LUNDS UNIVERSITET
Ekonomihögskolan

Can the "Puppies of the Euro Stoxx" beat the European market?

A study of high yielding European stocks during the years 2001-2010

Bachelor thesis in Financial Economics Summer 2011

Author: Sandra Heidmann
Tutor: Ann-Marie Pålsson

Abstract

This thesis examines if the investment strategy "Puppies of the Dow" is a working strategy applied to a European market setting during the years 2001-2010. The purpose was to determine whether the strategy could be successfully replicated in a different market with conditions differing from the once underlying the Dow Jones Industrial Average that the investment strategy originates from. By replicating the base methodology of the "Puppies of the Dow" and use the same method as previous research, this study over all proves that the investment strategy was a success applied to the European market between 2001 and 2010.

KEYWORDS: THE DOGS OF THE DOW, INVESTMENT STRATEGY, HIGH DIVIDEND YIELDING STOCKS

Abbreviations (ticker names) for portfolio members throughout the thesis

Ticker	Name
MT NA Equity	ARCELORMITTAL
IBE SQ Equity	IBERDROLA SA
DG FP Equity	VINCI SA
BAS GY Equity	BASF SE
SGO FP Equity	COMPAGNIE DE SAINT-GOBAIN
ENEL IM Equity	ENEL SPA
ENI IM Equity	ENI SPA
INGA NA Equity	ING GROEP NV-CVA
ACA FP Equity	CREDIT AGRICOLE SA
TIT IM Equity	TELECOM ITALIA SPA
UNA NA Equity	UNILEVER NV-CVA
GLE FP Equity	SOCIETE GENERALE
BNP FP Equity	BNP PARIBAS
ISP IM Equity	INTESA SANPAOLO
DTE GY Equity	DEUTSCHE TELEKOM AG-REG
FTE FP Equity	FRANCE TELECOM SA
UCG IM Equity	UNICREDIT SPA
SAN SQ Equity	BANCO SANTANDER SA
REP SQ Equity	REPSOL YPF SA

Table of Contents

Abstract 2
2 Introduction 6
2.1 Background 6
2.2 Purpose 7
2.3 Limitations 7
2.4 Disposition 7
2.5 Previous research 8
3 Theory 9
3.1 The "Puppies of the Dow" strategy 9
3.2 The Efficient Market Hypothesis 9
3.3 Diversification 9
3.4 Risk. 10
3.4.1 Standard Deviation 10
3.4.2 Beta 10
3.5 Abnormal return 11
3.6 Holding period return 11
4 Data and Methodology 12
4.1 Fundamental methodology 12
4.2 Data collection and analysis 12
4.3 Risk free interest rate 13
4.4 Selection of index. 13
4.5 Comprehensive methodology 14
4.5.1 Construction of portfolios - Highly dividend yielding stocks 14
4.5.2 Measuring Results - Dividend re-investment 15
4.5.3 Risk Adjustments Components 16
4.6 Statistical tests 18
4.6.1 T-test 18
4.6.2 Wilcoxon Signed Rank test 19
4.7 Assumptions 20
5 Results and Analysis 21
5.1 Risk measures 21
5.1.1 Return and Standard deviation 21
5.2 Holding Period Return (HPR) 22
5.3 Abnormal Return 23
5.4 Risk adjustments 23
Portfolio performance year by year 25
5.4.1 Portfolio performance 2001 25
5.4.2 Portfolio performance 2002 26
5.4.3 Portfolio performance 2003 27
5.4.4 Portfolio performance 2004 28
5.4.5 Portfolio performance 2005 29
5.4.6 Portfolio performance 2006 30
5.4.7 Portfolio performance 2007 31
5.4.8 Portfolio performance 2008 32
5.4.9 Portfolio performance 2009 33
5.4.10 Portfolio performance 2010 34
5.5 Applied Statistical tests. 35
5.5.1 T-test 35
5.5.2 Wilcoxon signed rank test 36
6 Conclusion 37
7 Critical Discussion 37
8 References 39
Published references 39
Articles 39
Electronic references 40
9 Appendix 41
Appenrix 1 - Top 10 Dividend yields 41
Appendix 2 - Beta Values 43
Appendix 3 - Critical values for Wilcoxon signed rank test 44
Appendix 4 - Total Return Index, last price and continuous return 45

2 Introduction

2.1 Background

Michael O'Haggins is the Author of the world known book "Beating the Dow". This book explains in detail how to invest in high dividend yielding stocks and beat the market by simply doing the opposite of what everyone else does. The Dow Jones business and financial newspaper called Barron's, popularized the term Dogs of the Dow" $\left(\mathrm{DoD}^{1}\right)$ and today it is a term that almost everyone with interest in finance recognizes ${ }^{2}$.

Before O'Haggins book came out on the market, analyst John Slatter was the first one suggesting this investment strategy in an article in The Wall Street Journal. Mr. Slatter meant that you can find out of favor stocks by looking at the dividend yield. If it is high it is usually a sign that the price of the stock has gone down while the dividends still remain at the same level. Blue-chip stocks like those that are members of the Dow Jones Industrial Average (DJIA) often rise rapidly after being out of favor when investors taste changes. ${ }^{3}$.

Today the strategy exists in many different versions. The most popular ones are:

1. The Top 10 portfolio, the "Dogs of the Dow" (DoD).
2. The Top 5, the "Puppies of the Dow" (PoD).
3. And the Top 1, Penultimate Profit Prospect (PPP).

In 2010 the DoD strategy outperformed the Dow Jones Industrial Average (DJIA ${ }^{4}$) with a gain of 20,5 percent ${ }^{5}$. Investors and traders are always seeking to find that one strategy that doesn't consist with the hypothesis of efficient capital markets, but could a simple strategy like the DoD really work?

According to the efficient market hypothesis the strategy should not work. This is a well known phenomenon and has been dominating the academic literature since the 1960s. In finance this means that the price of a financial asset reflects all information that is available for everyone who can buy the security ${ }^{6}$. Indirectly this means that you should not be able to generate excess returns by using a specific strategy when investing in the stock market.

[^0]
2.2 Purpose

The purpose of this study is to examine whether investors could have beaten the European market (Euro Stoxx 50^{7}) by using the "Puppies of the Dow" strategy during the years of 2001 2010.

2.3 Limitations

In this thesis the limitations have been thoughtfully selected but will still have an effect on the precision of the result of the study.

The stock picking has been limited to the members of the SX5E, which also will be used as the benchmark for the study. To assume that the SX5E reflects the European market as a whole could be a problem but since the DoD strategy is based on a blue chip-index ${ }^{8}$, the DJIA, this will replicate the study in the best way according to the author ${ }^{9}$.

For simplicity, transaction costs and taxes are excluded which could be a source for inaccuracy of the final result.

The dividends have been re-investing in the same equity that generated them. This will be done by using the "total return index" which will be generated by Bloomberg's terminal ${ }^{10}$.

To calculate the risk free interest rate an average of the 10 year German Government bonds has been calculated for every year examined.

2.4 Disposition

This thesis starts off with an introduction to the background of the PoD strategy followed by the limitations of the study and previous research. Section two will go through the theory that will be applied to the dataset including the efficient market hypothesis, risk and different types of returns. Section three will go through the data and methodology including the assumptions that has been made throughout the thesis. Section four will then give the results that have been generated and an analysis of them, followed by a number of statistical tests for significance. Finally, the thesis will end with a conclusion in section five.

[^1]
2.5 Previous research

The DoD strategy, in all of its forms, has fascinated the researchers of the $21^{\text {st }}$ century and has been examined on markets all over the world with varying results. This section will go through a couple of them.

Stocks with high dividend yields have shown positive returns in the North American stock market. McQueen et al. conducted a study where the top 15 dividend yielding stocks was compared to the top 5 dividend yielding stocks during the period $1945-1995$. The result that was generated by the study was that the top 5 outperformed the top 15 with an average annual return of 8 percent per year compared to a loss of 1,28 percent for the top 15^{11}.

A study of the British stock market was made by Sue Visscher and Greg Filbeck between March 1984 and February 1994 and was published in The European Journal of Finance. The results of this study was notvery successful as the annual result for the DoD was $9,48 \%$ while the FT-SE 100^{12} index generated a return of 11,48 annually ${ }^{13}$.

Furthermore there was a study made on the Latin American market during the time period 1994-1999 by André L.C \& Da Silva. The study was limited to the stock markets of Argentina, Brazil, Colombia, Mexico, Peru and Venezuela. This study also examined if the strategy is seasonal by using 2 dates per year for observation. The results from this study varied and all countries besides Brazil showed a positive result, thus without any significance to it ${ }^{14}$.

Visscher and Filbeck also made a study on the Canadian market. This was conducted by using stocks from the Toronto stock exchange (TSE 300) and the Toronto 35 index. The study showed similar results for the strategy on both indices and was a success with significant higher Sharpe and Treynor's ratios than the two benchmarks ${ }^{15}$.

To find out if the DoD strategy can be replicated into different market settings Eemeli Rinne and Sami Vähämaa made a study over the period 1988-2008. The result of this study was that the DoD outperformed the index with an annual abnormal return of 4,5 percent and appeared especially good in market downturns ${ }^{16}$.

Tthe PoD strategy has also been replicated on the Nordic stock market in a master thesis written by Jokob Dahlstedt and Oscar Engellau. They combined the OMX Stockholm 30 Index, the OMX Copenhagen 20 Index and the OMX Helsinki 25 Index into one "Nordic index". The strategy did not show any significant abnormal returns after adjusting for a number of key aspects, but generated high returns on an absolute basis ${ }^{17}$.

This thesis will examine the "Puppies of the Dow" strategy on the European market and as far as the author of this thesis is aware of, this has never been done before.

[^2]
3 Theory

3.1 The "Puppies of the Dow" strategy

The "Puppies of the Dow" strategy is one of many versions of the "Dogs of the Dow" strategy. This strategy is based on value investing and takes advantage of stocks that are currently out of favor and can be bought at bargain prices. The PoD strategy consists of the five highest dividend yielding stocks, with the lowest prices out of the top 10 dividend yielding equity's ${ }^{18}$, in this case from the SX5E.

3.2 The Efficient Market Hypothesis

The wish to beat the market has been attracting investors and traders throughout time. But according to the efficient market hypothesis this is not possible because of the great number of market participants that are constantly evaluating the market. When buying and selling securities, prices rapidly adjust whenever there is new information available. There are three forms of efficient markets according to Fama ${ }^{19}$;

Weak-form efficiency is when all historical data is built-in in current prices. This means that technical analysis can not be used to predict future price movements i.e. price changes are only influenced by randomness which leads us to the next form of efficiency.

Semi strong-form efficiency is when all public information is reflected in current stock prices i.e. nobody can make a buck from reading the news. In this form of efficiency only investors with inside information about financial statements, dividend payment or else of that nature can make abnormal returns. Thus this is strictly illegal.

Strong-form efficiency means that all available information is reflected in the current price, which would also mean that the capital market is extremely intelligent and unbiased. Not even insiders could make abnormal returns in this type of market setting.

3.3 Diversification

Diversification means that investors are holding different kinds of securities in his portfolio to minimize the risk and optimize the return on investment. Diversification is a technique that reduces unsystematic risk in a portfolio. To be able to diversify the assets in the portfolio should not be perfectly correlated, since the diversification will then lose its purpose ${ }^{20}$.

[^3]
3.4 Risk

3.4.1 Standard Deviation

The standard deviation of an equity's return is a measure of the spread around the mean return. The standard deviation can be generated by taking the square root of the variance. The definition can be seen in formula 2.1 below 21;

Formula 3.1 Standard deviation

$$
\sigma_{i}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(R_{i}-\bar{R}_{l}\right)^{2}}
$$

Where;
$\mathrm{n}=$ Number of time periods
$\mathrm{R}_{\mathrm{i}}=$ Return during period i
$\bar{R}_{l}=$ Average return during period i

3.4.2 Beta

Beta measures the sensitivity of a stock's price, due to changes in its benchmark. The beta is the percentage change in the price of an equity given a one percent change in its benchmark index, and is defined as below in formula 2.2 ${ }^{22}$;

Formula 3.2 Beta avlue

$$
\beta_{i}=\frac{\operatorname{cov}_{R_{i} R m}}{\sigma_{R m}^{2}}
$$

Where;
$\operatorname{cov}_{R_{i}, R m}=$ The covariance between the equity return and the market return.
$\sigma_{R m}^{2}=$ The variance of the market return
To get the beta for a whole portfolio you simply multiply the weights of the portfolio with every equity's beta ${ }^{23}$.

Beta is a historical measure that compares a portfolios performance to the market performance (index) and is often measured over a 36 month period. The market represents a beta of 1 . This means that if a portfolio has a beta of 1,10 , it will be 10% better off in a positive market setting

[^4]but 10% worse off in a negative market setting. Equally, a portfolio beta of 0,90 means a 10% worse performance in a positive market setting, but a 10% better performance in a negative ${ }^{24}$.

The beta values of this study measures the relation between the PoD portfolios and the market for the individual years examined over the yield of 10 year German Government bonds, compared to the variance of the return of the SX5E over the same period of time.

3.5 Abnormal return

Abnormal return (AR) is the difference between the return of a portfolio and the return of the market. The definition can be seen below in formula 2.3^{25};

Formula 3.3 Abnormal return

$$
A R=R_{p}-R_{m}
$$

Where;
$R_{p}=$ The return of the portfolio
$\mathrm{R}_{\mathrm{m}}=$ The return of the mark
Note that the abnormal return is calculated before any risk adjustments

3.6 Holding period return

Holding Period Return (HPR) measures what an investment has generated over a certain period of time. By starting out at an investment of 100% and then multiply the returns with each other a cumulative effect will be achieved. The definition can be seen below in formula 2.4^{26};

Formula 3.4 Holding period return

$$
H P R=\left(1+R_{1}\right) *\left(1+R_{2}\right) * \ldots . . *\left(1+R_{T}\right)
$$

Where:
$\mathrm{R}_{1}=$ The total return of period 1
$\mathrm{R}_{2}=$ The total return of period 2
$\mathrm{R}_{\mathrm{T}}=$ The total return of the last period examined

[^5]
4 Data and Methodology

4.1 Fundamental methodology

The DoD exists in many different versions. This thesis examines the version where the top 5 dividend yielding companies with the lowest prices has been chosen to create a portfolio for the coming year. This strategy is often referred to as the "Puppies of the Dow". The strategy will be conducted on the Euro Stoxx 50 as follows ${ }^{27}$;

Step 1: Construct an equally weighted portfolio with the five highest dividend yielding stocks, with the lowest prices out of the top 10 on the $31^{\text {st }}$ of December. Further these stocks will be combined for the coming year's portfolio.

Step 2: Hold the portfolio for one year. On the $31^{\text {st }}$ of December that year, calculate the total return by looking at the value the stock was bought for and the value that it is now worth after re-invested dividends in the stock that generated them.

Step 3: Rebalance the portfolio by using the same method as in Step 1.
Repeat these steps every year.

4.2 Data collection and analysis

All the data in this study will be collected from a Bloomberg terminal and analyzed in excel. Bloomberg is one of the world's most well known and used data base for transparent financial news, information and data which makes this source very reliable ${ }^{28}$. Bloomberg has an excel function that has been used to get dividend yields, last prices, annual dividends per share as well as the 10 year German government bond rates. A very valuable measure that also will be used is the "total return index " ${ }^{29}$, also provided by Bloomberg's.

[^6]
4.3 Risk free interest rate

The risk free interest rate that will be used for calculations is an annual average of the yield of ten year German Government bonds. In Table 3.1 below the yields for the period examined can be seen.

Table 4.1-10 year German Government Bonds (Yearly average)

Date	Yield (\%)
2001	4,851
2002	4,998
2003	4,204
2004	4,292
2005	3,683
2006	3,309
2007	3,948
2008	4,307
2009	2,951
2010	3,387

4.4 Selection of index

The benchmark index of this study is the SX5E (Price) Index. This index is a free-float capitalization weighted index that consists of 50 European blue-chip stocks from countries that are members of the European Monetary Union. The index started to run on the $31^{\text {st }}$ of December 1991 with a base value of 1000^{30}.

The benchmark index has been chosen because of the similarities to the North American index DJIA, which is also a blue-chip index but with only 30 members. As mentioned before this is also the index that the DoD is based on. The United States can also be compared to Europe as both are developed and industrialized regions. As can be seen in Graph 3.1 the two indices have been co varying strongly between 2001 and 2010.

[^7]

The graph shows last prices for 2001-01-01 - 2010-12-31 and has a base value of 100 per 2001-01-01.
A blue-chip index is an index who's stocks are very stable, nationally recognized and not very volatile. A blue-chip stock is something an investor would use for low risk and steady growth in his portfolio ${ }^{31}$.

Because of the similarities of these two markets the great results that have been generated with the DoD in North America should be able to replicate in an European market setting.

4.5 Comprehensive methodology

4.5.1 Construction of portfolios - Highly dividend yielding stocks

The $31^{\text {st }}$ of December every year, the dividend yield for the 50 stocks on the SX5E have been filtered from highest to lowest in excel.

The dividend yield is a measure of how much a company pays out in dividends each year relative to its share price. The definition is shown in Formula 3.1 below 32.

Formula 4.1 Dividend Yield

$$
\text { Dividend Yield }=\frac{\text { Annual dividends per share }}{\text { Price per share }}
$$

Stocks with high dividend yield can be seen as undervalued by the market, i.e. "dogs" and can be used to beat the market the coming year according to the strategy ${ }^{33}$.

[^8]
4.5.2 Measuring Results - Dividend re-investment

To be able to express the value of the PoD portfolios as well as the SX5E portfolios after reinvesting the dividends in the same stock that generated them the "total return index" ${ }^{34}$ has been used. This measure is provided by Bloomberg's and is defined as follows;
"Historically, this is the total return index from the provided start date to the provided end date. Applicable periodicity values are daily, monthly, quarterly, semi-annually and annually. Gross dividends are used."

The total return index considers cash distributions and dividends and reinvests them back into the stock ${ }^{35}$. This shows a realistic value of the portfolio and is essential to use in this study where re-investment is one of the main points.

Benninga explains the process of re-investment of dividends as follows ${ }^{36}$;
To calculate the value of a stock after dividend re-investment the new shares purchased at the end of the year is calculated by;

Formula 4.2 New shares purchased
New shares purchased at the end of year $=\frac{\text { Dividend per share }}{\text { Share price at end year }}$

To get the value of the shares at the end of the investment year the number of shares at the end of the year ${ }^{37}$ is multiplied by the share price of the end of the year;

Formula 4.3 Value of shares at end of year
Value of shares at end of year $=$ number of shares at end of year $*$ Share price at end year
This value is than put in relation to the beginning investment and the continuously compounded total return is calculated by;

Formula 4.4
Continuously compounded return $=\ln \left[\frac{\text { End investment year value }}{\text { Beginning investment }}\right]$

This measure shows the total performance of a stock over a specified period of time, assuming that dividends are re-invested in the stock that has paid out the dividends. This is also what the PoD strategy advocates.

[^9]In this study the total returns of both the SX5E and the PoD portfolios will refer to historical total returns that have been generated by re-investing dividends.

4.5.3 Risk Adjustments Components

To keep a portfolio of only five equities, instead of one consisting of a whole index of 50 equities is of course a much more risky and less diversified investment. The PoD portfolio will contain a high level of company specific risk. Considering the assumption of risk aversive investors who requires return for bearing risk the returns have to be risk adjusted by using the measures Sharpe and Treynor's ratio in comparing the returns of the PoD portfolios to the SX5E portfolios.

The variance of the PoD portfolio of each year is calculated by the formula below ${ }^{38}$:

Formula 4.5

$$
\sigma_{\text {Portfolio }_{t}}^{2}=\sum_{n=1}^{N} w_{t, j}^{2} \sigma_{t, j}^{2}+\sum_{n=1}^{N} 2 * \operatorname{cov}\left(r_{t, k}, r_{t, j}\right)
$$

Where:
$w_{t, j}=$ Portfolio weight of stock j during beginning of year t
$\sigma_{t, j}=$ Standard error of stock j during year t
$r_{t, k}=$ Gross return for stock k during year t
$r_{t, j}=$ Gross return for stock j during year t
$\operatorname{cov}(\mathrm{rt}, \mathrm{k}, \mathrm{rt}, \mathrm{j})=$ Covariance between monthly total returns of stock k and j , during year i .

To get the standard deviation of the portfolio, take the square root out of above expression of the variance.

[^10]
4.5.3.1 The Sharpe ratio

The Sharpe ratio measures the risk adjusted performance of a portfolio by subtracting the risk free rate of return, in this case the rate of 10 year German Government bonds, from the total return of the portfolio relative to its standard deviation i.e. the Sharpe ratio represents excess return per unit of total risk. This measure is appropriate to use when looking at less diversified portfolios which includes a high level of company specific risk. This shows if the return on investment has been generated by a smart investment strategy or if it is all do to taking on a higher level of risk. A high Sharpe ratio shows a good risk-adjusted performance ${ }^{39}$.

Formula 4.3 Sharpe ratio

$$
\text { Sharpe }=\frac{\left(r_{p t}-r_{f t}\right)}{\sigma_{p t}}
$$

where:
$r_{p t}=$ Total return of portfolio i in year t.
$r_{f t}=$ The risk free interest rate at year t (German Government bonds).
$\sigma_{p t}=$ Standard deviation of portfolio i at year t.

4.5.3.2 Treynor's ratio

Treynor's ratio is a measure used in compatibility with the Capital Asset Pricing Model (CAPM). This ratio calculates the risk-adjusted return relative to the beta of the portfolio i.e. the systematic risk. Treynor's ratio only rewards bearing systematic risk and is a good measure for well diversified portfolios. The beta is the correlation coefficient between the PoD portfolio and the Sx 5 E and is measured over the 12 month holding period ${ }^{40}$.

Formula 4.4 Treynor's ratio

$$
\text { Treynor }=\frac{\left(r_{p t}-r_{r f t}\right)}{\beta_{p t}}
$$

where:
$r_{p t}=$ Total return of portfolio i in year t .
$r_{r f t}=$ The risk free interest rate at tear t (German Government bonds).
$\beta_{p t}=$ The annual average beta of portfolio i at year t i.e. the portfolios market risk.

[^11]
4.6 Statistical tests

To see if there is any statistical support to the result, a significance test can be generated. There are different types of tests that can be used under different circumstances i.e. in different population and sample settings. One of the assumptions made in this thesis is that the returns of the stocks are normally distributed and because of that we can generate a hypothesis test using the t-statistic as measure if significance.

5 steps of a hypothesis test ${ }^{41}$;

1. Specify the null- and alternative hypotheses that are going to be examined.
2. Specify the test-statistic and its probability distribution under the null hypothesis.
3. Specify the significance level (α) and the critical values of the test.
4. Calculate the value of the test-statistic.
5. Compare the value of the test-statistic and the critical value to be able to formulate a conclusion.

4.6.1 T-test

For statistical support, whether the PoD is a working strategy or not, a one tailed t -test with significance level of 95 percent will be conducted.

To get the t -statistic a number of calculations have to be made. To find the mean return for the sample formula 3.6 is used ${ }^{42}$;

Formula 4.5 Mean Return

$$
\bar{R}=\frac{r_{1}+r_{2} \ldots+r_{n}}{n}
$$

Where:
$\bar{R}=$ Mean return of sample
$r_{1}+r_{2} \ldots+r_{n}=$ Return during period $1,2 \ldots$ and n .
$n=$ number of observations

[^12]To calculate the standard deviation of the sample, s^{43} has to be determined by using formula 2.1. To get the t-statistic for the sample formula 3.6 is used ${ }^{44}$;

Formula 4.6 T-statistic

$$
T=\frac{(R-\mu)}{s / \sqrt{n}}
$$

Where:
$\mathrm{R}=$ Total return
$\mu=$ expected return
$s=$ standard deviation of sample
$\mathrm{n}=$ number of observations

Since the purpose of the study is to see whether it is possible to generate abnormal returns the test will be conducted to test if there is a significant difference in the portfolios historical total return during the 10 year period examined.

The hypothesis that will be tested is:

$$
\begin{aligned}
& H_{0}: \text { Return PoD }=\text { Return } S X 5 E \\
& H_{1}: \text { Return PoD }>\text { Return } S X 5 E
\end{aligned}
$$

If the t-statistic is bigger than the critical value the null hypothesis will be discarded. The t statistic can then be used to find the p-value. If the p -value is less than the significance level the null hypothesis is discarded ${ }^{45}$.

The test will be generated in excel.

4.6.2 Wilcoxon Signed Rank test

For statistical support to the evaluation of Sharpe and Treynor's ratio a Wilcoxon Signed Rank test will be conducted. This test is used because of few observations that are not normally distributed.

This test will analyze whether there is a significant difference between the Sharpe and Treynor of the PoD portfolios and the SX5E to determine if the risk adjusted PoD portfolio outperforms the benchmark.

[^13]The hypotheses that will be tested are:

$$
\begin{aligned}
& H_{0}: \text { Sharpe PoD }=\text { Sharpe SX5E } \\
& H_{1}: \text { Sharpe PoD }>\text { Sharpe SX5E }
\end{aligned}
$$

These have been tested by a method that add in information about the level of differences between matched pairs based on ranks. This test will be executed in excel.

The test gives you a W-statistic that needs to be compared to a critical value that can be found in a table over critical values for Wilcoxon signed rank tests ${ }^{46}$. In order to discard the alternative hypothesis the W statistic needs to be less than the critical value. The W statistic is the smaller of the sums of the difference between the positive and negative ranks.

The test will be made in the exact same way for the difference in Treynor's ratio.

4.7 Assumptions

- Dividends are being re-invested in the same stocks that generated them. This will be considered by using the "total return index" that calculates this value. Furthermore this measure will be used on both the PoD portfolios and the SX5E portfolios to make sure that the two portfolios are being compared on equal grounds.
- Risk aversive investors i.e. the investors want to be paid when taking on more risk.
- The assumption that the returns of the PoD portfolios and the SX5E are normally distributed will be made ${ }^{47}$.

[^14]
5 Results and Analysis

This section will go through the results that have been obtained by applying the PoD on the SX5E. The results for the whole period examined will be presented first, starting with risk measures and results followed by HPR and risk adjustments. Furthermore the performance of the portfolios will be presented year by year. There after a number of statistical tests will be generated on the results to see if there is a significant difference between investing in the PoD and the SX5E portfolios. All the results will also be analyzed in this section.

5.1 Risk measures

5.1.1 Return and Standard deviation

In table 4.1 below the historical total return and the standard deviation is shown. These values are not adjusted for risk. Looking at the averages of the ten years that has been examined, there is quite a difference between the strategies. The PoD has a higher return in eight out of ten years but also a slightly higher standard deviation. A portfolio that is more diversified should be less volatile i.e. the index should have a lower standard deviation in theory ${ }^{48}$.

Table 5.1 Return and Standard deviation ${ }^{49}$

	Return PoD	Std. Error PoD	Return SX5E	Std. Error SX5E
2001	$\mathbf{- 0 , 1 0 \%}$	$\mathbf{1 4 , 6 0 \%}$	$-20,56 \%$	$\mathbf{2 2 , 1 3 \%}$
2002	$\mathbf{- 4 , 4 2 \%}$	$14,96 \%$	$-44,14 \%$	$30,81 \%$
2003	$\mathbf{3 3 , 1 7 \%}$	$\mathbf{2 2 , 2 8 \%}$	$17,59 \%$	$\mathbf{2 1 , 7 4 \%}$
2004	$\mathbf{5 3 , 2 9 \%}$	$13,71 \%$	$9,66 \%$	$9,64 \%$
2005	$\mathbf{3 0 , 8 3 \%}$	$15,84 \%$	$22,49 \%$	$12,36 \%$
2006	$\mathbf{1 8 , 4 2 \%}$	$15,60 \%$	$17,34 \%$	$9,13 \%$
2007	$\mathbf{1 4 , 4 8 \%}$	$\mathbf{1 7 , 7 3 \%}$	$9,86 \%$	$8,33 \%$
2008	$-\mathbf{7 0 , 1 4 \%}$	$31,03 \%$	$-54,15 \%$	$\mathbf{2 2 , 9 5 \%}$
2009	$\mathbf{2 7 , 7 5 \%}$	$31,50 \%$	$\mathbf{2 3 , 7 9 \%}$	$\mathbf{2 7 , 1 8 \%}$
2010	$-6,36 \%$	$\mathbf{2 2 , 4 4 \%}$	$-1,84 \%$	$\mathbf{1 9 , 9 3 \%}$
Average:	$\mathbf{9 , 6 9 \%}$	$\mathbf{1 9 , 9 7 \%}$	$\mathbf{- 2 , 0 0 \%}$	$\mathbf{1 8 , 4 2 \%}$

The standard deviation is an annual average based on the monthly standard deviations from each year of the study.

[^15]
5.2 Holding Period Return (HPR)

The HPR for the PoD and the SX5E on the days of observation ${ }^{50}$ is illustrated in table 4.1and graph 4.1 below. It shows the accumulated return with an initial investment of 100 percent.

Table 5.2 Holding Period Return of the PoD and The SX5E portfolios

HPR		
	PoD	SX5E
2000	$100,00 \%$	$100,00 \%$
2001	$99,90 \%$	$79,44 \%$
2002	$95,48 \%$	$44,37 \%$
2003	$127,15 \%$	$52,18 \%$
2004	$194,91 \%$	$57,22 \%$
2005	$255,01 \%$	$70,09 \%$
2006	$301,98 \%$	$82,24 \%$
2007	$345,70 \%$	$90,35 \%$
2008	$103,24 \%$	$41,42 \%$
2009	$131,89 \%$	$51,28 \%$
2010	$123,50 \%$	$50,33 \%$

Graph 5.1 Holding Period Return of the PoD and The SX5E portfolios

The graph shows the HPR for the period examined. 2000-12-31 it starts with an investment of 100 percent.
The accumulated result of an initial investment of 100 percent can be seen in the chart above. The PoD had great results until the financial crises started in 2007 when it really plunged. Still, the strategy has a better holding period return than the benchmark throughout the whole period examined.

[^16]
5.3 Abnormal Return

The PoD portfolio showed abnormal returns in eight years out of ten years which can be seen in table 4.2 below. Note that this is before adjusting for risk.

Table 5.3 Abnormal Return

Abnormal return	
2001	$\mathbf{0 , 2 0 4 5 5 5}$
2002	$\mathbf{0 , 3 9 7 1 9 2}$
2003	$\mathbf{0 , 1 5 5 7 7 9}$
2004	$\mathbf{0 , 4 3 6 3 3 8}$
2005	$\mathbf{0 , 0 8 3 4 5 8}$
2006	$\mathbf{0 , 0 1 0 8 0 6}$
2007	$\mathbf{0 , 0 4 6 2 1}$
2008	$-0,15983$
2009	$\mathbf{0 , 0 3 9 5 9}$
2010	$-0,0452$

5.4 Risk adjustments

What is interesting in the table below is which one of the investment alternatives that have the highest Sharpe and Treynor's ratios. The PoD portfolios performed higher Sharpe ratios in seven years out of ten and higher Treynor's ratios in eight years out of ten. This proves that the PoD strategy outperforms the index also when systematic and company specific risk is taken into account.

Table 5.4 Risk adjustments for the PoD and The SX5E portfolios

	PoD Portfolios			SX5E									Index	Difference
Portfolio Year	Sharpe	Beta	Treynor	Sharpe	Treynor	Sharpe	Treynor							
2001	$-0,339$	0,507	$-0,098$	$-1,148$	$-0,254$	$\mathbf{0 , 8 0 9}$	$\mathbf{0 , 1 5 6}$							
2002	$-0,620$	0,285	$-0,325$	$-1,590$	$-0,490$	$\mathbf{0 , 9 7 1}$	$\mathbf{0 , 1 6 4}$							
2003	1,271	0,959	0,295	0,586	0,127	$\mathbf{0 , 6 8 5}$	$\mathbf{0 , 1 6 8}$							
2004	3,535	0,181	2,679	0,499	0,048	$\mathbf{3 , 0 3 6}$	$\mathbf{2 , 6 3 0}$							
2005	1,640	1,218	0,213	1,427	0,176	$\mathbf{0 , 2 1 4}$	$\mathbf{0 , 0 3 7}$							
2006	0,870	1,316	0,103	1,368	0,125	$-0,498$	$-0,022$							
2007	0,543	1,173	0,082	0,601	0,050	$-0,058$	$\mathbf{0 , 0 3 2}$							
2008	$-2,417$	1,303	$-0,575$	$-2,572$	$-0,590$	$\mathbf{0 , 1 5 5}$	$\mathbf{0 , 0 1 5}$							
2009	0,727	1,130	0,203	0,697	0,189	$\mathbf{0 , 0 3 0}$	$\mathbf{0 , 0 1 3}$							
2010	$-0,500$	1,038	$-0,108$	$-0,336$	$-0,067$	$-0,164$	$-0,041$							
Average:	0,471	0,911	0,247	$-0,047$	$-0,068$	0,518	$\mathbf{0 , 3 1 5}$							

When looking at the beta values we can see that they have been varying a lot from year to year. Table 4.2 below illustrates how much ${ }^{51}$.

Graph 5.2 Yearly beta value for the PoD and The SX5E portfolios

The beta value is low for the PoD portfolios between 2001 and 2004, which implies that the PoD portfolios are moving less than the benchmark SX5E. 2001-2002 was really bad years for the SX5E which makes it a good thing for the PoD portfolios to have low beta values. Between 2004 and 2007 the performance of the SX5E is relatively good and with a high beta, the PoD portfolio generates returns that are remarkably well compared to the index. The beta is going down during 2008 - 2010, but not below one. This is showed by worse returns for the PoD in 2008 and 2010 and a slightly higher return in 2009.

[^17]
Portfolio performance year by year

The results of the PoD portfolios will now be presented year by year from 2001 - 2010. The ticker name of the companies will be used throughout this section ${ }^{52}$. All the graphs have been indexed and have a base of 100 on the start day of every portfolio year.

5.4.1 Portfolio performance 2001

The portfolio of 2001 consisted of MT NA, IBE SQ, DG FP, BAS GY and SGO FP. The price development over the year that the portfolio was held is shown in the graph 4.3 below ${ }^{53}$.

Graph 5.3 Price development 2001

Table 4.5 shows the return, variance and standard deviation of the PoD and the SX5E of the examined year.

Table 5.5 Performance 2001

	SX5E	
Potal annual return:	$-20,56 \%$	$-0,10 \%$
Variance p.m.	$0,41 \%$	$0,18 \%$
Variance p.a.	$4,90 \%$	$2,13 \%$
Standard deviation p.m.	$6,39 \%$	$4,21 \%$
Standard deviation p.a.	$22,13 \%$	$14,60 \%$

What can be seen is that the SX5E has a total annual return of $-20,56$ percent while the PoD lost next to nothing in value during the year it was held. An unexpected result is that the standard deviation of the benchmark is much higher than for the less diversified PoD portfolio. As mentioned before the standard deviation of a well diversified portfolio should in theory be lower than for a portfolio containing only five equities.

[^18]
5.4.2 Portfolio performance 2002

Three of the equity's from the 2001 portfolio have been discarded and the 2002 PoD portfolio consisted of MT NA, IBE SQ, ENEL IM, ENI IM, and DG FP. The price development of this portfolio year was again negative, thus much less for the PoD portfolio than for the benchmark.

Graph 5.4 Price development 2002

It can be seen in the table below that the SX5E once and again has a much higher standard deviation than the PoD portfolio. The SX5E lost as much as 44,14 percent during this year, compared to a loss of only 4,42 percent for the PoD portfolio.

	SX5E	
Total annual return:	$-44,14 \%$	$-4,42 \%$
Variance p.m.	$0,79 \%$	$0,19 \%$
Variance p.a.	$9,49 \%$	$2,24 \%$
Standard deviation p.m.	$8,89 \%$	$4,32 \%$
Standard deviation p.a.	$30,81 \%$	$14,96 \%$

5.4.3 Portfolio performance 2003

The portfolio of 2003 consists of MT NA, IBE SQ, ENEL IM, INGA NA and ACA FP. This means that two securities have been exchanged at the rebalancing. During this year the price has gone in a positive direction and the PoD portfolios has gained 33,17 percent compared to 17,59 percent for the benchmark.

Graph 5.5 Price development 2003

This year the standard deviation of the returns is almost exactly the same for both the PoD and the SX5E. As can be seen above in the graph the price development for both portfolios has followed the same trend. This can be explained by a PoD beta value of 0,959 for this year.

Table 5.7 Performance 2003

	SX5E	PoD
Total annual return:	$\mathbf{1 7 , 5 9 \%}$	$\mathbf{3 3 , 1 7 \%}$
Variance p.m.	$0,39 \%$	$0,41 \%$
Variance p.a.	$4,73 \%$	$4,97 \%$
Standard deviation p.m.	$6,28 \%$	$6,43 \%$
Standard deviation p.a.	$21,74 \%$	$22,28 \%$

5.4.4 Portfolio performance 2004

For portfolio year 2004 the rebalancing involved replacing IBE SQ and ACA FP with TIT IM and ANI IM. This year the PoD completely outperformed the benchmark with a total annual return of 53,29 percent compared to 9,66 percent for the benchmark. This is the best year out of all ten years for the PoD portfolio.

Graph 5.6 Price development 2004

The standard deviation of this year is slightly higher for the PoD because of its great return this year. The two portfolios have not followed the same trend at all this year which also can be seen by looking at the beta value that is equal to 0,181 this year.

	SX5E	PoD	
Total annual return:	$9,66 \%$	$53,29 \%$	
Variance p.m.	$0,08 \%$	$0,16 \%$	
Variance p.a.	$0,93 \%$	$1,88 \%$	
Standard deviation p.m.	$2,78 \%$	$3,96 \%$	
Standard deviation p.a.	$9,64 \%$	$13,71 \%$	

5.4.5 Portfolio performance 2005

In 2005 the PoD portfolio was composed of UNA NA, ENEL IM, INGA NA, GLE FP and BNP FP. This year was a positive year for both the prices of the PoD and for the benchmark. Thus the price development for the PoD was slightly better than for the benchmark.

Graph 5.7 Price development 2005

The total annual return of the PoD portfolio is once again higher for the PoD portfolio than for the benchmark, with a gain in value of 30,83 percent, compared to 22,49 percent. The standard deviation is around the same percentage for the strategies this year but still a bit higher for the PoD portfolio. The higher total return and the higher standard deviation can be explained by a beta value of the PoD portfolio of 1,2 .

Table 5.9 Performance 2005

	SX5E	PoD	
Total annual return:	$22,49 \%$	$30,83 \%$	
Variance p.m.	$0,13 \%$	$0,21 \%$	
Variance p.a.	$1,53 \%$	$2,51 \%$	
Standard deviation p.m.	$3,57 \%$	$4,57 \%$	
Standard deviation p.a.	$12,36 \%$	$15,84 \%$	

5.4.6 Portfolio performance 2006

In the portfolio of 2006 ENEL IM was the only equity remaining from 2005 joined by the newcomers TIT IM, ISP IM, IBE SQ and DTE GY. This year is the first year that the SX5E has a better price development than the PoD.

Graph 5.8 Price development 2006

But even if the SX5E has a better price development this year the PoD portfolio has a better total annual return. This can happen because the dividends that are paid out are reinvested in the stock that generated them. This gives the portfolio extra value when looking at the total annual return. Looking at the table below it can be seen that the PoD portfolio has a higher standard deviation this year. The correlation coefficient between the returns of this year is 0,77 , which means that the portfolios are quite correlated. This can also be seen by looking at graph 4.8 above.

	SX5E	PoD
Total annual return:	$17,34 \%$	$18,42 \%$
Variance p.m.	$0,07 \%$	$0,20 \%$
Variance p.a.	$0,83 \%$	$2,43 \%$
Standard deviation p.m.	$2,64 \%$	$4,50 \%$
Standard deviation p.a.	$9,13 \%$	$15,60 \%$

5.4.7 Portfolio performance 2007

In 2007 the PoD portfolio kept TIT IM, ISP IM and ENEL IM and added DTE GY and FTE FP. This year the price development is once again better for the PoD portfolio and the strategy also outperforms the benchmark with a total annual return of 14,48 percent compared to 9,86 percent.

Graph 5.9 Price development 2007

The beta of the PoD portfolio this year is greater than $1(1,17)$ and the correlation between the two portfolios is lower than before with a correlation coefficient of 0,55 . The PoD portfolio also has a higher standard deviation this year.

	SX5E			PoD
Total annual return:	$9,86 \%$	$14,48 \%$		
Variance p.m.	$0,06 \%$	$0,26 \%$		
Variance p.a.	$0,69 \%$	$3,15 \%$		
Standard deviation p.m.	$2,40 \%$	$5,12 \%$		
Standard deviation p.a.	$8,33 \%$	$17,73 \%$		

5.4.8 Portfolio performance 2008

2008 the portfolio was rebalanced to the five equity's UCG IM, ISP IM, ENEL IM, DTE GY and INGA NA i.e. a change of two stocks since the year before. This was a bad year both for the SX5E and the PoD. The price depreciation of the benchmark is thus slightly less than for the PoD portfolio.

Graph 5.10 Price development 2008

Looking at the total annual return it can be seen that the PoD made a loss of 70,14 percent while the SX5E was down by "only" 54,15 percent. The portfolios were very correlated this year with a correlation coefficient of 0,96 . The beta of this year is 1,3 . Neither one of the investment strategies worked during the financial crises peak which was present during 2008.

Table 5.12 Performance 2008

	SX5E	PoD	
Total annual return:	$-54,15 \%$	$-70,14 \%$	
Variance p.m.	$0,44 \%$	$0,80 \%$	
Variance p.a.	$5,26 \%$	$9,63 \%$	
Standard deviation p.m.	$6,62 \%$	$8,96 \%$	
Standard deviation p.a.	$22,95 \%$	$31,03 \%$	

5.4.9 Portfolio performance 2009

At the 2009 rebalancing the two equities REP SQ and SAN were added to the portfolio and ISP IM and DTE GY were discarded. This year the prices start to rise again and the development of the two portfolios are almost exactly the same. The beta of the PoD portfolio is slightly over 1 with a value of 1,13 and the correlation coefficient is 0,97 . The correlation can easily be seen in the graph, with a slight overreaction of the PoD in regards to the somewhat higher beta value.

Graph 5.11 Price development 2009

The total return is higher for the PoD portfolio during 2009 with an annual total return of 27,75 percent compared to 23,79 percent for the benchmark. The standard deviation this year is higher for the PoD, thus just by approximately 4 percent.

Table 5.13 Performance 2009

	SX5E	PoD	
Total annual return:	$23,79 \%$	$27,75 \%$	
Variance p.m.	$0,62 \%$	$0,83 \%$	
Variance p.a.	$7,39 \%$	$9,92 \%$	
Standard deviation p.m.	$7,85 \%$	$9,09 \%$	
Standard deviation p.a.	$27,18 \%$	$31,50 \%$	

5.4.10 Portfolio performance 2010

For the last year of this study the portfolio consisted of the constantly recurring ENEL IM but also DTE GY, SAN SQ, FTE FP and ENI IM. This year was a quite volatile year for both of the portfolios with a strong correlation coefficient of 0,92 and a beta of 1,03 .

Graph 5.12 Price development 2010

This last year of the period examined the PoD makes a loss of 6,36 percent compared to a loss of 1,84 percent for the benchmark. This is the second year that the PoD portfolio performs worse than the benchmark. Worth noting is that the PoD portfolio only performance worse in negative market settings.

	SX5E	PoD	
Total annual return:	$-1,84 \%$	$-6,36 \%$	
Variance p.m.	$0,33 \%$	$0,42 \%$	
Variance p.a.	$3,97 \%$	$5,04 \%$	
Standard deviation p.m.	$5,75 \%$	$6,48 \%$	
Standard deviation p.a.	$19,93 \%$	$22,44 \%$	

5.5 Applied Statistical tests

5.5.1 T-test

To get-statistical credibility to the results a t-test was generated on the total annual returns for the whole period examined. The test is a two-tailed test with a significance level of 95 percent.

Hypotheses:

$$
\begin{aligned}
& H_{0}: \text { Ruturn PoD }=\text { Return } S X 5 E \\
& H_{1}: \text { Ruturn PoD }>\text { Return } S X 5 E
\end{aligned}
$$

Table 5.15

t-Test: Paired Two Sample for Means		
$\alpha=5 \%$	Variable 1	Variable 2
		-
	0,096921634	0,019968163
Mean	0,113891659	0,079331383
Variance	10	10
Observations	0,83169734	
Pearson Correlation	0	
Hypothesized Mean Difference	9	
df	1,972660634	
t Stat	0,039999486	
P(T<=t) one-tail	1,833112923	
t Critical one-tail	0,079998972	
P(T<=t) two-tail	2,262157158	
t Critical two-tail		

The test has a t-stat of $1,97>$ the critical value of 1,83 which leads to the conclusion that the null hypothesis is discarded. There is a significant difference between the returns generated by the PoD strategy and the SX5E during the period 2001 - 2010. This result can also be generated by looking at the p -value which is equal to 0,039 . If the p -value is less than the significance level i.e. it is not on the "wrong side" of the tail of the test, the null hypothesis is discarded. In this case $0,039<0,05$, which means that the returns of the PoD strategy are higher than the ones of the SX5E on a statistically secured level of 95 percent.

5.5.2 Wilcoxon signed rank test

Below a Wilcoxon signed rank test is conducted on the differences in Sharpe between the PoD portfolios and the SX5E portfolio over the time examined. The critical value for this one tailed test, on a 95% significance level is 11^{54}, which is less than the W statistic of 12 . This leads to a discard of the alternative hypothesis i.e. there is no significant difference between the Sharpe ratio of the PoD portfolios and the SX5E portfolio during the time period $2001-2010$.

Table 5.16 Wilcoxon signed rank test - Sharpe ratio
W-statistic: $\mathbf{1 2}$ > Critical value: 11

Wilcoxon signed rank test					
Sharpe ratio $\alpha=5$ \%					
PoD Portfolio	SX5E Portfolio	Abslolute value of difference	Rank	Rank if Positive	Rank if negative
-0,339	3743,970	0,809	8	8	
-0,620	-1,590	0,971	9	9	
1,271	0,586	0,685	7	7	
3,535	0,499	3,036	10	10	
1,640	1,427	0,214	5	5	
0,870	1,368	0,498	6		6
0,543	0,601	0,058	2		2
-2,417	-2,572	0,155	3	3	
0,727	0,697	0,030	1	1	
-0,500	-0,336	0,164	4		4

The result of the test on Treynor's ratio shows something else. The observed value of 9 is less than the critical value of 11 , which means that the alternative hypothesis is accepted. This means that Treynor's ratio is higher for the PoD portfolios than for the SX5E portfolios on a statistically secured level of 95 percent.

Table 5.17 Wilcoxon signed rank test - Treynor's ratio
W-statistic: 9 < Critical value: 11

Wilcoxon signed rank test					
Treynor's ratio $\alpha=5$ \%					
PoD Portfolio	SX5E Portfolio	Abslolute value of difference	Rank	Rank if Positive	Rank if negative
-0,098	-0,254	0,156	7	7	
-0,325	-0,490	0,164	8	8	
0,295	0,127	0,168	9	9	
2,679	0,048	2,630	10		
0,213	0,176	0,037	5	5	
0,103	0,125	0,022	3		3
0,082	0,050	0,032	4	4	
-0,575	-0,590	0,015	2	2	
0,203	0,189	0,013	1	1	
-0,108	-0,067	0,041	6		6

[^19]
6 Conclusion

This thesis examines if the investment strategy "Puppies of the Dow" is a working strategy applied to a European market setting during the years 2001-2010. The purpose was to determine whether the strategy could be successfully replicated in a different market with conditions differing from the once underlying the Dow Jones Industrial Average that the investment strategy originates from. This was made by investing an equal amount (20 percent of investment) in the five stocks of the Euro Stoxx 50 that had the highest dividend yield and the lowest price out of the top ten dividend yielding stocks. This process was conducted on the last day of every year. These stocks were then held as the PoD portfolio for the year to come.

The empirical findings suggest that the PoD strategy is a very useful strategy, especially in positive market settings. The strategy showed positive abnormal returns in eight years out of ten and 2008 and 2010 were the only years where the PoD portfolio did not outperform the benchmark. The beta value of the PoD portfolios was under one between 2001 and 2004. This can explain why the first two years (2001 and 2002) of investment did better than the benchmark even though the market was going down. The Sharpe ratio of the PoD strategy was higher than for the SX5E in seven years out of ten, which suggests that the PoD strategy is a better alternative also when looking at company specific risk. Even though this result is very interesting there was no statistical support to it (thus very close). Treynor's ratio were higher for the PoD portfolios than for the SX5E portfolio in eight years out of ten which suggests that the strategy is also better taking systematic risk into account. This result was statistically secured.

The holding period return of the PoD portfolio was excellent up to the end of 2007 where it had generated an accumulated return of 346 percent. But then the financial crisis hit and all the accumulated capital that the strategy had generated was lost. Looking at the whole period the PoD strategy was a clear winner compared to the SX5E.

The conclusion that can be drawn by this study is that there is a significant difference in total return investing in the "Puppies of the Dow" portfolio compared to investing in the SX5E portfolio. Looking at risk adjusted return, the Sharpe ratio showed insignificant differences but it was statistically secured that the Treynor's ratio was higher for the strategy over the period examined. Over all, the study proves that the "Puppies of the Dow" investment strategy was a success applied to the European market between 2001 and 2010.

7 Critical Discussion

Because of the ignorance of taxes in this study the results cannot be considered completely realistic. Received dividends are directly taxed for the gain and it wouldn't be possible to invest the whole dividend in new shares of stock. But, since this thesis include re-investing dividends in both the index portfolio and the PoD the value of the result should somewhat be relevant.

Furthermore transaction costs have also been ignored for both of the portfolios. In practice the transaction costs of the PoD should be higher than for holding an index because of the rebalancing each year. Previous research has also ignored this with the argument that rebalancing once a year could be considered a sheep alternative anyway.

8 References

Published references

Benjamin, G and Jason, Z (2003) The Intelligent Investor. 4th Edition, Harper and Row Publishin Inc, New York.

Benninga, S (2008), Financial Modeling, 3rd edition, The MIT Press, London.
Elton, E and Gruber, Martin, J (2009) Modern Portfolio Theory and Investment Analysis. 8th Edition. JOHN WILEY \& SONS, Asia.

O’Higgins, M and Downes, J (2000), Beating the Dow (Revised and Updated), Harper Paperbacks, United States of America, New Jersey.

Wahlgren, L and Körner, S (2006), Statistik Dataanalys, 4th Edition, Studentlitteratur.

Westerlund, J (2005), Introduktion till ekonometri, Studentlitteratur.

Articles

Da Silva, A (2001), "Empirical tests of the Dogs of the Dow strategy in Latin American stock markets", International Review of Financial Analysis, vol. 10:2, s. 187-199.

Domian, D., Louton D. and Mossman C. (1998), The rise and the fall of the "Dogs of the Dow", Financial services review, 7, 145-159.

Fama, Eugene F. (1969). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, vol. 25:2, s. 348-417.

Filbeck, Greg; Visscher, Sue (1997). Dividend yield strategies in the British stock market. The European Journal of Finance, vol. 3:4, s. 277-289.

Filbeck, Greg; Visscher, Sue (2003). Dividend-Yield Strategies in the Canadian Stock Market. Financial Analyst Journal, vol. 59:1, s. 99-106.

McQueen, G., Shields, K. and Thorley, S. R. (1997), Does the Dow-10 Investment strategy beat the dow statistically and economically?, Financial Analysts Journal, 53, 66-72.

Dorfman, J.R. (1988), Study of industrial average's finds stocks with high dividends are big winners, The Wall Street Journal.

Rinne, E, and Vähämaa (2011), "The 'Dogs of the Dow’ strategy revisited: Finnish evidence", The European journal of finance, 17, 451-469.

Treynor, Jack L. (1965). How to Rate Management of Investment Funds. Harward Business Review, vol. 43:1, s. 63-75.

Wallenius, C and Shamon, J., (2011), Investerande i hög direktavkastning på den svenska aktiemarknaden : En empirisk studie av investeringsstrategin Dogs of the Dow applicerad på den svenska aktiemarknaden mellan åren 2004-2010, http://www.uppsatser.se/.

Electronic references

Bloomberg L.P
"Beta Value." Morningstar 2011. Web. 6 Aug 2011.
<http://customer.morningstareurope.com/se/e24/definitions/index.aspx?lang=SV\&helptype =s\&keyword=sharpe>
"Blue-chip index." Investopedia 2011. Web. 25 Jun 2011.
http://www.investopedia.com/terms/b/bluechip.asp
"Diversification" Investopedia 2011. Web. 25 Jun 2011. http://www.investopedia.com/terms/d/diversification.asp
"Dividend yield." Investopedia 2011. Web. 25 Jun 2011.
http://www.investopedia.com/terms/d/dividendyield.asp
"Dogs of the Dow investment strategy." Dogs of the Dow official website (2011) Web. 25 Jun 2011. <www.dogsofthedow.com>
"SX5E." Blommberg 2011. Web 6 Aug 2011.
http://www.bloomberg.com/apps/quote?ticker=SX5E:IND
"Sharpe ratio." Reprinted fromThe Journal of Portfolio Management, Fall 1994. Web. 22 Jun 2011. http://www.stanford.edu/~wfsharpe/art/sr/sr.htm

9 Appendix

Appenrix 1 - Top 10 Dividend yields

2001			2002			
Equity	last px	DY	Equity	last px	DY	
MT NA Equity	2,5237	6,0022	MT NA Equity	1,8406	6,0022	
IBE SQ Equity	3,3375	4,0749	IBE SQ Equity	3,655	4,0219	
DG FP Equity	16,077	3,7786	ENEL IM Equity	5,5702	5,6971	
BAS GY Equity	24,085	3,8368	ENI IM Equity	14,051	5,3377	
SGO FP Equity	37,9979	3,8553	DG FP Equity	16,1629	3,8724	
DAI GY Equity	44,74	7,4816	SGO FP Equity	38,4976	3,9823	
BNP FP Equity	45,0835	3,6096	BNP FP Equity	48,4587	3,5821	
BAYN GY						
Equity	52,335	3,3136	SU FP Equity	53,4545	3,6111	
UL FP Equity	56,5667	3,4532	GLE FP Equity	55,3893	5,0119	
GLE FP Equity	58,3416	4,7583	UL FP Equity	57,05	4,2594	

2003			2004			
Equity	last px	DY		Equity	last px	DY
MT NA Equity	1,9449	6,0022		TIT IM Equity	2,35	4,4255
IBE SQ Equity	3,3375	4,5693		ENEL IM Equity	4,7513	6,679
ENEL IM Equity	4,3722	7,2581		MT NA Equity	6,7362	6,0022
INGA NA Equity	12,3936	6,0099		INGA NA Equity	14,1981	5,2461
ACA FP Equity	12,9561	5,7371		ENI IM Equity	14,96	5,0134
ENI IM Equity	15,15	4,9505		DG FP Equity	16,1138	5,3922
SGO FP Equity	25,4016	6,0622		ACA FP Equity	17,1859	4,3582
DAI GY Equity	29,35	5,1107	SGO FP Equity	35,2588	4,4447	
BNP FP Equity	37,4458	4,6356	GLE FP Equity	61,6905	5,3571	
GLE FP Equity	48,9118	5,6757		UL FP Equity	74,35	4,963

| 2005 | | | | 2006 | |
| :--- | ---: | ---: | :--- | ---: | ---: | ---: |
| Equity | last px | DY | Equity | last px | DY |
| UNA NA Equity | 3,01 | 3,8313 | TIT IM Equity | 2,46 | 5,6911 |
| ENEL IM Equity | 6,3741 | 9,5422 | ISP IM Equity | 4,197 | 4,9162 |
| INGA NA Equity | 17,093 | 4,8068 | IBE SQ Equity | 5,7725 | 3,8328 |
| GLE FP Equity | 18,42 | 4,4325 | ENEL IM Equity | 5,8461 | 9,4994 |
| BNP FP Equity | 20,1546 | 3,7523 | DTE GY Equity | 14,08 | 5,1136 |
| ENI IM Equity | 24,2505 | 4,886 | FTE FP Equity | 20,99 | 4,7642 |
| MT NA Equity | 25,8156 | 6,0022 | INGA NA Equity | 22,4988 | 4,0273 |
| IBE SQ Equity | 40,2646 | 4,1074 | ENI IM Equity | 23,43 | 4,6948 |
| UCG IM Equity | 65,6123 | 4,8463 | BNP FP Equity | 65,9135 | 3,804 |
| DAI GY Equity | 115,8 | 4,2541 | GLE FP Equity | 91,5664 | 4,3311 |

2007				2008		
Equity	last px	DY	Equity	last px	DY	
TIT IM Equity	2,29	6,1135		UCG IM Equity	4,5857	4,5783
ISP IM Equity	5,4866	6,4957	ISP IM Equity	5,0739	7,024	
ENEL IM Equity	6,8889	6,27	ENEL IM Equity	7,171	6,0234	
DTE GY Equity	13,84	5,1836	DTE GY Equity	15,02	5,1896	
FTE FP Equity	20,95	5,7279	INGA NA Equity	20,5407	5,5327	
ENI IM Equity	25,48	4,9058	ACA FP Equity	21,2879	5,2016	
VIV FP Equity	29,61	4,0527	FTE FP Equity	24,62	5,2803	
BAS GY Equity	36,925	4,0519	ENI IM Equity	25,05	5,1896	
RWE GY Equity	83,5	4,1796	DBK GY Equity	81,575	5,0296	
GLE FP Equity	114,0919	4,0435		UL FP Equity	149,92	4,6692

2009			2010			
Equity	last px	DY	Equity	last px	DY	
ENEL IM Equity	3,9866	10,8347		ENEL IM Equity	4,0475	6,1767
INGA NA Equity	5,6285	10,0955		DTE GY Equity	10,29	7,5802
SAN SQ Equity	6,75	13,1061	SAN SQ Equity	11,55	5,1948	
DTE GY Equity	10,75	7,2558	FTE FP Equity	17,43	8,0321	
REP SQ Equity	15,1	6,9536	ENI IM Equity	17,8	5,618	
ENI IM Equity	16,74	7,7658	TEF SQ Equity	19,52	5,8914	
FTE FP Equity	19,96	7,014	VIV FP Equity	20,795	6,7324	
BAS GY Equity	27,73	7,0321	RWE GY Equity	67,96	5,1501	
			MUV2 GY			
RWE GY Equity	63,7	7,0644	Equity	108,67	5,2912	
UL FP Equity	106,5	7,0423	UL FP Equity	153,7	5,2049	

Appendix 2 - Beta Values

	PoD
Portfolio Year	Beta
2001	0,507490873
2002	0,284928326
2003	0,959171315
2004	0,180858241
2005	1,217628338
2006	1,316177782
2007	1,172711529
2008	1,303449274
2009	1,129722466
2010	1,038020637
Average:	0,911015878

Appendix 3 - Critical values for Wilcoxon signed rank test

Critical Values for the Wilcoxon Signed-Rank Test

$\mathrm{n}=$ total number of + and - signs combined

n	α			
	$\begin{gathered} .005 \\ \text { (one tail) } \\ .01 \\ \text { (two tails) } \end{gathered}$	$\begin{gathered} .01 \\ \text { (one tail) } \\ .02 \\ \text { (two tails) } \end{gathered}$	$\begin{gathered} .025 \\ \text { (one tail) } \\ .05 \\ \text { (two tails) } \end{gathered}$	$\begin{gathered} .05 \\ \text { (one tail) } \\ .10 \\ \text { (two tails) } \end{gathered}$
5	*	*	*	1
6	*	*	1	2
7	*	0	2	4
8	0	2	4	6
9	2	3	6	8
10	3	5	8	11
11	5	7	11	14
12	7	10	14	17
13	10	13	17	21
14	13	16	21	26
15	16	20	25	30
16	19	24	30	36
17	23	28	35	41
18	28	33	40	47
19	32	38	46	54
20	37	43	52	60
21	43	49	59	68
22	49	56	66	75
23	55	62	73	83
24	61	69	81	92
25	68	77	90	101
26	76	85	98	110
27	84	93	107	120
28	92	102	117	130
29	100	111	127	141
30	109	120	137	152

NOTES:

1. * indicates that it is not possible to get a value in the critical region.
2. Reject the null hypothesis if the test statistic T is less than or equal to the critical value found in this table. Fail to reject the null hypothesis if the test statistic T is greater than the critical value found in the table.

From Some Rapid Approximate Statistical Procedures, Copyright ©1949, 1964 Lederle Laboratories Division of American Cyanamid Company. Reprinted with the permission of the American Cyanamid Company.

Appendix 4 - Total Return Index, last price and continuous return

PoD Portfolio 2001

PoD Portfolio	TRI	last price	Continious return
$2000-12-29$	16,80422	16,80422	
$2001-01-31$	17,00814	16,99664	0,0120620
$2001-02-28$	17,1764	17,16352	0,0105207
$2001-03-30$	16,80928	16,79666	$-0,0208551$
$2001-04-30$	17,55524	17,25646	0,0441724
$2001-05-31$	17,9433	17,65134	0,0390302
$2001-06-29$	17,52192	17,14222	$-0,0073590$
$2001-07-31$	17,9727	17,35546	0,0473095
$2001-08-31$	17,39852	16,7937	0,0024780
$2001-09-28$	15,48246	14,94458	$-0,0812960$
$2001-10-31$	15,54022	15,00146	0,0390828
$2001-11-30$	16,34342	15,76926	0,0856778
$2001-12-31$	16,78682	16,20622	0,0625316

SX5E 2001

SX5E	TRI	last price	Continious return
2000-12-29	4772,595	4772,39	
$2001-01-31$	4782,0018	4779,9	0,0020
$2001-02-28$	4323,2799	4318,88	$-0,1004$
$2001-03-30$	4193,2206	4185	$-0,0295$
$2001-04-30$	4549,3235	4525,01	0,0835
$2001-05-31$	4489,7831	4426,24	$-0,0078$
$2001-06-29$	4317,6194	4243,91	$-0,0248$
$2001-07-31$	4166,3991	4091,38	$-0,0184$
$2001-08-31$	3819,5756	3743,97	$-0,0687$
$2001-09-28$	3363,6301	3296,66	$-0,1071$
$2001-10-31$	3550,6355	3478,63	0,0742
$2001-11-30$	3734,6171	3658,27	0,0710
$2001-12-31$	3885,6865	3806,13	0,0603

PoD Portfolio 2002

PoD Portfolio	TRI	last price	Continious return
2001-12-31	8,25594	8,25594	
2002-01-31	8,65222	8,63992	0,0468830
$2002-02-28$	8,84952	8,83656	0,0239699
$2002-03-29$	9,2563	9,24296	0,0464067
$2002-04-30$	9,36138	9,34784	0,0127305
$2002-05-31$	8,93462	8,92134	$-0,0452117$
$2002-06-28$	9,26106	8,93848	0,0373724
$2002-07-31$	8,26034	7,95282	$-0,0788998$
$2002-08-30$	8,52604	8,20844	0,0695984
$2002-09-30$	7,99042	7,69164	$-0,0269196$
$2002-10-31$	7,84638	7,55482	0,0199183
$2002-11-29$	8,07044	7,76746	0,0660222
$2002-12-31$	7,89876	7,59706	0,0167626

SX5E 2002

SX5E	TRI	last price	Continious return
2001-12-31	3885,6865	3806,13	
$2002-01-31$	3751,113	3670,26	$-0,0146$
$2002-02-28$	3704,5902	3624,74	0,0093
$2002-03-29$	3870,5013	3784,05	0,0656
$2002-04-30$	3670,0374	3574,23	$-0,0306$
$2002-05-31$	3555,1208	3425,79	$-0,0054$
$2002-06-28$	3263,7403	3133,39	$-0,0485$
$2002-07-31$	2801,8769	2685,79	$-0,1118$
$2002-08-30$	2834,7515	2709,29	0,0540
$2002-09-30$	2306,4705	2204,39	$-0,1610$
$2002-10-31$	2636,9424	2518,99	0,1792
$2002-11-29$	2782,0339	2656,85	0,0993
$2002-12-31$	2498,9748	2386,41	$-0,0613$

PoD Portfolio 2003

PoD Portfolio	TRI	last price	Continious return
2002-12-31	7,00086	7,00086	
$2003-01-31$	6,85252	6,83952	$-0,0214165$
$2003-02-28$	6,60092	6,5874	$-0,0355085$
$2003-03-31$	6,42096	6,40676	$-0,0255911$
$2003-04-30$	7,60464	7,51566	0,1714049
$2003-05-30$	7,90354	7,81854	0,0503219
$2003-06-30$	7,9281	7,66302	0,0139156
$2003-07-31$	8,59726	8,2942	0,1150374
$2003-08-29$	8,76834	8,3886	0,0555910
$2003-09-30$	8,33452	7,9824	$-0,0064677$
$2003-10-31$	9,01814	8,63456	0,1219990
$2003-11-28$	9,1915	8,80878	0,0625064
$2003-12-31$	9,75466	9,3578	0,1019962

SX5E 2003

SX5E	TRI	last price	Continious return
2002-12-31	2498,9748	2386,41	
$2003-01-31$	2357,5391	2248,17	$-0,0122$
$2003-02-28$	2245,653	2140,73	$-0,0011$
$2003-03-31$	2140,5647	2036,86	$-0,0001$
$2003-04-30$	2459,4509	2324,23	0,1885
$2003-05-30$	2490,6998	2330,06	0,0692
$2003-06-30$	2599,8835	2419,51	0,1096
$2003-07-31$	2712,8639	2519,79	0,1144
$2003-08-29$	2757,3001	2556,71	0,0901
$2003-09-30$	2583,841	2395,87	0,0106
$2003-10-31$	2778,426	2575,04	0,1481
$2003-11-28$	2839,0367	2630,47	0,0976
$2003-12-31$	2979,6725	2760,66	0,1247

PoD Portfolio 2004

PoD Portfolio	TRI	last price	Continious return
2003-12-31	8,59912	8,59912	
$2004-01-30$	8,65948	8,65948	0,0069948
$2004-02-27$	9,0425	9,0425	0,0432810
$2004-03-31$	9,39212	9,39212	0,0379354
$2004-04-30$	9,64172	9,56648	0,0262285
$2004-05-31$	9,9886	9,8899	0,0431791
$2004-06-30$	10,5834	10,267	0,0677727
$2004-07-30$	11,16048	10,83848	0,0834441
$2004-08-31$	12,41636	12,0185	0,1359122
$2004-09-30$	13,15782	12,744	0,0905691
$2004-10-29$	13,96046	13,53948	0,0911685
$2004-11-30$	15,08852	14,60194	0,1083243
$2004-12-31$	14,65232	14,14254	0,0034443

SX5E 2004

| SX5E | TRI | last price | Continious return |
| :--- | :--- | :--- | :--- | :--- |
| | | | |
| 2003-12-31 | 2979,6725 | 2760,66 | |
| $2004-01-30$ | 3068,424 | 2839,13 | 0,1057 |
| $2004-02-27$ | 3127,6383 | 2893,18 | 0,0968 |
| $2004-03-31$ | 3017,509 | 2787,49 | 0,0421 |
| $2004-04-30$ | 3035,1315 | 2787,48 | 0,0851 |
| $2004-05-31$ | 3026,6396 | 2749,62 | 0,0823 |
| $2004-06-30$ | 3107,983 | 2811,08 | 0,1225 |
| $2004-07-30$ | 3013,6384 | 2720,05 | 0,0696 |
| $2004-08-31$ | 2964,4904 | 2670,79 | 0,0861 |
| $2004-09-30$ | 3026,1448 | 2726,3 | 0,1249 |
| $2004-10-29$ | 3122,4726 | 2811,72 | 0,1357 |
| $2004-11-30$ | 3198,3189 | 2876,39 | 0,1288 |
| $2004-12-31$ | 3281,8742 | 2951,01 | 0,1319 |

PoD Portfolio 2005

| PoD Portfolio | TRI | last price | Continious return |
| :--- | :--- | :--- | :--- | :--- |
| | | | |
| $2003-12-31$ | 31,38454 | 31,38454 | |
| $2004-01-30$ | 32,13676 | 32,13676 | 0,0236851 |
| $2004-02-27$ | 32,84006 | 32,84006 | 0,0216486 |
| $2004-03-31$ | 33,04728 | 33,04728 | 0,0062902 |
| $2004-04-30$ | 31,31364 | 31,22456 | $-0,0538855$ |
| $2004-05-31$ | 34,09362 | 32,94734 | 0,0879053 |
| $2004-06-30$ | 35,46194 | 34,20302 | 0,0735495 |
| $2004-07-30$ | 37,5126 | 36,18026 | 0,0923629 |
| $2004-08-31$ | 36,79972 | 35,41078 | 0,0169766 |
| $2004-09-30$ | 39,43488 | 37,94712 | 0,1076344 |
| $2004-10-29$ | 39,26052 | 37,78086 | 0,0340258 |
| $2004-11-30$ | 41,64264 | 39,98808 | 0,0973220 |
| $2004-12-31$ | 42,71986 | 41,02162 | 0,0660825 |

SX5E 2005

SX5E	TRI	last price	Continious return
2004-12-31	3281,8742	2951,01	
$2005-01-31$	3323,7911	2984,59	0,1190
$2005-02-28$	3411,6487	3058,32	0,1337
$2005-03-31$	3408,7594	3055,73	0,1085
$2005-04-29$	3299,2658	2930,1	0,0767
$2005-05-31$	3499,5097	3076,7	0,1776
$2005-06-30$	3632,6184	3181,54	0,1661
$2005-07-29$	3801,2075	3326,51	0,1780
$2005-08-31$	3738,1942	3263,78	0,1167
$2005-09-30$	3926,8689	3428,51	0,1850
$2005-10-31$	3806,2779	3320,15	0,1045
$2005-11-30$	3957,9647	3447,07	0,1757
$2005-12-30$	4109,514	3578,93	0,1758

PoD Portfolio 2006

PoD Portfolio	TRI	last price	Continious return
2005-12-30	6,47112	6,47112	
$2006-01-31$	6,3646	6,34624	$-0,0165978$
$2006-02-28$	6,60218	6,58144	0,0395374
$2006-03-31$	6,77358	6,75272	0,0287762
$2006-04-28$	6,78068	6,6912	0,0041320
$2006-05-31$	6,5279	6,29712	$-0,0247079$
$2006-06-30$	6,6545	6,34526	0,0552009
$2006-07-31$	6,6299	6,29858	0,0438816
$2006-08-31$	6,70382	6,37088	0,0623533
$2006-09-29$	7,32292	6,9628	0,1392715
$2006-10-31$	7,694	7,31434	0,0998591
$2006-11-30$	7,58192	7,16996	0,0359297
$2006-12-29$	7,77986	7,3571	0,0816383

SX5E 2006

| SX5E | TRI | last price | Continious return |
| :--- | :--- | :--- | :--- | :--- |
| | | | |
| 2005-12-30 | 4109,514 | 3578,93 | |
| 2006-01-31 | 4244,0613 | 3691,41 | 0,1705 |
| 2006-02-28 | 4340,912 | 3774,51 | 0,1621 |
| 2006-03-31 | 4437,5129 | 3853,74 | 0,1618 |
| 2006-04-28 | 4435,8142 | 3839,9 | 0,1407 |
| 2006-05-31 | 4263,0535 | 3637,17 | 0,1045 |
| 2006-06-30 | 4299,5759 | 3648,92 | 0,1673 |
| 2006-07-31 | 4354,5732 | 3691,87 | 0,1768 |
| $2006-08-31$ | 4502,0627 | 3808,7 | 0,1984 |
| $2006-09-29$ | 4609,8156 | 3899,41 | 0,1909 |
| $2006-10-31$ | 4738,8404 | 4004,8 | 0,1950 |
| $2006-11-30$ | 4729,9251 | 3987,23 | 0,1664 |
| $2006-12-29$ | 4887,5324 | 4119,94 | 0,2036 |

PoD Portfolio 2007

PoD Portfolio	TRI	last price	Continious return
2006-12-29	9,8911	9,8911	
$2007-01-31$	9,91076	9,91076	0,0019857
$2007-02-28$	9,70372	9,70372	$-0,0211117$
$2007-03-30$	9,33592	9,33592	$-0,0386400$
$2007-04-30$	10,09566	10,06766	0,0782363
$2007-05-31$	10,54968	10,30718	0,0467672
$2007-06-29$	10,19664	9,66728	$-0,0107825$
$2007-07-31$	9,7887	9,27924	0,0124817
$2007-08-31$	10,4935	9,94608	0,1229764
$2007-09-28$	10,8618	10,29556	0,0880735
$2007-10-31$	11,43302	10,83666	0,1047929
$2007-11-30$	11,75888	11,11078	0,0816739
$2007-12-31$	11,43188	10,80198	0,0284901

SX5E 2007

| SX5E | TRI | last price | Continious return |
| :--- | :--- | :--- | :--- | :--- |
| | | | |
| 2006-12-29 | 4887,5324 | 4119,94 | |
| $2007-01-31$ | 4963,0682 | 4178,54 | 0,1862 |
| $2007-02-28$ | 4856,0008 | 4087,12 | 0,1503 |
| $2007-03-30$ | 4970,105 | 4181,03 | 0,1956 |
| $2007-04-30$ | 5251,4037 | 4392,34 | 0,2279 |
| $2007-05-31$ | 5478,5212 | 4512,65 | 0,2210 |
| $2007-06-29$ | 5468,6917 | 4489,77 | 0,1922 |
| $2007-07-31$ | 5263,315 | 4315,69 | 0,1590 |
| $2007-08-31$ | 5246,3013 | 4294,56 | 0,1953 |
| $2007-09-28$ | 5352,765 | 4381,71 | 0,2203 |
| $2007-10-31$ | 5489,4758 | 4489,79 | 0,2254 |
| $2007-11-30$ | 5387,4188 | 4394,95 | 0,1823 |
| $2007-12-31$ | 5393,7908 | 4399,72 | 0,2048 |

PoD Portfolio 2008

PoD Portfolio	TRI	last price	Continious return
2007-12-31	10,47826	10,47826	
2008-01-31	9,0748	9,0748	$-0,1438013$
$2008-02-29$	8,81228	8,81228	$-0,0293551$
$2008-03-31$	8,45934	8,45934	$-0,0408750$
$2008-04-30$	9,12054	8,99462	0,0752579
$2008-05-30$	9,1061	8,71074	0,0123179
$2008-06-30$	7,96744	7,56378	$-0,0891935$
$2008-07-31$	8,22354	7,8063	0,0836297
$2008-08-29$	8,47024	7,9295	0,0816277
$2008-09-30$	7,08028	6,62608	$-0,1132765$
$2008-10-31$	5,53998	5,1852	$-0,1790225$
$2008-11-28$	5,15164	4,7884	$-0,0064933$
$2008-12-31$	5,19624	4,83082	0,0817390

EX5E 2008

SX5E	TRI	last price	Continious return
2007-12-31	5393,7908	4399,72	
2008-01-31	4656,2721	3792,8	0,0567
$2008-02-29$	4574,2121	3724,5	0,1873
$2008-03-31$	4457,9908	3628,06	0,1798
$2008-04-30$	4736,1209	3825,02	0,2665
$2008-05-30$	4781,5412	3777,85	0,2232
$2008-06-30$	4250,9371	3352,81	0,1180
$2008-07-31$	4273,8652	3367,82	0,2427
$2008-08-29$	4277,7736	3365,63	0,2392
$2008-09-30$	3868,7445	3038,2	0,1393
$2008-10-31$	3301,7166	2591,76	0,0832
$2008-11-28$	3115,0196	2430,31	0,1839
$2008-12-31$	3138,3934	2447,62	0,2557

PoD Portfolio 2009

PoD Portfolio	TRI	last price	Continious return
2008-12-31	8,44302	8,44302	
$2009-01-30$	7,82596	7,72096	$-0,0758937$
$2009-02-27$	6,71146	6,5955	$-0,1401222$
$2009-03-31$	6,9117	6,78822	0,0468280
$2009-04-30$	8,1375	7,9928	0,1812943
$2009-05-29$	8,5275	8,16278	0,0647551
$2009-06-30$	8,81748	8,37544	0,0771513
$2009-07-31$	9,82234	9,23238	0,1593558
$2009-08-31$	10,5538	9,90346	0,1337691
$2009-09-30$	11,2025	10,52512	0,1232528
$2009-10-30$	10,56494	9,87336	0,0037762
$2009-11-30$	10,67506	9,9438	0,0780700
$2009-12-31$	11,1436	10,3025	0,1139161

EX5E 2009

SX5E	TRI	last price	Continious return
2008-12-31	3138,3934	2447,62	
2009-01-30	2875,3524	2236,98	0,1611
2009-02-27	2542,9072	1976,23	0,1282
$2009-03-31$	2666,7186	2071,13	0,2997
$2009-04-30$	3084,4992	2375,34	0,3983
$2009-05-29$	3249,3886	2451,24	0,3133
$2009-06-30$	3193,8683	2401,69	0,2646
$2009-07-31$	3511,799	2638,13	0,3800
$2009-08-31$	3700,2044	2775,17	0,3383
$2009-09-30$	3833,2379	2872,63	0,3230
$2009-10-30$	3664,1585	2743,5	0,2434
$2009-11-30$	3750,2969	2797,25	0,3126
$2009-12-31$	3981,4504	2964,96	0,3530

PoD Portfolio 2010

PoD Portfolio	TRI	last price	Continious return
2009-12-31	12,2235	12,2235	
$2010-01-29$	11,4229	11,4229	$-0,0677402$
$2010-02-26$	11,37988	11,3553	$-0,0037732$
$2010-03-31$	11,84534	11,82	0,0422499
$2010-04-30$	11,3419	11,3173	$-0,0412892$
$2010-05-31$	10,69788	10,3755	$-0,0562869$
$2010-06-30$	10,80728	10,2816	0,0407727
$2010-07-30$	11,73284	11,1613	0,1320359
$2010-08-31$	11,74286	11,0214	0,0507930
$2010-09-30$	11,80656	10,9884	0,0688165
$2010-10-29$	12,29674	11,4397	0,1124940
$2010-11-30$	11,17952	10,3772	$-0,0230062$
$2010-12-31$	11,46986	10,6516	0,1001116

SX5E 2010

SX5E	TRI	last price	Continious return
2009-12-31	3981,4504	2964,96	
$2010-01-29$	3732,0319	2776,83	0,2301
$2010-02-26$	3670,5502	2728,47	0,2790
$2010-03-31$	3945,6368	2931,16	0,3689
$2010-04-30$	3804,6302	2816,86	0,2608
$2010-05-31$	3606,953	2610,26	0,2472
$2010-06-30$	3567,2368	2573,32	0,3123
$2010-07-30$	3802,9478	2742,14	0,3906
$2010-08-31$	3644,4278	2622,95	0,2845
$2010-09-30$	3821,4021	2747,9	0,3763
$2010-10-29$	3959,6666	2844,99	0,3653
$2010-11-30$	3708,2025	2650,99	0,2650
$2010-12-31$	3908,7145	2792,82	0,3883

[^0]: ${ }^{1}$ The strategy will be referred to as the DoD throughout the thesis.
 ${ }^{2}$ O'Haggins (2000)
 ${ }^{3}$ Dorfman, J. R. (1988)
 ${ }^{4}$ This abbreviation for the Dow Jones Industrial Average will be used throughout the thesis.
 ${ }^{5}$ www.dogsofthedow.com
 ${ }^{6}$ Elthon and Gruber (2009, Ch. 19)

[^1]: ${ }^{7}$ The ticker name of the Euro Stoxx 50, SX5E will be used throughout the thesis.
 ${ }^{8}$ A full definition of what a blue-chip index is can be found in section 3.4 Selection of index
 ${ }^{9}$ Bloomberg terminal (SX5E, command: DES)
 ${ }^{10}$ A complete definition of the total return index can be found under section 3.6.2 Measuring Results - Dividend re-investment

[^2]: ${ }^{11}$ McQueen, et al. (1997)
 ${ }^{12}$ "Footsie" the 100 most highly capitalized UK companies listed on the London Stock exchange.
 ${ }^{13}$ Filbeck \& Visscher (1997)
 ${ }^{14}$ André \& Da Silva (2001)
 ${ }^{15}$ Filbeck \& Visscher (2003)
 ${ }^{16}$ Rinne \&Vähämaa (2011)
 ${ }^{17}$ Dahlstedt and Engellau (2011)

[^3]: ${ }^{18}$ O'Haggins, Michael (2000)
 ${ }^{19}$ Elton, Edvin J. et al (2009, Ch. 17)
 ${ }^{20}$ Investopedia

[^4]: ${ }^{21}$ Benninga, Simon (2009 Pg. 241)
 ${ }_{22}^{22}$ Benninga, Simon (2009 Pg. 318)
 ${ }^{23}$ Bloomberg terminals explanation of beta

[^5]: ${ }_{25}^{24}$ Morningstar dictionary
 ${ }^{25}$ Benninga (2009 Pg. 374) Note that in Benninga the expected returns are used instead of market returns. Since the actual historical returns are available the AR will be calculated by replacing the expected return with R_{m}.
 ${ }^{26}$ Elton, Edvin J. et al (2009, Pg. 36)

[^6]: ${ }^{27}$ O'Haggins (2000)
 ${ }^{28}$ Bloomberg terminal
 ${ }^{29}$ This measure will be explained further in section Measuring results

[^7]: ${ }^{30}$ Bloomberg, Eurostoxx 50

[^8]: ${ }^{31}$ Blue-chip index -Investopedia
 ${ }^{32}$ Dividend Yield - Investopedia
 ${ }^{33}$ O'Haggins (2000)

[^9]: ${ }^{34}$ This is a measure that has been used in similar studies, for example in Jokob Dahlstedt and Oscar Engellau's master thesis High dividend yield as investment strategy (2006)
 ${ }^{35}$ Nasdaq
 ${ }^{36}$ Benninga (2008, Ch. 8)
 ${ }^{37}$ New shares purchased at end of year + initial shares

[^10]: ${ }^{38}$ Westerlund (2005)

[^11]: ${ }^{39}$ Sharpe ratio
 ${ }^{40}$ Treynor (1965)

[^12]: ${ }^{41}$ Westerlund (2005)
 ${ }^{42}$ Westerlund (2005)

[^13]: ${ }^{43} \mathrm{~S}=$ The standard deviation of a sample
 ${ }^{44}$ Westerlund (2005)
 ${ }^{45}$ Wahlgren \& Körner (2006)

[^14]: ${ }^{46}$ Will be referred to in section 4 - Result and Analysis
 ${ }^{47}$ This is an assumption that is made only for simplicity.

[^15]: ${ }^{48}$ See section 2.3 Diversification.
 ${ }^{49}$ The method to calculate the returns and the standard deviations has been replicated from Benninga (2008, Ch. 18)

[^16]: ${ }^{50}$ The observation dates are the last day of every year examined.

[^17]: ${ }^{51}$ The beta of the SX5E is 1 since it is considered the benchmark.

[^18]: ${ }^{52}$ See table after abstract for full names
 ${ }^{53}$ Note that the graph is showing the price development of the two strategies while the total annual return is calculated considering the value after re-investing dividends.

[^19]: ${ }^{54}$ See appendix 3 for table over critical values for Wilcoxon signed rank test.

