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Abstract
This report describes the development of software that generates graphical 
icons for classes written in Modelica, an object oriented language for 
modeling complex systems. The icon rendering is developed as a new feature 
in the JModelica IDE, a plugin for the multi-language software development 
environment Eclipse. The JModelica IDE is included in the distribution of the 
open source project JModelica.org, the aim of which is to create an 
industrially viable open source platform for optimization of Modelica models.

Icon rendering of Modelica models is a step towards integrating 
graphical editing in JModelica IDE, which will facilitate the editing and 
decrease the editing time. 

Details of the implementation, as well as the difficulties encountered 
along the way, are discussed in this paper. A short introduction to the different 
projects and technologies relevant to the development is also given.

The project described in the paper was done at Modelon AB in Lund. 

Keywords: JModelica IDE, Modelica, Grapical Development Environment, 
Java AWT, icon rendering, open-source



Sammanfattning
Denna rapport beskriver utvecklingen av mjukvara för rendering av grafiska 
ikoner utifrån klasser skrivna i Modelica, ett objektorienterat språk för 
modellering av komplexa system. Ikonrenderingen utvecklas som en 
funktionalitet i JModelica IDE, ett insticksprogram för utvecklingsmiljön 
Eclipse. JModelica IDE ingår i distributionen av open-source-projectet 
JModelica.org som har syftet att skapa en industriellt gångbar plattform byggd 
på öppen källkod för optimering av Modelica-modeller.

Ikonrendering utifrån Modelica-modeller är ett steg på vägen mot att 
integrera grafisk editering I Jmodelica IDE, vilket kommer att underlätta 
redigeringen och minska redigeringstiden. 

Rapporten beskriver implementationen i detalj, samt diskuterar de 
svårigheter som dök upp under utvecklingsarbetet. En kort introduktion till de 
olika projekt och teknologier som är relevanta till arbetet ges också.

Det projekt som rapporten beskriver utfördes på Modelon AB i Lund. 

Nyckelord: JModelica IDE, Modelica, grafisk utvecklingsmiljö, Java AWT, 
ikonrendering, open-source
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1 Introduction 

The work of this thesis project is a part of the open-source project 
JModelica.org [1]. JModelica.org is a result of research at the Department of 
Automatic Control, Lund University and is now maintained by Modelon AB 
where this bachelor thesis project takes place. The main objective of 
JModelica.org is to create an industrially viable open-source platform for 
optimization of Modelica models [1]. Modelica is a modeling language for 
large complex systems [2]. Modelica tools are used for similar purposes as 
Simulink for MATLAB, LMS Imagine.Lab AMESim and other multi-domain 
simulation environments. The work of JModelica.org is mainly concentrated 
around simulation and optimization, but there are also other interests such as 
the ability to offer a user-friendly integrated environment. 

Modelon AB provides engineering services as well as full solutions in 
Modelica-based engineering and system design to customers all over the 
world. Industries that consult the expertise of Modelon AB include the 
automotive industry, the energy and process industry and the aerospace and 
defense industry. Modelon AB also develops Modelica libraries, distributes 
third-party Modelica development software and libraries, and is active in the 
development of the Modelica language. [3]

Figure 1: Icons in the JModelica IDE outline. 
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2 Goal

In a previous master thesis at Modelon AB, a basic integrated development 
environment for Modelica code named JModelica IDE was developed [4]. The 
purpose of the project is to begin the process of extending the JModelica IDE 
to also include a graphical development environment. This includes the 
following features

• Rendering of icons in the JModelica IDE outline

• Synchronization between the graphical layer and the textual layer 
• Automatic generation of Modelica source code based on operations in 

the graphical layer 
• Creation of components (drag-and-drop from a class browser) 
• Connection of components 
• Editing of parameters of components 

The introduction of a fully integrated graphical user interface - as 
described above - would be a significant improvement to the functionality of 
the JModelica IDE. 

Since JModelica IDE is written in the Java language, the icon rendering 
must also be implemented using Java.

During the development process, the goals of the thesis project were 
continually reviewed so that we maintained a realistic idea of how much we 
would have time to implement. Early on in the project we realized that the 
implementation of rendering of icons in the JModelica IDE outline was 
complex enough to make up the entire project. This came as no surprise, as 
our supervisor had advised us from the beginning that this might turn out to be 
the case. 

The question that this thesis explores is: is it possible to render icons in 
the outline of JModelica IDE from annotations in Modelica models? 
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3 Background

3.1 Modelica
Modelica is an open standard for equation and component based object-
oriented modeling of complex physical systems. The fundamental structuring 
unit in Modelica is the class. Classes are divided in Specialized Classes 
depending on their purpose and usage. Model, connector and function is 
different type of classes with different restrictions. A model is a class without 
restrictions. A model is composed by components, which are instantiated 
classes and may inherit one or several classes. The fact that the model is 
divided into smaller real-world components makes the models easy to create 
and understand.

Figure 2: A Modelica model that consists of many small components. The icons are drawn 
by the JModelica IDE icon rendering software.

Development and maintenance of the open-standard Modelica Language 
Specification (MLS) and the free, open-source Modelica Standard Library 
(MSL) is manged by the non-profit organisation Modelica Association. There 
are several simulation environments available for Modelica, both free ones 
and commercial ones. [2]
3.1.1 Annotations
In Modelica, annotations are special parts of the source code that can be used 
to provide additional information. The annotations are standardized and 
defined in the language specification. Among the many possible uses for 
annotations is the ability to provide information about the graphical 
representation of a model. This is the information that is relevant to this 
project. Other uses for annotations include documentation and versioning. 
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Besides the standardized annotations Modelica tools are free to define new 
annotations and use them in any way that the tool developer finds useful. [2]
3.1.2 Graphical representation of models
This chapter gives a brief overview of the specification for graphical 
annotations in Modelica. For more detailed information, please refer to 
Appendix A, or chapter 17.5 of the MLS [5]. The MLS uses the the 
specialized Modelica class record to specify how the graphical information in 
the annotations is supposed to be written. 

A graphical representation of a Modelica class consists of two abstraction 
layers, the icon layer and the diagram layer. A layer is represented in the 
annotation of a class by an Icon or Diagram record. Generally speaking, the 
icon layer is used for visualizing a specific model and does not show all of its 
details, while the diagram layer is used for displaying the model’s 
components and the connections between them. Each layer has its own 
graphical representation for the class, consisting of a list of graphic primitives. 
These graphical primitives are represented by records named Rectangle, 
Ellipse, Line, Polygon, Text and Bitmap. All of the primitive records extend 
the record GraphicItem and all except for Line and Bitmap extend the record 
FilledShape. The records for the primitives contain various information about 
how they should be drawn, such as their color, shape and coordinates. The 
layers also contain a CoordinateSystem record which describes the context in 
which the coordinates of the primitives should be interpreted. 

Figure 3: An example of a graphical annotation containing a layer (Icon) and a primitive 
(Rectangle). To the right, the rendered icon resulting from the annotation is shown (”C” is 
not part of the icon).

If a Modelica class contains a component (i.e. an instance of another 
class), then the component declaration can contain its own annotation. This 
annotation is called a placement annotation and describes how the graphical 
primitives of the component should be drawn in relation to the primitives of 
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the enclosing class. The placement provides this information for both the 
primitives in the icon layer and the ones in the diagram layer of the 
component. The layer that is used in any given case is determined by two 
factors: which layer is used for the enclosing class and the restriction of the 
class of the component. 

When drawing the icon representation of a class, the icon layer of the 
component is used - provided that the component is a connector (a specialized 
Modelica class) and is not declared as protected. If the component does not 
meet these requirements, it is not shown at all when the icon of the enclosing 
class is drawn, regardless of the placement annotation. When drawing the 
diagram representation of a class, the diagram layer of the component is used 
for connectors and the icon layer is used for components of other class types. 
When drawing the diagram representation of a class the visibility of the 
components are irrelevant. Additionally, connections between components are 
shown as lines in the diagram layer of the enclosing class. 

Figure 4: A table displaying the logic of which layer of a component to use, depending on 
the component's class type.

Figure 2 in chapter 3.1 shows an example of this. It shows the diagram 
layer of a class and contains the icon layer representations of the components 
of the classs.
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3.2 JastAdd 
JastAdd is a java-based open source construction framework for building 
extensible compilers. The JastAdd source code consists of definition files and 
aspect files. Out of these files Java source files are generated which represent 
the source code of the program being compiled in an Abstract Syntax Tree 
(AST). The definition files contain the names of the classes that are to 
represent the AST nodes and the aspect files contain methods and attributes to 
be added to the given classes. The functionality of a compiler build with 
JastAdd is expanded by adding new aspects which is easy comparable to 
rewrite the Java source code. [6]

Figure 5: A diagram illustrating how JastAdd builds the Java classes that represent the AST 
nodes. 

3.3 JModelica.org compiler 
In JModelica.org a Modelica compiler is included. The compiler was created 
as a part of the doctoral thesis Languages and tools for Optimization of Large-
Scaled Systems and is developed using the JastAdd compiler construction 
framework. [7] 
3.3.1 The compilation process of a Modelia model
When a Modelica model is compiled, the JModelica.org compiler creates 
abstract syntax trees that represent the model. The nodes in the AST:s 
represent the different Modelica language constructs that make up the model: 
classes, components and equations to only name a few. The JModelica.org 
compiler first creates a source AST from the source code being compiled. It 
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then creates an instance AST which has its root in one of the class declarations 
of the source AST. The differences between these two ASTs that are relevant 
to this thesis are as follows. First, the source AST is where the annotations are 
stored. However, since every node in the instance AST contains a link back to 
its corresponding node in the source AST, the annotations of instance nodes 
can be accessed anyway. This does mean that annotations that reference 
variables in a class can not be correctly parsed, though, since the values of the 
variables are not known unless the class is instantiated. Secondly, the 
redeclare construct in the Modelica language causes some problems. In 
Modelica, developers can allow for the types of parameters and components in 
the class to be changed by declaring parameters and components replaceable. 
The types are changed by using the redeclare construct in the declaration. This 
means that the class of a component is not always known until the class that 
contains the component is instantiated. Since annotations are evaluated in the 
source AST, the annotations of redeclared parameters or components will not 
be possible to evaluate. Because instantiating classes is quite computationally 
expensive, the conditions for this project has been to render icons out of the 
information stored in the annotations without knowledge of the information in 
the instance AST. 
3.3.2 The AST representation of a Modelica model
In the source AST, the most relevant nodes that represent a Modelica model 
are called ClassDecl, ExtendsClause and ComponentDecl. The inheritance of 
a class is represented by the ExtendsClause node and a component is 
represented by the ComponentDecl node. The ClassDecl contains the node 
Annotation that stores the annotation of the Modelica class. The source AST 
does not contain a link between an ExtendsClause and the ClassDecl that 
represents its class. The same is true for a ComponentDecl and the ClassDecl 
that represents the class of the component. However, during this project the 
JModelica.org team added attributes to the aspect SimpleLookup which made 
it possible for us to reach the ExtendsClause’s and the ComponentDecl’s 
ClassDecl nodes. The corresponding nodes in the instance AST are called 
InstClassDecl, InstExtends and InstComponentDecl. In contrast to the source 
AST the instance AST does contain links between these nodes.

In the Modelica language there is a short way of declaring a model that 
extends another model, and only makes small adjustments to the model that it 
extends. This short class declaration raises a ShortClassDecl in the source 
AST. 

7



Figure 6: A simplified model of the source AST. The dotted lines represent ClassDecl nodes 
that are returned by calls to attributes on the ExtendsClause and ComponentDecl nodes 
defined in the the aspect SimpleLookup.

In the aspect AnnotationAPI the class AnnotationNode forms a tree out 
of the Annotation node which makes it possible to iterate over the annotation 
and extract the information stored in the annotation. 

3.4 JModelica IDE
Included in the JModelica.org distribution is the integrated development 
environment JModelica IDE. JModelica IDE uses the JModelica.org compiler 
and is implemented as an Eclipse plugin [4]. The JModelica IDE supports 
syntax highlighting, brace matching, code outline, error markup and code 
folding. In the present situation JModelica is a textual editing enviroment, but 
the purpose is to also include graphical editing. JModelica IDE has several 
outlines, Source Outline, Instance Outline and Class Outline. Source Outline 
and Instance Outline are source AST and instance AST represention of the file 
in the current editor. Class Outline is a source AST representation of all 
Modelica files in the current project plus the Modelica files in imported 
libraries. The icons used in the outlines are pre-rendered images. There is a 
default image for a package, a model and a component. 

   
Figure 7: Outline views in JModelica IDE using default icons.
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When a user uses the JModelica IDE to edit a Modelica file, the file 
being edited is continuously parsed by Eclipse using the JModelica.org 
compiler. Each AST node generated from the classes in the Modelica file is 
sent to the outline view in the JModelica IDE along with a default icon image. 
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4 Implementation

We have implemented a module in the JModelica IDE that renders icons from 
the annotations stored in the Modelica source code. The module consists of a 
java package named org.jmodelica.icons to represent a Modelica model as a 
java data structure (an Icon), a drawing package named 
org.jmodelica.icons.drawing to render an Icon to an image and a package with 
exceptions named org.jmodelica.icons.exceptions. The module also consists of 
two aspects for adding and creating Icons and adding rendered Icons for the 
AST nodes. In the outlines of JModelica IDE, the default icons are replaced by 
these rendered icons. 

Figure 8: A screenshot of the JModelica IDE using the icon rendering implemented in this 
project.

The following sections describe how we have implemented the icon 
rendering. 4.1 describes the icon data structure, 4.2 describes the icon 
drawing, 4.3 describes the exceptions used in the implementation and 4.4 
describes the aspects. 

The icon rendering software is included in the distribution of 

10



JModelica.org. The implementation described here is revision 2664 [8], later 
revisions may include changes. 

4.1 The icons java package

Figure 9: Classes in the package org.jmodelica.icons.

The package org.jmodelica.icons contains classes that form the graphical 
representation of a Modelica class and are implemented according to the 
Modelica Language Specification (MLS) [5]. Appendix A contains a summary 
of the chapter in MLS that describes this structure. 

Figure 10: An object diagram of the icon class structure.

The class Icon is the graphical representation of a single Modelica class. 
The class Icon also stores references to the inherited classes and the 
components of the specific class. The inherited classes of the models are 
stored as a list of Icons and the components are stored as a list of Components. 
The graphic representation consists of a Layer which contain a 
CoordinateSystem and a list of GraphicItems. A Component consists of an 
Icon and a Placement. Placement contains a Transformation. Transformation 
stores the data concerning how to place the component in relation to the 
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enclosing class’s coordinate system. Since only one layer is used at a time the 
graphical representation of a Modelica model is equivalent with the Layer. 
One approach was to represent a model as a Layer with two lists of Layers for 
inheritance and components. That would both reduce the number of classes 
and let the program structure stay closer the MLS. On the other hand, the 
classes Icon and Component make the class structure more clear. We 
considered a clear class structure to be more important than to stay close to the 
MLS. 

The Extent class describes an area defined by two Points. We have added 
methods for calculating the width and height of the extent, as well as for 
determining the Point in the middle of it. There are no rules for how the 
Points of an Extent are written in Modelica annotations (other than that they 
have to cover a rectangular area). This means that the an Extent that starts at 
the point (-10, -10) and ends at (10, 10) can be expressed as “extent = {{-10, 
-10}, {10, 10}}”, but might as well be expressed as “extent = {{-10, 10}, {10, 
-10}}”. In some cases this difference is insignificant, such as when declaring 
the Extent of a Rectangle primitive. In other cases, however, it is highly 
significant. For example, if the second example was given as the Extent of a 
Transformation inside a Placement record, it would mean that the icon of that 
particular component should be drawn with all of its primitives flipped along 
the X axis. This has prompted us to implement a method for returning the 
“fixed” version of an extent, that is a version of the extent where it is 
guaranteed that the coordinates of the first point are less than or equal to those 
of the second point. Critically, many methods in the graphics library we are 
using requires that rectangular areas are expressed in this way. 

Another feature that we have had to implement in the Extent class is the 
method contain. It takes a second Extent as its parameter and returns a third 
Extent that is large enough to contain both the first and the second Extent. This 
method is critical in calculating the total space that an icon covers, including 
all of the icon’s graphical primitives as well as the graphical primitives of the 
icon’s super classes and components. The total area of the icon is used to 
calculate how much all coordinates should be scaled so that the primitives fit 
inside the icon image. 
4.1.1 Graphic items
GraphicItem is the basic class that all graphical primitives inherit. Due to the 
need to calculate the total size of an icon, we have deemed it necessary to be 
able to calculate the rectangular bounds of any graphical primitive. Since the 
method of calculating the rectangular bounds of a primitive varies between 
different primitives, we have added an abstract method getBounds in 
GraphicItem that must be overidden by the subclasses so that every primitive 
calculates its bounds in its own way. We introduced the class FilledRectShape 
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to reduce redundancy for primitives which are handled like rectangles 
(rectangles, ellipses and texts). FilledShape inherits GraphicItem, which is not 
the case in MLS. The reason for this is that Modelica allows for multiple 
inheritance while Java does not. 

Figure 10: A class diagram displaying the class structure of the classes representing the 
graphical primitives.

The Bitmap primitive represents a bitmap image placed somewhere in the 
icon. It is one of few icon-related features described in the MLS that are not 
yet fully implemented in the JModelica IDE. According to the MLS, Modelica 
developers should be able to specify source data for bitmap images in several 
different ways. First, it should be possible to specify file paths using URI 
schemes. The regular file URI scheme should be supported, as well as a 
special “Modelica URI scheme” described in the MLS. Additionally, 
developers should be allowed to specify their bitmap image as a text string 
that is encoded using the base 64 encoding scheme [9]. All of these features 
are fully supported by the JModelica IDE except for the “Modelica URI 
scheme” method for specifying file paths.

Line primitives in the Modelica graphics annotation system are specified 
by a list of two or more Points. Beyond specifying various preferences such as 
line pattern, line thickness and color, the MLS says that developers should be 
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able to indicate whether or not a Line should have Arrows at one or both of its 
ends. We have chosen to implement this feature by storing the arrows on the 
Line object as an array containing two line-shaped Polygon objects. If one of 
the arrow values is “Arrow.None”, then that arrow polygon is assigned the 
value null. 

Figure 11: The vector mathematics used to calculate the coordinates of the arrows. For 
simplicity, it is assumed that arrowSize is equal to 1. Since a Line primitive is allowed to 
have any number of line segments, the process described above is first executed with the 
first point of the Line as p2 and the second as p1, and finally with the second to last point as 
p1 and the last point as p2.

In the Line class, we have also added a method for calculating the 
rectangular bounds of the line. These bounds are given as the smallest 
rectangular area that contains all of the Line’s points. 
4.1.2 Color
Our color representation consist of three integers representing the red, green 
and blue components of a color. We have added methods for returning a 
darker or lighter version of the same color. This is useful when drawing the 
border pattern of a rectangle, making the edges brighter or darker to make the 
rectangle appear sunken or raised. 
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4.2 The drawing
The icon drawing is handled in AWTIconDrawer. An instance of this class is 
created for each icon to draw, with the current icon as a parameter to the 
constructor. AWTIconDrawer contains methods for drawing all of the different 
graphical primitives that icons can contain. The graphical primitives are drawn 
on an image, using the AWT (Abstract Window Toolkit) graphics library.

The drawing methods of the AWTIconDrawer class are called by the 
draw method in the Icon class, so that all of the Icon’s graphical primitives are 
drawn correctly. This method also calls the draw methods of the Icon’s super 
classes and components, making sure that these are drawn in the correct order.
4.2.1 Drawing the graphical primitives
When drawing MLS primitives which extend FilledShape, we take advantage 
of AWT’s Shape construct which allows shapes to be filled and drawn in a 
powerful but simple manner. For this purpose there are createShape methods 
in AWTIconDrawer that construct the AWT objects that represent the MLS 
primitives. These are called every time a MLS primitive is drawn. Since 
AWT’s coordinate system extends downwards and to the right - as opposed to 
those in MLS which extend upwards and to the right - it is necessary to make 
adjustments to all coordinates before they are passed to the AWT drawing 
methods, or all icons will be drawn upside-down. The createShape methods is 
where we choose to do this.

Figure 12: The Shape object of a Rectangle is created. Note the Y-coordinate passed to the 
Rectangle2D constructor.

Figure 12 shows the conversion between a MSL Extent (two points) and 
an AWT Rectangle2D (a point, a width and a height). This expression creates 
the Shapes of Rectangle and Text primitives from the MLS. Similar 
adjustments are made to the MLS Ellipse and Polygon primitives. 
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For Line primitives, the y coordinates are inverted in the drawLine 
method right before they are drawn. 
4.2.2 Transformations
For the transformations we have used the AWT class AffineTransform. An 
instance of AffineTransform contains a transformation matrix and a transform 
method that transforms a Point2D object with the matrix. To change the 
matrix, there are methods in the class named translate, scale and rotate which 
take numbers as arguments and execute the correct mathematic operations on 
the matrix. Using AffineTransform makes it easier to keep track of the matrix 
data structure. It also means that it is not necessary to manually manipulate the 
matrix when translations, scaling operations and rotations need to be applied 
to it. The developers only need to call the corresponding methods on the 
AffineTransform object.

The first transformation that is applied when drawing the icon of a model 
has to do with fitting the contents of the icon inside the icon image. Creating 
this transformation involves calculating scale factors and translation 
increments. The reason that this transformation is needed has to do with the 
fact that there are no restrictions on the coordinate system of a Layer record in 
a Modelica graphical annotation. On top of that, the coordinates of primitives 
can extend outside the coordinate system, and should still be visible in the 
icon image. The drawing coordinates passed to the methods in the graphics 
library must be in the range of the image’s first pixel (0) to the image’s last 
pixel (currently 20). The goal of this transformation is to make all coordinates 
fit into that range (see figure 13).

Figure 13: The initial transformation applied when drawing the icon of a model. Note that 
the graphical annotations in Modelica contain coordinate systems which extend upwards 
and to the right, while the coordinates of the image extend down and to the right. However, 
this difference is accounted for at a later stage, when creating the graphic objects passed to 
the AWT graphics library, so there is no need to handle this in the transformation (see 
section 5.3).
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First of all, the total width and height of the icon must be calculated. This 
width and height is aquired by calling the getBounds method of the icon, with 
the icon’s coordinate system as its parameter. The getBounds method in Icon 
is a method that for every graphical primitive calls the method getBounds 
declared in GraphicItem. The returned extent is guaranteed to be large enough 
to contain the coordinates of the primitives of the main class as well as those 
of its super classes and components, and is larger than or equal to the 
coordinate system extent that was passed as an argument. 

This width and height must then be compared to the width and height of 
the image that the icon will be drawn on. The result of this comparison is the 
two scale factors, which every coordinate from then on must be multiplied by. 
There is one scale factor for the x-coordinates and one for the y-coordinates, 
since both the icon size and the size of the final icon image could potentially 
be of any proportions. As a side note, we currently preserve the aspect ratio of 
all square icons by extending their size equally in all directions when it needs 
to be extended. The aspect ratio of non-square icons is not correctly preserved 
in our implementation, unfortunately.

Once the scaling operation has been done on the transformation matrix, 
the translation increments are calculated as half of the image’s width and half 
of the image’s height, respectively. Unfortunately, this method of calculating 
the translation increments doesn't take into account whether or not the origin is 
centered in the icon's coordinate system. This means that icons with origins 
that are not centered in their coordinate systems are not correctly translated. 

When the transformation described above has been applied, the draw 
method of the icon is called. The Icon object recursively draws its own super 
classes and components, and thus makes sure that the correct transformations 
are applied when drawing these. When the component of a class is drawn, we 
must make sure that the icon of that component is drawn in the correct place, 
as described by the Placement annotation of that component declaration. 
Applying the transformation of a component means taking into account the 
Placement of the component, the CoordinateSystem of the class of the 
component and the enclosing class CoordinateSystem when calculating 
translation increments and scale factors.
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Figure 14: The component transformation. The icon for VariableResistor contains a scaled, 
translated and rotated version of the icon for RealInput, as specified in the component 
declaration’s Placement annotation.

The Transformation record in the Placement annotation has the attributes 
origin (which is a Point), extent and rotation. To calculate the translation 
increments, the origin point is added to the point at the middle of the extent, 
which is added to the middle point of the coordinate system of the enclosing 
class. The x- and y-components of the resulting vector make up the translation 
increments of the transformation with which the component’s icon should be 
drawn. The x-scale factor is determined by dividing the width of the 
Placement Transformation record’s extent by the width of the coordinate 
system of the component’s class, with the y-scale factor being calculated in 
the corresponding way. After this, all that is needed for the component’s icon 
to be drawn correctly is rotating the coordinates by the amount written in the 
annotation, after converting the angle to radians and multiplying it by -1 
(because of AWT’s inverted y-axis). 
4.2.3 Antialiasing
All drawing is done using antialiasing. Antialiasing affects the way that pixles 
are colored when only a fraction of the pixel is covered by a graphical 
primitive.
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Figure 15: A comparison between the same icons drawn with and without antialiasing. Both 
examples are from the JModelica IDE, showing icons for models in the Modelica Standard 
Library.

Without antialiasing, pixles that have more than half of their surface 
covered by a primitive get the color of the primitive while all other pixles get 
the background color (or their original color before the current drawing 
operation). With antialiasing, a pixel that has a fraction of its surface covered 
by a primitive gets a color that is a mixture between the primitive’s color and 
the pixel’s original color. The more of the pixel’s surface that is covered by 
the primitive, the closer the pixel’s color will be to the color of the primitive. 
This results in a much smoother appearance, especially when drawing small 
primitives, such as the ones in the outline icons that are the focus of this 
project. 
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4.2.4 Border patterns
Border patterns are decorations at the edges of rectangles, specified by the 
attribute borderPattern in the annotation for Rectangle. The possible values 
for the attribute are None, Sunken, Raised and Engraved. There are no 
descriptions in the MLS of how these patterns are meant to be drawn, but we 
have implemented the drawing of border patterns for the values Sunken and 
Raised. Engraved has not yet been implemented.

Figure 16: Rectangle primitives displaying the three currently implemented values for 
borderPattern, along with the annotations that declare them.

Our implementations of Sunken and Raised involves creating polygons 
at the edges of the rectangle and filling them with brighter and darker versions 
of the rectangle’s fill color to give the appearance of the rectangle being raised 
or sunken. 
4.2.5 Fill patterns
The fillPattern attribute of the FilledShape primitive describes how the 
primitive should be filled. As far as our implementation goes, there are three 
categories of fill patterns: regular fill patterns, gradients and texture fill 
patterns.

The regular fill patterns are None and Solid. The implementation of these 
is trivial: Solid means that the primitive should be completely filled with its 
fill color and None means that it should not be filled at all. Using the Shape 
construct of AWT, any shape can be filled with a single method call.

Gradient fill patterns include Horizontal, Vertical, HorizontalCylinder, 
VerticalCylinder, Sphere. Filling an area with a gradient means that the color 
should progressively shift between one color and another. In our 
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implementation - and as specified in the MLS - gradients go from the 
primitive’s line color to its fill color. Again, thanks to the Shape construct of 
AWT, as well as comprehensive and well-documented classes for gradients in 
the AWT library, filling a shape with a gradient is not complicated. The class 
we have used to implement the gradients is java.awt.GradientPaint.

Figure 17: Shapes filled with the three gradient fill patterns.

The final category, texture fill patterns, consists of Horizontal, Vertical, 
Cross, Forward, Backward and CrossDiag. These patterns consist of stripes 
drawn in the primitive’s line color over the primitive’s fill color. We have 
implemented these patterns by creating a small image, drawing the lines on it, 
and then using the image as a texture to fill the primitive with. The class in 
AWT that best supports this is java.awt.TexturePaint. In AWT, the colors that 
the Graphics object draws with is determined by its Paint object. After setting 
the Paint object to an instance of TexturePaint, with the image loaded as its 
texture, the Graphics object will use the image as a texture to fill any shapes 
that are passed to its fill method.

Figure 18: Icons containing shapes filled with the Backward texture fill pattern.

4.2.6 Line features
The style in which Line primitives and the outlines of other shapes are drawn 
is possible to specify by changing the pattern and lineThickness attributes of 
the FilledShape annotation, or the pattern, thickness and smooth attributes of 
the Line annotation. In AWT, the Stroke object of the current instance of the 
Graphics class determines in what style lines and outlines are drawn, and by 
creating a java.awt.BasicStroke with the correct attributes and setting it as the 
current Stroke, we make sure that the correct drawing style is engaged.
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Figure 19: An icon containing lines with the Dot line pattern attribute.

The line thickness is simply passed as an argument for the BasicStroke 
constructor. For setting the line pattern, we use a constructor of the 
BasicStroke class that takes an array of float values called dash as a parameter. 
These float values determine how many separate dashes that the line pattern 
should consist of, and the length of these. The different line patterns that can 
be specified in graphical annotations are None, Solid, Dash, Dot, DashDot and 
DashDashDot. We have implemented these by creating a Java enumeration 
class called LinePattern with a float array as its attribute, to store the dash 
values for each enumeration type. For example, LinePattern.DOT has {0.2f} 
as its dash value, LinePattern.DASHDOT has {2.0f, 4.0f} and 
LinePattern.SOLID has null. This way, it is easy to construct a BasicStroke 
with the correct line pattern activated, by calling the getDash method of the 
Line object’s LinePattern attribute and passing the result as an argument to the 
BasicStroke constructor.

The smooth attribute of the Line primitive specifies whether the line 
should be drawn as a series of quadratic Bezier curves, or as a regular line. 
Figure 20 displays two lines with the same coordinates, the first declared with 
Bezier as its smooth attribute and the other with None. [5]
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Figure 20: A comparison between the Bezier and None smooth attributes.

4.2.7 Rendering of text strings
Text strings that are too small to read should not be drawn on icons. Because 
of this, drawing a Text primitive involves making a few different calculations 
with the aim of making sure that the text string is sized and aligned in the 
correct way, as well as determining whether to draw the text or not.

First, the font size of the text string is determined. If the graphical 
annotation that represents the text string has a fontSize value of zero (the 
standard), then the size of the text is scaled to fit the extent attribute of the 
Text primitive. This is done by first increasing the font size until the text is 
wide enough to cover the entire extent horizontally, and then decreasing the 
font size until the text fits inside the extent vertically. Next, the x coordinate of 
the text is determined so that it gets correctly aligned in the extent, as specified 
by the horizontalAlignment value of the Text primitive. Finally, the actual font 
size of the text - meaning the font size of the text that will actually be drawn 
on the screen given the calculations described above and the current 
transformation - is calculated to check if the text is large enough to be drawn. 
This is done by multiplying the font size by the scale factor of the current 
transformation. If the resulting font size is larger than a previously determined 
value (currently 9), then the text is drawn. 
4.2.8 Creating the SWT image
Since the icon to be put to the outline of JModelica IDE must be a SWT 
Image, a method converting AWT BufferedImage to SWT Image was needed. 
An icon in the Eclipse outline view is defined as a model object and require 
empty pixels in bottom and on the left of the icon. [10] This is handled by the 
converting method, getImage, of AWTIconDrawer.

The conversion from BufferedImage to Image starts with extracting the 
BufferedImage object’s ColorModel attribute. The color model describes how 
the color data of all of the pixles of the image are stored in the BufferedImage 
obejct. Our BufferedImages use a direct color model, which means that all of 
the ARGB data (alpha, red, green and blue, where alpha represents the level of 
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opaqueness contra transparancy) of a pixel is represented by a single number, 
in our case an 32-bit integer. A SWT PaletteData object is also created. The 
PalletteData object is created from the ColorModel and is needed to translate 
the ARGB values of the BufferedImage into values that SWT can use. Next, a 
SWT ImageData instance is created. One of the parameters to its constructor 
is the amount of bits used to represent the ARGB value of each pixel. This 
number is calculated by calling the color model’s pixelSize method. The 
ARGB data for every pixel in the BufferedImage is then transferred to the 
corresponding pixel in the ImageData object. This is done by first calling 
getRGB on the BufferedImage to obtain the ARGB value of the current pixel, 
and then calling the PaletteData instance’s getPixel method with the red, 
green and blue components of the ARGB value. Since each color component 
is 8 bits long, the four components are read by right shifting the ARGB value 
24 times, 16 times, 8 times and zero times respectively, and each time reading 
the right-most 8 bits by using the bitwise AND operator with the number 255 
(eight ones). The color components of the current pixel of the ImageData 
instance are set with the method setPixel and the alpha value is set with the 
method setAlpha. 

4.3 The icons.exceptions java class package

 
Figure 21: The exceptions used in the project.

The exceptions NotEnoughParametersException and 
FailedConstructionException are thrown and caught while iterating over the 
AnnotationNode, whenever the annotation parsing module fails to parse a 
given annotation record. CreateShapeFailedException is thrown when 
creating shapes of primitives in AWTIconDrawer, and are caught when 
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drawing the shape. They all inherit the ModelicaIconsException which in turn 
inherit ModelicaException used in JModelica.org. 

4.4 The aspects
In the aspect ModelicaIcons the attributes icon and contentOutlineImage are 
added to the AST nodes. The aspect AnnotationParsing supplies icon with 
values for the graphical elements. 
4.4.1 The AnnotationParsing aspect
In the aspect AnnotationParsing we iterate over the annotations in order to 
extract the values of the graphical elements. The methods are all private 
except from createIconLayer, createDiagramLayer, hasPlacement and 
createPlacement. The public methods are called from the aspect 
ModelicaIcons when creating Layers and Placements while the private 
methods are used inside AnnotationParsing to create items needed to build 
Layers and Placements, such as CoordinateSystem, graphical primitives and 
graphical properties. Most items needed to create a Layer or a Placement have 
one or more attribute that must be set while others are optional, i.e they have a 
default value. When creating an item we initialize an empty object where the 
default values are set. Then we iterate over the annotation to extract the 
attributes’ values. It would be safer and more intuitive to initialize an item 
with the attributes as parameters in the constructor. Furthermore the nestled 
calls when iterating over the annotation are, for some items many and hard to 
follow. But, since we can not know beforehand which attributes the actual 
item consists of, initializing an item with the attributes as parameters would 
require a lot of unnecessary variables to store while iterating over the 
annotation.

The way to handle a non-existing attribute node and a non-valid value of 
an attribute depend on whether the attribute for the creating item has a default 
value or not. For example, the method createGraphics returns a list of graphic 
items and is called when creating a Layer. Finding the word “Line” results in 
calling the method createLine which initializes a Line with default values and 
then iterates over the line’s attributes. If “color” is found the method 
“realVector” in AnnotationAPI is called to return value of the node 

• If realVector does not contain three doubles or if their value are out of 
bounds an exception is thrown.

• If color has a default value in Line the exception is caught in 
createLine and Line’s default value for color is unchanged.

• If color does not have a default value in Line the exception is not 
caught in createLine. The createLine is determined and the 
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exception is send further to createGraphics where it is caught and 
no item is added to the list of graphic items. 

• If the values of color are correct, then the method setColor in 
createLine uses the returned color value as a parameter to change the 
color attribute in Line. 

4.4.2 The ModelicaIcons aspect
The attribute icon is declared as a synthetic lazy attribute. This means that 
when an icon has been created for a node, a reference to that icon object is 
stored on that node. The next time that the icon for that node is needed, the 
icon object reference is returned. Since Modelica is constructed in an object-
oriented way where models are composed of components and the same 
components exists in several models, the lazy declaration saves memory as 
well as computing effort. The icon attribute is defined as an equation and 
returns an object of the class Icon. If the annotation of the node does not exist 
there is nothing to be rendered but the icon is created anyway to be able to 
store inheritance and components. The icon’s layer is in this case an empty 
layer i.e the coordinateSystem and the list of graphic items are null. If a 
component is added to the icon the empty layer is replaced by a layer with a 
default coordinateSystem defined in the Modelica Language Specification. 
The coordinateSystem is needed when the component’s transformation is 
calculated. 

Within the attribute the inherited classes and components are added by 
the two methods addSuperclasses and addComponents. To prevent the icon 
rendering threads from entering infinite loops, in the event that models extend 
themselves or use themselves as components we have added a flag that 
signifies whether the icon of the ClassDecl is currently being calculated, 
called visitingDuringIconRendering. Whenever the icon of a inherited class or 
component is about to be calculated for a ClassDecl, the flag is checked for 
the ClassDecl of the inherited class or component. If it is true, the icon is not 
created. Models that extend themselves or use themselves as components are 
not allowed in Modelica, but declaring such models should not make the icon 
rendering module crash, and this is our way of making sure that this is 
avoided.

As described in 3.3.2 the node that stores the annotation is the ClassDecl.  
The ClassDecl of the current icon stores a list of ComponentDecls where each 
ComponentDecl is representing a component. To create the icon of a 
component we find the ClassDecl of the ComponentDecl through the aspect 
SimpleLookup. We then make sure that an Icon of that ClassDecl is created – 
if the visibility and the restriction of the component respective the class of the 
component correspond to the conditions described in 3.1.2. A reference to the 
created icon is then added to the current icon’s list of components. 
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To add inherited classes there is no restriction or visibility to consider. 
The inherited classes of the current icon are stored in the icon’s ClassDecl as a 
list of ExtendsClause. For each ExtendsClause we get the inherited class’s 
ClassDecl. A reference to the icon for that ClassDecl is then added to the list 
of super class icons in the same way as for components.

The ShortClassDecl has its own definition of the icon attribute since both 
the annotation of the ShortClassDecl and the annotation of the model that it 
extends are taken into account. 

For the instance AST nodes the icon attribute is added in a similar way as 
for the source AST nodes. 

The contentOutlineImage attribute, which returns a rendered icon as an 
SWT Image object, is added to the nodes. To render an icon, an instance of 
AWTIconDrawer is created with the Icon object that was created earlier for the 
node as a parameter. The contentOutlineImage attribute contains methods for 
caching images and icons, as well as mechanisms which allow for the icon 
images to be created in separate threads in the Eclipse framework, which 
improves the user experience since it means that the system doesn’t freeze 
while the icons are being created. This functionality was developed by the 
JModelica.org development team in parallel with our project. 
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5 Development

This section describes some of the challenges we have encountered during the 
implementation of the icon rendering. 

5.1 Choosing a graphics library
The scope of this thesis when it comes to graphical rendering is fairly limited. 
We are only concerned with drawing graphical primitives on images, 
preferably with a simple way of applying transformations for translating, 
scaling and rotating coordinates without too much trouble. There are several 
different graphics libraries available for the Java programming language that 
fully support this. The one we settled for is the Abstract Window Toolkit 
(AWT) by Sun Microsystems.

Since the start of this thesis, it has been a goal of the thesis project that 
the software that results from the project will contribute to the JModelica.org 
project as much as possible and and that it should be possible to reuse our 
software for various purposes without spending much time on adapting the 
code. Because of this, it is very important that the graphics library does not put 
restraints on which platforms the software can be used on. Since the AWT 
library is built into Java, we decided that it fulfills these needs very nicely.

The strongest competitor to AWT among graphics libraries is - in our 
eyes - the Standard Widget Toolkit (SWT) by IBM (now maintained by the 
Eclipse foundation). SWT largely fulfills our needs when it comes to drawing 
primitives just as well or better than the AWT library. Another obvious reason 
in favor of choosing SWT for our project would be that all of our software is 
currently executed in the context of the JModelica IDE, an Eclipse plugin. 
More specifically, in order to display images in the outlines of the Eclipse 
IDE, the images need to be passed as instances of IBM’s own Image class, 
which is part of SWT. Using SWT as the main graphics library would make 
this very easy. However, making the icon rendering dependant on SWT would 
force anyone who wants to render icons in other applications using our code to 
interact with the SWT library, or rewrite much of the icon rendering code. 
SWT needs to be distributed with any software that uses it, and additionally 
lacks support on many platforms. We quickly decided that the benefits of 
platform independence and easier distribution provided by choosing AWT 
outweighs the inconvenience of having to convert the AWT image objects into 
SWT counterparts before passing them to the Eclipse outlines. 
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5.2 Handling transformations
Making sure that primitives are drawn in the correct size and with the proper 
rotation and translation of their coordinates, requires different transformations 
to be made to the coordinates of each primitive before they are drawn on the 
icon image. Managing these transformations turned out to be one of the 
greater challenges of the development of the icon drawing software.

Most – if not all – graphics libraries have ways of simplifying coordinate 
transformations. Developers rarely need to implement the mathematical 
operations needed to create the matrices which contain the transformations 
and which coordinate vectors are multiplied by in order to be transformed. 
Typically, there are methods available in the graphics interface that construct 
these matrices. This is the case in the AWT library. For example, the AWT 
Graphics class has a method called rotate which takes an angle as its 
parameter and alters the current transformation matrix so that it includes the 
specified rotation. This means that the act of executing transformations is 
quite straightforward. The challenge lies in deciding what transformations are 
needed and in what order to execute them.

Figuring out the correct transformation to apply in order for the icon to fit 
inside the image was quite a difficult task. As described in chapter 4.2.2, the 
transformation consists of scale factors and translation increments. There have 
been problems with the calculation of both of these.

One problem was that we calculated the width and height of coordinate 
system extents in an incorrect way. A coordinate system that extends from the 
point (-10, -10) to the point (10, 10) could intuitively be considered to have a 
width and height of 20 (10 - (-10) = 10 + 10 = 20). However, when a MSL 
model uses this extent for its coordinate system, it means that both -10 and 10 
should be valid x or y coordinates for primitives in the model. This gives a 
width and height of 21. Since the scale factors are calculated by dividing the 
icon image’s width and height with the width and height of the icon being 
drawn, this problem caused the scale factors to become too large which meant 
that some primitives ended up outside of the edges of the icon and were thus 
not visible. The problem was fixed by adding 1 to the icon width and height as 
the scale factors were calculated.

Another problem that caused primitives on the edges of icons to not be 
seen had to do with the rounding of non-integer coordinates passed to the 
graphics library’s drawing methods. From the experiments that we conducted, 
it appeared that the AWT methods did not use a consistent rounding strategy. 
Numbers that were rounded down when we ran the program on one computer 
were rounded up when we ran it on another computer. This phenomenon 
likely has to with Java2D’s conversion of coordinates between user space and 
device space [11]. User space is the coordinate system in which the 
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coordinates of graphical primitives are passed to the AWT drawing methods. 
Device space, on the other hand, is the coordinate system of the output device 
such as a monitor, which of course differs between different systems. The 
conversion between these coordinate spaces is done automatically and is 
beyond the programmer’s control. The way that we solved this problem is that 
instead of simply applying the transformation to the AWT Graphics object 
and pass the coordinates so that transformation and rounding was done 
automatically, we kept the transformation object separate from the Graphics 
object and used the transformation to transform the coordinates “manually”. 
This allowed us to access the transformed coordinates and round them 
ourselves in any way we wanted. Then we could pass the rounded coordinates 
to the AWT drawing methods, with complete control over how the rounding 
was done.

Figure 22: This image shows two different ways of drawing a line between two points 
represented by Point2D objects (p1 and p2), with the coordinates transformed according to 
the transformation represented by an AffineTransform object (transformation). In the 
second example, the transformation is done explicitly in the code instead of implicitly by 
the Graphics object.

Activating antialiasing requiered half a pixel on the edges of the image. 
This “margin” made the drawing much less sensitive to rounding errors and 
differences between the graphics context of different systems and solved the 
rounding problems. We kept the adjustment – described above – of 
transforming coordinates manually instead of letting the Graphics object 
transform them as they are passed to the drawing methods. This is a good 
method of drawing primitives because it allows the programmer direct access 
to the transformed coordinates, which is very useful when debugging.

5.3 The representation of graphical primitives
When it comes to the graphical primitives specified in the MLS, we decided 
early on that the AWT Shape concept would be useful for representing those 
of the primitives that extend FilledShape: Rectangle, Ellipse, Polygon and 
Text. As explained in chapter 4.2.1, Shape is an interface that classes can 
implement in order to make use of the powerful filling and drawing 
capabilities of Java2D. There are standard Shape implementations for the three 
geometrical shapes mentioned above (Text has a rectangular shape). It seemed 
logical that the classes for the primitives should have their corresponding 
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AWT Shape as an attribute, and that each primitive should know how to create 
its Shape. This Shape object would only have to be created once for every 
primitive instance, and since it belonged to the icon data structure, it would be 
cashed along with the rest of the icon representation because of the icon 
attribute being declared as lazy. There is a problem with this approach, 
however. We want our icon rendering software to be as usable by other 
developers as possible. This includes the ability to make different choices than 
us regarding which graphics library to use. With this in mind, placing Shape 
objects – which are only useful in the context of the AWT graphics library – 
on the classes that represent the basic graphical primitives makes little sense 
(chapter 5.5 further discusses the issue of modularizing the icon drawing). We 
ended up creating the Shape object for a primitive whenever that primitive is 
drawn, with the logic for creating the different Shape objects (and all 
references to them) being located in our AWT drawing class 
(AWTIconDrawer).

Another problem we encountered was deciding which Shape 
implementations to use for our primitives. We started out with the most 
intuitive solution: using java.awt.Rectangle for Rectangles and Texts, 
java.awt.Polygon for Polygons and Ellipse2D for Ellipses. However, we 
discovered some unpredictable behaviour in the draw(Shape) and fill(Shape) 
methods in the Graphics2D class. The area that was actually drawn or filled 
seemed to vary depending on which Shape-implementing class that the Shape 
object passed was an instance of, even when it represented the same area. For 
example, filling a rectangle-shaped java.awt.Polygon object would sometimes 
result in a slightly smaller area being filled compared to when filling a 
java.awt.Rectangle object with the exact same coordinates. For this reason, we 
ended up making all shapes into polygons before drawing them. Turning a 
rectangle into a polygon is trivial since rectangles are in theory a subset of 
polygons. Making polygons from ellipses is only possible by approximating 
their circumference in line segments. While learning how to do this, we found 
the method getPathIterator in Shape, which does exactly this. The method 
returns an object that iterates over all of the points that make up the shape, 
approximating the path in case it is a curve. Discovering this method had two 
added benefits. First, getPathIterator can take an AffineTransform object as a 
parameter, which transforms all of the coordinates returned by the iterator 
with the specified transformation. This was useful when solving the last 
problem discussed in chapter 5.2 (the unpredictable rounding). Second, the 
getPathIterator can also take a real number argument called flatness, which 
affects the amount of line segments used when approximating curved paths. 
By tweaking this parameter, we managed to achieve ellipses that looked 
smoother than the ones resulting from calling Graphics2D.fill with Ellipse2D 
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objects as the argument.
The problem with a rectangle and a rectangle-shaped polygon being 

drawn differently may also have had to do with the fact that we used the class 
java.awt.Rectangle to represent our rectangles. That class stores its 
coordinates as integer values, while the class we used for polygons stores 
coordinates as doubles. This logically should not make a difference, since all 
coordinates are integers until they are transformed, but we could not rule out 
that this may have affected the unpredictable drawing behaviour. 

5.4 The order of drawing classes
One interesting challenge was to find a way to draw the icons, super classes 
and components so that their transformations were correctly set in place, at the 
same time as they were drawn in the correct order. The order in which classes 
are drawn is significant because primitives are drawn “on top of” each other, 
in the sense that if two non-transparent primitives have the same coordinates, 
only the one that is drawn last will be visible.

There are no explicit guidelines in the MLS for which graphical 
primitives should be drawn first. However, a rather intuitive policy is that 
super classes should be drawn before the class that inherits them, and that 
components should be drawn after the class that contains them. Furthermore, 
the components of a super class should be drawn after the class that inherits 
the super class.

Figure 23: An early draft of the icon drawing algorithm.

Figure 23 shows pseudocode that describes one of our first algorithms for 
drawing icons of classes. Using this algorithm, the transformations for the 
components get correctly applied. However, the primitives of the main class 
are drawn after the components of the class. This means that the last 
primitives drawn are the primitives of the main class, which is incorrect since 
components should be drawn on top of the class that uses them as 
components. One might be tempted to correct the problem by simply drawing 
the primitives before drawing the component. However, this would also be 
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incorrect. The components of the super class would still end up underneath the 
primitives of the main class.

Figure 24: The icon drawing algorithm used in the JModelica IDE.

Pseudocode for the algorithm that we currently use is shown in figure 24. 
It ensures that all of our requirements are met concerning the order of 
primitives drawn, at the same time as all classes are drawn with the correct 
transformations in place.
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Figure 25: The drawing algorithm illustrated. The Modelica code to the right of the diagram 
contains the declarations of all the models in the diagram, with everything except for 
component and inheritance declarations omitted. Numbers signify the chronological order 
in which the graphical primitives of the models are drawn.

5.5 Creating a graphics interface
As stated before, a major goal with the drawing software was to make it as 
platform independent as possible, in order to increase the likelihood that future 
developers can use our code without too much adaptation. A good way of 
doing this – other than choosing a graphics library like AWT, that runs on 
many platforms – is to modularize the software and keep the calls to the 
graphics library isolated in as small a module as possible. We made an attempt 
to do this by creating a graphics interface class, GraphicInterface. The idea is 
that future developers who wish to use a different graphics library should only 
have to change a small part of the program in a well-defined way.

As shown in figure 26, our GraphicsInterface has methods for drawing 
the graphical primitives specified in the MLS, as well as for setting the 
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drawing color and handling transformations. This means that developers who 
wish to define their own graphical drawing methods only need to implement 
these.

Figure 26: The JModelica IDE graphical interface.

The GraphicsInterface as it currently stands is far from perfect. Ideally, 
we would have wanted the methods in the interface to be at a lower level, that 
is to say that they should only draw basic graphical primitives like lines, text 
strings and basic shapes, and take coordinates as parameters instead of 
drawing the MLS primitives as they do now. Simply put, the logic that turns 
the MLS primitives into basic drawing operations should not be AWT 
dependant. This would decrease the amount of code that any future 
implementing classes will need to contain. As it is now, large amounts of quite 
complex logic (see 4.2) will need to be rewritten if someone decides to create 
a new graphics drawing class that implements our interface.

One example of a method that should ideally look quite different is 
drawShape. The reason that we have one method for drawing shapes instead 
of one each for ovals, rectangles and polygons is that early on in the 
development of the drawing code, we realized that the AWT concept of 
Shapes fit very nicely together with MLS. When using AWT, developers can 
create geometrical shapes of all different types and still draw them all with the 
same method call to the Graphics2D object, as long as the geometrical shapes 
implement the AWT interface Shape [12]. This means that they can be drawn 
with different border patterns or filled with colors, gradients or textures, in a 
very simple manner. Since MLS specifies very similar requirements for the 
FilledShape record, it seemed like a very good idea to make use of this 
construct. All of the features (filling with different patterns, plotting the 
outline with patterns) could hypotetically be implemented using primitive 
drawing operations, but it would take a considerable amount of time and 
effort.

The reason why we haven’t gotten as far as we would have liked in this 
area, is that we had already written most of the drawing code when we 
realized that making a graphic interface was needed. By the time that we made 
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the decision to refactor the drawing code, the effort needed to fully do so was 
too large to feasibly have time for at such a late stage in the project, and other 
more pressing issues took priority. If we had started out developing the icon 
drawing code with this need in mind, we would likely have gotten a better 
result.

5.6 Issues with antialiasing
As described in chapter 4.2.3, we currently use antialiasing for all the drawing 
on our icon images. We activated antialiasing quite late in the project. The 
reason for this is that while we experimented with it, we did not manage to 
achieve the visual results that we were hoping for. The main issue that we had 
was that when we activated antialiasing, all of the colors of the icons were 
brighter than normal, giving the icons a blurred look. Since the purpose of 
antialiasing is to make lines and primitives smoother, we assumed that this 
might be a problem with AWT’s implementation of antialiasing – that it 
simply worked too well – and that nothing could be done about it short of 
developing our own implementation. However, we later learned that the 
problem had to do with the line thickness being too small. The issue was that 
activating a transformation that has a scaling component affects the line 
thickness by scaling it with the same amount that all coordinates are scaled. 
This caused the line thickness to be too small. The reason that we only noticed 
this problem when we activated antialiasing was of course that with 
antialiasing disabled, the thinnest line possible is one pixel thick, so if a line 
thickness smaller than that is activated, it doesn’t make any difference. With 
antialiasing enabled however, lines that are thinner than one pixel result in 
pixles that get a proportionally smaller part of the line’s color. In other words: 
if the background is white, thinner lines get brighter. After realizing this, we 
initially fixed the bug by multiplying the line thickness by the inverse of the 
current scaling factor of the transformation every time we drew primitives. 
Later however, we eliminated the problem by transforming the coordinates 
manually, and drawing primitives with no transformation enabled in the 
Graphics object. That way, the correct line thickness was used.

5.7 Determining the line thickness
One issue with the line thickness was that we had a difficult time deciding 
whether it should be scaled, and if so, in what way it should be scaled. One 
argument for not scaling the line thickness is that the MLS specifies that line 
thickness is given in millimeters. This may be interpreted as meaning that a 
Line primitive in a model should always be drawn as thick as is specified in 
the annotation, regardless of whether the model is actually used as a smaller 
component inside another model, and regardless of the size of the icon image 
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that the icon is drawn on. In other words: one could argue that the line 
thickness is absolute. Upon observing other icon rendering software for 
Modelica models, it was obvious that this was a common interpretation. 
However, the problem with this way of handling the line thickness is that it 
simply does not look good for many models. How good an icon looks is 
sometimes somewhat of an aesthetic judgement to make, which makes it 
difficult to form an objective opinion. In other cases, a high line thickness on a 
small icon simply distorts the icon. For example, if too lines are drawn close 
together, and their thickness is too high in relation to the distance between 
them, they will be impossible to distinguish from one another. If this is the 
case, an icon that is meant to represent one specific model may suddenly look 
like it represents another model. This is clearly a case of lost value of the icon. 
Because of cases like this, we decided on the following rule for determining 
the line thickness: line thickness in annotations should be interpreted as 
absolute, but there should be an upper limit on the final line thickness which 
means that lines will never be so thick that they distort the icon that they are 
drawn in.

Figure 27: Three versions of the same icon (a capacitor). The upper one is the original 
version, the middle one is scaled down with the upper limit on line thickness taken into 
account. The lower version displays what happens if the upper limit on line thickness is 
ignored.

5.8 Developing with JastAdd
In the final implementation of this project we handle the AST nodes both for 
extracting information from the annotations and to add the created icons to the 
nodes. This was not the case from the beginning. Between the aspect 
ModelicaIcons and the icon data structure we had a Java file for creating 
icons. By putting the attributes to the nodes we did not only get rid of a useless 
class, we could also derive the advantages of cashing. An advantage with 
using a static Java class in between the aspects the rest of the program is that it 
makes some parts of the development easier. For example, debugging JastAdd 
code can be quite cumbersome. Using a debugging program with breakpoints 
is very common, and is something that we have done extensively during this 
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project. The JastAdd structure makes this slightly more complicated however, 
since breakpoints can not be placed right in the JastAdd aspects files. In order 
to place a breakpoint at a certain line in an attribute declaration, the developer 
has to find the Java file that the attribute affects and place the breakpoint at the 
correct line in that file. This isn’t always an easy task, especially since the 
JModelica.org compiler front end that we have been working with contains 
hundreds of JastAdd-generated Java files. Using a Java file with static 
methods that are called from the aspects and does the actual work, gives the 
developer a convenient place to put such breakpoints. Another property of 
JastAdd that complicates debugging is the fact that in order for changes made 
in aspect files to take effect, the Ant script that does this must be run which 
means that all Java files must be generated anew. While this does not take 
particularly long (currently about 30 seconds in the case of the JModelica.org 
compiler), when debugging it is often tempting to make many small changes 
rapidly and see the result (such as adding data printouts), and this is harder to 
do if it involves waiting in between each change. Again, debugging by calling 
methods in a static Java file makes this easier, since Java files are compiled 
almost instantly.

Since the aspect for SimpleLookup was not fully implemented when we 
started this project we started to work with the instance AST. When we had 
found out how a Modelica model is build up by inheritance and components 
and the implementation of the SimpleLookup aspect was completed we went 
over to implement the icon rendering for the source AST nodes. 
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6 Methodology

6.1 Revision control
In this project we have been working with the Trac system of JModelica.org, 
connected to a SVN repository. We first worked with a repository of our own, 
and later on in the JModelica repository. The procedure with Trac is to create 
a ticket for bugs or things to be implemented. The tickets are visible in a 
timeline. When a SVN code commit is done, it is customary to include a 
reference to the ticket that the commit concerns. Conversely, when a ticket has 
been worked towards, ticket comments can be written which can contain 
references to the the changesets (commits) that concern the ticket. This way, 
cross references exist between tickets and commits which have made it easier 
for us to track changes. Also, working with the Trac system has been helpful 
in the work of narrowing down the project to realistic problems.

6.2 Source criticism
During the course of the project, we have taken care to make sure that all of 
the sources that we have worked with have been reliable. For information on 
how a specific technology works, we have consistently used documents 
produced by the company or organization that is responsible for the 
development of that technology. In addition to this, as sources for information 
on the Modelica language and JModelica.org, we have used two theses written 
by people who are closely linked to the JModelica.org project. We consider all 
of our sources to be reliable. 
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7 Conclusions

7.1 Results
In this thesis we have presented a complete icon rendering process in the 
context of the JModelica IDE. The process handles all of the steps between 
graphical annotations (as they are represented by the JModelica compiler) and 
icon images, ready to be put in the JModelica IDE outlines. In chapter 2, we 
posed the following question: is it possible to render icons in the outline of 
JModelica IDE from annotations in Modelica models? As this thesis shows, it 
is indeed possible to render icons in such a way. The result when it comes to 
icon quality is comparable to an established commercial product.

Our implementation is available in the distribution of JModelica.org and 
will be included in the Modelica Workshop for Physical Modeling from 
Modelon AB. 

7.2 Future work
Even though we focused on the rendering of the icons for models, we did put 
some work into making sure that the diagram attribute in our ModelicaIcons 
aspect worked as well as the icon attribute. This means that practically all of 
the graphical rendering of classes that is needed for a full graphical interface is 
already implemented through this project. We also took other measures to 
make future work easier, such as trying to modularize our drawing module, as 
discussed in chapter 5.5. 
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8 Dictionary

AST: Abstract syntax tree, a data structure used to represent program code as 
a tree. The nodes in the tree are different constructs found in the source code. 
ASTs are commonly used by compilers.
AWT: Abstract Window Toolkit. A GUI toolkit that is part of the Java 
Foundation Classes. 
Eclipse: An open-source IDE. All features of Eclipse except for the core 
functionality consists of small modules called ”plugins”. By creating new 
plugins, users can easily add new functionality to Eclipse. The JModelica IDE 
is such a plugin. 
IDE: Integrated development environment.
MLS: Modelica Language Specification. A document produced by the 
Modelica association, defining different aspects of the Modelica language, 
including its syntax. 
MSL: Modelica Standard Library, an extensive and regularly updated library 
of Modelica classes, free to use by Modelica developers to build models.
SVN: Subversion, an open source program used for revision control.
SWT: Standard Widget Toolkit. A GUI toolkit maintained by the Eclipse 
Foundation.
Trac: An open-source bug tracking system. 
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Appendix A: Graphical annotations in Modelica
Below is a summary of the specification found in the MLS, chapter 17.5, of 
the graphical annotations in Modelica.

Types
The following table contains the types that are used to express values in the 
graphical annotations. 
String A text string - a series of characters.

Boolean A boolean value (true or false).

Real A real number.

DrawingUnit The basic (real number) measurement unit, in 
millimeters. 

Point A two-dimensional point.

Extent An area defined by two points.

Color A basic RGB representation of a color.

LinePattern Describes the pattern of a Line, or the pattern of the 
outline of a shape. Can have the values None, Solid, 
Dash, Dot, DashDot or DashDashDot.

FillPattern Describes the pattern that a shape is filled with. Can have 
the values None, Solid, Horizontal, Vertical, Cross, 
Forward, Backward, CrossDiag, HorizontalCylinder, 
VerticalCylinder or Sphere.

BorderPattern Describes decorations drawn on the border of a 
Rectangle. Can have the values None, Raised, Sunken or 
Engraved.

Smooth Specifies whether or not a Line should be drawn as a 
Bezier curve. Can have the values None or Bezier.

Arrow Describes an arrow at the end of a Line. Can have the 
values None, Open, Filled or Half.

TextStyle Can have the values Bold, Italic or UnderLine.

TextAlignment Can have the values Left, Center or Right.
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Records
These are the records that make up the graphic annotations.

partial record GraphicItem
Boolean visible = true;
Point origin = {0, 0};
Real rotation(quantity=”angle”, unit=”deg”)=0;

end GraphicItem;

record CoordinateSystem
Extent extent;
Boolean preserveAspectRation = true;
Real initialScale = 0.1;
DrawingUnit grid[2];

end CoordinateSystem;

record Icon
CoordinateSystem coordinateSystem(extent={{-100,-100},

{100,100}});
GraphicItem[:] graphics;

end Icon;

record Diagram
CoordinateSystem coordinateSystem(extent={{-100,-100},

{100,100}});
GraphicItem[:] graphics;

end Icon;

record FilledShape
Color lineColor = Black;
Color fillColor = Black;
LinePattern linePattern = LinePattern.Solid;
FillPattern fillPattern = FillPattern.None;
DrawingUnit lineThickness = 0.25;

end FilledShape;

record Transformation
Point origin = {0, 0};
Extent extent;
Real rotation(quantity=”angle”, unit=”deg”)=0;

end Transformation;

record Placement
Boolean visible = true;
Transformation transformation;
Transformation iconTransformation;

end Placement;

record IconMap
Extent extent = {{0, 0}, {0, 0}};
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Boolean primitivesVisible = true;
end IconMap;

record DiagramMap
Extent extent = {{0, 0}, {0, 0}};
Boolean primitivesVisible = true;

end IconMap;

record Line
extends GraphicItem;
Point[:] points;
Color color = Black;
LinePattern pattern = LinePattern.Solid;
DrawingUnit thickness = 0.25;
Arrow arrow[2] = {Arrow.None, Arrow.None};
DrawningUnit arrowSize = 3;
Smooth smooth = Smooth.None;

end Line;

record Polygon
extends GraphicItem;
extends FilledShape;
Point points[:];
Smooth smooth = Smooth.None;

end Polygon;

record Rectangle
extends GraphicItem;
extends FilledShape;
BorderPattern borderPattern = BorderPattern.None;
Extent extent;
DrawingUnit radius = 0;

end Rectangle;

record Ellipse
extends GraphicItem;
extends FilledShape;
Extent extent;
Real startAngle(quantity=”angle”, unit=”deg”)=0;
Real endAngle(quantity=”angle”, unit=”deg”)=0;

end Ellipse;

record Text
extends GraphicItem;
extends FilledShape;
Extent extent;
String textString;
Real fontSize = 0;
String fontName;
TextStyle textStyle[:];
TextAlignment horizontalAlignment = TextAlignment.Center;

end Text;
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record Bitmap
extent GraphicItem;
Extent extent;
String fileName;
String imageSource;

end Bitmap; 
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