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Abstract 
 
 
Purpose: For evaluation, development and optimization of treatment strategies in 
radionuclide therapy, it is useful to study and model the pharmacokinetics of the 
therapeutic agent. The aim of this study was to create models for describing the 
pharmacokinetics of monoclonal antibodies used for radioimmunotherapy. 
 
Method: Two models, based on very different modeling approaches, are presented in this 
thesis. The first model is a macroscopic compartmental model, i.e. it addresses the 
pharmacokinetic behavior in a macroscopic scale. The model is not based on actual 
physiological processes, but is rather a simplified method to describe the 
pharmacokinetics that can be “seen” with imaging techniques. The basis for the model is 
measurements of activity distributions in a clinical study of radioimmunotherapy of B-
cell lymphoma, and the parameters of the model is iteratively calculated by the model 
fitting to these data. In the clinical study, extracorporeal adsorbtion (ECAT) is used to 
lower the radiation dose to the normal organs and improve the therapeutic ratio. This is 
also implemented in the model as a perturbation, and evaluated. 
 
The second model is a microscopic pharmacokinetic model for studying the 
pharmacokinetics in a small prevascular tumor nodule, for example a micrometastases. 
The model is theoretical and based on physiological parameters and the basic 
mechanisms of transport. The effect of ECAT is evaluated in the microscopic scale and 
an investigation is made on how the different parameters of the model influence the 
accumulation of antibodies in the nodule. 
 
Results: The macroscopic compartmental model is successfully fit to the clinical data. In 
the case of therapy, the model could accurately describe the measured data during the 
ECAT procedure. By fitting the model to diagnostic data and add the ECAT procedure as 
a perturbation to the model, the therapeutic data could be predicted. In the microscopic 
model, it is found that the time for saturation of a microscopic cluster of tumor cells 
could be described as a simple function of the model parameters. 
  
Conclusion: The overall good fit to the therapy data indicates that the macroscopic 
model in fact, despite its simplicity, is suitable for describing the pharmacokinetics of 
monoclonal antibodies in radioimmunotherapy. As the measured therapy data could be 
predicted by the use of diagnostic data by adding ECAT as a perturbation to the model, it 
might become useful as a tool for evaluation and optimization of clinical strategies. The 
microscopic pharmacokinetic model can be used, by combining it with dosimetry, to 
optimize and evaluate different treatment strategies in the microscopic scale. 
 
 
 
 
 
 

 3



Introduction 
 
For a disseminated or diffuse malignant disease a systemic approach to treatment is 
required. The goal to find selective and systemic therapy cannot be achieved by physical 
means; it requires exploitation of the biological differences between cancerous and 
noncancerous cells. Biologically targeted tumor radiotherapy is selectively delivery of 
curative doses of radiation to malignant sites. In radioimmunotherapy, monoclonal 
antibodies or their fragments is used for targeting the cancer cells [O’Donoghue 2000].  
 
By studying the pharmacokinetics of the targeting agent, the treatment strategies can be 
evaluated and optimized [Strand et al 1993]. Optimization for radioimmunotherapy 
includes finding optimal combinations of pharmacokinetics, for example monoclonal 
antibodies and fragments with the desired properties [Slavin-Chiorini et al 2000], and 
physics, for example choosing a radionuclide or combination of radionuclides with 
desired emission properties and half-life [O’Donoghue 2000].  
 
Optimization may also include strategies for altering the pharmacokinetics during the 
treatment procedure. This includes concepts as extracorporeal adsorption (ECAT) [Strand 
et al 2000] or pretargeting techniques [Chinol et al 2000]. ECAT is a method to reduce 
the concentration of antibodies in the plasma to lower the toxic effect to normal tissues 
and organs. This is made by filtering the plasma or blood in an affinity column. 
Pretargeting techniques utilizes un-labeled antibodies for targeting the antigen sites. After 
allowing a time for the antibodies to bind to the tumor cells most unbound antibodies is 
cleared from the body. Another radiolabeled molecule is then used for targeting the 
original antibody. 
 
The goal of optimizing is to find a treatment strategy that gives the highest achievable 
therapeutic ratio, which is the ratio of the tumor absorbed dose, to the absorbed dose to 
critical organs. Usually, the average absorbed dose is calculated using the MIRD S-
formalism [Loevinger et al 1991] which is based on the use of averaged cumulated 
activity, estimated or calculated, in different tissues and organs. In the clinical situation, 
the absorbed dose distribution is generally not uniform because of the spatially non-
uniform uptake of the targeting agent, why dosimetry based on averaged quantities may 
be inaccurate. Also, the ability to resolve small or microscopic lesions by imaging 
techniques in vivo is limited. Optimization should therefore include the absorbed dose 
spatial distribution and the absorbed dose to assumed microscopic lesions.  
 
Parmacokinetic modeling and optimization could be used in a treatment planning process 
in radionuclide therapy. Such process would involve several steps (figure 1): diagnostic 
study of the patient, pharmacokinetic modeling of the data, dosimetry and optimization. 
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Figure 1: Schematic chart of a treatment planning process in radionuclide therapy. 
 
 
 
Purpose of this work 
 
The aim of this work is to create a model for describing the pharmacokinetics of 
monoclonal antibodies used for radioimmunotherapy. Two different approaches are used.  
 

1. The first is a macroscopic model, based on experimental data from a clinical study 
of radioimmunotherapy of B-cell lymphoma patients performed in Lund. This 
model is used to study the overall pharmacokinetics in organs and tissues that can 
be visualized by external imaging. The model is simple as no values for 
physiological parameters of the transport are needed. As ECAT is used in this 
study, this is implemented in the model and used as a perturbation of the system. 

 
2. The second approach is a theoretical model of microscopic clusters of tumor cells. 

The primary interest of this model is to study the pharmacokinetics in 
micrometastases located in the circulating plasma. These lesions are too small to 
be visualized by commonly used imaging techniques in vivo, but overall treatment 
strategy should be optimized including micrometastases as well. The model is 
based on the physical transportation properties of monoclonal antibodies 
(diffusion, binding to antigen sites etc.).  
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Background 
 
The transport of monoclonal antibodies following a systemic administration involves four 
processes (figure 2): transport within the blood vessel, the transport across vascular walls 
into surrounding tissues (extravasation) and transport through interstitial space within the 
tumor [Jain]. 
 
 
Distribution through vascular space 
 
The blood supply to a tumor is often chaotic. While small tumors (<2 mm in diameter) 
are perfused by vasculature originating from surrounding tissues, further growth of 
tumors often is accompanied by angiogenic response as newly formed microvessels. 
Tumor vasculature differs from the vasculature in normal tissues in both function and 
morphology; for example by being more heterogeneous in distribution with larger sized 
vessels and being more permeable. Based on the vasculature, three regions of the tumor 
are categorized; a well-vascularized periphery; a seminecrotic, intermediate zone; and an 
avascular, necrotic central region [Jang]. In most normal tissues, extravasated 
macromolecules are taken up and brought back to the central circulation by the 
lymphatics. Tumors, however, often lacks functional lymphatics and macromolecules 
must therefore be picked up by the peritumor host lymphatics [Jain].   
 
 
Transport across microvascular wall 
 
The extravasation of monoclonal antibodies occurs by diffusion and convection. The 
diffusive flux across the capillary wall is proportional to the vessel’s surface area per unit 
volume, S (cm2/cm3), and the difference between the vascular and interstitial 
concentrations (cv and ci respectively). The diffusive flux is related to the difference in 
concentrations by the vascular permeability coefficient, P (cm/s): 
 

( )iv ccPS −=flux Diffusive  
 
The convection is proportional to the rate of fluid leakage from the vessel, which in turn 
is proportional to the vessel’s surface area per unit volume (S) and the difference between 
the vascular and interstitial hydrostatic pressures (pv and pi respectively), minus the 
osmotic reflection coefficient (σ) times the difference between the vascular and 
interstitial osmotic pressures (πv and πi respectively). The fluid leakage is related to the 
pressure gradient by the hydraulic conductivity, Lp (cm/mm Hg·s) [Jain, Dvorak et al]: 
 

( ) ( )[ ]ivivp ppSL ππσ −−−=flux Convective  
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Transport in tumor interstitium 
 
The transport of antibodies in the tumor interstitial space occurs by diffusion and 
convection. Diffusion is movement due to concentration differences of the molecules and 
is proportional to the concentration gradients. The diffusive flux is related to the 
concentration gradients by the interstitial diffusion coefficient for the solute, D 
(commonly in units of cm2/s): 
 

cD∇−=flux Diffusive  
 
with c [M] being the interstitial concentration of antibodies. Convection, movement due 
to pressure differences, is proportional to the interstitial fluid velocity, which in turn is 
related to the interstitial pressure gradients by the interstitial hydraulic conductivity, K (in 
units of cm2/mm Hg·s) [Jain].  
 

pKcR f ∇−=flux Convective  
 
Rf is a retardation factor (solute convective velocity / solvent convective velocity) 
[Dvorak].  
 
The values of these parameters are determined by the structure and composition of the 
tumor interstitium and by the physical and chemical properties of the solute molecule 
[Jain]. 
 

 
Figure 2: The transport process of systemically administered monoclonal antibodies. The transport 
involves distribution in the vascular space, extravasation into surrounding tissues and transport in 
the interstitial space. 
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Reaction kinetics 

he binding of antibodies to antigens is considered as an elementary chemical reaction 
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here c [M] is the concentration of antibodies, s [M] is the concentration of free antigens w

and cs  [M] is the concentration of the antibody-antigen complex. kf [M-1h-1] and kr [h-1] 
repre nts the forward (association) and reverse (dissociation) rate constants, 
respectively. The above reaction can be illustrated with a compartment model 
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tion kinetics where antibodies and antigens 

he reaction, together with the compartmental model, gives rise to a system of nonlinear 

 
Figure 3: Schematic compartmental model for reac
interact to form antibody-antigen complexes. 
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ordinary differential equations of the form 
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Transport in microscopic clusters 
 

cells (a few handred micrometers in diameter), some 
ade. First of all the microscopic cluster is assumed to 

 Fick’s 

In microscopic clusters of tumor 
implifying assumptions can be ms

not contain a necrotic center [Fujimori et al 1990]. A necrotic center would make the 
model more complicated since the antibody kinetics would be different in the necrotic 
region. Secondly, flow is negligible within prevascular spheroids [Graff et al 2003], 
which has the consequence that there are no significant interstitial pressure gradients, 
making the transport to be a pure diffusion-reaction process [van Osdol et al 1991]. Also, 
changes in vascular concentration arising from antibody penetration into or effusion out 
of the cell cluster can be assumed negligible since the external plasma volume is much 
greater than the cell cluster volume. Antigens are assumed immobile and uniformly 
distributed and the diffusion rate coefficient is independent of the space variables. 
 
The transport of antibodies in a microscopic tumor cell cluster (ignoring binding to 
antigen sites) can then be described by the diffusion equation (otherwise known as
law), 
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Part A: Macroscopic model 

ures 

ic model presented here is an empirical multi-compartmental model, 
e measurements in a clinical trial of radioimmunotherapy. Opposed to a 

eters in each patient, such as regional blood- and lymph flow rates to each 

2) 

 
The str
ptake r (with no 

ple, the calculated 

ith this in 

 
Method 
 
Basic feat
 
The macroscop
ased on uptakb

physiological based pharmacokinetic model, this model is not set to describe any actual 
physiological processes but rather study the overall pharmacokinetic behavior in a limited 
case. The reasons for using such model instead of a physiological based model are 
several:  
 

1) A physiological approach would require extensive knowledge of physiological 
param
tissue/organ, extravasation parameters (as transcapillary flow rates and 
permeability surface area products) for each tissue/organ, volumes of plasma and 
interstitial space in each tissue/organ, and antigen concentrations. The values for 
parameters like these are seldom possible to measure in patients. 
The idea here is to use a model as simple as possible and se how well it can 
describe measured data from the clinical study and then if it can be used to predict 
the outcome of a perturbation as extracorporeal immunoadsorbtion. 

ucture of the model is the simplest possible: every compartment describing tissue 
is connected only to the plasma compartment. The model is also lineau

saturable binding processes involved), with fluxes assumed to be directly proportional to 
the matter present in the compartment. The simplicity of the model assures a minimum of 
parameters to fit, keeping the degree of freedom relatively low. The purpose of the model 
is to see how well it can describe the measured quantities in the clinical study, and to 
investigate the accuracy of predictions that can be made.  
 
There are limiting aspects of a modeling approach like this as it could be suspected that 

s validity is constrained to the case that it is solved for. For examit
parameters for the case of some amount of administered antibodies may not accurately 
describe the case with a very different amount. This is because physiological processes 
could include non-linear elements, for example in the case of saturable binding. 
 
Macroscopic compartments are a rather coarse description of an actual tissues behavior 
ecause of the tissues inherent heterogeneity in structure as well as function. Wb

mind, the model parameters is not expected to describe an actual physical process, they 
are rather averaged quantities calculated to make the model results fit to the measured 
data. 
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Model structure 

 structure is shown in figure 4. As mentioned above, the compartment 
odel is designed with a central compartment containing the plasma. This compartment, 

ifferential equations 

 
The basic model
m
in turn, is connected to all other compartments. k(i,j) represents the rate constant from 
compartment j to compartment i.  

 
Figure 4: Schematics of the compartmental model. A central plasma compartment is connected to a 
set of compartments representing various tissues and organs. Each connection is described by the 

 plasma  organ i 

k(organ i,plasma) 

k(plasma, organ i) 

following rate constant k(i,j). 
 
Mathematically, the compartment model is described the following system of ordinary 
d
 

( )
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i

i
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dt

dA
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dt

),(),(
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−=

      (eq. 4) 

 
where A is the activity (expressed here as percentage of administered activity) of the 
ompartment and index (p) and (i) denotes plasma and organ i respectively.     

ata 

from eight patients which were treated with radioimmunotherapy for B-cell 
mphoma were available. There is no intention to discuss or evaluate the clinical trial in 

p kAipk
dA

),( −= ∑

c
 
 
D
 
Data 
ly
this thesis, so the study design is only briefly commented. The treatment consists of two 
parts. In the first part, monoclonal antibodies labeled with 111In are administered for 
diagnostic/planning purposes. 111In is a radioactive isotope with a half-life of 67.3 hours 
and is suitable for diagnostic imaging because of the emission of gamma-rays with 
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suitable energy. The activity distribution is then monitored by repeatedly scintillation 
camera measurements and blood samples. About a week after the first injection, 111In-
labeled antibodies and antibodies labeled with 90Y are administered. 90Y is a high-energy 
beta emitting radionuclide with a half-life of 64.0 hours, suitable for therapy. After a 
certain time, remaining antibodies in the circulation are removed by extracorporeal 
adsorption. During this therapeutic phase, the activity distribution is monitored as in the 
diagnostic phase. 
 
The activity distribution measurements are then used for quantifying the activity 
ontained in different regions of interest (ROI). The regions of interest are outlined in the 

ase 

c
scintillation camera picture by identifying anatomical and physiological structures. For 
the different patients, different sets of ROI were quantified. In all patients, activity was 
quantified for the liver, spleen, kidneys and lungs. For most of the patients, the heart was 
also quantified. Tumor ROI:s were quantified for patients 3, 4, 5, 7 and 8. Plasma activity 
concentration at different time points was measured with a well counter and the total 
plasma activity was calculated by estimating the total plasma volume in the patient. 
Details about the measurement can be seen in table 1. 
 

Diagnostic phase Therapeutic phPatient 
Adm. activity # time # time points Adm. activit# 
( In) [MBq] points 

(ROI) 
111 (plasma) 

y 
111

# time 
ints 

# time points 
(plasma) 

ECAT onset 
time [h p.i.] ( In) [MBq] po

(ROI) 
1 156 3 9 258 7 18 44.6 
2 5151 3 9 2 0 7 17 44.6 
3 151 3 9 255 7 17 45.0 
4 153 3 9 241 7 18 44.5 
5 153 - 9 257 7 18 43.6 
6 150 - 8 261 7 17 43.3 
7 153 6 10 266 7 19 69.3 
8 156 6 9 255 7 16 68.2 
Table 1: ils of the m urements. From the data, it is obvious that there are two subse

garding the number of collected m ements e diagnost study and  onset tim
the 
For 

 phase, 
an be sees in the appendix, figures A:1-2 respectively. 

he use of decay-corrected data in compartmental modeling  

g is limited to the models 
onsisting of linear, homogenous differential equations only, as described by a general 

cted data is the statistical errors in the measurements. 
hen correcting the data for physical decay, the measured value is multiplied with the 

Deta eas ts 
re easur  in th ic  the e for 

r ECAT. For patients 1 to 6, the ECAT onset time is about 44 h p.i., while it is about 70 h p.i. fo
last two patients. For the diagnostic study, the number of measurements is 3 and 6 respectively. 
patients 5 and 6, no organ activity measurements were available from the diagnostic study.  
 
Time-activity curves for different organ/tissues, for the diagnostic and therapeutic
c
 
 
T
 
The use of decay-corrected data in pharmacokinetic modelin
c
theorem found by Williams et al [Williams et al 1995]. Although the model described 
here meets those criterions, uncorrected data is used and physical decay is explicitly 
entered into the model equations. 
  
Another reason for using uncorre
W
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value of a function ( )tλexp  for the time t of the measurement. As a consequence, the 
error in the measurement is multiplied as well. Since a constant standard deviation is used 
in the fitting process, ected data is preferable.    
 
 

 uncorr

eparating plasma activity from residual tissue activity 

ed using a scintillation camera 
present a sum of different-behaving kinetics, it would be advantageous if one can 

namely to separate the plasma content from the 
ompartment of interest. This could be done by making two assumptions: (1) that all 

licitly modeled as a sum of two 
ifferent parts with separate kinetic behaviors: one part that immediately follows the 

w parameter is introduced, αi, which is the fraction of the total plasma volume that 
 contained in the ROI. The value of the parameter introduced can easily be determined 

tA⋅

S
 
Since the time-activity measurements of a ROI perform
re
separate different behaving regions from others. This is, however, rather difficult since 
such a separation procedure would introduce new unknown parameters to the model 
resulting in a higher degree of freedom.  
 
One separation could however be done, 
c
activity in the compartment is found in the plasma at very early times after administration 
and (2) that the plasma kinetics in the ROI follows the global plasma kinetics. The first 
(1) assumption can be verified by examining the plasma-activity curves. From these, it is 
obvious that about 94 % of the administered activity is located in the plasma at about one 
hour after administration. After two hours, about 90 % of the activity is still in the 
plasma. The drop in plasma activity in earlier times after administration is rapid, 
suggesting the need for an as early measurement as possible for determining the plasma 
contents in a ROI. The last assumption (2) could be questioned since the kinetics of the 
plasma contained in an organ probably is more complicated, again because of the organs 
heterogenic properties. There should, however, be at least some major part of the plasma 
contents that rapidly equilibrates with the global plasma compartment because of the 
apparent quick rise of activity following administration.  
 
By making these assumptions, each compartment is imp
d
global plasma kinetics and one part that represents a slower uptake, corresponding to 
extravasation, interstitial transport by convection and/or diffusion, and binding to antigen 
sites.  
 
One ne
is
if there exist a very early activity measurement because of the first assumption above. In 
terms of mathematics, the time-activity curve for each organ can then be described as 
(see also figure 5) 
 
( ) ( ) residualii tAtA += ( )plasmai        (eq. 5) α,
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A(t) 

α·A(t)plasma

A(t)residual

Figure 5: Example of how the kinetics for a ROI is modeled as a sum of two parts. The solid line is 
the model fit to the data points. The line is a sum of the dotted line, which is the plasma kinetic curve 
scaled by the factor α (the fraction of the plasma volume contained in the ROI), and the dashed line, 
which represents the uptake. 
 
 
At a very early time after administration, the activity in the ROI would be (using the 
above assumption) 
 
( ) ( )

00 ≈≈
⋅=

tplasmaiti tAtA α  

 
With early measurements of the activity in both plasma and the ROI, iα  then can be 
calculated as 
 

( )
( )

0≈

=
tplasma

i
i tA

tAα  

 
With accurate activity quantification, where the activity measured in the ROI correlates 
with the actual activity in the organ which the ROI is set to represent, this fraction would 
correlate with the fraction of the total plasma volume contained in the organ. Fractions 
like this have previously been tabulated [Leggett et al]. 
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Setting up the model 
 
For the setup, solving and the fit to data of the model, the computer program SAAM II 
(Saam Institute, University of Washington) is used. SAAM II is a software for kinetic 
analysis, which includes an application for compartmental modeling. 
Using the SAAM II software, the first step of setting up the model is to simply draw the 
different compartments and their junctions. Outflows from each compartment are created 
to handle the physical decay. A ‘remainder’ compartment is created to account for the 
remaining activity which is not located in the quantified regions. 
 
From the ‘remainder’ compartment, an additional outflow is created for balancing the 
system and compensate for excretion. The reason for using an outflow from the 
‘remainder’ compartment only is, again, to keep the model simple. A more sophisticated 
excretion model would need additional parameters and require more data (for example 
urine and/or feces). One example of the model is shown in figure 6. 
 
The next step is to define an input function. Here the input function is modeled as a bolus 
injection into the plasma compartment. The amount of the administered activity is set to 
the non-dimensional value of 100, making all compartments describing the percentage of 
administered activity. The measured data is imported as a text file and associated with the 
different compartments according to eq. 5. 
 

 
Figure 6: An example of the compartmental model as viewed in SAAM II. The number of modeled 
compartment differs between the patients as the number of quantified regions is different. 
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Solving the system and fit to data 
 
The system of ordinary differential equation is solved using the SAAM II software. 
Before solving the system, the parameters of the model has to be given start values. 
These values are also used as the initial “guess” used by the fitting process. Since the 
fitting process may be sensitive to poor choices for the values for the initial starting 
values, the starting values are chosen to be in the same order of magnitude of previously 
published values [Norrgren et al]. The solution is also visually checked for non-physical 
looking results like strange behaving time-activity curves. The parameters to fit consists 
of a set of k(p,i), k(i,p) and αi for the i compartments, which makes three parameters per 
modeled compartment. 
 
The fitting to data is done by minimizing the expression 
 

( )2ji,ji,, modeldatum −⋅jiw  
 
which is minimizing the squared difference between the data value and the corresponding 
model value.  is a weight factor (for the ijiw ,

th datum in the jth data set) which is 
dependent of the error associated with each data point. In general, the weight assigned to 
each datum is the inverse of its variance 
 

2
,,

,
11

jijji
ji vVar

w
σ⋅

==  

 
where  is the standard deviation and 2

, jiσ jv  is a possible unknown constant for the jth data 
set. In SAAM II, there are several possibilities regarding the data weights. One possibility 
is to use fractional standard deviation (FSD), which assigns a constant coefficient of 
variation as the variance to each datum. In that case, the standard deviation is calculated 
as 
 

ji,, data⋅= Ajiσ  
 
where A is the value for the fractional standard deviation. One other possibility is to us a 
constant standard deviation (SD) and hence variation to each datum. In this case (with A 
as the constant standard deviation) 
 

Aji =,σ  
 
In the case of FSD, the error is a constant percentage of a datum. This means that data 
with small values contribute more because the weight associated with a small datum is 
large. For example, in the case of an assumed fractional standard deviation of 5 % (A = 
0.05) and absolute weighting ( jv  equals unity): 
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In the case of a constant standard deviation, the error is constant over all data and the 
weights of the data are the same. For example, a constant standard deviation of 0.5 (A = 
0.5), 
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In this case, data with large values will contribute more since the term 

 is normally larger for larger data [SAAM tutorial]. ( 2
ji,ji, modeldatum − )

 
In the presented model used in this work, a constant standard deviation is used. This 
seems reasonable since data with larger values should contribute more. 
 
SAAM II has a feature to calculate the time-integrals of the model curve. This feature 
was used to calculate cumulated activities. 
 
 
Modeling ECAT as an perturbation 
 
Extracorporeal immunoadsorbtion can easily be modeled as a perturbation of the 
compartment model. This is done using the “Change condition” feature available in the 
SAAM II software, wherein parameters can be altered during the time of experiment. A 
new transfer rate coefficient is defined, k(0, plasma), to describe the an additional outflow 
from the plasma compartment (see figure 7). This parameter is set to equal zero at all 
times except during the ECAT procedure, where its value is found by the fitting process. 
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k(organ i,plasma) 

 organ i  plasma 
k(plasma, organ i) 

⎩
⎨
⎧
≠

=

 ECATduring 0

after ECAT and before 0
)plasma ,0(k  

 
Figure 7: Schematics for the ECAT outflow in the compartmental model. The additional outflow 
from the plasma compartment, with corresponding rate constant k(0, plasma), is active only during 
the ECAT procedure. 
 
 
Results 
 
A successful model fit was obtained for all patients in the therapeutic study, one example 
is shown in figures 8-10. 
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Figure 8: The model (straight line) fit to data for the plasma compartment (in this example for the 
therapeutic study of patient no. 6). It can be noticed that the ECAT procedure is well described by 
the model. 
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Figure 9: The model fit (straight line) fit to data for the left lung (patient no. 6). The dotted line 
represents the plasma contents in the organ and the dashed line represents residual activity, which 
corresponds to an uptake. 
 
 

Left kidney

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150 200

time [h]

%
 o

f i
nj

ec
te

d 
ac

tiv
ity

Data
Model
Residual
Plasma cont

 
Figure 10: The same plot as previous figure, but now for the left kidney. A completely different shape 
of the uptake curve can be noticed compared with the one in figure 9, which is a consequence of 
different pharmacokinetics in this organ. 
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For the diagnostic study, no fit could be made for the patients with only 3 measurement 
time points (patients 1 to 4) as expected. As the first measurement for these patients was 
made at about 48 hours after administration, the fraction of the plasma contained in the 
organ/tissue (α) was not possible to determine with any reasonable accuracy. 
 
Plots of the data and the model fit for the therapeutic study, and for the diagnostic study 
for patients 7 and 8, can be seen in the appendix, figures A:3-10. For patient no. 7, the 
curves have also been corrected for physical decay and can be seen in figure A:11-12. 
 
The fraction of total plasma contained in the organs (α) is compared to tabulated values 
[Leggett et al] in figure 11. 
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Figure 11: Values for the percentage of the total plasma volume contained in different organs. The 
two rightmost bars in each group represents the average value (with one standard deviation) and the 
values published by Leggett et al.  
 
There are quite big differences (sometimes more than a factor two) in percentage of total 
plasma contained in tissues for the different patients. The kidneys show to have the most 
uniform values with an average of 3.2 % of total plasma (ranging from 2.4% to 4.5%) 
compared to 2 % from Leggett et al. The most non-uniform values are for the lungs, with 
average of 7.2% (range 4.7% to 12.4%) compared to 12.5 % from Leggett et al. No 
activity quantification was made for the heart in patients 1 and 6. 
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The ECAT outflow rate, k(0, plasma), as found by the fitting process, is shown in figure 
12. 
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Figure 12: The ECAT outflow rate as calculated during the model fitting process to the therapeutic 
data. The average value is 0.77 h-1. 
  
One important point of this work was to investigate whether the data from the diagnostic 
examination could be used for predicting the pharmacokinetics of the therapy by 
introducing ECAT as a perturbation to the model. This was only possible to do with two 
of the patients (patients 7 and 8) because of the need of sufficient data in the diagnostic 
study. The ECAT outflow parameter from the therapeutic model was added to the 
diagnostic model. The diagnostic model was then re-solved, and the result was compared 
to the measured data for the therapeutic phase. An example can be seen in figures 13a-
13d (plasma and liver for patient no. 7). The complete results can be seen in figures A:13-
14 in the appendix. Here, the data points is the measurements from the therapy study 
while the model curve is based on the diagnostic study with an ECAT outflow added as 
in the therapy model. 
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Figure 13a-d: Model prediction compared to therapeutic data for patient no. 7 (plasma and liver). 
The figures to the left shows the model solutions based on the data from the diagnostic study of the 
patient. The therapeutic ECAT parameter was added to the model and the model was resolved. The 
result is compared to the data from the therapeutic study in the figures to the right.    
 
 
Discussion 
 
An empirical model has been developed to describe the pharmacokinetics in 
radioimmunotherapy for a set of patients. The model is simple in that it consists of first 
order linear differential equations and requires no previous knowledge of physiological 
parameters such as regional blood flows, lymph flows, extravasation rates, and volumes 
or compositions of different organs/tissues. Despite the simplicity of the model, the fit to 
data is very good. 
 
One basic assumption for the model is that the plasma contents in each region can be 
separated out by using the information of the plasma measurements. This makes it 
possible to study the actual uptake of the organ/tissue.  
 
Regarding the percentage of the total plasma that is contained in the different organs 
(figure 11), there are substantial differences between the patients but a general trend is 
clear with the liver containing the largest part of the plasma, followed in order by the 
heart, lungs, kidneys and spleen. There are several possible sources of errors that will 
influence these estimations, for example in the outlining of the ROI and activity 
quantification. Besides, these patients may have tumor involvement in some of the 
organs. 
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Several observations can be made from the plots (figures A:3-10 in the appendix): 
 

• The ECAT procedure is well described by an additional outflow from the plasma 
compartment that is only active for a limited time, which can be seen by noticing 
the good fit to plasma data in the time of the ECAT treatment (se for example 
figure 8 above). 

 
• There are distinguishable similarities for the different organs in the patients. For 

example, the total cumulated activity in heart and lungs is usually dominated by 
the plasma activity in these organs (about 70-80% of the total cumulated activity), 
while the kidney activity merely is dominated by the uptake (plasma activity is 
about 40-50% of total cumulated activity). The liver and spleen represents 
intermediate cases with plasma activities of about 45-55% and 50-60% of the total 
cumulated activity respectively. For the modeled tumor ROI:s, plasma activity 
corresponds to about 40-50% of the total cumulated activity, but there are values 
ranging from as low as 30% to as high as 70%.   

 
• Certain individual differences are obvious from the plots. Some of them may be 

artifacts as result of errors in the measurements, quantification and ROI outlining. 
Some may be due to that the plasma fit is not sufficiently good because the shape 
of the plasma kinetic curve is crucial in this analysis. Others may have 
physiological explanations. For example, the kinetics of the right lung in patient 3 
shows an unexpected behavior and is completely different from what is usually 
the case. This observation has a physiological explanation; there are major 
malignant sites in this patient’s right lung. 

 
The model predictions for the therapy (figures A:13-14), using the diagnostic data, are 
quite good. The best predictions are made for the compartments containing higher 
activity, as plasma, liver and heart. The model prediction is little worse for spleen, 
kidneys and lungs. For the compartments containing less than one percent of the injected 
activity, which is often the case for the tumors, there is a bigger difference between the 
model predictions and the data. The probable cause for this is that the statistical 
uncertainties increase as the measured and quantified activity contents are decreasing. 
 
There are many sources of error influencing the activity quantification and consequently 
the data used here. For example, the outlining of ROI in the planar scintillation images is 
in many cases difficult, especially for the tumor regions. For reliable measurements, the 
ROI:s must be identical for every imaging session. This requires accurate patient 
positioning or that the positioning can be corrected for. In planar imaging, there is always 
a problem with the overlapping of organs. This is partly corrected for, but complete 
separation of organs and tissues would require 3D-imaging. 
 
Throughout the modeling, the data used was not corrected for physical decay and 
physical decay of the radionuclides was explicitly entered in the model as additional 
outflows from every compartment. The reason for this was, as mentioned in the method 
description, to avoid scaling of the errors. By explicitly enter the physical decay, it is easy 
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to modify the physical decay rate to adjust for different radionuclides. This could be 
convenient, for example, if the radionuclide used for diagnosis has a different half-life 
than the radionuclide used for therapy. 
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Part B: Microscopic model 
 
Method 
 
The microscopic model presented here is based on previous works by Sgouros [Sgouros 
1992], and Weinstein and colleagues [Fujimori 1990, van Osdol 1991]. The model 
describes the transport of monoclonal antibodies in a small, prevascual spheroid of tumor 
cells. The cluster contains an assumed uniform distribution of immobile antigens, 
represented by the antigen concentration s(r,t). Antibodies outside the cluster, represented 
by the concentration cp(t), is transported by diffusion into the cluster and binds to 
available antigen sited to form antibody-antigen complexes, represented by the 
concentration ),( trcs . Free, mobile antibodies within the cluster is represented by the 
concentration c(r,t). The basic ideas and properties for the transport of antibodies are 
found in the background section of this work.  
 
 
Geometry 
 
The geometry of the model (figure 14) is simple: a sphere with radius R. By choosing 
different time-antibody concentration curves for the cluster border, simulation can be 
made for different cases. For example, using the plasma concentration curve as border 
concentration would correspond to a simulation where the cluster is positioned 
completely surrounded by plasma.  
 
 
 

Cluster border 

s(r,t) 
cp(t) ),( trcs  c(r,t) 

 
Figure 14: The geometry of the microscopic model. 
 
 
For simplicity, radial symmetry is assumed in the model. This can be justified if the 
structure and composition is assumed homogenous and gives much shortened calculation 

R

r
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times as the model is reduced to one space dimension. The diffusion equation in spherical 
coordinates and with radial symmetry can be written as 
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by using that the diffusion coefficient, D, is invariant in space and by recognizing that the 
radial part of the laplacian is 
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Equation system 
 
The resulting system of equations describing the spatial and temporal distribution of the 
three species is (based on equation 3) 
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Solving conditions 
 
The solution of the equation system requires boundary conditions for all boundaries and 
initial conditions for all dependent variables. Since no spatial movement is possible for 
the antigens and antibody-antigen complexes, the fluxes are specified to equal zero at all 
borders. For the antibodies, two different approaches are possible. 
  
The first option is to specify the concentration on the border directly (which corresponds 
to a Dirichlet boundary condition in the theory of partial differential equations 
[Mathworld web page]). This would be the case when the cluster is positioned directly in 
for example plasma, where the administered antibodies are directly accessible to the cell 
cluster [Sgouros 1992]. This case would also apply to incubated tumor spheroids in vitro. 
 
( ) (tctRc p=,  )

 
The second option is to specify the border flux rather than the border concentration 
(which corresponds to a Neumann boundary condition). This form of boundary condition 

 26



is suitable when modeling a cluster with a system of supplying microvessels attached 
[Fujimori et al 1990].  
 

( ) ( )lp
l ccP
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−
,  

 
Here, cl refers to the concentration within the cluster adjacent to the surface. The initial 
condition is zero concentration for all species but the antigen concentration which is 
equal to s0. This also equal the total concentration by the expression (the mass balance) 
 

csnss +=0  
 
 
Solution strategy 
 
The model was solved using Femlab (Comsol AB) which is a commercial modeling 
package for the simulation of physical processes that can be described by partial 
differential equations. Femlab uses the finite element method for solving the partial 
differential equation systems. The finite element method is a computational method that 
subdivides an object into very small but finite-size elements. The physics of one element 
is approximately described by a finite number of degrees of freedom (DOFs). Each 
element is assigned a set of characteristic equations (describing physical properties, 
boundary conditions, and imposed forces), which are then solved as a set of simultaneous 
equations to predict the object’s behavior [Femlab reference guide].  
 
When the geometry and the equation system, along with the boundary and initial 
conditions are defined, the geometry is subdivided into a structure of finite-sized 
elements, which is called the mesh. Choosing smaller sized elements makes a finer mesh. 
The accuracy of the solution is dependent of the size of the elements, but a finer mesh 
will also make the solving process more computer-intensive and it will take longer time 
to solve the problem. In this case however, the model geometry is very simple so a very 
fine mesh can be chosen yet having reasonably short computing times. 
 
 
Modeling extracorporeal immunoadsorbtion 
 
The effect of ECAT in the microscopic level can easily be modeled; simply by using an 
ECAT plasma concentration curve as border concentration. However, an analytical 
expression for such curve is not available which calls for using a numerical 
representation. This can easily be done in the Femlab package using the built-in 
“Interpolation functions” feature which includes different forms of interpolation methods 
for using numerical data as input.  
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Modeling pretarget protocols 
 
Pretarget protocol, as discussed above, can also be implemented in the microscopic 
model. This is done by introducing several new species. For example, a protocol which 
includes administration of biotinylated monoclonal antibodies followed by radiolabeled 
streptavidin requires six dependent variables in the model (compared to the former three): 
free biotinylated antibodies, free antigen sites, antibody-antigen complex, free 
radiolabeled streptavidin, streptavidin-antibody complex and streptavidin-antibody-
antigen complex. Modeling the streptavidin plasma concentration as a bolus injection 
followed by exponential decay might cause a convergence problem for the time-
dependent solver because of the sharp gradients. This can however be solved by 
“smearing” out the gradient using a smoothing function, making the time-derivatives 
continuous. Modeling pretarget protocols is beyond the scope of this work and will not be 
analyzed in detail. 
 
 
Results 
 
Verification of the modeling and solving procedure 
 
As a baseline simulation no antigen-turnover is considered and the valency is set to unity. 
Also, the Dirichlet boundary condition is used. The values for the different parameters in 
the model (table 2) are taken from a previous publication by Sgouros [Sgouros 1992]. 
The plasma clearance parameters are obtained by solving the ordinary differential 
equation system describing the compartment model in Sgouros’s work. The choice of 
model parameters makes it possible to evaluate the results by comparing to the 
calculations by the same work.  
 
Parameter Value
Initial antigen concentration, s0 (nM) 1500 
Association rate, kf (nM-1 h-1) 1.3 
Dissociation rate, kr (h-1) 0.3 
Diffusion constant, D (µm2 h-1) 2268 
Cluster radius, R (µm) 100 
Binding valency, n 1 
Table 2: Values for the parameters used for verification of the model setup and solving procedure. 
 
The result of the calculations with these values for the parameters is shown in figures 15a 
and 15b. The solutions are in excellent agreement, both qualitatively and quantitatively, 
with the calculations made by Sgouros, which were made by the same choice of 
parameters but a different solving method (Schmidt forward finite difference scheme 
implemented in a FORTRAN program). This verifies the model setup and solving 
procedure. 
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Figure 15a (left) and 15b (right): Solution of the microscopic model with the same choice of 
parameters as is used in a previous publication by Sgouros. Figure 15a shows the concentration 
profiles of free antibodies at different times after administration. The rightmost curve is the 
concentration profile at 2 hours after administration, which is followed by the solutions at every two 
hours up to 24 hours (the leftmost curve). Figure 15b shows the corresponding concentration profiles 
for the antibody-antigen complexes.  
 
 
Baseline simulation 
 
Next step is to use plasma kinetics from the clinical trial as border concentration and 
make simulations for a “real” case. In this work, the primary interest is to study 
micrometastases that are located in the circulating plasma. Therefore, only the first 
boundary condition (Dirichlet) will be applied in this analysis. 
  
As a baseline simulation, the previous values for the parameters will be used and no 
antigen turnover is assumed. The parameters (see table 3) for plasma kinetics is 
calculated by doing a least square fit to the plasma measurement (corrected for physical 
decay) for one of the patients in the radioimmunotherapy study (cp,0 is calculated by 
assuming that the antibody has a mass of 150 kD, the injected amount is about 5 mg and 
that the plasma volume is about 3500 ml). 
 
Plasma concentration curves is modeled as an bi-exponential equation 
 

( ) ( ) ( ) ( )( )ttctc pp 210, exp1exp λαλα −−+−=  
 
where  is the initial concentration, λ0,pc 1 and λ2 are the rate constants for the different 
phases of the plasma clearance. 
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Plasma parameter Value 
α 0.7188 
λ1 (h-1) 0.0057 
λ2 (h-1) 0.1410 
cp,0 (nM) 10.0 
Table 3: The parameters used for the plasma concentration curve outside the tumor cell cluster.  
 
 
 

  
Figure 16a (left) and 16b (right): Solutions for the baseline simulation of the microscopic model. 
Figure 16a shows the concentration profile of free antibodies at different times after administration. 
The rightmost curve is the concentration profile at 2 hours after administration, which is followed by 
the solutions at every two hours up to 24 hours (the leftmost curve). Figure 16b shows the 
corresponding concentration profiles for the antibody-antigen complexes.  
 
 
The results of the baseline simulation can be seen in figures 16a-b. When plotted in the 
same way as before (figure 15a-b), the solution with these parameters looks much similar 
to the previous solution. A slightly faster transport can be noticed. This is the combined 
affect of change in the plasma concentration and the change in valence from 1 to 2 
(notice also that the maximum concentration of antibody-antigen complex has dropped a 
factor 2 because of change in valence).  
 
The shape of the antibody-antigen concentration is characteristic, and the phenomenon 
responsible for it is referred to as the “binding-site barrier” in the literature. The binding-
site barrier is the consequence of that the antibody-antigen reaction is associated with a 
time-scale much shorter than the diffusive transport. As free antibodies diffuse inward the 
cluster, they almost immediately bind to available antigens because of the high affinity of 
the reaction. The result is that the antibodies will be retarded in its transport by the fact of 
its successful binding to antigen on the tumor cell surface [Fujimori et al 1990]. 
 
For a longer time perspective, with the same parameters used as in the baseline 
simulation above, the time that is required to saturate the cluster is revealed (figures 17a 
and 17b). In this case, the time for completely saturate the cluster is about 95 hours.  
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Figure 17a (left) and 17b (right): Solutions for the baseline simulation of the microscopic model. 
Figure 17a shows the concentration profile of free antibodies at different times after administration, 
where the rightmost curve is the concentration profile at 5 hours after administration, followed by 
the solutions for every tenth hours up to 95 hours. Figure 17b shows the corresponding concentration 
profiles for the antibody-antigen complexes. It can be noticed that the time to completely saturate the 
cluster is about 95 hours. 
 
 
The saturation progress can also be visualized by plotting the degree of saturation, S(%), 
which is the ratio of occupied antigen sites to the total number of antigen sites (see figure 
18). It is calculated as (in one space dimension):  
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Figure 18: The degree of saturation in the tumor cell cluster as a function of time. The saturation 
curve is characterized by an initial steep rise followed by an almost-linear part and then a steep rise 
right before the apparent total saturation. As can be noticed, 100 % saturation does never occur. The 
reason for this is that there is a constant release and rebinding of antibodies (since it is a finite 
affinity), leaving a small portion of the antigens free at all times. 
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In the case of no degradation of antigens and/or antibody-antigen complexes, the release 
of antibody is a slow process because of the high binding affinity. This can be seen in 
figures 19a and 19b (notice the time-scale). 
 

  
Figure 19a (left) and 19b (right): The release of antibody in the absence of degradation of antigens 
and/or antibody-antigen complexes. Figure 19a shows the percentage saturation curve as function of 
time (notice the time-scale). Figure 19b shows the concentration profile of antibody-antigen 
complexes in the tumor cluster at different times after administration. The upper curve is the 
solution at 100 hours, followed by solutions every 100 h up to 1000 h. 
 
 
Modeling ECAT 
 
The next step is now to study the effects of extracorporeal immunoadsorbtion on the 
microscopic cluster. The plasma concentration function, cp(t), is then replaced with a 
numerical representation of the plasma concentration curve from the same patient as in 
the baseline simulation above, but here from the therapeutic phase. For making the results 
easy to compare, the initial plasma concentration is set to the same value as above (10 
nM). To verify the plasma concentration function, the border concentration of the cluster 
is plotted in figure 20. 
 

 
Figure 20: The cluster border concentration in the simulation with ECAT. The ECAT onset time is 
about 70 h after administration. 
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The concentration of antibody-antigen complexes is shown in figure 21a. Here, the 
rightmost curve is the solution for t = 20 h and the following curves for every 20 hours up 
to t = 140 h. The saturation function is shown in figure 21b. 
 

 
Figure 21a (left) and figure 21b (right): Simulation of the microscopic model with ECAT. Figure 21a 
shows the antibody-antigen complex concentration distribution and Figure 21b shows the percentage 
saturation as a function of time. The antibody-antigen complex concentration drops from about 730 
nM to 680 nM on the periphery of the cluster as a result of ECAT and the inward transport speed is 
somewhat slowed. In the saturation plot, a “crack” can be seen at the time of ECAT. The saturation 
process is stopped for a short time and then resumed with a reduced speed as the border 
concentration rises. The limit degree of saturation is slightly above 90 % (compared to ca 97 % in the 
previous case) and the 90 % saturation occurs at about 140 hours (compared to 90 hours previously). 
 
 
Dependence of model parameters 
 
The next step was to examine how the saturation of the tumor cell cluster depends on the 
different parameters in the model. It might also be important as the values for the 
parameters differ quite a lot in the literature [Banerjee et al 2001, Graff et al 2003]. The 
saturation was examined using a parameter called t90, which is the time it takes to saturate 
the antigen sites in the cluster to 90 %.  
 
For simplicity a constant antibody concentration outside the cluster is initially assumed 
(cp = cp,0 in the model). This is not the regular case in the clinical practice, but might be 
possible to accomplish with a steady i. v. infusion. Constant concentration would, 
however, normally be the case for incubated tumors in vitro. The parameters examined 
were the cluster radius (R), the initial antigen concentration (s0), the (constant) antibody 
concentration outside the cluster (cp), the diffusion constant (D) and the antibody-antigen 
affinity (Ka).  
 
The degree of saturation (S) was calculated for a wide range of values for the parameters 
by varying one parameter at the time and keeping the others fixed. Table 4 shows the 
initial values used and the range of simulated values for the parameters. 
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Parameter Initial value Range of values Number of values 
Ab conc. in plasma cp,0 11 nM 11 – 1100 nM 7 
Initial free Ag conc., s0 1500 nM 100 – 10000 nM 7 
Cluster radius, R 100 µm 25 – 250 µm 6 
Diffusion constant, D 2268 µm2 h-1 100 – 10000 µm2 h-1 6 
Binding affinity, Ka 4.33 nM-1 0.833 – 43.3 nM-1 15 
Table 4: Details of the parameters used for investigating different parameters influence on the 
saturation. 
 
By plotting and curve-fitting it was found that there exist simple relationships between 
the saturation time and all the parameters of the models, except the affinity (figures 22a-
e).  
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Saturation time vs diffusion coefficient
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Saturation time vs cluster radius
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Saturation time vs affinity
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Figure 22a-e: Time for 90 % saturation (t90) as function of different parameters of the model. As can 
be seen, t90 is inversely proportional to the (constant) antibody concentration outside the cluster (fig 
22a) and to the diffusion coefficient (fig 22c). t90 is directly proportional to the initial free antigen 
concentration (fig 22b) and proportional to the square of the cluster radius (fig 22d). The 
relationship of t90 to the antibody-antigen affinity (fig 22e) is somewhat more complex for an affinity 
below 10 nM-1, but t90 is independent of the affinity for higher values.  
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The relationship between the 90 % saturation time and the affinity is somewhat more 
complex. From the plot it is obvious that the saturation time rises towards infinity when 
the affinity approaches zero. Naturally, zero affinity antibodies will never be able to 
saturate the antigen sites. The saturation time has one local minimum where the affinity is 
approximately 1 nM-1. When increasing the affinity further, the saturation time increases 
up to an affinity of about 10 nM-1 where the saturation time approaches a constant value. 
With the “binding site barrier”-phenomena in mind this seems understandable. When the 
affinity is low, the antibodies can diffuse relatively freely throughout the cluster volume, 
resulting in a faster saturation. With increasing affinity, the transport process gets 
hindered to a higher degree by the interaction process. As the affinity has reached a 
certain level, further increase doesn’t affect the saturation time because the reaction rate 
is already much faster than the diffusive transport. According to this result, there is no 
need for increasing the affinity further regarding the uptake phase. Increased affinity 
might, however, play a more important role for the retention phase (which is not studied 
in detail here).  
  
Thus, assuming affinities of 10 nM-1 or more, the saturation time can approximately be 
described as 
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⋅≈
0,
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90         (eq. 9) 

 
with C being the constant of proportionality. A more careful examination of this 
expression shows that it holds for an initial free antigen concentration at least ten times 
the antibody concentration in the plasma, but it is rather insensitive for changes in cluster 
radius and diffusion rate coefficient. The constant of proportionality is examined for a 
wide range of values of the parameters (figure 23). 
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Figure 23: Calculated constant of proportionality for different saturation times (for affinities above 
10 nM-1 and a binding valence of 2). For 90 % saturation times of 20 hours or more, the value is 
about 0.162. For t90 less than 20 hours, the relationship is not very accurate.  
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Although a constant antibody concentration outside the cluster may be possible to 
achieve in practice, a bolus injection of antibodies normally is the case. For example, the 
plasma kinetics of antibodies following a bolus injection can often be described by a bi-
exponential equation, like 
 

( ) ( ) ( ) ( )( )ttctc pp 210, exp1exp λαλα −−+−=  
 
It would therefore be valuable with a general expression of the saturation time applicable 
to other modes of antibody concentration outside the cluster. The saturation of the cluster 
is dependent on having a high enough antibody concentration outside the cluster for a 
time long enough. For constant concentration (cp(t) = cp,0) outside the cluster, the area 
under the concentration curve can be written 
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by using eq. 9 (assuming that ( )tcs p⋅≥ 100  at every time). For an arbitrary concentration 
curve, cp(t), the general expression then would be  
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Solving this equation for the appropriate antibody concentration curve outside the cluster 
gives the saturation time. As example, a mono exponential concentration curve, 
 

( ) ( )tctc pp λ−= exp0,  
 
where λ is the clearance rate of the antibody concentration outside the cluster, gives the 
solution 
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The equation is only defined for  
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where 

2
1T  is the biological half-life of the antibody concentration in plasma. The 

expression indicates that there is a limit for the biological half-life, below which 
saturation is impossible. The expression for the saturation time, in the case of a mono 
exponential decay of concentration outside the cluster, as a function of the biological 
half-life of the antibody concentration in the plasma was checked by calculations (figure 
24). The same parameters as in the baseline simulation are used, except that the 
concentration in plasma now is modeled as a mono exponential decay.  
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Figure 24: 90 % saturation time as function of the biological half-life for a single exponential 
clearance of antibodies outside the cluster, calculated and simulated. The simplified formula 
describes the saturation time with good accuracy for the region where the biological half-life is not 
very close to the limiting half-life. In this case, the limit half-life for saturation is 67.43 hours. For a 
half-life of 68 hours, the calculated saturation is about 80% above the simulated value. The 
difference then decreases rapidly; at a half-life of 80 hours the calculated value is about 9% above 
the simulated. Although the big difference in calculated and simulated saturation time at half-lives 
close to the limit, the calculated limit itself is predicted with great accuracy. 
 
 
In the case of the bi-exponential function, which often is used for describing the plasma 
kinetics, it is not trivial to calculate the value for t90. In general, however, the 
requirements on the time-activity curve describing the plasma kinetics for at least 90 % 
saturation in the tumor cluster is (still that assuming ( )tcs p⋅≥ 100  at all times), 
according to equation 10, that 
 

( )∫
⋅

≥
t

p D
RsCdttc

0

2
0         (eq. 11) 
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So far only the case of the time for 90 % saturation has been investigated, but the general 
expression holds for other saturation degrees as well if the value for the constant of 
proportionality is modified. The value for different saturation degrees has been calculated 
and can be seen in table 5. 
 
Percentage saturation Constant of proportionality, C
95 % 0.165 
90 % 0.162 
85 % 0.157 
80 % 0.150 
75 % 0.141 
Table 5: Calculated values for the constant of proportionality, C, for different percentage of 
saturation (for affinities above 10 nM-1 and a binding valence of 2). By modifying the value for C, t80 
and t75 (etc.) can be evaluated using eq. 9. 
 
 
Discussion 
 
A model for investigating the pharmacokinetics of monoclonal antibodies for 
microscopic tumor nodules has been developed. The basic ideas for the model have been 
adapted from previous works by Sgouros and Weinstein et al. The purpose for the model 
in the described form is to study the pharmacokinetics for microscopic metastases in the 
circulating plasma. Radioimmunotherapy is often optimized, by choices of treatment 
strategy, for treatment of the macroscopic tumors that can be visualized by various 
imaging techniques, for example by scintillation camera. In the case where microscopic 
tumor nodules are suspected, the treatment strategy should be optimized to treat these as 
well. The model presented here might be useful for evaluate such treatment strategies. 
 
As the basic model equations presented may be difficult to assess and requires specific 
computer programs to be solved, an approximate, simplified expression is derived for 
studying the saturation as function of the model parameters. It was found that the time it 
takes to saturate the cluster could be related to the parameters by an easy expression 
under certain conditions. This could be useful as the values of the different parameters in 
the model may vary a lot in the clinical cases. The relationship of the saturation time to 
the parameters of the model found in this work corresponds to an expression previous 
publication by Graff et al [Graff et al].  
  
There are a few limitations of the model. First it must be remembered that the model 
described here is limited to the case of microscopic clusters because of the simplifying 
assumptions stated above. Also, antigen turnover has been neglected in the analysis so 
far. This could easily be introduced in the model by specifying turn-over rates. 
Internalization of antigen is not dealt with here as well, but could be incorporated in the 
model by introducing one new species to the equation system, together with 
internalization rates. So far, the model is assuming tumor cell clusters completely 
surrounded by plasma (by the use of the Dirichlet boundary condition), but the model 
could be used to study tumor nodules with blood supply at the nodule surface by 
capillaries, using a different (Neumann) boundary condition. 
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General conclusions 
 
Macroscopic model 
 
The overall good fit to the therapy data indicates that the model in fact, despite its 
simplicity, is suitable for describing the pharmacokinetics of monoclonal antibodies in 
radioimmunotherapy, and that it might become useful as a tool for evaluation of clinical 
strategies. By fitting the model to data from a diagnostic study, the treatment data could 
be predicted by introducing ECAT as a perturbation to the model. Combined with 
dosimetry, this feature could be used for treatment planning for radionuclide therapy.  
 
In terms of optimization, there are several different parameters of the model which can be 
evaluated. For example, the onset time and duration of the ECAT procedure can be 
evaluated and possibly optimized by investigating different strategies in the model. Also, 
strategies that include two or more ECAT procedures at different time points could be 
assessed. 
 
The choice of radionuclide for therapy could also be evaluated by finding an optimal 
choice for physical half-life in the model. This could, in turn, be complemented by 
dosimetric calculations. 
 
 
Microscopic model 
 
The main purpose of the microscopic model is to evaluate the pharmacokinetics in 
suspected micrometastases. As an overall treatment strategy should be optimized for the 
treatment of micrometastases as well as macroscopic tumors, a microscopic model like 
this is useful. The optimization in this case includes modeling of different types of 
monoclonal antibodies and fragments, which have different transport properties as 
affinities and diffusion rates. Although the model is applicable only to microscopic 
lesions at this point, qualitative conclusions from the simulations may be drawn that has 
consequences in the macroscopic scale also.  
 
By combining the pharmacokinetics with the use of point-dose kernels, the dosimetry of 
micrometastases can be assessed and different choices regarding radionuclides can be 
evaluated. 
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Fig A:1 Time-activity curves for the diagnostic phase 
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Fig A:2 Time-activity curves for therapeutic phase 
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Fig A:3 Model plot for patient #1 
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Fig A:4 Model plot for patient #2 
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Fig A:5 Model plot for patient #3 
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Fig A:6 Model plot for patient #4 
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Fig A:7 Model plot for patient #5 
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Fig A:8 Model plot for patient #6 
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Fig A:9a Model plot for patient #7 (therapeutic part) 
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Fig A:9b Model plot for patient #7 (diagnostic part) 
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Fig A:10a Model plot for patient #8 (therapeutic part) 
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Fig A:10b Model plot for patient #8 (diagnostic part) 
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Fig A:11 Decay corrected plot for patient #7 (therapeutic part) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 68



 
Plasma

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180

time [h]

%
 o

f i
nj

ec
te

d 
ac

tiv
ity

Model

Heart

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200

time [h]

%
 o

f i
nj

ec
te

d 
ac

tiv
ity

Model
Residual
Plasma cont

Liver

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200

time [h]

%
 o

f i
nj

ec
te

d 
ac

tiv
ity

Model
Residual
Plasma cont

Spleen

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200

time [h]

%
 o

f i
nj

ec
te

d 
ac

tiv
ity

Model
Residual
Plasma cont

Left lung

0

0.5

1

1.5

2

2.5

0 50 100 150 200

time [h]

%
 o

f i
nj

ec
te

d 
ac

tiv
ity

Model
Residual
Plasma cont

Right lung

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200

time [h]

%
 o

f i
nj

ec
te

d 
ac

tiv
ity

Model
Residual
Plasma cont

Left kidney

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150 200

time [h]

%
 o

f i
nj

ec
te

d 
ac

tiv
ity

Model
Residual
Plasma cont

Right kidney

0

0.5

1

1.5

2

2.5

0 50 100 150 200

time [h]

%
 o

f i
nj

ec
te

d 
ac

tiv
ity

Model
Residual
Plasma cont

 69



Tumor 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200

time [h]

%
 o

f i
nj

ec
te

d 
ac

tiv
ity

Model
Residual
Plasma cont

Tumor 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200

time [h]

%
 o

f i
nj

ec
te

d 
ac

tiv
ity

Model
Residual
Plasma cont

Tumor 3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200

time [h]

%
 o

f i
nj

ec
te

d 
ac

tiv
ity

Model
Residual
Plasma cont

Tumor 4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 50 100 150 200

time [h]

%
 o

f i
nj

ec
te

d 
ac

tiv
ity

Model
Residual
Plasma cont

 
Fig A:12 Decay corrected plot for patient #7 (diagnostic part) 
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Fig A:13 Model prediction of ECAT for patient #7 
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Fig A:14 Model prediction of ECAT for patient #8 
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