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Purpose: The current thesis assignment aims to quantitatively verify systematic character of 

default risk and the statistical quality of the competing three- and four-factor asset pricing 

models.     
 

Method: The experimental design applied to this study is premised on the three-factor model of 

Fama and French enhanced by default risk factor. The study utilizes the factor mimicking 

portfolio technique for modeling the risks underlying size, value and default risk factors. 

Distance-to-default estimate, deduced from the option-based model, is adopted by this study as a 

proxy for default risk. Regression analysis is applied on the time series of average returns on the 

portfolios of stocks possessing the pre-specified corporate characteristics.      

Conclusions: The augmentation of the three-factor model with default risk factor improves the 

performance of a conventional asset pricing specification on average. The factor loadings of the 

portfolios of size, value and default risk factors exhibit strong properties of risk factor 

sensitivities for stocks. However, this holds only for the model that explains the average returns 

on the portfolio of stocks characterized by high value of market capitalization, high value of 

book-to-market equity, and short distance-to-default estimate. The size and value factors are 

found to be common in equity returns, but at the same time not being proxies for default related 

information. The study provides no evidence for the default risk being proxy for sensitivity to 

common risk factor in returns.    
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1 Introduction 

 

The current study aims to align two research areas of financial economics – asset pricing 

modeling and default risk estimation. Whether default risk is a systematic risk factor and 

therefore is common in equity returns, is an interesting question for the investing public. This 

chapter contains a background to the problem of default risk in equity returns and positioning 

of the current study, which allows for a clear formulation of research questions. A purpose of 

the study, delimitations and weaknesses are also presented in the chapter.   

         

1.1 Background  

The stock return development over time may be sensitive to a variety of factors, such as 

macroeconomic variables, idiosyncratic information, and politics, if speaking generally. 

Standard asset pricing models, such as CAPM of Sharpe (1963, 1964) and Treynor (1961), 

Arbitrage Pricing Theory (APT) of Ross (1976), and Three-Factor model of Fama and French 

(1992, 1993), emphasize that only systematic risk factors affect stock returns.  

 

The conventional asset pricing models exploit the “ideal world” assumptions such as 

perfectly diversified investors with homogenous market expectations (CAPM) or arbitrage 

conditions (APT). Hereby, these models account for the risks that are common in stock returns 

and hence non-diversifiable. Systematic risks have empirically been confirmed to be 

commanding significant risk premiums, implying that they are priced in the market.        

 

However, stock price/return development over time reflects a wide spectrum of market 

information, not least market reactions on changes in unique characteristics of the 

corresponding firms. Firm specific information is actually a source of idiosyncratic risks 

investor is exposed to. These risks are uncorrelated with systematic ones and may be 

diversified away through portfolio holding.  

 

Thus, investor expectations are subject to both macro environment (including industry 

conditions, international economic conditions, and politics) and performance of a particular 
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company (which is, in turn, dependent on a macro climate). Uncertainty and/or unanticipated 

changes in industry and company performance form the investor expectations about future 

patterns of stock price and return. Investor expectations, formed under ascending uncertainty, 

may negatively affect stock liquidity with implied limitations and inefficiencies for investors, 

leading to a higher required rate of return and thus determining a future development of stock 

price and return. It is therefore of importance to determine the potential risk factors, and hence 

sources of uncertainty, and their possible influence on investor expectations and market 

development.   

 

While the conventional asset pricing framework states that abnormal returns of risky 

assets are attributable to bearing market risk solely, there is considerable evidence against the 

empirical and theoretical robustness of the classical asset pricing models. A number of studies 

suggest a variety of additional variables that command significant risk premiums. An 

Intertemporal CAPM theory of Merton (1973) is one of the earliest examples that can be 

mentioned in connection to this issue.    

 

Risk factors that command significant risk premiums are the factors that systematically 

affect the returns of risky assets, and hence are those that represent non-diversifiable risks, 

investor would like to hedge against. (Chen et al, 1986) Empirical results of the study of Chen 

et al (1986) show, in favor of the CAPM-theory, that the market portfolio really explains a 

large portion of stock return variation. At the same time, this study provides evidence of 

insignificancy of market portfolio when simultaneously controlling for other risk factors. The 

three-factor model of Fama et al (1992, 1993) is another well-known example on this field.  

 

Therefore, it is both of interest and importance for the investment world to determine, 

which economic risk variables, beyond the market risk factor, do command significant risk 

premiums and hence are systematic risk factors. The proper selection of the relevant risk 

factors is highly important. It is of a particular interest to determine the risks that are originated 

both by market uncertainty and idiosyncratic information, and which are able to explain the 

variation in stock characteristics over time.  

 

Assessment of the portion of systematic riskiness in the risk factors closely connected to 

business uncertainty (idiosyncratic information) may lead further to development of 

qualitatively new area in asset pricing modeling. It may be true that the conventional risk 
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factors are actually proxies for some more sensible, business-connected circumstances. 

Determination of these proxies would mean elaboration of asset pricing specifications that relax 

the strong assumptions underlying the conventional asset pricing models and/or provide a 

sensible explanation for the Fama-French factors. A possible example of the risk factor that is 

closely business-related and at the same time may contain a portion of systematic riskiness is a 

default risk factor.   

 

Investigation of some proxies for default risk has documented that default risk contains 

idiosyncratic information and, disregarding this fact, also is highly exposed to changes in 

macroeconomy and industry. (Bonfim, 2009; Pesaran et al, 2003; Qu, 2008) The studies on 

extension of the conventional asset pricing models by different default risk variables show no 

agreement what regards the obtained empirical results. That is so despite the fact that modeling 

specificity of the default risk variable is often very similar from study to study. 

 

1.2 Positioning of the Current Study  

The classical asset pricing specifications have been a subject for criticism not entirely because 

of their equilibrium assumptions, but also because of their choices of explanatory factors. For 

instance, CAPM (Sharpe, 1963) unrealistically contemplates a single market factor as a proxy 

for all systematic risks; the Arbitrage Pricing Theory of Ross (1976) extends the CAPM by 

additional risk factors beyond market risk factor, but still considers solely the states of 

economy (systematic risks) assuming that investors are fully diversified; and the Three-Factor 

model of Fama et al (1992,1993) rests on empirically chosen variables, which have been shown 

to be proxies for other, more explicable, factors.  

 

The traditional asset pricing specification of the three-factor model can be found in the 

contemporary literature being a subject for revising. To do so, the researchers choose, among 

other variables, default risk as additional model component.  

 

In general, the existing research on this issue can be grouped in accordance with default 

risk proxy employed. Thus, the two main classes of studies can be detected: studies that use a 

default risk measure retrieved from the structural models, such as option-based models 



 

4 

 

(Gharghori et al, 2009); and studies that use systematic fraction of default risk from the 

marketable measures such as corporate bond spreads (Anginer et al, 2010) or spreads of debt 

obligations on credit derivative indices (Chan-Lau, 2006).   

 

The studies on the field of interest differ not only by their choices of proxies for default risk 

factor. There also exist some differences regarding working hypotheses elaborated. There can 

be defined a group of studies aiming to investigate how the classical asset pricing specifications 

perform after their augmentation with default risk factor (e.g. Vassalou et al, 2004); whereas 

another group of studies addresses an issue of relationship between default risk and equity 

returns focusing on defining default factor risk premium (e.g. Ferson et al, 1991). Of course, 

one may say that both groups consider an optimal model design in the first place. Nevertheless, 

each of the groups of studies communicates somewhat different objectives and hence uses 

different statistical tests – either testing the overall modeling quality or specific interplay 

between variables in question.        

 

The current thesis is generally based on a prior research. It concerns the asset pricing set of 

problems in relation to information on defaulting. A starting point of this study is a traditional 

specification of asset pricing, based on the three-factor model of Fama et al (1993). Mimicking 

portfolio formation procedure follows this classical study as close as possible but with respect 

to resources and tools availability.  

 

Further, the model is augmented with default risk factor in order to control for 

appropriateness of model specification. Simultaneously, it is controlled for whether default risk 

is priced in the market and common in equity returns through defining the sign and significance 

of the default factor risk premium. Distance-to-default is employed as a proxy for default risk 

and is extracted from the option-based model. So far, the current study replicates to a relatively 

large extent the existing literature on this issue.  

 

The novelty of the current thesis is in the methodological approach for the default risk 

factor construction. Variation in estimates of distances-to-default is used for building two 

mimicking portfolios (one mimicking portfolio for each of the competing three- and four-factor 

asset pricing models) that stand for the background default risk factor. Some prior studies also 

use distance-to-default estimate as a proxy for default risk, but in these cases a variable of 

aggregated default probability is generated from the estimated distances-to-default and used in 
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the regression analysis. (Vassalou et al, 2004; Gharghori et al, 2007) Unlike these studies, the 

current thesis chooses to mimic the risk underlying default risk factor.  

 

The mimicking technique provides the corresponding mimicking portfolio with ability to 

capture the information in default risk factor that is predominant for the examined asset returns, 

which reduces the noise. Another reason for preferring this method is in mitigation of the 

problem of errors in variables and no requirements what regards variables normalizing. 

(Huberman, 1987) Implementation of this technique allows determining whether mimicking 

portfolios are able to capture the common risk factors in equity returns. If so, the factors are 

systematic risk factors and are priced in the market.  

 

1.3 Problem Discussion    

As investor expectations are subject to both macroeconomy and firm related information, the 

distance-to-default measure is an appropriate proxy for default risk factor when explaining 

equity returns within the expanded three-factor model. Distance-to-default provided by 

structural models (Merton, 1974, Vasicek, 1984, Brockman et al, 2003) is a measure of default 

risk that incorporates important corporate information such as capital structure and asset 

volatility, and which is reactive to economic environment.  

 

Besides, this measure of default risk concerns a wide spectrum of corporate decisions – 

from investment and capital structure decisions to possibilities of re-negotiation upon distress. 

This is so because changes in capital structure provoke changes in interplay between essential 

elements of the structural relationship that generates distance-to-default estimate.  

 

Thus, leverage level matters, and its optimal level implies, among other things, keeping a 

safe distance from the default point. An upward departure from the optimal capital structure 

implies actual increase of WACC and thus – through some intermediary factors – increase of 

default risk. The more expensive capital is a consequence of credit spreads widening and hence 

worsening of credit quality, reduction of tax shield value, profits fall and interest expense rise. 

(Ogden et al, 2003; Pettit, 2007) Although it is not very clear what comes first – deterioration 

of operational performance or financial constraints connected to investment opportunities and 
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returns on investment (Gertner et al, 1991; Wruck, 1990), there must exist a relationship 

between leverage and distance-to-default estimate. However, this relationship seems to be quite 

opaque and to a great extend depending on how asset market value is influenced by changes in 

capital structure.  

 

Also, an overall business uncertainty can influence distance-to-default estimate primarily 

through asset volatility, which is a substantial component of structural default risk modeling. 

Higher asset volatility implies higher volatility of firm value and hence higher volatility of 

stock. Then, the investor uncertainty about trading asset’s value makes her to take a relatively 

passive trading position which would induce the stock price to decrease.   

 

Even a firm’s potential ability to exploit financial restructuring tools and re-negotiate with 

creditors under a threat of distress/default may add to understanding of a rather ambiguous 

relationship “default risk – expected stock return” and historical development of distance-to-

default estimate. Although it is reasonable and theoretically sound that higher risk implies 

higher return, it must not always be true for a distressed stock and probably depends on a level 

of financial distress the company is living through.  

 

Additionally, it is reasonable to expect default risk to be common in stock returns due to the 

portion of systematic riskiness in the default risk factor. Indeed, there are studies that document 

significantly positive default risk premiums (Chen et al, 1986; Ferson et al, 1991) indicating 

systematic character of default risk. These studies, nevertheless, utilize corporate bond spread 

as a proxy for default risk, which is argued to be closely related to the market. (Demchuk et al, 

2005) On the contrary, however, there exists evidence of corporate bond spreads not being 

originating positive risk premiums and thus not explicitly accounting for systematic component 

of default risk. (Anginer et al, 2010)   

 

When employing distance-to-default as a proxy for default risk, a non-linear relationship 

between stock return and default risk is quite sensible. This default risk proxy is closely related 

to the firm specific characteristics and possibility of recovering from distress. Then, deeply 

distressed equity is rather unlikely to generate abnormal returns in response to information 

about “incurable” distress and hence extremely negative investor expectations. At the same 

time, the return reaction would be different when a recovery due to, say, changes in financial 
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structure is feasible. Summarizing, it can be stated that higher default risk earns higher return; 

however, it must not hold as a firm approaches default point.  

 

 In addition to establishing the relationship between default risk and average equity returns 

within the asset pricing modeling, verification of whether default risk is a systematic risk factor 

and therefore is common in equity returns is within the scope of this study. In other words, the 

current study aims to test whether default risk originates a positive and statistically different 

from zero risk premium, which is basically a value of insuring against non-diversifiable portion 

of default risk. Absence of consensus what regards empirical findings on the “default risk – 

stock return” relationship and also on whether default risk is commonly priced in stocks, makes 

the investigation of the three-factor asset pricing model enhanced by default risk factor 

interesting in particular.  

 

1.4 Purpose and Research Questions 

With respect to the afore-presented discussion, the purpose of this thesis assignment can be 

stated as follows:  

 

to verify quantitatively the systematic character of default risk and the statistical quality of the 

competing three- and four-factor asset pricing models.  

    

The following research questions serve to refine the stated goal:  

 

1) Does the augmentation of the three-factor model with default risk factor improve the 

performance of the model? Have the size and value factors been found concentrated in default 

risk and hence lose their explanatory power as regards equity returns when the default risk 

factor is included in the model? 

 

2) Does default risk factor exhibit an explanatory power as regards equity returns? Does default 

risk possess statistical properties of a systematic risk factor and hence is priced in the market?  
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1.5 Delimitations and Weaknesses of the Study 

The current study analyzes the explanatory power of the four-factor asset pricing specification 

in relation to the three-factor model, using the stock returns of the randomly selected 

companies listed on the NASDAQ stock exchange. The object of investigation is delimited to 

the NASDAQ non-financial companies due to incomparability of capital structures of financial 

and non-financial businesses. As such, the quantity of the working sample equals 171.  

 

The explanatory variables used for analyzing the variation in average equity returns over 

time are delimited to the three factors adopted by Fama and French in their three-factor model 

(market risk factor, size and book-to-market equity) and the default risk factor.  

 

The time horizon for this study is set between February 1991 and January 2010. The sample 

period is primarily based on the availability of data. The regression estimations are conducted 

on a monthly basis. However, due to financial reporting frequency, the distance-to-default 

estimates are calculated on a yearly basis.   

 

The possible weaknesses of this study are judged to be originated by the sample size. The 

descriptive statistics for the time series of portfolio returns could be more desirable, and the 

regression inferences could be therefore more reliable, if the working sample also contained the 

firms listed on other stock exchanges in the U.S. in addition to the NASDAQ. The chosen 

sample size is restricted to 171 firms due to time constraints, since the sorting process, portfolio 

formation, and working up the input data matherial for the distance-to-default estimation are 

rather time consuming.  

 

However, the authors are aware of that the larger sample would imply larger and more 

portfolios, and hence better mirroring of the real life variety in returns’ characteristics. This, in 

turn, would imply lower correlations between the time series of returns on factor mimicking 

portfolios and consequently more reliable regression inferences. The number of dependent 

portfolios used in the study exceeds the number of explanatory mimicking portfolios. As such, 

a variation in firms’ characteristics can be considered to be captured by the dependent 

portfolios. Unfortunately, the sample size used in this study cannot provide an opportunity for 

constructing even more dependent portfolios.    
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Another possible weakness of this thesis can be attributable to the distance-to-default 

variable.  The problem is once again connected to the sample size. Since the distance-to-default 

estimation method is built on assumption of normally distributed asset returns (which is 

academically referred), instead of using empirically obtained default frequencies, a larger 

sample would probably provide more desirable descriptive statistics for the time series of the 

averages of the distance-to-default estimates.
1
  

 

In addition, this study exploits a deductive approach, which implies that the research 

process exists within a certain theoretical framework that influences both modelling and 

conclusions. Moreover, the variables employed in the regression analysis are specified 

theoretically, so there is a possibility of theoretical predetermination of the findings.    

    

1.6 Thesis Outline  

Chapter 2 provides a theoretical background to the thesis problem. First, the three-factor model 

of Fama and French and empirical findings of existing studies on default risk in equity returns 

are presented. Thereafter, the structural credit risk modeling is discussed. Chapter 3 explains 

the chosen approach for distance to default calculation, dependent portfolios formation, 

mimicking portfolios modeling, and factor risk premiums estimation and testing. That is done 

alongside with generation of the working hypotheses regarding relationship “distance to default 

– average stock returns” and whether the size and value factors are proxies for default related 

information. Chapter 4 contains descriptive statistics of the time series employed and the model 

estimation results. Chapter 5 analyzes the empirical results of the study with respect to 

theoretical framework and working hypotheses. Chapter 6 contains conclusions and some 

further research directions on the field of study.  

 

 

 

                                                 
1
 The descriptive statistics of the time series of distance to default can be found in Appendix I, Table I.1 
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2 Theory 

 

In this chapter the theoretical background to the thesis problem is presented. First, the three-

factor model of Fama and French and the findings of existing studies on the area of interest are 

introduced. Thereafter, the chapter discusses structural credit risk modeling. The chapter aims 

to clarify for a potential reader the theoretical grounds that are essential for understanding of 

the thesis approach.  

      

2.1 The Three-Factor Model of Fama and French (1993) 

The paper by Fama et al (1993) aims to identify five common risk factors – the overall market 

risk factor, size (market equity, which equals to stock price times number of shares), value 

(book-to-market equity), leverage and earnings-to-price ratio. These variables are determined 

empirically and seem to explain the average returns on stocks and bonds. Exploiting the idea of 

strong integration between stock and bond markets, the authors examine whether the variables 

that explain bond returns are also important for stock returns prediction, and vice versa.  

 

The time series regression results indicate that the factor loadings on the size and value 

factors, modelled as factor mimicking portfolios, exhibit strong properties of risk factor 

sensitivities for bonds as well as for stocks. Moreover, the time series regression estimations 

provide evidence on the following asset pricing issue: the size and value variables act as 

proxies for sensitivity to common risk factors in returns; thus, the risks underlying size and 

value variables are to be considered as systematic.     

 

In relation to the current thesis, it is of interest to illustrate the empirical modelling 

applied by Fama et al (1993). Since this thesis investigates the time series of the average stock 

returns, the explanatory variables that are directed at stocks (namely, the size and book-to-

market variables) are in the focus of this subsection.   

 

Fama et al (1993) mention, that size and book-to-market are related to economic 

fundamentals. Thus, the firms with high book-to-market ratios (implying low stock prices 
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relative to book values) are shown to have persistently low earnings on assets at least five years 

before and five years after the time point the ratio is calculated at. Regarding size, small firms 

are shown to have lower earnings on assets compared to big firms. Then, size might be 

associated with some common risk factor that explains the negative relationship “size – stock 

return”. What regards the value-variable, it is associated with relative profitability as a source 

of common risk factor in returns, which may explain the positive relationship “value – stock 

return”.  

 

It is worth noticing, that when constructing mimicking portfolios, Fama et al (1993) 

pursue the following reasoning. Since the value-variable is expected to have a stronger role in 

average stock returns in comparison to the size-variable, it has been decided to sort the firms 

into three groups on book-to-market equity, and only into two groups on size. Further, the 

authors emphasize that when using the value-weighted returns on mimicking portfolios, the 

variance of factors is minimized and, what is even more important, the mimicking portfolios 

are more able to capture the very different behaviour of small/big (size) and high/low (value) 

stocks. The latter concern matters for displaying the realistic investment opportunities.  

 

The dependent variable is also constructed as returns on the portfolios formed on size and 

book-to-market. Fama et al (1993) emphasize that it is important to form the dependent and 

explanatory portfolios using the same market information. That is, since the aim of the study 

has been stated to examine whether the mimicking portfolios associated with the underlying 

risk factors capture these common risk factors in equity returns.  

 

The size and value factors are documented to be priced in the market (Fama et al, 1993), 

disregarding the fact that, at first glance, they are actually nonmarket risk factors. Moreover, 

they are documented to be important in explaining both the cross-sectional return distributions 

and the time series of returns. (Fama et al, 1993, 1995)  

 

However, the debate on the topic of economic meaning of the Fama-French factors is still 

hot. There are several suggestions regarding interpretation of the size and value factors. Among 

them, there are empirical arguments for the size and value factors being proxies for leverage 

effects (Fergusson et al, 2003), and a statement that the value factor is a proxy for investor bias 

in earnings-growth extrapolation (Lakonishok et al, 1994).       
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It must be kept in mind that the three-factor model of Fama and French is basically one of 

the models that have been aimed to relaxing the strong “ideal-world” assumptions of CAPM, 

and that have provided evidence of the market portfolio not being a sufficient market risk proxy 

when used alone. (Chung et al, 2006)  However, the experimental nature of the Fama and 

French model leaves a lot of questions concerning the employed factors unanswered.   

   

2.2 Default Risk in Equity Returns: Prior Research   

Quantification of the tradeoff between risk and expected return is one of the central problems 

of financial economics that has been addressed by the traditional CAPM and its modifications 

and extensions. These models focus on the market-related variables that are proxies for 

systematic risk factors in stock returns. The existing research interest for default risk factor as 

regards equity returns can be attributable to the fact that default risk is contemplated as a 

mixture of systematic and idiosyncratic risk components. (Chan-Lau, 2006)  

 

However, the number of studies addressing the link between stock returns and default 

risk is still sparse. The first study that deals with this issue is probably a study by Rietz (1988). 

This author considers the excess equity returns as compensation demanded by investors for 

being exposed to extremely big losses provoked by an event like, say, economic recession. 

Since such event is normally followed by a chain of corporate failures, it can be argued that 

default risk contains a systematic risk component and may be an important determinant of stock 

returns development over time.  

 

At the same time, there is empirical documentation that distress/default occurs mostly due 

to idiosyncratic risks, which leads to a conclusion of nonsystematic character of default risk. 

This is a result of the study by Altman (1993), for instance. The study documents that the bonds 

of deeply distressed companies earn lower than average subsequent returns. (Chan-Lau, 2006) 

 

The more recent studies presented beneath, aim to revise the conventional asset pricing 

models by accounting for default risk beyond the “classical” risk factors. Despite many 

similarities, the studies report different and even opposing empirical results. 
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Vassalou et al (2004) provide a perspective for assessment of the effect of default risk on 

equity returns by testing whether default risk is systematic. The default risk measure is obtained 

from the structural Merton (1974) model for credit risk measurement, deducing the distance-to-

default estimate (measured in standard deviations) from the structural relationship between 

equity, debt and asset value. Applying the portfolio formation procedure on the size and value 

factors as provided by Fama et al (1993) and employing the time series of aggregated default 

risk measure, the authors testify to default risk factor being priced in equity returns. Moreover, 

they conclude that the Fama-French factors, size and value, are proxies for default related 

information. The latter finding is provided by studying the statistical properties of the 

portfolios, and is confirmed by the results of regression analysis.  

 

Gharghori et al (2007) have arrived at the empirical findings opposing Vassalou’s et al 

(2004), despite the implementation of a very similar methodological framework. Both studies 

basically investigate whether the size and value factors capture the priced default risk. 

However, the study of Gharghori et al (2007) is performed on the data material of the 

Australian equity market, whereas a similar study of Vassalou et al (2004) uses the U.S. data.    

 

Garlappi et al (2008) provide an explanation of cross-sectional properties of equity returns 

addressing a question of how leverage level may influence equity returns through default risk. 

The authors state that leverage affects the dynamics of equity returns differently from how it 

influences the dynamics of the firm’s asset returns. Their study aims to control for relationship 

between stock return and default risk while extending the model of Fama et al (1993) by 

default risk factor and accounting for the potential shareholder recovery upon financial distress. 

The results of the study are very comprehensive and suggest the equity return being hump-

shaped in default probability just due to shareholder recovery upon distress.  

 

Anginer et al (2010) have presented the results that contradict both financial theory 

regarding “risk – return” relationship and some other empirical findings. These authors confirm 

neither the hump-shaped relationship between equity returns and default probability (Garlappi 

et al, 2008) nor abnormally high returns on distressed stocks due to investor compensation for 

additional risk bearing (Vassalou et al, 2005). Instead, anomalously low returns for distressed 

stocks have been documented by Anginer et al (2010). They have also examined different 

models for credit risk measurement and arrived at a conclusion that corporate bond spread as a 

proxy for default risk outperforms structural credit risk models, bond ratings, and accounting 
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information models. They emphasize that corporate bond spread variable explicitly accounts 

for systematic component of distress risk and is therefore a good proxy for risk-adjusted 

probability of default. The main result of the study of Anginer et al (2010) is that the default 

risk is not priced in equity returns. However, a distressed stock behavior is shown to be 

dependent on a set of characteristics, also in some way related to default risk, such as leverage, 

volatility, and profitability. So, generally speaking, the results of this study are somewhat 

inconclusive.  

 

It is noticeable that a significant portion of existing on this field studies revise the three-

factor model of Fama et al (1993) by testing whether the Fama-French factors are associated 

with systematic portion of default risk. The large positive changes in the size factor may be 

linked to increase in systematic default risk. That is because small firms are more likely to 

default than big firms and so should offer higher returns. The value factor is associated with 

relative profitability and therefore can also be contemplated as default risk factor. This can be 

explained by the fact that lower returns on the assets of high book-to-market firms imply lower 

creditability compared to low book-to-market firms. (Chan-Lau, 2006)  

 

2.3 Default Risk Measurement  

The models for measuring credit risk or default probability can be sorted into several classes by 

their theoretical grounds. Thus, there can be distinguished structural models (Merton, 1974; 

Brockman et al, 2003; Vasicek, 1984), accounting-based models (Altman, 1968; Bunn, 2003), 

models considering macroeconomic information and default correlations (Bonfim, 2009; 

Gersbach et al, 2003), and also theoretical ideas of utilizing of different market proxies for 

default risk (Anginer et al, 2010). However, with respect to the objectives of this thesis, 

structural models are judged to be most appropriate.   

 

2.3.1 Structural models 

The Merton (1974) approach of measuring default risk is a classical method that has even lived 

through some modifications. The Merton model belongs to a family of so called structural 
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models that utilize market information as input and is based on the idea of valuing risky bonds 

and loans relying on the option pricing theory.  Thus, structural models are grown upon the 

Black-Scholes option pricing framework.  

 

The company’s face value of debt, market value of equity and market value of assets 

(estimated on the basis of the market value of firm’s equity) are unified within the structural 

approach using the Black-Scholes option pricing terminology. In this theoretical setting the 

stockholders are said to own a call option on the firm’s assets.  Then, the strike price of this call 

option is equivalent to the debt level of the firm. Probability that the option will not be 

exercised is basically the probability of default. (Dionne et al, 2008) 

 

Merton (1974) provides a pricing technique for a corporate security under condition of 

significant default probability. In essence, he studies corporate debt and risk structure of 

interest rate in connection to risk factors. Merton argues that both amount of corporate debt and 

interest rate depend on the following factors: risk free rate of return, contract conditions and 

default probability of the firm.  

 

Further, Merton argues that “riskiness” per se is not much about interest rate of the 

economy; instead, it is connected to unanticipated changes in corporate default probability. 

(Merton, 1974) 

 

The conclusions of Merton (1974) find the support and inspiration in the extension of the 

Black-Scholes setting for option pricing to methodological framework for pricing of corporate 

liabilities. Corporate liabilities in the Black-Scholes world are contemplated as options. (Black 

et al, 1973)  

 

According to Black et al (1973), the bondholders of the firm, viewed as owners of the 

firm’s assets, enable the stockholders to buy back the assets at the time of bonds maturity – that 

is, by writing an option to stockholders. At bonds maturity the common stock value is therefore 

a non-negative difference between the asset value and the face value of debt. This amount 

equals the value of the option which is a function of time and stock price. Consequently, the 

bond value is simply a difference between stock price and option value.  
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As stated above, this reasoning has been used by Merton (1974). Utilizing the option 

theory, Merton shows that at time of bond maturity the value of equity is positive if the asset 

value is greater than the debt face value; however, the equity value is zero if the asset value at 

time of bond maturity drops below the debt face value. In the latter case the default event 

occurs. Appealing to the option terminology, the two described conditions result into the 

following expression for the bond value: 𝐹 𝑉, 0 = 𝑚𝑖𝑛 𝑉, 𝐵 . Thus, the bond value is a 

function of the firm value and time to maturity and takes on the lowest value between firm 

value and debt face value. (Merton, 1974)   

 

Merton (1974) emphasizes that there exists an isomorphic relationship between firm value 

and value of a particular corporate security. He illustrates this by, for instance, perfectly 

correlated returns on firm assets and a particular corporate security. Moreover, he states that a 

firm value and a particular corporate security value are affected by common variables – interest 

rate, business risk (volatility of firm assets), and current and future payout policy.  

 

However, the structural model provided by Merton has become a subject for criticism for 

not considering the probability of defaulting before bonds maturity. A methodological response 

to this problem has been proposed by Brockman et al (2003) by introduction of a barrier 

structural model. This model contemplates equity as a down-and-out call option on the firm 

assets, and herewith attaches the option value over its entire life to the time-development of the 

underlying asset value.    

 

In fact, the barrier structural modeling provides the bondholders with a down-and-in call 

option. This option may be activated before the total deterioration of the firm value, which in 

practice implies debt re-negotiations. (Brockman et al, 2003)  

 

Vasicek (1984) has developed the Merton (1974) approach by combining it with 

contingent claim modeling (similarly to the barrier structural framework). Thus, a firm defaults 

as it reaches a predetermined barrier; so the distance-to-default measure is expressed in 

standard deviations of asset market values and shows by how many standard deviations the 

asset market value is away from the default point. (Saunders et al, 2002) The KMV™ model 

uses a huge database of expected default frequencies (EDF) developed on the basis of 

numerous observations of default points of defaulted firms in relation to their asset market 

values at time point of default. The structural model of Vasicek (1984) is built on three 
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essential driving factors of default risk – market value of assets, asset volatility, and default 

point.   

 

Asset market value is basically a value of the firm. It naturally depends on the equity 

market value, stock volatility, and liability structure. Asset market value can be seen as a 

present value of the future cash flows generated by the assets. (Bohn et al, 2003)  

 

Asset volatility is attributable to business and industry risk and technically is an annual 

standard deviation of the asset market value. Higher volatility implies higher uncertainty about 

asset market value, and higher probability that the asset market value drops below the default 

point. (Bharath et al, 2004; Bohn et al, 2003)  

 

Default point is a barrier that implies defaulting. Generally, the default event occurs when 

the value of the firm falls below this barrier. However, it must not be always a case, since a 

specific liability structure (such as large portion of long term debt) may allow renegotiation 

upon default. Then, the default point would be given by a difference between asset market 

value and company’s debt, which is a negation of market value of equity. Therefore, the default 

point is a function of a particular firm’s liability structure. (Bohn et al, 2003)  

 

However, the structural models are subject to some critique because they can be applied 

only on the listed companies, since they involve equity price information. Another ground for 

criticism is so called trading noises which can negatively influence the accuracy of asset 

volatility estimates. (Bunn, 2003)    

  

2.3.2 Some Important Remarks Regarding the Chosen Default Risk Measure   

Estimates of distances-to-default defined structurally seem to be appropriate as proxy for 

default risk. That is because distance-to-default is a rather explicit measure of a firm’s financial 

health which is mirrored in the changes in enterprise value, asset volatility and hence 

creditability – via deviations from the optimal capital structure. Translated into default 

probability (using the empirical database as by KMV™, or applying the assumption of 

normally distributed asset returns), this default risk measure is relatively easy to interpret.  
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On the other hand, the market proxies for default risk, referred to in the introductory 

chapter, are technically more simple and transparent, but their isomorphic connection to the 

creditability and default via changes in enterprise value is quite peculiar and may require an 

insight in every particular corporate case.       

 

However, one must be aware of the following modeling peculiarities what regards 

structural defining of distance-to-default. There is a possibility that distance-to-default can be 

over- or underestimated. If a sudden decrease in leverage takes place, the asset volatility can be 

overestimated and so also default probability, which implies underestimation of distance-to-

default. Conversely, if a sudden increase in leverage takes place, the asset volatility is likely to 

be underestimated, and hence default probability, which implies overestimation of distance-to-

default. (Bohn et al, 2003)   

  

Another aspect of defining default risk structurally corresponds to re-negotiating and 

re-structuring ability of a particular firm. Financial restructuring devices are a direct response to 

distress and default risk and may involve asset sales, cutting dividends, equity restructuring, 

and debt restructuring – all for cash reserves building and leverage decreasing. Therefore, for 

two different firms, that display the same distance-to-default, the actual threat of defaulting 

may be different due to potential possibilities of renegotiation with debtholders on the lender 

concessions, and/or due to ability of exploiting various devices of financial restructuring.     
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3 Methodology and Data Collection   

 

This chapter explains the chosen approach – primarily for the dependent portfolios formation, 

mimicking portfolios modeling, factor risk premiums estimation and testing, and distance-to-

default calculation. That is, alongside with generation of the working hypotheses for 

relationship “default risk – average stock returns” and concerning the size and value variables 

being proxies for default related information. At last, the data collection process is described. 

     

3.1 Thesis Methodology and Approach  

3.1.1 Dependent Variable: Portfolios Formation  

The dependent variable is represented by the two sets of time series. The first set contains four 

time series of returns on four portfolios, respectively; these four portfolios are constructed on 

size and book-to-market equity and are used in the regressions that estimate the three-factor 

model (containing market risk factor, size factor, and value factor). The second set contains 

eight time series of returns on eight portfolios, respectively; these eight portfolios are 

constructed on size, book-to-market and distance-to-default and are used in the regressions that 

estimate the four-factor model (where the classical three-factor model is extended by default 

risk factor).  

 

The portfolio formation technique is used for sorting the stock returns into different 

groups. A similar procedure can be found in the study by Fama et al (1993).   

  

For the three-factor model estimation, each of the two data sets – the data set of market 

capitalization (size) and the data set of book-to-market (value) – have been split into two 

groups. That is achieved by finding the 50
th

 percentiles of the ordered data samples for size and 

value, separately. Further, the four portfolios are constructed from the intersections of the two 

size-groups and two value-groups. Thus, the following portfolios represent the firms with 

certain characteristics: “small size – low value”, “small size – high value”, “big size – low 

value”, “big size – high value”.  



 

20 

 

 

Next, the stock excess returns must be allocated to the portfolios in accordance with size 

and value characteristics of the corresponding firms, and the averages of returns on the 

portfolios must be calculated. In this way, the four time series of equally-weighted monthly 

excess stock returns on the portfolios with different corporate characteristics are obtained.   

 

For the four-factor model the median split has been applied on the three data sets – the data 

set of size, the data set of value, and the data set of distance-to-default. That is achieved by 

finding the 50
th

 percentiles of the ordered data samples for size, value, and distance-to-default, 

separately. Further, the eight portfolios are constructed from the intersections of the two size-

groups, two value-groups, and two distance-to-default-groups. Thus, the following portfolios 

represent the firms with certain characteristics: “small size – low value – short distance-to-

default”, “small size – high value – short distance-to-default”, “big size – low value – short 

distance-to-default”, “big size – high value – short distance-to-default”, “small size – low value 

– long distance-to-default”, “small size – high value – long distance-to-default”, “big size – low 

value – long distance-to-default”, “big size – high value – long distance-to-default”.  

 

Next, the stock returns must be allocated to the portfolios in accordance with size, value, 

and distance-to-default characteristics of the corresponding firms and the averages of returns on 

the portfolios must be calculated. In this way, the eight time series of equally-weighted monthly 

excess stock returns on the portfolios with different corporate characteristics are obtained.     

  

3.1.2 Independent Variables: Mimicking Portfolios Formation 

The independent variables in this study are presented by four different risk factors – market risk 

factor, size factor, value factor, and default risk factor. The market risk factor is common for 

the two sets of regressions, and is represented by a time series of the NASDAQ excess returns 

index. Monthly index returns have been deduced from the NASDAQ Composite price index, 

followed by the risk free rate subtraction.  

 

In order to form the remaining factors, the technique for constructing factor mimicking 

portfolios is used, such that the factors are mimicking portfolios of stock returns. The purpose 

of this method is to mimic the underlying risk factors. This must be done separately for each of 
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the regression sets such that both the dependent portfolios and the explanatory mimicking 

portfolios contain the same underlying information. That is, since it must be determined 

whether the mimicking portfolios capture the common risk factors in equity returns. If they do, 

the factors are systematic risk factors and are priced in the market.  

    

The mimicking portfolios formation is based on the methodology of Fama et al (1993). 

However, the adopted by this study way to introduce the default risk factor into the asset 

pricing model is not described in the existing literature yet. It must be noticed that a testimony 

to the success of the mimicking portfolio formation is when the correlations between returns on 

the mimicking portfolios is rather low. (Fama et al, 1993) 

 

For the three-factor model estimation, the two data sets – the data set of size and the data 

set of value – have been split into two and three groups, respectively. That is achieved by 

finding the 50
th

 percentile of the ordered data sample for size and the 30
th

 and 70
th

 percentiles 

of the ordered data sample for value.
2
 Further, the six portfolios are constructed from the 

intersections of the two size-groups and three value-groups as described in the previous 

subsection. When the monthly stock excess returns have been allocated to the portfolios, the 

average returns on these portfolios must be calculated.  

 

Then, the two factor mimicking portfolios can be defined on the basis of averaged returns 

for the portfolios with “small” and “big” (for size), and “high” and “low” (for value) 

characteristics. Thus, the size and value factors are represented by the equally-weighted 

monthly excess returns on the “small-minus-big” and “high-minus-low” mimicking portfolios, 

respectively. One can expect a negative relationship between size factor and average excess 

returns and a positive relationship between value factor and average excess returns.
3
   

 

  For the four-factor model estimation, the three data sets – the data set of size, the data set 

of value, and the data set of distance-to-default – have been considered. The data set of size and 

the data set of value have been split into two groups each, by finding the 50
th

 percentiles of the 

ordered data sample of size and value, separately. The data set of distance-to-default has been 

split into three groups by finding the 30
th

 and 70
th

 percentiles of the ordered data sample for 

distance-to-default. The applied splits seem to be reasonable since it is expected that the default 

                                                 
2
 This specification follows the study by Fama et al (1993) and is argued for in the section 2.1 The Three-Factor 

Model by Fama and French (1993). 
3
 In accordance with reasoning in the section 2.1 The Three-Factor Model by Fama and French (1993). 
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risk factor may exhibit stronger properties of common risk factor in average returns, in 

comparison to the remaining candidate risk factors.  

 

Further, the twelve portfolios are constructed from the intersections of the two size-groups, 

two value-groups, and three distance-to-default-groups as described in the previous subsection. 

When the monthly stock excess returns have been allocated to the portfolios, the average 

returns on these portfolios must be calculated. 

 

Then, the three factor mimicking portfolios can be defined on the basis of averaged returns 

on the portfolios with “small” and “big” (for size), “high” and “low” (for value), and “short” 

and “long” (for distance-to-default) characteristics. Thus, the size, value, and default risk 

factors are represented by the equally-weighted monthly excess returns on the “small-minus-

big”, “high-minus-low”, and “short-minus-long” mimicking portfolios, respectively.  

 

As stated earlier, one may expect a negative relationship between size factor and average 

excess returns and a positive relationship between value factor and average excess returns. 

However, the relationship between default risk factor and average excess returns does not seem 

to be unambiguous and deserves to be discussed in a separate subsection.   

 

3.1.3 The Working Hypothesis Regarding Relationship “Default Risk – Average 

Stock Return”   

Default risk can be contemplated in two different contexts. On the one hand, a standard 

understanding of relationship between risk and return rests on the statement “higher risk – 

higher expected return”. In this case, a shorter distance-to-default is associated with a greater 

risk exposure, and hence higher expected return; thus, a negative relationship between distance-

to-default and average returns is to expect.  

 

On the other hand, a positive relationship between distance-to-default and stock return is 

also possible. This can be explained by negative market reaction on the event of corporate 

distress or just creditability worsening. The supporting empirical evidence for both statements 
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can be found in the existing literature on this topic. (For comparison see e.g. Vassalou et al, 

2004 and Gharghori et al, 2007)   

 

Distance to the default point per se seems to be a reasonable explanation for the differences 

in empirical findings regarding the “default risk – average stock return” relationship. A 

relatively long (and also time-persistent) distance to the default point is naturally associated 

with a relatively strong “financial health” of the firm. Then, the undesirable variations in asset 

value and volatility associated with changes in financial stability are less likely to be perceived 

as events leading to a threat of distress and default. In this case, a required rate of return is 

expected to rise. However, when a distance to the default point is persistently short, its eventual 

additional shortening may provoke a negative market reaction, and hence a decrease in stock 

return is to expect.   

 

On the diagram below the firms of the first type are allocated to the left of the vertical line, 

whereas the firms of the second type are allocated to the right of the vertical line. 

  

Figure 1. Stock Returns as a Function of Default Risk 

 

 

The prominent feature of the firms in the working sample is that their distances-to-default 

are rather long (however, the time series of distances-to-default in question exhibits a sufficient 

for statistical inferences variation). That is why it seems to be reasonable to expect a negative 

relationship between distance-to-default and average returns, hence positive relationship 

between default risk and average stock return.  
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On these grounds the returns on mimicking portfolio for the default risk factor equal to the 

difference between equally-weighted monthly excess returns on a “short distance-to-default” 

portfolio and equally-weighted monthly excess returns on a “long distance-to-default” 

portfolio. The expected relationship between average stock returns and default risk factor 

mimicked by the “short-minus-long” portfolio is positive.     

 

3.1.4 Factor Mimicking Portfolios Formation with Respect to Market Inefficiency  

It is of importance to form mimicking portfolios in an optimal way, allowing the market to 

react on the changes in corporate information. That is why a description of portfolio formation 

process with respect to prevailing market inefficiency is presented below. The study by Fama et 

al (1993) is followed when constructing the size and value factors. However, there are no 

studies that could suggest on construction of default risk factor.      

 

In order to construct the size factor mimicking portfolio, the market capitalization variable 

has been lagged one month. Thus, the average monthly excess returns on this mimicking 

portfolio may be seen as a result of a one-month-delayed response of the market on the 

information on market capitalization.  

 

What regards construction of the value factor mimicking portfolio, the average monthly 

returns on this portfolio is basically a market response on the book-to-market equity 

information that had become available13 months ago. To be more precise, when calculating the 

book-to-market ratio, a 13-months-lagged book value and a 7-months-lagged market value 

have been taken. In other respects, the book equity has been used as a sum of common equity 

and deferred taxes; the firms with negative book equity values have been excluded from the 

working sample.         

 

Further, the average monthly excess returns on the default risk factor mimicking portfolio 

are decided to be a result of a one-month-delayed response of the market on the information 

underlying default risk.  
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3.1.5 Factor Risk Premium: Estimation Technique, Empirical Tests, and 

Modeling Specifics  

The empirical modeling applied to this study is primarily premised on the three-factor model 

developed by Fama et al (1993) and enhanced by the default risk factor, as stated earlier. The 

experimental design for both the three- and four-factor model is the same, differing just by the 

number of factors, and implies, beyond parameters estimation, evaluation of the factor risk 

premiums. This section discusses the factor risk premium estimation referring only to the four-

factor model due to the mentioned similarities. 

 

One of the objectives of this thesis assignment is to determine whether the risk factors are 

associated with systematic risk sources and therefore are priced in the market. If a risk factor is 

common in equity returns, it is considered being systematic. This means that this risk is shared 

by all (or by the majority of) financial actors, and therefore is undiversifiable. (Fama et al, 

1993; Campbell et al, 1997) In this case it is reasonable that an investor expects a risk premium 

for the systematic risk exposure. Thus, in empirical terms, it can be stated that the risk exposure 

is priced in the market if the corresponding factor risk premium is positive (which must not 

hold for hedge factors, however) and statistically different from zero. (Campbell et al, 1997) 

 

The exact factor pricing model for expected returns on traded assets should be written as 

follows: 

𝜇 = 𝜄𝜆0 + BλK , 

where B is the factor sensitivity matrix, 𝜆0 is the riskfree rate or the zero-beta expected return, 

λK  is the factor risk premium. (Campbell et al, 1997) Since the current study exploits the excess 

returns on the mimicking portfolios of the underlying risk factors, the factor risk premiums can 

be estimated directly from the sample means of the excess returns on the portfolios (Fama et al, 

1993; Campbell et al, 1997): 

𝜆𝐾 =
1

𝑇
 𝐹𝐾𝑡

𝑇
𝑡=1 . 

 

The risk factors in this study have been specified on the theoretical grounds; therefore it is 

of interest to see if they are priced in the market. This may be achieved by testing whether the 

estimated risk premiums are significantly different from zero by using the conventional test 

statistic: 
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𝜑𝑘 =
𝜆 𝐾

 𝑉𝑎𝑟 (𝜆 𝐾𝐾 )

∼ 𝒩(0, 1), 

where 𝜆 𝐾 is the estimated factor risk premium, and 𝑉𝑎𝑟(𝜆 𝐾𝐾) is the KKth element in the 

sample variance-covariance matrix of the risk factors. (Campbell et al, 1997) The estimator of 

the sample variance-covariance matrix of the risk factors is obtained from the 𝑇 × 𝐾 matrix of 

the risk factors according to the following expression: 

𝑉𝑎𝑟  𝜆  =
1

𝑇
Ω 𝐾 =

1

𝑇2
 (𝐹𝑡

𝑇
𝑡=1 −

1

𝑇
 𝐹𝐾𝑡

𝑇
𝑡=1 )(𝐹𝑡 −

1

𝑇
 𝐹𝐾𝑡

𝑇
𝑡=1 )′. 

The cumulative standard normal distribution is applied on the value of the test statistic for the 

critical value obtaining.  

 

Additionally, in order to test whether the risk factors are jointly priced, the following test 

statistic of the null hypothesis that the factors are jointly not priced can be applied: 

𝜑 =
(𝑇−𝐾)

𝑇𝐾
𝜆′ 𝐾𝑉𝑎𝑟  𝜆 𝐾 

−1
𝜆 𝐾, 

where 𝜆 𝐾 is the 𝐾 × 1 vector of estimated factor risk premiums, and  𝑉𝑎𝑟  𝜆 𝐾 
−1

 is the inverse 

of the sample variance-covariance matrix of the risk factors. The given test statistic is, under 

the null hypothesis, asymptotically F-distributed with K and T–K degrees of freedom, which 

determines the critical value for the test of interest. (Campbell et al, 1997)   

 

At the same time, it is possible to contemplate the estimation of the factor risk premiums 

and regression parameters of the risk factors by a single experimental model presented by the 

system of following equations:  

 
 
 

 
 
𝑅𝑖𝑡 = 𝑏𝑖𝑅𝑚𝑡 + 𝑠𝑖𝑆𝑚𝐵𝑡 + 𝑣𝑖𝐻𝑚𝐿𝑡 + 𝑑𝑖𝑆𝑚𝐿𝑡 + 𝜀𝑖𝑡

𝑅𝑚𝑡 = 𝜆𝑚 + 𝜀𝑚𝑡

𝑆𝑚𝐵𝑡 = 𝜆𝑆𝑚𝐵 + 𝜀𝑠𝑡
𝐻𝑚𝐿𝑡 = 𝜆𝐻𝑚𝐿 + 𝜀𝑣𝑡
𝑆𝑚𝐿𝑡 = 𝜆𝑆𝑚𝐿 + 𝜀𝑑𝑡  

 
 

 
 

 , 

where 𝑅𝑖𝑡  and 𝑅𝑚𝑡  are excess returns on the dependent portfolios and the market portfolio, 

respectively; 𝑆𝑚𝐵𝑡 , 𝐻𝑚𝐿𝑡 , and 𝑆𝑚𝐿𝑡  are the excess returns on the factor mimicking portfolios 

of the underlying size (“small-minus-big”), value (“high-minus-low”) and default risk (“short-

minus-long”), respectively; 𝜆𝑚 , 𝜆𝑆𝑚𝐵 , 𝜆𝐻𝑚𝐿 , and 𝜆𝑆𝑚𝐿  are the factor risk premiums of the 

market risk factor, size factor, value factor and default risk factor, respectively.  

 

In essence, the four latter equations, containing the factors risk premiums, are namely the 

mean-adjusted transformations of the explanatory variables (market risk factor and mimicking 
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portfolios of the underlying size, value and default risk factors). This can be seen as an 

alternative way to illustrate the empirical nature of factor risk premiums.  

 

Moreover, contemplation of the phenomenon of factor risk premium can lead to the 

discussion on mispricing. If asset returns can entirely be explained by empirical model 

depicting the relationship between asset returns and factor risk premiums via factor loadings 

(Campbell et al, 1997), the mispricing indicator would be expected being equivalent to the 

following expression: 𝛼∗=𝑏𝑖𝜆𝑚 + 𝑠𝑖𝜆𝑆𝑚𝐵 + 𝑣𝑖𝜆𝐻𝑚𝐿 + 𝑑𝑖𝜆𝑆𝑚𝐿  (Gharghori et al, 2007).  

 

3.1.6 The Working Hypothesis Regarding the Size and Value Factors being 

Proxies for Default Related Information      

If default risk is priced in equity returns, then the corresponding risk factor exhibits a positive 

and statistically different from zero factor risk premium. The same holds for the factors size 

and value which are already shown (Fama et al, 1993; Vassalou et al, 2004) to be related to 

systematic risks sources. It has also been shown that the size and value factors are proxies for 

some default related information. (Vassalou et al, 2004)  

 

It is plausible to hypothesize that the size and value factors can be seen as proxies for 

systematic portion of default related information, if these variables lose their properties of risk 

factor sensitivities for stocks as soon as the three-factor model has been augmented with default 

risk factor. Empirically, it implies that if the estimated coefficients of the size and value 

variables appear to be significant within the three-factor model, but lose their explanatory 

power what regards equity returns within the four-factor model, then the size and value factors 

can be seen as proxies for the systematic component of default risk.  

 

The Fama-French factors are expected to be associated with the systematic portion of 

default risk, if and only if the default risk factor appears to be common in equity returns and 

hence priced in the market.   
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3.1.7 An Anatomy of Defaulting in a Structural Setting: Calculation of Distance-

to-Default   

Distance-to-default calculation procedure used in this thesis assignment follows the main 

principles of structural modeling. In other words, establishment of the structural relationship 

between market value of equity, face value of debt and market value of assets allows for 

solving for distance-to-default as default risk measure.   

 

However, the market value of assets and asset volatility are not directly observable and 

must be extracted from the market value of equity and equity volatility, respectively. The 

Black-Scholes option pricing framework provides a formula that depicts the relationship 

between market value of equity and market value of assets: 

𝑉𝐸 = 𝑉𝐴𝑁 𝑑1 − 𝑒−𝑟𝑓𝑇𝑋𝑁(𝑑2), 

where 𝑉𝐸 corresponds to the market value of equity, 𝑉𝐴 is the market value of assets, 𝑋 is the 

face value of debt, 𝑇 is the time horizon, and 𝑟𝑓  is the risk free rate. In this equation 𝑁(∙) is the 

cumulative normal distribution, 𝑑1 =
𝑙𝑛 

𝑉𝐴
𝑋  + 𝑟𝑓+

1

2
𝜎𝐴

2 𝑇

𝜎𝐴 𝑇
 , and 𝑑2=𝑑1 − 𝜎𝐴 𝑇, where 𝜎𝐴 is the 

volatility of asset market value. (Bohn et al, 2003) Thus, the firm’s equity value is expressed as 

a function of the value of firm’s assets. This is the first important equation used in the distance-

to-default model.  

 

The second important equation the distance-to-default model rests on, must depict a 

relationship between equity volatility and asset volatility. According to the assumption that 

equity is a function of asset value and by applying Itô’s Lemma, 𝜎𝐸 =  
𝑉𝐴

𝑉𝐸
 
𝜕𝑉𝐸

𝜕𝑉𝐴
𝜎𝐴, where 𝜎𝐸  is 

the equity volatility, and the other parameters are defined as above. (Bharath et al, 2008) In the 

continuous time setting it can be shown that  
𝜕𝑉𝐸

𝜕𝑉𝐴
= 𝑁(𝑑1), and thus  𝜎𝐸 =  

𝑉𝐴

𝑉𝐸
 𝑁(𝑑1)𝜎𝐴. 

(Pennacchi, 2008) For a better intuitive understanding, it can be written even in a following 

way: 𝜎𝐸 =
𝑉𝐴

𝑉𝐸
∆𝜎𝐴. (Bohn et al, 2003)  
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Thus, the system of non-linear equations must be solved simultaneously and the 

parameters 𝑉𝐴 and 𝜎𝐴 must be inferred under assumption of normally distributed asset returns.
4
 

The market value of equity is directly observable since the companies included in the study are 

listed on the stock exchange; equity volatility of the firms in question is calculated on the basis 

of yearly equity returns; the risk free rate used in the model is a one-year U.S. Treasury bill; the 

time horizon is set to one year implying that the obtained values of distances-to-default 

correspond to default probabilities that a particular firm defaults within a one-year period; the 

default point is defined as a sum of the face value of short-term debt and a half of the long-term 

liabilities, which is a commonly used way. (Bharath et al, 2008; Chan-Lau et al, 2006; 

Korablev et al, 2007) 

 

As soon as the asset market values and the values of volatility of assets have been 

obtained, the yearly distances-to-default can be easily calculated using the formula: 

𝐷𝐷 =
ln 

𝑉𝐴
𝑉𝐸
  + 𝜇+

1

2
𝜎𝐴

2 𝑇

𝜎𝐴 𝑇
 , 

where 𝜇 is the expected asset return per time unit. Moody’s KMV™ retrieves the asset returns 

from the initial asset volatility: the values of assets returns in the current period are used for 

determining the next period’s asset returns with respect to the corresponding asset values. The 

process continues until convergence. (Bohn et al, 2003)  

 

Indeed, it is hard to calculate the expected asset returns; therefore, different proxies can be 

used. Exploiting the fact that the changes in asset value must be closely related to stock returns, 

the expected asset returns might be computed as means of changes in asset value:                  

𝜇 =
1

𝑇
 ∆𝑙𝑛 𝑉𝐴 

𝑇
𝑡=1 . This finds support in the study of Da et al (2006), where asset returns (or 

asset value drift) are shown to be related to the drift in equity returns through the sensitivity of 

equity value with respect to asset value: 𝜇𝐸 − 𝑟 =
𝜕𝑉𝐸

𝜕𝑉𝐴
∙
𝑉𝐴

𝑉𝐸
(𝜇 − 𝑟).  

 

At the same time, Saunders et al (2002) suggest using a simplified and intuitively 

understandable version of the formula for distance-to-default:  

𝐷𝐷 =
𝑉𝐴−𝑋

𝑉𝐴𝜎𝐴
 . 

                                                 
4
  The comments on MathCAD utilization when solving the specified system of equations, the details about used 

iteration methods, the modifications applied on the input and output data are presented in Appendix II (sections 

II.1 through II.4) 
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The latter expression provides an almost visual interpretation of the default measure as a 

distance between asset market value and default point, expressed in standard deviations. The 

similarity of the results given by the both formulas might be expected.  

 

3.2 Data Collection and Information Source  

The current study investigates the non-financial companies listed on the NASDAQ stock 

exchange. Due to the time constraints, the entire population of the NASDAQ equities (which is 

represented by more than 2700 listed companies) is not included in the working sample. 

Instead, after the financial firms, such as banks, investment and insurance companies, have 

been sorted away, alongside with companies reporting negative values for book equity, the 

working sample is formed by 171 randomly selected companies.  

 

It must be noticed that among these randomly selected firms there are also those with 

incomplete history of financial reporting. Since the model estimation process in this study uses 

averaged portfolio returns as regression inputs, some absent from the financial statements 

information concerning some few firms does not influence the models’ estimation capabilities. 

Conversely, the presence of the firms with incomplete history of financial reporting ensures 

that there is no selection bias implied by possible exclusion of the firms actually defaulted 

during the estimation period.  

 

The firm specific data used in this thesis consists of the time series of share prices observed 

on a monthly and yearly basis, yearly observations for the short- and long-term debt, the time 

series of yearly observations for common equity and deferred taxes (for the book equity 

calculation), and the market capitalization observed on a yearly basis. The market specific data 

consists of the time series of monthly and yearly returns on a one-year U.S. Treasury Bill and 

the NASDAQ Composite price index observed on a monthly basis.  

 

The length of the collected time series is 19 years and one month (February 1991 – 

February 2010). The estimates of distances-to-default are obtained on a yearly basis; the 

regression analysis is conducted on a monthly basis. The sample length is considered to be 

sufficient for a time series analysis. 
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All the time series have been collected from the DataStream financial database. It must be 

kept in mind that the DataStream database is a secondary source of corporate and market 

information which reserves the right to imperfections in the data material.   
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4 Empirical Findings  

 

This chapter reports the empirical results of the study. It naturally starts by inspection of the 

graphical patterns of the time series involved. Then, the descriptive statistics of the data 

material is presented and discussed. The regression estimation results are followed by the 

assessment of the models’ explanatory properties. At last, the evaluation results of the factor 

risk premiums are reported.   

  

 

Before reporting the empirical results of the study, some introductory words may be needed in 

order to emphasize a specificity of the regressions’ input data. This thesis assignment deals 

with the time series of returns on portfolios constructed in accordance with technique described 

in detail in the methodology chapter. The study does not use the time series directly observable 

in the market. Moreover, the empirical design of the study is based on a descriptive-normative 

approach, when the research goals are focused on the explanation of potential relationships 

between the variables in question rather than on determining the optimal models. These facts 

allow not focusing too much on the diagnostic testing of the input time series. However, it is 

accounted for some time series characteristics such as normality criterions and correlations 

between explanatory returns.    

      

4.1 The Results of an Ocular Inspection of the Time Series of 

Returns   

Analyzing the graphs of the time series of returns, one can observe a significant jump 

approximately in the middle of year 2008.
5
 This fact documents the evidence of the financial 

crisis that the entire world entered in year 2007 and which became apparent in the U.S. with the 

bankruptcy of Lehman Brothers.  

                                    Graph 4.1.2              

                                                 
5
 The graphs of the time series based on the original data matherial can be found in Appendix III (Figure III.1) 
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As such, for statistical quality’s sake, it has been decided to exclude the latter 

observations in the time series, starting from March 2008 when the structural alteration has 

been originated.
6,7

 In this particular case the exclusion of a fragment of the time series is 

preferable to structural break modeling. This is due to the fact that the financial crisis is not 

over at the time when the study is conducted; and so, it is unclear how the time series of market 

and corporate variables are going to develop. For comparison, the structural break modeling is 

appropriate when different market conditions are established after the break-point has occurred.    

 

4.2 Descriptive Statistics of the Variables in Question 

The descriptive statistics for each time series, used in the regression analysis, is of interest. It is 

expected that when the input time series exhibit the distribution characteristics close to 

normality, the models they are involved in, generate the most reliable parameters estimates 

(significant and theoretically and empirically reasonable coefficients), relatively high R-squared 

values, and white noise residuals. Moreover, normality is one of the essential assumptions of 

the OLS-estimator and basically makes the translation of statistical inferences into the 

description of properties of the examined population (and possibly theory-generation) more 

comprehensible and transparent.         

 

This section reports for descriptive statistics regarding the two sets of time series, each of 

which corresponds to one of the competing three- and four-factor models. As explicated in the 

methodology chapter, the input time series are different for the two asset pricing models and 

must be investigated separately. That is because the input time series are the time series of 

returns on the portfolios that aim to capture corporate and market information relatively to each 

particular asset pricing specification.  

               

The results of the descriptive statistic tests provide an additional support for the necessity 

to exclude the observations starting from March 2008. Thus, what regards the time series 

involved in the three-factor model estimation
8
, the dispersion of observations is minimized for 

                                                 
6
 Thus, the 22 latter monthly observations are excluded from the original working sample 

7
 The graphs of the time series based on the sub-sampled data matherial can be found in Appendix III (Figure III.2) 

8
 The results of the normality tests (Jarque-Bera statistic, skewness and kurtosis) together with the mean, median, 

maximum and minimum values and standard deviations are reported in Appendix III (tables III.1 and III.2) for 

both the original  and reduced time series involved in the three-factor model estimation   
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the size (change in maximum value from 1,0990 to 0,1562 in relation to unchanged minimum 

value) and value (change in maximum value from 1,6521 to 0,7646 in relation to unchanged 

minimum value) variables. The same is observable for the dependent variable “small size – 

high value”. It must be noticed that a wide dispersion is definitely not anything negative in a 

statistical context. However, in the current case, the dispersion is not even, but caused by 

extreme outliers.   

 

Still, the results of the Jarque-Bera tests reveal the fact of non-normally distributed 

returns for the majority of series of the sub-sampled data. The attempts to exclude the 

remaining outliers from the sub-sampled data have not led to any improvements of normality 

criterions. This can be explained by the sample size insufficiency which is a reason for 

relatively small portfolios of dependent returns and hence insufficient representation of the 

corporate characteristics that are meant to be captured by the portfolios in question.
9
         

 

The summarized descriptive statistic testing results for the time series of returns involved 

in the four-factor model estimation provide similar distribution characteristics as the descriptive 

statistic tests performed on the time series involved in the three-factor model estimation.
10

 

However, the exclusion of the 22 latter monthly time series observations has led to mitigation 

of leptokurtic character of distribution (e.g. for the returns on the dependent portfolio “small 

size – high value – short distance-to-default” and for all three time series of returns on the 

factor mimicking portfolios).  

 

Additionally, the correlations between the time series of returns on the explanatory 

portfolios used in the corresponding three- and four-factor models are found to be relatively 

low and are deemed to be satisfactory both in the portfolio formation context and for the 

regression analysis. The correlation matrices of variables of interest generated by the sub-

sampled data matherial can be found in Table 4.2.a and Table 4.2.b beneath.  

 

 

 

 

                                                 
9
 This issue is discussed in the section 1.5 Delimitations and Weaknesses of the Study 

10
 The results of the normality tests (Jarque-Bera statistic, skewness and kurtosis) together with the mean, median, 

maximum and minimum values and standard deviations are reported in Appendix III (tables III.3 and III.4) for 

both the original  and reduced time series involved in the four-factor model estimation   
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Table 4.2.a. Correlations between the Time Series of Returns on the Explanatory Portfolios Involved in the 

Three-Factor Model Estimation – Sub-sample 

 

 

 

 

 

 

 

 

Table 4.2.b Correlations between the Time Series of Returns on the Explanatory Portfolios Involved in the 

Four-Factor Model Estimation – Sub-sample 

 

 

 

4.3 Results of the Regression Estimations   

In this section the regression estimation results generated by the two asset pricing models of 

interest are presented. Four time series regressions for the three-factor model and eight time 

series regressions for the four-factor model are estimated by OLS using both the entire and 

reduced data samples. As motivated earlier, the working sample is reduced by exclusion of the 

22 latter monthly time series observations. Therefore, the regression estimation results shown 

in this section are based on the sub-sampled data matherial.
11

  

 

The three-factor model estimation results are summarized in Table 4.3.a. The estimated 

coefficients of all explanatory variables are found to be significant in the four regressions that 

correspond to the four dependent portfolios. Additionally, the R-squared values for all four 

regressions are fairly high. However, the regression model for the “big size – high value” (BH) 

portfolio is the only one that provides the factor loadings with theoretically expected signs.  

 

 

                                                 
11

 The tables summarizing for the regression estimation results for the entire sample are placed in Appendix III 

(tables III.5 and III.6) for comparison 

 
RM SIZE VALUE 

RM 1 -0,2592 -0,1743 

SIZE -0,2592 1 -0,6250 

VALUE -0,1743 -0,6250 1 

 
RM SIZE VALUE 

Distance-
to-Default 

RM 1 -0,2896 -0,1574 0,2259 

SIZE -0,2896 1 -0,4310 -0,3845 

VALUE -0,1574 -0,4310 1 0,3980 

Distance-
to-Default 0,2259 -0,3845 0,3980 1 
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Table 4.3.a. Three-Factor Model Estimation Results – Sub-Sample 

  SL SH BL  BH 

Intercept 0,000 -0,003 -0,001 -0,006 

Std. Error 0,004 0,002 0,003 0,005 

t-statistic 0,092 -1,418 -0,557 -1,395 

Market risk factor 0,784 0,741 0,749 0,799 

Std. Error 0,054 0,035 0,040 0,068 

t-statistic 14,448 21,295 18,852 11,664 

Size factor 0,554 0,647 -0,361 -0,412 

Std. Error 0,078 0,050 0,057 0,099 

t-statistic 7,068 12,859 -6,292 -4,159 

Value factor 0,190 0,461 -0,223 0,669 

Std. Error 0,053 0,034 0,039 0,067 

t-statistic 3,557 13,465 -5,716 9,924 

R
2
 0,530 0,702 0,777 0,715 

Sample length 205 observations 

Table 4.3.a  reports the estimation results of the three-factor model, where the returns on portfolios “small size – low value 

(SL), “small size – high value” (SH), “big size – low value” (BL), “big size – high value” (BH) are regressed on the Market 

risk factor, Size factor and Value factor. The estimation period lies between February 1991 and February 2008. The table 

presents the estimated coefficients of the parameters for each regression alongside with the standard errors, t-statistics and the 

values of R–squared. 

Table 4.3.b. Four-Factor Model Estimation Results – Sub-Sample 

  SLS SLL SHS SHL BLS BLL BHS BHL 

Intercept -0,008 -0,001 0,002 -0,011 0,000 -0,004 -0,005 0,001 

Std. Error 0,004 0,004 0,003 0,003 0,004 0,002 0,005 0,004 

t-statistic -1,811 -0,190 0,624 -3,687 0,082 -1,456 -1,163 0,305 

Market risk factor 0,612 0,733 0,863 0,542 0,658 0,798 0,704 0,532 

Std. Error 0,067 0,062 0,046 0,045 0,056 0,037 0,069 0,055 

t-statistic 9,115 11,901 18,704 12,046 11,679 21,418 10,210 9,594 

Size factor 0,700 0,426 0,875 0,409 -0,411 -0,153 -0,596 -0,061 

Std. Error 0,093 0,085 0,064 0,062 0,078 0,051 0,095 0,077 

t-statistic 7,548 5,012 13,743 6,589 -5,286 -2,976 -6,264 -0,803 

Value factor -0,277 0,202 0,645 0,414 -0,732 -0,101 1,268 0,310 

Std. Error 0,095 0,087 0,065 0,064 0,080 0,053 0,098 0,079 

t-statistic -2,918 2,311 9,878 6,502 -9,171 -1,914 12,994 3,946 

Default risk factor 0,495 0,022 0,175 0,049 0,325 -0,026 0,931 -0,219 

Std. Error 0,064 0,059 0,044 0,043 0,054 0,035 0,066 0,053 

t-statistic 7,757 0,372 3,999 1,148 6,056 -0,720 14,200 -4,143 

R
2
 0,530 0,438 0,702 0,465 0,691 0,770 0,860 0,365 

Sample length  205 observations 

Table 4.3.b reports the estimation results of the four-factor model, where the returns on portfolios “small size – low value – 

short distance-to-default” (SLS), “small size – low value – long distance-to-default” (SLL),  “small size – high value – short 

distance-to-default” (SHS), “small size – high value – long distance-to-default” (SHL), “big size – low value – short distance-

to-default” (BLS), “big size – low value – long distance-to-default” (BLL), “big size – high value – short distance-to-default” 

(BHS), “big size – high value – long distance-to-default” (BHL) are regressed on the Market risk factor, Size factor, Value 

factor, and Default risk factor. The estimation period lies between February 1991 and February 2008. The table presents the 

estimated coefficients of the parameters for each regression alongside with the standard errors, t-statistics and the values of R–

squared. 
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Similarly, Table 4.3.b provides evidence of significant and theoretically sound 

coefficients obtained when estimating the four-factor regression model that aims to explain the 

returns on the “big size – high value – short distance-to-default” (BHS) portfolio. Besides, this 

regression model exhibits the highest in its class goodness-of-fit measure. 

 

Also, the estimated coefficients for the intercepts obtained when estimating all the three-

factor regressions and seven of eight
12

 four-factor regressions, are found to be statistically zero. 

Very small and insignificant intercepts imply exact pricing.  

 

However, as noticed above, the estimation results of only one regression model
13

 within 

the set of three-factor regressions and only one regression model
14

 within the set of four-factor 

regressions provide the estimated parameters that are theoretically sound. It is worth recalling 

that the modeling quality and statistical reliability in this study to a great extent depend on the 

variation within the formed portfolios. Analysis of the corporate characteristics used as grounds 

for returns allocation shows that relatively big (and consequently with a wider return spectrum) 

portfolios are exactly “big size – high value” and “small size – high value – short distance-to-

default” dependent portfolios. 

 

4.4 Explanatory Properties of the Regression Models   

As one can recall, an ocular inspection of the graphs of the input time series has led to the 

decision to proceed working with a reduced data sample, excluding the 22 latter monthly time 

series observations. It has also been stated that the regressions built on the time series 

characterized by the most acceptable descriptive statistics are expected to generate the most 

statistically reliable parameters estimates. Moreover, the models which contain such time series 

have been expected to exhibit high explanatory power and originate the residual estimates that 

possess white noise properties.  

 

                                                 
12

 Except for the model aiming to explain the returns on the “small size – high value – long distance-to-default”   

portfolio 
13

 That aims to explain the returns on the “big size – high value” portfolio 
14

 That aims to explain the returns on the “small size – high value – short distance-to-default” portfolio 
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It has been shown that the reduction of the working sample has led to some negligible
15

 

improvements of descriptive statistics of the time series of interest, such as exclusion of 

extreme outliers and alleviation of the leptokurtic distribution manifestation.  

 

It has also been noticed that the theoretically sound parameters estimates have been 

obtained by estimating the three-factor model explaining the returns on the “big size – high 

value” portfolio and the four-factor model explaining the returns on the “big size – high value – 

short distance-to-default” portfolio. However, it is believed to be so not due to the mentioned 

changes in the descriptive statistics of the input data, but rather due to the comparatively wider 

spectrum of returns within the portfolios involved, in other words simply because of the 

comparatively bigger portfolios. 

 

Now, it can be of interest to examine whether the models that aim to explain the returns 

on the “big size – high value” and “big size – high value – short distance-to-default” portfolios 

are statistically better than others. Indeed, the four-factor model for the returns on the “big size 

– high value – short distance-to-default” portfolio exhibits the highest in its class explanatory 

power. However, it is not the fact for the three-factor model that explains the returns on the 

“big size – high value” portfolio.  

 

Further, it is worth checking whether the time series of estimated residuals originated by 

the regression estimations are white noise. White noise residuals would indicate that the 

dependent returns are fully explained by the models employed.
 
For this purpose the Breusch-

Godfrey serial correlation test is used.  

 

The testing results
16

 provide evidence of presence of serial correlation in the four time 

series of estimated residuals originated by the four regression estimations of the three-factor 

model. What regards the four-factor regression estimations, the four of eight time series of the 

estimated residuals exhibit serial correlation. It must be emphasized that the estimated residuals 

originated by the four-factor model that explains the returns on the “big size – high value – 

short distance-to-default” portfolio are found to be possessing white noise properties. 

 

 

                                                 
15

 The improvements have appeared to be negligible due to the reasons discussed in the section .1.5Delimitations 

and Weaknesses of the Study and related to the portfolio formation specificity  
16

 The results of the serial correlation tests are summarized in Table 4.4.a and Table 4.4.b for the estimated 

residuals of the three- and four-factor models, respectively    
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Table 4.4.a Result Summary of the Breusch-Godfrey Test –  

the Three-Factor Model – Sub-Sample 

Breusch-Godfrey 
Serial Correlation LM 

Test 
SL SH BH BL 

    Prob. F(2,198) 0.000010 0.000000 0.000000 0.000000 

    Prob. Chi-Square(2) 0.000014 0.000000 0.000000 0.000000 

 

Table 4.4.a summarizes the results for the Serial correlation LM test performed on the estimates of the residuals originated by 

the three-factor model estimations. Abbreviations SL, SH, BH, and BL stay for the “small size – low value”, “small size – high 

value”, “big size – high value”, and “big size – low value” dependent portfolios, respectively, and are aimed to the series of 

estimated residuals originated by the corresponding models estimations. The estimation period lies between February 1991 and 

February 2008.  

 

 

Table 4.4.b Result Summary of the Breusch-Godfrey Test –  

the Four-factor model – Sub-Sample 

Breusch-Godfrey Serial 
Correlation LM Test 

SLS SLL SHS SHL BLS BLL BHS BHL 

    Prob. F(2,198) 0,01296 0,51115 0,00136 0,00000 0,00001 0,00017 0,11326 0,14425 

    Prob. Chi-Square(2) 0,01225 0,50034 0,00134 0,00000 0,00002 0,00018 0,10748 0,13732 

 

Table 4.4.b summarizes the results for the Serial correlation LM test performed on the estimates of the residuals originated by 

the three-factor model estimations. Abbreviations SLS, SLL, SHS, SHL, BLS, BLL, BHS, and BHL stay for the “small size – 

low value – short distance-to-default”, “small size – low value – long distance-to-default”,  “small size – high value – short 

distance-to-default”, “small size – high value – long distance-to-default”, “big size – low value – short distance-to-default”, 

“big size – low value – long distance-to-default”, “big size – high value – short distance-to-default”, “big size – high value – 

long distance-to-default” dependent portfolios, respectively, and are aimed to the series of estimated residuals originated by the 

corresponding models estimations. The estimation period lies between February 1991 and February 2008.  

 

Summarizing for this section, it can be stated that the four-factor models tend to 

outperform the three-factor models on average. The four-factor model that aims to explain the 

returns on the “big size – high value – short distance-to-default” portfolio
17

, demonstrates (in 

its class of models) the highest explanatory power both in terms of goodness-of-fit measure and 

due to origination of white noise residuals.     

 

 

  

                                                 
17

 This model is referred to as “selected model” here-on 
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4.5 Factor Risk Premiums Estimation Results  

Evaluation of the factor risk premiums
18

 indicates whether the risk factors are common in 

equity returns and hereby systematic and priced in the market. In this section, the risk premium 

estimates and the corresponding test statistics are presented. Table 4.5.a summarizes for the 

single significance testing performed on the factor risk premiums attributable to the risk factors 

involved in the three-factor model.      

   

Table 4.5.a Factor Risk Premiums: Single Tests for the Three-Factor Model’s Factors 

  Market risk factor Size factor Value factor 

Factor risk premium -0,027263106 0,002034324 0,010640424 

Standard error of estimate 2,57382E-05 3,84426E-05 8,41806E-05 

Test statistic -5,373857457 0,328105914 1,159719189 

Critical value 3,85349E-08 0,628584209 0,876918423 

 

 

As can be seen, the risk premiums for the size and value factors are positive and 

demonstrate the standard errors of their estimates being very close to zero. However, only the 

value factor risk premium is significantly different from zero. Therefore, within the three-factor 

model, the risk underlying the value factor is common in equity returns and hence is considered 

to be priced in the market. 

  

Testing joint significance of the factor risk premiums attributable to the risk factors in the 

three-factor model leads to a conclusion that the factors are jointly priced in the market. (See 

Table 4.5.b.)   

 

Table 4.5.b Factor Risk Premiums: Joint test for the Three-Factor Model 

The joint test (three factors) 5,918439677 

F-value 0,000665411 

The joint test (excluding the market risk factor) 0,647774187 

F-value 0,524177682 

 

 

 

                                                 
18

 A description of the factor risk premiums calculation can be found in the section 3.1.5 Factor Risk Premium: 

Estimation Technique, Empirical Tests, and Modeling Specifics  
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Table 4.5.c summarizes for the single significance testing performed on the factor risk 

premiums attributable to the risk factors involved in the four-factor model.   

 

Table 4.5.c Factor Risk Premiums: Single Tests for the Four-Factor Model 

 

Market risk factor Size factor Value factor Default factor 

Factor risk premium -0,027263106 0,010663409 0,008076965 0,007855829 

Standard errors 2,57382E-05 8,94383E-05 9,08021E-05 0,000190926 

Test statistic -5,373857457 1,127545801 0,847618185 0,568538251 

Critical value 3,85349E-08 0,870244106 0,801674678 0,71516523 

 

 

As can be seen, the risk premiums for the size, value, and default risk factors are positive. 

The standard errors of estimates of the size and value factor risk premiums are very close to 

zero. The standard error of estimate of the default factor risk premium is somewhat higher. 

Only the size and value factor risk premiums are found to be significantly different from zero. 

Therefore, within the four-factor model, the risks underlying the size and value factors are 

common in equity returns and hence are considered to be priced in the market. 

  

Testing joint significance of the factor risk premiums attributable to the risk factors in the 

four-factor model leads to a conclusion that the factors are jointly priced in the market. (See 

Table 4.5.d.)   

Table 4.5.d Factor Risk Premiums: Joint test for the Four-Factor Model 

the joint test (four factors) 7,437878005 

F-value 1,21395E-05 

the joint test (three factors 

excluding the market risk factor) 0,680470409 

F-value 0,564822404 
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5 Analysis  

 

This chapter analyses the empirical findings of the current study in the light of the theoretical 

framework and with respect to the working hypotheses.   

 

 

The performed study examines the augmentation of the three-factor model of Fama and French 

with default risk factor. The empirical evidence of the study shows that on average the four-

factor models outperform the classical three-factor models when applied on the data matherial 

of the NASDAQ-listed companies during the estimation period of 17 years of monthly 

observations
19

.  

 

In general, this conclusion is consistent with some of the prior findings, such as 

Vassalou’s et al (2004). In particular, it must be noticed that the model that is defined to 

possess the highest econometric quality is the four-factor model that explains the average 

returns on the portfolio of stocks characterized by high value of market capitalization, high 

value of book-to-market equity, and short distance-to-default estimate
20,21

; whereas the existing 

literature on the three-factor model revising reports for the simple averages of dependent 

returns. However, the four-factor regression estimation that uses the simple averages of returns 

as dependent variable has not established any relationship between the candidate risk factors 

and dependent average returns, when performed on the data material used in the current study.  

 

The estimation of the selected four-factor regression model that explains the average 

returns on the “big size – high value – short distance-to-default” portfolio provides the expected 

signs of the significant parameters estimates.   

 

The negative parameter estimate for the size variable and the positive parameter estimate 

for the value variable are in accordance with the classical three-factor model specification of 

Fama et al (1993). The obtained positive relationship between dependent returns and default 

                                                 
19

 Referring to the reduced time series as argued in the subsection 4.1 The Results of an Ocular Inspection of the 

Time Series of Returns    
20

 The ”big size – high value – short distance-to-default” portfolio  
21

 The selected model  
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risk factor meets the expectations formulated in the working hypothesis
22

 and hereby confirms 

the assumption that the persistently long/short distance to the default point may influence how 

the market reacts on changes in corporate default risk level. The firms from the working sample 

demonstrate long distances-to-default which implies that the default risk, these firms are 

exposed to, causes the expected return to rise; hence a positive sign of the parameter estimate 

of the default risk factor formulated as “short-minus-long” mimicking portfolio of distance-to-

default.    

 

However, if some further hypothesizing is allowed here, the same empirical finding 

concerning the “default risk – stock return” relationship would be hardly sensible if the firms in 

question demonstrated short distances-to-default over relatively long period of time. In this 

case, the portfolio that mimics the default risk factor would be formulated as “long-minus-

short” mimicking portfolio of distance-to-default and a negative relationship “default risk – 

stock return” would be expected. If this was empirically proven, it would be consistent with the 

finding of Garlappi et al (2008). Their study shows that the equity returns are hump-shaped in 

default probability.  

 

In this context, the firms representing the working sample of the current study are 

concentrated in the ascending fragment of the graph
23

 depicting this hump-shaped relationship; 

whereas the hypothetical firms exhibiting persistently short distances-to-default would be 

concentrated in the descending fragment of this graph. 

 

It must be noticed that there exist examples of mutually opposing results regarding 

relationship “default risk – expected return”.
24

 This fact confirms the specificity of default risk 

as regards equity returns, and suggests assessing default risk with respect to a number of 

conditions, such as relative distance to the default point, interplay between capital structure and 

firm value, overall state of economy, and not least possibility of re-negotiation upon distress.  

 

Thus, the empirical results concerning relationship “default risk – equity return” can be 

seen as providing confirmation to the working hypothesis that equity returns are non-linear in 

default risk.   

                                                 
22

 See the subsection 3.1.3 The Working Hypothesis Regarding Relationship “Distance to Default – Average Stock 

Return”  
23

 Recall Figure 1 in the subsection 3.1.3 The Working Hypothesis Regarding Relationship “Default Risk – 

Average Stock Return” 
24

 See the sections 1.3 Positioning of the Current Study and 2.2 Default Risk in Equity Returns: Prior Research  
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The empirical findings of the current study testify to exact pricing provided by the 

selected model since the estimated intercept parameter is found to be statistically zero. Further, 

the significance tests performed on the factor risk premiums of the size, value and default risk 

factors document that only the risks underlying the size and value factors are priced in the 

market. These risks are therefore considered to be common in equity returns and hence 

systematic. However, when the factor risk premiums of the corresponding size and value 

factors have been estimated and tested within the three-factor model in the current study, only 

the risk underlying the value factor is stated to be common in equity returns. For comparison, 

the risks underlying both the size and value factors are common in equity returns in accordance 

with Fama et al (1993).  

 

The fact that default risk is not priced in the market and thus not systematic contradicts 

the finding of Vassalou et al (2004), but at the same time is in line with the conclusions of 

Gharghori et al (2007), disregarding the fact that these two reference studies elaborate similar 

empirical designs. Also, Anginer et al (2010) have not found any statistical support for the 

hypothesis that the default risk is common in equity returns. However, these authors use a 

marketable proxy for default risk, unlike Vassalou et al (2004) and Gharghori et al (2007) who 

apply structural modeling for the default risk measure obtaining.  

 

Further, the empirical results of this study fail to provide any evidence for the size and 

value factors being concentrated in default risk factor. The academic discussion on the subject 

of economic meaning of the classical size and value factors and also criticism originated by 

their empirical nature, have been developing into contemporary attempts to revise the asset 

pricing specification of Fama and French. (Robotti, 2002) The modern researchers suspect the 

classical size and value factors actually being manifestations of some wider risk spectrum than 

the risks associated solely with relative profitability.  

 

In this respect, the selected four-factor model cannot show evidence of concentration of 

size and value factors in default risk. The three-factor model expanded by default risk factor is 

found to be able to explain average returns on the single portfolio. At the same time, the size 

and value factors have not lost their explanatory power as regards equity returns after the three-

factor model has been expanded. This implies that the size and value factors do not contain any 

default related information. On contrary, the empirical support to the idea that the size and 
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value factors may actually contain some default related information is provided by the study by 

Vassalou et al (2004).  

 

The findings that the size and value factors are not proxies for default related information 

and that the default risk is not common in equity returns, confirm the stated within this thesis 

working hypothesis that the Fama-French factors are expected to be proxies for systematic 

portion of default risk if and only if the default risk factor can be shown being priced in the 

market.
25

                     

 

                                                 
25

 See the subsection 3.1.6 The Working Hypothesis Regarding the Size and Value Factors being Proxies for 

Default Related Information 
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6 Conclusion 

 

This final chapter summarizes for the conducted study and suggests some future research 

directions.   

 

 

The empirical modeling applied to this study is premised on the three-factor asset pricing 

specification of Fama and French, enhanced by the default risk factor. The study utilizes the 

factor mimicking portfolio technique for modeling the risks underlying size, value and default 

risk factors. Distance-to-default estimate, deduced from the option-based model, is adopted by 

this study as a proxy for default risk.  

 

The empirical results of this thesis suggest that the augmentation of the three-factor 

model with default risk factor improve the performance of a conventional asset pricing 

specification, in general. The four-factor model that aims to explain the average returns on the 

portfolio of stocks characterized by high value of market capitalization, high value of book-to-

market equity, and short distance-to-default estimate
26

 exhibits the highest explanatory 

properties in its class of models and in comparison to the three-factor model that aims to 

explain the average returns on the portfolio of stocks characterized by high value of market 

capitalization and high value of book-to-market equity
27

.  

 

The regression analysis of the selected model shows that the factor loadings of the 

portfolios of size, value and default risk factors exhibit strong properties of risk factor 

sensitivities for stocks. Moreover, the selected model provides exact pricing.      

 

However, the study shows no evidence for the size and value factors being concentrated in 

default risk. This implies that the size and value factors are not documented being proxies for 

default related information. 

 

The performed empirical tests cannot provide any evidence of systematic character of 

default risk. Thus, the study arrives at conclusion that default risk is not common in the 

                                                 
26

 The selected model  
27

 The ”big size – high value” portfolio  
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examined equity returns and not priced in the market. At the same time, the size and value 

variables are found being proxies for sensitivity to common risk factors in returns.  

 

Future work could try to analyze the possible differences in how default risk influences 

equity returns and asset returns. Such a study could be implemented on distressed firms in a 

cross-sectional setting. Further, asset volatility could be tested as a proxy for default risk within 

the asset pricing modeling and utilizing the mimicking portfolio technique.                 
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Appendix I 

I.1 The Time Series of the Simple Averages of the Distance-to-Default Estimates 

of all Firms: Descriptive Statistics  

 
Table I.1. Descriptive Statistics for the Time Series Observations on 

The Simple Averages of the Distances-to-Default of all Firms 

  DISTANCE-TO-DEFAULT 

 Mean 829,4213 

 Median 822,3717 

 Maximum 1858,632 

 Minimum 427,5763 

 Std. Dev. 326,8564 

 Skewness 1,408929 

 Kurtosis 5,883238 

 Jarque-Bera 13,54448 

 Probability 0,001145 

 Observations 20 
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Appendix II  

II.1 The Gradient and Newton-Raphson Methods for Solving the Specified 

System of Non-Linear Equations  

 

In order to solve the system of non-linear equations simultaneously, the programming 

capabilities of MathCAD have been employed. The two different methods have been used – the 

gradient method (Nesterov, 2004; Sivokobylenko, 2007) and the Newton-Raphson method 

(Sivokobylenko, 2007; Kaw, 2009), in order to control for the possible errors implied by the 

potential shortcomings of each method.  

 

Thus, not going too deeply into the technical interpretation of the methods, it may be 

noticed that they exploit the same idea of dynamic optimization. The first method is built on the 

narrowing of the initial value to the sought root, where every iteration step is defined from the 

differentiation of the Taylor raw of the non-linear components with respect to the gradient of 

the function. The second method can be explained geometrically and exploits the procedure of 

adjustments to the initially stated value by finding the optimal intersection of the function’s 

tangent and the axis of abscissae. (Acton, 1970; Nesterov, 2004; Sivokobylenko, 2007)        

 

However, the two methods exhibit different kinds of weaknesses. The gradient method 

guarantees the convergence of calculations, but sometimes it may imply difficulties regarding 

the iteration parameter which must be defined for every step. (Nesterov, 2004; Sivokobylenko, 

2007) The Newton-Raphson method, on the other hand, may lead to the root-jumps, despite the 

accuracy of initial values stated; however, the problem associated with the iteration parameter 

is mitigated here since this method controls for oscillation in function. (Sivokobylenko, 2007; 

Kaw, 2009) 

 

The calculation has shown that the two methods employed, generate the same results, 

differing only sometimes and insignificantly. This can be probably explained, beyond just 

stating that the calculation results are reliable, by the fact that the equations of interest are 

“almost linearly” related, since the obtained values for N(d1) and N(d2) are units.  
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II.2 The Input Data Modifications when Extracting Asset Value and Asset 

Volatility from Market Value of Equity and Equity Volatility 

   

It is worth noticing that some modifications of the input data have been performed before 

solving the system of equations. Since it is not desirable to have any output data falling off, all 

zeros for the default point have been replaced by 1E-10. Algebraically, this is judged to be 

fairly unacceptable since the default points of zero cannot be used in the calculations (since 

appearing in denominator of the formulas), and the mentioned replacement leads to inadequate 

results, namely to infinitely large values.   

 

However, appealing to the financial theory and with respect to the further use of the output 

data, this replacement is rather appropriate. The structural interpretation of default risk is based 

on the capital structure, which defines the value of assets and asset volatility and hence 

individual distances-to-default. In this setting, the default point of zero (which in the option 

vocabulary is a strike price) implies that equity value equals assets value, and that there is no 

threat of defaulting. The mentioned replacement also leads to the absence of threat of default 

since the model in this case generates the distance-to-default estimates which are infinitely 

large (infinitely long distances-to-default).  

 

II.3 On Solving the Specified System of Non-Linear Equations in MathCAD 

 

MathCAD is computer software primarily used for engineering calculations. Its utilization in 

this thesis assignment allows for solving of the system of non-linear equations without any 

technical complications. The built-in programming capabilities of MathCAD are rather 

intuitive and visual. However, the algebraic understanding of solving process is a requirement 

since a calculation procedure to some extend depends on how the problem is formulated for the 

software program. Below one can find a visual illustration of performed calculations supported 

by a short explanation of the necessary commands.    

 

The solving procedure starts with introduction of the variables expressed in vector form. 

A sign of equality placed after the introduced variable is obtained by using the following 
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symbol of punctuation “:” (colon). Thus, the variables involved in the equation system and the 

vectors of corresponding variables are introduced and shown here:          

 

 

Hereafter, the range variable k must be defined. It is (in the simple cases) dependent on the 

length of the input vectors. In the current example expression k:=0..579 should be read as “the 

calculations will be performed in 579 steps”. The sign “..” is obtained by pressing semicolon-

button on the tangent board.  

 

Next, the initial values are stated (𝜎𝐴 = 0.5 𝑎𝑛𝑑 𝑉𝐴 = 1000000), and the system of 

equations is introduced by command “Given”. When writing the system of equations, it must 

be kept in mind that the equality signs used in equation specifications are so called “symbolic 

equality signs”, which means that the equality is not obvious, but must be achieved in the 

solving process. This “symbolic equality sign” is obtained by pressing Ctrl and “=” 

simultaneously.  

 

In order to invoke any function, such as “Given”, “pnorm” or “Minerr”, the Insert-button 

on the program toolbar must be used and the f(x)-symbol must be chosen; thereafter it remains 

to define which function is to be applied.   
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  k 0 579  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

It must be noticed that the theoretical equations are transformed such that the minimization 

is presupposed: the distances between actual 𝑉𝐸 and its algebraic function, and between actual 

𝜎𝐸  and its algebraic function are aimed to be minimized in order to guarantee optimization.  

 

Now, it is possible to define the matrix that will contain the output. The program can only 

recognize the Z-matrix with k-coefficient. The sought vectors of variables must be introduced 

by using function “Minerr”. Thus, the expression 𝑍𝑘 ≔ 𝑀𝑖𝑛𝑒𝑟𝑟(𝑉𝐴, 𝜎𝐴) should be read as “the 

matrix of output 𝑍𝑘  contains the columns of sought variables 𝑉𝐴 and 𝜎𝐴”. Also, the clarification 

on how the program should seek the variables 𝑉𝐴 and 𝜎𝐴 is necessary. For this purpose, it is 

enough to state in how many steps the equation system must be solved by writing 

 𝑉𝐴_0_580 𝑘 ≔  𝑍𝑘 0  and  𝜎𝐴_0_580 𝑘 ≔  𝑍𝑘 1. Below follows a corresponding clip from 

the MathCAD working sheet.  

 

 

                                    

 

 

In order to solve the system of equations, the sought variables must be written once more 

followed by the “true equality signs” (obtained by pressing colon-button on the tangentboard). 
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The optimization method for solving the system of equations can be chosen by a right click 

on the function “Minerr”. For the equation system in question both Conjugate Gradient method 

and Quasi-Newton method are appropriate.  

 

II.4 Some Details on Dealing with the Output Data as Regards Distance-to-

Default Estimates 

 

Recalling the discussion concerning the default points of zero, the two ways of dealing with 

output data for the distances-to-default of the corresponding firms are possible. It might be 

recommended to exclude these infinitely large output values for distances-to-default from the 

sample, if one is interested in actual distances-to-default. In this case the corresponding firms 

must be seen as those which are not possible to be defaulting in the structural setting.  

 

On the other hand, the obtained infinitely large values of distances-to-default for the firms 

which default points are zero, may not be excluded from the output data, if one is not interested 
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in actual distances-to-default, but rather in the variation in the distance-to-default-variable. The 

second option is suitable for this thesis assignment. That is because the time-series of distances-

to-default are not explicitly used in this study. Instead, it is just variation in the variable that 

matters, since the values of the distance-to-default-variable are used for portfolio formation and 

are the criterions for sorting of the stocks into different portfolios. Thus, the infinitely large 

distances-to-default end up in the portfolios of the highest sample percentile.    

 

Also, as distance-to-default estimate is simply a standard deviation of the asset value from 

the default point, or expressed algebraically, a distance to the origin (if translating an assumed 

normal distribution to a standard normal distribution), the obtained negations of distance-to-

default estimates must be replaced by the corresponding absolute values for the further 

calculations.                                          
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Appendix III  

III.1 The Graphs of the Time Series  

Figure III.1. The graphs of the Time Series of Explanatory and Dependent Returns – Entire Sample 

Figure III.1 illustrates the graphs of the time series of the explanatory variables Size, Value and Distance to Default alongside 

with the time series of the dependent variables formed on the returns of the portfolios representing the firms with certain 

characteristics: “small size – low value – short distance-to-default” (SLS), “small size – low value – long distance-to-default” 

(SLL),  “small size – high value – short distance-to-default” (SHS), “small size – high value – long distance-to-default” (SHL), 

“big size – low value – short distance-to-default” (BLS), “big size – low value – long distance-to-default” (BLL), “big size – 

high value – short distance-to-default” (BHS), “big size – high value – long distance-to-default” (BHL). The length of the time 

series lies between February, 1991 and January, 2010.  
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Figure III.2. The graphs of the Time Series of Explanatory and Dependent Returns – Sub-Sample 

      

 

Figure III.2 illustrates the graphs of the time series of the explanatory variables Size, Value and Distance to Default alongside 

with the time series of the dependent variables formed on the returns of the portfolios representing the firms with certain 

characteristics: “small size – low value – short distance-to-default” (SLS), “small size – low value – long distance-to-default” 

(SLL),  “small size – high value – short distance-to-default” (SHS), “small size – high value – long distance-to-default” (SHL), 

“big size – low value – short distance-to-default” (BLS), “big size – low value – long distance-to-default” (BLL), “big size – 

high value – short distance-to-default” (BHS), “big size – high value – long distance-to-default” (BHL). The length of the time 

series is from February 1991 to February 2008. 
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III.2 Descriptive Statistics of the Time Series  

 

Table III.1. Descriptive Statistics for the Time Series Involved in the Three-Factor Model Estimation – Entire 

Sample 

  RM SIZE VALUE SL SH BL BH 

 Mean -0,03 0,00 0,01 -0,02 -0,01 -0,02 -0,02 

 Median -0,02 0,00 0,00 -0,02 -0,03 -0,02 -0,04 

 Maximum 0,18 1,10 1,65 0,21 2,42 0,22 0,88 

 Minimum -0,26 -0,47 -0,20 -0,21 -0,29 -0,26 -0,20 

 Std. Dev. 0,07 0,09 0,14 0,07 0,17 0,07 0,11 

 Skewness -0,29 6,37 8,12 0,16 11,91 0,26 3,41 

 Kurtosis 4,06 86,10 91,77 3,41 166,57 3,74 24,99 

 Jarque-Bera 13,86 67148,82 77359,20 2,59 259578,80 7,79 5035,83 

 Probability 0,00 0,00 0,00 0,27 0,00 0,02 0,00 

 

Table III.1 summarizes for the Descriptive Statistics for the time series of explanatory variables Market risk factor, Size factor 

and Value factor alongside with the time series of dependent variables formed on the returns of the portfolios representing the 

firms with the following characteristics: “small size – low value” (SL), “small size – high value” (SH), “big size – low value” 

(BL), “big size – high value” (BH). The descriptive statistic tests are applied on the entire sample (from February 1991 to 

January 2010). The table contains means, maximum values, the minimum values, standard deviations, skewness, kurtosis and 

the Jarque-Bera test statistics.  

 

 

Table III.2. Descriptive Statistics for the Time Series Involved in the Three-Factor Model Estimation – Sub-Sample 

  RM SIZE VALUE SL SH BL BH 

 Mean -0,03 0,00 0,00 -0,02 -0,03 -0,02 -0,03 

 Median -0,02 0,00 0,00 -0,02 -0,03 -0,03 -0,04 

 Maximum 0,18 0,16 0,76 0,15 0,15 0,22 0,88 

 Minimum -0,26 -0,47 -0,20 -0,21 -0,19 -0,26 -0,20 

 Std. Dev. 0,07 0,06 0,09 0,07 0,05 0,07 0,11 

 Skewness -0,37 -2,72 3,72 -0,03 0,14 0,30 3,82 

 Kurtosis 4,39 21,09 32,28 2,95 3,56 4,03 28,51 

 Jarque-Bera 21,22 3047,47 7794,98 0,05 3,32 12,06 6056,81 

 Probability 0,00 0,00 0,00 0,97 0,19 0,00 0,00 

 

Table III.2 summarizes for the Descriptive Statistics for the time series of explanatory variables Market risk factor, Size factor 

and Value factor alongside with the time series of dependent variables formed on the returns of the portfolios representing the 

firms with the following characteristics: “small size – low value” (SL), “small size – high value” (SH), “big size – low value” 

(BL), “big size – high value” (BH). The descriptive statistic tests are applied on the sub-sampled data (from February 1991 to 

February 2008). The table contains means, maximum values, the minimum values, standard deviations, skewness, kurtosis and 

the Jarque-Bera test statistics.  

 

 

 

 

 

 



 

63 

 

Table III.3. Descriptive Statistics for the Time Series Involved in the Four-Factor Model Estimation – Entire 

Sample 

  RM SIZE VALUE DEFAULT SLS SLL SHS SHL BLS BLL BHS BHL 

 Mean -0,03 0,01 0,01 0,01 -0,02 -0,02 0,01 -0,02 -0,02 -0,02 -0,03 -0,01 

 Median -0,02 0,00 0,00 -0,02 -0,03 -0,03 -0,03 -0,02 -0,03 -0,02 -0,04 -0,02 

 Maximum 0,18 2,00 2,02 2,96 0,28 0,28 7,18 0,23 0,48 0,22 1,39 0,28 

 Minimum -0,26 -0,28 -0,16 -0,14 -0,27 -0,22 -0,35 -0,24 -0,27 -0,24 -0,23 -0,19 

 Std, Dev, 0,07 0,14 0,14 0,21 0,09 0,08 0,48 0,06 0,09 0,07 0,16 0,06 

 Skewness -0,29 11,96 12,13 12,47 0,17 0,45 14,30 0,43 1,08 0,31 4,48 0,61 

 Kurtosis 4,06 168,84 169,56 175,66 3,61 3,95 212,14 5,24 7,51 3,98 35,71 5,49 

 Jarque-Bera 13,86 266721 269148 289129 4,66 16,34 423310 54,49 237,54 12,82 10923 72,93 

 Probability 0,00 0,00 0,00 0,00 0,10 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

 
Table III.3 summarizes for the Descriptive Statistics for the time series of explanatory variables Market risk factor, Size factor,  

Value factor, and Default risk factor alongside with the time series of dependent variables formed on the returns of the 

portfolios representing the firms with the following characteristics: “small size – low value – short distance-to-default” (SLS), 

“small size – low value – long distance-to-default” (SLL),  “small size – high value – short distance-to-default” (SHS), “small 

size – high value – long distance-to-default” (SHL), “big size – low value – short distance-to-default” (BLS), “big size – low 

value – long distance-to-default” (BLL), “big size – high value – short distance-to-default” (BHS), “big size – high value – 

long distance-to-default” (BHL). The descriptive statistic tests are applied on the entire sample (from February 1991 to January 

20010). The table contains means, maximum values, the minimum values, standard deviations, skewness, kurtosis and the 

Jarque-Bera test statistics. 

 
Table III.4. Descriptive Statistics for the Time Series Involved in the Four-Factor Model Estimation – Sub-

Sample 

  RM SIZE VALUE DEFAULT SLS SLL SHS SHL BLS BLL BHS BHL 

 Mean -0,03 0,00 0,00 0,00 -0,03 -0,02 -0,02 -0,03 -0,02 -0,03 -0,03 -0,01 

 Median -0,02 0,01 0,00 -0,01 -0,03 -0,03 -0,03 -0,03 -0,03 -0,03 -0,05 -0,02 

 Maximum 0,18 0,14 0,33 0,47 0,21 0,21 0,26 0,17 0,48 0,19 1,39 0,28 

 Minimum -0,26 -0,28 -0,16 -0,14 -0,27 -0,22 -0,20 -0,19 -0,27 -0,24 -0,23 -0,19 

 Std. Dev. 0,07 0,05 0,05 0,07 0,08 0,07 0,07 0,05 0,09 0,07 0,16 0,06 

 Skewness -0,37 -1,34 1,54 2,04 0,01 0,18 0,41 0,32 1,25 0,21 4,78 0,80 

 Kurtosis 4,39 7,77 11,72 11,97 3,09 3,40 3,73 4,18 8,17 4,11 38,01 5,92 

 Jarque-Bera 21,22 256,00 729,85 829,56 0,08 2,52 10,20 15,29 281,69 11,98 11250 94,54 

 Probability 0,00 0,00 0,00 0,00 0,96 0,28 0,01 0,00 0,00 0,00 0,00 0,00 

 
Table III.4 summarizes for the Descriptive Statistics for the time series of explanatory variables Market risk factor, Size factor,  

Value factor, and Default risk factor alongside with the time series of dependent variables formed on the returns of the 

portfolios representing the firms with the following characteristics: “small size – low value – short distance-to-default” (SLS), 

“small size – low value – long distance-to-default” (SLL),  “small size – high value – short distance-to-default” (SHS), “small 

size – high value – long distance-to-default” (SHL), “big size – low value – short distance-to-default” (BLS), “big size – low 

value – long distance-to-default” (BLL), “big size – high value – short distance-to-default” (BHS), “big size – high value – 

long distance-to-default” (BHL). The descriptive statistic tests are applied on the sub-sampled data (from February 1991 to 

February 2008). The table contains means, maximum values, the minimum values, standard deviations, skewness, kurtosis and 

the Jarque-Bera test statistics. 
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III.3 Results of the Regression Estimations (the Entire Sample) 

Table III.5. The Three-Factor Model Estimation Results – Entire Sample 

  SL SH BL  BH 

Alpha 0,000 0,002 0,002 -0,004 

Std. Error 0,004 0,002 0,003 0,004 

t-statistic -0,137 0,878 0,842 -1,010 

Rm 0,725 0,899 0,881 0,788 

Std. Error 0,047 0,031 0,033 0,056 

t-statistic 15,428 28,558 26,630 14,156 

Size 0,213 1,050 -0,039 -0,629 

Std. Error 0,039 0,026 0,027 0,046 

t-statistic 5,509 40,528 -1,422 -13,720 

Value -0,084 0,732 -0,008 0,474 

Std. Error 0,026 0,017 0,018 0,031 

t-statistic -3,208 41,833 -0,425 15,317 

R
2
 0,537 0,963 0,766 0,702 

Table III.5 reports the estimation results of the Three-factor model, where the returns on portfolios “small size – low value 

(SL), “small size – high value” (SH), “big size – low value” (BL), “big size – high value” (BH) are regressed on the Market 

risk factor, Size factor and Value factor. The estimation period lies between February 1991 and January 2010. The table 

presents the estimated coefficients of intercepts and parameters for each regression alongside with the standard errors, t –

statistics and the values of R–squared. 

Table III.6. The Four-Factor Model Estimation Results – Entire Sample 
  SLL SLH  SHL  SHH BLL BLH BHL  BHH 

Alpha -0,006 0,002 0,006 -0,008 0,003 -0,001 -0,003 0,002 

Std. Error 0,005 0,004 0,004 0,003 0,004 0,002 0,006 0,003 

t-statistic -1,382 0,590 1,490 -2,413 0,933 -0,375 -0,539 0,737 

Rm 0,639 0,770 1,023 0,607 0,770 0,862 0,671 0,598 

Std. Error 0,066 0,056 0,056 0,046 0,049 0,032 0,078 0,047 

t-statistic 9,751 13,681 18,205 13,070 15,780 26,727 8,622 12,800 

Size 0,234 0,210 1,636 0,076 -0,113 -0,020 -1,394 -0,027 

Std. Error 0,057 0,049 0,049 0,041 0,043 0,028 0,068 0,041 

t-statistic 4,067 4,241 33,188 1,859 -2,638 -0,711 -20,414 -0,668 

Value -0,651 0,030 1,221 0,210 -0,490 0,017 0,648 0,355 

Std. Error 0,082 0,071 0,071 0,058 0,061 0,041 0,098 0,059 

t-statistic -7,902 0,425 17,271 3,592 -7,984 0,422 6,618 6,051 

Default 0,287 -0,125 0,458 -0,155 0,398 0,001 0,556 -0,228 

Std. Error 0,062 0,053 0,053 0,044 0,046 0,031 0,074 0,044 

t-statistic 4,626 -2,346 8,597 -3,531 8,609 0,032 7,533 -5,148 

R
2
 0,482 0,473 0,987 0,445 0,684 0,787 0,748 0,450 

Table III.6 reports the estimation results of the Four-factor model, where the returns on portfolios “small size – low value – 

short distance-to-default” (SLS), “small size – low value – long distance-to-default” (SLL),  “small size – high value – short 

distance-to-default” (SHS), “small size – high value – long distance-to-default” (SHL), “big size – low value – short distance-

to-default” (BLS), “big size – low value – long distance-to-default” (BLL), “big size – high value – short distance-to-default” 

(BHS), “big size – high value – long distance-to-default” (BHL) are regressed on the Market risk factor, Size factor, Value 

factor, and Default risk factor. The estimation period lies between February 1991 and January 2010. The table presents the 

estimated coefficients of intercepts and parameters for each regression alongside with the standard errors, t –statistics and the 

values of R–squared. 


