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Abstract 
With respect to climate change it is necessary to study land use and land cover (LULC) and 

their changes. LULC are related directly and indirectly to climatic changes such as rising 

temperatures that trigger earlier onset of vegetation growing seasons (IPCC 2007). Land 

surface phenology refers to the seasonal patterns of variation in vegetated land surfaces over 

large areas using satellite data (Reed et al. 2009). General variations observed from satellite 

may also be referred to as seasonality (Jönsson and Eklundh 2002, 2004). 

In this study, seasonality was modeled from normalized difference vegetation index time-

series derived from Moderate Resolution Imaging Spectro-Radiometer (MODIS) satellite 

data. Seasonality data contain valuable information about vegetation dynamics of LULC, 

such as the maximum of a season as well as the season start and end. The specific seasonality 

data signatures of LULC and may improve LULC classifications compared to multi-spectral 

satellite data approaches.  

Support vector machine classification (SVC) is a machine learning technique that does not 

require normal distributed input data. A normal distribution of seasonality data cannot be 

assumed. SVC is superior in comparison to traditional classification methods using multi-

spectral satellite data (Tso and Mather 2009). Thus, it is feasible to test the potential of SVC 

separation of LULC using seasonality data. The most common linear and non-linear SVC 

methods recommended for satellite data were applied in this study. 

The chosen study area is located in southern Sweden, and its LULC classes are well 

documented by the latest CORINE land cover 2006 data. Thus, it is a good test area for 

validation of the performance of seasonality parameters for LULC classification using SVC.  

In this study, a SVC framework was developed and implemented that: (1) selects the most 

appropriate input seasonality data, (2) incorporates a direct acyclic graph for multi-

classification and (3) validates the SVC outcomes with an accuracy assessment. 

The results of the four class SVC show moderate performances with overall accuracies 

between 61 - 64% and Kappa values ranging from 0.42 – 0.45. The accuracy differences 

between linear and non-linear SVC are marginal. However, there are potentials to improve 

the developed methodology, and thus the performance of SVC on seasonality data. In 

addition, the seasonality data should be tested with traditional parametric classifiers (i.e. 

maximum likelihood) in order to achieve valuable comparisons.  

Key words: Geography, Geomatics, Remote Sensing, MODIS, Support Vector Machine, 
Phenology, TIMESAT   
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Sammanfattning 
Då klimatförändringar studeras är det viktigt att ha markanvändningarna och deras 

förändringar i åtanke. Markanvändningarna är direkt och indirekt relaterat till 

klimatförändringar såsom exempelvis stigande temperaturer, vilket påskyndar starten av 

växtsäsongen. Fjärranalysdata ger en bättre bild av storskaliga förändringar i vegetationen än 

vad som är möjligt att observera från jordytan. Vegetationen och dess fenologi kan 

observeras med satellitdata, och kallas även för årstidsvariationer. 
 

Denna studie använder tidsserier av vegetationsindex från satellitdata för att modellera 

årstidsvariationer. Dessa matematiska modeller av årstidsvariationerna används sedan för att 

extrahera olika årstidsrelaterade parametrar som ger värdefull information om 

vegetationsdynamiken. Dessa årstidsrelaterade parametrar kan förbättra klassificeringen av 

markanvändningarna. 
 

Studien tillämpar en ny teknik, som kallas ”support vector machine” klassificering, för att 

klassificera de årstidsrelaterade parametrarna. Studien fokuserade på de vanligaste linjära och 

olinjära ”support vector machine” tekniker som rekommenderas för satellitdata. 
 

Det studerade området ligger i södra Sverige och dess markanvändningsklasser är sedan 

tidigare väldokumenterade. Det innebär att området är mycket lämpligt för att testa 

årstidsrelaterade parametrar genom att tillämpa ”support vector machine” klassificering.  
 

Studien utgick från att: (1) välja de mest lämpliga årstidsrelaterade parametrarna, (2) använda 

en multi-klassificering, och (3) utvärdera de klassificeringsutfall med 

noggrannhetsbedömningar baserat från senast dokumenterad CORINE land cover 2006 data. 
 

Resultaten påvisar en måttlig prestanda hos ”support vector machine” klassificering, där den 

övergripande noggrannheten landar mellan 61 till 64 %, och Kappavärdet varierar mellan 

0,49 till 0,52. Skillnaderna mellan de linjära och olinjära ”support vector machine” 

teknikerna är marginella. Dock bör årstidsrelaterade parametrar klassificeras med 

traditionella klassificeringsmetoder (t.ex. maximum likelihood-metoden), och jämföras med 

”support vector machine” klassificeringsresultaten.  

 

Nyckelord: Geografi, Geomatik, Fjärranalys, MODIS, Support Vector Machine, Fenologi, 

TIMESAT 
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1. Introduction 
With respect to climate change phenomena it is necessary to study land use and land cover 

(LULC) and their changes. LULC are directly and indirectly related to climatic changes such 

as rising temperatures that trigger earlier onset of vegetation growing season (IPCC 2007). 

Growing atmospheric CO2 concentrations lead to an increased biomass production due to 

CO2 fertilization (Cramer et al. 2001). The effects of global warming have influences on 

ecosystems and their vegetation types that may lead to changes in LULC classes. Vegetation 

adapt well to the seasonality of their environment such as earlier spring start and extended 

autumn, therefore the seasonal development of the vegetation may change and provide 

evidences that ecosystems are being influenced by climate change phenomena (Barr et al. 

2009).  
 

In northern Europe, vegetation might develop different green biomass (foliage) accumulation 

patterns, and thus the length of a growing season increases. Earlier starts of the growing 

seasons (i.e. spring and summer) have been observed (Menzel et al. 2006, Jönsson et al. 

2010). Therefore, it is useful to study the response of the vegetation to seasonal climatic 

cycles in irradiance, temperature and precipitation. This response is called phenology and 

represents an essential land surface parameter in atmospheric and climate models (Jönsson 

and Eklundh 2002, 2004).  
 

Over the last decades, satellite data have become a major data source to monitor changes of 

our environment. Remotely sensed data can provide a better picture of large-scale changes 

that cannot be observed from Earth’s surface. 

Land surface phenology (LSP) is the study of vegetation phenology and refers to the seasonal 

pattern of variation in vegetated land surfaces over larger areas using satellite data (Reed et 

al. 2009).  

Advantages of using satellite data for phenology applications are the ability to capture the 

continuous development of phenology patterns across the landscape and to create time-series 

for long term observations (Reed et al. 2009). The satellite derived annual seasonal patterns 

are referred as seasonality (Jönsson and Eklundh 2002, 2004). Seasonality can be modeled 

from vegetation indices (VI) computed from satellite data with high temporal resolution such 

as Moderate Resolution Imaging Spectro-Radiometer (MODIS). VIs such as normalized 

difference vegetation index (NDVI) time-series, based on MODIS data, have been 

successfully incorporated to monitor seasonality and phenological events (Jönsson et al. 

2010). There is a strong relationship between biomass and NDVI since the latter is a measure 
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of vegetation greenness and captures the seasonal development of foliage (Jönsson and 

Eklundh 2002, 2004).  
 

Modeled seasonality can be used to extract seasonality characteristics such as start, end, 

length, integral and amplitude of a season (Jönsson and Eklundh 2002, 2004). Seasonality 

characteristics might be useful for improving the separation between LULC classes. In most 

of the LULC classification studies using MODIS data multi-spectral, multi-spectral 

transformed data and VI time-series have been applied to separate LULC classes (Gonçalves 

et al. 2005, Gu et al. 2008, Gu et al. 2010). 
 

So far, the application of seasonality characteristics to classify LULC types has not been 

tested extensively. Hüttich et al. (2009) successfully applied MODIS and high resolution 

satellite time-series in combination with in-situ botanical survey data to model seasonality 

data and to classify the data into vegetation types in dry Savanna ecosystems. 

Following the discussion, it is assumed that seasonality data contain valuable information and 

improve LULC classification approaches. For example, LULC classes such as Forestland, 

Grassland or cropped Agricultural land have similar spectral signatures (see Figure 1), and a 

classification of the multi-spectral data may lead to misclassifications between these LULC 

classes. However, the seasonality parameters of the mentioned LULC classes are 

theoretically different (see Figure 2), since the LULC classes have different vegetation 

dynamics or seasonal developments. For example the seasonal development of Forestland 

shows an earlier onset of foliage growth, higher amplitudes and larger integrals of seasonal 

development compared to Grassland. Agricultural land has a shorter season length due to 

harvesting in relation to the other Grassland and Forestland. This seasonality information is 

valuable and might increase the performance of LULC classification approaches.  

However, the statistical distribution of modeled seasonality characteristics is not known 

(Eklundh 2010, personal communication), thus a normal distribution of the data cannot be 

assumed, and a feasible classification technique needs to be chosen. In such a case, machine 

learning algorithms seem to be a reasonable classification technique, since they do not 

assume normally distributed data (Richards and Jia 2006, Tso and Mather 2009).  
 

Support vector machine classification (SVC) is a recent technique for classifying data that 

has promising capabilities for improving classification performance of satellite data. It is a 

non-parametric (Richards and Jia 2006) separation method developed in the field of machine 

learning theory. 
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 Several studies of multi-spectral data have shown that SVC is superior to traditional 

classification methods (Pal and Mather 2003, Pal and Mather 2005, Tso and Mather 2009). 

Thus, it is feasible to test the performance of SVC using seasonality parameters to detect 

LULC. 
 

The chosen study area is located in southern Sweden, since its LULC classes are well 

documented by CORINE land cover 2006 – version 13 (CLC 2006). Thus, it is an excellent 

test area to validate the performance of seasonality parameters for LULC classification using 

SVC. Gonçalves et al. (2005) employed successfully CORINE land cover 2000 as validation 

data for SVC applied on MODIS satellite imagery. 
 

The outcomes of this study may be useful for further applications of SVC in large scale 

LULC mapping and LULC change monitoring using seasonality parameters, for studies of 

climate change effects. 
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2. Objectives 
The overall objective of this study is to test the potential of SVC to classify seasonality data 

that was modeled from MODIS satellite time-series. In order to achieve this overall objective 

it is necessary to develop and implement a methodology that considers the following specific 

objectives: 

 

• The development of a method that determines the most suitable seasonality 

characteristics to distinguish between the LULC classes of the chosen study area in 

southern Sweden. It is assumed that the more seasonality characteristics are used the 

more complex the classification procedure becomes. Finding a trade-off between 

computational expenses, complexity and the accuracy of the classification outcomes 

is an important part of this study.  

 
• The application of three commonly recommended SVC techniques (linear, 

polynomial function kernel and Gaussian radial basis kernel function) to classify the 

seasonality parameters in LULC classes.  

 
• The Validation of the classifications results with CORINE land cover 2006 data to 

determine the best performing of the three commonly used SVC techniques.  
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3. Theory 

3.1 Remote Sensing 
3.1.1 Introduction to Remote Sensing  
Earth observation is the science of collecting information about the surface of the Earth using 

satellite platforms. Remote sensing in terms of Earth observation involves two processes that 

are data acquisition and data analysis (Lillesand et al. 2004).  

Data acquisition describes measuring and recording of reflected or emitted energy. The 

observation takes place on a sensor mounted on an aircraft or spacecraft platform. The sensor 

records objects of interest, such as clouds or landscapes, beneath the platform. There are two 

systems of sensing remotely: passive and active way (Lillesand et al. 2004). 
 

The passive way is based on a sensor that records reflected solar radiation from the Earth 

surface, terrestrial radiation originated from the Earth itself as a radiator in terms of its own 

temperature. Passive remote sensing can take place in several wavelength bands of the 

electromagnetic spectrum such as the visible light, infrared and thermal electromagnetic 

radiation. The active way involves laser and radar devices that can be used to send artificial 

energy to the Earth and the scattered energy from the surface can be measured (Richards and 

Jia 2006). Remotely sensed data within a specific electromagnetic bandwidth are called bands 

or channels and are depending on the design of the corresponding sensors. Kramer (2002) 

gives a detailed description of all commercial used sensors and their design. 
 

The recorded data are organized in images and give information about reflected or emitted 

radiance in the chosen spectral wavelength bands (e.g. red light) according to the sensor 

design. Each surface or object has a unique spectral reflectance pattern, called signature, as 

shown in Figure 1 and enables to detect the surface or object. The data analysis process 

contains in brief the processing, interpretation, analysis and mapping of the remotely sensed 

data (Lillesand et al. 2004). 
 

The selection of a satellite sensor depends on the aim of a study, since sensors have different 

characteristics such as geometric resolution, temporal resolution and the placement of the 

sensor wavelength bands in the electromagnetic spectrum (Kramer 2002). This study involves 

the analysis of data from a passive remote sensing sensor called Moderate Resolution 

Imaging Spectro-Radiometer (MODIS). MODIS generates data of high temporal resolution, 

which enables observations of seasonal vegetation dynamics.  
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3.1.2 Moderate Resolution Imaging Spectro-Radiometer  
MODIS is a sensor flown on two satellites of the Earth Observing System (EOS) named 

EOS-AM Earth and EOS-AM Water programs and is suitable for this study since MODIS 

records data on a high temporal resolution. 

EOS-AM Terra was launched on December 18, 1999 and the mission objectives are the 

characterization of the terrestrial ecosystems, land use and land cover, soil moisture, 

terrestrial energy, oceans primary productivity, characteristics of the cloud systems, aerosol 

and radiative balance. EOS-AM Aqua was launched on May 4, 2002 and its objectives are 

studies of the water cycle and the radiative energy flux. Both satellites are in a near-polar, 

sun-synchronous orbit at 705 km altitude and an inclination of 98.2°. EOS-AM Terra has a 

10:30 A.M. equatorial crossing time in descending path motion and EOS-AM has a 1:30 P.M 

equatorial crossing time in ascending path motion (Kramer 2002, Lillesand et al. 2004, 

Gomarasca 2009). 
 

MODIS has a very high temporal resolution and is designed to measure parameters related to 

biological and physical processes at global scale every 1 or 2 days (Gomarasca 2009). 

MODIS has a total field of view of +- 55° providing a swath width of 2330 km. MODIS 

measures with 36 spectral bands between 0.405 µm and 14.385 µm at three spatial 

resolutions (250m, 500m and 1000m) depending on wavelength. In Table 1 the 

characterizations of the bands used in this study are shown. For further information about 

MODIS spectral bands please refer to Lillesand et al. (2004).  

Table 1 Used MODIS Spectral Bands based on Lillesand et al. (2004) 

Band no. Bandwidth [nm] Spectral light Spatial resolution [m] 
1 620-670 Red 250 
2 841-876 Near Infrared 250 
 

 

MODIS data have improved geometric rectification and radiometric calibration compared to 

the data of previous satellite sensors, such as the Advanced Very High Resolution 

Radiometer (AVHRR) sensor on the National Oceanic and Atmospheric Administration 

(NOAA) satellites. All 36 MODIS bands have a minimum band-to-band registration of 0.1 

pixel. The 20 reflected solar bands are absolutely calibrated radiometrically with a minimum 

accuracy of 5% (Lillesand et al. 2004). 

MODIS data are distributed in the standard tile format and in sinusoidal equal area 

projection. For further information about MODIS spectral and ancillary data products, tile 

information and sinusoidal projection please refer to the MODIS product website (LP DAAC 

2010). 
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For this study was used the 8-day 250m ground resolution surface reflectance product 

(MOD09Q1) and additional quality data from the MODIS sensor on the EOS-AM Terra 

mission. MOD09Q1 provides data from MODIS bands 1 and 2 at 250m-ground resolution 

(see Table 1) on an 8-day basis.  

The quality data are based on the quality flags of band 1, band 2, the cloud state flag from the 

8-day 500m ground resolution surface reflectance (MOD09A1) and quality information for 

the reflectance measurements (MODLAND QA bits). The bands of MOD09Q1 and MODIS 

quality data offer the possibility to observe vegetation dynamics and model seasonality with 

the help of vegetation indices. For more information about MODIS and MOD09Q1 please 

refer to MODIS product table (LP-DAAC 2011). 

 

3.1.3 Vegetation Indices  
Vegetation indices (VIs) are related to cover and status of vegetation and provide information 

on biomass productivity and its health condition. A direct correlation with leaf chlorophyll 

content and leaf area index (LAI) exists, which varies in relation to vegetation cycle and 

phenology. The normalized difference vegetation index (NDVI) bases on measured spectral 

reflectance. It relates spectral absorption of chlorophyll in the red light spectrum with 

reflection characteristics of vegetation in near infrared light spectrum (Gomarasca 2009). In 

Figure 1 spectral signatures of selected surfaces are illustrated, such as deciduous leaves 

(bright green) and grass (dark green).  

 In Equation 1 is shown how NDVI is calculated - based on Gomarasca (2009): 

RNIR

RNIR
NDVI

ρρ
ρρ

+
−=      Equation 1 

where: ρNIR = reflectance in the near infrared band; ρR = reflectance in the red band. 

This ratio leads to numbers in an interval between -1 and +1. Vegetated areas will lead to 

high values of NDVI due to relatively high reflectance of vegetation in the near infrared 

electromagnetic spectrum and low in the visible spectrum.  

Negative NDVI values can be caused by snow, water and clouds that have higher reflectance 

in the visible spectrum and less reflectance in the near infrared electromagnetic spectrum 

(compare Figure 1).  

NDVI values near zero are based on the similar reflectance of bare soil and rock in the red 

visible spectrum and near infrared electromagnetic spectrum (Lillesand et al. 2004).  
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Figure 1 Spectral signatures of selected surfaces and bandwidths of the MODIS channels 1 and 2. 
Spectral data were obtained from Baldrige et al. (2009). 

Advantages of NDVI are a reduced sensitivity, compared to single bands, to background 

signals such as soil if vegetation does not cover completely the surface; to geometry of view 

because of sensor angles acquisition; atmospheric effects and to the sun angle. However, a 

certain sensitivity of NDVI towards the mentioned phenomena exists (Gomarasca 2009). 

In this study, MODIS NDVI time-series are used on an 8-day basis and 250m-ground 

resolution. The NDVI time-series describe the seasonal vegetation development in respect of 

green biomass and are appropriate to model the seasonality of the chosen study area. 
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3.2 Seasonality  
3.2.1 Introduction  
Vegetation index time-series can be used to obtain information on seasonal vegetation 

development, called seasonality. This information helps to analyze the functional and 

structural characteristics of the global and regional land cover. Long vegetation indices time-

series, such as NDVI, can present information on shifts in the spatial distribution of bio-

climatic zones or land-use changes (Jönsson and Eklundh 2002, 2004).  
 

The exploration of NDVI time-series is helpful to study seasonal developments of vegetation 

over a given period of time. Thus, it is possible to describe how vegetation will produce and 

lose foliage (green biomass) over the given time period. In Figure 2 seasonal developments of 

LULC are shown notionally and the quantification of the green biomass measured with a 

NDVI time-series (period of three years). For this study, the most interesting vegetation types 

are Conifers-Boreal forest (red line) and Grass-Crops (dark-green line) as shown in Figure 2. 

There are differences in the seasonal development between Conifers-Boreal forest and Grass-

Crops. Conifers-Boreal forest shows an earlier onset of green biomass growth, higher 

amplitudes and larger integrals of seasonal development compared to Grassland. These 

differences are valuable to improve the classification of LULC classes. 

 

Figure 2 Seasonal development of selected LULC based on NDVI time-series from Thenkabail et al. 
(2009) 

A common seasonal development of a deciduous forest, in southern Sweden, can be 

described as follows: in the beginning of the season, in springtime, a strong increase of 

foliage (i.e. leaf- growing and budburst) takes place, this growth peaks in summertime; and 



 

12 
 

then it starts to decrease slightly until the end of summer is reached. In autumn, a strong 

decrease of green-biomass occurs due to falling leaves until the end of season is reached. 

During wintertime no growth or loss of foliage is supposed to occur. The patterns of different 

vegetation types are diverse, such as crops having a strong and rapid decrease of green-

biomass due to harvesting actions.  
 

In Figure 3 the pattern of seasonal developments of vegetation based on MODIS NDVI time-

series (period of 5 years) is visualized. There are large differences between Figure 2 and 

Figure 3. The raw NDVI time-series in Figure 3 contains noise which leads to dips within the 

seasonal development. The dips during spring and summer are most likely based on cloud 

coverage. During winter-time the peaks are probably generated by snow coverage and noise 

due to a weak signal. Large solar zenith angles (i.e. low solar illumination) and long 

atmospheric path lengths at the high latitudes lead to weak signals and thus erroneous data 

during the dark season.   

 
Figure 3 NDVI time-series of a pixel position covered with vegetation over a period of 5 years. 

NDVI data are organized in binary images, in other words two-dimensional arrays containing 

pixels representing NDVI values of defined areas i.e. 250 x 250m. NDVI time-series can be 

thought as a stack of several NDVI images recorded at different points in time (i.e. based on 

8-day cycle). The amount of NDVI images in a time-series is represented by N and a pixel 

position is denoted (j,k). Each pixel in an image will be overlaid by a pixel of a new image at 

the same pixel position (j,k) covering the same ground area. The number of images is 

dependent on the time-series length. In order to achieve a time-series of the same ground 
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area, the stack is pinpointed at the corresponding pixel position (j,k) and thus a time-series of 

that pixel position can be extracted (Jönsson and Eklundh 2002, 2004).  
 

NDVI time-series, as shown in Figure 3, are describing annual seasonal developments of the 

study area, however noise is present. The noise may lead to erroneous conclusions about 

seasonal development, and thus the aim of this study to classify a pixel to a LULC class 

according to its seasonal patterns. Hence, it is necessary to process these raw NDVI time-

series with modeling approaches and incorporation of ancillary data in order to deal with 

noise.  

 

3.2.2 Modeling Seasonality  
The seasonality modeling and the extraction of seasonality parameters was done in 

TIMESAT (Jönsson and Eklundh 2002, 2004) ,Version 3.0. TIMESAT has been designed for 

fitting mathematical functions to remotely sensed time-series to outline seasonal vegetation 

developments (Jönsson et al. 2010). 
 

This section is limited to an explanation of the most important modeling parameters in 

TIMESAT and the chosen Saviztky-Golay modeling method. The entire methodology of 

TIMESAT is well described in the literature (Jönsson and Eklundh 2002, 2004). 
 

TIMESAT incorporates least square fitting (LSF) to the upper envelope of vegetation indices 

time-series. A time-series of vegetation index values is inserted to a model function 

containing basic functions and parameters. The best parameter values can be achieved by 

solving a system of normal equations. The system of normal equations incorporates weights 

for each observation point in the time-series. The weight values can be information about 

cloud coverage and determine the uncertainty of NDVI values. In other words, weights are 

qualitative information about pixel quality, i.e. cloud coverage, from ancillary data in order to 

improve a fitting. 

In case of cloud coverage data, a value of 0 means cloudy conditions, 0.5 means mixed 

conditions and 1 indicates clear sky conditions. Accordingly, small weight values have less 

influence on the fit and large weights high influence on the fit respectively. A weight value of 

0 will not influence the fitting at all. In case of missing ancillary data, the weights may be set 

to 0 (Jönsson and Eklundh 2002, 2004), since no information about cloud coverage are 

available. 

The NDVI time-series in Figure 3 contains several outliers; their influence on the fitting 

procedure can be weakened or they can be taken away by applying small or zero weight 
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values to the corresponding time-series points. In Figure 4 it is visualized how weights could 

be set in a NDVI time-series, and the bigger the red circles the higher their weight values. 

Figure 4 shows that outliers in the summer seasons have low weight values or zero weights. 
 

The remaining positive or negative outliers in a NDVI time-series can be removed with 

certain methods. This is important since remaining outliers can seriously falsify final function 

fits (Jönsson and Eklundh 2002, 2004). In TIMESAT a median method is available that uses 

a moving window in order to compare neighboring values of the tested point. A time-series 

point will be removed if the neighboring values are considerably different. For further 

information please refer to the authors (Jönsson and Eklundh 2002, 2004).  

 
Figure 4 Weighting of a NDVI time-series. The red circles point out the applied weights depending on 
their circumferences. The bigger the circles the higher their weighting. 

Most noise in NDVI, based on remotely sensed data, is negatively biased (Jönsson and 

Eklundh 2002, 2004). In order to deal with this in the fitting procedure an adaption to the 

upper envelope is employed in TIMESAT. The parameters of the model function can be 

determined in two or more steps. During the first step, the system of normal equations with 

weights is solved in order to determine the parameters of the model function. Data values 

beneath the achieved model function are considered as less important. In the second step, the 

system of normal equations is solved with the weights of the low data values decreased by a 

factor (Jönsson and Eklundh 2002, 2004). Thus, a model function that is adapted to the upper 

envelope of the data can be obtained. 
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As mentioned above in this study is used the adaptive Savitzky-Golay technique. The 

Savitzky-Golay uses local polynomial functions to filter data and suppress disturbances, such 

as noise, by replacing each data value with a linear combination of nearby values in a moving 

window (Jönsson and Eklundh 2002, 2004). An adaptive Savitzky-Golay filter approximates 

a value in a moving window computed from a least squares fit to a polynomial. In other 

words, a quadratic polynomial is used to fit each data value Niyi ,...,1, =  to all 12 +n  points 

in the moving window, where n denotes the window width or size. Thus, the value yi will be 

replaced with the value of the polynomial at the corresponding position (Jönsson and 

Eklundh 2002, 2004).  
 

Advantages of the adaptive Savitzky-Golay technique are that it preserves the area, width, 

height and mean position of a seasonal peak. The moving window size sets the degree of 

smoothing; however, it can also smooth out unintentionally rapid changes that are not 

considered as noise. Therefore, a global window size n is applied to the entire time-series and 

scans the data for a large increase or decrease in an interval around a data point yi. In case of 

a rapid change of values (i.e. decrease or increase) around a certain data point, this data point 

will be linked to a smaller window size. Then, the filtering will be repeated with new locally 

adapted window sizes (Jönsson and Eklundh 2002, 2004). 
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3.2.3 Seasonality Characteristics 
The modeled function of seasonal development of the observed ground surface enables the 

extraction of seasonality characteristics that give information of the annual seasonal 

development.  

The information of the seasonality characteristics are described as numeric (real) values. The 

seasonality characteristics are described in Table 2 and visualized in Figure 5. Each of the 

annual seasonality characteristics can be stored as a value in a two dimensional binary image 

like traditional spectral satellite data. Thus, the seasonality characteristics can be incorporated 

into a classification, analysis or mapping approaches. 

 
Figure 5 Modeled function of seasonal development based on NDVI time-series from Eklundh and 
Jönsson (2010). Selection of seasonality characteristic (referenced with small letters from a to j) that can 
be extracted from the function. 

A model function (red line) is visualized in Figure 5. It has been fitted to a NDVI time-series 

(black line). The seasonality characteristics that can be extracted from the function are 

referenced with small letters from a to j. All seasonality parameters are explained briefly in 

Table 2. 

 

  

j j 



 

17 
 

 

Table 2 Seasonality characteristics from Eklundh and Jönsson (2010)  

Name Description of the seasonality characteristic 
Start of season Point in time-series where the rising (left) part of the curve has 

increased to a user-defined level measured from the left minimum level 
(point a in Figure 5) 

End of season Point in time-series where the sloping (right) part of the curve has 
decreased to a user-defined level measured from the right minimum 
level (point b in Figure 5)  

Season length Is the length (i.e. time) from the start to the end of a season (object g in 
Figure 5) 

Base level Represents the average of the left and right minimum value (point j in 
Figure 5) 

Middle of 
season 

Is estimated by considering the mean value of the times for which, the 
left edge has increased up to the 80% (point c in Figure 5) and the right 
edge has decreased to the 80% level (point d in Figure 5) 

Maximum of 
season 

The largest value for the fitted function during the season (point e in 
Figure 5) 

Seasonal 
amplitude 

This is the difference between the maximum value and the base value 
(object f in Figure 5) 

Small seasonal 
integral 

Integral of the difference between the function describing the season and 
the base level from the season start to season end (object h in Figure 5) 

Large seasonal 
integral 

Integral of the function describing the season from the season start to 
season end (object i in Figure 5) 

Left derivate Rate of increase at the start of the season; it is estimated as the ratio of 
the difference between the left 20% and 80% levels and the 
corresponding time difference 

Right derivate Rate of decrease at the end of the season; it is estimated as the absolute 
value (positive) of the ratio of the difference between the left 20% and 
80% levels and the corresponding time difference 

Derivate ratio It is calculated as the ratio between the left and right derivate; it gives 
the skewness of the distribution 
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3.3 Support Vector Machine Classification  
3.3.1 Introduction to Support Vector Machine Classification 
 

The aim of a classification method, in the field of LULC studies, is to separate a set of data 

points (i.e. seasonality characteristic values) according to their patterns into prior defined 

LULC classes. Support vector machine classification (SVC) is a non–parametric 

classification method (Richards and Jia 2006) belonging to the field of machine learning 

theory. Support vector machines (SVMs) were formulated as a binary classification method 

in the late 1970s by Vapnik and coworkers and were further developed in the 1990s (Vapnik 

1998). The application of SVC consists of two parts. Firstly, the training and validation of 

SVC classifiers on a subset of the data that is known and well documented (i.e. training 

dataset). Secondly, the actual classification by applying the previously trained SVM 

classifiers to the rest of the data that are unknown (i.e. unknown dataset) to the analyst and 

have not been applied in the training stage. 
 

SVC are gaining increasing attention in research areas such as remote sensing and 

bioinformatics during the recent years due to their ability to minimize classification errors, 

using the structural risk minimization concept, and superior generalization characteristics, 

when solving classification problems. Non-parametric classifiers, such as SVC, do not 

require prior knowledge of the statistical distribution of a dataset to be classified (Gunn 

1998). 
 

According to Tso and Mather (2009) the structural risk minimization is an inductive concept 

in machine learning theory and decreases the probability of misclassifying a previously 

unknown data point taken randomly from a fixed but unknown probability distribution.  

Generalization in terms of statistical machine learning means the construction of an elastic 

classifier that is not too fixed on the used training data and can be applied properly to the 

unknown part of the data. SVC provide proper mathematical foundations to validate how well 

a classifier generalizes on unknown data (Dixon and Candade 2008) in order to avoid an 

over-fitting of the classifier due to the training data. For further information about structural 

risk minimization concept and generalization please refer to the literature (Gunn 1998, 

Vapnik 1998).  
 

Advantages of SVC are improved classification accuracies (Pal and Mather 2005, Foody and 

Mathur 2006, Dixon and Candade 2008) in contrast to traditional parametric classifiers such 

as supervised maximum likelihood classification (MLC) (Tso and Mather 2009) and 
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unsupervised k-means clustering (MacQueen 1967, Miller and Han 2001). SVC is less 

sensitive to over-fitting of a classifier during the training stage compared to non-parametric 

artificial neural network (ANN) classification (Tso and Mather 2009). Additionally, smaller 

amounts of training data are needed and the data do not have to be normal distributed like it is 

necessary for parametric classifiers (e.g. MLC). Bagan et al. (2005) state that the multivariate 

normal model of MLC is not as effective as machine learning techniques in LULC 

classifications of satellite imagery (e.g. spectral MODIS time-series). 
 

Classification techniques, such as SVC, are based on the pattern of the input data in the 

feature space. A feature space is an abstract space and has specific characteristics such as data 

distribution and dimensionality. For example, a two-dimensional feature space contains data 

points that are described by two attributes (features). The attribute values of a point (feature1, 

feature2) “act as coordinates” and determine the position of the point in the two-dimensional 

feature space using both feature space axes. Thus, all samples of a dataset are mapped into 

the feature space and create a specific pattern (distribution) that can be used to separate the 

samples into classes. A feature space can be n-dimensional depending on the number of 

features (feature1,…, featuren) that are describing each sample of a dataset. An n-dimensional 

feature space consists of n-feature axes.  
 

In this study, the classification problem is to separate seasonality characteristic values into 

LULC classes. These seasonality characteristics (features) build up the feature space. Figure 

6 shows a two-dimensional feature space containing well spread training data points 

belonging either to class A or class B. The data points in a feature space are referred as 

feature vectors1, since a vector represents n-features with its position in the feature space. 

SVC training aims to construct an optimal separating hyperplane (see Figure 6 hyperplane b) 

between the two classes of feature vectors.  
 

For the construction of the hyperplane the most representative training feature vectors 

(support vectors) are used according to their distribution in the feature space (Dixon and 

Candade 2008), shown as solid filled squares and circles in Figure 6. The support vectors are 

laying at the edge of the class distributions and between the class centroids.  

                                                 
1 In the following chapters and sections the term feature vector is replaced by point or sample, since it facilitates 

the differentiation between support vectors and feature vectors (points & samples), and avoids confusion of the 

reader. Even though the correct terminology of a data sample is feature vector in the feature space.  
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Support vectors are important to determine the position (i.e. orientation and slope) of an 

optimal hyperplane. All remaining training samples are not contributing to the computation 

of the hyperplane location and are omitted (Foody and Mathur 2006).  

 
Figure 6 Separating hyperplanes of a classification problem and their margins in a two-dimensional 
feature space. The solid squares and circles are support vectors. 

An optimal hyperplane has to be built so that the distances, called margins, from the 

hyperplane to closest training feature vectors (support vectors) in both class A and class B are 

as large as possible (Tso and Mather 2009). In other words, the determination of an optimal 

separating hyperplane is subjected to the constraint that the margins of separation between 

class A and class B feature vectors are maximized. Hyperplane a (see- Figure 6) is not 

optimal separating the feature space since its margins (dotted lines) are not maximized, 

whereas hyperplane b has maximized margins (dashed lines) to the support vectors of both 

classes.  
 

However, to find the optimal separating hyperplane involves a mathematical optimization 

problem because there are many solutions to separate the feature space with a hyperplane. In 

case of SVC, a quadratic optimization is applied to find the optimal hyperplane (Tso and 

Mather 2009). The quadratic optimization is subjected to several constraints depending on the 
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chosen SVC strategy. Please refer to the literature for further information about quadratic 

optimization (Bazaraa et al. 1993). The possible solutions of separating hyperplanes are 

defined by an objective function that is related to the optimization problem. An objective 

function is a function of costs defined by the hyperplane properties and its constraints (i.e. 

maximized margins between the classes).  
 

Let us constrain the classification problem in Figure 6 to six possible solutions; its quadratic 

optimization might lead to an objective function as shown simplified in Figure 7.  

 
Figure 7 Simplified objective function of the constrained optimization problem in Figure 6 showing six 
hyperplanes. One hyperplane represents a local and one a global minimum. All separating hyperplanes in 
a two-dimensional feature space are visualized in Figure 8. 

The best solution in the objective function has the lowest value of costs and represents the 

global minimum of the classification problem. However, there are also local minima that 

represent the minimum values in a certain neighborhood of the objective function. Some 

classification methods such as k-means clustering are limited to find local minima 

(MacQueen 1967, Miller and Han 2001). The global minimum in the objective function with 

the lowest cost of hyperplane properties is used to construct the optimal hyperplane.  
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The objective function in Figure 7 contains six possible hyperplanes (a, b, c, d, e and f) that 

can be mapped into the feature space of the classification problem as visualized in Figure 8. 

The global minimum of the objective function is d and therefore the best possible separating 

hyperplane in Figure 8. Hyperplane d separates the two classes with the maximal margins and 

the other hyperplanes do not have as much maximized margins as hyperplane d to both sides. 

 
Figure 8 Simplified mapping of the objective function in Figure 7 into the feature space. The dataset is 
separated in two classes with an optimal separating hyperplane with maximized margins. Hyperplane d 
divides the classes with maximal margins. The solid squares and circles are support vectors. 

The trained final classifier of this classification problem is a decision function (݂ሺݔሻ) that 

contains information about the position and orientation of the separating hyperplane d in the 

feature space. Then the final decision function (݂ሺݔሻ) is used to test all unknown data points 

according to their location in the feature space and their relation to the hyperplane, and 

classifies them into class A or class B.  
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3.3.2 Linear Support Vector Classification 
Linear SVC can handle hard margin (separable) and soft margin (non-separable) cases. In the 

following will be described the basic mathematical concepts behind linear SVC and 

visualized with several figures. However, a more thorough description of the derivation and 

formulation of hard and soft margin linear classification can be found in the literature 

(Vapnik 1998, Foody and Mathur 2006, Dixon and Candade 2008, Izenman 2008, Tso and 

Mather 2009). 

 

Hard margin linear classification  

Hard margin linear classifiers assume that a dataset of points can be exact linearly separated 

in two classes as shown in Figure 6 and Figure 8. A hard margin linear classifier is trained 

with a set of training data points to build an optimal hyperplane. Each point is either a 

member of class A or class B.  

According to Kavzoglu and Colkesen (2009) a training dataset contains k number of data 

points represented by ሼݔ௜, ,௜ሽݕ ݅ = 1, … , ݇ where ݔ௜ is an element of an n-dimensional feature 

space ሾݔ௜ ∈ 	ܴ௡ሿ and ݕ௜ is the known class label of a point ݔ௜ that can either have label -1 

(corresponds to class A) or label +1 (corresponds to class B) ሾݕ௜ ∈ 	 ሼ−1,+1ሽሿ.  
The optimal hyperplane with maximized margins is represented by a hyperplane decision 

function as shown in Figure 9 and written in Equation 2 (Kavzoglu and Colkesen 2009): ࢝× ࢏࢞ + ࢈ = ૙       Equation 2 

where: w is a vector that determines the orientation of the hyperplane, ݔ௜ is a point lying on 

the hyperplane and b is the bias that is the distance of the hyperplane from the feature space 

origin. Figure 9 shows the basic elements of hyperplane decision function (i.e. w, ݔ௜and b) 
 

For each of the two classes a separating hyperplane can be defined as inequalities, see 

Equation 3 and Equation 4 (Kavzoglu and Colkesen 2009):  ࢝× ௜ݔ + 	࢈ ≤ 	−1  for all y =  -1 (class A)   Equation 3 ࢝× ௜ݔ + 	࢈ ≥ 	+1  for all y = +1 (class B)   Equation 4 

where: a point (ݔ௜) on the hyperplane is multiplied with the hyperplane orientation vector (࢝) 

and added to the distance from the feature space origin (࢈). In case of class A (label -1), the 

result must be either smaller or equal than -1. Considering class B (label +1) the result must 

be bigger or equal than +1.  
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Figure 9 Simplified visualization of a hard margin linear SVC in a two-dimensional feature space. The 
solid squares and circles are support vectors defining hyperplane P1 and P2, b (bias) is the distance of the 
hyperplane from the feature space origin and w is the orientation vector of the optimal hyperplane.   

The inequality equations (Equation 3 and Equation 4) can be further combined into a single 

inequality as in Equation 5 (Kavzoglu and Colkesen 2009): ݕ௜ሺ࢝ × ௜ݔ + ሻ࢈ − 1	 ≥ 	0 and  ݕ௜ ∈ 	 ሼ−1,+1ሽ    Equation 5 

where: the class labels ݕ௜ (-1 or +1) are incorporated to test points (ݔ௜) for satisfying the 

inequality. That is, the result must be bigger or equal to 0. If a used point ݔ௜ fulfills the 

inequality than it is a support vector lying on one of the two hyperplanes P1 or P2 (see Figure 

9 -solid squares and circles). 
 

The inequalities above take into account that it is a hard margin case and no support vectors 

of a class are laying in the area of the other class, and thus no training errors are allowed.  
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The hyperplanes in Equation 3 and Equation 4 are parallel to the optimal separating hyperplane 

as shown in Figure 9 (P1 and P2) and can be defined as functions - see Equation 6 and 

Equation 7 (Kavzoglu and Colkesen 2009):  ࢝× ௜ݔ + ࢈ = 	−1  for class A (-1)   Equation 6 ࢝× ௜ݔ + ࢈ = 	+1  for class B (+1)   Equation 7 

where: ࢝ is the orientation vector, ݔ௜ is a point on the hyperplane and b is the distance from 

the feature space origin.  

The distance, called margin, between the two hyperplanes P1 and P2 is defined as 
ଶ‖࢝‖, where ‖࢝‖ is the length of the orientation vector ࢝ in the n-dimensional feature vector space. In 

order to maximize the margin between P1 and P2, ‖࢝‖ (length of ࢝) in 
ଶ‖࢝‖ must be 

minimized, since a decreasing denominator leads to an increasing result. This maximization 

is an optimization problem as shown in Equation 8 (Kavzoglu and Colkesen 2009):  







 2||||

2

1
min w      Equation 8 

where: ‖࢝‖ is the length of the orientation vector ࢝ in the n-dimensional feature vector 

space. 

The optimization problem in Equation 8 is subjected to the hard margin inequality constraint 

in Equation 5 that can be rewritten as in Equation 9 (Kavzoglu and Colkesen 2009):  ݕ௜ሺ࢝ × ௜ݔ + ሻ࢈ 	≥ 1 and  ݕ௜ ∈ 	 ሼ−1,+1ሽ     Equation 9 

where: ݕ௜ is the class label (-1 or +1), ࢝ is the orientation vector, ݔ௜ is a point on the 

hyperplane and b is the distance from the feature space origin. The class labels ݕ௜ (-1 or +1) 

are included to test points (ݔ௜) of satisfying the inequality. Thus, result must be bigger or 

equal 1 to satisfy the inequality. 
 

The further incorporation of Lagrangian multipliers and quadratic programing optimization 

(Pal and Mather 2003, Tso and Mather 2009) leads to the exact determination of the support 

vectors as well as the solutions for the orientation vector (w) of the hyperplane and its 

distance (b) to the feature space origin. A detailed determination of w, b and final decision 

rule (݂ሺݔሻ) can be found in the literature (Vapnik 1998, Foody and Mathur 2006, Dixon and 

Candade 2008, Izenman 2008, Tso and Mather 2009). 
 

At the end of the training step, the final decision function (݂ሺݔሻ) of the optimal hyperplane 

can be derived, which is the trained hard margin SVC. The decision function (݂ሺݔሻ) enables a 

linear hard margin separation of the unknown data into class A or class B.   
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Soft margin linear classification 

Remotely sensed spectral data may have distributions that cannot be separated exactly by 

applying hard margin linear boundaries (Tso and Mather 2009) because the classes are 

overlapping. In Figure 10 one training sample belonging to class A (a solid square marked 

with a dashed red circle) is located in the area of class B (circles).  

 
Figure 10 Simplified visualization of a soft margin linear classification problem with the introduction of a 
slack variable (ࣈ) in a two-dimensional feature space. 

Overlapping classes are also assumed for the modelled phenology characteristic values. 

Therefore, the hard margin SVC formulations need to be adjusted for data points that are 

overlapping. The hard margin constraint in Equation 9 cannot be satisfied and need to be 

softened by introducing slack variables (ߦ௜) as in Equation 10 (Kavzoglu and Colkesen 2009):  ݕ௜ሺ࢝ × ௜ݔ + ሻ࢈ ≥ 1 − ௜ߦ   ;	௜ߦ ≥ 0	 and  ݅ = 1,… , ܰ   Equation 10 

where: the class labels ݕ௜ (-1 or +1) are used to test points (ݔ௜) of satisfying the inequality and 

the slack variable (ߦ௜) softens the inequality that has to be met. The result must be bigger or 

equal to 1 −   .௜ must be bigger or equal to 0ߦ ௜ to satisfy the inequality andߦ

ݓ × ݔ + ܾ = 0 
Optimal hyperplane: 

ݓ × ݔ + ܾ = −1 
Hyperplane P1 (class A): ݓ × ݔ + ܾ = +1 

Hyperplane P2 (class B): 

w 

b 

P1 P2 

 ࣈ
Class A 

Class B 
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Slack variables are proportional to a measure of cost (Tso and Mather 2009). As shown in 

Figure 10 the slack variable (ߦ) denotes the distance from the outlying training sample 

(dashed red circle) to its original class hyperplane (P1). In other words, it is a training sample 

of class A being in the area of class B and its distance to hyperplane P1 is determined by the 

slack variable (ߦ).  

In addition, the optimization problem of Equation 8 needs to be adjusted to the soft margin 

case as written in Equation 11 (Foody and Mathur 2006, Kavzoglu and Colkesen 2009):  







 + 

=

r

i
iCw

1

2||||
2

1
min ξ

   
  Equation 11 

where: the first term of Equation 11 aims to maximize the margins. The second part is a 

penalty term containing: C which is a penalty parameter constant and ߦ௜ is the distance of an 

overlapping training sample to its original class hyperplane. The penalty term introduced to 

penalize the training samples located on the incorrect side of the hyperplane (compare Figure 

10). This optimization problem is constrained by Equation 10 to consider the slack variables. 

The penalty parameter value (C) is used to keep the balance between margin maximization 

and error minimization. The penalty parameter value (C) is a user-defined constant.  

A larger C assigns a higher penalty to errors and may lead to an over-fitting of the classifier 

to the used training data (Tso and Mather 2009). An over-fitting reduces the generalization 

capability of a classifier to unknown data points. In other words, the position of the optimal 

hyperplane would perfectly match the training data but is not flexible to unknown data points. 

In addition, if the training data are not representative and the hyperplane is fitted perfectly to 

it, then the classifier might not separate the unknown data correctly. 
 

Similar to the hard margin SVC, Lagrangian multipliers and quadratic programing 

optimization are further incorporated (Pal and Mather 2003, Tso and Mather 2009) to 

determine the support vectors as well as the solutions for the orientation vector (w) of the 

hyperplane, its distance (b) to the feature space origin, C the penalty parameter and the slack 

variables (ߦ).  

The result of the training step is a final soft margin SVC, which is a decision function (݂ሺݔሻ) 
describing the optimal hyperplane. The final decision function allows a linear soft margin 

separation of the unknown data samples into the two classes.  

A further description of w, b, ߦ, C and final decision function (݂ሺݔሻ) can be found in the 

literature (Vapnik 1998, Foody and Mathur 2006, Dixon and Candade 2008, Izenman 2008, 

Tso and Mather 2009).   
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3.3.3 Non-linear Support Vector Classification 
In cases of considerable class overlapping of the training samples (see Figure 11) linear soft 

margin SVC classifiers are unable to separate the samples into classes appropriately (Tso and 

Mather 2009). Therefore, a mapping of the training samples into a higher dimensional feature 

space is recommended using a vector mapping function (Tso and Mather 2009).  

The mathematical concepts and formulations of vector mapping functions in relation to non-

linear SVC are described in the literature (Vapnik 1995, Gunn 1998, Richards and Jia 2006, 

Hsu et al. 2009, Tso and Mather 2009). This section explains the concept of vector mapping 

function in a visual manner using a simplified illustration. 

For example a training dataset cannot be separated linearly in a two-dimensional space, thus 

the data can be mapped into a higher dimensional feature space (e.g. three-dimensional 

space). In the higher dimensional feature space the construction of a linear decision boundary 

can be improved. In such a way the distribution of the training samples might be spread 

farther apart and may allow a construction of an optimal separating hyperplane. 

 
Figure 11 Case of considerable class overlapping representing a non-linear separable classification 
problem in a two-dimensional feature space. The training samples distribution disables constructions of 
linear optimal hyperplanes in order to separate the samples into classes.  

Figure 11 shows a classification problem in a two-dimensional feature space (X and Y - 

dimension) where the training samples of class A and class B are overlapping significantly. 

Considering the overlapping training samples distribution, constructions of appropriate 

separating hyperplanes are impossible and the outcomes would lead to poor performances of 

linear SVC classifier. To overcome these concerns, a vector mapping function can be applied 

in order to project the training data into a higher dimensional space as shown in Figure 12. In 

detail, the training samples are projected with a non-linear vector mapping function (Φ), and 

thus a mapped training point ݔ௜ is represented as Φሺݔ௜ሻ in the higher dimensional feature 

(Tso and Mather 2009). In the simplified example, the training samples are mapped from a 
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two-dimensional (X, Y) into a three dimensional space (X, Y, Z) by introducing the Z-

dimension. In Figure 12 all training samples of class B moved up in the Z-dimension due to 

the application of a non-linear vector mapping function (Φ).  

 
Figure 12 Simplified mapping of the original input training data samples from a two-dimensional into a 
three-dimensional feature space using a vector mapping function (Φ). The red dashed arrows symbolize 
the introduction of the Z-dimension. The mapped training samples of the classes are denoted either as    
Φ (class A) or Φ (class B).  

Thus, the training samples are spread farther apart in the three dimensional feature space and 

the classes do not overlap, considering the Z-dimension. The different distribution in the 

three dimensional space enables the fitting of an optimal linear hyperplane in order to 

separate all samples into the classes as shown in Figure 13.  

 
Figure 13 Distribution of the mapped training samples in three-dimensional features space. The three 
dimensional distribution enables the construction of a linear optimal hyperplane (red surface) in order to 
separate the training samples into classes.  

Figure 14 visualizes an advantage of mapping functions: “back-mapping”. All samples and 

the fitted linear hyperplane can be mapped back from the higher dimensional space into the 

original feature space. The linear hyperplane becomes a non-linear decision boundary that 

can be used to conduct a non-linear separation of the data samples in the original feature 

space.  
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Figure 14 Visualization of the “back-mapping” advantage using vector mapping functions (Φ). Mapping 
of all samples from the two-dimensional (bottom) into three-dimensional (top) feature space to fit a linear 
hyperplane (red surface). Then, all samples and the linear hyperplane are mapped back to the original 
space (bottom) where the linear hyperplane becomes a non-linear decision boundary (red line).  

However, the vector mapping function (Φ) leads to high computational expenses that can be 

reduced by using kernel functions instead (Vapnik 1995). A kernel function allows a more 

simplified representation of the data (Tso and Mather 2009). There are several kernel 

functions available; the two most commonly used in remote sensing applications are 

polynomial and Gaussian radial basis kernels (Richards and Jia 2006). 

• The polynomial kernel function uses a polynomial order value (d) which is a user-

defined constant. An increasing d might improve the accuracy of the classification 

(Tso and Mather 2009). However, an increasing d leads to higher computational 

expenses. 

• The Gaussian radial basis function has less numerical difficulties compared to 

polynomial kernels that might go to infinity (Hsu et al. 2009) and incorporates a user-

defined value called rbf sigma (σ ). 

For further description and derivation of kernel functions please refer to the literature 

(Vapnik 1995, Gunn 1998, Izenman 2008). 

During the training of the SVC in the higher dimensional space, support vectors will be 

detected, the margins between them will be maximized using quadratic programing 

optimization and Lagrangian multipliers. This leads to the determination of a decision 

function (݂ሺݔሻ) containing a kernel function.  
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3.3.4 Parameter Selection 
In order to train a support vector machine classifier the analyst needs to define parameters 

such as the penalty parameter value and if a kernel is incorporated the kernel function related 

parameters (i.e. polynomial order or rbf sigma value). A suitable parameter selection is very 

important in order to enhance the generalization capability2 of a SVC to unknown data points. 

The parameter selection employs a validation error (Tso and Mather 2009), also known as 

error rate. It has to be ensured that the validation error is unbiased by using a cross-validation 

method. The parameter selection is used to determine the parameters with lowest error rates 

and the respective parameter selection should be used for the final SVC (Tso and Mather 

2009).   

However, over-fitting issues3 should be considered (Tso and Mather 2009) in such a way that 

a parameter selection with the lowest error rate might lead to classifier that do not generalize 

on the unseen data points. Thus it is recommended to apply a t-fold cross-validation, where t 

is defined by the analyst and ten folds are suggested (Tso and Mather 2009). There, the 

training data is divided in t-subsets and a leave-one-out cross-validation strategy is applied. 

That means, one subset of t-subsets is chosen for validation and the rest (t-1) are used to train 

the classifier during the training stage. This procedure will repeated t- times until each subset 

has been used for validation purposes and then a classification error from all validation sets 

will be averaged over t-trials. The t-fold cross-validation gives a validation error, which is the 

percentage of validation data points that have not been classified correctly (Tso and Mather 

2009).  
 

The range of possible parameters changes can become very large, therefore a grid search 

method developed by Chang and Lin (2010) is recommended. In case of non-linear SVC, the 

changing penalty term values (C) and the kernel function’s related kernel parameters will be 

tested for their performance. In case of linear SVC the varying penalty term values will be 

evaluated. The grid search method incorporates the user-defined initial values of the 

corresponding parameters, which will be t-fold cross-validated, then changed and evaluated 

again until user-defined stop criteria are reached. The analyst needs to define minimum and 

maximum values of the corresponding parameters. Over this defined range the values will be 

                                                 
2 Generalization in terms of statistical machine learning means the construction of an elastic classifier that is not 
too fixed on the used training data and can be applied properly to the unknown part of the data. 
3 An over-fitting reduces the generalization capability of a classifier to unknown data points. In other words, the 
position of the optimal hyperplane would perfectly match the training data but is not flexible towards unknown 
data points. 
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stepwise incremented and t-fold cross-validated. Thus, it is possible to choose the best 

performing parameters values of the grid search for the final SVC. 

In case of applying a non-linear SVC, a parameter pair4 (e.g. C and d ) needs to be tested in 

stepwise changes over a certain space. The space is divided into grids; each grid represents 

different parameter pair values in ascending order. A possible way of a grid search space is 

shown in Figure 15. The chosen space is limited to minimum and maximum values for both 

parameters and contains grid points determining parameter value pairs. A grid search could 

start in the bottom left corner and increase stepwise to the next grid points (e.g. parameter 

pair values) until the opposite corner is reached. A grid search can become very complex and 

demand computational resources. Therefore, Tso and Mather (2009) suggest first a coarse 

grid search with coarser increments of the parameter pair values as shown in Figure 15 (blue 

line). Then, it continues with a fine search (black line) within the range of the best performing 

parameter pair values out of the coarse search. The best performing parameter values of the 

fine grid search are recommended for the training of the final classifier.  

 
Figure 15 Coarse and fine parameter grid search.  

The space shown in Figure 15 can be stretched to larger extents; however the grid search will 

become more time and resource demanding. More advanced strategies to determine the 

parameters are mentioned in the literature (Tso and Mather 2009, Chang and Lin 2010). 

                                                 
4 In this study, the parameter pairs account for the penalty parameter value and a kernel function related 
parameter. 1) penalty parameter value and polynomial order value (C and d) or 2) penalty parameter value and 
Gaussian radial basis function (C and σ ).  
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3.3.5 Multi-classification 
Originally SVC was developed as a binary classifier; however SVC can be extended to multi-

classification purposes using a one-against-one classification strategy. This is a pair wise 

comparison between all information classes k and each classifier will be trained solely on two 

of the k classes. A total number of ( ) 2/1−kk  classifiers are needed to ensure all possible 

one-against-one combinations (Tso and Mather 2009). In order to construct a support vector 

machine multi-classification (SVM-C) approach Tso and Mather (2009) recommend a 

directed acyclic graph (DAG) where the one-against-one strategy is incorporated. The 

( ) 2/1−kk  classifiers are trained beforehand and building up a decision tree. 

A DAG SVM-C begins by applying the classifier at the root of DAG (Level 1) to an unseen 

data point depending on how the data point is classified it will move down to either the left or 

the right node in the next level. This continues downwards until a final decision is made in 

the leaf of the graph. Tso and Mather (2009) state that the order of the binary classifiers 

constructing the DAG is not important and will not affect significantly the classification 

accuracy, since each possible class combination will be tested. 

 
Figure 16 Directed acyclic graph containing six classifiers and four classes to enable multi-classification. 

In Figure 16 is shown an example of a SVM-C using DAG. It shows a hypothetical multi-

classification problem and contains four classes that are pair wise combined in six classifiers. 

This approach starts at the root (Level 1) by testing an unseen data sample for being a 

member of the classes Forestland or Urban. If it belongs to Forestland the procedure will 

move down to the right (level 2). In level 2 the data sample will be tested for being a member 

of Forestland or Agriculture. If it is a member of Agriculture it will move down to the left to 

the next classifier in level 3. In level 3 will be employed the last classifier and it will be tested 

for a membership in the classes Grassland or Agriculture. Depending on the membership, the 

data sample will move down to the final decision, which is represented by the leaf nodes of 
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the DAG. Let us assume the sample belongs to Grassland, thus it would go down to the left 

and the final decision would be made. The unseen data sample is classified as Grassland.  

Consequently, it is ensured that each data sample will cascade through the graph and will be 

tested for being a member of every class due to the pair wise comparison.  

3.4 Accuracy Assessment 
3.4.1 Reference Data 
In LULC studies that are based on classifications of remotely sensed data it is essential to 

determine how well a chosen classification approach has performed by applying an accuracy 

assessment. In order to validate a classification approach, reference data of the corresponding 

study area are needed. There are several techniques described by Congalton and Green (2009) 

to obtain reference data to validate classification approaches of remotely sensed data. 
 

In this study CORINE land cover 2006 data – version 13 (CLC 2006) in 250m ground 

resolution are used as raster reference data. CLC 2006 represents the LULC of the year 2006 

(EEA 2007) and are distributed in the geodetic reference system called European Terrestrial 

Reference System 1989 (ETRS1989) and in Lambert Azimuthal Equal Area projection. 

CORINE stands for Co-ordination of Information on the Environment and is a European 

Union project, which aims to create a database of LULC for 38 countries in the European 

Union. The CLC 2006 data are based on satellite imagery interpretations from satellite 

sensors of high spatial resolution, 25m and finer (EEA 2007). 

The LULC classes in CLC 2006 are assigned on three levels. Level 1 contains of five LULC 

classes, level 2 is more detailed with 15 classes and level 3 contains 44 classes with very 

detailed information about the land cover (EEA 2007). In the technical guidelines of CLC 

2006 (EEA 2007) a minimum thematic accuracy of 85% is stated. The previous CORINE 

land cover 2000 project was planned to have a minimum thematic accuracy of 85%, and was 

assessed with a thematic overall accuracy of 87% (EEA 2006). CORINE land cover 200 has 

been applied successfully as reference and training data in several classification studies using 

MODIS data (Gonçalves et al. 2005, Heiskanen and Kivinen 2008) However, the accuracies 

are differing between the LULC classes. A similar thematic accuracy is also assumed for 

CLC 2006 data.  

In this study CLC 2006 is used as reference data to train the SVCs and for validation in the 

accuracy assessment. It is feasible to apply CLC 2006 data since it has the same ground 

resolution of 250m as the used MODIS NDVI imagery. For each MODIS pixel in the study 
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area are reference data available and; thus it is possible to apply an accuracy assessment to 

the entire study area.  

3.4.2 Assessment of Accuracy 
In order to perform an accuracy assessment it is necessary to introduce the concept of an error 

matrix because all following techniques are based on the error matrix. An error matrix, as 

shown in Figure 17, is a square array containing of n samples, which are distributed into k2 

cells - k represents the number of classes. Every sample is labeled to one of the k classes in 

the dataset classified by an algorithm and is independently to one of the same k classes in the 

reference dataset. Let nij indicate the number of samples predicted into class i ( )ki ,...,2,1=  in 

the classified dataset and class j ( )kj ,...,2,1=  in the reference dataset (Congalton and Green 

2009). 

 
Figure 17 Theoretical example of an error matrix from Congalton and Green (2009) 

In Figure 17 a theoretical example of an error matrix is shown. The classified data samples 

are written row-wise (i) and the known reference data samples column-wise (j). The sums of 

each column are denoted in n+j and rows in ni+ respectively. The sums of n+j and ni+ are equal 

and are represented by n. 
 

Congalton and Green (2009) formulate the number of classified data samples into class i as 

written in Equation 12:  


=

+ =
k

j
iji nn

1

     Equation 12 

where: n denotes the total number of samples, ni+ is the sum of a row, nij is a record in the i th 

row and the j th column, and k is the number of classes.  
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The known reference data samples of class j are represented in Equation 13 (Congalton and 

Green 2009):  


=

+ =
k

i
ijj nn

1

     Equation 13 

where: n denotes the total number of samples, n+j  is the sum of a columns, nij is a record in 

the i th row and the j th column, and k is the number of classes. With the help of an error 

matrix it is possible to calculate measures of quality such as overall accuracy, user’s 

accuracy, producer’s accuracy and Kappa coefficient. 
 

Equation 14 shows how to compute the overall accuracy between the classified and reference 

samples (Congalton and Green 2009):  

n

n
k

i
ii

== 1accuracy Overall     Equation 14 

where k is the number of classes, n the total sample number and nii denotes the number of 

correctly classified samples of all classes. Increasing i, nii denotes the major diagonal - 

compare in Figure 17 (e.g. n11, n22 ,…, nkk). Overall accuracy gives a measure of how many 

samples have been classified correctly in relation to all samples. 
 

The user’s accuracy gives a measure of the probability of an unknown sample on the map 

(reference data) of being correctly classified. User’s accuracy is calculated for a specific class 

and is computed as written in Equation 15 (Congalton and Green 2009): 

+

=
i

ii
i n

n
accuracy sUser'     Equation 15 

where nii is the total number of correct classified samples of a class and ni+ is the row-wise 

total sum of samples classified as the same class, thus ni+ considers also misclassified 

samples. The user’s accuracy of class 1 in Figure 17 is calculated as follows user’s 

accuracy1= ݊ଵଵ/݊௜ା.  
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The producer’s accuracy illustrates the probability of an unknown sample point in the 

reference data as being correctly mapped. Also producer’s accuracy is applied for a single 

class and is calculated as formulated in Equation 16 (Congalton and Green 2009): 

j

jj
i n

n

+

=accuracy sProducer'     Equation 16 

where njj is the total number of samples classified correctly of a class and n+j is the column-

wise total sum of samples of the corresponding class indicated by the reference data.  

The producer’s accuracy of class 1 in Figure 17 is calculated as follows 

producer’s accuracy1= ݊ଵଵ/݊ା௝.  
 

The Kappa analysis was introduced by Cohen (1960); the unweighted Kappa value (Cohen 

1960) is a robust measure since it takes the agreement occurring by chance into account and 

is suggested in the literature (Lillesand et al. 2004, Congalton and Green 2009). Cohen’s 

Kappa gives a measure of how well the classification approach agrees with the reference 

data. In Equation 17 is formulated Cohen’s Kappa coefficient (Congalton and Green 2009): 
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     Equation 17 

where: ܭ෡ is the Kappa coefficient, k is total number of rows in the error matrix, nii denotes 

number of correctly classified samples of all classes, n+j describes all observation in column 

j, ni+ stands for all observations in row i and, n is total number of observations in the error 

matrix.  

For further descriptions of Kappa please refer to the literature (Cohen 1960, Lillesand et al. 

2004, Congalton and Green 2009). 
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4. Study Area 
The chosen study area is located in Scania, southern Sweden. The area of interest is situated 

between the south of Hässleholm and west of Kristianstad. In Figure 18 the study area is 

visualized. The LULC map is based on CLC 2006 – Version 13 in 250 m ground resolution.  

 
Figure 18 Land use and land cover map of the study area in southern Sweden. The map is based on CLC 
2006 Version 13 data in 250 m ground resolution (source: www.eea.europa.eu/data-and-
maps/data/corine-land-cover-2006-raster) 

The study area is interesting because it is located in a transition zone - compare small map of 

southern Sweden in Figure 18. That means, to the north of the study area Forestland is 

dominating and in the south is agricultural land use prevailing. The selection of the study area 

was based on practical reasons, since the area should be dominated by Forestland and 

Agriculture. These two LULC classes are assumed to be typical in southern Sweden. In 

addition, seasonality characteristics (e.g. end and length of season) of Forestland and 

Agriculture are assumed to be different and effective in the SVC due to the rapid decrease of 

NDVI of agricultural areas after harvesting. Moreover, LULC classes such as Grassland and 

Urban cover approximately 6% of the area. Urban areas contain heterogeneous ground cover 

such as vegetation, concrete or other artificial surfaces. This heterogeneity leads to mixed 

spectral signatures in a pixel (Lillesand et al. 2004, Foody and Mathur 2006, Richards and Jia 

2006, Tso and Mather 2009) and especially in a moderate ground resolution of 250m. The 
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mixed spectral signatures might initiate NDVI values, seasonality modeling outcomes and 

finally seasonality characteristics that are difficult to interpret and to classify by the analyst. 

Furthermore, Grassland has similar spectral characteristics as Forestland (see Figure 1) and 

will influence the NDVI calculation and the following seasonality modeling and SVC 

separation. Even though the seasonal development (seasonality curve) of Grassland is 

assumed to be on lower amplitudes than in Forestland (see Figure 2).  

In addition, the study area is reasonable, since it has small coverage of water areas (inland 

wetlands and inland waters). In Figure 18 water areas are classified as Unknown and will be 

mask out for reasons of potential error minimization later in the processing step. A small 

coverage of Unknown (water) areas leads to a small loss of potential area to study.  

Hence, a few of possible error sources are minimized and allow a focus on Forestland and 

Agriculture with this chosen study area.  
 

The proportions of the LULC information classes of the study area are shown in Table 3. The 

dominating LULC classes are Forestland and Agriculture that cover approximately 90% of 

the area. Unknown, Grassland and Urban cover approximately 10% of the area.  

Table 3 Proportions of LULC classes in the study area - from CLC 2006 dataset 

LULC class No. of LULC class pixel positions Percentage of LULC classes [%] 

Forestland 10,639 47.28 

Agriculture 9,689 43.06 

Urban  896 3.98 

Unknown 691 3.07 

Grassland  585 2.61 

Thus, the study area represents almost equal proportions of Forestland (47.28%) and 

Agriculture (43.06%).  
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5. Methodology 
The developed methodology of this study is shown simplified in Figure 19. Each part will be 

described more detailed in the corresponding sectionss. In the first part of the study, the used 

satellite data are described and how it was processed and incorporated into this study. In the 

second part, the seasonality modeling will be explained, which was applied to generate the 

seasonality characteristics. The third part contains two subparts: (1) the selection of the best 

seasonality characteristics as input features for SVC, and (2) the determination of the penalty 

values and the kernel functions related parameters. Each of the subparts considers twelve 

replicates due to statistical representativeness reasons. In the fourth part the actual SVM-C in 

a DAG will be explained, which incorporates twelve replicates for representativeness 

reasons. The last part of the methodology describes the accuracy assessment of the used SVC 

strategies (linear and non-linear) and their twelve replicates. 

 

Figure 19 Simplified scheme of the developed methodology for this study.  

The entire methodology is implemented in MATLAB (R2010a) using TIMESAT for 

seasonality modeling and MATLAB’s statistical learning functions of the bioinformatics 

toolbox for SVC. The study’s MATLAB code will be provided by the author5 if asked for.  

The most important statistical learning functions used in this study are svmtrain and 

svmclassify. The svmtrain function allows training and constructing of binary SVC on a 

training dataset. The constructed binary SVC is then used by svmclassify to separate the 

unknown dataset.   

                                                 
5 Authors email address: Florian.Sallaba(AT)nateko.lu.se 
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5.1 Data 
This study incorporates MODIS NDVI imagery and corresponding overall quality indicator 

data of the MODIS tile h18v03. The 8-day 250m ground resolution surface reflectance 

product (MOD09Q1) and quality data were obtained “ready for use” from the research of 

Jönsson et al. (2010). The raw MODIS Terra spectral (MOD09Q1) and raw quality data were 

distributed from Land Processes Distributed Active Archive Center (LP DAAC), located at 

the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) 

Center (lpdaac.usgs.gov).  
 

The schematic workflow in Figure 20 visualizes the implemented data processing workflow 

framework and the three incorporated data components. The outcomes of the data processing 

are used in the subsequent seasonality modeling (described in Section 5.2) and the extraction 

of the seasonality characteristics.  

 
Figure 20 The Schematic workflow represents the implemented data processing and the incorporated 
three data sources, seasonality modeling, and extraction of seasonality characteristics. 

The first data component comprises the NDVI time-series that were computed from 

MOD09Q1. MOD09Q1 data contain reflectance measurements covering red (band-1) and 

near-infrared (band-2) spectral ranges (see Table 1) and were used to compute NDVI images. 

Theoretically NDVI values can range between -1 and +1 and for practical reasons the NDVI 

values were rescaled according to Equation 18 (Hellström 2010, personal communication):  

5.425.212 +×= NDVIDN NDVI    Equation 18 

Where: DNNDVI is the scaled NDVI value, 212.5 and 42.5 are two constants. In addition, 

negative NDVI values were set to zero and the decimal places of the NDVI values were 
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truncated by a conversion from floating point format to 8 bit unsigned integer (i.e. uint 8 bit). 

Hence, the scaled NDVI data contain values between 0 and 255. This was done to reduce the 

size of the data and enable faster computations (Hellström 2010, personal communication). 

The applied NDVI time-series are based on 230 NDVI images of the study area and covers a 

period of 5 years from 01-01-2004 to 31-12-2008.  
 

The second component of the data processing frame (Figure 20) contains the overall quality 

indicator data, which represents an ancillary data source in order to improve the subsequent 

seasonality modeling. The overall quality indicator data are based on several MODIS 

products, such as cloud coverage information (MOD35 cloud) from the 8-day 500m ground 

resolution surface reflectance (MOD09A1) and MODLAND QA bits. Jönsson et al. (2010) 

classified the combined quality data in high, reasonable and poor quality. The overall quality 

indicator data are organized in binary image format and contain pixel that represent quality 

values (see Table 4). Hence, each pixel position in the NDVI images has a corresponding 

pixel position in the overall quality indicator binary image having information about the 

quality. The projection, extent and ground resolution is the same as in the NDVI data. 230 

overall quality indicator images were extracted covering the same study area and time period 

as the corresponding NDVI time-series. For further information about the overall quality 

indicator data please refer to Jönsson et al. (2010). 
  

The third component of the data processing frame (Figure 20) is the CLC 2006 that is used as 

ancillary data in seasonality modeling. CLC 2006 data (250m ground resolution) were 

reprojected from the original Lamberts Azimuthal Equal Area projection (ETRS 1989) to the 

MODIS sinusoidal projection using nearest neighbor transformation. A nearest neighbor 

resampling method was feasible, since CLC 2006 and MODIS NDVI datasets have the same 

ground resolution of 250m. Then, CLC 2006 data were clipped according to the extent of the 

study area. The original CLC 2006 LULC classes were aggregated to the following LULC 

information classes: (1) Agriculture, (2) Forestland, (3) Urban, (4) Grassland and (5) 

Unknown. Inland wetlands and inland waters were linked to class Unknown.  

A mask was created from the Unknown class and incorporated in the seasonality modeling to 

omit seasonality modeling of areas that are potentially covered with water. Seasonality 

modeling of waters areas may lead to erroneous seasonality characteristics and might also 

influence the subsequent classification procedure.  

CLC 2006 data were distributed from the European Environment Agency 

(www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster).   
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5.2 Seasonality Modeling 
Seasonality modeling aims to create an overall fitting of the time-series of all pixels in the 

study area. It was assumed that the LULC classes are not known in this step. Thus, no a priori 

knowledge of the LULC classes would influence the seasonality parameter modeling, except 

the water mask.  

The seasonality modeling settings were adjusted intuitively in the beginning and then the 

parameters were fine-tuned iteratively in order to achieve well fitted curves that is more of an 

art than a science (Eklundh and Jönsson 2010). 

Savitzky-Golay fitting was applied in TIMESAT in order to have a local fitting that enables 

to maintain rapid seasonality changes. Eklundh and Jönsson (2010) recommended a rough 

estimation of the moving window size, which is the rounded quotient of the number of 

observations (i.e. 46 observation) per year divided by 4. Thus, the moving window size of the 

Savitzky-Golay filter was defined to a size of 12.  

In the modeling procedure the overall quality indicator data was incorporated, as weights, to 

weaken the effect of noise such as cloud coverage or poor data quality. The weight settings of 

the overall quality indicator data are shown in Table 4.  

Table 4 Weight settings of quality data. Quality data was obtained from Jönsson et al. (2010).  

Quality values Weight values 

0 (poor quality) 0.1 

1 (reasonable quality) 0.3 

2 (high quality) 1 

The influence of poor and reasonable quality data are kept low with corresponding small 

weights, whereas high quality data have a full effect on the modeling. Figure 4 visualizes the 

influence of the chosen weight settings on a NDVI time-series; obvious spikes (e.g. cloud 

coverage) during the growing season have received low weights. 

Furthermore, the remaining positive and negative outliers (i.e. spikes) were removed with the 

median method as described in Section 3.2.2.  

In addition pixel positions containing bad data due to complete cloud coverage during the 

growing season were introduced to the water mask and linked to the Unknown LULC class. 

 

In order to deal with negatively biased NDVI time-series, it was used an adaption to the 

upper envelope, incorporating a fit in two steps as described in Section 3.2.2. The adaption 

strength of the upper envelope was set to a low value (adaption strength value of 2), since a 
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high value will lead to an emphasis of single high values in the NDVI time-series (Eklundh 

and Jönsson 2010).  

The model was adjusted to one growing season, since just one growing season takes place 

within a year in the chosen study area. During the winter season NDVI data of the study area 

may be affected by large solar zenith angles (i.e. low solar illumination and long atmospheric 

path lengths) and long periods of cloud as well as snow coverage. Under such conditions, 

spectral sensor measurements are inaccurate and lead to erroneous NDVI data (Jönsson and 

Eklundh 2002, 2004). The fitted function was forced to a small minimum value (i.e. 

minimum value of 0.1) in the winter season (Eklundh 2010, personal communication) to treat 

erroneous NDVI data. In order to determine the start and end of vegetation seasons a method 

that incorporates the proportion of the seasonal amplitude (Jönsson and Eklundh 2002, 2004) 

was used. The season start was set when the fitted curve reached a proportion of 0.5 of the 

seasonal amplitude measured from the left minimum value of the fitted curve. In the same 

manner was established the season end when the curve reached a proportion of 0.5 of the 

seasonal amplitude measured from the right minimum.   

As mentioned above, a water mask was incorporated to avoid seasonality modeling of water 

areas because it may lead to erroneous seasonality characteristics that might affect the 

classification approaches. The water mask covers all areas that are belonging to Unknown 

class in Figure 18.  

In order to summarize, each pixel position in Figure 18 is represented by a NDVI time-series 

and its overall quality data. The NDVI time-series were used to model seasonality. The 

modeled functions enable the extraction of seasonality characteristics (compare - Table 2). 

All modeled seasonality characteristics for three years (2005 - 2007) were extracted and all 

pixel positions that are assigned to LULC class Unknown achieved seasonality characteristics 

with zero values. In other words, each pixel position obtained one seasonality characteristic 

values for each year in the period 2005-2007 (i.e. three seasonality characteristic values). 

This time frame was chosen because of the available CLC 2006 data. The chosen time period 

is expected to overlap the inventory and mapping time of the CLC 2006 data. Thus, optimal 

reference data for the SVC and its accuracy assessment are available.  

Finally, an average value of the three seasonality characteristic values for each pixel position 

was calculated. Consequently, each pixel position is represented by an average seasonality 

characteristic value. The averaging was applied to all seasonality characteristics in order to 

incorporate the seasonal development of all three years under the assumption that no LULC 

changes took place in the study area. 
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5.3 Support Vector Machine Classification Pre-definitions 
5.3.1 Training Data Selection  
The training data collection was based on a stratified random selection for each LULC 

information class. That is, each LULC class achieved 200 randomly chosen pixels according 

to a priori knowledge from the CLC 2006 information. 

Table 5 A training data replicate containing stratified randomly selected pixel positions. 

LULC class No. of pixel positions No. of replicates 
Forestland 200 12x200 
Agriculture 200 12x200 
Unknown 200 12x200 
Grassland 200 12x200 
Urban 200 12x200 
Sum of training samples                      1,000 12,000 

A training dataset achieved 1,000 pixel positions that were stratified randomly chosen as 

shown in Table 5. One training dataset is statistically not representative and may contain 

inaccurate modeled seasonality due to uncertainty in the MODIS data and incorrect assigned 

LULC classes in the CLC 2006 dataset, since 15% of CLC 2006 data are assumed to be 

incorrect (EEA 2007). To overcome these concerns twelve training dataset replicates were 

randomly created for each LULC class (see Table 5). In other words, 12,000 pixel positions 

)125200( ××  were chosen. However, the pixel positions that had been chosen in previous 

replicates were also available to select in a new replicate. Thus, it is possible that the pixel 

positions were chosen several times, especially in the smaller LULC classes such as Urban 

and Grassland.  
 

5.3.2 Input Feature Selection 
Input features determine the characteristics of the feature space. The selection of input 

features is very important because SVC is centered on the feature space attributes (e.g. 

distribution) of the input dataset. 

As mentioned before, the nomenclature of SVC describes input features as any kind of data 

that can be used in a classification (Tso and Mather 2009). In this study, it was important to 

select the most representative seasonality characteristics for all LULC classes in order to use 

them as input features for the SVC.  
 

The selection of input features was based on the extracted seasonality characteristics and 

adapts the technique of the validation error rate as described in Section 3.3.4. That means the 

training and ten-fold cross-validation part of SVC was anticipated to determine the best input 

feature combinations. It is assumed that the validation error rate gives the best guess, since 
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there is no established way to determine the best seasonality characteristics for classification 

approaches (Eklundh 2010, personal communication). The available SVC training function in 

MATLAB (Version 7.10.0 – R2010a) gives error rates between zero and one. The higher the 

error rate the less accurate is a trained classifier.  

The amount of seasonality characteristics was intuitively reduced to eight characteristics; i.e. 

season start, season end, season maximum, season length, small integral of season, left 

derivate, right derivate and derivate ratio. These decisions were done to keep the selection 

method less complex and the computational expenses as low as possible.  

Previous tests of the method have shown that three inputs features are a reasonable amount 

for the input feature selection. More than three features will lead to a rapidly increasing 

computation time and memory problems of the used Personal Computer6.  
 

Figure 22 illustrates a simplified workflow of the input feature selection and is used to 

describe the following methodology. The eight seasonality characteristics were arranged in 

three input feature columns, in such a way that each input feature combination contained a 

unique grouping of seasonality characteristics as presented in Table 6. This led to 56 unique 

seasonality characteristic combinations. 

Table 6 Example of unique input feature combinations and their error rates from linear soft margin 
SVM-C training and validation.  

Combination No. Input feature 1 Input feature 2 Input feature 3 Final error rates
1 Begin of Season End of Season Maximum Season 1.393 
2 Begin of Season End of Season Length of Season 2.625 
3 Begin of Season End of Season Small Integral 2.110 

… … … … … 
56 Left Derivate Right Derivate Derivate Ratio 1.943 

 

Then, 200 training samples were randomly chosen (stratified) from the CLC 2006 reference 

data for each of the five LULC classes. Each training sample was linked to three seasonality 

characteristics (input features) values according to its pixel position – as shown in Figure 21. 

 
Figure 21 Linking of a training sample pixel position to the corresponding three input features. 

                                                 
6 The computations were done in MATLAB (R2010a – 32bit version) on a Windows 7 (32 bit) operating system 
on a Notebook with an Intel Core 2 Duo processor (T66) and 4096 DDR3 1066 MHz RAM.   
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In case of combination no. 1 in Table 6 each LULC class received 200 Begin of Season, 200 

End of Season and 200 Maximum Season values. These seasonality characteristic values 

were used to build up a three-dimensional feature space for the selection. 

 

Figure 22 Simplified workflow of the input feature selection.  

Each unique combination went through the training and validation part of linear soft margin 

SVC, since linear SVC needs just the definition of the penalty parameter value (C). The 

selection of the penalty parameter value was based on a constraint7, a randomly chosen value 

between 0 and 1, that is C = 0.2. Non-linear SVCs incorporate more parameter definitions as 

described in Section 3.3.3 and would create a more complex input feature selection, since the 

kernel related parameter needs to be determined. It was aimed to avoid the introduction of 

more assumptions and constraints.  
 

This study is dealing with five LULC classes (k = 5 classes), therefore was applied the 

training and validation part of a one-against-one SVM-C (i.e. multi-classification) strategy. 

Thus, ten binary classifiers cover all possible LULC combinations (i.e. Forestland vs. 

Grassland etc.) in order to test each unique input feature grouping. The training and 

validation frame in Figure 22 is described thoroughly in Figure 23. 

                                                 
7 The decision of that constraint was taken intuitively in order to keep the input feature selection simple. In 
theory a penalty parameter value can be each possible positive or negative real number. 
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Figure 23 presents the developed determination of the final error rate of each input feature 

combination using the training and validation of a SVC classifier.  

 

Figure 23 Determination of the final averaged error rate of an input feature combination. The Workflow 
considers each of the twelve replicates and each of the ten binary classifiers within a training sample 
replicate. All ten binary classifiers are trained and ten-fold cross-validated that leads to ten error rates 
for each classifier.  The ten error rates of a classifier are averaged. This is repeated for all binary 
classifier. The resulting ten averaged error rates are summed and assigned as an error rate to a replicate. 
This is repeated for all 12 replicates until each replicated has a summed error rate. Finally, the summed 
error rates of all replicates are averaged and used to determine the final error rate of an input feature 
combination.     

In detail, each replicate of the twelve training sample replicates contains ten binary classifiers 

in order to consider a multi-classification (see Section 3.3.5). The randomly chosen training 

samples were inserted as input features into the feature space of the matching ten binary 

classifiers. Each of the ten binary classifiers was trained and validated with the ten-fold cross-
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validation using a leave-one-out strategy. This strategy divides a training sample in ten equal 

parts; nine parts were used to train the binary classifier and one part to validate the trained 

classifier. This continued until each part was used as a validation sample. Hence, ten error 

rates were estimated and then averaged over the ten trials in order to achieve a representative 

error rate (see light grey box in Figure 23). All ten binary classifiers were trained and 

validated in the same manner. Then, the ten averaged error rates of each classifier were 

summed to express the performance of the training data replicate (compare dark grey box in 

Figure 23).  

As mentioned in Section 5.3.1 there are concerns about the MODIS data, modeled seasonality 

and CLC 2006 data quality (assumption of 15% inaccuracy) and a selection of 200 training 

sample may not be representative. To overcome this, twelve training data replicates were 

employed to the training and validation of an input feature combination.  

The training pixel positions of each replicate were saved in order to apply the same training 

samples to all input feature combinations. Therefore, reasonable comparisons of each input 

feature combination performance are guaranteed.  

Finally, the twelve error rates of the replicates were averaged to a final error rate for each 

input feature combination to assign a measure of performance. 
 

This training and validation methodology was applied to all 56 input feature combinations in 

order to calculate 56 representative measures of performance - final error rates. In the end, 

the final error rates were compared and the input feature combination with the lowest average 

error rate was chosen for the subsequent multi-classification approaches – see Figure 22. 

 



 

50 
 

5.3.3 Parameter Selection - Grid Search 
The chosen three SVC strategies (linear, polynomial kernel and RBF kernel) require pre-

defined parameters in order to classify the data accurately. The three SVC strategies that were 

tested in this study and their user-defined input parameters are listed below: 

1. Linear soft margin classification requires a penalty parameter value (C). 

2. Non-linear classification using polynomial kernel involves a penalty parameter value 

(C) and polynomial order value ( d ). 

3.  Non-linear classification using Gaussian radial basis (RBF) kernel function8, which 

requires a penalty parameter value (C) and a RBF sigma value (σ ).  
 

These parameter values may be dependent on the input feature dataset (Tso and Mather 2009) 

and the values affect the SVC performance. Thus, a grid search, as described in Section 3.3.4, 

was applied to the chosen SVC strategies in order to determine their best user-defined 

parameters. The grid search anticipates the training and validation part of SVM-C using the 

validation error rate to measure the quality of the user-defined parameter performance. 
  

The three SVC strategies with changing parameter settings were tested according to the 

workflow in Figure 24. As Figure 24 visualizes the grid search involves the definition of the 

individual search space extents for the linear and the two non-linear classification strategies. 

In case of linear classification a one-dimensional grid space was constructed with increasing 

penalty values. In case of non-linear classifications two-dimensional grid spaces were created 

with increasing parameter values, i.e. penalty values in one direction and kernel function 

related parameter values in the other direction – see Figure 15.  
 

Then, a stratified random selection of 200 training pixel positions for each LULC class was 

incorporated into the grid searches. The best performing input feature combination (i.e. 

Maximum Season, Left Derivate and Small Integral) from the previous input feature selection 

(see Section 5.3.2) was used to associate three seasonality characteristic values to each 

training sample (i.e. 3x 200 seasonality characteristics). The resulting three-dimensional 

dataset constructed the feature spaces for the three SVM-C strategies. 
 

In case of the non-linear SVM-C strategies, the coarse grid search started at the lower left 

corner and continued stepwise diagonally, with coarse increasing parameter values, till the 

                                                 
8 The mathematical form of the polynomial and RBF kernel functions are not provided in the MATLAB 
help/tutorial for statistical learning functions of the bioinformatics toolbox. However, the author can provide the 
equations if asked for according to personal communication with a MathWorks Technical Support Engineer 
(Hempel 2010, personal communication). Authors email address: Florian.Sallaba(AT)nateko.lu.se 
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upper right corner was reached as shown in Figure 15 (blue line). The corner values defined 

the chosen extent of the grid spaces. All minimum and maximum values of the parameters 

and their increment steps are listed in Table 7. The coarse approaches were evaluated for the 

best performing parameter settings. In the linear case the grid search went stepwise from the 

lowest to the highest defined value in the one-dimensional space. 

 

Figure 24 Simplified workflow of the applied grid search. 

Each stepwise change incorporated the training and validation part of a one-against-one 

SVM-C using the corresponding SVC strategy. For each stepwise change ten binary 

classifiers that cover all possible LULC class combinations were trained and ten-fold cross-

validated. In detail, the ten-fold cross-validation led to ten error rates for each binary 

classifier that were averaged over the ten-fold trials. The resulting averaged error rates of 

each binary classifier were summed and assigned to each stepwise change i.e. user-defined 

parameter groupings.  
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Twelve training data replicates were applied in the same manner to each stepwise change 

within the coarse grid search as visualized in Figure 24. This was done in order to overcome 

concerns about the statistical representativeness, and incorrect modeled seasonality due to 

uncertainty of the MODIS data and the thematic accuracy of the CLC 2006 reference data. 

Thus, each stepwise change obtained twelve error rates that were averaged to a final error 

rate. The training pixel positions of each replicate in the coarse search were saved and applied 

to the next parameter grouping test in order to guarantee reasonable comparisons of the final 

error rate of each stepwise change. 

All final error rates were linked to the corresponding stepwise changes and ranked in an 

intermediate evaluation. The user-defined parameters with the lowest error rate were chosen 

for the fine grid search.  

Table 7 Ranges of the penalty parameter (C), polynomial order (d) and RBF sigma (σ ) values within the 
coarse grid search. 

User-defined parameters Minimum Value Maximum Value Stepwise Increase  

Penalty parameter (C) 0 25 1 

Polynomial order (d) 1  6 1 

RBF sigma (σ ) 0 20 1 
 

In the fine grid search, the definitions of the grid spaces were tightened around the best 

performing parameter value pairs from the coarse grid search – see workflow in Figure 24. 

The methodology of the fine grid search is identical to the one in the coarse grid search 

except that the stepwise changes were taking place on a finer scale. In Figure 15 (black line) 

is shown the approach of the fine grid search.  

In the non-linear SVC cases, it started at lowest value pairs in the grid space and continued 

diagonally until the highest value pairs were reached. The linear SVC fine grid search took 

place in a one-dimensional space. 

Each stepwise change in the fine grid search was evaluated as in the coarse grid search; 

averaging the ten-fold error rates for each binary classifier, summing the ten binary classifier 

error rates and incorporating twelve training data replicates to calculate a representative final 

error rate for each parameter value pair (compare Figure 24). The new stratified random 

selections of the training pixel positions in the fine search were saved and applied to the next 

parameter grouping test in order to guarantee reasonable comparisons of the final error rate of 

each stepwise change. 
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In the end, the final error rates of each stepwise change were ranked and compared. The best 

performing parameter value pairs of the non-linear SVC strategies and the best penalty 

parameter of the linear SVC were chosen for the final SVM-Cs. The best user-defined 

parameters are shown in Table 8. 

Table 8 User-defined input parameters for SVC  

SVC strategy Penalty parameter (C) Polynomial order (d) RBF sigma (σ ) 

Linear soft margin 10.1 --- --- 

Non-linear polynomial 0.2  2 --- 

Non-linear RBF 8.6 --- 7.9 

5.4 Multi-classification 
The determinations of user-defined parameter settings and input features enable the final 

SVM-C separation of the study area’s data. In general, a SVM-C consists of two parts, the 

construction of the classifiers via training and validation; and then the application of the 

classifiers to the unknown data points that have not been used for training.  

 

The linear and non-linear SVC strategies were applied to a multi-classification (SVM-C), 

using the one-against-one method. Thus, ten binary one-against-one classifiers were trained 

in order to satisfy all possible LULC class combinations. A unique DAG containing 4 

decision levels was tailor-made and implemented in MATLAB for the SVM-C problem of 

this study as shown in Figure 25. 

 
Figure 25 Tailor-made directed acyclic graph containing ten classifiers and five classes 

200 training pixel positions for each LULC class were chosen randomly in a stratified 

manner. The best performing input feature combination were taken to link the three input 
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feature (i.e. seasonality characteristics) values to each training pixel position. The resulting 

three-dimensional datasets were used to build the feature spaces of all binary classifiers. 

Then, the ten binary classifiers of each SVC strategy were trained with the linked input 

features and the best performing user-defined parameters (e.g. C, d  or σ ) shown in Table 8 

from the grid search (see Section 5.3.3). 

A leave-one-out strategy (as described above) was applied during the training step. This 

ensured that all training data in the folds were used for training and validation and thus over-

fitting concerns, i.e. reduction of generalization capability on unknown data points, were 

taken into account.  
 

The ten constructed classifiers of each classification strategy were inserted into the 

conceptual DAG (see Figure 25) to guarantee that each data point will be tested for being a 

member in all LULC classes. The SVM-C of the unknown data points, which have not been 

used for training purposes, started one-by-one at the root (1st level) of the DAG. Here, each 

unknown data point was tested for being a member of the two LULC classes in the 

corresponding binary classifier. Depending on the decision the data point went to a classifier 

in the next level and was tested again until the 4th level was reached in order to determine the 

final decision. The leaves define the final decision of a data point being a member of a LULC 

class as shown in Figure 25. In the end, the final decision of LULC was assigned to the 

corresponding pixel position.  
 

Twelve replicates were employed for each SVM-C strategy (linear, polynomial kernel and 

RBF kernel) because of statistical representativeness, and concerns about uncertainty of the 

MODIS data and the modeled seasonality as well as the thematic accuracy of CLC 2006 

(15% inaccuracy) reference data. In detail, each replicate contained new stratified random 

selections of training pixel positions and the unknown dataset. The training pixel positions of 

each replicate were stored and applied to the other SVM-C strategies in order to guarantee 

reasonable comparisons of the different SVM-C outcomes in the subsequent accuracy 

assessment. However, all replicates of the classifiers had the same user-defined parameter 

settings as shown in Table 8.   
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5.5 Accuracy Assessment 
The twelve replicate outcomes of each SVM-C strategy were assessed for their accuracy 

using the CLC 2006 reference data (in Section 3.4.1). Each classified pixel position was 

evaluated with the corresponding pixel position in the reference data. Those pixel positions 

that have been used in training step of each SVC replicate were excluded from the 

assessment. The accuracy assessments contained four quality measures. Overall accuracy, 

Cohen’s Kappa value, user’s and producer’s error were calculated as described in Section 

3.4.2. The estimation of the unweighted Cohen’s Kappa in MATLAB incorporated a Cohen’s 

Kappa function programmed by Cardillo (2007). The quality measures of each replicate were 

averaged over the twelve trials and used for the presentation and interpretation of the results.  
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6. Results 

6.1 Seasonality Modeling 
Figure 26 shows modeled vegetation seasonality (brown line) based on the NDVI time-series 

(blue line) from Figure 3. The time-series covers a period over five years of a chosen pixel in 

the MODIS NDVI time-series of the study area.  

The outliers during the growing season have been smoothed out to a certain degree by help of 

the weight settings and the local Savitzky-Golay method. The growing seasons have almost 

similar patterns over the time period. Whereas, the winter seasons are clearly influenced by 

outliers (e.g. spikes) and this leads to dissimilar patterns compared to the growing season 

patterns.  

 

Figure 26 Savitzky–Golay modeling of vegetation seasonality derived from a NDVI time-series.  

Different modeling curves based on NDVI time-series were compared and show in most of 

the cases an acceptable modeling of the growing seasons. However, the winter seasons are 

generally influenced by noise and may lead to erroneous seasonality parameter values (i.e. 

start and end of season).  
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6.2 Input Features 
The selection of the three best performing input features in a linear soft margin SVC training 

(penalty parameter value of 0.2) led to 56 averaged final error rates. All final averaged error 

rates were ranked according to their performances. The top five input feature combinations 

are shown in Table 9. The best performing combination consisted of Maximum of Season, 

Left Derivate and Small Integral with an average error rate of 1.143.  

Table 9 Ranking of the top five performing input features 

Rank No. Input Feature 1 Input Feature 2 Input Feature 3 Average Error Rate 

1 Maximum Season Left Derivate Small Integral 1.143 

2 Maximum Season Left Derivate Derivate Ratio 1.155 

3 Maximum Season Right Derivate Derivate Ratio 1.168 

4 Maximum Season Left Derivate Right Derivate 1.178 

5 Maximum Season End of Season Small Integral 1.205 

The seasonality characteristics Maximum of Season and Left Derivate appear the most in the 

top five ranking and seem to be a good choice for input features in a SVM classification. The 

highest ranked combination was applied to the grid searches of the three SVC strategies. 
 

A test of a unique input feature combination using linear SVM-C led to a computation time of 

approximately 30 minutes. The computations were conducted in MATLAB (R2010a – 32bit 

version) on a Windows 7 (32 bit) operating system on a Notebook with an Intel Core 2 Duo 

processor (T66) and 4096 DDR3 1066 MHz RAM. 
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6.3 Parameter Selection - Grid Search 
The outcomes of the best performing user-defined input parameters of the parameter selection 

for the three SVC training strategies are shown in Table 8 (Section 5.3.3). Table 10 visualizes 

the top five performing user-defined parameters in order to show how the error rates differ 

and to enable the recognition of trends in specific value combinations.  

Table 10 Top five performing user-defined parameters in the grid search using all three SVC strategies. 
Penalty value (C), polynomial order (d) and RBF sigma (σ ) are related to the SVC strategies. The error 
rates are summed over the ten classifiers of the multi-classification. 

Rank No. Linear Polynomial RBF 
C Error Rate C & d Error Rate C & σ  Error Rate 

1 10.1 1.146 0.2 & 2 1.108 8.6 & 7.9 1.045 

2 10.4 1.148 1.7 & 2 1.113 6.6 & 7.7 1.048 

3 10.0 1.149 19.8 & 2 1.114 8.6 & 8.1 1.049 

4 10.7 1.149 0.4 & 2 1.114 9.6 & 7.5 1.051 

5 10.9 1.149 0.9 & 2 1.114 8.6 & 7.7 1.051 

The differences between the error rates of each SVC strategy are small and are established in 

the second and third decimal place. The error rates of each SVC training strategy show trends 

towards specific user-defined parameter combinations. The linear soft margin SVC strategy 

has the best performing penalty values between 10.1 and 10.9.  

The non-linear SVC, using polynomial kernel, has the lowest error rates having a polynomial 

order of two; however the penalty values are ranging widely and do not show any trend. Non-

linear SVC, incorporating RBF kernel, have sigma values between 7.5 and 8.1; whereas the 

penalty values are ranging between 6.6 and 9.6. 

A comparison of all SVC strategies indicates that non-linear multi-classifiers using RBF 

kernel perform slightly better than the polynomial kernel under the given circumstances.  
 

In addition, it is necessary to present how the best performing user-defined parameter 

combination has performed on the binary classifier level. In Figure 27 are visualized the 

average error rates of the best user-defined parameters of all SVC training strategies. Binary 

classifiers that involve LULC class Unknown have error rates of zero and are not shown in 

Figure 27. 
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Figure 27 Average error rates of the best performing user-defined parameters for each of the ten 
classifiers applied on the three SVC strategies. 

Each SVC strategy applied on the binary classifiers led to similar trends of error rate values. 

The highest error rates of approx. 0.4 occur in the binary classifier Forest vs. Grassland. 

All other binary classifiers have error rates below 0.2. The error rates are quality measures of 

the binary classifiers. Thus, the high error rates of the binary classifier “Forest vs. Grassland” 

during the parameter selection may indicate misclassifications between the classes Forestland 

and Grassland in the subsequent SVM-C.  
 

A stepwise parameter change within the grid search (including twelve replicates) for the 

linear classifier took approximately 30 minutes of computation, for the RBF non-linear 

classifier ~ 45 minutes and for the polynomial classifier ~60 minutes. The computations were 

conducted in MATLAB (R2010a – 32bit version) on a Windows 7 (32 bit) operating system 

on a Notebook with an Intel Core 2 Duo processor (T66) and 4096 DDR3 1066 MHz RAM. 
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6.4 Accuracy Assessment 
The SVM-C results of the linear and non-linear strategies were assessed for their accuracy in 

order to determine the best SVM-C strategy for the input feature combination (Maximum 

Season, Left Derivate and Small Integral).  

Overall accuracy 

Table 11 displays two cases of the average overall accuracies of the applied SVM-C 

strategies. The four class case does not consider the LULC Unknown in the overall accuracy 

estimation, since its seasonality characteristics have not been modeled in the seasonality 

modeling due to the mask application. The seasonality characteristics values were uniformly 

set to zero. The five class case takes LULC class Unknown into account during overall 

accuracy calculations.  

Table 11 Overall accuracies of the applied SVM-C strategies considering the averages, ranges and 
standard deviations. The four class case excludes the LULC Unknown, since its seasonality characteristics 
values have not been calculated during the seasonality modeling and were just set to zero.  

Overall Accuracies    
Four classes 

“Unknown class” excluded 
RBF 

[C=8.6 & σ=7.9] 
Polynomial 

[C=0.2 & d=2] 
Linear 

[C=10.1] 

Average [%] 63.80 63.52 60.78 
Range [%] 4.79 4.86 5.06 
Standard deviation [%] 1.68 1.89 1.53 

Five classes RBF 
[C=8.6 & σ=7.9] 

Polynomial 
[C=0.2 & d=2] 

Linear 
[C=10.1] 

Average [%] 66.54 66.28 63.75 
Range [%] 4.43 4.49 4.67 
Standard deviation [%] 1.55 1.74 1.41 
 

Four class case 

In the four class case, the achieved average overall accuracies of the twelve replicates are 

ranging between ~61% and ~64% and the differences are small. RBF kernel multi-

classification has an averaged overall accuracy of 63.80% and performed slightly better than 

the polynomial kernel with 63.52%. The linear SVM-C is less accurate with 60.78%; 

however, the difference to non-linear SVM-Cs is about approx. 3% and is considered to be 

small.  

The overall accuracies ranges of the employed SVM-C strategies are at approximately 5%. 

The RBF kernel SVM-C has the smallest range of 4.79%. The polynomial kernel SVM-C has 

an overall accuracy range of 4.86% and the linear SVM-C of 5.06%. Nevertheless, the 

differences of the overall accuracy ranges between the SVM-C strategies are marginal. 
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Considering the standard deviations of the overall accuracies, linear SVM-C has the lowest 

value of 1.53%, followed by RBF kernel SVM-C with 1.68% and polynomial kernel SVM-C 

has the highest standard deviation with 1.89%. 

Five class case 

The five class case gives the same pattern of overall accuracies for the corresponding SVM-C 

strategies as the four class case. The average overall accuracies are inflated by approximately 

3%. The RBF kernel has the highest average overall accuracy with 66.54%, the polynomial 

kernel SVM-C is marginal lower and the linear SVM-C has the lowest average overall 

accuracy of 63.75%. The overall accuracy ranges are smaller in the five class case. The RBF 

and polynomial kernel SVM-C have approximately the smallest range of ~4.4%. Linear 

SVM-C has the largest range of 4.67%, however the lowest standard deviation of 1.41%. 

RBF kernel SVM-C has the second lowest standard deviation of 1.55% and polynomial 

kernel SVM-C the highest with 1.74%. 
 

Producer’s and user’s accuracy 

Table 12 displays average producer’s and user’s accuracies of all LULC classes of the 

applied SVC-M strategies. In Table 12 the five class case is considered, since the producer’s 

and user’s accuracies are theoretically the same for the four class case. LULC Unknown has 

excellent producer’s and user’s accuracies that an exclusion of Unknown will lead to almost 

same percentages of the other LULCs (compare Section 3.4.2).  

Table 12 Average producer’s and user’s accuracies of the five LULC classes of the selected SVM-C 
strategies with following parameter settings Linear [C=10.1], polynomial kernel[C=0.2 & d=2] and RBF 
kernel [C=8.6 & σ=7.9] SVM-C. 

Producer’s 
accuracy  

Linear  
[%] 

Polynomial 
[%] 

RBF 
[%] 

User’s 
accuracy

Linear  
[%] 

Polynomial 
[%] 

RBF 
[%] 

Unknown 97.62 98.53 98.90 Unknown 91.68 96.20 95.88 

Forestland 88.29 86.88 86.45 Forestland 58.85 59.00 59.97 

Agriculture 83.70 83.50 83.20 Agriculture 71.93 72.87 72.80 

Urban 25.11 26.12 25.28 Urban 73.32 72.05 73.24 

Grassland 3.65 4.32 4.20 Grassland 45.54 46.39 43.37 

The Unknown class has producer’s accuracies of ~98- ~99% of being classified correctly 

considering the reference data and user’s accuracies between ~92 - ~96% of being assigned 

correctly in the classified data. The outcomes of LULC class Unknown are excellent, since it 

achieved zero values for each seasonality characteristic, and thus an optimal separation 
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between other values can take place. However a marginal overestimation in the classified 

data takes place.  

The producer’s accuracy of LULC class Forestland shows that it has been mapped correctly 

with accuracies between ~86 - ~88% in the reference data, i.e. CLC 2006 and ~12-~14 % of 

Forestland pixels have been committed to other classes. On the other hand, the user’s 

accuracies between ~59 - ~60% show how well Forestland has been assigned in the classified 

data. In other words, 40% of Forestland pixel positions have been classified wrongly. 

Nevertheless, the results of Forestland are moderate even though it is overestimated in the 

classified dataset. 

Agriculture is mapped correctly in the reference data with producer’s accuracies of 

approximately 84%; however in the classified data it has user’s accuracies of approximately 

73 %. In other words, approximately 27% of Agriculture pixel positions have been classified 

inaccurately. In this study Agriculture has been overestimated the least and the results can be 

considered as good.  

LULC class Urban has low producer’s accuracies of approximately 25% considering the 

small amount of available reference data; on the other hand, it has good user’s accuracies of 

~73% being mapped correctly in the classified data. That means a considerable 

underestimation of Urban took place in the classified data. 

Grassland has poor producer’s accuracies of approximately ~4% taking the small amount 

data to reference with and moderate user’s accuracies between ~43 - ~46% in the classified 

data. Grassland has been underestimated in the classified data.  
 

Kappa analysis 

Table 13 displays the average Cohen’s Kappa values of the employed SVM-C strategies. The 

four class case excludes the LULC Unknown in the Kappa analysis, since its seasonality 

characteristics values were uniformly set to zero. The five class case takes LULC Unknown 

into account during the Kappa analysis.  

Four class case 

The best performing strategy is the RBF kernel SVM-C with an average Kappa value of 0.45, 

followed by the polynomial kernel with an average value of 0.44. The linear classification 

obtained an average Kappa value of 0.42. The ranges of the Kappa values are equal in all 

SVM-C strategies. A lower standard deviation of the Kappa value is estimated for the linear 

SVM-C with a Kappa value of 0.01. However, the Kappa value standard deviations of both 

non-linear SVM-Cs are equal with 0.02. According to Congalton and Green (2009) Kappa 
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values greater than 0.40 show moderate agreements. In other words, the estimated Kappa 

values above 0.40 of this study are moderate but give acceptable results. However, the 

average Kappa value differences between the applied SVM-C strategies are marginal.  

Table 13 Average Cohen’s Kappa values of the applied SVM-C strategies considering the averages, 
ranges and standard deviations. The four class case excludes the LULC Unknown, since its seasonality 
characteristics values were set to zero. 

Cohen’s Kappa values    
Four classes 

“Unknown” excluded 
RBF 

[C=8.6 & σ=7.9] 
Polynomial 

[C=0.2 & d=2] 
Linear 

[C=10.1] 

Average 0.45 0.44 0.42 
Range  0.05 0.05 0.05 
Standard deviation  0.02 0.02 0.01 

Five classes RBF 
[C=8.6 & σ=7.9] 

Polynomial 
[C=0.2 & d=2] 

Linear 
[C=10.1] 

Average 0.52 0.52 0.49 
Range  0.05 0.05 0.05 
Standard deviation  0.02 0.02 0.01 
Five class case 

The RBF kernel and polynomial kernel SVM-C performed similar with average Cohen’s 

Kappa values of 0.52. The linear classification achieved an average Kappa value of 0.49. The 

ranges of the Kappa values are similar for all employed SVM-C strategies with a value of 

0.05. Linear SVM-C has the smallest standard deviation with 0.01 and the non-linear 

strategies have Kappa value standard deviations of 0.02.  

The average Kappa values state the SVM-C methods agree moderately with the CLC 2006 

reference data (Congalton and Green 2009). Hence, the performances of SVM-Cs in this 

study are acceptable considering that the differences of Kappa values are marginal.  
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7. Discussion 

7.1 Data 
The high temporal resolution of MODIS data offers possibilities to monitor seasonal 

development on eight-day resolution and to model seasonality. However, the ground 

resolution of 250m leads to spectral mixture problems referred as mixed pixel in satellite data 

classification (Lillesand et al. 2004, Foody and Mathur 2006, Richards and Jia 2006, Tso and 

Mather 2009). In other words, in a MODIS pixel is aggregated spectral information of several 

LULC classes and that may be difficult to interpret for the analyst as well as the classification 

algorithms. Especially agricultural land use with small units or changing LULC types within 

short distances are leading to mixed pixels. Even though the chosen study site is dominated 

by 90% of agricultural and forestland, there are small areas with changing LULC classes at a 

small scale according to the CLC 20069 map. In detail, Grassland islands in Forestland may 

lead to misinterpretation as well as Forestland areas next or within Agricultural land.  
 

In addition, a MODIS pixel may be influenced to a certain percentage by its neighboring 

pixels (Tan et al. 2006). Particularly in heterogeneous landscapes, this may lead to mixed 

pixel and to subsequent misinterpretations.  
 

There are trade-offs that the analyst has to deal with using high temporal resolution at the cost 

of spatial resolution. For this study, the achieved trade-off is acceptable, since it is assumed 

that high temporal resolution will add valuable information during the seasonality modeling, 

and thus the determination of the seasonality characteristics. MODIS satellite data has been 

stated as a well suited data source for LSP studies (Reed et al. 2009) and Jönnson et al. 

(2010) applied successfully MODIS data in their phenology study about Swedish coniferous 

forests. An additional advantage of MODIS data is that they are free of charge. 
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7.2 Reference Data 
CLC 2006 was used as reference data for the training and validation during the input feature 

selection, user-defined parameter determination as well as the actual multi-classification and 

its accuracy assessment. Consequently, the study is dependent on the thematic accuracy of 

CLC 2006, which is assumed to be 85% (EEA 2007).  

As mentioned before CLC 2006 250m ground resolution is based on satellite imagery from 

sensors like Landsat TM or ETM+ having fine spatial resolutions. Hence, the original 

resolutions were generalized and aggregated to a coarser of 250m ground resolution. During 

such procedures information get lost and this may led to additional error sources for this 

study. It is assumed that the LULC classes of CLC 2006 data in the study area are assigned 

wrongly by a probability of 15%. Thus, the incorporation of CLC 2006 into this study leads 

to a consistent error source that might falsify the training and validation of each SVM-C 

strategy and their accuracy assessments.  
 

In addition, CLC 2006 was reprojected to the MODIS sinusoidal projection with a nearest 

neighbor transformation. In such a way the new calculated raster cells were influenced by its 

neighboring cells. The reprojection procedure had influence especially on raster cells that 

were surrounded originally by cells with different LULC classes. Thus, the neighboring cells 

with different LULC might have led to an assignment of a new LULC class to a raster cell 

and the original LULC value could have disappeared. However, nearest neighbor 

transformation alters the less the original input raster cell compared to other resampling 

methods such as bilinear interpolation or cubic convolution transformation (Lillesand et al. 

2004).  
 

One way to deal with these concerns of satellite based reference data is to collect field data 

for training and validation purposes as described in Congalton and Green (2009). However, it 

is difficult to collect field data points that are representing a grid of 250mx250m ground 

resolution in such a heterogeneous study area (compare Figure 18). A set of several field data 

points within a grid could be selected, and then upscaled with spatial statistical methods. 

However, the collection of the field data would be very time demanding.  
 

The stratified random selection is a reasonable method to select training data for each LULC 

class. However the underrepresentation of Urban and Grassland LULC leads to the 

assumption that some pixel positions had been chosen several times over the twelve 

replicates. Therefore, the replicates may not be representative and contain wrongly assigned 
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reference data considering Urban and Grassland. That concern explains the poor producer’s 

and user’s accuracies of Grassland. A study area with larger proportions of Urban and 

Grassland needs to be tested in order to prove this concern.  
 

The decision to overcome the concerns of representativeness and inaccuracy of CLC 2006 

reference data with twelve replicates is assumed to be acceptable. It gives representative 

results and weakens the influence of wrongly assigned LULC classes in the training and 

reference data.  
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7.3 NDVI 
The feasibility of NDVI time-series to capture phenological events has been discussed in 

Reed et al. (2009). Disadvantages of NDVI are the sensitivity towards fully and partly soil 

covered surfaces. The study area contains of approx. 43% agricultural land that gives soil 

dominated spectral signatures over certain time periods i.e. beginning of season or after 

harvesting. There are several vegetation indices that can cope with soil covered surfaces or 

soil background as source of noise. The weighted difference vegetation index (WDVI) or the 

soil adjusted vegetation index (SAVI) might be better choices for these areas. Reed et al. 

(2009) mention that SAVI is more linked to structural elements such as biomass.   

Furthermore NDVI saturates at a certain level and increasing foliage biomass cannot be 

represented with NDVI. Wide dynamic range vegetation index (WDRVI) has been reported 

to reduce the sensitivity towards saturation effects in northern regions (Jönsson et al. 2010). 

Also the enhanced vegetation index (EVI) has been designed to improve sensitivity in high 

foliage biomass regions and to decrease background signals and atmospheric influences. 

Hüttich et al. (2009) applied effectively EVI to model seasonality data in combination with 

in-situ botanical survey data to map vegetation types in dry Savanna ecosystems. 
 

However in this study, the NDVI time-series are assumed to be appropriate for seasonality 

modeling approaches and seasonality characteristic extraction. An investigation of the 

performance of the mentioned vegetation indices in the study area could give comparable 

results. It would be useful to study how different vegetation indices e.g. WDVI or WDRVI 

would influence the seasonality modeling, seasonality characteristic extraction and the 

subsequent SVM-C.   
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7.4 Seasonality Modeling 
The chosen Saviztky-Golay method is considered to be a local fitting and more sensitive to 

noise (Jönsson et al. 2010) and leads to spikes and peaks (see Figure 26). Methods that keep 

the NDVI integrity i.e. double logistic fitting may give outcomes that are not that much 

influenced by noise. On the other hand, such a global approach may lead to information loss 

of rapid changes such as harvesting of crops. The Saviztky-Golay method is feasible to detect 

rapid changes that may be useful information for the classification of seasonality parameters.  

However, it may be interesting to study how other fitting methods will influence the 

seasonality parameter classification.   

 

An enhancement of the MODIS quality products would help to improve the seasonality 

modeling in TIMESAT. The overall quality indicator used in this study helped to exclude the 

influence of cloud coverage and other noise sources during the growing seasons. 

Nevertheless, the quality indicator performed weak in the winter seasons.  

Figure 26 shows how noise influences the modeling of a growing and winter season. The 

modeled minimum levels are different in each shown winter seasons (Figure 26 NDVI time-

series points 47, 93,139 and 185). These different minimum levels, during the winter season, 

have an influence on the determination of most of seasonality parameters (e.g. season start, 

season end, season length and base level) and the subsequent SVM-C.  

In general, smoothing of peaks and spikes with enhanced quality data can improve the 

seasonality modeling and the determination of the seasonality parameters. 
 

The averaging of the seasonality characteristic values over the three observed years is an 

important discussion point in the data processing, which is discussed thoroughly in Section 

7.7.  
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7.5 Feature Selections 
The input feature selection is based on a ten-fold cross-validation for each possible 

combination of seasonality parameters. The ten-fold cross-validations of three input 

seasonality parameters were done over twelve replicates and all resulting averaged error rates 

were used for a quality measure of the unique combinations.  

The range of the error rates differs over the twelve trials; it is caused by the stratified random 

selection of the training data. This indicates that the training chosen training data contained 

wrong assigned LULC classes from CLC 2006 considering the probability of 15% (EEA 

2007) of choosing a wrong assigned LULC class. Furthermore, it may show the influence of 

mixed pixel (Lillesand et al. 2004, Foody and Mathur 2006, Richards and Jia 2006, Tso and 

Mather 2009) that are difficult to handle in the seasonality modeling.  
 

The developed and implemented feature selection of this study is related to the quality of the 

CLC 2006 reference data. The errors within the reference data might have a strong effect on 

the LULC classes that are not that well represented in the study data i.e. Grassland and 

Urban. Since the probability of choosing the same wrong reference point is higher in a 

smaller dataset than in a larger. This could lead to high error rates of the binary classifiers 

that involve Grassland and Urban (e.g. “Forestland vs. Grassland” or “Agriculture vs. 

Urban”). Figure 27 states the highest error rates in the binary classifiers of “Forestland vs. 

Grassland” or “Agriculture vs. Urban”. A study area with larger proportions of Urban and 

Grassland could be tested in the developed feature selection framework in order to prove this 

concern. The developed feature selection gives a starting point in picking out the most 

representative seasonality characteristics as input features. However, the method is complex 

and leads to high computational burden. Using the validation error rate is an experimental 

approach that is assumed to give the best guess, since there is no established way to 

determine the best seasonality characteristics for SVMs classification.  

In addition, the penalty parameter value was randomly chosen from a range between 0 and 1, 

that is C = 0.2. A different randomly chosen penalty parameter value, from a larger range, 

might have led to a different selection of seasonality characteristics. 
 

Moreover, more than three input features might carry more information and may improve the 

ability to construct a separating hyperplane during SVC training. However, this study was 

constrained to incorporation of three input features, since the used Personal Computer9 ran 

                                                 
9 The computations were done in MATLAB (R2010a – 32bit version) on a Windows 7 (32 bit) operating system 
on a Notebook with an Intel Core 2 Duo processor (T66) and 4096 DDR3 1066 MHz RAM. 
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out of memory due to the quadratic optimization of the training samples in higher 

dimensional spaces.  
 

An alternative to extract the most valuable information is the application of a principal 

component analysis. The principal component analysis applies transformations that are 

described with linear combinations of the original data values multiplied by transformation 

coefficients, also referred as eigenvectors (Lillesand et al. 2004, Richards and Jia 2006, Tso 

and Mather 2009). All seasonality characteristics could be introduced in a principal 

component analysis in order to reduce the amount of data. The outcomes would be a new 

uncorrelated description of the original data in several components. The amount of variation 

is maximized in first component and decreases successively in following components. The 

first components could be incorporated in the SVM-C strategies.  
 

Tso and Mather (2009) suggest a feature selection method used for hyper-spectral data in 

order to determine the best input feature for a SVC. It adopts the concept of weight 

elimination used in ANN (Tso and Mather 2009).  
 

Instead of applying statistical measures, it might be valuable to conduct a visual inspection of 

the modeled seasonality data and the analyst decides intuitively which seasonality 

characteristics to select. For example the seasonal development of Forestland shows an 

earlier onset of foliage growth, Higher Amplitudes and Larger Integrals of seasonal 

development compared to Grassland. These seasonality characteristics may be valuable for a 

SVC. However, this approach will lead to very subjective decisions of the analysis and is 

more of an art than a science.  
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7.6 Parameter Selection – Grid Search 
The implemented parameter selection using the grid search approach performed well in order 

to locate the penalty parameter values and the kernel functions related parameters. Tso and 

Mather (2009) point out that the lowest error rate might not always be the best choice for the 

final parameter determination, since the trained classifier may not generalize towards 

unknown data samples. In this study it was tried to overcome these over-fitting concerns by 

applying the same parameter or parameter pairs to all ten binary classifiers in the SVM-C 

DAG and their following ten-fold cross-validation. In addition it was tried to avoid over-

fitting issues using twelve replicates. In such a way, it is assumed that the calculated error 

rates are unbiased and not limited to over-fitting. However, the implemented grid search 

leads to high computational burden and is very time consuming even though the range of the 

coarse grid search was rather small – compare Table 7.  
 

The results of the grid search for the polynomial kernel function and its penalty parameter 

value are interesting because the lowest error rates were achieved with a polynomial order 

value of 2. Tso and Mather (2009) state that increasing polynomial orders lead to a better 

fitting of the hyperplane and thus a more exact constructed classifier. In this study, a 

polynomial order of 2 leads to the lowest error rate. The penalty parameter values in this 

study are ranging between 0 – 11 among the three SVC strategies; compared to other studies 

(Pal and Mather 2003, Pal and Mather 2005, Dixon and Candade 2008, Kavzoglu and 

Colkesen 2009, Tso and Mather 2009) larger penalty parameter values have been applied to 

multi- and hyper-spectral satellite data. A widening of the parameter value ranges during the 

coarse grid search may improve the selection of the user-defined parameters. The top five 

performing parameter pairs of each applied SVC strategy have marginal different error rates 

(compare Table 10). In addition, the penalty parameter values in the polynomial kernel case 

show no specific trend and slight trend can be supposed for the RBF kernel penalty 

parameter. This leads to the assumption that are wider grid search considering the penalty 

parameter could improve the user-defined parameter selection but would be more time and 

computational demanding. 
 

A different approach of using the grid search could be to apply an independent grid search to 

each of the ten binary classifiers within the SVM-C DAG. Thus, each binary classifier would 

be incorporated one-by-one into the grid search in order to find the best penalty parameter 

and kernel functions related parameter values. For reasons of representativeness twelve 

replicates need to be applied. Binary classifiers with higher error rates such as Forest vs. 
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Grassland and Agriculture vs. Urban (compare Figure 27) could be improved with tailor-

made penalty parameter and the kernel functions related parameters. This more specific 

parameter calibration would lead to a more complex grid search combined with higher 

computational burden and time expenses.  
 

Tso and Mather (2009) mention the gradient descent method as an alternative for the 

selection of user-defined parameters in SVM classification. The gradient descent method can 

involve even more complex kernel functions using an error surface function where the slope 

and the slope direction are used to evaluate the performance of the chosen user-defined 

parameters. However, the implementation of the gradient descent method is more complex 

and demands an efficient implementation in a programming language – compared to the grid 

search.  

  



 

73 
 

7.7 Support Vector Machine Classification 
The seasonality characteristic of the LULC class Unknown were masked out by setting them 

to zero and were still introduced into the SVM-C DAG. Consequently the overall accuracies 

and Kappa values were inflated in the five class case. The LULC class Unknown was 

introduced for reason of simplifying the programming work in MATLAB. That steered to a 

very good separation between Unknown and the other LULC classes. This fact is underlined 

with zero error rates of the binary classifiers that involved the LULC Unknown, during the 

training and validation of SVM-C. Also the producer’s and user’s accuracies of Unknown are 

excellent and underline this discussion point. The exclusion of Unknown shows a small 

difference of 3 % between the four and five class cases considering the average overall 

accuracy due to its small proportion of 3% in the study area. This illustrates disadvantages 

using the overall accuracy (Lillesand et al. 2004, Congalton and Green 2009).  

A comparison of the Kappa analysis between the four (exclusion of Unknown) and five class 

case shows differences of approximately 7% (Kappa value of 0.07), since the Kappa value 

considers the agreement occurring by chance. The Kappa analysis describes the strong 

influence of LULC Unknown. Thus it is necessary to describe and discuss the performance of 

this study in a conservative way using the overall accuracies and Kappa values of the four 

(Unknown excluded) case. 
 

The results of the three SVC strategies show reasonable average overall accuracies (~61 - 

64%) and moderate Cohen Kappa values (0.42 – 0.45). There are negligible differences 

between the non-linear SVC methods taking the average overall accuracies and Kappa values 

into account. The differences of the overall accuracies with 3% and the Kappa values with 

3% between the linear and the non-linear strategies are marginal and the standard deviations 

show no significant variations of the values. Considering the spatial resolution of the used 

MODIS data (250m x 250m) and its vulnerability to the mixed pixel problem (Lillesand et al. 

2004, Foody and Mathur 2006, Richards and Jia 2006, Tso and Mather 2009) the results are 

satisfying. 
 

The results might be improved by incorporating a different input feature selection as 

discussed in Section 7.5 and a broader grid search or a different method in the user-defined 

parameter selection as mentioned in Section 7.6.  
The 

A questionable methodological decision in this study is the assumption that no LULC 

changes took place in the study area over the three observed years. The assumption initiated 
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an averaging of the seasonality characteristics values over the three year period. However, 

different agricultural cultivation strategies and urban sprawl can defeat this assumption. If a 

LULC change took place in a certain area during the observed period the pixel would have 

very different seasonality characteristics values. So an average value over the three years 

would not represent the actual LULC class and could lead to a wrong interpretation of the 

average value in the corresponding pixel. LULC classes that could be affected by changes 

may be Forestland, Urban and Grassland; since these classes have large differences in 

producer’s and user’s accuracies (compare Table 12). Forestland could be deforested for 

reasons of bioenergy production or damaged by storm events. Grassland could be used for 

agricultural land use or vice versa. Growing urban areas need space and thus other LULC 

classes may become Urban. 

An alternative to that chosen assumption is to classify the modeled seasonality characteristics 

of each year, to compare the classification outcomes and detect changes. This would also 

incorporate proper reference data for each of the observed years. However, the aim of this 

study is not a change detection analysis. 
 

The producer’s accuracies of all SVC strategies for the Grassland (~4%) and Urban (~25%) 

LULC classes are poor (compare Table 12). This indicates that these classes are difficult to 

separate; in case of Urban it can be caused by spectral mixture problems (Lillesand et al. 

2004, Foody and Mathur 2006, Richards and Jia 2006, Tso and Mather 2009). Urban areas 

contain surfaces that are covered with artificial objects (i.e. concrete), soil or vegetation that 

leads to mixed pixels especially on a MODIS ground resolution of 250m. In case of 

Grassland it is assumed that NDVI cannot capture the difference in green biomass between 

Forest and Grassland due to saturation effects of NDVI (Reed et al. 2009, Jönsson et al. 

2010). Figure 27 shows that the highest average error rates are located during the training 

phase in the binary classifier “Forest vs. Grassland”.  

In addition Urban and Grassland are underrepresented in the study area and may be assigned 

wrongly in the reference data set (see Section 7.2). A more heterogeneous study area with 

larger proportions of Urban and Grassland might lead to different results. However, this study 

was constraint to a focus on the separation of seasonality parameters of Forestland and 

Agriculture in order to minimize error sources of misclassifications.  
 

Even though the results of the seasonality data classifications are moderate it may be useful 

to combine spectral MODIS (e.g. Band 1 or Band 2 - see Table 1), in combination with 

several VIs (e.g. EVI, NDVI or WDVI) and seasonality data in order to test synergetic effects 
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of the data sources and their performance in SVM classification. Hüttich et al. (2009) 

incorporated successfully MODIS and higher spatial resolution satellite time-series and in-

situ botanical survey data sources to classify vegetation types in dry Savanna ecosystems. 
 

Moreover, it is important to check if seasonality data is normal distributed in order to apply 

traditional supervised (i.e. MLC) and unsupervised (i.e. k-means clustering) classification 

techniques. Thus, it would be possible to test the performance of MLC on seasonality data.  

If the traditional classifiers such as MLC or k-means clustering would lead to the equal 

classification accuracies it would be more feasible to employ a traditional classifier, since the 

complex user-defined parameter selection and the training of SVCs lead to high 

computational and time expenses.  
 

In order to validate the performance of the linear, polynomial kernel and RBF kernel SVM-C 

it is preferable to select the linear classifier since a one-dimensional grid search within the 

user-defined parameter selection demands less computational time. The decision on a linear 

SVM-C would lead to a loss of ~3% considering the Kappa value and a loss of 2% overall 

accuracy. The trade-off between the losing accuracy and saving computational time is 

acceptable.  
 

It is important to compare the results of this to other studies that have incorporated SVC. 

Considering performance comparisons between MLC and SVC, Kavzoglu and Colkesen 

(2009) classified successfully multi-spectral data (30m ground resolution); and achieved 

overall accuracies of 87% for MLC and 91% for SVC. In addition, Kappa values of 0.84 for 

MLC and 0.88% for SVC. Pal and Mather (2003 and 2005) classified multi-spectral data 

(30m ground resolution) and obtained better performances of SVC in comparison to MLC. A 

better performance of SVC in comparison to MLC could be assumed for the classification of 

seasonality characteristics. However, an incorporation of MLC to classify seasonality 

characteristics needs to be tested in order to prove this assumption.  

Considering the use of MODIS generated NDVI data, Goncalves et al (2005) classified a 

NDVI images, in 500m ground resolution, using SVC with good results i.e. with overall 

accuracies up to 89%. In addition, Gu et al. (2008) applied SVC to MODIS NDVI data 

(500m ground resolution) using an extended form of principal component analysis and 

achieved overall accuracies of 84% and a Kappa value of 0.82. The mentioned studies 

achieved good results of SVC applied on different satellites sources with different ground 

resolutions. The results of this study are improvable in comparison to the mentioned studies 
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although a different kind of data was applied. However, the results of this study does not 

indicate a weak performance of SVC to separate seasonality characteristics and the potential 

of seasonality characteristics of being used for separation of LULC, in general. The 

comparisons to the other studies give the impression that there is potential for improving the 

developed methodology in this study. The producer’s accuracy of Forestland (~88%) and 

Agriculture (~83) are good and slightly lower in comparison to other studies (Pal and Mather 

2003, Pal and Mather 2005, Gu et al. 2008, Kavzoglu and Colkesen 2009). In addition, 

Agriculture achieved a good user’s accuracy with ~72%. The selection of the study area was 

eventually based on Forestland and Agriculture and SVC has a good potential to separate 

these two LULC classes. However, the developed methodology of this study needs to be 

improved in order to increase the performance of SVC to separate Grassland and Urban more 

correctly. The raised discussion points, in this discussion section, on the development of the 

study’s methodology should be taken into account.  

Above all, the most discussable and at the same time improvable parts within the developed 

methodology are: 1) the averaging of the seasonality characteristics over three years, 2) the 

experimental based input feature selection and 3) rather small extents of the grid search in the 

parameter selection. 4) A missing comparison to a traditional classifier (i.e. MLC) and 5) 

simultaneously to check if seasonality data is normal distributed.   
 

So far, the classification of seasonality data into LULC classes has not been tested 

extensively. Therefore, this study gives a start with its developed methodology incorporating 

SVM-C. The methodology needs to be improved and extended in continuing studies, since 

there is a potential of SVC for separation of modeled seasonality from MODIS NDVI time-

series. 
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8. Conclusion 
 

 

• In this study was implemented and developed successfully a methodology to classify 

seasonality data into LULC classes of the chosen study area. The linear, polynomial 

kernel and RBF kernel SVM-C techniques have been implemented into a multi-

classification and successfully applied to separate the seasonality characteristics in 

LULC classes. 

 

• The determination of the seasonality characteristics as input data for SVM-C is based 

on an experimental approach and is adapted from the user-defined parameter 

selection. The decision to use three input features was a trade-off between 

computational expenses, complexity and the accuracy of the classification outcomes.   

 

• The three SVM-C (linear, polynomial kernel and RBF kernel function) technique 

outcomes have been validated in an accuracy assessment using CLC 2006. Among the 

SVM-C techniques performed marginally the RBF kernel function the best compared 

to the polynomial kernel function. However, it is suggested to apply a linear SVM-C, 

since it demands less computational time during the training of the SVM-C.  

 

• This study shows that seasonality data can be used for separating LULC classes. 

There exists a good potential to apply SVM-C for separation of modeled seasonality 

characteristics from MODIS NDVI time-series. Nevertheless, it needs to be tested 

how the combination of spectral, VIs and seasonality data performs in a classification. 

It is assumed that synergetic effects may occur and thus improve a classification.  
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