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Abstract

Gravitational light deflection in the Solar System can be detected by high precision
astrometric measurements. We discuss the parametrized post-Newtonian framework and
the comparison of metric theories of gravity. At the precision of a few micro-arcseconds,
Gaia data will permit tests of the PPN parameters β and γ and to distinguish monopole
and quadrupole gravitational light deflection. Accounting for relativistic effects is neces-
sary to achieve the aimed for precision. The theoretical formulation of light deflection
is discussed. We deduce an expression for the source direction derivatives required by
the AGIS scheme in a simplified relativistic model. This model accounting for monopole
and quadrupole deflection terms has been implemented in AGISLab. We have validated
the implementation and maintain convergence of the astrometric solution for Gaia. We
investigate the precision of the determination of PPN γ with Gaia data for the Sun and
planets using the new relativistic model for source direction computations. Simulations in
AGISLab show that previously obtained precision for PPN γ can be matched. Full pre-
cision Gaia data should allow for a determination down to 10−6. We performed realistic
simulations including observation noise and conclude that quadrupole effect remains de-
tectable with a 6σ confidence level even for a 5 arcsec radius of the exclusion zone around
Jupiter.

3





Contents

1 Introduction 7
1.1 Scope of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Astrometry 8
2.1 Historical overview of astrometry . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Gaia and current missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 The Gaia mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 The Gaia satellite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Limitations of the Gaia mission . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Scanning space astrometry . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Data processing : AGIS, AGISLab and GREM . . . . . . . . . . . . . . . . . . 16
2.3.1 AGIS and AGISLab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Gaia relativity models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Gravitational light deflection 20
3.1 Light bending and experimental tests of relativity . . . . . . . . . . . . . . . . . 20

3.1.1 Experimental tests of general relativity . . . . . . . . . . . . . . . . . . . 20
3.2 Equations for light propagation in the post-Newtonian limit . . . . . . . . . . . 22

3.2.1 The post-Newtonian limit for theories of gravitation . . . . . . . . . . . 22
3.2.2 Equations of light propagation . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 The multipole expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.4 Transformations of the source direction . . . . . . . . . . . . . . . . . . 27
3.2.5 Equations of quadrupole light deflection . . . . . . . . . . . . . . . . . . 28
3.2.6 The quadrupole efficiency factor and derivatives . . . . . . . . . . . . . . 30

4 Simulation and analysis of light deflection 33
4.1 Design of the implementation in the AGISLab framework . . . . . . . . . . . . 33

4.1.1 The SourceDirection interface . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.2 Implementing the source direction calculation . . . . . . . . . . . . . . . 34
4.1.3 The input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 A test plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Estimates of the achievable accuracy of the measurements for quadrupole

deflection by Jupiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.3 Assessment of the monopole light deflection for the planets . . . . . . . 44
4.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Conclusion 47

Acknowledgements 48

References 49

A Acronyms and Notations 52

B Tensor equations 52
B.1 Covariant derivative and Christoffel symbols . . . . . . . . . . . . . . . . . . . . 52
B.2 Riemann and Einstein tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B.3 Energy-momentum tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

C Units 53

5



CONTENTS

D Legendre polynomials 54

E Addenda 55
E.1 Plots of the errors for 5 arcsec exclusion radius . . . . . . . . . . . . . . . . . . 55
E.2 Sky plot of a simulation with set 3 . . . . . . . . . . . . . . . . . . . . . . . . . 57
E.3 The quadrupole deflection pattern near Jupiter. . . . . . . . . . . . . . . . . . . 58

6



Introduction

« ubi materia, ibi geometria »

Johannes Kepler’s Thesis XX from
De fundamentis astrologiae certioribus

1 Introduction

Determining the positions and motions of stars and other stellar objects with ever greater
precision has been a task of paramount importance in astronomy over thousands of years and
has spawned manifold discoveries. The study of kinematic and dynamic properties of stars has
allowed a deeper understanding of their physical properties such as their spectra and their sizes.
The Gaia satellite mission provide be an astrometric survey of one billion stars at a precision
of a few micro-arcseconds. We here discuss the influence of gravitational light deflection on the
data reduction for Gaia and how this can be used as a test of general relativity and competing
theories.

Measurement of gravitational light deflection by the Sun and the planets of the solar system
constitutes a test of general relativity and its extensions. All light deflection measurements to
date only allow to confirm the correctness of the monopole light deflection predicted by general
relativity. The quadrupole light deflection however has not yet been measured. It serves as a
test of General Relativity and other contending theories of gravitation.

1.1 Scope of this work

The objective of this six months project is to simulate gravitational light deflection by the
Sun and the planets of the solar system and to study the detection of these effects by the
Gaia mission. The goal is to determine the possibility to constrain post Newtonian models of
gravity.

In section 2 we present the astrometric problem in the context of the Gaia mission. We
describe its main features which will make it possible to achieve the aimed for precision.

We will discuss the equations of gravitational light deflection in section 3. The theoretical
foundations and experimental evidence leading to general relativity and competing theories of
gravity are examined. Then the parametrized post Newtonian framework described in Will
[1993] is introduced. It allows for the predictions of general relativity and other metric theories
to be compared.

In section 4 we will describe the implementation of relativistic model in AGISLab and
discuss the effects of monopole gravitational light deflection in the data reduction for Gaia.
We will present our results on the determination of PPN γ and the detection of quadrupole
light deflection.

The appendices give acronyms and notations, units and quote the full parametrized post-
Newtonian framework as described by Will [2006].
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Section 2

2 Astrometry

2.1 Historical overview of astrometry

What is astrometry? Astrometry is the discipline concerned with the study and measure-
ment of the kinematic and dynamic properties, and the brightness (magnitude) of celestial
bodies. Among those properties are the positions and motions of objects, as well as their size
[Kovalevsky, 2002]. The development of astronomy and astrometry is tightly linked to the com-
pilation of star catalogues. They can be traced back to Timocharis, Aristillus and Hipparchus
in the second century BC, and have gradually increased in size. Their form has changed from
hand written recordings on papyrus or paper to globally accessible digital databases such as
Simbad. Today these are updated daily and incorporate data from satellite missions such as
HIPPARCOS.

A catalog provides the identification of stars and their positions. This allows one to track
the motion of stars and the evolution of their physical characteristics. [Perryman, 2010]

The increase in precision of measurements has spawned discoveries of new phenomena and
objects, such as the precession of orbits, the structure of the galaxy, the motion of the Sun
around the center of the Milky Way galaxy, and the discovery of other galaxies.

The kinematic properties are the positions and motions of the planets. The sky is usually
mapped by a spherical coordinate system consisting of two angles describing an object’s ori-
entation on the sky and the third coordinate being the distance to the origin. The proper
motion of an object is the variation of these three parameters. A more detailed discussion of
coordinate systems and reference frames can be found below.

The dynamic properties are found from the variations in the time series of observations.
They are described by their apparent acceleration. The precise determination of all of these
needs careful transformation between different reference frames to take into account relativistic
effects.

Gaia - Taking the Galactic Census Astrometric Accuracy Assessment

Progress in astrometric accuracy from Hipparchus to Tycho Brahe, Hipparcos, and Gaia. ESA’s space astrometry
mission Gaia pushes astrometric measurements to the limits.

Gaia’s main goal is to collect high-precision astrometric data (i.e. positions, parallaxes, and proper motions) for
the brightest 1 billion objects in the sky. These data, complemented with multi-band, multi-epoch photometric
and spectroscopic data collected from the same observing platform, will allow astronomers to reconstruct the
formation history, structure, and evolution of the Galaxy. In the Gaia Concept and Technology Study Report
(published by ESA in 2000), it was shown that meeting these main mission objectives will require the observation
of a complete sample of stars down to 20-th magnitude combined with end-of-life astrometric accuracies of
∼20–25 µas (or better) at V = 15 mag.

Order-of-magnitude estimates of Gaia’s expected end-of-life astrometric accuracy can easily be obtained by using
back-of-the-envelope calculations involving overall, system-level parameters such as primary mirror size, detector
efficiency, and mission lifetime. In the current phase of the project, however, a fully-fledged astrometric accuracy
tool is indispensable for carefully assessing the impact of various design alternatives on the scientific value of the
mission product, for optimizing instrument parameters such as the mirror coating reflectivity, and for safeguarding
the mission objectives in general. It has been the responsibility of the Gaia Project Scientist Support Team to set
up, maintain, and expand such a general astrometric accuracy model.

The astrometric accuracy model currently in place provides a simplified yet realistic end-to-end simulation of
the Gaia observation process, ranging from photon emission at the astronomical source at the one end, through
the effects introduced by, e.g. the revolving scanning law and CCD TDI operation, to single-transit centroiding
measurements of the line spread function, and the averaging of these results over the operational mission lifetime,
at the other end. The model also includes, among other things, wave-front errors due to aberrations and image
smearing due to transverse motion of sources in the focal plane and charge diffusion in the CCD detectors. The
longer-term goal of this modelling effort is to include all effects affecting the final mission accuracies and to
expand the model to include photometric and radial-velocity accuracy assessments.
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Source: Jos de Bruijne For more about Gaia visit the Gaia web site:
http://www.rssd.esa.int/Gaia

2009-08-25 (Rev. 1)

Figure 1: Diagram illustrating the progress in astrometric accuracy from Hipparchus to Gaia.
The latter space astrometry mission will push astrometric measurements to the limits. (Jos
de Bruijne, 2009, ESA Science Team [2010] 2)
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Astrometry

Objects studied in astrometry Star maps and catalogs describe the positions and motions
of celestial objects. To give but a brief overview of the different kinds of objects, a more detailed
one can be found in most modern astronomy textbooks (for instance [Kovalevsky, 2002]).

• planets : “wandering” objects which move quickly compared to an apparently fixed
background

• stars : on short time scales these appear to be fixed on the celestial sphere and are small
and possibly bright objects. They are self gravitating balls of gas.

• diffuse objects such as nebulae, clusters, galaxies which may be composed of hot gas,
dust, or large numbers of stars

The Milky Way has three structural components: the flat disc, the bulge and the halo.
The flat disc contains nearly 1011 stars of all spectral types and ages orbiting the Galactic
centre. The bulge is less flattened, supposedly contains a supermassive black hole and may
contain a bar. The halo surrounds the disc and bulge, has roughly 109 stars, which are old
and metal poor, as well as approximately 160 globular clusters and a small number of satellite
dwarf galaxies. This entire system is embedded in a massive halo of dark material of unknown
composition and poorly known spatial distribution [Jos de Bruijne, GAIA: Galactic Structure
in Gaia Infosheet 2009 ]2. The internal physical properties of these objects are not the subject
of study of astrometry and will not be further discussed here.

The main concern of astrometry is the precise measurement of positions and motions of
these objects. These are expressed in a reference frame. The sky is mapped by a spherical
coordinate system consisting of two angles describing an object’s orientation on the sky and
the third coordinate being the distance to the origin. This is discussed in in further detail in
section 3.2.4 of Ludl [2011].

Astrometry and relativity In the history of scientific thought considerable effort has gone
into devising a simple elegant description and model of planetary motion. The Keplerian
revolution and Newton’s law of gravitation provided a unified framework for astrometric cal-
culations and provided a basis for new discoveries. The ideas at the heart of special and
general relativity originate in the same search for a simple geometrical description of reality
on all scales. These theoretical frameworks have allowed to explain phenomena which had
hitherto remained mysterious such as the perihelion precession of Mercury. The latter is a
small effect (43′′ per century) and highly accurate instruments and techniques are required to
obtain precise measurement.

The main principle of relativistic theories is the principle of equivalence, which contains
the assumption of constant speed of light. This is further discussed in section 3.2.1 of Ludl
[2011].

The ties between astrometry and relativity lie in the experiments. Today’s precise astro-
metric measurements require models which take into account relativistic effects. This in turn
allows to test the predictions of special and general relativity. The Eddington experiment
performed during the 1919 solar eclipse measured the light bending by the Sun. It was one
of the first tests of the general theory of relativity, although the quality of the data has been
the subject of dispute. Today the improvements in experimental techniques have allowed to
place constraints on the validity of general relativity and to test its predictions against those
of alternative theories. The upcoming Gaia mission will survey the sky and permit tests of
general relativity to higher precision. One of these is the measurement of gravitational light
deflection by Jupiter which is the subject of this project.

2 http://www.rssd.esa.int/index.php?project=GAIA&page=Info_sheets_overview
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Section 2

Hipparcos and subsequent catalogs Earth bound astrometry was limited by effects such
as atmospheric variability and seismic perturbations. The motivation behind the Hipparcos
mission was to lift these limits by making high precision astrometry space-borne to avoid these
limitations.

Hipparcos (High Precision Parallax Collecting Satellite) was a satellite mission of the Eu-
ropean Space Agency during the 1990’s. It produced a three-dimensional map of the sky.
The first catalog produced using this data, the Hipparcos catalog contains 117 955 stars with
astrometric data. The positions are accurate to better than 2 milli arcseconds, which is about
a factor 100 better than can be obtained from Earth based observatories. The project also
produced the Tycho catalog. It is more complete since it contains more than two million
additional stars, but their astrometric data is less precise. [Perryman, 2010]

2.2 Gaia and current missions

2.2.1 The Gaia mission

The ESA mission Gaia has been designed with a view to survey our galaxy, the Milky Way. It
will yield a star catalog with a precision of 8–25 µarcsec(µas) and will encompass stars down
to magnitude 20 [Prusti, 2011]. Originally GAIA was an acronym for: Global Astrometric
Interferometer for Astrophysics. As the mission has increased in complexity and different
choices in technological implementation have been made, this has become obsolete. The idea of
the mission was originally outlined in Lindegren et al. [1992] as a successor to ESA’s Hipparcos
mission. The mission was approved by ESA in 2000. The launch is planned for 2013 and the
five years of observations are to start by 2014. The nominal duration of the mission is five
years.

The scientific objectives of the Gaia mission are far reaching. The study of the Milky
Way galaxy and its origin lie at their heart. Aside from the study of galaxy formation and
galactic dynamics, it will provide statistics on many stars and thereby help to improve the
understanding of stellar physics and evolution. The objects to be detected are also expected to
be of all classes of astrophysical objects including brown dwarfs, white dwarfs, and planetary
systems. The Gaia mission will also allow us to carry out a new Solar System census. Moreover
the results of Gaia will contribute to the understanding of fundamental physics. In particular,
high precision astrometry, that is precise angular distance and motion measurements will allow
us to test General Relativity against competing theories of gravitation, which can be expressed
in the parametrized post-Newtonian formalism (PPN gamma). This is discussed in more detail
in Ludl [2011] section 3.2.3.

It will deliver a catalogue of about one billion stars in the Milky Way galaxy down to
magnitude 20. The expected precision will allow to improve the distance scale of the Galaxy
and the universe. It is expected that this will result in a three dimensional structural map of
one billion stars in our galaxy, an improvement on the Hipparcos catalog by a factor of about
ten thousand.
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Astrometry

2.2.2 The Gaia satellite

Mechanics and orbit: The main structural element of Gaia is the silicon carbide torus, on
which the instruments are mounted. The satellite will be in orbit around the Lagrange point
L2 of the Sun-Earth system. Its orbit is designed to allow it to scan the whole sky such that
every object will be observed about 70 times.

• spinning on its axis at 6h for a full circle

• spin axis precessing a full circle in 63 days

• the orbital motion around the Sun in one year

These three motions allow an almost homogeneous coverage of the sky. On average 70
observations per source over the five year mission will be obtained.

At the second Lagrange point (L2) Gaia will be in a nearly periodic Lissajous orbit, which is
stable and avoids the need for large maneuvres. Small maneuvres will be required roughly one
a month. This orbit also helps to avoid the eclipse zone during the mission. This is essential
for the solar panels that generate power, and to keep the thermal environment stable. The
selection of the orbit arose from a trade-off between communication, operations, cost, thermal
and radiation environment, and accessibility with current rockets.

Figure 2: At the left, overview of the Gaia satellite showing the space craft and payload on
top. A zoom on the payload module at the right shows the two main mirrors M1 and M1′

and focal plane (Copyright ESA).

Optics and detectors: There are three instruments in the payload on board Gaia. They
will carry out astrometry, photometry and spectroscopy.

Here we shall give a brief overview of the science that the photometry and spectroscopy in-
struments will do and the general error requirements. Gaia will observe in the visual spectrum,
in the magnitude range from 6 to 20. For astrometry the precision of the data will depend
on the magnitude of the star. The parallax error is to be around 7 µarcsec for the brightest
stars (G < 13)3, 20µas (microarcseconds) at 15 mag, and 200µas at 20 mag. The photometric
instrument will allow the determination of stellar surface parameters. It is designed to give
temperatures to a few hundred Kelvin, gravities and metallicities to 0.2 dex. Thus the require-
ments on its sensitivity are: 8 to 20 mmag for a 15 mag star. The spectroscopic instrument
is necessary for the determination of radial velocities of objects. It is designed for a precision
better than 1 km/s for bright stars (V<13.5 mag), covering wavelengths from 330 to 1000 nm.
The signal to noise ratio (S/N) of the spectroscopic instrument is required to be at resolution

3Here we use G to denote Gaia magnitudes. The definition of G and the transformation to other magnitude
scales, is beyond the scope of this work. They are discussed briefly in Bastian [2007], and more extensively in
Jordi et al. [2010].
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better than ∆λ/λ = 10 000 for deduction of astrophysical parameters for a subsample of the
sources [Prusti, 2011].

Figure 3: This diagram shows the CCD layout in focal plane of Gaia, with the astrometric
field in light gray at the center. (Copyright EADS Astrium)

2.2.3 Limitations of the Gaia mission

There are technical limitations to the data Gaia will deliver. One of these is related to the
filters used, they determine the observable wavelengths.

According to [Prusti, 2011] the problems are mainly of the following types. It is difficult
to meet the astrometric precision requirements for blue stars, the reference star is B1V and
the deviation is about 10% for the parallax error. Another class of stars that have high errors
are those of magnitude G < 7 mag, the parallax requirement is missed by 1 to 2µarcsec.
This is determined by the gating scheme used in the mission. Another problem is saturation
of the CCDs by bright objects, Jupiter has V magnitude in the range of [−3,−1.6] and its
angular size is about 40 arcsec. This will result in a temporary blinding of the CCDs and
make observations impossible within 5 arcsec of Jupiter. This is an important factor in the
measurement of light deflection, mostly for the quadrupole (and weaker) terms [Hobbs et al.,
2010, Martin Fleitas et al., 2011]. Additionally there are optical limitations such as the size of
the mirrors and CCDs.

How far away can Gaia see into the Milky Way? This depends not only on the technical
characteristics, but also on the extinction coefficients of interstellar matter and the direction

12
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in which it is pointed. Distant objects can be seen if they are very bright or magnified by a
gravitational lens for instance. What can be ascertained more clearly is the expected fraction of
stars/objects/sources in the Milky Way that will be covered by the telescope. Approximately
a billion objects in the magnitude range between 6 and 20, this corresponds only to 1% of all
objects in the galaxy.

4.2. ASTRONOMICAL REFERENCE SYSTEMS 27
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Figure 4.3: The Scanning Reference System (SRS), the Gaia viewing directions and the Field-of-View Reference
Systems (FoVRS). The angles between the two viewing directions are not drawn to scale. The black dots near
the centre denote 90◦ angles (marked by the arcs). The big ellipse indicates the instantaneous scan great circle
on the celestial sphere. The small rectangles indicate the fields on the sky; the small arrows show the orientation
of the field angles. The principal axes f of the FoVRS point towards the centre of each field of view. The w and
z axes (not labelled in the diagram) point parallel to the η and ζ axes, respectively. The direction to the sun is
always at an angle of 45 degrees from the positive z axis.

4.2.4.2 SRS, Celestial Coordinates

Celestial coordinates in the SRS differ from those in the CoMRS only by a Euclidean rotation, given by
the attitude of the satellite, see Section 4.2.4.3. They are expressed by cartesian unit vectors.12

The unit vectors along the principal axes are called x, y, z, see Fig. 4.3. The z axis is the nominal
rotation axis of the satellite; with the direction towards the sun being at an angle of 45 degrees from the
z axis during Gaia operations. The x axis is in the plane of the two Astro viewing directions (i.e. the two
projections of the optical axis of Gaia’s telescope onto the sky), half a basic angle (γ/2, i.e. 53.25◦) away
from each of them. The y axis is also in the plane of the two viewing directions such that the system x,
y, z is right-handed. A general unit vector u in the SRS has direction cosines x, y, z, such that

u = xx + yy + zz (4.6)

with x2 + y2 + z2 = 1.

The nominal rotation of Gaia is positive about the positive z axis. The y axis thus precedes the x axis
on the sky by 90 degrees. A given star is first seen in the field no. 1 (preceding field), and 106.5◦ later in
the field no. 2 (following field).

Note that during nominal operations the sun by definition has a positive z coordinate in the SRS.

4.2.4.3 SRS, Attitude: The Transformation CoMRS → SRS

The attitude of the satellite is the orientation of the SRS with respect to the CoMRS (i.e. essentially
with respect to the ICRS). It is expressed by the attitude matrix A, an orthonormal 3 × 3 matrix, as

12Some earlier documents used angular coordinates in the SRS as well, calling them instrument angles, and denoting
them as η and ζ. It is proposed to avoid these in the future, in order to avoid confusion with the field angles η and ζ which
will be defined in Section 4.2.5 for the Field-of-View Reference Systems.

(a) The Scanning Reference System (SRS), the Gaia view-
ing directions and the Field-of-View Reference Systems
(FoVRS). The angles between the two viewing directions are
not drawn to scale. The black dots near the centre denote
90◦angles (marked by the arcs). The big ellipse indicates the
instantaneous scan great circle on the celestial sphere. The
small rectangles indicate the fields on the sky; the small ar-
rows show the orientation of the field angles. The principal
axes f1, f2 of the FoVRS point towards the centre of each
field of view. The w and z axes (not labeled in the diagram)
point parallel to the η and ζ axes, respectively. The direc-
tion to the sun is always at an angle of 45◦from the positive
z axis.
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Figure 4.2: Illustrative sketch of the celestial sphere indicating the ICRS spherical coordinates (α, δ) and direction
cosines (X, Y, Z) of a unit vector u towards a star (upper right), with the origin of (α, δ) at front left and the
ICRS north pole towards the top.

Note that the time coordinate used by the Development Ephemeris is not TCB, but something close to
Barycentric Dynamical Time (TDB). The time parameter of a particular Development Ephemeris (e.g.
DE405) can be called TDE405 etc. The relation of that TDE405 and TCB can be found by the procedure
described e.g. in [19] and requires some numerical integration with the data of the ephemeris itself. This
has to be taken into account whenever ephemeris coordinates are used.

4.2.2 The Geocentric Reference System (GCRS)

In certain fields of science (geodesy, geophysics etc.) this reference system is the natural one. It is also
of importance for parts of astronomy, since most astronomical observations are made with instruments
moving with the Earth. Also, spacecraft orbits (ephemerides) are frequently described in geocentric terms.

Most probably the GCRS will play no role in the Gaia data reduction. But perhaps the primary repre-
sentation of the Gaia orbit (to be provided by the ground segment) will be a geocentric one, since the
ground stations are located on the rotating Earth. This is as yet undefined.

4.2.2.1 GCRS, Definition

The GCRS is defined by the BCRS/ICRS and the coordinate transformations given in the IAU Resolution
B1.3 (2000), as given and explained in [4] and [13].

The spatial origin of the GCRS is the barycentre of the Earth. Its time coordinate is the Geocentric
Coordinate Time (TCG). By definition TT is identical to TCG except for a small difference in rate
(about 7 10−10).4 The GCRS is defined by the IAU as kinematically non-rotating with respect to the
BCRS.

4Comments by S. Klioner: Formerly TT was defined in such a way that the mean rate of TT coincided with the mean
rate of the proper time of an observer situated on the rotating geoid. This definition was revised by IAU 2000 because the
precision of atomic clocks is expected to increase much faster than the accuracy of the geoid determinations. The scaling
factor between TT and TCG now is a defining constant which for continuity was chosen so that the mean rate of the proper
time of an observer on the rotating geoid as defined in 2000 be as close as possible to that of (the re-defined) TT. However,
any third-body effects on the geoid are fully ignored by the new definition. This will become important probably even before
the Gaia launch.

(b) Illustrative sketch of the celestial
sphere indicating the ICRS spherical co-
ordinates (α, δ) and direction cosines
(X,Y, Z) of a unit vector u towards a star
(upper right), with the origin of (α, δ) at
front left and the ICRS north pole towards
the top.

Figure 4: The satellite and ICRS frames, both from Bastian [2007]

2.2.4 Scanning space astrometry

Scanning space astrometry is the term designating the kind of astrometric observation used in
the Hipparcos and Gaia missions. It relies on the transformation between (linear) positional
data and the spinning telescope. We will give an overview here, a detailed account can be
found in Lindegren and Bastian [2011] and references therein.

Indeed, as Gaia will be scanning the sky, the precise time when the centre of a star image
has some well-defined position in the field of view (FoV) is determined. The position is defined
by the pixel layout of the CCDs in Gaia. Then the observation time is the one-dimensional
(along-scan, AL) measurement of the stellar position relative to the instrument axes. At the
same time an approximate across-scan (AC) position of the star is also measured. However,
the AC measurement is less accurate due to the geometry of the CCDs which are elongated in
the AC direction, the lower optical resolution across-scan, and the way the pixels are read out.
The astrometric catalogue is produced after processing a very large number of such observation
times. This process involves a precise reconstruction of the instrument pointing (attitude) as
a function of time and of the optical mapping of the CCDs through the telescope onto the
celestial sphere.

A number of factors impact the AL measurement. We will discuss the basic angle, the
scanning law and parallax determination in the following.

13



Section 2

Gaia’s two fields of view (FoV) coincide on the focal plane shown in figure 3. The basic
angle between them is Γ =106.5◦. This choice is motivated by two reasons. The first is
to make it as large as possible, the second to avoid divisors of 360◦. The accuracy of the
one-dimensional AL position measurement depends on the basic angle. In the 1D case there
are peaks in the variance of star positions for basic angle values of the kind Γ = m/n (rad)
with m,n being small integers. These peaks should be avoided. In the case of Gaia we have
m = 71 and n = 240, which are large enough to avoid such problems. It can be noted that
this effect disappears for two dimensional measurements when the global solution over the
whole celestial sphere is considered. Basic angle variations are unavoidable and have to be
monitored, to compensate for the errors they could induce. This should be precise to within
10µarcsec, and will be monitored and measured down to 1µarcsec.

The scanning law describes the attitude of the satellite as a function of time. It gives the
transformation between the Gaia proper frame and the reference frame for the catalog (e.g.
BCRS). It prescribes the precession rate, the direction of the spin axis z as a function of time,
the spin rate, which for Gaia is 60′′s−1, the phase of the spin at some initial epoch, and solar
aspect angle ξ = 45◦.

To optimize the parallax measurement, large ξ are preferred, however protecting the satel-
lite optics from direct and indirect sunlight imposes the constraint ξ ≤ 45◦. The chosen fixed
value is also a factor that contributes to the constant thermal environment.

The spin period of Gaia is P = 6hr, the AC size of the FoV is Φ = 0.69◦. Preferably the
areas of the sky scanned in successive spins should overlap, to avoid the occurrence of gaps.
Therefore |z| ≤ Φ should be verified. This condition is not quite satisfied for Gaia, so there
will be gaps. The precession rate is the inverse of the number of loops per year K = 5.8 for
Gaia.
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Fig. 5. The spin axis z makes loops around the Sun, which must overlap as in the left

and middle diagram in order to provide good observing conditions. The star at point a

may be scanned whenever z is 90◦ from a, i.e., on the great circle A at z1, z2, z3, etc.

2.4 Why does the scanning law look the way it does?

The first element of the so-called scanning law is a prescription for how the direc-
tion of the spin axis, z, should evolve as a function of time. It can be expressed,
for example, by the functions αz(t), δz(t) which should be continuous and smooth.
This prescription is complemented by the fixed spin rate (60′′ s−1 for Gaia) and
the phase of the spin at some initial epoch.

For parallaxes we want to make sin ξ as large as possible, where ξ is the solar
aspect angle. ξ = 90◦ is not possible because the Sun would then enter the FoVs
on every spin of the satellite. Considerations of straylight and the size of the
sunshield have led to the practical constraint ξ ≤ 45◦ for Gaia (though an earlier
design had ξ = 55◦). The conclusion is that the solar aspect angle should be kept
constant at its maximum feasible value, or 45◦ for Gaia. A constant angle is also
good for minimizing variations of the solar thermal impact on the instrument.

Given the apparent path of the Sun on the celestial sphere and the fixed ξ,
the first element of the scanning law reduces to the specification of ν(t), where ν
is the inclination of the Sun-z arc to the ecliptic. A continuously increasing (or
decreasing) ν(t) represents a precession-like, or revolving, motion of z around the
Sun, resulting in a series of loops on the sphere (Fig. 5). The areas of the sky
scanned in successive spins should preferably overlap, so that no gaps occur. This
requires |ż|P ≤ Φ, if P = 6 hr is the spin period and Φ = 0.69◦ the AC size of the
FoV. Actually, this condition is not quite satisfied for Gaia, so there will be gaps;
but in any case a roughly constant inertial precession rate |ż| minimizes the non-
uniformity of the sky coverage. Thus ν(t) is uniquely defined by the initial angle
and adopted precession rate. The resulting “uniform revolving scanning law” is
the baseline for both Hipparcos and Gaia, albeit with slightly different parameters.

The choice of ξ and precession rate (or, equivalently, K = the number of
loops per year) determines the overall pattern of scanning. The resulting number
and geometry of scans across an arbitrary point can be visualized as in Figure 5.
From this it can be seen that the loops of z should overlap slightly as in the left
diagram, in which case there are at least six distinct epochs of observations per

Figure 5: The precession of Gaia’s spin axis, from [Lindegren and Bastian, 2011]. The spin
axis z makes loops around the Sun, which must overlap as in the left and middle diagram in
order to provide good observing conditions. The star at point a may be scanned whenever z
is 90◦ from a, that is on the great circle A at z1, z2, z3 and so on.

The resulting “uniform revolving scanning law” is the baseline for both Hipparcos and Gaia,
with slightly different parameters.

Lindegren and Bastian [2011] have pointed out that absolute parallaxes are obtained, even
though scanning space astrometry also makes purely differential measurements. The principle
of the parallax measurement is illustrated in figure 6. In Lindegren and Bastian [2011] this
is explained as follows. This is made possible by the measurement of the relative parallax
shifts between stars at large angular separations. For an observer at 1 AU from the Sun, the
apparent shift of a star due to its parallax $ equals $ sin θ and is directed on a great circle
from the star towards the Sun. As shown in figure 6 (left), the AL parallax shift of the star at
F is $F sin θ sinψ = $F sin ξ sin Γ, where ξ = 45◦ is the constant solar aspect angle (between
the Sun and the spin axis). At the same time the AL parallax shift of the star at P is zero.
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The AL measurement of F relative to P therefore depends on $F but not on $P , while the
reverse is true at a different time, as shown in the right diagram.

The sensitivity to parallax is proportional to sin ξ sin Γ, which should therefore be maxi-
mized. The choice of ξ was discussed above. While Γ = 90◦ is optimal for the basic angle
according to this analysis, we have seen that other considerations led to a slightly larger value
being adopted for Gaia.
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Fig. 3. The relative variance of positions along a great circle (left) and on a sphere

(right), as obtained from differential measurements between two randomly positioned

fields separated by a given basic angle Γ. In the 1D case (left) certain values of Γ should

be avoided. In the 2D case (right) there are no particularly bad angles although Γ ∼ 90◦

is preferable. (Calculations and diagrams by courtesy of S. Nzoke, Lund Observatory.)

observer at 1 AU from the Sun, the apparent shift of a star due to its par-
allax ! equals ! sin θ and is directed on a great circle from the star towards
the Sun. As shown in Figure 4 (left), the AL parallax shift of the star at F is
!F sin θ sin ψ = !F sin ξ sin Γ, where ξ = 45◦ is the constant solar aspect angle
(between the Sun and the spin axis). At the same time the AL parallax shift of
the star at P is zero. The AL measurement of F relative to P therefore depends
on !F but not on !P, while the reverse is true at a different time, as shown in
the right diagram.

The sensitivity to parallax is proportional to sin ξ sin Γ, which should therefore
be maximized. The choice of ξ is discussed below. While Γ = 90◦ is optimal for
the basic angle according to this analysis, we have seen that other considerations
led to a slightly larger value being adopted for Gaia.

Fig. 4. The measured along-scan (AL) angle between the stars at P, F depends on their

parallaxes !P, !F in different ways depending on the position of the Sun. This allows

to determine their absolute parallaxes rather than just the relative parallax !P − !F.

Figure 6: The geometry of the parallax measurement: The measured along-scan (AL) angle
between the stars at P, F depends on their parallaxes $P , $F in different ways depending on
the position of the Sun. This allows to determine their absolute parallaxes rather than just
the relative parallax $P −$F . [Lindegren and Bastian, 2011].

This is relevant to the study of light deflection because the monopole deflection of the Sun
is similar to a global shift of the parallaxes [Hobbs et al., 2010].

The parallax shift of a star is directed toward the Sun, as shown by the arrows on F and P
in figure 6. The monopole light deflection is a shift of the apparent position of the star away
from the Sun (along the great circle). In figure 6 the angle between the Sun and the star F
along the great circle is θ. This effect has been shown to result in a statistical correlation of
PPN γ and the parallax zero point [Mignard, 2002]. Both shifts have to be taken into account
to determine the correct direction toward the star. These two shifts differ in their dependence
on the angular separation from the Sun, this property is used in the data processing chain to
distinguish them and determine the value of PPN γ for the Sun.
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2.3 Data processing : AGIS, AGISLab and GREM

Gaia will produce a large amount of data, approximately 40Gb of telemetry data per day and an
estimated 100 Tb over the 5 year mission. (Uwe Lammers, Gaia: Astrometric Data Reduction
ESA Science Team [2010]) To cope with the data processing the Gaia Data Processing and
Analysis Consortium (DPAC) has been formed in 2006 to structure the Gaia working groups
and the efforts of the scientific community across Europe (M. Perryman, 2006, ESA Science
Team [2010]). DPAC is in charge of the data reduction for Gaia. This comprises astrometric
data reduction and the reduction of spectroscopic and photometric data. Among these are
binary recognition, search for moving objects and exoplanets.

The main steps of the data processing chain are shown in figure 7. There are two phases
the daily data processing and the Astrometric Global Iterative Solution (AGIS). The Initial
Data Treatment (IDT) first processes the daily telemetry data, which evaluates the astromet-
ric image parameters using the raw CCD data. The output of IDT is fed to the One Day
Astrometric Solution (ODAS) which is part of Gaia’s First-Look (FL) system. It evaluates
the source parameters, the satellite’s attitude and calibration parameters to sub-milli-arcsec
accuracy. The daily results are then written into the Main Data Base (MDB). (Uwe Lammers,
Gaia: Astrometric Data Reduction ESA Science Team [2010])

Gaia - Taking the Galactic Census Astrometric Data Reduction

Simplified schematic overview of Gaia’s astrometric data reduction system. The main processing modules are
IDT, FL-ODAS, and AGIS which will iteratively generate the final astrometric mission products.

The objective of Gaia’s astrometric data reduction system is the construction of the core mission products: The
five standard astrometric parameters, position (α, δ), parallax (#), and proper motion (µα∗ , µδ) for all observed
stellar objects brighter than G = 20 mag with targeted micro-arcsec accuracies (e.g. < 10 µas [G < 10 mag],
< 25 µas [G = 15 mag], < 300 µas [G = 20 mag]). To this end, all the available ∼70 observations per object
gathered during Gaia’s 5 year lifetime will have to be combined in a single, global, and self-consistent manner.

The figure depicts a simplified schematic overview of the system. The ∼40 GB of daily telemetry data coming
from the satellite are first processed by the Initial Data Treatment (IDT) which determines from the raw
CCD measurement data astrometric image parameters (“centroids”). A second main task is the so-called
“cross-matching” that links observation data to celestial objects. These outputs of IDT form the main input to
the One Day Astrometric Solution (ODAS) which is part of Gaia’s First-Look system. ODAS produces from one
day’s worth of data estimates for source positions, satellite attitude and calibration parameters at the level of
sub-milli-arcsec accuracy. The results of the daily processings of IDT and ODAS are written to the Main Database.

Gaia’s core data processing module is the Astrometric Global Iterative Solution (AGIS) system. AGIS treats
the wanted source parameters, the satellite’s attitude and calibration parameters as unknowns and tries to
find the best global match in a least-square sense between all measurement data and an observational model
that is formulated in terms of these unknowns. Numerically this is done through an iterative adjustment
of the parameters from a starting point to an approximation to the sought solution of the least-squares
problem. The system is considered converged and iterations are stopped if the adjustments become sufficiently
small. At this point the results are written back to the Main Database. The fact that attitude and calibra-
tion parameters are optimized together with the source parameters in the same scheme is a necessity since
they cannot be determined to the required level of micro-arcsec accuracy in any other way. This elegant as-
pect of the astrometric data reduction is the reason why Gaia is sometimes referred to as a self–calibrating mission.

Only single, non–variable stars which fit the standard 5–parameter astrometric model – in number perhaps up to
500 Million – will take part in such a “primary” AGIS cycle. For the remaining objects (binary, multiple systems,
etc.) only provisional values will be computed by AGIS in a subsequent “secondary” cycle which only optimizes
source parameters using the attitude and calibration solutions from the preceding primary cycle. Astrometry for
secondary objects may be further improved by dedicated software in CU4 (“Object Processing”).

Unlike IDT and ODAS which run daily, AGIS is executed only about every 6 months on an ever increasing
data volume. IDT, ODAS, and AGIS are developed in the framework of Gaia’s Data Processing & Analysis
Consortium (DPAC) Coordination Unit 3. During operations all systems will run on dedicated processing hardware
installed at ESA’s European Space Astronomy Centre (ESAC) in Spain near Madrid. Owing to the large data
volume (100 TB) that Gaia will produce and the iterative nature of the processing the computing challenges are
formidable: The AGIS processing alone is estimated to require some 1021 FLOPs which translates to runtimes
of months on a baselined 10 FLOP/s local computing system at ESAC. The usage of external Cloud computing
services is being studied as a possible alternative.
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Figure 7: This diagram shows a schematic overview of the astrometric data processing chain
for Gaia. The main units are IDT, FL-ODAS and AGIS which are described above. IDT
and FL-ODAS perform preliminary evaluation of data and astrometric parameters. AGIS will
generate the final astrometric mission products every six months and on the final data set.
(Credit: Uwe Lammers ESA Science Team [2010])

2.3.1 AGIS and AGISLab

The MDB will accumulate data constantly, it is this data which is the input to AGIS, the
core data processing module, which will analyse this data every 6 months. It produces a “Gaia
catalog” with expected accuracies of 8–25 µarcsec (µas) for trigonometric parallaxes, positions
at mean epoch and annual proper motions of simple stars4 [Lindegren et al., 2011, p. 1] The
subset of well-behaved primary stars is now believed to be substantially larger than 100 million
[Lammers and Lindegren, 2011].

The determination of the “core solution” is an exceedingly difficult task, since there are
very large quantities of data involved and due the complexity of the relationships between
astrometric, spectroscopic and photometric data, as well as data collected at different epochs.

4i.e. apparently single stars
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The astrometric core solution determines the five astrometric parameters for the primary
stars. The direct resolution of the overdetermined problem involving about 1012 measurements
and roughly 5 · 109 unknowns is unfeasible, despite the sparse nature of the matrix (figure 8).
AGIS minimises the merit function χ in a least squares algorithm.

χ2(X) =
∑

i

Ri(X)2

σ2
i + ε2i

w


 Ri(X)√

σ2
i + ε2i


 (1)

where X is the vector containing the unknowns, i is the observation index, Ri the residuals,
σi the formal observation certainty, εi the excess noise, and w the down-weighting function.
This formula is discussed in Lammers and Lindegren [2011].

From equation (1) the standard system of normal equations for source, attitude and cali-
bration parameters is deduced. This system can be solved by iterating in a straight forward
way. In practice alternating phases of “Simple Iterations”, “Accelerated Simple Iterations” and
Conjugate Gradient iterations have been employed. There is a large number of unknowns,
approximately: 5 · 108 source parameters, 4 · 107 attitude parameters and 106 calibration pa-
rameters. To this a small set of global parameters may be added [Lammers and Lindegren,
2011]. (PPN γ is discussed in section 3.2.3 of Ludl [2011].) A global normal matrix can also
be deduced when the global parameters are solved for, the global normal equation is given
as equation (90) in Lindegren et al. [2011]. At least as many measurements as unknowns
are needed to obtain an accurate solution. Consequently, AGIS will be executed only about
once every 6 months, when enough data has been collected. This choice was made, consid-
ering the number of operations needed for the solution (expected to be some 1020 FLOPS)
and the expected increase in precision achievable. One full run at the end of the mission is
estimated to take about 2 months on a 10 TFLOP/s processing system. Further discussion of
the complexity of the astrometric problem can be found in Bombrun et al. [2010].
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Fig. 1. Structure of Normal equation matrix to be solved with AGIS. Setting four of the

off-diagonal block to zero (red figures) gives the Gauss-Seidel pre-conditioner.

diagonal blocks correspond to source, attitude, and calibration parameters with
sizes of ≈ 5×108 (100 Million sources with 5 parameters each), ≈ 4×107 (quater-
nion spline coefficients), and ≈ 106 (calibration parameters), respectively. The
cross-diagonal blocks link source, attitude, and calibration parameters in a com-
plex way and make the problem computationally intractable. By setting 4 of
the blocks to 0 (as indicated in the figure) one arrives at the Gauss-Seidel pre-
conditioner matrix approximation K to the full Normal equation matrix N . By
using K which is much easier to solve than N , and doing iterations the whole
problems becomes solvable in a rather straightforward way. There are many ways
to carry out the iterations. The most simple one is called “Simple Iterations”
(SI) in which source, attitude, and calibrations are solved independently of each
other, i.e. first source, and then attitude and calibration in parallel making use
of the just updated sources. An improvement of this is the “Accelerated Simple
Iteration” (ASI) in which first for a small number of sources “trial” updates are
calculated. Then, an extrapolation factor is determined and used to scale the cal-
culated updates for all other sources. This ASI scheme has been the baseline in
AGIS since 2008.

2 Conjugate Gradients in AGIS

Conjugate Gradients (CG) is a rather standard method in Linear Algebra which
is known since decades but has never been used in the context of the global astro-
metric problem. CG was found applicable and usable in the AGIS framework by
Lindegren (Lindegren 2008), then coded and demonstrated to work in AGISLab
by Bombrun (Bombrun et al. 2010), and finally implemented in AGIS over the
summer 2009. A CG iteration starts with the execution of the so-called “kernel”
which computes provisional updates and normal equation residuals. Unlike SI,

Figure 8: The structure of the normal equation matrix to be solved with AGIS. Setting four
of the off-diagonal block to zero (red figures) gives the Gauss-Seidel pre-conditioner. Numbers
in braces indicate the number of parameters of each kind. Lammers and Lindegren [2011]

AGISLab is a scaled version of AGIS developement mainly by Holl, Hobbs and Lindegren
in Lund. It can run on less than 106 stars and therefore allows a significant number of Monte
Carlo simulations with different noise realisations to be made in a relatively short time [Holl
et al., 2010].

The scaling parameter is S, the simulations run in AGISLab use a fraction S of the total
number of sources. AGISLab is designed to modify the Gaia layout in such a fashion that
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certain quantities of interest for data analysis are conserved. This is achieved by reducing the
focal length of the telescope and its spin rate, whereby “the mean number of stars in the focal
plane at any time, the mean number of field transits of a given star over the mission, and the
mean number of observations per degree of freedom of the attitude model ” are conserved [Holl
et al., 2010].

Building on the work in Hobbs et al. [2010], we have studied the possibilities of measuring
light-deflection and PPN γ with Gaia by expanding the model for gravitational light deflection
used in AGISLab.

2.3.2 Gaia relativity models

The resolution of the astrometric problem for Gaia, requires a consistent treatment of source
parameters in a relativistic framework. As described in Crosta and Vecchiato [2010], there
are currently two models that permit to obtain this solution with microarcsecond precision:
GREM and RAMOD.

The baseline relativity model for Gaia is the Gaia Relativistic Model (GREM). This frame-
work is built on the post-Newtonian approximation of metric theories of gravity5 and the
parametrized post-Newtonian formalism. It takes into account light deflection and other rela-
tivistic effects inside and outside the Solar System. These effects are treated as perturbations
to the assumed solution (source direction) outside the Solar System [Crosta and Vecchiato,
2010, Klioner, 2003, 2008]. This is akin to the model we solve in the PPN formalism (see
section 3.2.5).

The Relativistic Astrometric Model (RAMOD) follows a different approach. It solves the
inverse ray tracing problem for general relativity. It is not constrained to approximations and
this allows to probe the predictions of general relativity specifically. [Crosta and Vecchiato,
2010]

The advantage of GREM is that it allows to directly compare the different viable theories
of gravitation and to place boundaries of the PPN parameters 6. Both models are designed to
be used for Gaia data reduction, thus is it essential that their results can be compared. Crosta
and Vecchiato [2010] discuss a comparison between the two frameworks.

In the next section we will present a model of light deflection based on [Crosta and Mignard,
2006] and accounting for monopole and quadrupole light deflection. This model will be imple-
mented into AGISLab to perform realistic numerical simulations of the astrometric solution
on Gaia data. The quadrupole effect is also studied by the Gaia Relativistic Experiment on
Quadrupole light deflection (GAREQ formerly GAREX). We believe that the comparison of
our results to the preliminary results of these more complete models will prove to be beneficial.

5See section 3.2.1 of Ludl [2011] for a definition of metric theories of gravity of which general relativity is
one example.

6The parametrized post-Newtonian framework and parameters (PPN) are discussed in section 3.2.3 of Ludl
[2011].
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that one more step in the modeling is needed: a relativistic
description of the process of observation. This part of the
model allows one to compute a coordinate-independent the-
oretical prediction of the observables starting from the
coordinate-dependent position and velocity of the observer
and, in some cases, the coordinate velocity of the electro-
magnetic signal at the point of observation.

Mathematical techniques to derive the equations of
motion of the observed object and the observer, to formu-
late the equations of light propagation, and to find the
description of the process of observation in the relativistic
framework are well known and will be discussed below.
These three parts can now be combined into relativistic
models of observables. The models give an expression for
each observable under consideration as a function of a set
of parameters. These parameters can then be fitted to obser-
vational data using some kind of parameter estimation
scheme (e.g., least squares or other estimators). The sets of
certain estimated parameters appearing in the relativistic
models of observables represent astronomical reference
frames.

Note that a reference system is a purely mathematical
construction (a chart) giving ‘‘ names ’’ to spacetime events.

Fig. 1.—General principles of relativistic modeling of astronomical observations

observer

object

light ray
observation

Fig. 2.—Four constituents of an astronomical event: (1) motion of the
observed object, (2) motion of the observer, (3) propagation of an
electromagnetic signal from the observed object to the observer, and (4) the
process of observation.

1582 KLIONER Vol. 125

Figure 9: Representation of the general principles underlying the relativistic modeling of
astronomical observations. Klioner [2003]
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3 Gravitational light deflection

3.1 Light bending and experimental tests of relativity

This foundations of relativistic models and metric theories of gravity are discussed in greater
detail in the first report. Here we present the classical tests of light deflection and the equation
implemented in AGISLab.

3.1.1 Experimental tests of general relativity

We will present the three classical tests of general relativity and then discuss more recent
ones. In the solar system, the predictions of general relativity are in good agreement with
Newtonian mechanics and observations. Most planetary orbits are in good agreement with
both theories. However there are three instances of physical effects which have helped establish
general relativity as a more correct theory than its predecessor. They are: Mercury’s perihelion
precession, the light deflection by the Sun for grazing rays and gravitational redshift of light.
All of them are relatively small effects.

According to Kepler’s second law, planet’s move on elliptical orbits around the Sun. In
Newtonian mechanics, these orbits are perturbed by the small gravitational pull of the other
planets. According to Will [1993, p. 4] the three strongest contributions to the rate of preces-
sion of Mercury, as predicted by Newtonian theory are due to Venus, the Earth and Jupiter.
After summing the contributions of all planets a discrepancy of 42.7′′ per century remains.
The presence of this advance was first noted by Le Verrier in 1859. The value is close to the
prediction from general relativity which is 42.95′′ per century.

This effect can be explained heuristically by two contributions. The first is the special rel-
ativistic mass increase of the planet. The second is due to the mass associated with the energy
density of the Sun’s gravitational field. This term adds to the Sun’s gravitational potential
in the Newtonian picture. This is discussed in further detail in Sexl and Sexl [1979]. Will
notes that the solar quadrupole moment may also contribute to this shift. From helioseismic
measurements and assumptions about the internal structure of the Sun it has been inferred
that its quadrupole moment is J2 = (2.2± 0.1) 10−7 [Roxburgh, 2001]. The correction to the
precession rate is smaller than experimental errors, hence general relativity passes this test.

The second classical test is the deflection of light by massive objects. Interest in this weak
phenomenon was restored by the advent of general relativity. In the solar system the most
massive body is the Sun, therefore the deflection due to the Sun was studied first. Notably
the 1919 solar eclipse and Eddington’s expedition caught public attention. The experiment
was performed by two teams in Sobral in Brazil and on the Island of Principe off the Atlantic
coast of Africa and measured the displacement of stars close to the Sun. Due to the limitations
in optical equipment at the time, observations had to be made during a total eclipse when
the Moon blocks out direct Sun light and the field of stars in its vicinity becomes visible.
The observations were recorded on photographic plates and compared to records of the same
field when the Sun was not present. The results were given as 1.13 ± 0.07 and 0.92 ± 0.17
times the value predicted by Einstein (1.75 arcseconds) [Will, 1993, p. 5]. This value is twice
that obtained by Soldner using the Newtonian theory. These results were questioned and
indeed offered only weak agreement compared with modern ones. During the 1970’s they
were finally confirmed with a precision of 1% using radio wave interferometry. A pair of
experiments was carried out using a radio interferometer of 35-km base-line at the National
Radio Astronomy Observatory (NRAO) in 1974 and 1975. The set up differed also in the
angles between the sources and the Sun, nonetheless according to [Fomalont and Sramek,
1976], “the mean gravitational deflection is 1.007 ± 0.009 (standard error) times the value
predicted by general relativity”. It also gave an estimate of the post-Newtonian parameter
γ = 1.014 ± 0.018 (standard error) and the corresponding absolute value of deflection at the
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solar limbs of 1.761± 0.016 arcseconds.
This effect has also been employed in the data reduction for Hipparcos and will be for

Gaia. The equations describing the phenomenon will be developed later in the parametrized
post-Newtonian formalism in section 3.2.5.

The third classical test is gravitational red shift of light. This was the first to be proposed
by Einstein himself. Since it is a test of the equivalence principle, we shall discuss it in sections
3.2.1 and 3.2.2 of Ludl [2011].

Will proposed the time delay of light as a third classical test of general relativity, instead
of the red shift experiment for which the predictions of every metric theory of gravitation are
identical. In 1964 Irwin Shapiro discovered that a ray of light propagating in the gravitational
field of a massive body will traverse a given distance in a longer time, than if the field were
absent. In the decades following the discovery of this effect a number of solar system exper-
iments have been carried out. What is measured is the round trip time of a signal emitted
from Earth and reflected from another body (planet or space craft). Radar ranging of targets
was commonly used. A detailed discussion can be found in Will [1993, p. 173]. It is one of
the most precise tests of general relativity. Time delay has also been exploited in the Cassini
2002 Solar Conjunction Experiment which gave the limit γ − 1 ≤ 2.3 · 10−5 . This experiment
if discussed in more detail in section 3.2.3 of Ludl [2011].

During the second half of the 20th century, gravitational lensing and gravitational waves
emerged as fields of application of general relativity. Both are linked to extragalactic astro-
physics.

The idea that the gravitational bending of light is similar to the action of optical lenses
goes back to the earlier years of the theory. It was realised that multiple images of an object
can be formed. In 1937 Zwicky predicted gravitational lensing by galaxies and expected the
phenomenon to be observable. However the phenomenon was not observed until 1979, when
Walsh, Carswell and Weyman detected the first gravitational lens candidate with multiple
images. In 1987 Lynds and Petrosian announced “luminous arcs”: highly distorted images of
high redshift galaxies. Ringlike deformed objects were finally discovered in 1988. An account
of the historical evolution of ideas can be found in the introduction of Schneider et al. [1992].

Gravitational waves have been looked for over the past decades, and the sources whose
emission if most likely to be picked up are inspiralling close compact systems and mergers
of objects like black holes and neutron stars. Recently experimental effort has gone into the
development of large scale laser interferometric gravitational-wave observatories on ground
such as LIGO in Washington and MiniGRAIL in Leiden (Netherlands) and in space such
as the proposed LISA mission. Meanwhile theoretical activity in the field has focused on
obtaining accurate predictions of the gravitational wave form signal. There is experimental
evidence. Orbital decay due to the emission of gravitational waves has been detected. Its
amount is estimated to agree with general relativity to better than half a percent using the
Hulse–Taylor binary pulsar, [Weisberg and Taylor, 2005]. Other binary pulsar systems have
yielded other tests, especially of strong-field effects. Will [2011] points out that the post-
Newtonian approximation, presented in section 3.2.1, has been shown to be “unreasonably
effective” for extreme conditions such as mergers of compact objects. When direct observation
of gravitational radiation from astrophysical sources begins, new tests of general relativity will
be possible.
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3.2 Equations for light propagation in the post-Newtonian limit

The pivotal point in astrometry is stressed by [Bastian, 2007](section 4.2.1.3, p. 22):

The primary quantity to be measured is the direction of light rays. This quantity
also can be expressed in the ICRS by spherical longitude and latitude coordinates
(α) and (δ), or else by Cartesian unit vectors. Conceptually, however, it should
not be mixed up with the BCRS coordinates of the corresponding body from which
the light ray originated. Light rays are curved, and the observed direction of a light
ray depends on the point of observation and on the motion of the observer.

This sums up two essential features in relativistic astrometry: that the geometry of space
has to be taken into account and that the motion of the observer has to be accounted for.
Both are crucial to making the best use of Gaia data.

What is needed to achieve this is a metric theory of gravity and a set of frames, coordinates
and data about the physical universe (mass distributions) to provide a model for light propa-
gation. Several different approaches to this problem exist and have been outlined in Klioner
[2003] , Crosta and Mignard [2006], Kopeikin and Makarov [2007] and Crosta [2010].

In this study of light deflection by Jupiter we have followed the model presented in Crosta
and Mignard [2006] and implemented it for calculations in AGISLab.

In this section, we will present the main results of the post-Newtonian approximation useful
in our calculation. Here PPN γ will make its appearance to quantify the possible deviations
of physical universe from general relativity. We then present the model used for the planet
(multipole expansion) and then the equations derived in Crosta and Mignard [2006] as well as
the derivation of a quantity needed for calculations in AGISLab.

3.2.1 The post-Newtonian limit for theories of gravitation

We outline how the post-Newtonian Limit of a gravitational theory is obtained. [Will, 1993]
gives a detailed overview covering the procedure for different kinds of theories in chapter 5. We
will discuss the main steps and then go on to the post-Newtonian equations of light bending
we study here.

The field equations of general relativity : (2) are elegant and deceptively simple, showing
how geometry is generated by matter.

Gµν =
8πG

c4
Tµν (2)

(
−∂2

ct +∇2
)
hαβ = −16πG

c4
ταβ (3)

Where Gµν is the Einstein tensor which is a function of the components of the metric (gαβ),
its first derivatives and its second derivatives. For a given material energy-momentum tensor
Tµν , (2) are second order differential equations constraining the metric, and thereby defining
the geometry of space-time. 7 The constant G is Newton’s constant of gravitation and c is
the speed of light in vacuum, their units are discussed in appendix C. The quantity 8πG/c4 =
2.07 ∗ 10−43[s2m−1kg−1] is called Einstein’s constant of gravitation.

The space-time metric being gαβ and g = det(gαβ). The tensor hαβ in (3) is used in
the post-Newtonian approximation. It quantifies the deviation of the metric from the flat
Minkowski metric which is (ηαβ):

hαβ = ηαβ − (−g)1/2gαβ. (4)

The “relaxed” Einstein equations (3) are employed in post-Newtonian calculations. Will in
Will [2011] calls ταβ the “effective” energy-momentum pseudotensor. It can be directly seen
that (3) are a second order differential equations.

7 The Einstein tensor is a function of the Riemann curvature tensor. Definitions are given in appendix B.
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The post-Newtonian approximation supposes that gravitational fields are weak and that
characteristic motions of matter are slow compared to the speed of light. As pointed out byWill
[2011], this means that for the system in question the quantity ε ∼ (v/c)2 ∼ GM/(Rc2) ; 0 is
small. Here v,M,R denote the characteristic velocity, mass, and distance within the system.
He stresses that it is unkown whether the post-Newtonian expansion forms a convergent series.

In brief the steps to calculate the post-Newtonian limit of a metric theory of gravitation
according to [Will, 1993](chapter 5) are shown in table 1.

step 1: identify the variables of the theory
step 2: set cosmological boundary conditions
step 3: expand in a post-Newtonian series about asymptotic values
step 4: substitute into field equations
step 5: solve for the metric element h00 to second order
step 6: solve for the metric elements hij to second order and solve for h0j to third order
step 7: solve for the metric elements h00 to fourth order. (Will mentions that

this is the biggest step and involves the non-linearities of the theory.)
step 8: convert to local quasi-cartesian coordinates and standard PPN gauge
step 9: comparison with a reference “shape” of the equations

to read of the values of the parameters

Table 1: Procedure to deduce the post-Newtonian limit of a metric theory of gravitation
according to [Will, 1993](chapter 5).

The values of the PPN parameters for general relativity, as given in Will [2006, table 2,
p.29]:

γ = β = 1

ξ = 0

α1 = α2 = α3 = 0

ζ1 = ζ2 = ζ3 = ζ4 = 0

We note that general relativity is a fully conservative theory, as a consequence of αi = 0 and
ζi = 0, without preferred frame effects (αi = 0). For alternative theories these parameters will
depend on its fundamental scalar and vector fields.

3.2.2 Equations of light propagation

Our goal is to compare the difference in light deflection effects predicted by alternative theories
of gravitation in the post-Newtonian limit. This case is relevant for observations of light
deflection by the giant planets of the solar system with Gaia. We denote the coordinates xβ ,
with Greek indices ranging form 0 to 3.

In the limit of geometrical optics, that is when the wave length of the electromagnetic wave
of our light ray is small compared with the scale at which its amplitude changes and the scale
at which the background geometry changes, we have along the light path:

gαβ∂λx
α∂λx

β = 0 (5)

∂λx
α
(
∂λx

β
)

;α
= 0 (6)

This is the geodetic equation for a light ray. As discussed in Will [1993, equation (6.7)],where λ
is the “affine” parameter measuring the length along the light path. A;α denotes the covariant
derivative of A. The first relation (5) shows that the trajectory of the light ray is a null-
geodesic. The equation (6) leads to (7), where Gamma is the Christoffel symbol:

∂2
λx

µ + Γµαβ∂λx
α∂λx

β = 0 (7)
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From which one can deduce, by applying the post-Newtonian approximation and the parametrized
post-Newtonian framework:

d2xj

dt2
= ∂jU

(
1 + γ δik

dxi

dt

dxk

dt

)
− 2(1 + γ)

dxj

dt

(
δik

dxi

dt
∂kU

)
(8)

Where U is an arbitrary gravitational potential satisfying conditions discussed in the next
section (3.2.3) and δij is the Kronecker delta. This is expression (1) used by Crosta and
Mignard [2006].

3.2.3 The multipole expansion

In this section we discuss the gravitational potential we use. This is part of the modeling of
the light deflection problem as discussed above. A potential is needed for equation (19). The
shape of the potential determines the effects which can be obtained from it. The expression,
valid in any coordinate system, for the gravitational potential of a given mass distribution
described by a density ρ is :

U(x, t) =

∫

B
d3r

Gρ(r, t)

||x− r|| (9)

where x = (x1, x2, x3) is the coordinate three vector of the point at which we compute the
potential, r is the coordinate three vector of integration and B designates the volume occupied
by the mass distribution, which may depend on time. The density ρ measures the rest-mass
density in a local freely falling frame momentarily comoving with the gravitating matter.

Since our objective is to calculate the gravitational potential of a giant gaseous planet the
multipole expansion is a useful tool in simplifying expression (9). It is obtained by Taylor
expansion of the norm ||x− r||:

1

||x− r|| =
(
x2 − 2x · r + r2

)−1/2
=

1

x

∞∑

n=0

( r
x

)n
Pn ( cos(χ) ) (10)

where χ is the angle between r and x. Their respective norms are denoted by r and x.
In the series expansion (10) the Pn are Legendre polynomials8. They are further discussed in
appendix D. The series is convergent for all x such that r < x, therefore it does converge if
x is outside a sphere containing the body. This is a classical result of the theory of spherical
harmonics (Landau and Lifshitz [1975] §41).

The potential can now be written as :

U(x, t) =

∫

B
d3r

Gρ(r, t)

x

∞∑

n=0

( r
x

)n
Pn ( cos(χ) ) (11)

=
G

x

∞∑

n=0

(
1

x

)n ∫

B
d3r ρ(r, t)rn Pn ( cos(χ) ) (12)

=
GM

x
+
Gp · x
x3

+
G

2

Qijxixj

x5
+ . . . (13)

In the above terms of higher order than quadrupole have been neglected. We denote the
total mass of the distribution by M .

The dipole moment of the mass distribution is given by (14).

p(t) =

∫

B
d3x ρ(x, t) x (14)

8The Legendre polynomials were introduced in 1782 by Adrien-Marie Legendre for exactly this expansion
of the Newtonian potential. [Le Gendre, 1782]
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In the planet’s proper frame, it vanishes if the mass distribution has a center of symmetry,
since all masses are positive and the symmetry entails that the integrand is an uneven function.
This is a very good approximation for a planet like Jupiter.

The quadrupole moment of the mass distribution is given by (15), it is a symmetric trace
free tensor of rank 2.

Qij(t) =

∫

B
d3x ρ(x, t)

(
xixj −

1

3
δijr

2

)

To a very good approximation, planets are spherical and they are cylindrically symmetric
around their axis of rotation. This shape can be accounted for to reasonably good approx-
imation by the monopole and quadrupole terms in the expansion. The latter accounts for
the flattening at the poles as a deviation from spherical shape. Since Qij is a symmetric real
valued tensor it can be brought to principal axes. One of these is the axis of rotation of the
planet z, which is also a symmetry axis. The principal value associated with this axis shall be
denoted by J2, then the other two principal values I1, I2 associated to axis in the x, y plane
are equal, since Q is trace free : I1 = I2 = −1/2 J2.

With these assumptions the potential can be written as :

U(x, t) =
GM

x
+

G

2

Qilxixl
x5

+ . . . (15)

⇒ ∂jU(x, t) = GM ∂j
1

x
+

G

2
∂j

(
Qilxixl
x5

)
(16)

The gradient ∂jU of the potential, is used in the formulae for quadrupole light deflection.
Jupiter is the most massive planet in the Solar System and has the largest radius also. A

selection of physical data relevant to our experiment is presented in table 2. In the context
of light deflection, Jupiter is heavy enough to create observable monopole light deflection. Its
quadrupole moment is also large enough for the quadrupole deflection to reach 240 arcsec at
its limb (table 1 p. 1588 [Klioner, 2003]). To compute the quadrupole term the direction
of Jupiter’s rotation axis must be known. In the present work we will assume that it is
orthogonal to Jupiter’s orbital plane, more sophisticated models have been discussed by the
REMAT group Lattanzi and Crosta [2009].

Partly due to its size it is a very bright object (V ≈ −2.7), this is far below the magnitude
threshold of G = 5.7 mag, even accounting for the correction of V → G [Martin Fleitas et al.,
2011]. For this reason it cannot directly be observed by Gaia and observations in its vicinity
may be impaired [ibidem].
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Quantity Symbol Unit Value

radius mean RJ [km] 69 911± 6
— mean equatorial RJme [km] 71 492± 4

mass MJ [1024 kg] 1898.13± 19
density ρJ [g cm−3] 1.3262± 0.0004
quadrupole moment † J2 [1] 14.7 ∗ 10−3

period, orbital T [yr] 11.862615
— spin S [day] 0.41354

magnitude ∗ V [mag] −2.70
grazing ray deflection (monopole)9 δφ [arcsec] 0.0163

Table 2: Physical parameters for Jupiter provided by JPL : http://ssd.jpl.nasa.gov/
?planet_phys_par. ( † The value for the quadrupole moment J2 is taken from Fienga et al.
[2008] as cited by Zschocke and Klioner [2011]. ∗ The value for V is taken from Martin Fleitas
et al. [2011].)

Figure 10: A picture of Jupiter in the visible taken by the Cassini probe.
(Credit: NASA/JPL/Space Science Institute; PIA04866)

9Calculated using the formula 28, for an observer on Earth or for Gaia’s orbit (for the point of closest
approach of Jupiter and the observer). Klioner [2003] gives 1620 µarcsecfor monopole deflection by Jupiter
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3.2.4 Transformations of the source direction

The source direction is the direction from the observer towards the source, it can be expressed
in different reference systems. The source direction undergoes transformations as outlined in
Lindegren et al. [1992] and Klioner [2008].

At a given time a star in the Milky Way has a definite position in the BCRS. This direction
is defined by the source’s astrometric parameters, which to obtain with great accuracy is
the point of astrometry. We here study the extent to which light deflection, in particular
monopole and quadrupole contributions affect measurement of stellar positions for the Gaia
space mission.

The (BCRS) coordinate direction of a sources is the (apparent) Euclidean (3-vector) direc-
tion from the barycenter of the Solar System toward the source. It is expressed in the locally
Euclidean (or Minkowskian) reference frame of an observer at the barycenter. The notation
for it is ū. It is obtained from the (BCRS) barycentric astrometric parameters of the object
by taking into account transformations for secular acceleration, proper motion and parallax.

The natural direction is û. It is the direction from a hypothetical observer, who is stationary
in BCRS. The transformation from the coordinate direction to the natural direction accounts
for the shift of origin from the barycenter of the Solar System to the position of the observer.
That is the origin of the natural frame of the satellite (SRS). This vector is obtained by
accounting for light deflection (∆Φ) by the sun and planets, notably Earth and Jupiter. This
term will be considered in the next section 3.2.6. The transformation from ū to û is given by:

û = 〈 ū + ∆Φ 〉 =
ū + ∆Φ

|| ū + ∆Φ || (17)

The observable or “proper” direction of a source is denoted u. For Gaia it is the source direction
expressed in the CoMRS frame. It is obtained by carrying out the Lorentz transformation
accounting for the observer’s motion in BCRS. This means that, it is obtained from the
natural direction by accounting for stellar aberration due to the barycentric velocity (v) of the
satellite.

u =

〈
û + v

1 + û · v(c+ e)−1

e

〉
(18)

where e = (c2−||v||2)1/2. These equations (17 and 18) are taken from section 5.2 of Lindegren
[2001].
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3.2.5 Equations of quadrupole light deflection

The differential equations of the null-geodesic light path in the post-Newtonian approximation
are (19). The potential and its gradient derived in the previous section are then used to
solve them. For a given observed star position, the equations allow to trace the light path
back to emission event, that is the location of the source at the moment of emission. For
the configurations and bodies we study, the gravitational fields are weak and therefore the
“deflection” effect is small. We will calculate the deflection vector of the light path ∆Φ, its
magnitude can be interpreted as the deflection angle. We use the ICRS frame (also called E in
Gaia notation), to define vectors. It is a local quasi Cartesian coordinate system [Will, 1993,
p. 92].

We discuss the equations given in Crosta and Mignard [2006]. The notation has been
adapted to AGISLab notation. Stars will be referred to as “sources”. We use the right-handed
basis n, t,m which is defined by the light ray arriving from the source as seen in figure 11.
The tangent vector to the ray is t, the vector n points towards the planet along the impact
parameter b and m = n×t. The notation for the spin axis of the planet is z. The direction from
the observer to the planet is up. Crosta and Mignard suppose that the planets are “isolated
stationary axisymmetric masses”. Hence the formulae we give below are valid in Jupiter’s rest
frame.

For a light ray passing outside the matter distribution, Crosta and Mignard integrate the
following equation:

∂2
t x

j
D⊥ = (1 + γ)∇⊥U (19)

where xjD is the relativistic deviation to the zero order (Newtonian) straight line trajectory,
and ∇⊥U is the projection of the gradient of U (16) onto the plane perpendicular to the light
ray. This is the (n,m) plane shown in figure 11 (b).

The light deflection of the ray is obtained as:

∆Φ =

∫

path
∂lt dl =

∫

path
(1 + γ)∇⊥U dl (20)

with the following expression for the gradient:

∇⊥U =

[
− b

r

(
−M
r2

+
3M

r4
J2R

2 5 cos2(χ)− 1

2

)
− 3M

r4
J2R

2 cos(χ) (z · n)

]
n

(21)

− 3M

r4
J2R

2 cos(χ) (z ·m) m
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(a) The geometry of light deflection due to
a planet (P): the spin axis of the planet z is
out of the plane; t represents the unit tan-
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observer (O) on the unperturbed light tra-
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Figure 1. The geometry of light deflection due to a planet (P): the spin axis of the planet z is out
of the plane; t represents the unit tangent vector from a distant star (S) to the observer (O) on the
unperturbed light trajectory; u is the unit direction from O to P along their distance a; finally, χ is
the angle SÔP, and b is the impact parameter.
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Figure 2. Light deflection by a planet: tangent plane on the sky. The position of the star is
displaced both in the radial (−n) and orthoradial m directions. The spin axis of the planet z (not
shown here) does not lie in this plane in general.

so the radial distance becomes

r = b(1 + λ2)1/2. (9)

Each integral entering (6) must be computed with λ running positively in the same direction
as the photon from λ = −∞ to λ = 1/ tan χ , with χ standing for the angular separation
between the directions star/observer and observer/planet (figure 1). At the closest approach
on the unperturbed ray one has λ = 0. The explicit expressions of the integrals are given in
appendix A. After some algebra, the light deflection vector is split into two components, the
first one along n and the second one along m, both including the monopole and the quadrupole
contribution of the planet in the function of the angular separation χ :

#Φ = #$1n + #$2m, (10)

where, precisely,

#$1 = (1 + γ )
2M

b

{
(1 + cos χ) + J2

R2

b2

[(
1 + cos χ +

1
2

cos χ sin2 χ

)

− 2
(

1 + cos χ +
1
2

cos χ sin2 χ +
3
4

cos χ sin4 χ

)
(n · z)2 + (sin3 χ − 3 sin5 χ)

× (n · z)(t · z) −
(

1 + cos χ +
1
2

cos χ sin2 χ − 3
2

cos χ sin4 χ

)
(t · z)2

]}
(11)

(b) Light deflection by a planet: tangent plane
on the sky. The position of the star is dis-
placed both in the radial (−n) and orthoradial
m directions. The spin axis of the planet z (not
shown here) does not lie in this plane in general.

Figure 11: Figures describing the light deflection geometry from Crosta and Mignard [2006]

Upon integration of equation (20) along the path from the source to the observer the
projection of the deflection vector onto the (n,m) plane is obtained. For its components
Crosta and Mignard [2006] obtain:

∆Φ = ∆Φ1 n + ∆Φ2 m (22)

∆Φ1 = (1 + γ)
GM

c2

1

ab

(
(1 + cosχ) + J2

R2

a2b2

[
(1 + cosχ+

1

2
cosχ sin2 χ)

− 2 (1 + cosχ+
1

2
cosχ sin2 χ+

3

4
cosχ sin4 χ)(n · z)2

+ (sin3 χ− 3 sin5 χ)(n · z)(t · z)

− (1 + cosχ+
1

2
cosχ sin2 χ− 3

2
cosχ sin4 χ)(t · z)2

] )
(23)

∆Φ2 = (1 + γ)
GM

c2
J2

R2

a3b3

(
2(1 + cosχ+

1

2
cosχ sin2 χ) (n · z) (m · z)

+ sin3 χ (m · z) (t · z)

)
(24)

The parameters in this formula are :

• R is the equatorial radius of the deflecting object, M its mass and J2 the quadrupole
moment.

• where d as shown in figure 11 (a) is the distance from Gaia to the deflecting object,
measured in astronomical units (AU)
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• b is the impact parameter, the distance from the planet to the trajectory of the light ray,
it is also measured in AU. We have: b = d sin(χ)

• χ if the angle between the directions from the observer toward the source and the planet,
we have χ = ̂( up , −t ) and cos(χ) = −(up · t).

• a is the value of 1 AU in meters as given in table 6 in appendix C.

An interesting particular case of formula (22) is the limit J2 → 0.

∆Φ1 → (1 + γ)
GM

c2

1

ab
( 1 + cosχ ) (25)

∆Φ2 → 0 (26)

⇒ ∆Φ → (1 + γ)
GM

c2

1

ab
( 1 + cosχ ) n = (1 + γ)

GM

c2

1

ad

(
1 + cosχ

sinχ

)
n (27)

We obtain the expected equation for the monopole light deflection:

||∆Φ|| → δmφ = (1 + γ)
GM

c2ad

(
1 + cosχ

sinχ

)
= (1 + γ)

GM

c2ad
cotan

(χ
2

)
(28)

The monopole deflection angle δmφ (with γ = 1) was used by Eddington for the solar light
deflection experiment to confirm general relativity. Its value is 1.75 arcsec for grazing rays.
The formula was also used in Hipparcos data reduction for light deflection by the Sun and
Earth [Lindegren et al., 1992].

In the following we call quadrupole term the quantity: ∆qΦ = (∆Φ1 − δmφ) n + ∆Φ2 m.

3.2.6 The quadrupole efficiency factor and derivatives

A further equation is needed for numerical resolution of the quadrupole light deflection equa-
tions in the AGIS framework. Therefore we introduce the quadrupole efficiency factor and
deduce equations (34) and (35). We then obtain the equation (47) for the derivatives of the
source direction vector, as required by the AGIS scheme. This refers to the method outlined
in section 4.1 of report 2.

The formulae (23) and (24) being heavy, we introduce the following notation:

A = (1 + γ)
GM

c2

1

ab
(29)

B = J2
R2

a2b2
(30)

C =
GM

c2

1

a2d2

1

1− cos(χ)
(31)

f1(χ) = (1 + cosχ+
1

2
cosχ sin2 χ)

− 2 (1 + cosχ+
1

2
cosχ sin2 χ+

3

4
cosχ sin4 χ)(n · z)2

+ (sin3 χ− 3 sin5 χ)(n · z)(t · z)

− (1 + cosχ+
1

2
cosχ sin2 χ− 3

2
cosχ sin4 χ)(t · z)2 (32)

f2(χ) = 2(1 + cosχ+
1

2
cosχ sin2 χ) (n · z) (m · z)

+ sin3 χ (m · z) (t · z) (33)
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The quadrupole efficiency factor (QEF) is denoted by ε, as in [Crosta and Mignard, 2006]. It
scales the quadrupole term in equations (23) and (24). These equations become:

∆Φ1 = A [ (1 + cosχ) + ε B f1(χ) ] (34)
∆Φ2 = εA B f2(χ) (35)

Equation (22) still holds, the total deflection is ∆Φ = ∆Φ1 n + ∆Φ2 m.
The derivatives required by the AGIS framework are those of the natural source direction

û with respect to ε. Here we give the detail of their calculation.

∂ û

∂ε
= ∂ε û (36)

=
∂ε∆Φ

|| ū + ∆Φ || + (ū + ∆Φ) ∂ε

(
1

|| ū + ∆Φ ||

)
(37)

=
( ∂ε∆Φ1 ) n + ( ∂ε∆Φ2 ) m

|| ū + ∆Φ || + (ū + ∆Φ) ∂ε

(
1

|| ū + ∆Φ ||

)
(38)

Where we use the notation: ∂x = ∂
∂x . It follows:

∂ε∆Φ = ( ∂ε∆Φ1 ) n + ( ∂ε∆Φ2 ) m = A B f1(χ)n + A B f2(χ)m (39)

∂ε

(
1

|| ū + ∆Φ ||

)
= −

(
1

|| ū + ∆Φ ||2
)
∂ε || ū + ∆Φ || (40)

|| ū + ∆Φ || =
√

ū2 + ∆Φ2 + 2 ū ·∆Φ (41)

∂ε|| ū + ∆Φ || =
1

2

1

|| ū + ∆Φ ||
(
∂ε
(

∆Φ2
)

+ ∂ε 2 ū ·∆Φ
)

(42)

∂ε|| ū + ∆Φ || =
1

2

1

|| ū + ∆Φ || ( 2 ∆Φ · ∂ε∆Φ + 2 ū · ∂ε ∆Φ ) (43)

=
(ū + ∆Φ) · ∂ε ( ∆Φ )

|| ū + ∆Φ || (44)

Thus:

∂ε û =
∂ε∆Φ

|| ū + ∆Φ || + (ū + ∆Φ) ∂ε

(
1

|| ū + ∆Φ ||

)
(45)

=
∂ε∆Φ

|| ū + ∆Φ || + (ū + ∆Φ)

(
−
(

1

|| ū + ∆Φ ||2
)

(ū + ∆Φ) · ∂ε ( ∆Φ )

|| ū + ∆Φ ||

)
(46)

∂ε û =
∂ε∆Φ

|| ū + ∆Φ || − (ū + ∆Φ)
(ū + ∆Φ) · ∂ε∆Φ

|| ū + ∆Φ ||3 (47)

This final expression (47), is the analytic formula for the derivative in the case of a single
deflecting body. In the case of multiple deflecting bodies their contributions have to be added
as: û′ = ū + Σi∆Φi and every body may have its own QEF εi. In the case of solar system
objects and the configuration of Gaia which does not observe close to the Sun, it is sufficiently
accurate to calculate derivatives in the approximation of a single body, treat each contribution
separately since || ū + Σi∆Φi || ≈ || ū || . This discussion is relegated to section ??.

The analog of (47) for the monopole term and gamma is (48). In which we use the
heliocentric position of Gaia r, the notation u1 = ū + ∆Φ and u1 = || u1 || .
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Next we compare this expression to a further approximation (49), which was used for the
derivatives in PPN γ for Hipparcos Lindegren et al. [1992] and in AGISLab Hobbs et al. [2010].

∂ û

∂γ
= −C 1

u3
1

(
(1 + γ) C r2 + (r · u)

)
u1 +

1

u1
C r (48)

∂ û

∂γ
≈ (r − ū(ū · r))

GMc−2

r(r + ū · r)
(49)

In analogy to (49) we would like to write for ∂ε û :

∂ε û = ∂ε∆Φ − (ū + ∆Φ) ∂ε(ū ·∆Φ) (50)

The derivation of equation (49) uses Taylor expansions. Knowing that the deflection term
∆Φ is small (in most observable cases), we can rewrite (17):

û =
ū + ∆Φ

|| ū + ∆Φ || (51)

= ( ū + ∆Φ )
(
ū2 + 2 ū ·∆Φ + ∆Φ2

)− 1
2

= ( ū + ∆Φ ) ( 1 + 2 ū ·∆Φ + o(||∆Φ||) )−
1
2

≈ ( ū + ∆Φ )

(
1− 1

2
2 ū ·∆Φ + o(||∆Φ||)

)

≈ ū + ∆Φ− ū (ū ·∆Φ)−∆Φ( ū ·∆Φ) + o(||∆Φ||)
≈ ū + ∆Φ− ū (ū ·∆Φ) + o(||∆Φ||)
≈ ū + (1− ū ūT )∆Φ + o(||∆Φ||) (52)

where ū2 = 1 and ∆Φ( ū ·∆Φ) = o(||∆Φ||)
Upon deriving (52) with respect to ε:

∂ε û ≈ ∂εū + ∂ε
(

(1− ū ūT )∆Φ
)

(53)

≈ 0 + (1− ū ūT ) ∂ε∆Φ

∂ε û ≈ (1− ū ūT ) ∂ε∆Φ (54)
∂ε û ≈ ∂ε∆Φ− ū ( ū · ∂ε∆Φ ) (55)

Alternatively, deriving (52) with respect to γ:

∂γ û ≈ ∂γū + ∂γ
(

(1− ū ūT )∆Φ
)

(56)

≈ 0 + (1− ū ūT ) ∂γ∆Φ

∂γ û ≈ (1− ū ūT ) ∂γ∆Φ (57)
∂γ û ≈ ∂γ∆Φ− ū ( ū · ∂γ∆Φ ) (58)

These different expressions for the derivatives have been implemented and tested in AGISLab.
The results of the different formulae are compared in the next section.
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4 Simulation and analysis of light deflection

In this section we will discuss the implementation of the quadrupole deflection term in AGISLab
and the results we have obtained. We are interested in the constraints Gaia astrometry will
place on the PPN parameter γ and the measurement of quadrupole gravitational light deflec-
tion. The reason we study Jupiter is that the quadrupole deflection by this planet is supposed
to be the strongest in the solar system [Klioner, 2003]. In view of this we have run realistic
simulations of the astrometric core solution for the Gaia mission.

In the following sections we will discuss the design and implementation of the deflection
calculation. We will also describe the configuration of sources (input data) used for the runs.
Thereafter we will discuss the results which we have obtained.

4.1 Design of the implementation in the AGISLab framework

4.1.1 The SourceDirection interface

In search of the astrometric solution AGIS needs to calculate the proper direction. The prin-
ciple is the same in the scaled AGISLab. One of the steps in the transformation from the
coordinate direction to the proper direction is the determination of light deflection. This has
been discussed in section 3.3.5 of Ludl [2011]. In AGISLab this is handled by the interface
SourceDirection. This interface admits different implementations. In figure 12 the relationship
between these classes and the interface are depicted.

The first implementation of SourceDirection is SourceDirectionGeometricImpl, written by
Hobbs et al. [2010]. This calculates the “proper source direction” starting from observation
data. This implementation will be referred to as the “old” model. It was already mentioned
in section 3.4.1 of Ludl [2011], that it is based on a model of monopole light deflection for
the Sun and planets similar to the one used in Hipparcos data processing [Lindegren et al.,
1992]. We will use it as a reference for our simulations when looking at monopole terms and
the convergence of PPN γ.

The implementation SourceDirectionGeometricQuadImpl was designed during this project.
It takes into account the light deflection terms up to quadrupole order for Jupiter. It can also
be used for other planets. It uses the new formalism and derivative equations for PPN γ and
the quadrupole efficiency factor (QEF) ε. It implements the validated equations (34) and (35)
and the derivatives (47) for QEF ε and (48) for PPN γ. We call this the “new” model. An
intermediary version has been implemented and tested for the purpose of comparing results
to those of the “old” model. The full quadrupole model is used to study Gaia’s ability to
detect the so far unobserved quadrupole gravitational light deflection by Jupiter. To this end
we simulate the performance of Gaia in realistic simulations including Observation noise and
a band of known stars near Jupiter. It will allow direct comparison of our results to those
obtained with Gaia’s baseline relativity model, GREM, for which SourceDirection will also act
as an interface [Klioner, 2003, 2008]. The interface is implemented in SourceDirectionGremImpl
as depicted in figure 12.

We have paid attention to writing documentation for the implemented methods. The role
of each method is specified, as well as the significance of the input and output parameters.
This was done with a view to facilitate testing and subsequent use by the research group.
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Figure 12: UML diagram depicting the inheritance relationship between SourceDirec-
tion, SourceDirectionGeometricImpl, SourceDirectionGeometricQuadImpl and SourceDirection-
GremImpl. These classes implement different models for gravitational light deflection. For
the former it is the one detailed in this work, the last is based on GREM.

4.1.2 Implementing the source direction calculation

The role of the Global update block in AGIS and AGISLab is to determine the values of a set of
model parameters that are constant throughout the mission [Hobbs et al., 2010]. Among those
are the PPN γ for the Sun and planets and in addition the quadrupole efficiency factor we have
introduced here. The Global update block calculates the updates to the global parameters. It
solves the normal equation for the globals, which requires the derivatives of the source direction
with respect to the global parameters. This is why we calculate ∂γû and ∂εû [Hobbs et al.,
2010].

The method setObservationTime(GaiaTime, Fov, Quaternion, CalcDirMode) executes the cal-
culation and calls the (private) methods computeMonopoleDeflection(GaiaTime, CalcDirMode)
and then computeQuadrupoleDeflection(GaiaTime, CalcDirMode). These evaluate the deflec-
tions and derivatives and add the former to the source direction uInE (in E = ICRS). These
calculations are implemented in quadrupoleDeflection(GaiaTime, CalcDirMode, int, GVector3d)
and monopoleDeflection(GaiaTime, CalcDirMode, int, GVector3d). Their arguments are the time
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Figure 13: The UML diagram of the relations between the classes SourceDirectionGeometric-
QuadImpl, QuadrupoleDerivativesStructuredData, QuadrupoleDerivatives and QuadrupoleDeriva-
tivesTest. (Also shown in report 1, figure 13)

of the recorded observation event for which the deflection is calculated (GaiaTime), a parame-
ter specifying the calculation mode (CalcDirMode), the integer identifier (int) of the deflecting
object (e.g. Jupiter or the Sun) and the position of the deflecting body relative to Gaia in
ICRS (GVector3d).

For the design of the methods to be used in SourceDirectionGeometricQuadImpl as described
above, we have to split the equations (34) and (35) [Crosta and Mignard, 2006] of the “new”
model into monopole and quadrupole terms. The monopole and quadrupole methods for the
derivatives respectively calculate (48) for PPN γ and (47) for QEF ε. These equations have
been validated as detailed in the previous section 3.4 of Ludl [2011].

The infrastructure required for the representation of relevant quantities was already present
in AGISLab. A class representing vectors GVector3d already exists. There are further classes
representing Gaia relevant data, such as (SolarSystemEphemeris) and GaiaTime. A few changes
had to made to incorporate the global quadrupole efficiency factor (ε) into the global update
block. It was necessary to re-factored GlobalTypes and make the changes required for a new
parameter in the plotting methods.

To avoid recalculation of terms that will be reused by the methods evaluating the deriva-
tives, the auxiliary class QuadrupoleDerivativesStructuredData has been made a subclass.
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4.1.3 The input data

Since our objective is to estimate the accuracy achievable with Gaia for measuring quadrupole
light deflection, we chose to use a real star distribution near Jupiter. A list of stars in a band
on the sky has been provided by François Mignard in the SOGAR Java bundle. A subset of
them have been taken from the Hipparcos and Tycho-2 catalogues.

We used the file listing 2 million stars near Jupiter. Had we used this directly, it would
have taken a long time to run a single simulation. Thus we filtered the stars according to
magnitude and angular separation to Jupiter. We generated several sets of stars as listed in
table 3. The final configuration (set 3) of stars contains all stars which lie within 300 arcsec
of Jupiter and are brighter than magnitude 17.

Θmax Magnitude star number

set 1 300 arcsec 6 < G < 15 21 862
set 2 300 arcsec 6 < G < 15.9 47 830
set 3 300 arcsec 6 < G < 17 74 146

Table 3: The configurations of stars filtered out of the initial file containing 2 million stars.
The maximal angular distance form Jupiter Θmax and the number of stars in the band, as well
as their magnitudes are given. The lower G magnitude limit is 6 since Gaia will not detect
brighter stars.

The sources are loaded into AGISLab by implementations of the SourceGenerator interface.
The star list does not contain proper motions, therefore we use a random generator to create
a realistic distribution. This is done in SourceGeneratorNearJupiterPropMotionImpl. However
these stars alone will not permit convergence of AGIS. We have therefore also included a set of
randomly generated stars that are uniformly distributed over the sky. This allows the attitude
of Gaia to be constrained. For this we use SourceGeneratorRandomImpl. The band of stars of
the final configuration is shown in figure 16. Set 1 and 2 were used for quick runs, set 3 for
more realistic simulations.

Figure 14: The magnitude distribution of the stars in set 3 (table 3). The statistical charac-
teristics of the data set are indicated below the figure. [image generated with AGISLab]
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The model includes Observation noise as described in de Bruijne [2009]. It accounts for
the estimated AL and AC location-estimation performance of Gaia. This will be a function of
magnitude and affects the weight (w) of each observed star in equation (1).

The noise distribution is Gaussian and depends on the brightness of the sources, thus it
produces a spread and noisy observations that have lower weight in equation (1). Thus, for
simulations which are otherwise identical, enabling observation noise will result in less good
but realistic results.

318 D. Hobbs et al.

Figure 2. The distribution of observation weights for each G-magnitude bin (0.5) clearly shows
that primary stars with G ! 16 contribute most to the determination of PPN γ. The figures
assume that only 10% of the measured stars are used.

Using AGISLab, we have run large numbers (typically M = 100) of solutions with
different initial conditions, random star distributions and observation noises, and calcu-
lated the resulting PPN γ (assuming γ = 1 when generating the observations) and its
formal standard error σLab

γ in the Global Update (which takes into account the corre-
lation between γ and #0). Based on simulations with N = 10 000 and 50 000 primary
stars, it was verified that the formal standard error σγ as well as the sample standard de-
viation of the many different estimates of γ scale exactly as w−1/2 , where w =

∑
obs σ−2

obs

is the total statistical weight of the observations used in the solution. Here, σobs is the
assumed along-scan standard error of a single observation, resulting from the crossing of
one primary star over one CCD in the astrometric field of Gaia. In the real Gaia, σobs is
mainly a function of the G magnitude of the star (with G representing the very broad
spectral response of Gaia, ! 330–1000 nm), and has been estimated through extensive
Monte Carlo simulations of the image location process using the Gaia Accuracy Analysis
Tool (de Bruijne 2005). For bright stars (G = 6 to 13) this gives σobs = 75 µas assuming
that the CCDs can be operated near full-well capacity for these stars; the corresponding
numbers at G = 15 and 20 are 240 µas and 3.1 mas, respectively.

The small-scale simulations using AGISLab are thus used to calculate statistics for
the distribution of errors in the estimated PPN γ which can then be extrapolated to the
full-scale AGIS solution. The extrapolation uses the following formula:

σFull
γ = U × σLab

γ ×
(

wFull

wLab

)− 1
2

, U =

√√√√ 1

M

M∑

i=1

(
γi − 1

σLab
γ i

)2

(4.2)

Here, the labels Full and Lab refer to the full-scale AGIS and the small-scale AGISLab
solutions, respectively, and γi and σLab

γ i are the estimated value in the ith solution and its
formal standard error. U is an empirical factor correcting for the neglected correlations
between γ and all other unknowns except #0 .

5. Results and discussion

A typical Monte Carlo experiment consisted of 100 simulated solutions of 10 000 pri-
mary stars, each using on average 8 768 000 observations with an assumed observation

Figure 15: The observation weight distribution as a function of G magnitude, for bins of 0.5
magnitude. (Graph from Hobbs et al. [2010])

We have produced filtered sets of stars to reduce the number of stars so that calculations can
be done in a reasonable time (less than a few days) on normal machines. We chose cut offs at
magnitudes 15, 15.9 and 17 because the stars with largest weight are stars with G magnitudes
lower than 16. This is illustrated in figure 15 which shows the distribution of observation
weights. For this reason stars of magnitude G ≤ 16 provide the largest contribution to the
determination of PPN γ [Hobbs et al., 2010]. Nevertheless faint stars provide a contribution
as well, for quadrupole simulations we found it necessary to include more stars to constrain
the quadrupole efficiency factor.

To correctly account for the quadrupole term, the direction of Jupiter’s rotation axis must
also be known. In the present implementation, as in report 1, we have assumed that it is
orthogonal to Jupiter’s orbital plane, more sophisticated models have been discussed by the
REMAT group Lattanzi and Crosta [2009].
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Figure 16: The band of stars near Jupiter used for the simulations of quadrupole light de-
flection. The squares are color coded to indicate the medium number of sources per pixel,
the turquoise line corresponds to the ecliptic. There are 74 146 in a band of width 300 arcsec
above and below to Jupiter’s trajectory. For the projection the equatorial coordinate system
is used. (There are also 70 000 stars all over the sky but their density is much lower than in
the band and the automatic color coding in AGISLab has diluted them into white.) [image
generated with AGISLab]
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4.2 Results and analysis

We discuss the main results of our simulations of quadrupole deflection by Jupiter and the
determination of PPN γ using planetary (monopole) light deflection.

4.2.1 A test plan

We have followed the following protocol. First the validity of the implemented equations was
tested, this is described in section 3.4 of Ludl [2011]. Then we carried out experiments with
relatively small runs using the sets 1 and 2 of stars near Jupiter (table 3). This established the
convergence of the implemented formulae and demonstrated the quadrupole term in nearly
realistic simulations. Finally we studied the statistical significance of the simulation. In two
cases, we performed a set of 10 experiments using different random seeds for random sources,
observation noise, this is described below in the respective sections.

There is an analogy between the global parameters PPN γ and QEF ε. For both the
baseline model assumes that their value is 1. Hence the errors of the “global parameters” PPN
γ for the Sun, PPN γ for Jupiter, and QEF ε for Jupiter, are defined as in equations (65) and
(66) in the first report :

ErrSun(γ) = γS − 1

ErrJup(γ) = γJ − 1

ErrJup(ε) = εJ − 1 (59)

case 1
sources set 1 and 20 000 random stars
observation noise Off

case 2
sources set 1 and 20 000 random stars
observation noise On

case 3
sources set 3 and 70 000 random stars
observation noise Off

case 4
sources set 3 and 70 000 random stars
observation noise On

Table 4: The typical configurations for the simulations discussed in this section. For these
cases we have performed simulations with and without observation noise and initial errors of
source, attitude and global parameters.
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4.2.2 Estimates of the achievable accuracy of the measurements for quadrupole
deflection by Jupiter

Here we present our results on the estimation of the quadrupole efficiency factor. We analyse
the dependence of the standard deviation of QEF ε on the angular width of the exclusion zone
around Jupiter.

The exclusion zone is the zone in which observations of stars are impossible. We denote its
radius as θtot = θJ + θe, where θJ is the angular radius of Jupiter, and θe is the angular width
of the band where saturation of the CCDs occurs. A technical discussion can be found in
[Martin Fleitas et al., 2011], where it is pointed out that in the saturated band false detections
occur. In order to avoid false observations, this zone must be filtered out. Martin Fleitas
et al. [2011] estimate θe to be between 2 and 4 arcsec around Jupiter’s limb. We have made
simulations in steps of 5 arcsec to study the implications on the observation of quadrupole
light deflection.

We have produced simulations using SourceDirectionGeometricQuadImpl, we chose to incre-
ment θe by steps of 5 arcsec, from 0 arcsec to 20 arcsec.

First we studied the convergence of the new setup. For different values of θe we tested
different configurations of initial errors of source, attitude and global parameters, and obser-
vation noise. In noiseless simulations without initial errors the convergence is very good, in a
few iterations ErrJup(ε) reaches a level of 10−5. When observation noise is enabled this value
deteriorates to the order of 0.01. As shown for instance in figure 17 (for θe = 0 arcsec).

With intial errors in global, source and attitude parameters and observation noise enabled,
we obtain an oscillating behaviour as described in section 3.4.3 of Ludl [2011]. This is shown
in figure 18. We can see that ErrJup(ε) does converge albeit more slowly.

For a given set of seed parameters, these different runs converge to the same value, but
runs with initial errors need more iterations to converge. The converged value of ErrJup(ε) is
reasonably small to consider the detectability of the effect.

The second step was then to look at the standard deviations for QEF ε.
The standard deviations have been calculated for simulations of case 4 in table 4. Formal

values have been produced with AGISLab, which calculates them at every iteration. We have
retained the values of σε at iteration 50. For the square of the standard deviation it uses:

σ2
gi = (N−1

g )ii (60)

This equation is analogous to equation (3.2) in Holl et al. [2010], where gi is any global
parameter and Ng is the matrix of the global normal equation (90) in Lindegren et al. [2011].

For 0 and 5 arcsec we performed 10 runs each to compute statistically relevant values.
Different random seeds for the random sources and observation noise were used. Initial errors
were disabled since it does not affect the final value, and convergence can be accelerated in
this fashion. Since these Monte Carlo simulations with different seeds are uncorrelated, we
can calculate a meaningful average value of (σε) the standard deviations of ErrJup(ε).

A convergence plot is shown in figure 17. In figure 17 we see the convergence for a run
with observation noise enabled and 0 arcsec radius of the exclusion zone. This simulation is
part of those used to obtain σε for θe = 0. The convergence is better than for larger values
of θe, however the observation noise is propagated and reduces the weight of certain sources.
For this reason the converged value of the error (ErrJup(ε) ≈ 0.02) in this case is larger than
for noiseless observations (10−5).

For larger values of θe the converged value of the error (ErrJup(ε)) is larger because the
quadrupole term is weaker at large angles from Jupiter. (∆Φ ∝ 1/b3 see section 3.2.5 :
equations (22) and (24) and section 3.4.3 of Ludl [2011].
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Figure 17: Convergence plot for the global parameters, in red (→) the error in PPN γ of
the Sun in yellow (→) the error in PPN γ of Jupiter, and in grey (→) the error in QEF ε
of Jupiter. For an exclusion zone radius θe = 0 arcsec, no initial errors but observation noise
enabled. The numbers in the box at the bottom of the graphs indicate the values at the end
of iteration 50. (Plot generated using AGISLab)

The distribution of ErrJup(ε) for ten runs is shown in figure 19 for zero exclusion radius.
Most of the error bars for QEF ε do intersect ErrJup(ε) = 0. The fact that the distribution is
not centered on zero is due to the weakness of the effect and the observation noise. Adding
observation noise diminishes the weight of many observations, most stars being faint we ef-
fectively lose many observations. This has also been discussed in section 4.1.3. The standard
deviations for all runs are very close, their average is σε = 0.089. We would expect the average
value to be closer to zero if we could solve the astrometric problem exactly.

For the mean value of the errors 〈 ErrJup(ε) 〉 we should have:
〈

Err2
Jup(ε)

〉
=
〈

(εJ − 1)2
〉
≈ σ2

ε (61)

For the data set shown in figure 19 we have : for the formal error σε = 0.089 and σ2
ε = 0.0079

as obtained from equation (60). For the average of the errors we have
〈

Err2
Jup(ε)

〉
= 0.0099.

These values agree reasonably well considering that we have only 10 data points. Considering
the relatively small scale of the simulation and the small number (10) of runs in this set our
result is acceptable. Given more time and sets of a hundred runs on bigger sets of stars one
can expect to improve this to match (61) better.
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Figure 18: Convergence plot for the global parameters, in red (→) the error in PPN γ of
the Sun in yellow (→) the error in PPN γ of Jupiter, and in grey (→) the error in QEF ε
of Jupiter. For an exclusion zone radius θe = 20 arcsec, observation noise enabled, no initial
errors for source parameters, but initial errors in attitude and global parameters. The numbers
in the box at the bottom of the graphs indicate the values at the end of iteration 50. (Plot
generated using AGISLab)

The dependence of standard deviation (σε) on the angular radius (θe) is shown in figure
20. An increase can be seen, this was to be expected since the quadrupole deflection depends
strongly on the separation from Jupiter (1/b3 see section 3.4.3 of Ludl [2011]).

From these results we can expect a 10σ detection of quadrupole light deflection with Gaia.
In the realistic case of 5 arcsec the standard deviation is larger and the confidence level may
be around 6σ. (The calculations are done, data on the averages for θe = 5 arcsec will soon be
added).
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Figure 19: The distribution of errors (green crosses) ErrJup(ε), the error bars represent the
formal standard deviations given by (60). For ten runs with observation noise enabled and
zero exclusion radius. Different simulations use different seed values for the random sources
and observation noise. The red line represents the expected value for the error in the baseline
relativity model.

Figure 20: The standard deviation of QEF ε for Jupiter (σε) as a function of the angular
radius (θe) of the exclusion zone (in arcsec). For a given θe the values of σε are very similar
for different values of the random seeds. We have used averages over sets of ten simulations
for θe = 0, 5, 15 arcsec, and the values for a single simulation for the remaining cases.
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4.2.3 Assessment of the monopole light deflection for the planets

In the first report we have discussed the convergence of the errors of PPN γ for small simula-
tions. Here we analyse the results obtained for their standard errors in larger runs. We will
give a realistic estimate of the precision of the measurement of PPN γ.

The size exclusion zone does not affect the precision of the convergence of PPN γ for the
Sun and Jupiter as much as it does the quadrupole convergence. Since it is a stronger effect
as discussed in section 3.4.4 of Ludl [2011].

The astrometric precision of these runs can be estimated from the results with θe = 0
arcsec. An astrometric convergence plot is shown in figure 21. The configurations (set 3)
have a flat convergence plot since we started from true source values (no inital errors). The
astrometric precision is 10µarcsec. This is a good estimate of the end of mission accuracy of
Gaia.

For the sets of 10 runs studied above (θe = 0arcsec) with respect to QEF ε, we can also
determine the errors in PPN γ using the same method. The results are shown in figures 22
and 23. For Jupiter we can note reasonable agreement, although the criterion (61) is only
weakly fulfilled. (σγ = 5.4 · 10−4;σ2

γ = 2.9 · 10−7;
〈

Err2
Jup(γ)

〉
= 4.6 · 10−7)

For the Sun we can see more outliers at the 1σ level. We note that the formal sigma
σγS = 1.87 ∗ 10−5 for PPN γ of the Sun is much smaller than those for γ and ε of Jupiter. We
are already close to the limit of precision feasible with Gaia which is estimated to be σγ > 10−6

(for PPN γ of the Sun) by Hobbs et al. [2010]. This again may be due to the small number of
calcuations.

Figure 21: Convergence plot for the astrometric parameters, α (right ascension) in green, δ
(declination) in blue, $ (parallax) in red, µα in pink and µδ in cyan. The solid line represents
the value of the parameter and the dashed line shows the absolute value of the update of the
parameter at each iteration. For an exclusion zone radius θe = 0 arcsec, observation noise
enabled, no initial errors for source parameters. The numbers in the box at the bottom of the
graphs indicate the values at the end of iteration 50. (Plot generated using AGISLab)
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Figure 22: The distribution of errors (yellow crosses) ErrJup(γ), the error bars represent the
formal standard deviations given by (60). For ten runs with observation noise enabled and
zero exclusion radius. Different simulations use different seed values for the random sources
and observation noise. The red line represents the expected value ErrJup(γ) = γ − 1 = 0 for
the error in the baseline relativity model.

Figure 23: The distribution of errors (red crosses) ErrSun(γ) the error bars represent the
formal standard deviations given by (60). For ten runs with observation noise enabled and
zero exclusion radius. Different simulations use different seed values for the random sources
and observation noise. The purple line represent the expected value ErrSun(γ) = γ− 1 = 0 for
the error in the baseline relativity model.
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4.2.4 Discussion

According to these simulations, we can conclude that at a precision of 10µarcsec, Gaia will be
able to measure deviations of PPN γ from the value it has in general relativity (γ = 1), if they
are larger than 10−5. However for the bound on Gaia, the number of stars and their weight
matters strongly. Gaia is expected to see 100 million stars, our simulation is based on 140
thousand. The accuracy of the attitude will be much better for the real mission because Gaia
will observe more bright stars all over the sky. There may not be many more stars close to
Jupiter that will be observed, but the faint stars will also contribute to Gaia’s final estimation
of γ, albeit marginally, and can push the boundary of tests of alternative theories of gravity
to 10−6 as demonstrated by [Hobbs et al., 2010].

We have also shown that a detection of quadrupole light deflection with Gaia is possible
when accounting for realistic observation noise and an exclusion radius of θe = 5 arcsecaround
Jupiter. This is an improvement on the result of [Crosta and Mignard, 2006]They did not
make realistic simulations of Gaia, no observation noise is included in their model, and they
concluded only a 3σ confidence level of the detection. Concerning the determination of PPN
γ with Jupiter’s monopole deflection, we conclude that it will be possible to reach at least
(σγ = 5.4 · 10−4) with real mission data. This is also an improvement on the 10−3 estimated
by [Crosta and Mignard, 2006].
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5 Conclusion

We have studied light deflection in the solar system from both the theoretical and practical
perspectives. In the discussion of the theory we have focused on the model proposed by [Crosta
and Mignard, 2006] and have deduced an expression for the derivative of the source direction
with respect to the quadrupole efficiency factor (ε).

In the practical part of this work, we have focused on implementing this model accounting
for quadrupole light deflection in AGISLab. Our results demonstrate that the scheme as
implemented in AGISLab is reasonably well-behaved and converges. It allows to study light
deflection in realistic simulations accounting for the exclusion zone near Jupiter and observation
noise.

The framework that we have obtained will allow direct comparison of our results to those
obtained with GREM and potentially other relativity models. They give a first estimation of
Gaia’s capacity to detect quadrupole light deflection by Jupiter. This we can answer in the
affirmative, Gaia and AGIS will allow to detect this effect to at least 6σ level, when assuming
nominal astrometric performance. We could also assess the impact of the size of the exclusion
zone around Jupiter. From the results obtained we can conclude that detection quadrupole
effect will suffer, but may be rendered unobservable should the radius of the exclusion zone
exceed 20 arcsec.

Concerning the determination of PPN γ, our simulations indicate that Gaia should allow to
detect variations down to at least 5.4 ·10−4. On real Gaia data the result is presumably better,
due to the larger number of sources observed all over the sky, solar (monopole) light deflection
will be accurately constrained. As far as this Solar System test is concerned alternative theories
of gravity will most likely have to stick closely to general relativity or be discarded.

As this is a short project, many paths had to be left unexplored and there are further
topics to investigate. One interesting investigation would be to perform more runs to confirm
the estimates of quadrupole detection presented in section 4.2.2. Also of interest is the impact
of planetary light deflection affecting the monitoring of basic angle variations. This is possible
because the parallax shift and light deflection from the Sun are nearly collinear. Thus terms
allowing to de-correlate PPN γ from the parallax may help improve the uncertainties in the
basic angle determination. Another topic closely related is dipole light deflection due to the
motion of deflecting bodies and the integration of GREM into AGISLab.
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Section B

A Acronyms and Notations

Abbreviation Meaning

AC across-scan
AGIS Astrometric Global Iterative Solution
AL along-scan
as or ′′ second of arc or arcsecond (arcsec), 1 part in 3600 of one degree
AU astronomical unit
BCRS Barycentric Reference System
ESAC European Space Astronomy Centre (ESAC), near Madrid
CoMRS Center-of-Mass Reference System (of Gaia)
FL First-Look
FoV field of view
Gaia (formerly) Global Astrometric Interferometer for Astrophysics
GCRS Geocentric Reference System
Hipparcos High Precision Parallax Collecting Satellite
IAU International Astronomical Union
ICRS International Celestial Reference System
ICRF International Celestial Reference Frame
IDT Initial Data Treatment
IMCCE Institut de Mécanique Céleste et de Calcul des Éphémérides, Paris
ISO International Organisation for Standardization, Geneva
JD Julian Date; a notation for time
JPL Jet Propulsion Laboratory, NASA, Pasadena
ODAS One Day Astrometric Solution
PPN parametrized post-Newtonian
µarcsec micro arcsecond
QEF quadrupole efficiency factor

Table 5: The listing of the acronyms used in this work.

B Tensor equations

B.1 Covariant derivative and Christoffel symbols

For partial derivatives we use the following notation :

∂βAα :=
∂

∂xβ
Aα (62)

Some authors also use the notation Aα , β = ∂βAα which we have avoided here. In tensorial
equations, we use the Einstein summation convention. Greek indeces range from 0 to 3, latin
indices from 1 to 3. The Christoffel symbols Γαβγ (also called connection coefficients):

are defined by (63). Relation (64) relates it to the metric tensor.

Γαβγ = − ∂βx̄µ∂γ x̄ν∂µ̄∂ν̄xα (63)

Γαβγ =
1

2
gνµ ( ∂βgµα + ∂αgµβ − ∂µgαβ ) (64)

We define the covariant derivative of a covariant tensor Aα by

Aα;β = ∂βAα + ΓναβAν (65)

52



Units

B.2 Riemann and Einstein tensors

The Riemann curvature tensor Rµναβ , which is a function of the Christoffel symbols and there-
fore of the metric itself.

Rµναβ = ∂αΓµνβ − ∂βΓµνα + ΓµγαΓγνβ − ΓµγβΓγνα (66)

as given in [Will, 1993] section 3.2
The Einstein tensor Gµν is defined as:

Gµν = Rµν −
1

2
gµνR (67)

where Rαβ and R are defined as contractions of the Riemann curvature tensor. The Ricci
tensor is Rαβ = Rνανβ and the Ricci scalar is R = gαβRαβ .

B.3 Energy-momentum tensor

The energy momentum tensor appearing the in the field equations (2) will depend on the
model of matter chosen. A fairly general example is given by [Will, 1993], where matter is
modeled as a perfect fluid in which case:

Tµν = ( ρ+ ρΠ + p )uµuν + p gµν (68)

where the quantities are defined as follows:

• ρ is rest-mass–energy density of atoms in the fluid element,

• p is the isotropic pressure of the fluid,

• Π is the specific density of internal kinetic and thermal energy,

• uµ = dxµ/dτ is the four-velocity vector of the fluid element.

and τ is the separation between two space-time events:

dτ2 = ε gµνxµxν (69)

τ =

∫

Path:a→b
dτ (70)

where ε = ±1 is chosen so that dτ2 is positive. The separation between two events is called
time-like if ε = −1 and space-like otherwise. If gµνxµxν = 0 the separation is called light-like,
since light rays move along these null trajectories.

C Units

In this work we use SI units 10 . It is noteworthy that units are locally defined as “proper
units” in a reference frame. The question of their use and interpretation in general relativistic
context is discussed in the IAU resolution of 1991 Guinot [1992].

quantity unit value

G [m3kg−1s−2] 6.67428 · 10−11

c [ms−1] 2.99792458 · 108

a [mAU−1] 1.49597870691 · 1011

Table 6: Values of constants used in AGIS and AGISLab, provided by the Gaia Parameter
Database (http://gaia.esac.esa.int/gpdb).

10Système International http://www.bipm.org/en/si/
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Section D

D Legendre polynomials

The Legendre polynomials are given by the concise explicit expression (71):

Pn(y) =
1

2n(n!)
∂ny
[(
y2 − 1

)n] (71)

(n+ 1)Pn+1(y) = (2n+ 1)yPn(y)− nPn−1(y) (72)

where n is a positive integer number. Relation (72) is called Bonnet’s recursion formula.
These mathematical results can be found at http://dlmf.nist.gov/ and Abramowitz and

Stegun [1964] chapter 8.
The following are the first four polynomials which are used in the calculation in section

3.2.3.

P0(y) = 1 (73)
P1(y) = y (74)

P2(y) =
1

2

(
3y2 − 1

)
(75)

P3(y) =
1

2

(
5y3 − 3y

)
(76)
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Addenda

E Addenda

E.1 Plots of the errors for 5 arcsec exclusion radius

The figures below illustrate the errors and standard deviations of the quadrupole efficiency
factor ε, and PPN γ for the Sun and Jupiter. They correspond to a value of the exclusion
radius around Jupiter θe = 5 arcsec. These 10 simulations use the configuration of case 4 in
table 4 , 5 arcsec. Figures 33, 34 and 35 are the respective counterparts of figures 27, 29 and
30 given in section 4.2.2 and 4.2.3.

Figure 24: The distribution of errors (green crosses) ErrJup(ε), the error bars represent the
formal standard deviations given by (60). For ten runs with observation noise enabled and 5
arcsec exclusion radius. Different simulations use different seed values for the random sources
and observation noise. The red line represents the expected value for the error in the baseline
relativity model.

We see that there are more outliers in this case. It could be that the errors are not fully
converged, the exclusion zone angle might influence the convergence of the global parameters.
Alternatively, the sample of 10 runs may be too small.

55



Section E

Figure 25: The distribution of errors (yellow crosses) ErrJup(γ), the error bars represent the
formal standard deviations given by (60). For ten runs with observation noise enabled and 5
arcsec exclusion radius. Different simulations use different seed values for the random sources
and observation noise. The red line represents the expected value for the error in the baseline
relativity model.

Figure 26: The distribution of errors (green crosses) ErrSun(γ), the error bars represent the
formal standard deviations given by (60). For ten runs with observation noise enabled and 5
arcsec exclusion radius. Different simulations use different seed values for the random sources
and observation noise. The red line represents the expected value for the error in the baseline
relativity model.
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E.2 Sky plot of a simulation with set 3

In figure 27 the sky map of astrometric errors in parallax $ is shown. These charts were
produced with simulations of case 4 (set 3 and 70 thousand random stars). They do show that
the presence of the random stars does deteriorate the precision of the astrometric solution
much. The maximal errors are about 20 µarcsecbut they are rare, this is in good agreement
with nominal Gaia performance.

Figure 27: Sky map showing the average error per pixel of the parallax $ at iteration 50. (For
the projection the equatorial coordinate system is used.) [image generated with AGISLab]
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E.3 The quadrupole deflection pattern near Jupiter.

The figure below shows the quadrupole light deflection pattern near Jupiter. The correspond-
ing figure of the monopole deflection is shown in figure 15 section 3.4.3 in Ludl [2011].

Figure 28: The quadrupole deflection for a star grid centered on Jupiter (40 × 40 stars,
separation 5 arcsec). This shows a zoom on the inner 200 arcsec. (The scale of the arrows
is in micro arcsec, i.e. they have been scaled up by a factor of 106 compared to the angular
scale.) The data was computed using the tests for quadrupole deflection presented in section
3.4 of Ludl [2011]. [image generated with Gnuplot]
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