, etc.

17

CHAPTER 3. BACKGROUND

3.3.5 Assemblies

The logic of interaction between services is handled by assemblies. Assemblies are con-
�gurations that describe how and when communication between services should happen.
The con�guration consists of references to devices and their services, how these should be
connected, and de�nitions (scripts) describing when and what the services should commu-
nicate. Aside from simply passing data between services at the right time, assemblies can
also form new services, so-called synthesized services.

3.3.6 Communication

The discovery protocol is what makes the PalCom devices aware of each other. This is
achieved through heartbeats; periodically sent broadcast messages that urges all devices
to identify themselves as �alive�. Whenever communication between two devices is needed,
a connection is created based on the discovery data. The connection is cleaned up by
the discovery protocol when it is determined to be �dead�. Discovery is limited to �nding
devices that reside within the local area network. However, a tunnel can be used as a
simple means of extending the PalCom environment to include a remote location. These
tunnels are simple connections between two networks that basically forward PalCom tra�c,
like heartbeats, from one network to another, making it appear as if devices on di�erent
networks are actually on the same.

3.3.7 Example scenario

Presented below is a complete example scenario to demonstrate the power of PalCom, as
well as to further clarify the purpose of the di�erent components. In the example, three
services on three di�erent physical devices cooperate to ful�ll a greater goal.

Surveillance is important in today's society. In this �ctive scenario, there is some prede�ned
immobile object that is to be photographed with a constant frequency, say once every
hour on the hour. The image is to be printed and handed to quali�ed personnel for closer
inspection. The obvious way to solve this problem is for some one person to physically be
in the the vicinity of the object in question, closely monitor his/her watch and every hour
snap a picture of the object. The picture is then to be printed and handed to a courier
who rushes it to the right people for inspection.

It should be obvious to the reader that the problem in the scenario can be solved a lot
easier than described above using current technology, but for the sake of demonstrating
how PalCom can be used to combine di�erent devices to solve a task, let's assume that it
can't be solved any easier.

One way to solve the problem is to mount a digital camera pointed at the object, and have
some kind of timing device (e.g. a computer) tell the camera to snap a photo every hour
on the hour. The photo can then be sent over some network (e.g. WIFI, 3G, . . .) to a
remote site, where a printer is instructed to print the photo. The printed photo can then
be inspected by the right people.

The solution is illustrated in �gure 3.1. The digital camera provides services both for
snapping a picture as well as fetching taken photos. The timer device provides a service
that signals with a prede�ned frequency. The printer o�ers a service that takes a picture

18

3.4. NETBEANS

Figure 3.1: Scenario layout; devices and connections

as input, and prints it on paper. Note that in the �gure, the camera is on a di�erent
physical location than the other devices. These two locations need to be connected, but
that part of the solution is not relevant to this example, and is therefore illustrated with
a cloud in the �gure. The intelligence of the system is provided by the assembly (triangle
in �gure 3.1). When the timer device signals that it is time to snap a photo, the assembly
contacts the camera and makes it snap a photo. The assembly then fetches the photo from
the camera and forwards it to the printer service, which in turn prints the photo.

This simple example showcases how PalCom can be used to combine otherwise incompat-
ible devices. While developing and implementing services similar to the ones described
above might require a quite high level of competence, once developed they are incredibly
�exible and can be reused in any number of di�erent solutions.

3.4 NetBeans

NetBeans is an integrated development environment that, among other things, allows the
developers to rapidly create Java applications. The environment o�ers a wide variety of
features, but the most relevant for this thesis is the Swing GUI Builder [2]. This is a
graphical editor that makes it possible to create GUIs by dragging and positioning GUI
components from a palette into the main frame of the GUI. The builder automatically takes
care of the spacing and alignment of the components, and the developer has constant visual
con�rmation of what the �nal GUI will look like.

The NetBeans Swing GUI Builder simpli�es the process of creating a new GUI for a Java
application. As mentioned above, the developer can at all time see what the �nal GUI
will look like. This constant visual feedback is sure to decrease the amount of time that is
required to get the desired look for the GUI. Furthermore, the amount of code that has to
be produced by the developer is signi�cantly reduced. This is due to the fact that whenever
the developer adds a new GUI component, the code needed to create said component is
automatically added to the underlying Java �le. The same is true for when the developer
changes the properties of existing components. The only code that the developer has to

19

CHAPTER 3. BACKGROUND

write manually is the code that links the components of the GUI to the actual application.
This is sometimes referred to as glue code, and serves no purpose other than to link together
parts of code. In this case it links the code describing the GUI with the code describing
the functionality of the application.

The GUI builder described in this chapter section undoubtedly makes the process of pro-
ducing a GUI simpler. However, the GUIs are not independent: for every new GUI that
needs to be created, a new underlying basis, i.e. application, has to be created. Using the
NetBeans IDE, this basis is created e�ortlessly, but for other platform the situation might
be di�erent. Another issue that stands unsolved is that when the GUIs should be used
to control systems that are service based, the functionality of the applications (service
communication) will be very similar. Even so, the functionality has to be rebuilt for each
solution, since it has to be tailor made to suit the target service(s) of the system.

As mentioned earlier, the GUI components are linked to the functionality of the application
using glue code. Furthermore, the functionality itself can be seen as glue code in that it
only links the aforementioned glue code to the actual functionality that resides within the
services of the target system. The use of glue code upon glue code indicates that the use
of traditional graphical GUI editors like the one discussed in this chapter section is not
optimal for the purpose of this thesis.

3.5 GUI languages

When creating GUIs for one speci�c target platform, the process is usually pretty straight
forward. The developer is typically o�ered one or more graphical modules, or packages,
that can be used to programmatically create the GUI using the programming language of
the target platform. Another common method is that the programmer is presented with
a graphical editor. In such editors, the developer can specify the appearance of the GUI
without the need to write any code.

When creating generic GUIs, i.e. GUIs that should be usable on multiple platforms, the
process is more complex. Di�erent platforms di�er not only in what can be described,
but usually also in how the description should be structured. One way to get around
these problems is to use a GUI language that was created to describe GUIs in a generic
manner. There are plenty of alternatives for this purpose. Some studied languages that
�t the description are UsiXML [7], XUL [8] and UIML [9]. All of these were developed to
de�ne GUIs that should be usable in di�erent contexts, such as on di�erent devices and/or
platforms.

Traditionally when de�ning generic GUIs, or GUIs in general really, the formula is often
the same: de�ne what components should be included, where they should be positioned,
what they should look like, and in this case most importantly, what they should do. Any
interactive graphical component, e.g. a button, can be linked to some prede�ned behavioral
script that describes what should happen when the user interacts with the component. In a
truly generic GUI description, such scripts can and must be extremely complex to provide
the means for complex functionality. Any component can be linked to an in�nite number
of functionality descriptions.

For the purpose of this thesis, the behavioral expressiveness of the generic GUI language
will be adjusted. The GUI language will remain generic from a platform standpoint in
that the same language can be used to specify GUIs for multiple target devices, such as

20

3.5. GUI LANGUAGES

computers, television sets, or smartphones. However, the GUI language will be strictly
limited to providing the means of de�ning behavior for PalCom entities (devices, services,
etc.) only. While this is a severe limitation on the behavioral power of the language,
the gain is that the GUI de�nitions will be much simpler and shorter. Any interactive
graphical component can only be linked to a limited number of PalCom entities, instead
of an in�nite number of functionality scripts. Since the link itself implicitly de�nes the
desired behavior, no further behavioral description is needed. More on this later.

The use of GUI languages will prove to be a key aspect of producing a GUI that can be
reused for more than one alarm system. Even if the languages mentioned in this chapter
section mightn't �t the purpose of this thesis on the most �ne grained level, they will at
the very least provide a good basis for an extended language.

21

Chapter 4

Objective

4.1 Introduction

Building on the fact that the alarm system created by Johansson and Persson [3] is built
upon the PalCom framework, this chapter will discuss the traditional methods of control-
ling such systems. Furthermore, a new alternative method will be introduced, along with
a set of requirements that de�ne the new method.

4.2 System control

The way to control a system that is built upon the PalCom framework is to control some
speci�c PalCom services within the system. It is through interacting with such services
that the user gets the means to in�uence the entire system. To control a service, or a set
of services, there are today two main alternatives:

1. Use the BrowserGUI tool

2. Build a custom GUI from scratch

As will be shown in the next two chapter sections, both alternative 1 and alternative 2 can
be considered to be extremes. For the purpose of this thesis, a new alternative method of
controlling services will be introduced:

3. Build a custom PalCom GUI using descriptions

These three alternatives will be presented and discussed in the upcoming chapter sections.
In order to clarify these and future concepts, the scenario from chapter 3.3.7 will be
modi�ed to serve as a general example for the rest of this thesis. In the example scenario,
a photo snapped by a camera is printed on a printer every time a clock device ticks, i.e.
with a certain frequency. In this modi�ed version the clock device will be replaced by some
sort of GUI, so that the user decides when the process should be triggered. To elaborate
the example the camera should be able to notify the observer if it detects motion in the

23

CHAPTER 4. OBJECTIVE

image. Also, when the photo is to be printed, the user should be able to provide a text
that will be printed in the lower right hand of the photo. If all this functionality was to
be collected into a synthesized assembly, the service description would have the following
commands:

• MOTION : output
The command signals that the camera has detected motion in the image.

� MESSAGE : text

A message explaining the motion.

• SNAP : input
The command is used to make the camera snap and store a photo.

• PRINT : input
The command is used to print the most recent photo taken by the camera.

� MESSAGE : text

A message to be printed along with the photo.

4.2.1 BrowserGUI tool

The BrowserGUI tool is a tool native to the PalCom framework. It enables the user to
connect to one or more PalCom network of their choosing. Once connected, all of the
available PalCom devices on the network(s) are accessible to the user. To control any
given device, the user simply selects it from the list. The user is now presented with all of
the PalCom services that the chosen device o�ers. If the user selects one of these services,
s/he will be presented with a simple GUI to control said service. The level of control that
is o�ered is however at its most basic. The PalCom commands of the service are found
through its service description, and are displayed graphically as bordered areas with the
command ID as the title. Inside these areas, the PalCom parameters are listed one by one
in the order they appear in the service description. They are displayed as the parameter
ID coupled with a control to edit or display the parameter value. At the time of writing,
the BrowserGUI tool supports only two parameter data types: image and text. As an
example, �gure 4.1 illustrates what the GUI generated by the BrowserGUI tool looks like
when controlling the service described above.

Figure 4.1: Example GUI generated by the BrowserGUI tool

Acquiring control of a service using the BrowserGUI tool requires virtually no work at all
from the user. The tool is started, and when the correct device/service has been located,

24

4.2. SYSTEM CONTROL

it's immediately ready to be controlled. However, this accessibility comes at a cost: The
user is o�ered no way to control what is displayed. All commands and parameters for
any given service are shown, and there is no way to reorganize or change the look of the
components. Another issue associated with the BrowserGUI tool is its indirect approach
of acquiring control of services. After starting the tool, the user has to connect to the
appropriate networks and then, using the browser provided by the tool, navigate to the
desired service. It's only after doing all this that the user is presented with a GUI to
control the service in question. For an inexperienced end user, this process might be too
technically challenging.

Figure 4.2 illustrates what the example scenario system described earlier would look like
if controlled by a the BrowserGUI tool. Notice that the tool connects directly to the
synthesized service in order to control it. This is made possible by the discovery mechanism
that is built into the tool, which allows the tool to �nd and in�uence the synthesized service.
A bene�t of controlling a service in this manner is that multiple GUIs can connect to the
same service.

Figure 4.2: Example scenario controlled with BrowserGUI/ad hoc GUI (2)

4.2.2 Custom GUI

An alternative way of controlling a service is to build a custom GUI from scratch. In
relation to alternative 1, this involves a lot of work. Aside from the task of designing
and implementing the actual GUI, the developer must also link the GUI to the PalCom
universe. This can be done in one of three ways.

The �rst possible way is illustrated in �gure 4.3. Notice that it is the inverse of how the
service is controlled by the BrowserGUI tool (�gure 4.2). Instead of the GUI �nding the
assembly (service), the assembly �nds the GUI. Since the assembly must recognize all GUIs
involved in the system, a drawback of this approach is that in order to connect another
GUI to the system, the assembly has to be updated to include the new GUI.

The second possible way is to mimic the method used by the BrowserGUI tool. Because
of this, the system looks the same as for the BrowserGUI case, i.e. �gure 4.2. To get this
e�ect, the developer has to, not only develop the custom GUI itself, but also a custom
discovery mechanism. The gain is, as with the BrowserGUI tool, that multiple GUIs can
connect to the same service without the need to update the system. The drawback is that
for every new custom GUI, a new discovery mechanism has to be implemented.

25

CHAPTER 4. OBJECTIVE

Figure 4.3: Example scenario controlled with ad hoc GUI (1)

The third possible way is illustrated in �gure 4.4. The GUI is connected to the synthesized
service via a 1:1 transit assembly. This assembly initiates the connections and forwards
data from the service to the GUI, and vice versa. As before, this connection approach
allows for several GUIs to connect to the same service, and while this method doesn't
require a custom built discovery mechanism, the transit assembly has to be specially made
for each GUI.

Figure 4.4: Example scenario controlled with ad hoc GUI (3)

When using this alternative method of controlling a service, every solution consists at the
very least of one ad hoc GUI. Depending on which approach is selected to connect the
GUI with the service, either signi�cant system updating or ad hoc appendages are needed
to get a fully functional system. While some of what needs to be done can surely be
recycled from previous solutions, the vast amount of work needed to get a working system
should nonetheless be considered a major drawback of this method. However, the gain
of using this method is not insigni�cant. It e�ectively solves the issues associated with
the BrowserGUI tool. Since the GUIs are custom built for each di�erent scenario, their
content, looks and behavior is extremely versatile. A direct point of entry will most likely
be provided for the user by the developer.

26

4.3. REQUIREMENTS

4.2.3 Description based GUI

Both alternative 1 and alternative 2 can be considered to be extremes: alternative 1
requires virtually no e�ort to get started, and o�ers no way to customize the GUI. Alter-
native 2 on the other hand is very customizable, at the expense of the amount of e�ort to
get it working properly. For the purpose of this thesis, a solution that combines the low
development e�orts of alternative 1 with the high customization power of alternative 2 is
desirable. In view of this, a new alternative for controlling services is introduced as an
objective for this thesis.

This new alternative should be more closely related to alternative 2 than to alternative 1 in
that the user gets a custom GUI for each scenario. To facilitate the introduction of multiple
GUIs for the same service, the GUIs should connect directly to the target service using a
discovery mechanism. However, instead of having to rebuild the discovery mechanism and
the GUI for every new scenario, they will instead be reused, and the only thing that needs
to be rebuilt is a description �le. The description �le describes what the GUI should look
like, and what its behavior should be. Figure 4.5 illustrates what the example scenario
system would look like if controlled using this approach.

Figure 4.5: Example scenario controlled with description based GUI

The gain of this approach, in relation to alternative 2, is that instead of have to rebuild from
scratch for each new scenario, only a single �le has to be rebuilt. The compromise is that
since the GUI language of the description �le should be platform generic, the customization
power can not be as high as when building natively for the platform, as with alternative 2.
It is however much greater than the customization power of alternative 1 (none), and
considering how much less e�ort has to be put into the development of the GUI, it should
be considered as a fair trade-o�.

4.3 Requirements

4.3.1 Description language

As mentioned above, the proposed method to reuse both discovery mechanism and GUI
is controlled by a description �le. The language of this �le has to meet some minimum
credentials. It is stated above that the new method should provide more customization

27

CHAPTER 4. OBJECTIVE

power than the BrowserGUI tool. One implicit requirement for the description language
would thus be:

• The language should provide the means to express a GUI that is comparable in terms
of looks and functionality to that of a GUI generated by the BrowserGUI tool.

This is a minimum requirement, but simply by ful�lling this requirement the language
should already be able to express more complex GUIs than the BrowserGUI tool can. More
formally, the language should in terms of graphical expressiveness provide the following:

• The means to create the following Generic Graphical Components (GGCs):

� Multi-lined text label.

� Single-lined text input box.

� Clickable button.

� Scalable image viewer.

� Area that can hold other components.

� Tab control.

• The means to control how the GGCs are laid out in the GUI.

For each GGC the language should provide some graphical adjustment properties. These
properties will be worked into the language as the need arises, and will therefore not be
expressed as formal requirements.

In terms of behavioral expressiveness, the language should provide the following:

• The means to represent and reference PalCom entities; devices, services, commands
and parameters.

• The means to use data provided by selected GGCs in the form of text and images
as the value for parameters.

• The means to in selected GGCs display data, in the form of text and images, provided
by parameter values.

• The means to invoke a command (i.e. sending the command along with the associated
parameter values to the respective input command �port� of the target service) using
selected GGCs.

As already mentioned in chapter 3.5, the language will be strictly limited to providing
the means of de�ning behavior for PalCom entities only. Due to this, the behavioral
requirements listed above provide su�cient coverage.

4.3.2 Description interpreters

As discussed in chapter 4.2, the proposed way of lowering the amount of work that has to
be done to get a working GUI is to introduce the concept of description �les. With the
description �le describing the GUI, this �le is the only thing that has to be replaced for
di�erent scenarios. This translates into the following requirements that must be ful�lled
by description interpreter applications:

28

4.3. REQUIREMENTS

• The application must allow the user to load one (1) out of the available description
�les.

• The application must be able to create and display a GUI as de�ned by the descrip-
tion �le.

• The application must be able to connect to PalCom entities and communicate with
these as de�ned by the description �le.

These simple yet comprehensive requirements will ensure that everything but the descrip-
tion �les is reused for all scenarios.

The BrowserGUI tool requires at least �ve selective user operations (clicks) to get control
of some service. A custom GUI would at best require only one (starting the application).
Here, the term selective user operation refers to an operation where the user has to identify
some target before acting, e.g. �nd the correct PalCom device and then clicking it. Since
the proposed description based solution has to handle multiple descriptions, the following
requirement is introduced:

• The application must allow the user to gain control over a prede�ned service in two
(or less) selective user operations.

4.3.3 Example of use

In order to reconnect to the larger problem at hand, i.e. providing alarm devices for the
medical sta� at hospitals, the scenario from the work of Johansson and Persson [3] will
be discussed. Details about the scenario might be added or removed in order to �t the
purpose of this thesis.

Figure 4.6: System setup of the patient alarm scenario

In the scenario, the authors have designed a complete alarm system using PalCom. The
system involves, among other things, alarm buttons which are used to trigger an alarm and

29

CHAPTER 4. OBJECTIVE

several medical databases to fetch information about the patient in distress. Whenever a
patient presses his/her alarm button, a message with information about the patient is sent
to a prede�ned physician. The alarm system converges into a single PalCom service. This
service has an output command with one parameter for each piece of information about
the patient: �rst name, last name, medical information, etc. It is through this command
that the alarm system communicates with the receivers. The system setup is illustrated
in �gure 4.6.

The doctors use Android powered smartphones to receive alarm messages. The authors
made this possible by developing a custom Android application speci�cally for this alarm
system. When an alarm is received, even if the application is running in the background,
a noti�cation accompanied by sound and vibration is displayed to catch the attention of
the user. When the user clicks it, the GUI appears and displays the alarm message as
seen in �gure 4.7. At the bottom of the GUI there are three buttons: a left arrow, a right
arrow and a phone receiver. When the user presses the left arrow button, the previous
(in chronological order) patient alarm message (if any) is displayed. Similarly, when the
user presses the right arrow button, the next patient alarm message is displayed. Finally,
when the user presses the phone receiver button, a phone number provided by the alarm
message is dialed.

Figure 4.7: Alarm message GUI for button triggered patient alarms

The purpose of this example is to introduce a somewhat abstract requirement for the
description interpreter application running on the Android platform:

• The language and the application running on the Android platform must be pow-
erful enough to specify and run a GUI that is comparable in terms of looks and
functionality to that of the example above.

30

4.3. REQUIREMENTS

To reiterate; this requirement is by choice abstract in its nature and is to be consider
more as a general guide line than an o�cial requirement. During the evaluation phase
of the project, a replica of this scenario will be constructed to showcase the power and
possibilities of the new application.

31

Chapter 5

PalCom User Interface Markup

Language

5.1 Introduction

During the analysis of the languages used to specify GUIs in a generic fashion that were
brie�y introduced in chapter 3.5, it became apparent that any of the alternatives would
provide more than enough expressive power for the purpose of this thesis. In fact, these
languages provided, in more than one sense, too much power. To ensure that the GUI
de�nitions are short and simple to understand, the proposed language has to be simple
and should not provide redundant features. The researched languages provide too much
expressive power in terms of graphics. The graphical requirements set up in chapter 4.3.1
can be met with a fraction of what the studied languages provide. Furthermore, the
vast power to de�ne behavior of these languages would only make the proposed language
needlessly complicated, due to the fact that said language only needs to have a limited set
of actions that all involve PalCom entities.

In view of the observations above, it was determined that the required language would
have to be tailor suited for the purpose of this thesis. However, most of what is needed for
this proposed new language is already present in the researched languages. By using one
of these languages as a starting point, the proposed language would then be created by
removing redundant features, modifying others, and adding completely new features that
are needed for the new language. Since all of the studied languages could be used as the
base for the new languages, it came down to personal preference when choosing the base.
The relative simplicity of the GUI de�nitions provided by the language UIML [9] made it
the most preferable base for the new language.

The language custom �tted from UIML for the purpose of this thesis is presented in this
chapter. It is assigned the name PalCom User Interface Markup Language (PUIML).

33

CHAPTER 5. PUIML

5.2 Overview of PUIML

5.2.1 Structure of PUI Descriptions

The PUI Markup Language is used to de�ne PUIDs, or PalCom User Interface Descrip-

tions. PUI Descriptions, in turn, are used to describe PUIs, or PalCom User Interfaces,
which are GUIs created from a PUID, for the purpose of controlling PalCom services.
PUIDs are structured using the eXtensible Markup Language (XML), and always contain
two primary descriptive blocks: universe, which de�nes the units of the description, and
structure, which de�nes the parts of the description. Units represent the PalCom entities
that should be included in the system, while parts represent the graphical components
that make up the PUI presented to the user.

The universe block is supplemented with the discovery block. This contains various
properties for the units de�ned in the universe block. The main purpose of the discovery
properties is to identify the PalCom entities.

The structure block is supplemented with the style and behavior blocks. Both of these
contain various properties that a�ect di�erent aspects of the parts de�ned in the structure
block. The style properties specify the visual characteristics of the graphical components,
while the behavior properties specify how they should behave. The described overview of
a PUID is illustrated in �gure 5.1.

Figure 5.1: Structural overview of a PUI Description

In PUIDs, units are represented by XML elements with the name �unit�. These elements
have two XML attributes: id, a unique ID string that identi�es the unit within the de-
scription, and class, which describes what type (class) of unit is being represented (more
on this later). Depending on the class of the unit, the unit element may contain other unit
elements. Parts are represented in an analogous manner, using XML elements with the
name �part�.

Properties are represented by XML elements with the name �property�, and these elements
always have the name attribute, which speci�es which property is being set (all available
properties are listed in appendix A). For all properties, the property value is set by

34

5.2. OVERVIEW OF PUIML

editing the inner text of the property element, i.e. the text between the properties' start
tag, <property>, and its end tag, </property>. To link the property to an existing
unit/part, one more attribute is required. If the property is meant for a unit (i.e. a
discovery property), the unit-name attribute is used. If the property is meant for a part
(i.e. a style or behavior property), the part-name attribute is used instead. In both
cases, the attribute value must be the same as the value of the id attribute of the target
unit/part.

1 <puiml >

2 <universe >

3 <unit id=" device1" class ="P:Device" />

4 </universe >

5 <discovery >

6 <property unit -name=" device1" name="p:id">X:1234 </ property >

7 </discovery >

8 ...

9 </puiml >

Listing 5.1: Example of PUI Markup Language syntax

The PUIML syntax introduced in this chapter section is exempli�ed in listing 5.1. Please
note that the only purpose of the example is to demonstrate the syntax of PUIML, and
therefore the universe, style and behavior blocks have been omitted. This is represented
by �. . . � on line 8, which in a real PUID would not be proper PUIML code. In the
example, a unit of class �P:Device� with the ID �device1� is created on line 3. For this
unit, the discovery property called �p:id� is set to �X:1234� on line 6. Notice that to link
the property to the unit created on line 3, the unit-name attribute has the value �device1�.

Figure 5.2: Structural overview of a PUI Description with local properties

PUIML provides an alternative way of structuring the descriptions. Instead of having one
block containing all discovery properties of all units, as seen in �gure 5.1, one can choose
to specify a unit's properties directly in the de�nition. This is depicted in �gure 5.2, and
works analogously for the structure and the style/behavior blocks. As seen earlier, when
properties that are created globally (i.e. �gure 5.1, as opposed to �gure 5.2), either the
unit-name attribute or the part-name attribute has to be speci�ed in order to link the
property to the intended unit/part. However, when properties are created locally (i.e.
�gure 5.2, as opposed to �gure 5.1), the property element is nested inside the unit/part
element. The link is therefore implicit, and neither the unit-name nor the part-name
attribute must be speci�ed.

Both ways of structuring descriptions yield the same end result. It's a matter personal

35

CHAPTER 5. PUIML

preference which should be used. De�ning properties locally is useful for smaller descrip-
tions in order to have all information regarding the same unit/part in one place. For larger
descriptions, de�ning properties globally will allow for a quicker overview of the structure
of the description, while keeping the details provided by the properties in one collective
place.

5.2.2 The universe block

In the universe block of the PUI Description, the units of the description are declared.
Units are used to represent PalCom entities in the PUID. Hence, units can belong to one
of the following four classes:

• P:Device

• P:Service

• P:Command

• P:Param

The classes corresponds to the PalCom entities device, service, command and parameter

(see chapter 3.3) respectively. As mentioned in the previous chapter section, unit elements
can contain other unit elements � unit elements can be nested. How the elements can be
nested depends on the class of the units. The universe element can contain 0 −∞ unit
elements, but only unit elements of class �P:Device�. This is logically sound since there is
no entity that is higher in the PalCom hierarchy than the device. Units of class �P:Device�
can in turn contain a number of units of class �P:Service�, since the device can be seen
as being one level higher in the PalCom hierarchy than the service. For the same reason,
units of class �P:Service� can only contain a number of units of class �P:Command�, and
units of class �P:Command� can only contain a number of units of class �P:Param�. Since
there is no level below the parameter in the PalCom hierarchy, units of class �P:Param�
can contain no nested units of any kind. Figure 5.3 presents a UML type diagram that
illustrates the nesting possibilities for units as discussed above.

Figure 5.3: UML diagram describing the nesting of units

It is important to note that how units are nested a�ects how they will be located in the
PalCom universe. For example, when trying to locate a PalCom service, the discovery
properties of the unit describing said service will be used. However, these alone are not
enough to identify the service. The discovery properties of the parent unit describing a
PalCom device must be used as well. This means that the same service (unit) element
could be used to describe di�erent PalCom services just by being nested under di�erent
device (unit) elements.

The PUI shown in �gure 5.4 will be used as a running example for this and the upcoming
chapter sections: 5.2.3, 5.2.4, 5.2.5, and 5.2.6. The PUI is based on the example scenario

36

5.2. OVERVIEW OF PUIML

introduced in chapter 4.2, and controls the service speci�ed in the same chapter. To
demonstrate what each PUIML block might look like, the block of code that makes up
the PUI in �gure 5.4 will be presented in its respective chapter section. For example, this
chapter section discusses the universe block. Hence, the universe block of the PUID that
describes the PUI in �gure 5.4 is presented in this chapter section (listing 5.2). If the
code from all of the chapter sections are combined, they make up the PUI presented in
�gure 5.4.

Figure 5.4: PUI for chapter 4.2 example scenario

As mentioned above, listing 5.2 shows the universe block of the PUI Description that makes
up the PUI in �gure 5.4. Notice how all three of the commands of the target service, i.e.
motion, snap and print, are declared on lines 5, 8 and 9 respectively. Also notice that
the IDs speci�ed in this code sample will not be used to locate the PalCom entities. They
are used to identify the units within the PUID, and the similarities to the actual PalCom
IDs are to facilitate the understanding of the description.

1 <puiml >

2 <universe >

3 <unit id=" device" class ="P:Device">

4 <unit id="synth -assembly" class="P:Service">

5 <unit id=" motion" class ="P:Command">

6 <unit id="motion -message" class="P:Param" />

7 </unit >

8 <unit id="snap" class="P:Command" />

9 <unit id=" print" class="P:Command">

10 <unit id="print -message" class="P:Param" />

11 </unit >

12 </unit >

13 </unit >

14 </universe >

15 ...

16 </puiml >

Listing 5.2: Universe block of example PUI (�gure 5.4)

37

CHAPTER 5. PUIML

5.2.3 The discovery block

In the discovery block of the PUI Description, the discovery properties of the description
are declared. Discovery properties apply to the units declared in the universe block, and
depending on the class of the unit there is a number of discovery properties that de�nes
it. Discovery properties are mainly used to de�ne the identity of PalCom entities, i.e. how
they can be located in the PalCom universe. Some of these properties are required and
must be speci�ed in the PUI Description, whilst others are optional and may be left out for
an implicit default value. The available discovery properties are presented in appendix A.1.

The discovery block of the PUID that describes the PUI in �gure 5.4 is presented in
listing 5.3. Lines 4�10 list discovery properties to identify the device and service of the
example scenario. The values of these properties are circumstantial, and vary depending
on the system. The values of the ID properties for the commands and parameters are
however correctly set according the service speci�cation in chapter 4.2.

1 <puiml >

2 ...

3 <discovery >

4 <property unit -name=" device" name="p:id">X:PP1001 </property >

5
6 <property unit -name="synth -assembly" name="p:instance ">1</property >

7 <property unit -name="synth -assembly" name="p:cdid">X:1scenarioBJ </

property >

8 <property unit -name="synth -assembly" name="p:cn">BJscenario1 </property >

9 <property unit -name="synth -assembly" name="p:udid">X:1scenarioBJ </

property >

10 <property unit -name="synth -assembly" name="p:un">BJscenario1 </property >

11
12 <property unit -name=" motion" name="p:id">MOTION </property >

13 <property unit -name=" motion" name="p:direction">out </property >

14 <property unit -name=" motion" name="p:notifications">normal </property >

15
16 <property unit -name="motion -message" name="p:id">MESSAGE </property >

17
18 <property unit -name="snap" name="p:id">SNAP </property >

19 <property unit -name="snap" name="p:direction">in </property >

20
21 <property unit -name=" print" name="p:id">PRINT </property >

22 <property unit -name=" print" name="p:direction">in </property >

23
24 <property unit -name="print -message" name="p:id">MESSAGE </property >

25 </discovery >

26 ...

27 </puiml >

Listing 5.3: Discovery block of example PUI (�gure 5.4)

5.2.4 The structure block

In the structure block of the PUI Description, the parts of the description are declared.
Parts represent graphical components, such as buttons and text labels, in the PUID. They
can belong to one of the following classes:

38

5.2. OVERVIEW OF PUIML

• G:TopContainer

• G:Area

• G:Tabbed

• G:Label

• G:TextArea

• G:TextField

• G:Image

• G:Button

What component each class corresponds to should be quite clear from the names, and is
covered in detail in appendix A.2. It was mentioned in chapter 5.2.1 that part elements
can be nested. The way in which they may be nested depends on the class of the part.
The structure element can and must hold one, and only one, part element, and this part
must be of the class �G:TopContainer�. Parts of this class represent the topmost level
of any PUI, e.g. a window frame, and must therefore be the �rst part de�ned in any
PUI Description. For the same reason, this �rst part is also the only part that can be
of the class �G:TopContainer�. The nesting of part elements is used to logically structure
the PUI. There are only three classes that allow nesting, i.e. can contain other parts:
�G:TopContainer�, �G:Area� and �G:Tabbed�. Within parts of these three classes, other
parts of any class (except for �G:TopContainer�) can be contained. For parts of all other
classes, nesting is not possible. This is due to the fact that these three classes of parts are
the only parts that can logically contain other parts. For example, a button (part of class
�G:Button�) can logically reside within a window frame (part of class �G:TopContainer�),
but a button can not logically reside within another button. A UML type diagram that
illustrates the nesting possibilities discussed above is presented in �gure 5.5.

Figure 5.5: UML diagram describing the nesting of parts

It is through the logical nesting of parts, in conjunction with the concept of layouts, that
the PUI gets its visual appearance. Layouts de�ne how graphical components should be
laid out in the PUI, e.g. from left to right, or in the form of a rectangular grid. In PUIML,
layouts can be used for parts that can contain other parts by setting a number of style

39

CHAPTER 5. PUIML

properties (appendix A.3). To properly structure the graphical components of a PUI using
PUIML, there are three things to consider:

1. The nesting of parts decides in which parent component the resulting component
should be placed.

2. The order in which the parts are declared decides the order in which the resulting
graphical component will be laid out in the PUI.

3. The speci�ed layout of a container part decides how the resulting components should
be laid out.

In listing 5.3 the discovery block of the PUID that describes the PUI in �gure 5.4 is
presented. Notice how the parts of class �G:TopContainer� and �G:Area� contain other
parts, whereas the parts of class �G:Label�, �G:Button� and �G:TextField� don't.

1 <puiml >

2 ...

3 <structure >

4 <part id=" window" class ="G:TopContainer">

5 <part id="motion -area" class="G:Area">

6 <part id="message1 -label" class="G:Label" />

7 <part id="message1 -output" class="G:Label" />

8 </part >

9 <part id="snap -area" class="G:Area">

10 <part id="snap -button" class="G:Button" />

11 </part >

12 <part id="print -area" class="G:Area">

13 <part id="sub -area" class="G:Area">

14 <part id="message2 -label" class="G:Label" />

15 <part id="message2 -input" class="G:TextField" />

16 </part >

17 <part id="print -button" class ="G:Button" />

18 </part >

19 </part >

20 </structure >

21 ...

22 </puiml >

Listing 5.4: Structure block of example PUI (�gure 5.4)

5.2.5 The style block

In the style block, the style properties of the PUI Description are declared. These prop-
erties apply to the parts declared in the structure block, and depending on the class of
the part there is a number of style properties that de�nes it. Style properties are used to
de�ne what a component should look like in the �nal PUI. Some of these properties are
required, and therefore must be speci�ed in the PUID, whilst others are optional and may
be omitted. To get a sense for how the graphical components represented by the various
part classes can be con�gured using style properties, table 5.1 shows a simpli�ed list of
what aspects of the components can be manipulated using style properties. For a complete
list of the available style properties, please see appendix A.2.

40

5.2. OVERVIEW OF PUIML

1 <puiml >

2 ...

3 <style >

4 <property part -name=" window" name="g:title">Photo Print </property >

5 <property part -name=" window" name="g:resizable">true </property >

6 <property part -name=" window" name="g:layout">grid </property >

7 <property part -name=" window" name="g:layout -columns">1</property >

8 <property part -name=" window" name="g:size ">440,310</ property >

9
10 <property part -name="motion -area" name="g:layout">grid </property >

11 <property part -name="motion -area" name="g:layout -gap">5,5</property >

12 <property part -name="motion -area" name="g:layout -columns">1</property >

13 <property part -name="motion -area" name="g:scrollable">true </property >

14 <property part -name="motion -area" name="g:border">line </property >

15
16 <property part -name="message1 -label" name="g:text">Motion dectection

message:</property >

17 <property part -name="message1 -label" name="g:align -h">center </property >

18 <property part -name="message1 -label" name="g:font">Verdana </property >

19 <property part -name="message1 -label" name="g:font -size">14</property >

20 <property part -name="message1 -label" name="g:font -bold">true </property >

21
22 <property part -name="message1 -output" name="g:align -h">center </property >

23 <property part -name="message1 -output" name="g:align -v">top </property >

24 <property part -name="message1 -output" name="g:font">Verdana </property >

25
26 <property part -name="snap -area" name="g:layout">grid </property >

27 <property part -name="snap -area" name="g:layout -gap">5,5</property >

28 <property part -name="snap -area" name="g:layout -columns">1</property >

29 <property part -name="snap -area" name="g:scrollable">true </property >

30 <property part -name="snap -area" name="g:border">line </property >

31
32 <property part -name="snap -button" name="g:text">Take Photo </property >

33
34 <property part -name="print -area" name="g:layout">grid </property >

35 <property part -name="print -area" name="g:layout -gap">5,5</property >

36 <property part -name="print -area" name="g:layout -columns">1</property >

37 <property part -name="print -area" name="g:scrollable">true </property >

38 <property part -name="print -area" name="g:border">line </property >

39
40 <property part -name="sub -area" name="g:layout">grid </property >

41 <property part -name="sub -area" name="g:layout -gap">0,5</property >

42 <property part -name="sub -area" name="g:layout -columns ">2</property >

43
44 <property part -name="message2 -label" name="g:text">Print message:</

property >

45 <property part -name="message2 -label" name="g:font">Verdana </property >

46
47 <property part -name="print -button" name="g:text">Print Photo </property >

48 </style >

49 ...

50 </puiml >

Listing 5.5: Style block of example PUI (�gure 5.4)

41

CHAPTER 5. PUIML

Part class Settable properties

G:TopContainer Title, resizable?, layout, size

G:Area Title, scrollable?, border, layout, size

G:Tabbed Size

G:Label Font properties, text, text alignment, size

G:TextArea Font properties, text, size

G:TextField Text, tool tip text, size

G:Image Image source path, size

G:Button Text, tool tip text, image source path, size

Table 5.1: Simpli�ed list of settable style properties

The style block of the PUID that describes the PUI in �gure 5.4 is presented in listing 5.5.
Notice how the part-name attribute of each property element references one of the parts
declared in the structure block (listing 5.4).

5.2.6 The behavior block

Behavior properties are declared in the behavior block of the PUI Description. These
properties apply to the parts declared in the structure block, and are used to de�ne how
a graphical component should act in the PUI. As with all other properties, some of these
are required, whilst others are optional. Since the behavioral scope of PUIML has been
reduce to simply having to be able to specify PalCom speci�c functionality, all behavior
is expressed using links. These links stretch from a single part to a single unit, and are
speci�ed as behavior properties for parts. The details of which parts can be linked to
which units and how, i.e. which behavior properties do the di�erent classes of parts have,
is speci�ed in detail in appendix A.2.

From a behavioral perspective, selected parts can take on one out of three roles (links):
viewer, provider or invoker. A part can act as a viewer in respect to a PalCom parameter.
What this means is that whenever the value of the parameter changes, the graphical
component represented by the part in question will display the data to the user. In a
similar manner, a part can also act as a provider in respect to a PalCom parameter.
This means that whenever new data is entered by the user into the graphical component
represented by the part in question, the value of the parameter will be updated with this
data. Lastly, a part can act as an invoker in respect to a PalCom command. This entails
that when the graphical component represented by the part in question is activated (e.g.
clicked in the case of a button), the command will be invoked, i.e. sent along with its
associated parameters' values.

These three simple roles enable the speci�cation of quite powerful behavior. For example,
to control some given service s, one would simply assign invoker parts for all input com-
mands, and provider parts for all parameters of the input commands. Additionally, one
could assign viewer parts for all parameters of the output commands, so as to monitor the
output of s.

42

5.3. SUMMARY

The behavior properties that de�ne the behavior of the PUI in �gure 5.4 are presented in
listing 5.6. The behavior that is being described is that whenever the output command
motion is invoked, the value of its text parameter message will be displayed in the PUI
where the text �Motion in doorway.� is in �gure 5.4. This is speci�ed on line 4. Line 6
states that whenever the button labeled �Take Photo� in the PUI is pressed, the snap

command should be invoked. This triggers the camera of the system to take a photo.
Line 9 states that the text entered in the text �eld of the PUI should be used as the value
for the parameter message of the input command print. Lastly, line 8 states that when
the button labeled �Print Photo� in the PUI is pressed, the print command should be
invoked. This results in that the latest photo taken by the camera is printed along with the
text in the text �eld of the PUI. In �gure 5.4, this text would be �Source of the motion?�.

1 <puiml >

2 ...

3 <behavior >

4 <property part -name="message1 -output" name="p:viewer">motion -message </

property >

5
6 <property part -name="snap -button" name="p:invoker">snap </property >

7
8 <property part -name="print -button" name="p:invoker">print </property >

9 <property part -name="message2 -input" name="p:provider">print -message </

property >

10 </behavior >

11 </puiml >

Listing 5.6: Behavior block of example PUI (�gure 5.4)

5.3 Summary

As seen throughout this chapter, the produced language, PUIML, is by all means a com-
plete language. The features of the language are plentiful and powerful enough to de�ne
a customized PUI, both in terms of visual and behavioral characteristics. The features
that have been added to the language are in many cases related to what is needed for the
purpose of this thesis. Therefore, some features that are important in other contexts might
be missing. For this reason, the de�nition of PUIML presented in this chapter should not
be viewed as �nal, but rather as starting point from where features can be added as the
need arises.

43

Chapter 6

Interpreters for PUI Descriptions

6.1 Introduction

As mentioned earlier, one of the requirements for the PUI Markup Language is to be
generic in respect to platform and/or device. With this requirement in mind, it goes
without saying that the language can and should have PUI generators, or interpreters,
for di�erent programming languages, graphical libraries and devices. Such interpreters
will as of now be referred to as PUIDI, or PalCom User Interface Description Interpreter.
Because the PalCom framework is written in Java, and also to help limit the scope of this
thesis, the only programming language that will be considered for these PUID Interpreters
is Java. With regard to di�erent graphical libraries and devices, this thesis will focus on
two PUIDIs: The �rst is a simple Java application that uses the Swing/AWT libraries for
graphics. The application is runnable on most computers. The second interpreter is an
application for the Android OS, and is meant to be run on Android powered smartphones.
In this chapter, both of these interpreters will be introduced and discussed.

6.2 PUID Interpreters

The language described in chapter 5 is a big part of the result of this thesis. The second
big part of the result are the interpreters produced. The language is naturally of interest
in itself, but it is with the aid of the interpreters that the actual power and the possibilities
of the language are demonstrated. To properly connect the dots, and truly understand
how the language and the interpreters are logically interlocked, the following terms are of
the utmost importance:

PUIML PalCom User Interface Markup Language

The XML based language used to de�ne PUIDs.

PUID PalCom User Interface Description

A document that describes the graphically generic look and PalCom based
behavior of a PUI. Created using PUIML, and used as input for a PUIDI.

45

CHAPTER 6. INTERPRETERS FOR PUI DESCRIPTIONS

PUIDI PalCom User Interface Description Interpreter

An application that bridges the cap between PUID and PUI. Takes a
PUID as input, parses it, and lastly interprets it in the form of a PUI.

PUI PalCom User Interface

A GUI that allow users to control PalCom entities in prede�ned ways.
Generated by a PUIDI.

To reiterate: PUIML is used to de�ne PUIDs. A PUID is to be used as input for a PUIDI,
which will interpret it in the form of a PUI the user can interact with. The concept for a
general example is illustrated in �gure 6.1.

Figure 6.1: PUID Interpreter concept for the general case

What all PUIDIs have in common is that they use a PUID to create a PUI. The fact
that PUIML is graphically generic means that PUIML can be used to describe PUIs for
di�erent target platforms. This is however not to say that all PUIDs generate into the
same PUI, or even work on two di�erent PUIDIs. If the same PUID is used as input for
two di�erent PUIDIs, the resulting PUI should be similar. However, due to the di�erence
in how components are laid out and spaced, the PUIs will rarely be identical. For the
same reason, it can not be guarantied that a PUID will generate into a working PUI, even
if it can be parsed properly. One example of this is that the nesting of parts, while legal
according to PUIML, might not work practically on the target platform. For these reasons,
if the same PUID is to be used for di�erent PUIDIs, minor tweaking might be needed to
get the desired e�ect.

6.2.1 Swing/AWT PUID Interpreter

The �rst of the two developed PUID Interpreters is the Swing/AWT PUIDI. It is a Java
application that can be run on computers where the Java Runtime Environment is present.
There are several imaginable PUIDIs that could be built for this target platform. This
one makes use of the graphical libraries Swing and AWT.

The PUIDI can be seen as a byproduct of this thesis, in that it wasn't a planned or
even necessary result. It was developed mainly as a test platform during the development

46

6.2. PUID INTERPRETERS

of the parser for the PUI Descriptions. This was much due to the fact the all-purpose
computer is more �exible when debugging and testing, as compared to the alternative � a
smartphone. The PUIDI was also to be used as a proof-of-concept for future interpreters.
If a viable PUIDI could not be built under the optimal circumstances, i.e. the open and
�exible environment of the all-purpose computer, then there would be no need to move
on to more challenging platforms such as the Android smartphone. The proof-of-concept
didn't just apply to the application itself, it also applied to the language. If any weak or
missing points in the language were encountered, they could be addressed before moving
on to the Android smartphone.

The Swing/AWT PUIDI is by all means a fully functioning interpreter, even though it
is somewhat un�nished. PUIs are interpreted correctly according to PUIML, but there
are some features of the language that are not supported. One such feature is command
noti�cations (see appendix A.1.3, table A.4), i.e. how the user is noti�ed when a PalCom
command is received. There are more than one of these �aws that would need to be
addressed before this application should be considered �nished, but since this was meant
as a proof-of-concept PUIDI, that is to be considered acceptable.

6.2.2 Android PUID Interpreter

The second of the two developed PUID Interpreters is the Android PUIDI. It is an Android
app (application) that was developed to run on devices powered by the Android OS. It
has however only been tested for a smartphone of the model and make Sony Ericsson,

Xperia X10, and therefore there is no guarantee that it will run properly on other devices.

The Android PUIDI is the main result of this thesis, and even though it should still be
considered to be in a prototype state it is quite complete as compared to the Swing/AWT
PUIDI. The app allows the user to select one out of the installed PUI Descriptions on the
device and generates a PUI based on the content. The app is connected to a prede�ned
number of remote networks by the means of PalCom tunnels, either over WIFI or the 3G
network. It is through these tunnels that the app then �nds and communicates with the
target PalCom devices. Due to the architecture of the app it can be left running in the
background whilst the phone is used for other purposes. Whenever an attention requiring
(as de�ned by the PUID) PalCom command is received, the user's attention is captured
by throwing an Android noti�cation message. This feature was critical in order to allow
the medical sta� to use their phones for calling and the like, and still get informed when
urgent alarm message are received via PalCom commands.

To clarify the concept of PUIDIs as illustrated by �gure 6.1, the example introduced in
chapter 4.2 will be used once more. In �gure 6.2, the synthesized assembly in the example
scenario is to be controlled by the Android PUIDI. The complete PUID used in the �gure
is presented in appendix E.1.1.

Even though the Android PUIDI is only in the prototype state, it still provides a lot of
functionality, while remaining simple to operate. The app is complete enough to be used
on a smaller scale, but before being used in any serious system, an appropriate amount of
polish is required.

47

CHAPTER 6. INTERPRETERS FOR PUI DESCRIPTIONS

Figure 6.2: PUID Interpreter concept for chapter 4.2 example scenario

6.3 Details

In this chapter the notion of PUID Interpreters has been discussed, and the two developed
PUIDIs have been introduced and described. The aim of this chapter was to introduce
what the two applications do, not how they do it. To get more details on the actual imple-
mentation of the applications, please consult appendix B. To learn about the installation
of the applications, see appendix C. Finally, to learn how to use the applications in a
proper manner, consult the manuals in appendix D.

48

Chapter 7

Validation

7.1 Introduction

In this chapter, the resulting products of this thesis will be validated to ensure that they
ful�ll the brief requirement presented in chapter 4.3. The aspects that will be validated are
the produced language, PUIML, and the developed description interpreters. To provide
a practical validation, the system created by Johansson and Persson [3], as presented in
chapter 4.3.3, will be reconstructed to validate the collective power of PUIML and the
Android PUID Interpreter.

7.2 Example of PUI use

To validate the power of the developed language/interpreter cooperation, the example
presented in chapter 4.3.3 will be replicated using the Android PUID Interpreter. This
part of the validation serves to show that the developed Android application can be used
practically in a medical context.

7.2.1 System con�guration

As mentioned in chapter 4.3.3, the entire alarm system converges into a single PalCom
services which outputs the alarms and patient data. Such alarm systems would in a real
scenario be a combination of several alarm trigger, medical databases and other integral
components, all connected using PalCom. However, how all of these components interact
to output the alarms with the right medical information to the right person holds no
relevance in this example. The important factor is the end service presented by the alarm
system, and for the purpose of this example, said service will be simulated using a simple
Java application.

The simulated alarm system stores all produced messages and lets the user access them at
a later time. To keep track of which message is currently being accessed, the system has
an internal counter, index, which ranges from 0 (the �rst produced message) to length−1
(the newest message), where length is the total number of produced messages. The alarm
service communicates using the following commands:

49

CHAPTER 7. VALIDATION

• ALARM : output
The command signals that a new alarm message has just been produced.

• DATA : output
The command is used to output the actual content of the currently selected alarm
message, as indicated by index.

� DATE : text

The date and time when the message was produced.

� P_NUMBER : text

The civic number of the patient which the message refers to.

� F_NAME : text

The �rst name of the patient which the message refers to.

� L_NAME : text

The last name of the patient which the message refers to.

� MEDICAL : text

Medical information about the patient which the message refers to. May contain
multiple pieces of information, in which case each piece should be separated with
the character ';'. E.g. Allergic to nuts;Infected wound;In a coma

� REF_NAME : text

The name of the person that forwarded the message.

� REF_PHONE : text

The phone number of the person that forwarded the message.

• PREV : input
The command is used to request the previous message. When invoked, index is
decreased by 1 if index > 0. The data command is invoked to output the message.

• NEXT : input
The command is used to request the next message. When invoked, index is increased
by 1 if index < length− 1. The data command is invoked to output the message.

• RET_PHONE : output
The command is used to output the reference phone number of the currently selected
alarm message, as indicated by index.

� REF_PHONE : text

The phone number of the person that forwarded the message.

• GET_PHONE : input
The command is used to request the current reference phone number. When invoked,
the ret_phone command is invoked to output the phone number.

When the simulated alarm system produces a new alarm message, the message along with
its data is stored internally, length is increased by 1 and index is set to length − 1 to
highlight the newest message. The alarm command is then invoked to notify the right
(in this case: all) users that a new alarm message has been produced. Lastly, the data
command is invoked to output the actual message data to the users.

Since behavior in PUIML is de�ned as actions on PalCom entities, even the task of per-
forming a phone call has to be handled using PalCom. For this purpose, a simple phone
service containing the following command is de�ned:

50

7.2. EXAMPLE OF PUI USE

• DIAL : input
The command is used to dial the provided phone number.

� PHONE_NBR : text

The phone number to dial.

This alone, however, is not enough. Since the language doesn't have support for inter-
nal variables, there is no way to temporarily store the phone number provided by the
ref_phone parameter of the data command. Because of this, there is no way of passing
the reference phone number of the currently selected alarm message to the dial command.
To get around this problem, a synthesized assembly containing the following command is
de�ned:

• DIAL : input
The command is used to dial the reference phone number of the currently selected
alarm message.

When the dial command is invoked, the get_phone command of the alarm service is
invoked. The target phone number is then returned in the ref_phone parameter of the
ret_phone command (alarm service). The acquired phone number is then used for the
phone_nbr parameter, as the dial command is invoked on the phone service.

Figure 7.1: System setup of complete example

The complete system is depicted in �gure 7.1. It is made up of �ve major components:
the Android PUIDI, the dial assembly, the phone service, the simulated alarm service and
a tunnel. The Android PUIDI (box labeled �PUI�) will interpret the PUI Description
and interact with the other components according to the description. The assembly (gray
triangle), the phone service (numeric keypad) and the simulated alarm service (triangle
labeled �!�) have already been discussed above. Note that both the assembly and the
phone service must run on the smartphone to access the native functionality of dialing
phone numbers. However, the alarm service can be run on an arbitrary device, which
might be connected to a di�erent local network than the smartphone. This is illustrated
by the dotted rectangles. The two networks are connected using a PalCom tunnel (blue
tube).

51

CHAPTER 7. VALIDATION

Since there is currently no practical way of running custom services and assemblies on
the Android platform, and since no additional functionality is showcased by including the
dialing part of the demonstration, that part has been omitted from the actual validation
system. The actual system setup used for the validation is displayed in �gure 7.2. This is
a justi�able simpli�cation that will allow the demonstration to focus on the fundamental
aspect of how the PUI communicates with the simulated alarm system, instead of how
custom services and assemblies can be started on the Android platform.

Figure 7.2: System setup of constructed example

7.2.2 Comparison

Having set up the system as described in the previous chapter section, the PUI Description
that mimics the looks and behavior of the GUI described in chapter 4.3.3 is needed to
complete the system. Said PUID is presented in its complete, unabbreviated form in
appendix E.1.2, and the result of interpreting it with the Android PUID Interpreter is
shown in �gure 7.3(b). To validate the success of trying to replicate the looks of the
original GUI, the two are presented side-by-side in �gure 7.3.

Since the similarities by far outweigh the di�erences, let's focus on the latter. The �rst
and perhaps most noticeable di�erence is that in �gure 7.3(a) the background is white,
where as in �gure 7.3(b) it's gray. In �gure 7.3(a) there is also a semi-opaque �gure in the
background. The color of the title text �Patientlarm!� is di�erent between the two �gures,
and so are the borders of the di�erent sections of the GUI. Lastly, in �gure 7.3(b) the
buttons have a classic button look, where as in �gure 7.3(a) they are simply images. The
common denominator for these di�erences is that they are all minor � it is a matter of
personal preference and no alternative can be labeled as better than the other. However,
there is one key di�erence that is of signi�cance: in �gure 7.3(a), the section with the
three buttons is anchored to the button of the screen, whereas the corresponding section
in �gure 7.3(b) is anchored to the bottom of the middle section. The middle section displays
the medical information about the patient as provided by the medical parameter of the
data command of the simulated alarm service. The amount of medical information varies
from one alarm message to the other, which in the case of the Android PUIDI produced
PUI will result in di�erent heights for the middle section. This in turn means that the
section with the buttons won't have a �x position on the screen, as in the original GUI. One
way of solving this problem would be to increase the expressive power of the language.
A simpler work-around would be to simple put the button section under the top most
section, which is of �xed size.

When comparing the two GUIs from a behavioral standpoint, the similarities are again
predominant. Aside from not being able to call the sta� member referenced in the alarm
message (which was motivated in the previous chapter section), the two alternatives behave

52

7.3. VALIDATION OF PUI MARKUP LANGUAGE

(a) Original GUI (b) Android PUIDI produced PUI

Figure 7.3: Visual comparison of GUIs

the same way. When an alarm is received, both applications notify the users with a Android
noti�cation, even if they are running in the background. Clicking said noti�cation brings
up the main GUI (�gure 7.3) where the content of the alarm message is displayed in its
proper place. Clicking the left-button loads the previous alarm message content into the
proper place in the GUI, and clicking the right-button does the same for the next alarm
message.

The comparison has shown that the GUIs are visually similar enough to support the
statement that they are the same GUI in terms of looks alone. Even the somewhat limited
functionality of the original GUI is mimicked as good as completely by the replica. To
summarize, it stands clear that both of the presented GUIs are comparable not just terms
of looks, but also in terms of functionality.

7.3 Validation of PUI Markup Language

To ensure the graphical expressiveness to be su�cient, in chapter 4.3.1 one requirement
presented a list of Generic Graphical Components (GGC) that would have to be possible
to represent using PUIML. In table 7.1 those GGCs are listed along with the class of
the PUIML part that is used to represent them in PUIML. Another requirement for the
language is that how the GGCs are laid out in the PUI must be controllable. As introduced
in chapter 5, and as speci�ed in appendix A.3, this is made possible by the means of nesting
PUIML parts in conjunction with so-called layouts.

53

CHAPTER 7. VALIDATION

Part class Generic graphical component

G:TextArea Multi-lined text label

G:TextField Single-lined text input box

G:Button Clickable button

G:Image Scalable image viewer

G:Area Area that can hold other components

G:Tabbed Tab control

Table 7.1: Part class equivalents of required GGCs

The �rst and most basic requirement on the behavioral expressiveness of the language was
that all four PalCom entities must be representable using PUIML. Table 7.2 lists these
entities along the class of the PUIML unit that represent the entity in PUIML.

Unit class PalCom entity

P:Device Device

P:Service Service

P:Command Command

P:Parameter Parameter

Table 7.2: Unit class equivalents of required PalCom entities

The other behavioral expressiveness requirements specify that the language should provide
the means to set the value of PalCom parameters using selected GGCs, and reversely,
display the value of PalCom parameters in selected GGCs. The language should also
provide the means to invoke PalCom commands. These requirements are all met by
PUIML, through the use of de�ning GGCs as either provider, viewer or invoker. These
concepts were introduced and explained in chapter 5.2.6, and speci�cs for each PUIML
part can be found in appendix A.2.

To ensure that the expressive power is at least on level with that of the BrowserGUI tool,
the following requirement was speci�ed:

• The language should provide the means to express a GUI that is comparable in terms
of looks and functionality to that of a GUI generated by the BrowserGUI tool.

To validate this abstract requirement, the example introduced in chapter 4.2 will once
again be used. Figure 7.4(a) shows what the GUI provided by the BrowserGUI tool
looks like when controlling the example service. As a comparison, �gure 7.4(b) shows a
PUI alternative, as de�ned by the PUI Description presented in appendix E.2.2, and as
interpreted by the Swing/AWT PUIDI.

When comparing the two, one gets the overall impression that they are the same GUI.
The di�erences are few, and what's more, the di�erences are minor, e.g. di�ering border

54

7.4. VALIDATION OF PUID INTERPRETERS

(a) Original BrowserGUI produced GUI

(b) Swing/AWT PUIDI produced PUI

Figure 7.4: Comparison of GUIs for chapter 4.2 example scenario

line color. Such di�erences could easily be addressed by expanding PUIML. The biggest
di�erence, which is also of some importance, is how the components are spaced and sized.
Notice, for example, that the (white) text box in �gure 7.4(b) doesn't stretch all the way
to the leading text �MESSAGE� as in �gure 7.4(a). Such issues can usually be �xed by
tweaking the PUID, but in some cases greater graphical expressiveness would have to be
provided by the language.

The purpose of PUIML is not to describe PUIs that look the same as the GUIs produced
by the BrowserGUI tool. The comparison in �gure 7.4 is simply to illustrate that PUIML
is indeed powerful enough to mimic the result of the BrowserGUI tool. One might argue
that in the comparison of the two above, the BrowserGUI produced GUI is the superior
one. However, this argument holds no merit, since if a GUI for the example scenario in
chapter 4.2 was to be described using PUIML, the result would most likely look nothing
like the PUI in �gure 7.4(b). By taking advantage of the expressive power of PUIML,
a more intuitive and aesthetically pleasing PUI could be described. Figure 7.5 shows an
example of what such a PUI for the example scenario in chapter 4.2 could look like. The
PUID used to produce this PUI is presented in appendix E.2.1. In a comparison between
a properly described PUI (�gure 7.5) and a BrowserGUI produced GUI (�gure 7.4(a)),
there should be no opposition to the statement that the PUI is the superior alternative.

7.4 Validation of PUID Interpreters

In chapter 4.3.2, requirements for the description interpreter applications, i.e. the PUID
Interpreters, were presented. The �rst of these very basic requirements was that the

55

CHAPTER 7. VALIDATION

Figure 7.5: Intuitive PUI for chapter 4.2 example scenario

PUIDIs must allow the user to load one out of the available PUI Descriptions. As can be
seen in appendix D, this is indeed very doable with both PUIDIs presented in chapter 6.
The interpreters must also be able to interpret and display the PUIs described by the
selected PUID. Again, very basic, and both PUIDIs meet this criteria. An example of a
PUI created by the Swing/AWT PUIDI can be seen in �gure 7.4(b), and a PUI created by
the Android PUIDI is shown in �gure 7.3(b). The produced PUIs must be able to connect
to and communicate with PalCom entities, hence the name PalCom User Interface. This
functionality is present in both PUIDIs, which can be veri�ed by analyzing appendix D.

To ensure that an end user with a low level of expertise can operate the applications with
ease, an accessibility requirement was introduced. It states that the user must be able to
gain control over a prede�ned service, i.e. load a PUID, in less than two selective user op-
erations (see chapter 4.3.2). As can be understood from studying chapter D, the Android
PUIDI requires exactly two operations in both the best and the worst case scenario. The
Swing/AWT PUIDI however require two operations only in the best case scenario. De-
pending on where the target PUID is located on the computers hard drive, the worst case
scenario can require an unde�ned number of operations. However, since the Swing/AWT
PUIDI is intended mostly for development and testing, this is acceptable.

56

Chapter 8

Future work

8.1 Introduction

Throughout the course of this thesis there have been instances where the limitations of the
resulting solutions have been made clear. Most of these shortcomings are due to the time
restriction on the master's thesis, and in this chapter they will be reviewed and presented
as work that can be done in a possible follow-up to this thesis. Moreover, some additional
aspects so far not discussed will also be introduced as possible future work.

8.2 PUI Markup Language extensions

In the case of the expressive power of the PUI Markup Language, there have been occur-
rences in this thesis where the power just wasn't enough, or where a PUI could have been
improved in some way if the language was more powerful. One such example was seen
in chapter 7.2.2, where the lower panel of an Android PUI (�gure 7.3(b)) could not be
anchored to the bottom of the screen as in the target GUI (�gure 7.3(a)) � there is no
way to express that layout in PUIML. The management of the balance between expressive
power and simplicity in the language is no easy task, and the possible ways to extend
the visual expressiveness of PUIML are numerous. Such extensions will be ignored in this
discussion, which will instead concentrate on three possible improvements to the language
itself.

8.2.1 Variables in PUIML

The need for internal variables in PUIML was identi�ed during the validation in chap-
ter 7.2, when trying to call the reference phone number provided by an alarm message.
Since there currently is no way to temporarily store values in PUIML, there was no way to
at a later point in time pass the same value (phone number) on the the dial service of the
phone device. The problem was solved by adjusting the PalCom entities of the system,
but introducing PUIML variables would allow for easier and more intuitive solutions.

57

CHAPTER 8. FUTURE WORK

8.2.2 Translatable constants in PUIML

This idea stems from the need to use the same PUI in multiple national regions, i.e. have
the same PUI translated to multiple languages. Using current PUIML, each region would
get its own PUI Description. These descriptions would be identical, except for the constant
text strings that are displayed in the PUI. Since the same PUI is described in multiple �les,
this would result in the double maintenance problem [10]. If the PUI is to be changed in
any way, the exact same changes have to be made in all PUID �les. Except for the obvious
hassle of having to apply the same changes to multiple �les, there is also the problem that
given enough time, the descriptions will start to di�er. This is due to the fact that it is
not feasible to apply exactly the same changes, and over time, many small di�erences will
add up to big di�erences.

One possible solution for this problem is to introduce translatable constants. Instead of
de�ning the constant text strings directly in the PUID �le, the description would use
references to constants that are speci�ed in a separate �le. Using this approach, the same
PUID could be used for all national regions, and only the �le containing the constants
would have to be translated and maintained to create the PUI in a di�erent language.

8.2.3 Property templates in PUIML

When describing PUIs it is not uncommon that groups of parts, i.e. graphical components,
have many shared properties. It might for example be the case of a PUI that has several
text labels that should have the same font properties, but display unique text strings. This
would result in the same properties and property values being repeated multiple times in
the PUI Description.

By introducing the concept of property templates, this issue could be resolved. The concept
entails that one should be able to declare property templates and set properties for those
templates, in the same way as one would with PUIML parts. The templates should then
be usable as any other property for both parts and other templates. In the case of the PUI
with the text labels, a property template specifying all font properties could be declared
and used as a property for all the text labels in the PUI.

Introducing property templates would bring about two major advantages. The �rst is
that by collecting shared properties in templates, the amount of PUIML code that has to
be written will be decreased. This will result in shorter and more easily understandable
PUIDs. The second advantage is that by collecting properties shared by multiple parts in
a template, all parts a�ected can be updated by simply changing the values in one place.

The same could be applied to PUIML units.

8.3 Android PUID Interpreter

To make use of the native functionality of the Android OS in a PUI Description, the
functionality has to be presented as a PalCom service. An example of this was seen in
chapter 7.2. In order for the PUI to be able to use the phone calling functionality of the
Android OS, it had to be represented as a PalCom service that took the phone number as
a parameter. Unfortunately, there is currently no sustainable method for loading custom

58

8.4. GRAPHICAL PUI DESCRIPTION EDITOR

services (or assemblies) on the Android OS. Hence, one possible point of interest for future
development would be the ability to:

• Run custom PalCom services/assemblies on Android OS

The Android PUID Interpreter currently only lets the user load one PUID at a time.
Depending on how the PUIDs are designed, the need to load more than one PUID might
arise. It might be the case of a physician that moves between several hospital departments,
all of which have their own alarm system. In such a case, the physician would most likely
have one PUID installed for each department's alarm system. Currently, s/he would have
to load the corresponding PUID when switching department, and would for the duration
not be able to receive alarms from the alarm systems of the other departments. To address
this issue, the following would be desirable:

• Allow multiple PUIs to run simultaneously

8.4 Graphical PUI Description editor

Currently, the only method of creating and editing PUI Descriptions, i.e. designing PUIs,
is to manually edit the XML �le using a text editor. This method is manageable for people
with a higher level of technical expertise. The person needs to have a good understanding
of both XML and PUIML. Unfortunately, the ones that will be designing the PUIs will
most likely be people with a high expertise in design, but with low technical expertise, i.e.
designers. During the development of PUIML and the associated PUID Interpreters, the
text editor method of designing PUIs was su�cient, since only the developer (the present
author) created PUIs. However, if the project was to be scaled up, one would have to
consider the creation of a graphical editor to create/edit PUIDs as a possible continuation.

8.5 Real-life application

A natural continuation on the work established in this thesis would be to use the outcome
in real situations. In chapter 7.2, the Android PUID Interpreter was used to create a PUI
for the alarm system developed by Johansson and Persson [3]. The PUIDI was hence used
in a real context, but with a simulated environment. It would be of great interest to use
PUIML and the Android PUIDI to interact with the actual PalCom alarm system, not
just a simulated version. It may also be of interest to develop PUIs for currently unknown
PalCom systems. This would not only further acknowledge the power of PUIML, but also
provide new ideas of how PUIML can be improved in the future.

8.6 PalCom integration

Currently, the two developed PUID Interpreters are separate from the PalCom framework
introduced in chapter 3.3. Both are stand-alone application which are started explicitly.
A PUI Description is then chosen and the resulting PUI is displayed. A possibility for
future work is to integrate the concept of PUIs into the framework itself. The simplest

59

CHAPTER 8. FUTURE WORK

way of doing this is to extend the PalCom native tool TheThing. TheThing is used to
host services, assemblies and tunnels. By extending TheThing to also being able to host
one or more PUIDs, the corresponding PUIs could be started much like the other PalCom
entities of TheThing.

So far, creating and using PUIs has been a linear activity : The designer creates the PUID,
and the user uses it to get a PUI with which s/he can interact. One possible way of
integrating the concept of PUIs into the PalCom framework is by making the creation and
usage of PUIs a spontaneous activity. The idea is that using a PalCom native tool, the
user can browse through the available service. When the desired service has been located,
the user is presented with all PUIDs that control the service. By choosing a PUID, the
user is not only presented with a PUI with which to interact, but can also spontaneously
change the PUID to their liking. In a similar manner, if no PUID is present for a given
service, the user can spontaneously create a new one. By using this approach, the line
between creator and user of PUIs is made blurry.

The two ways of integrating the concept of PUIs into the PalCom framework presented
above are just ideas on how the integration can be done. However, it stands clear that the
integration is of great interest for future work.

8.7 Summary

There are plenty of possible ways to extend the outcome of this thesis. The ones presented
in this chapter are just a few of the ideas that emerged during the course of the project,
and there are certainly many more that remain undetected for the time being.

60

Chapter 9

Evaluation

The aim of this thesis is to resolve the problems associated with creating GUIs for smart-
phones, as presented in chapter 2. The primary outcome of addressing these problems
is the Android PUID Interpreter, which is an Android application that creates custom
PUIs based on descriptions. Such PUI Descriptions are speci�ed using the developed lan-
guage (PUIML). The application, in combination with the developed language, provides
simplicity for three di�erent categories of users:

PUI designers The designers of the PUIs that will be used by the end user
are presented with a short and concise language that enables them to
describe simple, yet powerful PUIs. The language alone is sure to speed
up the design process. Furthermore, the big gain is that all the e�ort
that goes into developing a new Android app from scratch is reused for
each new scenario. This is possible because the Android PUIDI interprets
PUIDs that are speci�c to a certain scenario, hence creating a scenario
speci�c Android PUI. This way, the designer needs not concern himself
with platform speci�cs, only the PUID.

System administrators The Android PUIDI is self-identifying, which means
that the administrator doesn't have to manually �name� each device that
will be running the interpreter. The ID of the device is based on the
serial number of the phone's SIM card. This allows the user to keep
his/her identity in the PalCom universe, even if s/he for some reason has
to switch to another phone. Since both the tunnel con�guration and the
PUI Descriptions are kept in regular �les, installation of a certain PUI on
several devices is as simple as copying the same �les to all devices. These
small but important perks will most likely save more than a little time
when installing large systems.

End users The end user, which might be part of the medical sta� at a hos-
pital, should be considered a technically inexperienced user. Therefore,
the interface of the Android PUIDI is kept simple to avoid confusion. All
the end user has to do is start the Android app, and select the desired
PUI Description. This act can be made really simple (from the system
administrator's side) by providing just one description. After the PUID
selection, the user friendliness of the generated PUI all depends on how
well the PUI designer did his/her job.

61

CHAPTER 9. EVALUATION

One of the problems addressed in this thesis is that the amount of resources that goes into
creating GUIs for smartphones should be kept as low as possible. As mentioned above,
this is aided by the fact that by using the Android PUIDI, the same common base is reused
for all created PUIs. To evaluate how well the system performs at keeping the amount
of resources needed at a minimum, the Android application developed by Johansson and
Persson [3] will once again be used.

The GUI for the application is presented in �gure 7.3(a). Next to it, in �gure 7.3(b),
the Android PUIDI created PUI equivalent is presented. It is not possible to compare
the amount of time that went into creating the two, since the data is not available for
either case. However, the amount of code that makes up the two solutions can be com-
pared. Based on information provided by the creators, the code used to create the GUI
in �gure 7.3(a) is made up of 1482 words. The PUID that describes the PUI alternative
in �gure 7.3(b) is listed in appendix E.1.2, and the PUIML code consists of 442 words.
Given that this is only a comparison for one case, it is still clear that the the amount code
needed to create a practically usable GUI is signi�cantly smaller when using PUIML and
the Android PUIDI, as opposed to creating an ad-hoc GUI from scratch. Naturally, the
amount of code could be reduced even further, but the balance between expressiveness and
simplicity has to be kept at a practical level.

Another interesting point of evaluation is the comparison between how GUIs are created
using the developed language, and how they are created using the GUI builder tool of the
NetBeans IDE. As mentioned in chapter 8, an intuitive continuation for this thesis would be
to create a graphical editor for PUI Descriptions. Taking this into consideration, creating
PUIs using the proposed PUID editor would be just as simple as using the NetBeans
builder to create GUIs.

One advantage of using PUIML is that nothing other than what the PUI should look
like and how it should behave has to be speci�ed. The same PUIDI, which provides
the application basis and means for PalCom communication, can be reused for all PUI
Descriptions. When using a tool like NetBeans, not only does the developer have to design
the GUI for each new scenario, s/he must also rebuild the application basis and PalCom
communication module to �t the new scenario. While some of the code of previous solutions
can surely be reused, the amount of work that goes into tweaking and integrating the old
code into the new solution should still be considered signi�cant. Another advantage of
using PUIML is that the means for interacting with PalCom services is built right into
the language. This has the e�ect that no unnecessary glue code has to be produced when
specifying the behavior of components. When using tools like NetBeans, the developer
will most likely have to produce glue code simply to link the GUI component to the code
of a PalCom communication module. This kind of code is usually simple to produce, but
also very time consuming and tedious.

Because of the generic nature of PUIML, the language can be used to specify PUIs for
many di�erent target platform, provided that a PUIDI for said platform is available. When
using tools like NetBeans, the developer is usually limited to one or a few platforms.
Furthermore, the di�erent platforms have di�erent characteristics, and may require that
the developer learns a new language, or how to use a speci�c set of packages provided for
the platform.

As has been shown throughout the course of this thesis, the result of the project is an
application that produces PalCom based Android GUIs in an accessible and sustainable
way, using the developed language PUIML. The issues presented in chapter 2 are addressed,
and the future possibilities are plentiful.

62

Chapter 10

Conclusion

The need for new and better alarm devices in the health care sector has lead to the need to
create many similar smartphone applications using a limited amount of resources. One of
the goals of this thesis was to achieve this e�ect by using a common service based system as
a foundation. By using the PalCom framework, all medical equipment and the respective
functionality can be represented as self-describing devices and services within the system.
Even though di�erent hospitals and even di�erent departments in the same hospital needs
to combine di�erent services for di�erent e�ects, they can all be based on PalCom. This
ensures that the core of all smartphone applications that seeks to connect to the system
are essentially the same. By using a common application core, the only thing that has to
be recreated between di�erent scenarios is the GUI.

To further reduce the amount of resources required to create smartphone applications, the
GUI language PalCom User Interface Markup Language (PUIML) was developed. PUIML
is platform generic, meaning that the GUIs speci�ed for an Android smartphone should
be portable to other platforms in the future. By using a generic language, the complexity
of the GUI descriptions are kept low. Building on the fact that the target systems of
this thesis were based on PalCom, the behavioral possibilities of the PUIML described
GUIs were limited to simply being able to in�uence PalCom entities. While this limits the
power of PUIML, the gain is that the specialized behavior is simple to express, and the
GUI description are therefore kept short.

By combining the fact that the target systems are PalCom based with the language devel-
oped for the purpose of this thesis, a prototype Android application was developed as the
primary result of this thesis. This application allows the user to choose one �le (from the
phones SD-card) that describes a GUI using PUIML. The description describes what the
GUI should look like, and which services in the system should make up the functionality
of the application. After a description �le is chosen, the GUI is generated, and the user
can start the interaction.

From the user's point of view, this is an application like any other. However, for a GUI
developer, the advantages are signi�cant. Instead of having to specialize in platform speci�c
languages and modules, the developer is presented with a short and concise language �
PUIML. Since the target system is PalCom based, de�ning the functionality of the GUI is
as simple as hooking a graphical component, e.g. a button, to the desired PalCom service.
This is made possible by the unique features of PUIML. Perhaps the biggest gain is that

63

CHAPTER 10. CONCLUSION

while a new GUI has to be de�ned using PUIML for every new scenario, the core of the
Android application is reused every time. This signi�cantly reduces the amount of code
that has to be written, and therefore, the amount of resources that is needed to create a
custom GUI.

By combining the concept of service based systems with a platform generic GUI language,
this thesis has resulted in an Android applications with a context adaptable GUI. It stands
clear that the amount of resources required to create a custom Android GUI has been sig-
ni�cantly reduced, and in the future the system could easily be ported to other platforms.

64

Bibliography

[1] Interface Builder: Create your user interface. http://www.apple.com/macosx/

developers/#builder, 2011. [Online; accessed 27-April-2011].

[2] NetBeans IDE: Swing GUI builder. http://netbeans.org/features/java/swing.
html, 2011. [Online; accessed 27-April-2011].

[3] Erik Johansson and Thomas Persson. Flexible integration of medical systems using
PalCom. Master's thesis, Lund University, 2010.

[4] R. Jason Weiss and J. Philip Craiger. Ubiquitous computing. The Industrial-

Organizational Psychologist, 39(4), April 2002.

[5] Giovanni Rimassa, Dominic Greenwood, and Monique Calisti. Palpable computing
and the role of agent technology. In Proceedings of the 4th International Central and

Eastern European Conference on Multi-Agent Systems, Budapest, Hungary, Septem-
ber 2005.

[6] P. Andersen and S. Bo Larsen. PalCom external report 70: Developer's companion.
March 2009.

[7] What is UsiXML ? http://www.usixml.org/index.php?mod=pages&id=2, 2011.
[Online; accessed 07-March-2011].

[8] Peter Bojanic. The joy of XUL. https://developer.mozilla.org/en/The_Joy_of_
XUL, 2011. [Online; accessed 07-March-2011].

[9] Marc Abrams and James Helms. User interface markup language (UIML) speci�ca-
tion. March 2004.

[10] Wayne A. Babich. Software Con�guration Management. Addison-Wesley, 1986.

65

Appendix A

PUIML speci�cation

A.1 Units

A.1.1 P:Device

Units of class �P:Device� represent a PalCom device (see chapter 3.3.3). The PalCom device
is identi�ed in the PalCom universe using the discovery properties listed in table A.1. An
example on how to use the class is presented in listing A.1.

Property Value type Default
value

Description

p:id String � Sets the ID of the device.

Table A.1: Required discovery properties for the P:Device class

1 <unit id=" my_id" class="P:Device">

2 <discovery >

3 <property name="p:id">X:test </property >

4 </discovery >

5 </unit >

Listing A.1: Example use of the P:Device class

A.1.2 P:Service

Units of class �P:Service� represent a PalCom service (see chapter 3.3.4). The PalCom
service is identi�ed in the PalCom universe using the discovery properties listed in table A.2
and A.3, in conjunction with the discovery properties found in the units parent device. An
example on how to use the class is presented in listing A.2.

67

APPENDIX A. PUIML SPECIFICATION

Property Value type Default
value

Description

p:pdid String � Sets the previous device ID of the
service.

p:mdid String � Sets the merged-from device ID
of the service.
Note: only applicable if the
p:pdid property is set.

Table A.2: Optional discovery properties for the P:Service class

Property Value type Default
value

Description

p:instance String � Sets the instance number of the
service.

p:cdid String � Sets the creating device ID of the
service.

p:cn String � Sets the creation number of the
service.

p:udid String � Sets the updating device ID of
the service.

p:un String � Sets the update number of the
service.

p:pn String � Sets the previous number of the
service.
Note: only applicable if the
p:pdid property is set.

p:mn String � Sets the merged-from number of
the service.
Note: only applicable if the
p:mdid property is set.

Table A.3: Required discovery properties for the P:Service class

68

A.1. UNITS

1 <unit id=" my_id" class="P:Service">

2 <discovery >

3 <property name="p:instance ">1</property >

4 <property name="p:cdid">X:test </property >

5 <property name="p:cn">0</property >

6 <property name="p:udid">X:test </property >

7 <property name="p:un">1</property >

8 </discovery >

9 </unit >

Listing A.2: Example use of the P:Service class

A.1.3 P:Command

Units of class �P:Command� represent a PalCom command (see chapter 3.3.4). The Pal-
Com command is identi�ed in the PalCom universe using the discovery properties listed
in table A.4 and A.5, in conjunction with the discovery properties found in the units
ancestors. An example on how to use the class is presented in listing A.3.

Property Value type Default
value

Description

p:direction { in | out } in Sets the direction of the com-
mand.

p:noti�cations { o�, xlow, low,
normal, high,
xhigh }

o� Sets the level at which the user
will be noti�ed when the com-
mand is invoked.

Table A.4: Optional discovery properties for the P:Command class

Property Value type Default
value

Description

p:id String � Sets the ID of the command.

Table A.5: Required discovery properties for the P:Command class

1 <unit id=" my_id" class="P:Command">

2 <discovery >

3 <property name="p:id">out_com_1 </property >

4 <property name="p:direction">out </property >

5 <property name="p:notifications">low </property >

6 </discovery >

7 </unit >

Listing A.3: Example use of the P:Command class

69

APPENDIX A. PUIML SPECIFICATION

A.1.4 P:Param

Units of class �P:Param� represent a PalCom parameter (see chapter 3.3.4). The PalCom
parameter is identi�ed in the PalCom universe using the discovery properties listed in
table A.6 and A.7, in conjunction with the discovery properties found in the units ancestors.
An example on how to use the class is presented in listing A.4.

Property Value type Default
value

Description

p:data-type { text | image } text Sets the data type of the com-
mand.

Table A.6: Optional discovery properties for the P:Param class

Property Value type Default
value

Description

p:id String � Sets the ID of the command.

Table A.7: Required discovery properties for the P:Param class

1 <unit id=" my_id" class="P:Param">

2 <discovery >

3 <property name="p:id">param_1 </property >

4 <property name="p:data -type">image </property >

5 </discovery >

6 </unit >

Listing A.4: Example use of the P:Param class

A.2 Parts

A.2.1 G:TopContainer

The generic top container represents the root container on the target platform, in which
all other parts will be housed. Consequently, the �rst part of any PUI Description must be
of class �G:TopContainer�. The available style properties for parts of this class are listed
in table A.8. For an example on how to use the class and its style properties, refer to
listing A.5.

1 <part id=" my_id" class="G:TopContainer">

2 <style >

3 <property name="g:title">Test title </property >

4 <property name="g:resizable">false </property >

5 <property name="g:size ">320,240</ property >

6 </style >

7 </part >

Listing A.5: Example use of the G:TopContainer class

70

A.2. PARTS

Property Value type Default
value

Description

g:title String � Sets the text that is displayed as
the title of the top container.

g:resizable { true | false } true Sets whether or not the top con-
tainer should be allowed to be re-
sized.

g:layout { linear | grid } linear Sets the layout of the container
part. See appendix A.3.

g:size width:Integer,
height:Integer

� Set the preferred size (in pixels)
of the part.

Table A.8: Available style properties for the G:TopContainer class

A.2.2 G:Area

The generic area container represents some area on the target platform in which other parts
can be contained. Area containers can contain parts of any class (with the exception of
�G:TopContainer�), including other parts of class �G:Area�, making them perfect not only
for grouping together associated parts of the interface, but also for structuring complex
interfaces. The available style properties for area containers are listed in table A.9, and
an example of how they can be used is represented by listing A.6.

Property Value type Default
value

Description

g:title String � Sets the text that is displayed in
the border (if any) of the area.

g:scrollable { true | false } false Sets whether or not the area
should be scrollable if too big.

g:border { empty | line |
raised | lowered }

empty Sets the type of border that
should surround the area.

g:layout { linear | grid } linear Sets the layout of the container
part. See appendix A.3.

g:size width:Integer,
height:Integer

� Set the preferred size (in pixels)
of the part.

g:tab-text String � Sets the text on the tab for this
part, given that it is a sub-part
of a part of class �G:Tabbed� (see
appendix A.2.3).

Table A.9: Available style properties for the G:Area class

71

APPENDIX A. PUIML SPECIFICATION

1 <part id=" my_id" class="G:Area">

2 <style >

3 <property name="g:title">Border title </property >

4 <property name="g:scrollable">true </property >

5 <property name="g:border">line </property >

6 <property name="g:size ">160,120</ property >

7 <property name="g:tab -text">Tab title </property >

8 </style >

9 </part >

Listing A.6: Example use of the G:Area class

A.2.3 G:Tabbed

The generic tab container represents some component on the target platform in which other
parts can be contained. Each part (which may be of any class except for �G:TopContainer�)
contained is representing as a tab in the tab container. The available style properties for
tab containers are listed in table A.10. For an example on how to use these properties,
refer to listing A.7.

Property Value type Default
value

Description

g:size width:Integer,
height:Integer

� Set the preferred size (in pixels)
of the part.

g:tab-text String � Sets the text on the tab for this
part, given that it is a sub-part
of a part of class �G:Tabbed� (see
appendix A.2.3).

Table A.10: Available style properties for the G:Tabbed class

1 <part id=" my_id" class="G:Tabbed">

2 <style >

3 <property name="g:size ">160,120</ property >

4 <property name="g:tab -text">Tab title </property >

5 </style >

6 </part >

Listing A.7: Example use of the G:Tabbed class

A.2.4 G:Label

The generic label represents a simple single line label. These labels can be used either
as static information sources, or as viewers for units of class �P:Param� that have the
p:data-type property set to �text� (see appendix A.1.4). The visual appearance of the label
can be altered using the properties in table A.12, and the behavior using the properties
displayed in table A.11. For an example use, please refer to listing A.8.

72

A.2. PARTS

Property Value type Default
value

Description

p:viewer Unit ID � Sets the unit ID for which this
part will be a viewer.

Table A.11: Available behavior properties for the G:Label class

Property Value type Default
value

Description

g:font String � Sets the font for this part. Valid
font names may vary on di�erent
platforms. Invalid font names
will have no e�ect. See sec-
tion A.4.

g:text String � Sets the initial text string of the
part.

g:align-h { left | center |
right }

left Sets the horizontal alignment of
the text.

g:align-v { top | center |
bottom }

center Sets the vertical alignment of the
text.

g:size width:Integer,
height:Integer

� Set the preferred size (in pixels)
of the part.

g:tab-text String � Sets the text on the tab for this
part, given that it is a sub-part
of a part of class �G:Tabbed� (see
appendix A.2.3).

Table A.12: Available style properties for the G:Label class

73

APPENDIX A. PUIML SPECIFICATION

1 <part id=" my_id" class="G:Label">

2 <style >

3 <property name="g:text">top -center </property >

4 <property name="g:align -h">center </property >

5 <property name="g:align -v">top </property >

6 <property name="g:size ">120,50</ property >

7 <property name="g:tab -text">Tab title </property >

8 </style >

9 <behavior >

10 <property name="p:viewer">unit_id </property >

11 </behavior >

12 </part >

Listing A.8: Example use of the G:Label class

A.2.5 G:TextArea

The generic text area represents a multi line text area. As the parts of class �G:Label�,
the parts of class �G:TextArea� can also be used either as static information sources, or
as viewers for units of class �P:Param� that have the p:data-type property set to �text�
(see appendix A.1.4). The available style properties for text areas are listed in table A.14,
and the available behavior properties are listed in table A.13. An example use of these
properties can be studied in listing A.9.

Property Value type Default
value

Description

p:viewer Unit ID � Sets the unit ID for which this
part will be a viewer.

p:delimiter String � Sets the delimiter characters
used to separate text into sepa-
rate lines.
Note: only applicable if the
p:viewer property is set.

Table A.13: Available behavior properties for the G:TextArea class

1 <part id=" my_id" class="G:TextArea">

2 <style >

3 <property name="g:text">Some text </property >

4 <property name="g:size ">120,200</ property >

5 <property name="g:tab -text">Tab title </property >

6 </style >

7 <behavior >

8 <property name="p:viewer">unit_id </property >

9 <property name="p:delimiter ">;:</property >

10 </behavior >

11 </part >

Listing A.9: Example use of the G:TextArea class

74

A.2. PARTS

Property Value type Default
value

Description

g:font String � Sets the font for this part. Valid
font names may vary on di�erent
platforms. Invalid font names
will have no e�ect. See sec-
tion A.4.

g:text String � Sets the initial text string of the
part.

g:size width:Integer,
height:Integer

� Set the preferred size (in pixels)
of the part.

g:tab-text String � Sets the text on the tab for this
part, given that it is a sub-part
of a part of class �G:Tabbed� (see
appendix A.2.3).

Table A.14: Available style properties for the G:TextArea class

A.2.6 G:TextField

The generic text �eld represents a simple single line text �eld to enter textual data. Parts
of class �G:TextField� can be used either as providers for units of class �P:Param� that have
the p:data-type property set to �text� (see appendix A.1.4), or as non editable viewers for
the same. The class' style properties are listed in table A.16, and its behavior properties
in table A.15. For an example use, please refer to listing A.10.

Property Value type Default
value

Description

p:provider Unit ID � Sets the unit ID for which this
part will be a provider.

p:viewer Unit ID � Sets the unit ID for which this
part will be a viewer.
Note: only applicable if the
p:provider property is not set.

Table A.15: Available behavior properties for the G:TextField class

A.2.7 G:Image

The generic image represents any component that displays images on the target platform.
Images can be used either for static image displaying, or as viewers for units of class
�P:Param� that have the p:data-type property set to �image� (see appendix A.1.4). The
visual properties of this class are listed in table A.18, while the behavioral properties are
listed in table A.17. For an example on how to use the G:Image class, consult listing A.11.

75

APPENDIX A. PUIML SPECIFICATION

Property Value type Default
value

Description

g:text String � Sets the initial text string of the
part.

g:alternate-
text

String � Sets the alternate text (usually a
tool tip text) string for the part.

g:align-h { left | center |
right }

left Sets the horizontal alignment of
the text.

g:size width:Integer,
height:Integer

� Set the preferred size (in pixels)
of the part.

g:tab-text String � Sets the text on the tab for this
part, given that it is a sub-part
of a part of class �G:Tabbed� (see
appendix A.2.3).

Table A.16: Available style properties for the G:TextField class

1 <part id=" my_id" class="G:TextField">

2 <style >

3 <property name="g:text">initial txt </property >

4 <property name="g:alternate -text">tooltip text </property >

5 <property name="g:align -h">center </property >

6 <property name="g:size ">120,50</ property >

7 <property name="g:tab -text">Tab title </property >

8 </style >

9 <behavior >

10 <property name="p:provider">unit_id </property >

11 </behavior >

12 </part >

Listing A.10: Example use of the G:TextField class

Property Value type Default
value

Description

p:viewer Unit ID � Sets the unit ID for which this
part will be a viewer.

Table A.17: Available behavior properties for the G:Image class

76

A.2. PARTS

Property Value type Default
value

Description

g:image-src String � Sets the image source of this
part. Must be a valid �lename.
See appendix A.5.

g:size width:Integer,
height:Integer

� Set the preferred size (in pixels)
of the part. Any of width and
height may be set to a negative
number in order to resize propor-
tionally.

g:tab-text String � Sets the text on the tab for this
part, given that it is a sub-part
of a part of class �G:Tabbed� (see
appendix A.2.3).

Table A.18: Available style properties for the G:Image class

1 <part id=" my_id" class="G:Image">

2 <style >

3 <property name="g:image -src">C:/ images/img.png </property >

4 <property name="g:size">180,-1</property >

5 <property name="g:tab -text">Tab title </property >

6 </style >

7 <behavior >

8 <property name="p:viewer">unit_id </property >

9 </behavior >

10 </part >

Listing A.11: Example use of the G:Image class

A.2.8 G:Button

The generic button represents a button on the target platform which accepts input from
the user in the form of mouse clicks. Parts of class �G:Button� can be used either to
invoke units of class �P:Command� that have the p:direction property set to �in� (see
appendix A.1.3), or as providers for units of class �P:Param� that have the p:data-type
property set to �image� (see appendix A.1.4). As provider, buttons have two di�erent
targets: browse, which uses a �le browser to locate an image, and camera, which uses
the camera (if available). The class' style properties are listed in table A.20, and its
behavior properties in table A.19.

Listing A.12 demonstrates an example where a button displays an image instead of a
normal text label and is used as an invoker. In listing A.13, a button with a normal text
label uses the camera to provide images.

77

APPENDIX A. PUIML SPECIFICATION

Property Value type Default
value

Description

p:invoker Unit ID � Sets the unit ID for which this
part will be an invoker.

p:provider Unit ID � Sets the unit ID for which this
part will be a provider.
Note: only applicable if the
p:invoker property is not set.

p:target { browse | camera } browse Sets the invoker target.
Note: only applicable if the
p:provider property is set.

Table A.19: Available behavior properties for the G:Button class

Property Value type Default
value

Description

g:text String � Sets the text label for the button.

g:alternate-
text

String � Sets the alternate text (usually a
tool tip text) string for the part.

g:image-src String � Sets the image source of this
part. Must be a valid �lename.
See appendix A.5.

g:size width:Integer,
height:Integer

� Set the preferred size (in pixels)
of the part.

g:tab-text String � Sets the text on the tab for this
part, given that it is a sub-part
of a part of class �G:Tabbed� (see
appendix A.2.3).

Table A.20: Available style properties for the G:Button class

1 <part id=" my_id" class="G:Button">

2 <style >

3 <property name="g:image -src">C:/ images/img.png </property >

4 <property name="g:alternate -text">tooltip text </property >

5 <property name="g:size ">120,50</ property >

6 <property name="g:tab -text">Tab title </property >

7 </style >

8 <behavior >

9 <property name="p:invoker">unit_id </property >

10 </behavior >

11 </part >

Listing A.12: Example use of the G:Button class (as invoker)

78

A.3. LAYOUT PROPERTIES

1 <part id=" my_id" class="G:Button">

2 <style >

3 <property name="g:image -src">press me </property >

4 <property name="g:size ">120,50</ property >

5 <property name="g:tab -text">Tab title </property >

6 </style >

7 <behavior >

8 <property name="p:provider">unit_id </property >

9 <property name="p:target">camera <property >

10 </behavior >

11 </part >

Listing A.13: Example use of the G:Button class (as provider)

A.3 Layout properties

The g:layout property is a style property that can be set for parts of class �G:TopContainer�
(appendix A.2.1) and parts of class �G:Area� (appendix A.2.2). The property has two valid
values: �linear� and �grid�. Depending on the value of g:layout, additional properties can,
and even must, be set. These additional properties when g:layout is set to �linear� are
speci�ed in table A.21, and when g:layout is set to �grid� are speci�ed in table A.22 and
table A.23.

Property Value type Default
value

Description

g:layout-gap x:Integer,
y:Integer

� Sets the gap (in pixels) between
the parts in this layout.

g:layout-
orientation

{ horizontal |
vertical }

horizontal Sets the direction from which the
parts in this layout are laid out.

Table A.21: Optional style properties when g:layout is set to �linear�

Property Value type Default
value

Description

g:layout-gap x:Integer,
y:Integer

� Sets the gap (in pixels) between
the parts in this layout.

Table A.22: Optional style properties when g:layout is set to �grid�

Property Value type Default
value

Description

g:layout-
columns

Integer � Sets the number of columns per
row for the grid.

Table A.23: Required style properties when g:layout is set to �grid�

79

APPENDIX A. PUIML SPECIFICATION

Setting the g:layout property to �linear� for a container part means that all sub-parts
will be positioned according to a linear layout. This means that all sub-parts will be
laid out one after another according to the g:layout-orientation property, as either left-to-
right (g:layout-orientation set to �horizontal�), or top-to-bottom (g:layout-orientation set
to �vertical�). Setting the g:layout property to �grid� means that a grid layout will be used
to position the sub-parts. In a grid layout the sub-parts are laid out into a grid. The
proportions of the grid cells are set automatically and are dependent on the implementing
platform.

1 <part id=" my_id" class="G:Area">

2 <style >

3 <property name="g:layout">grid </property >

4 <property name="g:layout -gap">5,5</property >

5 <property name="g:layout -columns ">2</property >

6 ...

7 </style >

8 </part >

Listing A.14: Example use of a grid layout

Listing A.14 demonstrates the use of a grid layout. In the example, a grid with 2 columns
per row will be created, and the gap between the added sub-parts will be 5 pixels horizon-
tally and 5 pixels vertically. Notice that while line 4 i the example could be removed, line
5 is mandatory.

1 <part id=" my_id" class="G:Area">

2 <style >

3 <property name="g:layout">linear </property >

4 <property name="g:layout -gap">5,5</property >

5 <property name="g:layout -align">vertical </property >

6 ...

7 </style >

8 </part >

Listing A.15: Example use of a linear layout

Listing A.15 demonstrates the use of a linear layout. In the example, sub-parts will be
added to the layout from top to bottom, meaning that the �rst sub-part added will be the
topmost one. As in the previous example, the gap between the added sub-parts will be 5
pixels horizontally and 5 pixels vertically.

A.4 Font properties

The g:font property is a style property that can be set both for parts of class �G:Label�
(appendix A.2.4) and parts of class �G:TextArea� (appendix A.2.5). The value of the
property should be a text string describing the name of the desired font. As valid font
names may vary depending on the target platform, some tweaking might be necessary to
get the desired e�ect. However, if the font name is invalid, no errors will occur. The
default font will simply be used instead, as if no value was set for g:font.

80

A.5. FILENAME VALUES

In addition to the g:font property there are a few other font related properties that can
be set for the above mentioned part classes. These properties are listed in table A.24.
Listing A.16 demonstrates how to set the font to italic (but not bold) verdana of size 12.

Property Value type Default
value

Description

g:font-bold { true | false } false Sets whether the font should be
in bold.

g:font-italic { true | false } false Sets whether the font should be
in italics.

g:font-size Integer � Sets the size of the font.

Table A.24: Additional font related properties

1 <part id=" my_id" class="G:Label">

2 <style >

3 <property name="g:font">Verdana </property >

4 <property name="g:font -bold">false </property >

5 <property name="g:font -italic">true </property >

6 <property name="g:font -size">12</property >

7 ...

8 </style >

9 </part >

Listing A.16: Example use of font properties

A.5 Filename values

The g:image-src property is a style property that can be set for parts of class �G:Button�
(appendix A.2.8) and parts of class �G:Image� (appendix A.2.7). The value of the property
must be a text string that represents the �lename of the image source. The �lename may be
absolute, e.g. �c:/folder1/folder2/image.png�, or relative, e.g. �folder2/image.png�. Worth
noting is that when presented with a relative �lename, the parser will actually perform
two checks:

1. Using the path of the �le being parsed as a starting-point, the parser appends the
folder name �resources� as well as the relative �lename, and attempts to use the
newly formed absolute �lename to locate the �le.

2. If the �rst check failed, the parser will attempt to use the default relative �lename
handler provided by the Java framework.

For example:

The parser, running out of the folder �c:/folder1�, is parsing the �le with the
absolute �lename �c:/folder2/ggui.xml�. In this �le, the relative image source
�lename �image.png� is referenced for one of the parts of class �G:Image�. The

81

APPENDIX A. PUIML SPECIFICATION

path of the �le being parsed is �c:/folder2�. The �rst �le check will therefore
be for the �le with the absolute �lename �c:/folder2/resources/image.png�. If
the �le exists, it will be used. Otherwise, the parser will use the default Java
framework to form the absolute �lename �c:/folder1/image.png�. If this �le
exists it will be used, and if it does not exist a parsing error will be reported.

The �rst check allows the user to better organize his/her interface de�nitions along with
the image resources being referenced by them.

82

Appendix B

Implementation

B.1 Model

The two created PUID Interpreters, Android PUIDI and Swing/AWT PUIDI, actually
consist of two major parts: a shared Java front-end, and a platform speci�c back-end.
The front-end is implemented using Java, and provides an interface so that platform spe-
ci�c PUIDIs can be constructed by interacting with this front-end. Since both of the
constructed PUIDIs are Java based, they both build upon the shared Java front-end. A
similar model could be developed for di�erent programming languages, but that's outside
the scope of this thesis.

The front-end parses an input PUI Description �le, and constructs an internal represen-
tation of the description. All parts and units speci�ed in the PUID are represented by a
speci�c class in this internal representation. These classes provide an array of methods
and properties that are needed to build a proper GUI in the back-end. Most of the heavy
lifting is done by the front-end, and it is mainly by implementing two Java interfaces,
AbstractBuilder and AbstractConnector, that the di�erent back-ends are created. The
back-end implementer passes an instance of his/her implementation of this two interfaces
along with the PUID �lename to the front-end parser.

The AbstractBuilder interface provides one build method for each part class of PUIML,
e.g. onButton for parts of class �G:Button�. The purpose of these methods is to allow
the back-end implementer to decide how parts of a certain class should be created on the
target platform. By implementing the interface in di�erent ways, di�erent back-ends can
be created. The methods all take one parameter: an instance of the Java class representing
the speci�c part that should be built. For example, parts of class �G:Button� are internally
represented by the Java class LButton. Hence, onButton(LButton part). If a PUID has
three di�erent buttons, the method should be called three times, once for each button. The
parameter should be the LButton instance that represents the corresponding �G:Button�
part internally.

When the front-end parser has constructed the internal representation of the PUID, the
build method for the top most part will be called, i.e. onTopContainer. By using the
methods and properties provided by the parameter, the implementer can create a suitable
top container for the target platform. All Java class representations of PUIML parts that
can contain other parts, such as top containers, provide methods to get the Java class

83

APPENDIX B. IMPLEMENTATION

representation of the contained parts. In the build method of such container parts, the
implementer must call the build method of the contained parts. The build methods return
an object of type Object, e.g. Object onButton(LButton part). The actual return
type of the object depends on the implementation, but could be used to return a graphical
component which can then be placed inside the graphical component of the container part.

The second interface used to implement custom back-ends is AbstractConnector. This
interface contains methods associated with the PalCom universe. Its main purpose is to
�nd and establish connections to PalCom services. By implementing the methods of this
interface the back-end implementer can control how the PUIDI perform those tasks.

How data from the PalCom universe goes through the front-end and is presented via the
back-end is worth noting. The front-end parses the PUID and creates the internal represen-
tation of parts and units. The Java part instances have references to the Java unit instances
for which they are either provider, viewer or invoker. The front-end then uses the informa-
tion in the Java unit instances along with the provided methods in the AbstractConnector
interface to create connections to the speci�ed PalCom services. These connections are
then saved internally in the Java unit instances. When the graphical components are cre-
ated in the build methods of the AbstractBuilder, the Java part instance provided as
the parameter for the build method is used to get a reference to a Java unit instance. The
graphical component can then be properly matched to the unit, and data can �ow in both
directions.

By implementing the two interfaces described above, a new Java back-end is created.
Combining the Java front-end with a newly created back-end makes for a new Java based
PUIDI that can be used on the target platform.

B.2 Java front-end

The Java PUID Interpreter front-end is made up of �ve Java packages: *.builder,
*.connector, *.parser, *.parser.parts and *.parser.units, where * is spelled out as
se.lth.cs.xbjorn.java_fe_puidi. The basic idea of the front-end was discussed in ap-
pendix B.1, and in this part of the appendix the classes in the packages of the front-end
will be presented.

B.2.1 se.lth.cs.xbjorn.java_fe_puidi.parser.parts

This package contains classes that are used to represent PUI Markup Language parts.

LPart.java
Class used to represent any part. Contains methods and properties that are shared
by all parts.

LContainerPart.java
Extension of LPart. Represents all parts that can contain other parts. Contains a
List of LParts.

LTabbed.java
Class that represent parts of class �G:Tabbed�. Extension of LContainerPart.

84

B.2. JAVA FRONT-END

LLayoutPart.java
Extension of LContainerPart. Contains methods and properties associated with
the layout of a container part.

LTopContainer.java
Class that represents parts of class �G:TopContainer�. Extension of LLayoutPart.

LArea.java
Class that represents parts of class �G:Area�. Extension of LLayoutPart.

LFontPart.java
Extension of LPart. Represents all parts for which the font properties apply.

LLabel.java
Class that represents parts of class �G:Label�. Extension of LFontPart.

LTextArea.java
Class that represents parts of class �G:TextArea�. Extension of LFontPart.

LTextField.java
Class that represents parts of class �G:TextField�. Extension of LPart.

LImage.java
Class that represents parts of class �G:Image�. Extension of LPart.

LButton.java
Class that represents parts of class �G:Button�. Extension of LPart.

B.2.2 se.lth.cs.xbjorn.java_fe_puidi.parser.units

This package contains classes that are used to represent PUI Markup Language units.

LUnit.java
Class used to represent any unit. Contains methods and properties that are shared
by all units, i.a. a List of LUnits.

LDevice.java
Class that represents units of class �P:Device�. Extension of LUnit.

LService.java
Class that represents units of class �P:Service�. Extension of LUnit.

LCommand.java
Class that represents units of class �P:Command�. Extension of LUnit.

LParam.java
Class that represents units of class �P:Param�. Extension of LUnit.

85

APPENDIX B. IMPLEMENTATION

B.2.3 se.lth.cs.xbjorn.java_fe_puidi.builder

This package contains a single class.

AbstractBuilder.java
This interface, along with AbstractConnector, is what the back-end implementer
needs to implement, instantiate and provide to the Java front-end in order to create
a fully functional PUIDI. Contains methods that should be called in order to create
the graphical components of the PUI.

B.2.4 se.lth.cs.xbjorn.java_fe_puidi.connector

This package contains classes that the front-end uses to �nd and connect to PalCom
services.

AbstractConnector.java
This interface, along with AbstractBuilder, is what the back-end implementer needs
to implement, instantiate and provide to the Java front-end in order to create a fully
functional PUIDI. Contains methods that the front-end uses to �nd and connect to
PalCom services.

Invokable.java
Simple interface used to �link� a connection established by the AbstractConnector
to an instance of LService.

DefaultConnector.java
Implementation of the AbstractConnector interface. Can be used as a default
implementation when no custom implementation is needed.

MasterDevice.java
Helper class used for implementation of DefaultConnect.

MasterService.java
Helper class used for implementation of DefaultConnect.

B.2.5 se.lth.cs.xbjorn.java_fe_puidi.parser

This is the package that ties together all packages of the Java front-end.

PUIDParser.java
This is the main class of the package. The back-end inputs a PUID �lename, an
AbstractConnector and an AbstractBuilder. The parser will parse the �le, cre-
ate an internal representation of the description and with the aid of the provided
AbstractConnector and AbstractBuilder create a PUI for the user.

PropertyParser.java
Class contain methods to parse the various data types that can occur in a PUID.

Constants.java
Class that contains static constants that are used heavily in the implementation of
the front-end.

86

B.3. ANDROID BACK-END

Logger.java
Class that provides methods for logging errors to a �le de�ned by the implementer.

B.3 Android back-end

This is the most complete of the two developed back-ends, and consist of �ve classes. The
classes and a short description of them follow below.

BuilderActivity.java
This is the main Activity (Android term) of the solution. It is what starts up the
app, and is also the implementation of the AbstractBuilder interface. Hence, this
is the class that is passed to the front-end.

ConnectionService.java
This is a Service (Android term, runs in the background), which is used to ensure
that the communication with the PalCom entities works even though the app is
running in the background.

LitePUIDParser.java
Simple extension of PUIDParser that adjusts the parser to work on the Android OS.

TunnelMasterDevice.java
Simple extension of MasterDevice, i.e. small change in DefaultConnector. Allow
for the connection of con�guration de�ned PalCom tunnels.

Tunnel.java
Class that represents a PalCom tunnel as de�ned in the con�guration �le.

B.4 Swing/AWT back-end

The Swing/AWT back-end is made up of only two classes: SwingBuilder.java and
Main.java. The later is simply a startup class that contains the main method, which
creates a SwingBuilder and calls its parse method. The SwingBuilder is the implemen-
tation of AbstractBuilder that is passed to the front-end. DefaultConnector is used.

87

Appendix C

Installation

C.1 Android PUID Interpreter

C.1.1 Application

1. Power up the Android smartphone and connect it to the computer using a USB
cable.

2. Install android_puidi.apk on the device. Instructions on how to do this will not
be included here, but are widely available on the Internet.

3. Using the computer, navigate to the root directory on the phones SD card.

4. Create a new directory called �PUIDI�. Navigate to the new directory.

5. Create a new directory called �descriptions�.

6. Create an empty text document called �device_con�g.xml�.

7. Edit device_config.xml using any text editor so that it contains the following text:
�<con�guration></con�guration>�

C.1.2 PUI Descriptions

1. Power up the Android smartphone and connect it to the computer using a USB
cable.

2. Using the computer, copy/move one or more PUID �les to the directory
�<sd root>/PUIDI/descriptions�, where �<sd root>� is the path to the phones SD
card on the computer. Note: All PUID �les must have the �le extension �xml�, i.e.
have a �lename that ends in �.xml�.

89

APPENDIX C. INSTALLATION

C.1.3 Tunnels

1. Power up the Android smartphone and connect it to the computer using a USB
cable.

2. Using the computer, navigate to the directory �<sd root>/PUIDI�, where �<sd root>�
is the path to the phones SD card on the computer.

3. Open device_config.xml using any text editor.

4. Add an XML element called �tunnel� between the con�guration's start tag,
<configuration>, and its end tag, </configuration>.

5. Add an XML attribute called �host� to the new tunnel element. The value of this
attribute should be the host name of the device hosting the PalCom tunnel server.

6. Add an XML attribute called �port� to the new tunnel element. The value of this
attribute should be the port used by the PalCom tunnel server.

Optional:

7. Add an XML attribute called �username� to the new tunnel element. The value of
this attribute should be a valid user name as de�ned by the PalCom tunnel server.

8. Add an XML attribute called �password� to the new tunnel element. The value of
this attribute should be the password associated with the user name as de�ned by
the PalCom tunnel server.

1 <configuration >

2 <tunnel host ="192.168.0.6" port ="8030" />

3 <tunnel host ="192.168.0.7" port ="8030" username ="abc" password ="123" />

4 </configuration >

Listing C.1: Example of tunnel con�guration �le content

C.2 Swing/AWT PUID Interpreter

1. Download and install the Java Runtime Environment.
http://www.java.com/getjava/

2. Put swing_puidi.jar in any directory on the computer.

90

Appendix D

User's manual

D.1 Android PUID Interpreter

To start using the application, �rst boot up your Android powered smartphone. When
booted and in its idle mode, the screen should display something similar to �gure D.1.
Locate the application called �PUIDI� on your device and start it by pressing its icon

Figure D.1: Android device after startup

(�gure D.2). The application will start, and the user will be presented with a list containing
all installed PUI Descriptions (�gure D.3). From this screen there are three possible
outcomes (�gure D.4):

91

APPENDIX D. USER'S MANUAL

Figure D.2: Icon for �PUIDI� app

(a) You, the user, choose no PUID by pressing the back button on the device, resulting
in a blank screen. From here, there is no other option than to quit the application (or
leave it running in the background to no end).

(b) You, the user, choose a PUID to generate by pressing the screen. The PUID is parsed,
and the generated PUI is displayed. Naturally, the looks of this screen depends on the
content of the PUID. Figure D.4(b) shows the result of generating the PUID listed in
appendix E.1.1. Note that since no data has arrive yet all �elds are empty.

(c) You, the user, chooses a PUID to generate by pressing the screen, but while parsing
the PUID an error is encountered. Terminate the application and consult the log �le
to �nd and resolve the problem.

Figure D.3: PUI Description selection screen

Continuing with alternative b, once the PUI has been generated, you may now interact
with it at your leisure. If any of the graphical components are disabled, i.e. grayed out
and non-responsive, this means that the PalCom entity linked to this component isn't
available. You can at any time choose to terminate the application by pressing the back

92

D.1. ANDROID PUID INTERPRETER

(a) No selection (back) (b) PUI generated

(c) PUI Description parsing error

Figure D.4: Possible outcomes from PUI Description selection screen

93

APPENDIX D. USER'S MANUAL

button until you reach the home screen of the device. When the application is terminated,
a message box will be displayed to inform how the application termination was handled
(�gure D.5). If all connections where closed properly the text �PUIDI shutdown OK� will
be displayed, otherwise the text �>> Network shutdown failed <<� will be displayed instead.

Figure D.5: �PUIDI� shutdown message

You may also choose to let the application run in the background. To do this, simply press
the home button, which will return you to the home screen. When a message arrives that
demands your attention (as de�ned by the selected PUID), the application will inform you
using an Android noti�cation message. What this might look like is shown in �gure D.6.

(a) Home screen when message arrives (b) Expanded noti�cation bar

Figure D.6: Example of attention demanding message

In �gure D.6(a), the critical message arrives, triggering the Android noti�cation which
can be seen in the upper left corner of the �gure. By expanding the noti�cation bar
(�gure D.6(b)) you can see all unattended message noti�cation. If you click one, the PUI
will appear, and the arrived message can be studied. If the application is already running

94

D.2. SWING/AWT PUID INTERPRETER

in the foreground, the PUI will automatically be updated and the message can be studied
directly without having to click the noti�cation. For an example on what a PUI might
look like after a message has arrived, compare �gure D.7 to �gure D.4(b).

Figure D.7: PUI with message content

Troubleshoot: If you after starting the �PUIDI� application get stuck with an empty
screen (�gure D.4(a)), i.e. you don't get to the PUID selection screen (�gure D.3), there is
most likely some problem with the PalCom tunnel connectivity. Please see appendix C.1.3
on the topic of how to properly install PalCom tunnels.

D.2 Swing/AWT PUID Interpreter

To start the application, located the �swing_puidi.jar� �le and run it, e.g. by double-
clicking its icon. The �rst thing you will be presented with is a �le chooser dialog window,
as seen in �gure D.8. Using this dialog, browse the computer's �le system to locate a PUI
Description �le of your choice. Select a PUID to load either by double-clicking it or by
highlighting it and pressing the �Open� button. After a PUID has been selected, the PUID
Interpreter will attempt to parse it and create a PUI. From here, there are two possible
outcomes (�gure D.9):

(a) The PUID is parsed without errors, and the generated PUI is displayed. The looks of
the PUI depends on the content of the PUID, and �gure D.9(a) shows the result of
generating the PUID listed in appendix E.2.1.

95

APPENDIX D. USER'S MANUAL

Figure D.8: PUI Description �le chooser dialog

(b) While parsing the PUID an error is encountered. An error message similar to the one
shown in �gure D.9(b) is displayed to explain the error. Clicking the �OK� button
terminates the application.

Continuing with alternative a, you may now use the generated PUI for its intended pur-
poses. Note that if any of the graphical components are disabled, i.e. grayed out and
non-responsive, this means that the PalCom entity linked to this component isn't avail-
able. For example, if the PalCom command a button acts as invoker for is unavailable,
the button will not be clickable. When an incoming message arrives, the content of the
message is presented in the PUI as speci�ed by the PUID. For an example of what this
might look like, see �gure D.10 in contrast to �gure D.9(a). Because of the limitations of
the Swing/AWT PUIDI, messages that demand your attention (as de�ned by the PUID)
will have no special e�ect on the PUI when arriving.

To terminate the application, simply close the window in which the PUI resides.

96

D.2. SWING/AWT PUID INTERPRETER

(a) PUI generated

(b) PUI Description parsing error

Figure D.9: Possible outcomes of the �le chooser dialog

Figure D.10: PUI after message arrival

97

Appendix E

PUIML code samples

E.1 Android PUID Interpreter

E.1.1 Photo Printer

1 <?xml version ="1.0" encoding ="UTF -8"?>

2
3 <puiml >

4 <universe >

5 <unit id=" device" class ="P:Device">

99

APPENDIX E. PUIML CODE SAMPLES

6 <unit id="synth -assembly" class="P:Service">

7 <unit id=" motion" class ="P:Command">

8 <unit id="motion -message" class="P:Param" />

9 </unit >

10 <unit id="snap" class="P:Command" />

11 <unit id=" print" class="P:Command">

12 <unit id="print -message" class="P:Param" />

13 </unit >

14 </unit >

15 </unit >

16 </universe >

17
18 <discovery >

19 <property unit -name=" device" name="p:id">X:PP1001 </property >

20
21 <property unit -name="synth -assembly" name="p:instance ">1</property >

22 <property unit -name="synth -assembly" name="p:cdid">X:1scenarioBJ </

property >

23 <property unit -name="synth -assembly" name="p:cn">BJscenario1 </property >

24 <property unit -name="synth -assembly" name="p:udid">X:1scenarioBJ </

property >

25 <property unit -name="synth -assembly" name="p:un">BJscenario1 </property >

26
27 <property unit -name=" motion" name="p:id">MOTION </property >

28 <property unit -name=" motion" name="p:direction">out </property >

29 <property unit -name=" motion" name="p:notifications">normal </property >

30
31 <property unit -name="motion -message" name="p:id">MESSAGE </property >

32
33 <property unit -name="snap" name="p:id">SNAP </property >

34 <property unit -name="snap" name="p:direction">in </property >

35
36 <property unit -name=" print" name="p:id">PRINT </property >

37 <property unit -name=" print" name="p:direction">in </property >

38
39 <property unit -name="print -message" name="p:id">MESSAGE </property >

40 </discovery >

41
42 <structure >

43 <part id=" window" class ="G:TopContainer">

44 <part id="scroll -area" class="G:Area">

45 <part id="motion -area" class="G:Area">

46 <part id="message1 -label" class="G:Label" />

47 <part id="message1 -output" class="G:Label" />

48 </part >

49 <part id="snap -area" class="G:Area">

50 <part id="snap -button" class="G:Button" />

51 </part >

52 <part id="print -area" class="G:Area">

53 <part id="sub -area" class="G:Area">

54 <part id="message2 -label" class="G:Label" />

55 <part id="message2 -input" class="G:TextField" />

56 </part >

57 <part id="print -button" class ="G:Button" />

58 </part >

59 </part >

60 </part >

61 </structure >

62
63 <style >

64 <property part -name=" window" name="g:title">Photo Print </property >

65 <property part -name=" window" name="g:layout">linear </property >

100

E.1. ANDROID PUID INTERPRETER

66 <property part -name=" window" name="g:layout -orientation">vertical </

property >

67
68 <property part -name="scroll -area" name="g:layout">linear </property >

69 <property part -name="scroll -area" name="g:layout -orientation">vertical </

property >

70 <property part -name="scroll -area" name="g:scrollable">true </property >

71
72 <property part -name="motion -area" name="g:layout">linear </property >

73 <property part -name="motion -area" name="g:layout -orientation">vertical </

property >

74 <property part -name="motion -area" name="g:border">line </property >

75
76 <property part -name="message1 -label" name="g:text">Motion dectection

message:</property >

77 <property part -name="message1 -label" name="g:align -h">center </property >

78 <property part -name="message1 -label" name="g:font">Verdana </property >

79 <property part -name="message1 -label" name="g:font -bold">true </property >

80
81 <property part -name="message1 -output" name="g:align -h">center </property >

82 <property part -name="message1 -output" name="g:align -v">top </property >

83 <property part -name="message1 -output" name="g:font">Verdana </property >

84
85 <property part -name="snap -area" name="g:layout">linear </property >

86 <property part -name="snap -area" name="g:layout -orientation">vertical </

property >

87 <property part -name="snap -area" name="g:border">line </property >

88
89 <property part -name="snap -button" name="g:text">Take Photo </property >

90
91 <property part -name="print -area" name="g:layout">linear </property >

92 <property part -name="print -area" name="g:layout -orientation">vertical </

property >

93 <property part -name="print -area" name="g:border">line </property >

94
95 <property part -name="sub -area" name="g:layout">grid </property >

96 <property part -name="sub -area" name="g:layout -columns ">2</property >

97
98 <property part -name="message2 -label" name="g:text">Print message:</

property >

99 <property part -name="message2 -label" name="g:font">Verdana </property >

100
101 <property part -name="print -button" name="g:text">Print Photo </property >

102 </style >

103
104 <behavior >

105 <property part -name="message1 -output" name="p:viewer">motion -message </

property >

106
107 <property part -name="snap -button" name="p:invoker">snap </property >

108
109 <property part -name="print -button" name="p:invoker">print </property >

110 <property part -name="message2 -input" name="p:provider">print -message </

property >

111 </behavior >

112 </puiml >

101

APPENDIX E. PUIML CODE SAMPLES

E.1.2 Alarm Receiver

1 <?xml version ="1.0" encoding ="UTF -8"?>

2
3 <puiml >

4 <universe >

5 <unit id=" alarm_device" class ="P:Device">

6 <unit id=" alarm_service" class="P:Service">

7 <unit id="prev" class="P:Command" />

8 <unit id="next" class="P:Command" />

9 <unit id=" alarm" class="P:Command" />

10 <unit id="data" class="P:Command">

11 <unit id="date" class="P:Param" />

12 <unit id="pnbr" class="P:Param" />

13 <unit id=" fname" class="P:Param" />

14 <unit id=" lname" class="P:Param" />

15 <unit id="info" class="P:Param" />

16 <unit id="refn" class="P:Param" />

17 <unit id="reft" class="P:Param" />

18 </unit >

19 </unit >

20 </unit >

21 <unit id=" phone_device" class ="P:Device">

22 <unit id=" phone_service" class="P:Service">

23 <unit id="call" class="P:Command" />

24 </unit >

25 </unit >

26 </universe >

27
28 <discovery >

29 <property unit -name=" alarm_device" name="p:id">X:ac3000 </property >

102

E.1. ANDROID PUID INTERPRETER

30
31 <property unit -name=" alarm_service" name="p:instance ">1</property >

32 <property unit -name=" alarm_service" name="p:cdid">X:1tfalarmBJ </property

>

33 <property unit -name=" alarm_service" name="p:cn">BJtfalarm1 </property >

34 <property unit -name=" alarm_service" name="p:udid">X:1tfalarmBJ </property

>

35 <property unit -name=" alarm_service" name="p:un">BJtfalarm1 </property >

36
37 <property unit -name="prev" name="p:id">PREV </property >

38 <property unit -name="prev" name="p:direction">in </property >

39
40 <property unit -name="next" name="p:id">NEXT </property >

41 <property unit -name="next" name="p:direction">in </property >

42
43 <property unit -name=" alarm" name="p:id">ALARM </property >

44 <property unit -name=" alarm" name="p:direction">out </property >

45 <property unit -name=" alarm" name="p:notifications">normal </property >

46
47 <property unit -name="data" name="p:id">DATA </property >

48 <property unit -name="data" name="p:direction">out </property >

49 <property unit -name="data" name="p:notifications">off </property >

50
51 <property unit -name="date" name="p:id">DATE </property >

52 <property unit -name="pnbr" name="p:id">P_NUMBER </property >

53 <property unit -name=" fname" name="p:id">F_NAME </property >

54 <property unit -name=" lname" name="p:id">L_NAME </property >

55 <property unit -name="info" name="p:id">MEDICAL </property >

56 <property unit -name="refn" name="p:id">REF_NAME </property >

57 <property unit -name="reft" name="p:id">REF_PHONE </property >

58
59
60 <property unit -name=" phone_device" name="p:id">X:phone000 </property >

61
62 <property unit -name=" phone_service" name="p:instance ">1</property >

63 <property unit -name=" phone_service" name="p:cdid">X:1phoneXY </property >

64 <property unit -name=" phone_service" name="p:cn">XYphone1 </property >

65 <property unit -name=" phone_service" name="p:udid">X:1phoneXY </property >

66 <property unit -name=" phone_service" name="p:un">XYphone1 </property >

67
68 <property unit -name="call" name="p:id">CALL </property >

69 </discovery >

70
71 <structure >

72 <part id=" frame" class="G:TopContainer">

73 <part id=" label1" class ="G:Label"/>

74
75 <part id=" area1" class="G:Area">

76 <part id=" area1a" class ="G:Area">

77 <part id=" label2a" class ="G:Label"/>

78 <part id=" label2b" class ="G:Label"/>

79 </part >

80 <part id=" area1b" class ="G:Area">

81 <part id=" label3a" class ="G:Label"/>

82 <part id=" label3b" class ="G:Label"/>

83 </part >

84 <part id=" area1c" class ="G:Area">

85 <part id=" label4a" class ="G:Label"/>

86 <part id=" label4b" class ="G:Label"/>

87 </part >

88 <part id=" area1d" class ="G:Area">

89 <part id=" label5a" class ="G:Label"/>

103

APPENDIX E. PUIML CODE SAMPLES

90 <part id=" label5b" class ="G:Label"/>

91 </part >

92 </part >

93
94 <part id=" area2" class="G:Area">

95 <part id=" label6" class ="G:Label"/>

96 <part id=" tarea1" class ="G:TextArea"/>

97 </part >

98
99 <part id=" area3" class="G:Area">

100 <part id=" area3a" class ="G:Area">

101 <part id=" label7a" class ="G:Label"/>

102 <part id=" label7b" class ="G:Label"/>

103 </part >

104 <part id=" area3b" class ="G:Area">

105 <part id=" button1" class ="G:Button"/>

106 <part id=" button2" class ="G:Button"/>

107 <part id=" button3" class ="G:Button"/>

108 </part >

109 </part >

110 </part >

111 </structure >

112
113 <style >

114 <property part -name=" frame" name="g:title">Runestone </property >

115 <property part -name=" frame" name="g:layout">linear </property >

116 <property part -name=" frame" name="g:layout -orientation">vertical </

property >

117
118
119 <property part -name=" label1" name="g:text">Patientlarm !</property >

120 <property part -name=" label1" name="g:align -h">center </property >

121 <property part -name=" label1" name="g:font -size">25</property >

122 <property part -name=" label1" name="g:font -bold">true </property >

123
124
125 <property part -name=" area1" name="g:scrollable">true </property >

126 <property part -name=" area1" name="g:border">line </property >

127 <property part -name=" area1" name="g:layout">linear </property >

128 <property part -name=" area1" name="g:layout -orientation">vertical </

property >

129
130 <property part -name=" label2a" name="g:text">Mottogs: </property >

131 <property part -name=" label2a" name="g:align -h">right </property >

132 <property part -name=" label2a" name="g:font -bold">true </property >

133 <property part -name=" label2b" name="g:align -h">left </property >

134
135 <property part -name=" label3a" name="g:text">Persnr: </property >

136 <property part -name=" label3a" name="g:align -h">right </property >

137 <property part -name=" label3a" name="g:font -bold">true </property >

138 <property part -name=" label3b" name="g:align -h">left </property >

139
140 <property part -name=" label4a" name="g:text">Förnamn: </property >

141 <property part -name=" label4a" name="g:align -h">right </property >

142 <property part -name=" label4a" name="g:font -bold">true </property >

143 <property part -name=" label4b" name="g:align -h">left </property >

144
145 <property part -name=" label5a" name="g:text">Efternamn: </property >

146 <property part -name=" label5a" name="g:align -h">right </property >

147 <property part -name=" label5a" name="g:font -bold">true </property >

148 <property part -name=" label5b" name="g:align -h">left </property >

149

104

E.1. ANDROID PUID INTERPRETER

150 <property part -name=" area2" name="g:scrollable">true </property >

151 <property part -name=" area2" name="g:layout">linear </property >

152 <property part -name=" area2" name="g:layout -orientation">vertical </

property >

153 <property part -name=" area2" name="g:border">line </property >

154
155 <property part -name=" label6" name="g:text">Medicinsk information :</

property >

156 <property part -name=" label6" name="g:font -size">20</property >

157 <property part -name=" label6" name="g:font -bold">true </property >

158
159
160 <property part -name=" area3" name="g:layout">linear </property >

161 <property part -name=" area3" name="g:layout -orientation">vertical </

property >

162 <property part -name=" area3" name="g:border">line </property >

163
164 <property part -name=" label7a" name="g:text">Vidarebef. av: </property >

165 <property part -name=" label7a" name="g:align -h">right </property >

166 <property part -name=" label7a" name="g:font -bold">true </property >

167 <property part -name=" label7b" name="g:align -h">left </property >

168
169 <property part -name=" area3b" name="g:layout">grid </property >

170 <property part -name=" area3b" name="g:layout -columns">3</property >

171
172 <property part -name=" button1" name="g:image -src">left.png </property >

173 <property part -name=" button1" name="g:size">55,42</property >

174 <property part -name=" button2" name="g:image -src">right.png </property >

175 <property part -name=" button2" name="g:size">55,42</property >

176 <property part -name=" button3" name="g:image -src">phone.png </property >

177 <property part -name=" button3" name="g:size">55,42</property >

178 </style >

179
180 <behavior >

181 <property part -name=" label2b" name="p:viewer">date </property >

182 <property part -name=" label3b" name="p:viewer">pnbr </property >

183 <property part -name=" label4b" name="p:viewer">fname </property >

184 <property part -name=" label5b" name="p:viewer">lname </property >

185 <property part -name=" tarea1" name="p:viewer">info </property >

186 <property part -name=" tarea1" name="p:delimiter ">;:</property >

187 <property part -name=" label7b" name="p:viewer">refn </property >

188
189 <property part -name=" button1" name="p:invoker">prev </property >

190 <property part -name=" button2" name="p:invoker">next </property >

191 <property part -name=" button3" name="p:invoker">call </property >

192 </behavior >

193 </behavior >

194 </puiml >

105

APPENDIX E. PUIML CODE SAMPLES

E.2 Swing/AWT PUID Interpreter

E.2.1 Photo Printer

1 <?xml version ="1.0" encoding ="UTF -8"?>

2
3 <puiml >

4 <universe >

5 <unit id=" device" class ="P:Device">

6 <unit id="synth -assembly" class="P:Service">

7 <unit id=" motion" class ="P:Command">

8 <unit id="motion -message" class="P:Param" />

9 </unit >

10 <unit id="snap" class="P:Command" />

11 <unit id=" print" class="P:Command">

12 <unit id="print -message" class="P:Param" />

13 </unit >

14 </unit >

15 </unit >

16 </universe >

17
18 <discovery >

19 <property unit -name=" device" name="p:id">X:PP1001 </property >

20
21 <property unit -name="synth -assembly" name="p:instance ">1</property >

22 <property unit -name="synth -assembly" name="p:cdid">X:1scenarioBJ </

property >

23 <property unit -name="synth -assembly" name="p:cn">BJscenario1 </property >

24 <property unit -name="synth -assembly" name="p:udid">X:1scenarioBJ </

property >

25 <property unit -name="synth -assembly" name="p:un">BJscenario1 </property >

26
27 <property unit -name=" motion" name="p:id">MOTION </property >

28 <property unit -name=" motion" name="p:direction">out </property >

29 <property unit -name=" motion" name="p:notifications">normal </property >

30
31 <property unit -name="motion -message" name="p:id">MESSAGE </property >

32
33 <property unit -name="snap" name="p:id">SNAP </property >

34 <property unit -name="snap" name="p:direction">in </property >

35
36 <property unit -name=" print" name="p:id">PRINT </property >

106

E.2. SWING/AWT PUID INTERPRETER

37 <property unit -name=" print" name="p:direction">in </property >

38
39 <property unit -name="print -message" name="p:id">MESSAGE </property >

40 </discovery >

41
42 <structure >

43 <part id=" window" class ="G:TopContainer">

44 <part id="motion -area" class="G:Area">

45 <part id="message1 -label" class="G:Label" />

46 <part id="message1 -output" class="G:Label" />

47 </part >

48 <part id="snap -area" class="G:Area">

49 <part id="snap -button" class="G:Button" />

50 </part >

51 <part id="print -area" class="G:Area">

52 <part id="sub -area" class="G:Area">

53 <part id="message2 -label" class="G:Label" />

54 <part id="message2 -input" class="G:TextField" />

55 </part >

56 <part id="print -button" class ="G:Button" />

57 </part >

58 </part >

59 </structure >

60
61 <style >

62 <property part -name=" window" name="g:title">Photo Print </property >

63 <property part -name=" window" name="g:resizable">true </property >

64 <property part -name=" window" name="g:layout">grid </property >

65 <property part -name=" window" name="g:layout -columns">1</property >

66 <property part -name=" window" name="g:size ">440,310</ property >

67
68 <property part -name="motion -area" name="g:layout">grid </property >

69 <property part -name="motion -area" name="g:layout -gap">5,5</property >

70 <property part -name="motion -area" name="g:layout -columns">1</property >

71 <property part -name="motion -area" name="g:scrollable">true </property >

72 <property part -name="motion -area" name="g:border">line </property >

73
74 <property part -name="message1 -label" name="g:text">Motion dectection

message:</property >

75 <property part -name="message1 -label" name="g:align -h">center </property >

76 <property part -name="message1 -label" name="g:font">Verdana </property >

77 <property part -name="message1 -label" name="g:font -size">14</property >

78 <property part -name="message1 -label" name="g:font -bold">true </property >

79
80 <property part -name="message1 -output" name="g:align -h">center </property >

81 <property part -name="message1 -output" name="g:align -v">top </property >

82 <property part -name="message1 -output" name="g:font">Verdana </property >

83
84 <property part -name="snap -area" name="g:layout">grid </property >

85 <property part -name="snap -area" name="g:layout -gap">5,5</property >

86 <property part -name="snap -area" name="g:layout -columns">1</property >

87 <property part -name="snap -area" name="g:scrollable">true </property >

88 <property part -name="snap -area" name="g:border">line </property >

89
90 <property part -name="snap -button" name="g:text">Take Photo </property >

91
92 <property part -name="print -area" name="g:layout">grid </property >

93 <property part -name="print -area" name="g:layout -gap">5,5</property >

94 <property part -name="print -area" name="g:layout -columns">1</property >

95 <property part -name="print -area" name="g:scrollable">true </property >

96 <property part -name="print -area" name="g:border">line </property >

97

107

APPENDIX E. PUIML CODE SAMPLES

98 <property part -name="sub -area" name="g:layout">grid </property >

99 <property part -name="sub -area" name="g:layout -gap">0,5</property >

100 <property part -name="sub -area" name="g:layout -columns ">2</property >

101
102 <property part -name="message2 -label" name="g:text">Print message:</

property >

103 <property part -name="message2 -label" name="g:font">Verdana </property >

104
105 <property part -name="print -button" name="g:text">Print Photo </property >

106 </style >

107
108 <behavior >

109 <property part -name="message1 -output" name="p:viewer">motion -message </

property >

110
111 <property part -name="snap -button" name="p:invoker">snap </property >

112
113 <property part -name="print -button" name="p:invoker">print </property >

114 <property part -name="message2 -input" name="p:provider">print -message </

property >

115 </behavior >

116 </puiml >

108

E.2. SWING/AWT PUID INTERPRETER

E.2.2 Photo Printer (BrowserGUI imitation)

1 <?xml version ="1.0" encoding ="UTF -8"?>

2
3 <puiml >

4 <universe >

5 <unit id=" device" class ="P:Device">

6 <unit id="synth -assembly" class="P:Service">

7 <unit id=" motion" class ="P:Command">

8 <unit id="motion -message" class="P:Param" />

9 </unit >

10 <unit id="snap" class="P:Command" />

11 <unit id=" print" class="P:Command">

12 <unit id="print -message" class="P:Param" />

13 </unit >

14 </unit >

15 </unit >

16 </universe >

17
18 <discovery >

19 <property unit -name=" device" name="p:id">X:PP1001 </property >

20
21 <property unit -name="synth -assembly" name="p:instance ">1</property >

22 <property unit -name="synth -assembly" name="p:cdid">X:1scenarioBJ </

property >

23 <property unit -name="synth -assembly" name="p:cn">BJscenario1 </property >

24 <property unit -name="synth -assembly" name="p:udid">X:1scenarioBJ </

property >

25 <property unit -name="synth -assembly" name="p:un">BJscenario1 </property >

26
27 <property unit -name=" motion" name="p:id">MOTION </property >

28 <property unit -name=" motion" name="p:direction">out </property >

29 <property unit -name=" motion" name="p:notifications">normal </property >

30
31 <property unit -name="motion -message" name="p:id">MESSAGE </property >

32
33 <property unit -name="snap" name="p:id">SNAP </property >

34 <property unit -name="snap" name="p:direction">in </property >

35
36 <property unit -name=" print" name="p:id">PRINT </property >

37 <property unit -name=" print" name="p:direction">in </property >

38
39 <property unit -name="print -message" name="p:id">MESSAGE </property >

40 </discovery >

41
42 <structure >

109

APPENDIX E. PUIML CODE SAMPLES

43 <part id=" frame" class="G:TopContainer">

44 <part id="area -1" class ="G:Area">

45 <part id="area -1-1" class="G:Area">

46 <part id="area -1-1-1" class="G:Area" />

47 <part id="area -1-1-2" class="G:Area">

48 <part id="lbl -1-1-2-a" class="G:Label" />

49 <part id="lbl -1-1-2-b" class="G:Label" />

50 <part id="btn -1-1-2-a" class="G:Button" />

51 </part >

52 </part >

53 <part id="area -1-2" class="G:Area">

54 <part id="area -1-2-1" class="G:Area">

55 <part id="lbl -1-2-1-a" class ="G:Label" />

56 <part id="txtf -1-2-1-a" class ="G:TextField" />

57 </part >

58 <part id="area -1-2-2" class="G:Area">

59 <part id="lbl -1-2-2-a" class ="G:Label" />

60 <part id="lbl -1-2-2-b" class ="G:Label" />

61 <part id="btn -1-2-2-a" class ="G:Button" />

62 </part >

63 </part >

64 </part >

65 <part id="area -2" class ="G:Area">

66 <part id="area -2-1" class="G:Area">

67 <part id="area -2-1-1" class="G:Area" />

68 <part id="area -2-1-2" class="G:Area">

69 <part id="lbl -2-1-2-a" class ="G:Label" />

70 <part id="lbl -2-1-2-b" class ="G:Label" />

71 </part >

72 <part id="area -2-1-3" class="G:Area" />

73 </part >

74 </part >

75 </part >

76 </structure >

77
78 <style >

79 <property part -name=" frame" name="g:title">Photo print </property >

80 <property part -name=" frame" name="g:resizable">true </property >

81 <property part -name=" frame" name="g:layout">grid </property >

82 <property part -name=" frame" name="g:layout -columns">2</property >

83 <property part -name=" frame" name="g:size ">440,310</ property >

84
85 <property part -name="area -1" name="g:layout">grid </property >

86 <property part -name="area -1" name="g:layout -columns">1</property >

87 <property part -name="area -1" name="g:layout -gap">0,0</property >

88 <property part -name="area -1" name="g:border">line </property >

89
90 <property part -name="area -1-1" name="g:layout">grid </property >

91 <property part -name="area -1-1" name="g:layout -columns ">1</property >

92 <property part -name="area -1-1" name="g:layout -gap">0,0</property >

93 <property part -name="area -1-1" name="g:border">line </property >

94 <property part -name="area -1-1" name="g:title">SNAP (<-) </property >

95
96 <property part -name="area -1-1-2" name="g:layout">grid </property >

97 <property part -name="area -1-1-2" name="g:layout -columns">3</property >

98 <property part -name="area -1-1-2" name="g:layout -gap">0,0</property >

99
100 <property part -name="btn -1-1-2-a" name="g:text">Invoke </property >

101
102 <property part -name="area -1-2" name="g:layout">grid </property >

103 <property part -name="area -1-2" name="g:layout -columns ">1</property >

104 <property part -name="area -1-2" name="g:layout -gap">0,0</property >

110

E.2. SWING/AWT PUID INTERPRETER

105 <property part -name="area -1-2" name="g:border">line </property >

106 <property part -name="area -1-2" name="g:title">PRINT (<-) </property >

107
108 <property part -name="area -1-2-1" name="g:layout">grid </property >

109 <property part -name="area -1-2-1" name="g:layout -columns">2</property >

110 <property part -name="area -1-2-1" name="g:layout -gap">0,0</property >

111
112 <property part -name="lbl -1-2-1-a" name="g:text">MESSAGE </property >

113
114 <property part -name="area -1-2-2" name="g:layout">grid </property >

115 <property part -name="area -1-2-2" name="g:layout -columns">3</property >

116 <property part -name="area -1-2-2" name="g:layout -gap">0,0</property >

117
118 <property part -name="btn -1-2-2-a" name="g:text">Invoke </property >

119
120 <property part -name="area -2" name="g:layout">grid </property >

121 <property part -name="area -2" name="g:layout -columns">1</property >

122 <property part -name="area -2" name="g:layout -gap">0,0</property >

123 <property part -name="area -2" name="g:border">line </property >

124
125 <property part -name="area -2-1" name="g:layout">grid </property >

126 <property part -name="area -2-1" name="g:layout -columns ">1</property >

127 <property part -name="area -2-1" name="g:layout -gap">0,0</property >

128 <property part -name="area -2-1" name="g:border">line </property >

129 <property part -name="area -2-1" name="g:title">MOTION (->) </property >

130
131 <property part -name="area -2-1-2" name="g:layout">grid </property >

132 <property part -name="area -2-1-2" name="g:layout -columns">2</property >

133 <property part -name="area -2-1-2" name="g:layout -gap">0,0</property >

134
135 <property part -name="lbl -2-1-2-a" name="g:text">MESSAGE </property >

136 </style >

137
138 <behavior >

139 <property part -name="btn -1-1-2-a" name="p:invoker">snap </property >

140
141 <property part -name="btn -1-2-2-a" name="p:invoker">print </property >

142 <property part -name="txtf -1-2-1-a" name="p:provider">print -message </

property >

143
144 <property part -name="lbl -2-1-2-b" name="p:viewer">motion -message </

property >

145 </behavior >

146 </puiml >

111

