
Eclipse-based graphical
rendering and editing of
Modelica code

LTH School of Engineering at Campus Helsingborg
Department of Computer Science

Bachelor thesis:
Kristina Olsson
Lennart Moraeus

 Copyright Kristina Olsson, Lennart Moraeus

LTH School of Engineering
Lund University
Box 882
SE-251 08 Helsingborg
Sweden

LTH Ingenjörshögskolan vid Campus Helsingborg
Lunds universitet
Box 882
251 08 Helsingborg

Printed in Sweden
Media-Tryck
Biblioteksdirektionen
Lunds universitet
Lund 2011

Abstract
This report describes the development of software that generates graphical
icons for classes written in Modelica, an object oriented language for
modeling complex systems. The icon rendering is developed as a new feature
in the JModelica IDE, a plugin for the multi-language software development
environment Eclipse. The JModelica IDE is included in the distribution of the
open source project JModelica.org, the aim of which is to create an
industrially viable open source platform for optimization of Modelica models.

Icon rendering of Modelica models is a step towards integrating
graphical editing in JModelica IDE, which will facilitate the editing and
decrease the editing time.

Details of the implementation, as well as the difficulties encountered
along the way, are discussed in this paper. A short introduction to the different
projects and technologies relevant to the development is also given.

The project described in the paper was done at Modelon AB in Lund.

Keywords: JModelica IDE, Modelica, Grapical Development Environment,
Java AWT, icon rendering, open-source

Sammanfattning
Denna rapport beskriver utvecklingen av mjukvara för rendering av grafiska
ikoner utifrån klasser skrivna i Modelica, ett objektorienterat språk för
modellering av komplexa system. Ikonrenderingen utvecklas som en
funktionalitet i JModelica IDE, ett insticksprogram för utvecklingsmiljön
Eclipse. JModelica IDE ingår i distributionen av open-source-projectet
JModelica.org som har syftet att skapa en industriellt gångbar plattform byggd
på öppen källkod för optimering av Modelica-modeller.

Ikonrendering utifrån Modelica-modeller är ett steg på vägen mot att
integrera grafisk editering I Jmodelica IDE, vilket kommer att underlätta
redigeringen och minska redigeringstiden.

Rapporten beskriver implementationen i detalj, samt diskuterar de
svårigheter som dök upp under utvecklingsarbetet. En kort introduktion till de
olika projekt och teknologier som är relevanta till arbetet ges också.

Det projekt som rapporten beskriver utfördes på Modelon AB i Lund.

Nyckelord: JModelica IDE, Modelica, grafisk utvecklingsmiljö, Java AWT,
ikonrendering, open-source

Foreword
We would like to thank everyone at Modelon AB for providing a pleasant and
stimulating environment and for always taking time to give advice and answer
questions concering our project. Specifically, we would like to thank Jesper
Mattsson and Johan Åkesson for their invaluable advice and support. We
would also like to thank our supervisor at LTH, Mats Lilja.

List of Contents
1 Introduction ... 1
2 Goal ... 2
3 Background .. 3

 3.1 Modelica..3
3.1.1 Annotations... 3
3.1.2 Graphical representation of models...................................... 4

 3.2 JastAdd ..6
 3.3 JModelica.org compiler ..6

3.3.1 The compilation process of a Modelia model........................ 6
3.3.2 The AST representation of a Modelica model....................... 7

 3.4 JModelica IDE...8
4 Implementation .. 10

 4.1 The icons java package...11
4.1.1 Graphic items.. 12
4.1.2 Color... 14

 4.2 The drawing..15
4.2.1 Drawing the graphical primitives... 15
4.2.2 Transformations.. 16
4.2.3 Antialiasing... 18
4.2.4 Border patterns... 20
4.2.5 Fill patterns... 20
4.2.6 Line features... 21
4.2.7 Rendering of text strings... 23
4.2.8 Creating the SWT image.. 23

 4.3 The icons.exceptions java class package............................24
 4.4 The aspects...25

4.4.1 The AnnotationParsing aspect.. 25
4.4.2 The ModelicaIcons aspect.. 26

5 Development .. 28
 5.1 Choosing a graphics library..28
 5.2 Handling transformations..29
 5.3 The representation of graphical primitives..........................30
 5.4 The order of drawing classes..32
 5.5 Creating a graphics interface..34
 5.6 Issues with antialiasing...36
 5.7 Determining the line thickness...36
 5.8 Developing with JastAdd...37

6 Methodology ... 39

 6.1 Revision control...39
 6.2 Source criticism...39

7 Conclusions ... 40
 7.1 Results..40
 7.2 Future work...40

8 Dictionary ... 41

1 Introduction

The work of this thesis project is a part of the open-source project
JModelica.org [1]. JModelica.org is a result of research at the Department of
Automatic Control, Lund University and is now maintained by Modelon AB
where this bachelor thesis project takes place. The main objective of
JModelica.org is to create an industrially viable open-source platform for
optimization of Modelica models [1]. Modelica is a modeling language for
large complex systems [2]. Modelica tools are used for similar purposes as
Simulink for MATLAB, LMS Imagine.Lab AMESim and other multi-domain
simulation environments. The work of JModelica.org is mainly concentrated
around simulation and optimization, but there are also other interests such as
the ability to offer a user-friendly integrated environment.

Modelon AB provides engineering services as well as full solutions in
Modelica-based engineering and system design to customers all over the
world. Industries that consult the expertise of Modelon AB include the
automotive industry, the energy and process industry and the aerospace and
defense industry. Modelon AB also develops Modelica libraries, distributes
third-party Modelica development software and libraries, and is active in the
development of the Modelica language. [3]

Figure 1: Icons in the JModelica IDE outline.

1

2 Goal

In a previous master thesis at Modelon AB, a basic integrated development
environment for Modelica code named JModelica IDE was developed [4]. The
purpose of the project is to begin the process of extending the JModelica IDE
to also include a graphical development environment. This includes the
following features

• Rendering of icons in the JModelica IDE outline

• Synchronization between the graphical layer and the textual layer
• Automatic generation of Modelica source code based on operations in

the graphical layer
• Creation of components (drag-and-drop from a class browser)
• Connection of components
• Editing of parameters of components

The introduction of a fully integrated graphical user interface - as
described above - would be a significant improvement to the functionality of
the JModelica IDE.

Since JModelica IDE is written in the Java language, the icon rendering
must also be implemented using Java.

During the development process, the goals of the thesis project were
continually reviewed so that we maintained a realistic idea of how much we
would have time to implement. Early on in the project we realized that the
implementation of rendering of icons in the JModelica IDE outline was
complex enough to make up the entire project. This came as no surprise, as
our supervisor had advised us from the beginning that this might turn out to be
the case.

The question that this thesis explores is: is it possible to render icons in
the outline of JModelica IDE from annotations in Modelica models?

2

3 Background

3.1 Modelica
Modelica is an open standard for equation and component based object-
oriented modeling of complex physical systems. The fundamental structuring
unit in Modelica is the class. Classes are divided in Specialized Classes
depending on their purpose and usage. Model, connector and function is
different type of classes with different restrictions. A model is a class without
restrictions. A model is composed by components, which are instantiated
classes and may inherit one or several classes. The fact that the model is
divided into smaller real-world components makes the models easy to create
and understand.

Figure 2: A Modelica model that consists of many small components. The icons are drawn
by the JModelica IDE icon rendering software.

Development and maintenance of the open-standard Modelica Language
Specification (MLS) and the free, open-source Modelica Standard Library
(MSL) is manged by the non-profit organisation Modelica Association. There
are several simulation environments available for Modelica, both free ones
and commercial ones. [2]
3.1.1 Annotations
In Modelica, annotations are special parts of the source code that can be used
to provide additional information. The annotations are standardized and
defined in the language specification. Among the many possible uses for
annotations is the ability to provide information about the graphical
representation of a model. This is the information that is relevant to this
project. Other uses for annotations include documentation and versioning.

3

Besides the standardized annotations Modelica tools are free to define new
annotations and use them in any way that the tool developer finds useful. [2]
3.1.2 Graphical representation of models
This chapter gives a brief overview of the specification for graphical
annotations in Modelica. For more detailed information, please refer to
Appendix A, or chapter 17.5 of the MLS [5]. The MLS uses the the
specialized Modelica class record to specify how the graphical information in
the annotations is supposed to be written.

A graphical representation of a Modelica class consists of two abstraction
layers, the icon layer and the diagram layer. A layer is represented in the
annotation of a class by an Icon or Diagram record. Generally speaking, the
icon layer is used for visualizing a specific model and does not show all of its
details, while the diagram layer is used for displaying the model’s
components and the connections between them. Each layer has its own
graphical representation for the class, consisting of a list of graphic primitives.
These graphical primitives are represented by records named Rectangle,
Ellipse, Line, Polygon, Text and Bitmap. All of the primitive records extend
the record GraphicItem and all except for Line and Bitmap extend the record
FilledShape. The records for the primitives contain various information about
how they should be drawn, such as their color, shape and coordinates. The
layers also contain a CoordinateSystem record which describes the context in
which the coordinates of the primitives should be interpreted.

Figure 3: An example of a graphical annotation containing a layer (Icon) and a primitive
(Rectangle). To the right, the rendered icon resulting from the annotation is shown (”C” is
not part of the icon).

If a Modelica class contains a component (i.e. an instance of another
class), then the component declaration can contain its own annotation. This
annotation is called a placement annotation and describes how the graphical
primitives of the component should be drawn in relation to the primitives of

4

the enclosing class. The placement provides this information for both the
primitives in the icon layer and the ones in the diagram layer of the
component. The layer that is used in any given case is determined by two
factors: which layer is used for the enclosing class and the restriction of the
class of the component.

When drawing the icon representation of a class, the icon layer of the
component is used - provided that the component is a connector (a specialized
Modelica class) and is not declared as protected. If the component does not
meet these requirements, it is not shown at all when the icon of the enclosing
class is drawn, regardless of the placement annotation. When drawing the
diagram representation of a class, the diagram layer of the component is used
for connectors and the icon layer is used for components of other class types.
When drawing the diagram representation of a class the visibility of the
components are irrelevant. Additionally, connections between components are
shown as lines in the diagram layer of the enclosing class.

Figure 4: A table displaying the logic of which layer of a component to use, depending on
the component's class type.

Figure 2 in chapter 3.1 shows an example of this. It shows the diagram
layer of a class and contains the icon layer representations of the components
of the classs.

5

3.2 JastAdd
JastAdd is a java-based open source construction framework for building
extensible compilers. The JastAdd source code consists of definition files and
aspect files. Out of these files Java source files are generated which represent
the source code of the program being compiled in an Abstract Syntax Tree
(AST). The definition files contain the names of the classes that are to
represent the AST nodes and the aspect files contain methods and attributes to
be added to the given classes. The functionality of a compiler build with
JastAdd is expanded by adding new aspects which is easy comparable to
rewrite the Java source code. [6]

Figure 5: A diagram illustrating how JastAdd builds the Java classes that represent the AST
nodes.

3.3 JModelica.org compiler
In JModelica.org a Modelica compiler is included. The compiler was created
as a part of the doctoral thesis Languages and tools for Optimization of Large-
Scaled Systems and is developed using the JastAdd compiler construction
framework. [7]
3.3.1 The compilation process of a Modelia model
When a Modelica model is compiled, the JModelica.org compiler creates
abstract syntax trees that represent the model. The nodes in the AST:s
represent the different Modelica language constructs that make up the model:
classes, components and equations to only name a few. The JModelica.org
compiler first creates a source AST from the source code being compiled. It

6

then creates an instance AST which has its root in one of the class declarations
of the source AST. The differences between these two ASTs that are relevant
to this thesis are as follows. First, the source AST is where the annotations are
stored. However, since every node in the instance AST contains a link back to
its corresponding node in the source AST, the annotations of instance nodes
can be accessed anyway. This does mean that annotations that reference
variables in a class can not be correctly parsed, though, since the values of the
variables are not known unless the class is instantiated. Secondly, the
redeclare construct in the Modelica language causes some problems. In
Modelica, developers can allow for the types of parameters and components in
the class to be changed by declaring parameters and components replaceable.
The types are changed by using the redeclare construct in the declaration. This
means that the class of a component is not always known until the class that
contains the component is instantiated. Since annotations are evaluated in the
source AST, the annotations of redeclared parameters or components will not
be possible to evaluate. Because instantiating classes is quite computationally
expensive, the conditions for this project has been to render icons out of the
information stored in the annotations without knowledge of the information in
the instance AST.
3.3.2 The AST representation of a Modelica model
In the source AST, the most relevant nodes that represent a Modelica model
are called ClassDecl, ExtendsClause and ComponentDecl. The inheritance of
a class is represented by the ExtendsClause node and a component is
represented by the ComponentDecl node. The ClassDecl contains the node
Annotation that stores the annotation of the Modelica class. The source AST
does not contain a link between an ExtendsClause and the ClassDecl that
represents its class. The same is true for a ComponentDecl and the ClassDecl
that represents the class of the component. However, during this project the
JModelica.org team added attributes to the aspect SimpleLookup which made
it possible for us to reach the ExtendsClause’s and the ComponentDecl’s
ClassDecl nodes. The corresponding nodes in the instance AST are called
InstClassDecl, InstExtends and InstComponentDecl. In contrast to the source
AST the instance AST does contain links between these nodes.

In the Modelica language there is a short way of declaring a model that
extends another model, and only makes small adjustments to the model that it
extends. This short class declaration raises a ShortClassDecl in the source
AST.

7

Figure 6: A simplified model of the source AST. The dotted lines represent ClassDecl nodes
that are returned by calls to attributes on the ExtendsClause and ComponentDecl nodes
defined in the the aspect SimpleLookup.

In the aspect AnnotationAPI the class AnnotationNode forms a tree out
of the Annotation node which makes it possible to iterate over the annotation
and extract the information stored in the annotation.

3.4 JModelica IDE
Included in the JModelica.org distribution is the integrated development
environment JModelica IDE. JModelica IDE uses the JModelica.org compiler
and is implemented as an Eclipse plugin [4]. The JModelica IDE supports
syntax highlighting, brace matching, code outline, error markup and code
folding. In the present situation JModelica is a textual editing enviroment, but
the purpose is to also include graphical editing. JModelica IDE has several
outlines, Source Outline, Instance Outline and Class Outline. Source Outline
and Instance Outline are source AST and instance AST represention of the file
in the current editor. Class Outline is a source AST representation of all
Modelica files in the current project plus the Modelica files in imported
libraries. The icons used in the outlines are pre-rendered images. There is a
default image for a package, a model and a component.

Figure 7: Outline views in JModelica IDE using default icons.

8

When a user uses the JModelica IDE to edit a Modelica file, the file
being edited is continuously parsed by Eclipse using the JModelica.org
compiler. Each AST node generated from the classes in the Modelica file is
sent to the outline view in the JModelica IDE along with a default icon image.

9

4 Implementation

We have implemented a module in the JModelica IDE that renders icons from
the annotations stored in the Modelica source code. The module consists of a
java package named org.jmodelica.icons to represent a Modelica model as a
java data structure (an Icon), a drawing package named
org.jmodelica.icons.drawing to render an Icon to an image and a package with
exceptions named org.jmodelica.icons.exceptions. The module also consists of
two aspects for adding and creating Icons and adding rendered Icons for the
AST nodes. In the outlines of JModelica IDE, the default icons are replaced by
these rendered icons.

Figure 8: A screenshot of the JModelica IDE using the icon rendering implemented in this
project.

The following sections describe how we have implemented the icon
rendering. 4.1 describes the icon data structure, 4.2 describes the icon
drawing, 4.3 describes the exceptions used in the implementation and 4.4
describes the aspects.

The icon rendering software is included in the distribution of

10

JModelica.org. The implementation described here is revision 2664 [8], later
revisions may include changes.

4.1 The icons java package

Figure 9: Classes in the package org.jmodelica.icons.

The package org.jmodelica.icons contains classes that form the graphical
representation of a Modelica class and are implemented according to the
Modelica Language Specification (MLS) [5]. Appendix A contains a summary
of the chapter in MLS that describes this structure.

Figure 10: An object diagram of the icon class structure.

The class Icon is the graphical representation of a single Modelica class.
The class Icon also stores references to the inherited classes and the
components of the specific class. The inherited classes of the models are
stored as a list of Icons and the components are stored as a list of Components.
The graphic representation consists of a Layer which contain a
CoordinateSystem and a list of GraphicItems. A Component consists of an
Icon and a Placement. Placement contains a Transformation. Transformation
stores the data concerning how to place the component in relation to the

11

enclosing class’s coordinate system. Since only one layer is used at a time the
graphical representation of a Modelica model is equivalent with the Layer.
One approach was to represent a model as a Layer with two lists of Layers for
inheritance and components. That would both reduce the number of classes
and let the program structure stay closer the MLS. On the other hand, the
classes Icon and Component make the class structure more clear. We
considered a clear class structure to be more important than to stay close to the
MLS.

The Extent class describes an area defined by two Points. We have added
methods for calculating the width and height of the extent, as well as for
determining the Point in the middle of it. There are no rules for how the
Points of an Extent are written in Modelica annotations (other than that they
have to cover a rectangular area). This means that the an Extent that starts at
the point (-10, -10) and ends at (10, 10) can be expressed as “extent = {{-10,
-10}, {10, 10}}”, but might as well be expressed as “extent = {{-10, 10}, {10,
-10}}”. In some cases this difference is insignificant, such as when declaring
the Extent of a Rectangle primitive. In other cases, however, it is highly
significant. For example, if the second example was given as the Extent of a
Transformation inside a Placement record, it would mean that the icon of that
particular component should be drawn with all of its primitives flipped along
the X axis. This has prompted us to implement a method for returning the
“fixed” version of an extent, that is a version of the extent where it is
guaranteed that the coordinates of the first point are less than or equal to those
of the second point. Critically, many methods in the graphics library we are
using requires that rectangular areas are expressed in this way.

Another feature that we have had to implement in the Extent class is the
method contain. It takes a second Extent as its parameter and returns a third
Extent that is large enough to contain both the first and the second Extent. This
method is critical in calculating the total space that an icon covers, including
all of the icon’s graphical primitives as well as the graphical primitives of the
icon’s super classes and components. The total area of the icon is used to
calculate how much all coordinates should be scaled so that the primitives fit
inside the icon image.
4.1.1 Graphic items
GraphicItem is the basic class that all graphical primitives inherit. Due to the
need to calculate the total size of an icon, we have deemed it necessary to be
able to calculate the rectangular bounds of any graphical primitive. Since the
method of calculating the rectangular bounds of a primitive varies between
different primitives, we have added an abstract method getBounds in
GraphicItem that must be overidden by the subclasses so that every primitive
calculates its bounds in its own way. We introduced the class FilledRectShape

12

to reduce redundancy for primitives which are handled like rectangles
(rectangles, ellipses and texts). FilledShape inherits GraphicItem, which is not
the case in MLS. The reason for this is that Modelica allows for multiple
inheritance while Java does not.

Figure 10: A class diagram displaying the class structure of the classes representing the
graphical primitives.

The Bitmap primitive represents a bitmap image placed somewhere in the
icon. It is one of few icon-related features described in the MLS that are not
yet fully implemented in the JModelica IDE. According to the MLS, Modelica
developers should be able to specify source data for bitmap images in several
different ways. First, it should be possible to specify file paths using URI
schemes. The regular file URI scheme should be supported, as well as a
special “Modelica URI scheme” described in the MLS. Additionally,
developers should be allowed to specify their bitmap image as a text string
that is encoded using the base 64 encoding scheme [9]. All of these features
are fully supported by the JModelica IDE except for the “Modelica URI
scheme” method for specifying file paths.

Line primitives in the Modelica graphics annotation system are specified
by a list of two or more Points. Beyond specifying various preferences such as
line pattern, line thickness and color, the MLS says that developers should be

13

able to indicate whether or not a Line should have Arrows at one or both of its
ends. We have chosen to implement this feature by storing the arrows on the
Line object as an array containing two line-shaped Polygon objects. If one of
the arrow values is “Arrow.None”, then that arrow polygon is assigned the
value null.

Figure 11: The vector mathematics used to calculate the coordinates of the arrows. For
simplicity, it is assumed that arrowSize is equal to 1. Since a Line primitive is allowed to
have any number of line segments, the process described above is first executed with the
first point of the Line as p2 and the second as p1, and finally with the second to last point as
p1 and the last point as p2.

In the Line class, we have also added a method for calculating the
rectangular bounds of the line. These bounds are given as the smallest
rectangular area that contains all of the Line’s points.
4.1.2 Color
Our color representation consist of three integers representing the red, green
and blue components of a color. We have added methods for returning a
darker or lighter version of the same color. This is useful when drawing the
border pattern of a rectangle, making the edges brighter or darker to make the
rectangle appear sunken or raised.

14

4.2 The drawing
The icon drawing is handled in AWTIconDrawer. An instance of this class is
created for each icon to draw, with the current icon as a parameter to the
constructor. AWTIconDrawer contains methods for drawing all of the different
graphical primitives that icons can contain. The graphical primitives are drawn
on an image, using the AWT (Abstract Window Toolkit) graphics library.

The drawing methods of the AWTIconDrawer class are called by the
draw method in the Icon class, so that all of the Icon’s graphical primitives are
drawn correctly. This method also calls the draw methods of the Icon’s super
classes and components, making sure that these are drawn in the correct order.
4.2.1 Drawing the graphical primitives
When drawing MLS primitives which extend FilledShape, we take advantage
of AWT’s Shape construct which allows shapes to be filled and drawn in a
powerful but simple manner. For this purpose there are createShape methods
in AWTIconDrawer that construct the AWT objects that represent the MLS
primitives. These are called every time a MLS primitive is drawn. Since
AWT’s coordinate system extends downwards and to the right - as opposed to
those in MLS which extend upwards and to the right - it is necessary to make
adjustments to all coordinates before they are passed to the AWT drawing
methods, or all icons will be drawn upside-down. The createShape methods is
where we choose to do this.

Figure 12: The Shape object of a Rectangle is created. Note the Y-coordinate passed to the
Rectangle2D constructor.

Figure 12 shows the conversion between a MSL Extent (two points) and
an AWT Rectangle2D (a point, a width and a height). This expression creates
the Shapes of Rectangle and Text primitives from the MLS. Similar
adjustments are made to the MLS Ellipse and Polygon primitives.

15

For Line primitives, the y coordinates are inverted in the drawLine
method right before they are drawn.
4.2.2 Transformations
For the transformations we have used the AWT class AffineTransform. An
instance of AffineTransform contains a transformation matrix and a transform
method that transforms a Point2D object with the matrix. To change the
matrix, there are methods in the class named translate, scale and rotate which
take numbers as arguments and execute the correct mathematic operations on
the matrix. Using AffineTransform makes it easier to keep track of the matrix
data structure. It also means that it is not necessary to manually manipulate the
matrix when translations, scaling operations and rotations need to be applied
to it. The developers only need to call the corresponding methods on the
AffineTransform object.

The first transformation that is applied when drawing the icon of a model
has to do with fitting the contents of the icon inside the icon image. Creating
this transformation involves calculating scale factors and translation
increments. The reason that this transformation is needed has to do with the
fact that there are no restrictions on the coordinate system of a Layer record in
a Modelica graphical annotation. On top of that, the coordinates of primitives
can extend outside the coordinate system, and should still be visible in the
icon image. The drawing coordinates passed to the methods in the graphics
library must be in the range of the image’s first pixel (0) to the image’s last
pixel (currently 20). The goal of this transformation is to make all coordinates
fit into that range (see figure 13).

Figure 13: The initial transformation applied when drawing the icon of a model. Note that
the graphical annotations in Modelica contain coordinate systems which extend upwards
and to the right, while the coordinates of the image extend down and to the right. However,
this difference is accounted for at a later stage, when creating the graphic objects passed to
the AWT graphics library, so there is no need to handle this in the transformation (see
section 5.3).

16

First of all, the total width and height of the icon must be calculated. This
width and height is aquired by calling the getBounds method of the icon, with
the icon’s coordinate system as its parameter. The getBounds method in Icon
is a method that for every graphical primitive calls the method getBounds
declared in GraphicItem. The returned extent is guaranteed to be large enough
to contain the coordinates of the primitives of the main class as well as those
of its super classes and components, and is larger than or equal to the
coordinate system extent that was passed as an argument.

This width and height must then be compared to the width and height of
the image that the icon will be drawn on. The result of this comparison is the
two scale factors, which every coordinate from then on must be multiplied by.
There is one scale factor for the x-coordinates and one for the y-coordinates,
since both the icon size and the size of the final icon image could potentially
be of any proportions. As a side note, we currently preserve the aspect ratio of
all square icons by extending their size equally in all directions when it needs
to be extended. The aspect ratio of non-square icons is not correctly preserved
in our implementation, unfortunately.

Once the scaling operation has been done on the transformation matrix,
the translation increments are calculated as half of the image’s width and half
of the image’s height, respectively. Unfortunately, this method of calculating
the translation increments doesn't take into account whether or not the origin is
centered in the icon's coordinate system. This means that icons with origins
that are not centered in their coordinate systems are not correctly translated.

When the transformation described above has been applied, the draw
method of the icon is called. The Icon object recursively draws its own super
classes and components, and thus makes sure that the correct transformations
are applied when drawing these. When the component of a class is drawn, we
must make sure that the icon of that component is drawn in the correct place,
as described by the Placement annotation of that component declaration.
Applying the transformation of a component means taking into account the
Placement of the component, the CoordinateSystem of the class of the
component and the enclosing class CoordinateSystem when calculating
translation increments and scale factors.

17

Figure 14: The component transformation. The icon for VariableResistor contains a scaled,
translated and rotated version of the icon for RealInput, as specified in the component
declaration’s Placement annotation.

The Transformation record in the Placement annotation has the attributes
origin (which is a Point), extent and rotation. To calculate the translation
increments, the origin point is added to the point at the middle of the extent,
which is added to the middle point of the coordinate system of the enclosing
class. The x- and y-components of the resulting vector make up the translation
increments of the transformation with which the component’s icon should be
drawn. The x-scale factor is determined by dividing the width of the
Placement Transformation record’s extent by the width of the coordinate
system of the component’s class, with the y-scale factor being calculated in
the corresponding way. After this, all that is needed for the component’s icon
to be drawn correctly is rotating the coordinates by the amount written in the
annotation, after converting the angle to radians and multiplying it by -1
(because of AWT’s inverted y-axis).
4.2.3 Antialiasing
All drawing is done using antialiasing. Antialiasing affects the way that pixles
are colored when only a fraction of the pixel is covered by a graphical
primitive.

18

Figure 15: A comparison between the same icons drawn with and without antialiasing. Both
examples are from the JModelica IDE, showing icons for models in the Modelica Standard
Library.

Without antialiasing, pixles that have more than half of their surface
covered by a primitive get the color of the primitive while all other pixles get
the background color (or their original color before the current drawing
operation). With antialiasing, a pixel that has a fraction of its surface covered
by a primitive gets a color that is a mixture between the primitive’s color and
the pixel’s original color. The more of the pixel’s surface that is covered by
the primitive, the closer the pixel’s color will be to the color of the primitive.
This results in a much smoother appearance, especially when drawing small
primitives, such as the ones in the outline icons that are the focus of this
project.

19

4.2.4 Border patterns
Border patterns are decorations at the edges of rectangles, specified by the
attribute borderPattern in the annotation for Rectangle. The possible values
for the attribute are None, Sunken, Raised and Engraved. There are no
descriptions in the MLS of how these patterns are meant to be drawn, but we
have implemented the drawing of border patterns for the values Sunken and
Raised. Engraved has not yet been implemented.

Figure 16: Rectangle primitives displaying the three currently implemented values for
borderPattern, along with the annotations that declare them.

Our implementations of Sunken and Raised involves creating polygons
at the edges of the rectangle and filling them with brighter and darker versions
of the rectangle’s fill color to give the appearance of the rectangle being raised
or sunken.
4.2.5 Fill patterns
The fillPattern attribute of the FilledShape primitive describes how the
primitive should be filled. As far as our implementation goes, there are three
categories of fill patterns: regular fill patterns, gradients and texture fill
patterns.

The regular fill patterns are None and Solid. The implementation of these
is trivial: Solid means that the primitive should be completely filled with its
fill color and None means that it should not be filled at all. Using the Shape
construct of AWT, any shape can be filled with a single method call.

Gradient fill patterns include Horizontal, Vertical, HorizontalCylinder,
VerticalCylinder, Sphere. Filling an area with a gradient means that the color
should progressively shift between one color and another. In our

20

implementation - and as specified in the MLS - gradients go from the
primitive’s line color to its fill color. Again, thanks to the Shape construct of
AWT, as well as comprehensive and well-documented classes for gradients in
the AWT library, filling a shape with a gradient is not complicated. The class
we have used to implement the gradients is java.awt.GradientPaint.

Figure 17: Shapes filled with the three gradient fill patterns.

The final category, texture fill patterns, consists of Horizontal, Vertical,
Cross, Forward, Backward and CrossDiag. These patterns consist of stripes
drawn in the primitive’s line color over the primitive’s fill color. We have
implemented these patterns by creating a small image, drawing the lines on it,
and then using the image as a texture to fill the primitive with. The class in
AWT that best supports this is java.awt.TexturePaint. In AWT, the colors that
the Graphics object draws with is determined by its Paint object. After setting
the Paint object to an instance of TexturePaint, with the image loaded as its
texture, the Graphics object will use the image as a texture to fill any shapes
that are passed to its fill method.

Figure 18: Icons containing shapes filled with the Backward texture fill pattern.

4.2.6 Line features
The style in which Line primitives and the outlines of other shapes are drawn
is possible to specify by changing the pattern and lineThickness attributes of
the FilledShape annotation, or the pattern, thickness and smooth attributes of
the Line annotation. In AWT, the Stroke object of the current instance of the
Graphics class determines in what style lines and outlines are drawn, and by
creating a java.awt.BasicStroke with the correct attributes and setting it as the
current Stroke, we make sure that the correct drawing style is engaged.

21

Figure 19: An icon containing lines with the Dot line pattern attribute.

The line thickness is simply passed as an argument for the BasicStroke
constructor. For setting the line pattern, we use a constructor of the
BasicStroke class that takes an array of float values called dash as a parameter.
These float values determine how many separate dashes that the line pattern
should consist of, and the length of these. The different line patterns that can
be specified in graphical annotations are None, Solid, Dash, Dot, DashDot and
DashDashDot. We have implemented these by creating a Java enumeration
class called LinePattern with a float array as its attribute, to store the dash
values for each enumeration type. For example, LinePattern.DOT has {0.2f}
as its dash value, LinePattern.DASHDOT has {2.0f, 4.0f} and
LinePattern.SOLID has null. This way, it is easy to construct a BasicStroke
with the correct line pattern activated, by calling the getDash method of the
Line object’s LinePattern attribute and passing the result as an argument to the
BasicStroke constructor.

The smooth attribute of the Line primitive specifies whether the line
should be drawn as a series of quadratic Bezier curves, or as a regular line.
Figure 20 displays two lines with the same coordinates, the first declared with
Bezier as its smooth attribute and the other with None. [5]

22

Figure 20: A comparison between the Bezier and None smooth attributes.

4.2.7 Rendering of text strings
Text strings that are too small to read should not be drawn on icons. Because
of this, drawing a Text primitive involves making a few different calculations
with the aim of making sure that the text string is sized and aligned in the
correct way, as well as determining whether to draw the text or not.

First, the font size of the text string is determined. If the graphical
annotation that represents the text string has a fontSize value of zero (the
standard), then the size of the text is scaled to fit the extent attribute of the
Text primitive. This is done by first increasing the font size until the text is
wide enough to cover the entire extent horizontally, and then decreasing the
font size until the text fits inside the extent vertically. Next, the x coordinate of
the text is determined so that it gets correctly aligned in the extent, as specified
by the horizontalAlignment value of the Text primitive. Finally, the actual font
size of the text - meaning the font size of the text that will actually be drawn
on the screen given the calculations described above and the current
transformation - is calculated to check if the text is large enough to be drawn.
This is done by multiplying the font size by the scale factor of the current
transformation. If the resulting font size is larger than a previously determined
value (currently 9), then the text is drawn.
4.2.8 Creating the SWT image
Since the icon to be put to the outline of JModelica IDE must be a SWT
Image, a method converting AWT BufferedImage to SWT Image was needed.
An icon in the Eclipse outline view is defined as a model object and require
empty pixels in bottom and on the left of the icon. [10] This is handled by the
converting method, getImage, of AWTIconDrawer.

The conversion from BufferedImage to Image starts with extracting the
BufferedImage object’s ColorModel attribute. The color model describes how
the color data of all of the pixles of the image are stored in the BufferedImage
obejct. Our BufferedImages use a direct color model, which means that all of
the ARGB data (alpha, red, green and blue, where alpha represents the level of

23

opaqueness contra transparancy) of a pixel is represented by a single number,
in our case an 32-bit integer. A SWT PaletteData object is also created. The
PalletteData object is created from the ColorModel and is needed to translate
the ARGB values of the BufferedImage into values that SWT can use. Next, a
SWT ImageData instance is created. One of the parameters to its constructor
is the amount of bits used to represent the ARGB value of each pixel. This
number is calculated by calling the color model’s pixelSize method. The
ARGB data for every pixel in the BufferedImage is then transferred to the
corresponding pixel in the ImageData object. This is done by first calling
getRGB on the BufferedImage to obtain the ARGB value of the current pixel,
and then calling the PaletteData instance’s getPixel method with the red,
green and blue components of the ARGB value. Since each color component
is 8 bits long, the four components are read by right shifting the ARGB value
24 times, 16 times, 8 times and zero times respectively, and each time reading
the right-most 8 bits by using the bitwise AND operator with the number 255
(eight ones). The color components of the current pixel of the ImageData
instance are set with the method setPixel and the alpha value is set with the
method setAlpha.

4.3 The icons.exceptions java class package

Figure 21: The exceptions used in the project.

The exceptions NotEnoughParametersException and
FailedConstructionException are thrown and caught while iterating over the
AnnotationNode, whenever the annotation parsing module fails to parse a
given annotation record. CreateShapeFailedException is thrown when
creating shapes of primitives in AWTIconDrawer, and are caught when

24

drawing the shape. They all inherit the ModelicaIconsException which in turn
inherit ModelicaException used in JModelica.org.

4.4 The aspects
In the aspect ModelicaIcons the attributes icon and contentOutlineImage are
added to the AST nodes. The aspect AnnotationParsing supplies icon with
values for the graphical elements.
4.4.1 The AnnotationParsing aspect
In the aspect AnnotationParsing we iterate over the annotations in order to
extract the values of the graphical elements. The methods are all private
except from createIconLayer, createDiagramLayer, hasPlacement and
createPlacement. The public methods are called from the aspect
ModelicaIcons when creating Layers and Placements while the private
methods are used inside AnnotationParsing to create items needed to build
Layers and Placements, such as CoordinateSystem, graphical primitives and
graphical properties. Most items needed to create a Layer or a Placement have
one or more attribute that must be set while others are optional, i.e they have a
default value. When creating an item we initialize an empty object where the
default values are set. Then we iterate over the annotation to extract the
attributes’ values. It would be safer and more intuitive to initialize an item
with the attributes as parameters in the constructor. Furthermore the nestled
calls when iterating over the annotation are, for some items many and hard to
follow. But, since we can not know beforehand which attributes the actual
item consists of, initializing an item with the attributes as parameters would
require a lot of unnecessary variables to store while iterating over the
annotation.

The way to handle a non-existing attribute node and a non-valid value of
an attribute depend on whether the attribute for the creating item has a default
value or not. For example, the method createGraphics returns a list of graphic
items and is called when creating a Layer. Finding the word “Line” results in
calling the method createLine which initializes a Line with default values and
then iterates over the line’s attributes. If “color” is found the method
“realVector” in AnnotationAPI is called to return value of the node

• If realVector does not contain three doubles or if their value are out of
bounds an exception is thrown.

• If color has a default value in Line the exception is caught in
createLine and Line’s default value for color is unchanged.

• If color does not have a default value in Line the exception is not
caught in createLine. The createLine is determined and the

25

exception is send further to createGraphics where it is caught and
no item is added to the list of graphic items.

• If the values of color are correct, then the method setColor in
createLine uses the returned color value as a parameter to change the
color attribute in Line.

4.4.2 The ModelicaIcons aspect
The attribute icon is declared as a synthetic lazy attribute. This means that
when an icon has been created for a node, a reference to that icon object is
stored on that node. The next time that the icon for that node is needed, the
icon object reference is returned. Since Modelica is constructed in an object-
oriented way where models are composed of components and the same
components exists in several models, the lazy declaration saves memory as
well as computing effort. The icon attribute is defined as an equation and
returns an object of the class Icon. If the annotation of the node does not exist
there is nothing to be rendered but the icon is created anyway to be able to
store inheritance and components. The icon’s layer is in this case an empty
layer i.e the coordinateSystem and the list of graphic items are null. If a
component is added to the icon the empty layer is replaced by a layer with a
default coordinateSystem defined in the Modelica Language Specification.
The coordinateSystem is needed when the component’s transformation is
calculated.

Within the attribute the inherited classes and components are added by
the two methods addSuperclasses and addComponents. To prevent the icon
rendering threads from entering infinite loops, in the event that models extend
themselves or use themselves as components we have added a flag that
signifies whether the icon of the ClassDecl is currently being calculated,
called visitingDuringIconRendering. Whenever the icon of a inherited class or
component is about to be calculated for a ClassDecl, the flag is checked for
the ClassDecl of the inherited class or component. If it is true, the icon is not
created. Models that extend themselves or use themselves as components are
not allowed in Modelica, but declaring such models should not make the icon
rendering module crash, and this is our way of making sure that this is
avoided.

As described in 3.3.2 the node that stores the annotation is the ClassDecl.
The ClassDecl of the current icon stores a list of ComponentDecls where each
ComponentDecl is representing a component. To create the icon of a
component we find the ClassDecl of the ComponentDecl through the aspect
SimpleLookup. We then make sure that an Icon of that ClassDecl is created –
if the visibility and the restriction of the component respective the class of the
component correspond to the conditions described in 3.1.2. A reference to the
created icon is then added to the current icon’s list of components.

26

To add inherited classes there is no restriction or visibility to consider.
The inherited classes of the current icon are stored in the icon’s ClassDecl as a
list of ExtendsClause. For each ExtendsClause we get the inherited class’s
ClassDecl. A reference to the icon for that ClassDecl is then added to the list
of super class icons in the same way as for components.

The ShortClassDecl has its own definition of the icon attribute since both
the annotation of the ShortClassDecl and the annotation of the model that it
extends are taken into account.

For the instance AST nodes the icon attribute is added in a similar way as
for the source AST nodes.

The contentOutlineImage attribute, which returns a rendered icon as an
SWT Image object, is added to the nodes. To render an icon, an instance of
AWTIconDrawer is created with the Icon object that was created earlier for the
node as a parameter. The contentOutlineImage attribute contains methods for
caching images and icons, as well as mechanisms which allow for the icon
images to be created in separate threads in the Eclipse framework, which
improves the user experience since it means that the system doesn’t freeze
while the icons are being created. This functionality was developed by the
JModelica.org development team in parallel with our project.

27

5 Development

This section describes some of the challenges we have encountered during the
implementation of the icon rendering.

5.1 Choosing a graphics library
The scope of this thesis when it comes to graphical rendering is fairly limited.
We are only concerned with drawing graphical primitives on images,
preferably with a simple way of applying transformations for translating,
scaling and rotating coordinates without too much trouble. There are several
different graphics libraries available for the Java programming language that
fully support this. The one we settled for is the Abstract Window Toolkit
(AWT) by Sun Microsystems.

Since the start of this thesis, it has been a goal of the thesis project that
the software that results from the project will contribute to the JModelica.org
project as much as possible and and that it should be possible to reuse our
software for various purposes without spending much time on adapting the
code. Because of this, it is very important that the graphics library does not put
restraints on which platforms the software can be used on. Since the AWT
library is built into Java, we decided that it fulfills these needs very nicely.

The strongest competitor to AWT among graphics libraries is - in our
eyes - the Standard Widget Toolkit (SWT) by IBM (now maintained by the
Eclipse foundation). SWT largely fulfills our needs when it comes to drawing
primitives just as well or better than the AWT library. Another obvious reason
in favor of choosing SWT for our project would be that all of our software is
currently executed in the context of the JModelica IDE, an Eclipse plugin.
More specifically, in order to display images in the outlines of the Eclipse
IDE, the images need to be passed as instances of IBM’s own Image class,
which is part of SWT. Using SWT as the main graphics library would make
this very easy. However, making the icon rendering dependant on SWT would
force anyone who wants to render icons in other applications using our code to
interact with the SWT library, or rewrite much of the icon rendering code.
SWT needs to be distributed with any software that uses it, and additionally
lacks support on many platforms. We quickly decided that the benefits of
platform independence and easier distribution provided by choosing AWT
outweighs the inconvenience of having to convert the AWT image objects into
SWT counterparts before passing them to the Eclipse outlines.

28

5.2 Handling transformations
Making sure that primitives are drawn in the correct size and with the proper
rotation and translation of their coordinates, requires different transformations
to be made to the coordinates of each primitive before they are drawn on the
icon image. Managing these transformations turned out to be one of the
greater challenges of the development of the icon drawing software.

Most – if not all – graphics libraries have ways of simplifying coordinate
transformations. Developers rarely need to implement the mathematical
operations needed to create the matrices which contain the transformations
and which coordinate vectors are multiplied by in order to be transformed.
Typically, there are methods available in the graphics interface that construct
these matrices. This is the case in the AWT library. For example, the AWT
Graphics class has a method called rotate which takes an angle as its
parameter and alters the current transformation matrix so that it includes the
specified rotation. This means that the act of executing transformations is
quite straightforward. The challenge lies in deciding what transformations are
needed and in what order to execute them.

Figuring out the correct transformation to apply in order for the icon to fit
inside the image was quite a difficult task. As described in chapter 4.2.2, the
transformation consists of scale factors and translation increments. There have
been problems with the calculation of both of these.

One problem was that we calculated the width and height of coordinate
system extents in an incorrect way. A coordinate system that extends from the
point (-10, -10) to the point (10, 10) could intuitively be considered to have a
width and height of 20 (10 - (-10) = 10 + 10 = 20). However, when a MSL
model uses this extent for its coordinate system, it means that both -10 and 10
should be valid x or y coordinates for primitives in the model. This gives a
width and height of 21. Since the scale factors are calculated by dividing the
icon image’s width and height with the width and height of the icon being
drawn, this problem caused the scale factors to become too large which meant
that some primitives ended up outside of the edges of the icon and were thus
not visible. The problem was fixed by adding 1 to the icon width and height as
the scale factors were calculated.

Another problem that caused primitives on the edges of icons to not be
seen had to do with the rounding of non-integer coordinates passed to the
graphics library’s drawing methods. From the experiments that we conducted,
it appeared that the AWT methods did not use a consistent rounding strategy.
Numbers that were rounded down when we ran the program on one computer
were rounded up when we ran it on another computer. This phenomenon
likely has to with Java2D’s conversion of coordinates between user space and
device space [11]. User space is the coordinate system in which the

29

coordinates of graphical primitives are passed to the AWT drawing methods.
Device space, on the other hand, is the coordinate system of the output device
such as a monitor, which of course differs between different systems. The
conversion between these coordinate spaces is done automatically and is
beyond the programmer’s control. The way that we solved this problem is that
instead of simply applying the transformation to the AWT Graphics object
and pass the coordinates so that transformation and rounding was done
automatically, we kept the transformation object separate from the Graphics
object and used the transformation to transform the coordinates “manually”.
This allowed us to access the transformed coordinates and round them
ourselves in any way we wanted. Then we could pass the rounded coordinates
to the AWT drawing methods, with complete control over how the rounding
was done.

Figure 22: This image shows two different ways of drawing a line between two points
represented by Point2D objects (p1 and p2), with the coordinates transformed according to
the transformation represented by an AffineTransform object (transformation). In the
second example, the transformation is done explicitly in the code instead of implicitly by
the Graphics object.

Activating antialiasing requiered half a pixel on the edges of the image.
This “margin” made the drawing much less sensitive to rounding errors and
differences between the graphics context of different systems and solved the
rounding problems. We kept the adjustment – described above – of
transforming coordinates manually instead of letting the Graphics object
transform them as they are passed to the drawing methods. This is a good
method of drawing primitives because it allows the programmer direct access
to the transformed coordinates, which is very useful when debugging.

5.3 The representation of graphical primitives
When it comes to the graphical primitives specified in the MLS, we decided
early on that the AWT Shape concept would be useful for representing those
of the primitives that extend FilledShape: Rectangle, Ellipse, Polygon and
Text. As explained in chapter 4.2.1, Shape is an interface that classes can
implement in order to make use of the powerful filling and drawing
capabilities of Java2D. There are standard Shape implementations for the three
geometrical shapes mentioned above (Text has a rectangular shape). It seemed
logical that the classes for the primitives should have their corresponding

30

AWT Shape as an attribute, and that each primitive should know how to create
its Shape. This Shape object would only have to be created once for every
primitive instance, and since it belonged to the icon data structure, it would be
cashed along with the rest of the icon representation because of the icon
attribute being declared as lazy. There is a problem with this approach,
however. We want our icon rendering software to be as usable by other
developers as possible. This includes the ability to make different choices than
us regarding which graphics library to use. With this in mind, placing Shape
objects – which are only useful in the context of the AWT graphics library –
on the classes that represent the basic graphical primitives makes little sense
(chapter 5.5 further discusses the issue of modularizing the icon drawing). We
ended up creating the Shape object for a primitive whenever that primitive is
drawn, with the logic for creating the different Shape objects (and all
references to them) being located in our AWT drawing class
(AWTIconDrawer).

Another problem we encountered was deciding which Shape
implementations to use for our primitives. We started out with the most
intuitive solution: using java.awt.Rectangle for Rectangles and Texts,
java.awt.Polygon for Polygons and Ellipse2D for Ellipses. However, we
discovered some unpredictable behaviour in the draw(Shape) and fill(Shape)
methods in the Graphics2D class. The area that was actually drawn or filled
seemed to vary depending on which Shape-implementing class that the Shape
object passed was an instance of, even when it represented the same area. For
example, filling a rectangle-shaped java.awt.Polygon object would sometimes
result in a slightly smaller area being filled compared to when filling a
java.awt.Rectangle object with the exact same coordinates. For this reason, we
ended up making all shapes into polygons before drawing them. Turning a
rectangle into a polygon is trivial since rectangles are in theory a subset of
polygons. Making polygons from ellipses is only possible by approximating
their circumference in line segments. While learning how to do this, we found
the method getPathIterator in Shape, which does exactly this. The method
returns an object that iterates over all of the points that make up the shape,
approximating the path in case it is a curve. Discovering this method had two
added benefits. First, getPathIterator can take an AffineTransform object as a
parameter, which transforms all of the coordinates returned by the iterator
with the specified transformation. This was useful when solving the last
problem discussed in chapter 5.2 (the unpredictable rounding). Second, the
getPathIterator can also take a real number argument called flatness, which
affects the amount of line segments used when approximating curved paths.
By tweaking this parameter, we managed to achieve ellipses that looked
smoother than the ones resulting from calling Graphics2D.fill with Ellipse2D

31

objects as the argument.
The problem with a rectangle and a rectangle-shaped polygon being

drawn differently may also have had to do with the fact that we used the class
java.awt.Rectangle to represent our rectangles. That class stores its
coordinates as integer values, while the class we used for polygons stores
coordinates as doubles. This logically should not make a difference, since all
coordinates are integers until they are transformed, but we could not rule out
that this may have affected the unpredictable drawing behaviour.

5.4 The order of drawing classes
One interesting challenge was to find a way to draw the icons, super classes
and components so that their transformations were correctly set in place, at the
same time as they were drawn in the correct order. The order in which classes
are drawn is significant because primitives are drawn “on top of” each other,
in the sense that if two non-transparent primitives have the same coordinates,
only the one that is drawn last will be visible.

There are no explicit guidelines in the MLS for which graphical
primitives should be drawn first. However, a rather intuitive policy is that
super classes should be drawn before the class that inherits them, and that
components should be drawn after the class that contains them. Furthermore,
the components of a super class should be drawn after the class that inherits
the super class.

Figure 23: An early draft of the icon drawing algorithm.

Figure 23 shows pseudocode that describes one of our first algorithms for
drawing icons of classes. Using this algorithm, the transformations for the
components get correctly applied. However, the primitives of the main class
are drawn after the components of the class. This means that the last
primitives drawn are the primitives of the main class, which is incorrect since
components should be drawn on top of the class that uses them as
components. One might be tempted to correct the problem by simply drawing
the primitives before drawing the component. However, this would also be

32

incorrect. The components of the super class would still end up underneath the
primitives of the main class.

Figure 24: The icon drawing algorithm used in the JModelica IDE.

Pseudocode for the algorithm that we currently use is shown in figure 24.
It ensures that all of our requirements are met concerning the order of
primitives drawn, at the same time as all classes are drawn with the correct
transformations in place.

33

Figure 25: The drawing algorithm illustrated. The Modelica code to the right of the diagram
contains the declarations of all the models in the diagram, with everything except for
component and inheritance declarations omitted. Numbers signify the chronological order
in which the graphical primitives of the models are drawn.

5.5 Creating a graphics interface
As stated before, a major goal with the drawing software was to make it as
platform independent as possible, in order to increase the likelihood that future
developers can use our code without too much adaptation. A good way of
doing this – other than choosing a graphics library like AWT, that runs on
many platforms – is to modularize the software and keep the calls to the
graphics library isolated in as small a module as possible. We made an attempt
to do this by creating a graphics interface class, GraphicInterface. The idea is
that future developers who wish to use a different graphics library should only
have to change a small part of the program in a well-defined way.

As shown in figure 26, our GraphicsInterface has methods for drawing
the graphical primitives specified in the MLS, as well as for setting the

34

drawing color and handling transformations. This means that developers who
wish to define their own graphical drawing methods only need to implement
these.

Figure 26: The JModelica IDE graphical interface.

The GraphicsInterface as it currently stands is far from perfect. Ideally,
we would have wanted the methods in the interface to be at a lower level, that
is to say that they should only draw basic graphical primitives like lines, text
strings and basic shapes, and take coordinates as parameters instead of
drawing the MLS primitives as they do now. Simply put, the logic that turns
the MLS primitives into basic drawing operations should not be AWT
dependant. This would decrease the amount of code that any future
implementing classes will need to contain. As it is now, large amounts of quite
complex logic (see 4.2) will need to be rewritten if someone decides to create
a new graphics drawing class that implements our interface.

One example of a method that should ideally look quite different is
drawShape. The reason that we have one method for drawing shapes instead
of one each for ovals, rectangles and polygons is that early on in the
development of the drawing code, we realized that the AWT concept of
Shapes fit very nicely together with MLS. When using AWT, developers can
create geometrical shapes of all different types and still draw them all with the
same method call to the Graphics2D object, as long as the geometrical shapes
implement the AWT interface Shape [12]. This means that they can be drawn
with different border patterns or filled with colors, gradients or textures, in a
very simple manner. Since MLS specifies very similar requirements for the
FilledShape record, it seemed like a very good idea to make use of this
construct. All of the features (filling with different patterns, plotting the
outline with patterns) could hypotetically be implemented using primitive
drawing operations, but it would take a considerable amount of time and
effort.

The reason why we haven’t gotten as far as we would have liked in this
area, is that we had already written most of the drawing code when we
realized that making a graphic interface was needed. By the time that we made

35

the decision to refactor the drawing code, the effort needed to fully do so was
too large to feasibly have time for at such a late stage in the project, and other
more pressing issues took priority. If we had started out developing the icon
drawing code with this need in mind, we would likely have gotten a better
result.

5.6 Issues with antialiasing
As described in chapter 4.2.3, we currently use antialiasing for all the drawing
on our icon images. We activated antialiasing quite late in the project. The
reason for this is that while we experimented with it, we did not manage to
achieve the visual results that we were hoping for. The main issue that we had
was that when we activated antialiasing, all of the colors of the icons were
brighter than normal, giving the icons a blurred look. Since the purpose of
antialiasing is to make lines and primitives smoother, we assumed that this
might be a problem with AWT’s implementation of antialiasing – that it
simply worked too well – and that nothing could be done about it short of
developing our own implementation. However, we later learned that the
problem had to do with the line thickness being too small. The issue was that
activating a transformation that has a scaling component affects the line
thickness by scaling it with the same amount that all coordinates are scaled.
This caused the line thickness to be too small. The reason that we only noticed
this problem when we activated antialiasing was of course that with
antialiasing disabled, the thinnest line possible is one pixel thick, so if a line
thickness smaller than that is activated, it doesn’t make any difference. With
antialiasing enabled however, lines that are thinner than one pixel result in
pixles that get a proportionally smaller part of the line’s color. In other words:
if the background is white, thinner lines get brighter. After realizing this, we
initially fixed the bug by multiplying the line thickness by the inverse of the
current scaling factor of the transformation every time we drew primitives.
Later however, we eliminated the problem by transforming the coordinates
manually, and drawing primitives with no transformation enabled in the
Graphics object. That way, the correct line thickness was used.

5.7 Determining the line thickness
One issue with the line thickness was that we had a difficult time deciding
whether it should be scaled, and if so, in what way it should be scaled. One
argument for not scaling the line thickness is that the MLS specifies that line
thickness is given in millimeters. This may be interpreted as meaning that a
Line primitive in a model should always be drawn as thick as is specified in
the annotation, regardless of whether the model is actually used as a smaller
component inside another model, and regardless of the size of the icon image

36

that the icon is drawn on. In other words: one could argue that the line
thickness is absolute. Upon observing other icon rendering software for
Modelica models, it was obvious that this was a common interpretation.
However, the problem with this way of handling the line thickness is that it
simply does not look good for many models. How good an icon looks is
sometimes somewhat of an aesthetic judgement to make, which makes it
difficult to form an objective opinion. In other cases, a high line thickness on a
small icon simply distorts the icon. For example, if too lines are drawn close
together, and their thickness is too high in relation to the distance between
them, they will be impossible to distinguish from one another. If this is the
case, an icon that is meant to represent one specific model may suddenly look
like it represents another model. This is clearly a case of lost value of the icon.
Because of cases like this, we decided on the following rule for determining
the line thickness: line thickness in annotations should be interpreted as
absolute, but there should be an upper limit on the final line thickness which
means that lines will never be so thick that they distort the icon that they are
drawn in.

Figure 27: Three versions of the same icon (a capacitor). The upper one is the original
version, the middle one is scaled down with the upper limit on line thickness taken into
account. The lower version displays what happens if the upper limit on line thickness is
ignored.

5.8 Developing with JastAdd
In the final implementation of this project we handle the AST nodes both for
extracting information from the annotations and to add the created icons to the
nodes. This was not the case from the beginning. Between the aspect
ModelicaIcons and the icon data structure we had a Java file for creating
icons. By putting the attributes to the nodes we did not only get rid of a useless
class, we could also derive the advantages of cashing. An advantage with
using a static Java class in between the aspects the rest of the program is that it
makes some parts of the development easier. For example, debugging JastAdd
code can be quite cumbersome. Using a debugging program with breakpoints
is very common, and is something that we have done extensively during this

37

project. The JastAdd structure makes this slightly more complicated however,
since breakpoints can not be placed right in the JastAdd aspects files. In order
to place a breakpoint at a certain line in an attribute declaration, the developer
has to find the Java file that the attribute affects and place the breakpoint at the
correct line in that file. This isn’t always an easy task, especially since the
JModelica.org compiler front end that we have been working with contains
hundreds of JastAdd-generated Java files. Using a Java file with static
methods that are called from the aspects and does the actual work, gives the
developer a convenient place to put such breakpoints. Another property of
JastAdd that complicates debugging is the fact that in order for changes made
in aspect files to take effect, the Ant script that does this must be run which
means that all Java files must be generated anew. While this does not take
particularly long (currently about 30 seconds in the case of the JModelica.org
compiler), when debugging it is often tempting to make many small changes
rapidly and see the result (such as adding data printouts), and this is harder to
do if it involves waiting in between each change. Again, debugging by calling
methods in a static Java file makes this easier, since Java files are compiled
almost instantly.

Since the aspect for SimpleLookup was not fully implemented when we
started this project we started to work with the instance AST. When we had
found out how a Modelica model is build up by inheritance and components
and the implementation of the SimpleLookup aspect was completed we went
over to implement the icon rendering for the source AST nodes.

38

6 Methodology

6.1 Revision control
In this project we have been working with the Trac system of JModelica.org,
connected to a SVN repository. We first worked with a repository of our own,
and later on in the JModelica repository. The procedure with Trac is to create
a ticket for bugs or things to be implemented. The tickets are visible in a
timeline. When a SVN code commit is done, it is customary to include a
reference to the ticket that the commit concerns. Conversely, when a ticket has
been worked towards, ticket comments can be written which can contain
references to the the changesets (commits) that concern the ticket. This way,
cross references exist between tickets and commits which have made it easier
for us to track changes. Also, working with the Trac system has been helpful
in the work of narrowing down the project to realistic problems.

6.2 Source criticism
During the course of the project, we have taken care to make sure that all of
the sources that we have worked with have been reliable. For information on
how a specific technology works, we have consistently used documents
produced by the company or organization that is responsible for the
development of that technology. In addition to this, as sources for information
on the Modelica language and JModelica.org, we have used two theses written
by people who are closely linked to the JModelica.org project. We consider all
of our sources to be reliable.

39

7 Conclusions

7.1 Results
In this thesis we have presented a complete icon rendering process in the
context of the JModelica IDE. The process handles all of the steps between
graphical annotations (as they are represented by the JModelica compiler) and
icon images, ready to be put in the JModelica IDE outlines. In chapter 2, we
posed the following question: is it possible to render icons in the outline of
JModelica IDE from annotations in Modelica models? As this thesis shows, it
is indeed possible to render icons in such a way. The result when it comes to
icon quality is comparable to an established commercial product.

Our implementation is available in the distribution of JModelica.org and
will be included in the Modelica Workshop for Physical Modeling from
Modelon AB.

7.2 Future work
Even though we focused on the rendering of the icons for models, we did put
some work into making sure that the diagram attribute in our ModelicaIcons
aspect worked as well as the icon attribute. This means that practically all of
the graphical rendering of classes that is needed for a full graphical interface is
already implemented through this project. We also took other measures to
make future work easier, such as trying to modularize our drawing module, as
discussed in chapter 5.5.

40

8 Dictionary

AST: Abstract syntax tree, a data structure used to represent program code as
a tree. The nodes in the tree are different constructs found in the source code.
ASTs are commonly used by compilers.
AWT: Abstract Window Toolkit. A GUI toolkit that is part of the Java
Foundation Classes.
Eclipse: An open-source IDE. All features of Eclipse except for the core
functionality consists of small modules called ”plugins”. By creating new
plugins, users can easily add new functionality to Eclipse. The JModelica IDE
is such a plugin.
IDE: Integrated development environment.
MLS: Modelica Language Specification. A document produced by the
Modelica association, defining different aspects of the Modelica language,
including its syntax.
MSL: Modelica Standard Library, an extensive and regularly updated library
of Modelica classes, free to use by Modelica developers to build models.
SVN: Subversion, an open source program used for revision control.
SWT: Standard Widget Toolkit. A GUI toolkit maintained by the Eclipse
Foundation.
Trac: An open-source bug tracking system.

41

References
[1] JModelica.org, 2011. http://www.jmodelica.org (2011-08-15).

[2] Modelica Association, 2011. http://www.modelica.org (2011-08-15).

[3] Modelon AB, 2011. http://www.modelon.com (2011-08-15).

[4] Jesper Mattsson. The JModelica IDE: Developing an IDE by Reusing a
JastAdd Compiler. Department of Computer Science, Lund University,
Sweden, October 2009.

[5] Modelica Association. Modelica - A Unified Object-Oriented Language
for Physical Systems Modeling Language Specification Version 3.2. Modelica
Association, 2010. https://www.modelica.org/documents/ModelicaSpec32.pdf
(2011-08-15).

[6] JastAdd, 2011. http://www.jastadd.org (2011-08-15).

[7] Johan Åkesson. Tools and Languages for Optimization of Large-Scale
Systems. PhD thesis, Department of Automatic Control, Lund
University,Sweden, November 2007.

[8] JModelica.org, 2011. http://trac.jmodelica.org/browser?rev=2664 (2011-
08-30).

[9] Josefsson. The Base16, Base32, and Base64 Data Encoding.
The Internet Engineering Task Force, 2006. http://tools.ietf.org/html/rfc4648
(2011-08-15).

[10] Nick Edgar, Kevin Haaland, Jin Li, Kimberley Peter. Eclipse User
Interface Guidelines Version 2.1. International Business Machine Corporation,
2004. http://www.eclipse.org/articles/Article-UI-Guidelines/Contents.html
(2011-08-15).

[11] Oracle 2011.
http://download.oracle.com/javase/tutorial/2d/overview/coordinate.html
(2011-08-15).

[12] Oracle 2011.
http://download.oracle.com/javase/1.4.2/docs/api/java/awt/Graphics2D.html
(2011-08-15).

42

Appendix A: Graphical annotations in Modelica
Below is a summary of the specification found in the MLS, chapter 17.5, of
the graphical annotations in Modelica.

Types
The following table contains the types that are used to express values in the
graphical annotations.
String A text string - a series of characters.

Boolean A boolean value (true or false).

Real A real number.

DrawingUnit The basic (real number) measurement unit, in
millimeters.

Point A two-dimensional point.

Extent An area defined by two points.

Color A basic RGB representation of a color.

LinePattern Describes the pattern of a Line, or the pattern of the
outline of a shape. Can have the values None, Solid,
Dash, Dot, DashDot or DashDashDot.

FillPattern Describes the pattern that a shape is filled with. Can have
the values None, Solid, Horizontal, Vertical, Cross,
Forward, Backward, CrossDiag, HorizontalCylinder,
VerticalCylinder or Sphere.

BorderPattern Describes decorations drawn on the border of a
Rectangle. Can have the values None, Raised, Sunken or
Engraved.

Smooth Specifies whether or not a Line should be drawn as a
Bezier curve. Can have the values None or Bezier.

Arrow Describes an arrow at the end of a Line. Can have the
values None, Open, Filled or Half.

TextStyle Can have the values Bold, Italic or UnderLine.

TextAlignment Can have the values Left, Center or Right.

43

Records
These are the records that make up the graphic annotations.

partial record GraphicItem
Boolean visible = true;
Point origin = {0, 0};
Real rotation(quantity=”angle”, unit=”deg”)=0;

end GraphicItem;

record CoordinateSystem
Extent extent;
Boolean preserveAspectRation = true;
Real initialScale = 0.1;
DrawingUnit grid[2];

end CoordinateSystem;

record Icon
CoordinateSystem coordinateSystem(extent={{-100,-100},

{100,100}});
GraphicItem[:] graphics;

end Icon;

record Diagram
CoordinateSystem coordinateSystem(extent={{-100,-100},

{100,100}});
GraphicItem[:] graphics;

end Icon;

record FilledShape
Color lineColor = Black;
Color fillColor = Black;
LinePattern linePattern = LinePattern.Solid;
FillPattern fillPattern = FillPattern.None;
DrawingUnit lineThickness = 0.25;

end FilledShape;

record Transformation
Point origin = {0, 0};
Extent extent;
Real rotation(quantity=”angle”, unit=”deg”)=0;

end Transformation;

record Placement
Boolean visible = true;
Transformation transformation;
Transformation iconTransformation;

end Placement;

record IconMap
Extent extent = {{0, 0}, {0, 0}};

44

Boolean primitivesVisible = true;
end IconMap;

record DiagramMap
Extent extent = {{0, 0}, {0, 0}};
Boolean primitivesVisible = true;

end IconMap;

record Line
extends GraphicItem;
Point[:] points;
Color color = Black;
LinePattern pattern = LinePattern.Solid;
DrawingUnit thickness = 0.25;
Arrow arrow[2] = {Arrow.None, Arrow.None};
DrawningUnit arrowSize = 3;
Smooth smooth = Smooth.None;

end Line;

record Polygon
extends GraphicItem;
extends FilledShape;
Point points[:];
Smooth smooth = Smooth.None;

end Polygon;

record Rectangle
extends GraphicItem;
extends FilledShape;
BorderPattern borderPattern = BorderPattern.None;
Extent extent;
DrawingUnit radius = 0;

end Rectangle;

record Ellipse
extends GraphicItem;
extends FilledShape;
Extent extent;
Real startAngle(quantity=”angle”, unit=”deg”)=0;
Real endAngle(quantity=”angle”, unit=”deg”)=0;

end Ellipse;

record Text
extends GraphicItem;
extends FilledShape;
Extent extent;
String textString;
Real fontSize = 0;
String fontName;
TextStyle textStyle[:];
TextAlignment horizontalAlignment = TextAlignment.Center;

end Text;

45

record Bitmap
extent GraphicItem;
Extent extent;
String fileName;
String imageSource;

end Bitmap;

46

	1 Introduction
	2 Goal
	3 Background
	3.1 Modelica
	3.1.1 Annotations
	3.1.2 Graphical representation of models

	3.2 JastAdd
	3.3 JModelica.org compiler
	3.3.1 The compilation process of a Modelia model
	3.3.2 The AST representation of a Modelica model

	3.4 JModelica IDE

	4 Implementation
	4.1 The icons java package
	4.1.1 Graphic items
	4.1.2 Color

	4.2 The drawing
	4.2.1 Drawing the graphical primitives
	4.2.2 Transformations
	4.2.3 Antialiasing
	4.2.4 Border patterns
	4.2.5 Fill patterns
	4.2.6 Line features
	4.2.7 Rendering of text strings
	4.2.8 Creating the SWT image

	4.3 The icons.exceptions java class package
	4.4 The aspects
	4.4.1 The AnnotationParsing aspect
	4.4.2 The ModelicaIcons aspect

	5 Development
	5.1 Choosing a graphics library
	5.2 Handling transformations
	5.3 The representation of graphical primitives
	5.4 The order of drawing classes
	5.5 Creating a graphics interface
	5.6 Issues with antialiasing
	5.7 Determining the line thickness
	5.8 Developing with JastAdd

	6 Methodology
	6.1 Revision control
	6.2 Source criticism

	7 Conclusions
	7.1 Results
	7.2 Future work

	8 Dictionary

