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Abstract

Scattered in our galaxy today are planets that have no host star
and are only bound to the galaxy. These so called free floating plan-
ets are believed to be formed around stars but have later been ejected
by passing stars perturbing their orbits, or have undergone close in-
teractions with another planet in a planetary system. This results in
one of the planets becoming tightly bound in an often eccentric orbit
and the other one ejected. In this project, we simulate the process of
stars and their attributes that favours the creation of planets, which
through planet-planet interaction processes, populate as free floating
planets. The results show that the population of free floaters are much
less than expected when compared to the latest observational data. An
explanation might be the problem that observations don’t distinguish
between free floating planets and planets in very wide orbits, or that
we simply don’t know enough about the parameters involved.
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1 WHAT DO WE KNOW ABOUT EXOPLANETS?

1 What do we know about exoplanets?

To this date, a total number of 3701 planetary candidates have been identi-
fied outside our own solar system according to The Exoplanet Orbit Database
(exoplanets.org). These planets are referred to as extrasolar planets or
exoplanets. Many of these lack a similar analog in our own solar system
and are usually very extreme, for instance Jupiter-mass planets at orbits
closer than Earth around the Sun (1 AU). Looking at how they are placed
in a semi-major axis (a) vs. eccentricity (e) plot (Figure 1) one sees a large
spread of eccentricities.

Figure 1: Log semi-major axis vs eccentricity plot of the 370 detected exoplanets
from the The Exoplanet Orbit Database using all detection methods. There are a
large spread of eccentricities for the exoplanets found.

The planets in our own solar system don’t have a large spread of eccentric-
ity. Their orbits are of the order 10−2 in eccentricity, which means fairly
circular. Exceptions are Mercury’s orbit at e ' 0.2 and Pluto at e ' 0.25
(Beatty & Chaikin, 1990) but Pluto is believed to have a different origin to
the major planets of the solar system.

A majority of the points in Figure 2 are from single exoplanet systems,
1The Extrasolar Planets Encyclopaedia states 461 planetary candidates. The ones used

here are from The Exoplanet Orbit Database which according to the authors, only includes
the most secure and peer-reviewed exoplanet orbital measurements and an upper planetary
mass cutoff of 24 Jupiter masses (Mju).
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1 WHAT DO WE KNOW ABOUT EXOPLANETS?

i.e stars with one planet as seen in Table 1.

Systems with NSystems Fraction of NTotSystems

1 planet 277 ≈ 88%
2 planets 28 ≈ 8.8%
3 planets 8 ≈ 2.5%
4 planets 2 ≈ 0.6%
5 planets 1 ≈ 0.3%

Table 1: Current exoplanet data from The Exoplanet Orbit Database where
NTotSystems = 316

In addition to the lack of exoplanets similar to those in our own system, an
extrasolar system similar to our own has yet to be found (Figure 2).

Figure 2: (Wright et al., 2009) Chart of semi-major axis and minimum masses for 28
known multi-planet systems. The diameters depicted for planets are proportional
to the cube root of the planetary M sin i. The shortest to longest distance from the
host star is shown by a horizontal line intersecting the planet.

One must bear in mind that the method that has been most successful in
detecting exoplanets, namely the radial velocity or Doppler method, hasn’t

6



1 WHAT DO WE KNOW ABOUT EXOPLANETS?

got a uniform detectability. This method searches for periodic changes in
the target star’s motion relative the observer which could be induced by
an exoplanet orbiting that star. Because of this, heavier planets at tighter
orbits are easier to find (larger changes in the relative motion).

If a multi-planet system has crossing orbits, the planets in those orbits
may come close to each other and undergo strong planet-planet interaction
(Figure 3).

Figure 3: A schematic diagram of a strong planet-planet interaction. The crossing
of two planetary orbits (Above) could result in the planets drawing sufficiently near
to each other for scattering to occur, leaving one of the planets unbound to the host
star and the other one more tightly bound in an eccentric orbit (Bottom).

In the case of two planets in circular orbits, scattering often leaves one of the
planets in a more eccentric orbit due to the energy transfer between them
and the latter one unbound to the host star (Malmberg & Davies, 2009).
Generally, two situations can cause this effect. One is the case of the orbits
being perturbed by a passing star, a fly-by. If the orbits after the fly-by are
eccentric enough to cross, there might be strong planet-planet interaction.
The second case involves the oscillation of eccentricity of two planets much
like the interaction between Jupiter and Saturn, which slowly change their
eccentricity over the course of many years in a sinusoidal fashion. If the
oscillations grow in amplitude, we have a self-unstable system. In such a
system the orbits might grow to a point at which they cross and again have
a chance of strong planet-planet interaction and ejection of planets.
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3 WHAT IS MICROLENSING?

2 What is a FFP?

If an orbiting planet is given enough velocity through the interaction ex-
plained earlier and reaches the escape velocity, it has enough energy to
escape its host system and become unbound from it. At this moment it’s
called a free floating planet (FFP) and is essentially only bound to the
galaxy. Since the gravitational force extends to infinite distances, a free
floating planet could also be a planet in a very wide orbit.

To escape the solar system, an object at the distance of 1 AU from the Sun
would require ∼ 40 km/s. Note that the object’s escape velocity doesn’t
depend on its mass. Our sun is located in the disc of the galaxy, roughly
8.5 kPc from the center. The orbital speed of our Sun in the galaxy is of
the order ∼ 200 km/s and thus the escape velocities would be of the same
order of magnitude. This means that at the event of planet ejection, the
planet would most likely end up in the disc of the galaxy. In other words,
the orbits of the FFPs around the galaxy won’t have a great height above
the galactic plane (and as an additional note, will stay in the near vicinity
of it’s former host star). Conveniently, in the method of detecting these free
floating planets, namely Gravitational Microlensing, one looks towards the
center of the galaxy that is through the disc, because of the galactic position
of the Sun.

3 What is microlensing?

The theory of general relativity predicts that light is affected by gravity.
Seen in Figure 4 is a simple illustration of this.
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3 WHAT IS MICROLENSING?

LO

Dl

Ds

Figure 4: The basics of microlensing. When in alignment, the light from a source
star at distance Ds from the observer (O) gets bent due to the gravitational effect
of a massive object between the observer and the source, appropriately called a lens
(L) at a distance of Dl, and focused on the observer.

Gravitational microlensing is a phenomena based on this and with the use
of simple geometry and general relativity, it can be explained from a stand-
point of theory (Gaudi, 2010a; Gould, 2001).

Gravitational microlensing (µL) occurs when a foreground massive object
(lens) passes close to the line of sight of a distant star (source). The source
becomes brighter as the observer, source and lens are aligned in the line of
sight and returns to it’s regular intensity as they become unaligned again.
This whole process is called a microlensing event or µL event. For an event
to occur, would require a very precise alignment which makes it rare. So
rare that Einstein (Einstein, 1936) deemed it highly unlikely to happen. To
maximise the odds, the microlensing surveys target sources in the center of
our galaxy where the stellar density is the highest. The distances to the
sources Ds will then be around 8.5 kPc.

A more detailed description of microlensing is seen in Figure 5.
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3 WHAT IS MICROLENSING?

Figure 5: More detailed description of microlensing. The figure to the left describes
the general case of an unaligned source (S), lens (L) and observer (O) and the
resulting image (I). Whereas they are in alignment in the right figure.

Here the left image depicts the unaligned case which means an unlensed
source and the right at full alignment (lensed source). β is a measure of
alignment between the source and the observer in the absence of lensing
and θ is the angular position of the image of the lensed source.

Light from the source (S) at the distance Ds from the observer (O) gets
deflected by a lens (L) by an angle of

α̂d =
4GM
rEc2

(1)

for a point mass lens M and impact parameter of rE . An assumption that
the lens has no spatial extent is made which is valid because of large distances
between the observer and the lens. In the absence of lensing (left image),
the relation between the angular position of the image θ and unlensed source
β is given trivially by

β = θ − αd (2)

Since the distances involved are great (the order of kPc), using the small
angle approximation and simple geometry, one gets α̂d(Ds − Dl) = αdDs

and rE = Dlθ. Combining these with the two above equations:

β = θ − αd = θ −
(
Ds −Dl

Ds

)
α̂d

β = θ − 4GM
c2θ

Ds −Dl

DsDl
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3 WHAT IS MICROLENSING?

In the case of perfect alignment β = 0⇒ θ ≡ θE

θE =
√

4GM
c2

Ds −Dl

DsDl

=
√
κM · Ds −Dl

DsDl

θE =
√
κMπrel

where κ = 4G
c2AU

' 8.14 mas ·M−1
� ·AU−1 and πrel is the relative lens-source

parallax

πrel =
1 AU

(D−1
l −D

−1
s )−1

=
1 AU
Drel

θE is called the Einstein angle and when perfectly aligned, the source gets
imaged into an “Einstein ring” with a radius of θE , the size of which is very
small. Using a typical value for Dl somewhere between us and the source
and a Ds at 8.5 kPc (center of our galaxy), one gets to an Einstein angle
around θE ' 500 mas. This corresponds to a physical ring

rE = θEDl (3)

where rE ∼ AU . As noted before, the lens, source and observer are in
relative motion between each other. The magnification will thus be a func-
tion of time and the µL event will have a duration. The duration tE is the
time-scale to cross the angular Einstein ring radius

tE ≡
θE
µrel

(4)

where µrel is the proper motion of the source relative the lens. Inserting the
equation for θE yields:

tE =
√
κMπrel · µ−1

rel

which can be simplified to only be a function of stellar mass. Using typical
values of µrel = 125 µas and πrel = 10.5 mas/yr

tE ≈ 25 d
(

M

0.5 M�

)1/2

(5)

(Gaudi, 2010b)
As one easily can notice, inserting a star with M = 0.5 M� will yield a
tE = 25 d. A planetary mass of 1 Mju ≈ 0.001 M� will instead produce a
tE of

tE ≈ 25 d
(

0.001 M�
0.5 M�

)1/2

≈ 1.1 d (6)
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3 WHAT IS MICROLENSING?

Thus the duration of an event caused by a planet will be significantly shorter
than one caused by a star simply because of the mass difference between the
two. This is emphasised in Figure 6.

Figure 6: (Top) A classical microlensing event of a source star as it is amplified by
a passing foreground lens.
(Bottom) In this case the lens is instead a binary, a star and a planet. The planet
also acts as a lens but will because of the lower mass cause a shorter duration.
(PLANET collab. - http://planet.iap.fr/planeet.html)

The top curve is a microlensing event with the lens being a single star and
the bottom a star and with a planet. Important aspects to remember with
gravitational microlensing is that these curves are taken using light from
the source (background) star and NOT the lens, since it’s the light from the
source that gets amplified and not vice versa. The other one is that this
project treats free floating planets and NOT extrasolar systems. However,
using Figure 6 one can clearly depict the planet having a smaller duration
than the star, which was proven in the equation above. The so far only
method of detecting free floating planets is via gravitational microlensing
and with a range of sensitivity that spans to the kPc range, few methods
can match it and verify the detections even if the planets are fairly luminous,
providing this method a large weakness.
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4 The project

The main goal of this project was to answer the question:

How many stellar µL-events does one need to see before one expects to see
one that is caused by a FFP?

To solve the problem, it was broken down into three stages. Stage one
involved the creation of a stellar and a free floating planet population. Stage
Two was about determining the relative rate of µL-events and Stage Three
determined the probability of an event being registered by a detector, the
so called “Detector efficiency”. Combining Stage 1–3 would result in the
relative rate of registering events caused by FFPs compared to typical lensing
stars, which is the main goal of this project.

4.1 Stage One

4.1.1 Stellar Mass

The stellar mass isn’t distributed in a trivial way. The initial mass function
or IMF (Kroupa, 2001) is described as a multi-part power law

dN = ξ(m)dm (7)

ξ(m) = k


c1 ·m−0.3±0.7 0.01 ≤ m/M� < 0.08
c2 ·m−1.8±0.5 0.08 ≤ m/M� < 0.50
c3 ·m−2.7±0.3 0.50 ≤ m/M� < 1.00
c4 ·m−2.3±0.7 1.00 ≤ m/M� < 120

where k is a normalisation constant. Since we are interested in a relative
distribution, namely N?

NFFP
, there is no need of evaluating k. However, there

is still the need of connecting the different power-law parts by evaluating c1
to c4. Immediately one can see that c3 = c4 since at m = 1:

c3 ·m−2.7±0.3 = c4 ·m−2.4±0.7

⇒ c3 = c4 = 1

From respect to these, we can derive the other constants

c1 = 0.5−0.9 · 0.08−1.5

c2 = 0.5−0.9

c3 = 1
c4 = 1

Now connected, the IMF is easier represented in a logarithmic form
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4 THE PROJECT

y = log10m

dy

dm
=

1
m ln 10

dN

dy
=
dN

dm
· dm
dy

dN

d log10m
=
dN

dm
·m ln 10

⇒ ξ(log10m) = ξ(m) ·m ln 10

Since the conversion to logarithmic form yielded an additional factor m, the
power-laws will change. This is shown in the equation below and visualised
in Figure 7.

dN

dm
∝ m−α

dN

d logm
∝ m ∗m−α = m1−α

10
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10
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Figure 7: Initial Mass Function (IMF) in a logarithmic form using Kroupa (2001).
The function is a 4-part power law, where each part represents a mass range cor-
responding to a named population (for instance Brown Dwarfs or M-dwarfs etc.).
The function has not been normalised for reasons explained in the text.
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The different named populations corresponding to the mass ranges where
calculated and compared with the ones provided by Kroupa (2001) in order
to check for consistency (Table 2).

Calculated Kroupa 2001
Brown Dwarf (0.01− 0.08 M�) 50% 50%

M-Dwarf (0.08− 0.5 M�) 43 % 44%
K-Dwarf (0.5− 1.0 M�) 4.2% 4.3%

G - O stars (1.0− 120 M�) 2.4% 2.5%
< m > 0.20 M� 0.20 M�

Table 2: Comparision of the named populations with their mass ranges given in
Kroupa 2001 and the calculated ones using the IMF provided in the same paper

The populations agrees to a high degree. The reason that they differ slightly
is probably due to accuracy in the numerical calculation used to acquire the
numbers. Using Equation 5, the conversion between event time-scales and
masses is easily done, provided the basic assumptions presented with the
equation are followed.

4.1.2 Assigning stellar ages

The initial mass function is phrased such a way because it doesn’t treat the
evolution of stars. The function describes the distribution of masses at the
instance of creation (τ = 0). The current distribution of masses (Present-
Day Mass Function or PDMF) is an IMF with the aging/evolution of stars,
but also the creation of new stars taken into account.
The creation of stars is described by the Star Formation Rate (SFR) and
usually has the unit of [mass/time]. When assigning ages to stars, one has
to examine the SFR history, i.e the SFR as a function of time. The distri-
bution of stellar ages would follow this. For instance, if there was a sudden
peak of star formation at a certain time, a higher percentage of stars would
have an age corresponding to when that peak occurred.

A uniform or flat SFR history means a uniform distribution of ages. In
other words, in a given interval the odds of a star having a certain age is as
probable as having another where maximum stellar age is set to be roughly
the Hubble time

τmax = 1010 Y rs = 10 Gyrs

4.1.3 Stellar evolution

Stars generate energy through nuclear processes and send it out via electro-
magnetic radiation, resulting in a change in its chemical composition over
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4 THE PROJECT

time. This is the Mass-Luminosity relation that roughly states the following:

L ∝ m3

The so-called main sequence (MS), where our Sun currently is located, is
a period when stars produce helium in their cores from nuclear fusion of
hydrogen and are in hydrostatic equilibrium. Eventually MS stars will have
burnt most of their hydrogen deposits and moved on to other stages. The
time that the star spends on the MS depends on how much material there
is to burn (mass), but also at the rate at which it’s burned. Higher temper-
ature increases the rate of fusion, meaning higher luminosity. Therefore MS
lifetime τMS can simply be expressed in the following way

τMS ∝
m

L
∝ m−2

τMS ≈ A ·m−2

In order to fix the relation, the lifetime of the Sun, approximately τMS(1M�) =
1010 years, was chosen.

τMS(m) ≈ 1010 ·m−2 years (8)

The equation is visualised in Figure 8.
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Figure 8: Log-log plot of stellar mass inM� against the main sequence (MS) lifetime
in GYrs. The power-law of Equation 8 is clearly depicted.

As stars move away from the main sequence they’ll eventually end up as
remnants. These are listed in Table 3 along with the stellar masses that
causes them.
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Remnant Mass (M�) Caused by (M�)
White Dwarf ∼ 0.6 m < 8
Neutron star ∼ 1.4 8 ≤ m < 30
Black hole ∼ 10 m ≥ 30

Table 3: Remnants and typical stellar masses that causes them. Black holes in this
context are the stellar mass ones

4.1.4 Stellar metallicities

The stellar metallicity is a measure of how much helium and heavier elements
a star contains. In this project the metallicity is referred to as the iron
content of a star, [Fe/H].

[Fe/H] = log(NFe/NH)− log(NFe/NH)�

NX stands for the number of element X. The metallicity of a star is calcu-
lated relative the Sun as seen in the equation above, where the latter term
is the value of metallicity for the Sun. When a star contains as much iron
as the Sun, [Fe/H] = 0.

In our Galaxy there is a metallicity gradient (Pedicelli et al., 2009, Fig.
3 therein). This is a relation between radial distance from the galactic cen-
tre and the metallicity. With the knowledge that the massive objects acting
as lenses are between us and the galactic centre, the metallicity according
to the Pedicelli et al. (2009) will be in a range between 0 and +0.5 dex.

4.1.5 Planet population

From the same cloud of gas that forms the star, planets are formed. Intu-
itively, the higher the metallicity the more rocky materials to form planets.
According to the core-accretion method of forming planets (Johnson, 2010,
from now on JJ2010) there are three stages in planet formation. The early
growth is in the µm domain and consists of sticking coagulation of particles.
During mid-life growth bodies of ∼ 10 km in size are made through gravita-
tional attraction and are at the end of this stage, cores. In the late growth
stage, the cores rapidly accrete gas and grow into sizes of ∼ 104 km.

Higher mass or [Fe/H] means a faster core-production and thus more time
for rapid gas accretion. This is favourable since stellar radiation and accre-
tion onto the host star decreases the amount of surrounding gas in the cloud
over time. The probability of harbouring a giant planet increases with stellar
mass, but drops at M > 3 (Kennedy & Kenyon, 2008, Fig. 7 therein - from
now on KK2007), because at larger stellar masses the lifetime of the disc
becomes comparable with the time it takes to form the host star. When the
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star is formed the disc begins to heat up, expand and thus dissipate. From
KK2007

Pp = (0.2M? − 0.06)α (9)

where α is a normalisation constant chosen so that it fits with Udry et al.
(2007) calculated value for solar properties. They state that 6,6% of the
stars have giant planets (from RV surveys).

Pp(1 M�) = 0.066

⇒ Pp(m) = (0.2
m

M�
− 0.06)

1
0.14

There is however another suggested relation from JJ2010 that states

Pp(m) ∝
(
m

M�

)1.13

I chose to follow KK2007’s linear relation, since Pp(0.3 M�) = 0 compared
to the power-law form suggested by JJ2010 which has a Pp(0.3 M�) ≈ 0.26.
My guess is that the odds of a low mass star having a planet should be closer
to 0 than what JJ2010 predicts.

The probability of harbouring giant planets as a function of metallicity
(JJ2010) derived from RV survey data, is given by

Pp(F ) = 0.066 · 101.07F (10)

where F is the metallicity [Fe/H]. So now the total probability of a star
harboring a giant planet becomes

Pp(M,F ) = 0.066 · 101.07F · 1
0.14

(0.2M − 0.06) (11)

4.1.6 Planetary mass distribution

The planets themselves are also believed to follow a mass distribution simi-
larly to how stars follow the IMF. Marcy et al. (2005) show that the distri-
bution of exoplanets follow a power-law

dN

dMp
∝ (Mp sin i)−1.05 (12)

The data used to acquire the above relation is from RV surveys and as a
result from that, the information regarding the inclination of the exoplanet
orbit around its host star, is degenerate. Hence what’s measured is really
a minimum mass Mmin = Mtrue sin i, where i is the inclination of the orbit
and can be anything between face-on (0◦) to an edge-on (90◦) orbit. Given
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that the distribution of the inclination is uniform between these, the mean
value becomes

y = sin i
i = [0 π/2]

⇒ ȳ = 2/π

Equation 12 now becomes

dN

dMp
∝ (2/π)−1.05 ·M−1.05

p

The method used to create the populations (explained in the next subsec-
tion) isn’t in need of a normalisation and since the distribution of inclinations
is uniform, the constant factor from the relation above can be removed.

dN

dMp
∝M−1.05

p (13)

The relation is taken to be valid within the limits of 0.5 Mju ≤Mp ≤ 15 Mju.

4.2 The program

So how do we create the population of stars and planets? Using MATLAB,
my goal in Stage One is to create an array of masses that should follow
the IMF, array of metallicities (metallicity distribution) and array of ages
(following the SFR). This is done with the use of a Monte Carlo (MC)
method. Monte Carlo utilises random variables and probability statistics to
investigate problems. The method used here is popularly called the ”hit or
miss” method. In the case of the mass distribution, we begin by encasing
our function. This is easily imagined if one thinks of Figure 7 (IMF plot)
being encased by a geometric shape that covers the entire area of interest.
Random values are picked within that encasement.

mmin < mrand < mmax

ξmin < ξrand < ξmax

ξrand and mrand are coupled. By making sure

ξrand ≤ ξ(mrand) (14)

I ensure that the functional value always is “below” or equal to the function,
these are hits and are saved in the array. The values that are “above”
the function are branded as misses and are not saved. When this process
has been repeated (iterations) N times, the array has now a certain length
(#hits) that corresponds to:

#hits
N

=
Abelowfunc.
Aencasement

(15)
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From Equation 15 one can easily calculate the integral of the function
Abelowfunc., which is what this MC method is commonly used for. In this
project however, the integral was only calculated for the values in Table 2.
The only information kept from this process is the mass, because of the
distribution still being contained in the array (making a histogram of the
masses would retrieve the shape of the function).

Similarly the metallicity and age was determined. Since I chose uniform
distributions for these, we skip the restriction process (Similar to Equa-
tion 14) and just randomly generate values within a given interval. Stellar
ages where picked from 0 to the Hubble time and metallicity between 0 and
+0.5 dex. Each object has by now a mass, metallicity and age coupled to
it, defined by three arrays in total.

The next step is what makes the PDMF. From Equation 8 (MS lifetime):

τrand ≤ τ(mrand)

I’m making sure that if their ages are higher than their MS lifetime per-
mits, they aren’t main-sequence anymore, have evolved (become red giant
and so forth) and become remnants according to Table 3. This is a valid
assumption to make because of the short times spent by the stars on the
post-Main sequence stages. After this, the PDMF has been created with N?

number of stars each with it’s own mass, age and metallicity. From these,
the planetary population is created.

A restriction similar to the ones put before is used when creating the plan-
etary population, but with the functional value now determined by Equa-
tion 11 (Probability of forming a planet). Using the generated stellar mass,
metallicities and a randomised functional value (Pp rand), a population of
stars with planets is created. Like the IMF these planets have masses, with
the use of Equation 13 and the same technique as before, the planetary
masses are distributed.

Summarising Stage One, I created a number of stars N? characterised by
three arrays: mass, metallicity and age. Two of these arrays (mass and
metallicity) were then used to create the planetary population. Lastly, an
array was created for the planetary masses to be distributed, according to
Equation 13.

4.3 Stage Two

The rate of µL events is determined by the probability for an event occurring
with us as observers. One way of approaching it is to imagine the Einstein
ring of a lens travelling across the sky, creating a band. (Figure 9).
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Figure 9: Schematic diagram of a lens and its Einstein ring. The lens draws a band
as it moves on the sky

Larger lens mass means a larger θE and thus a wider band. The probabil-
ity of a source star being located within this band, causing a µL event is
subsequently then correlated with the lens mass.

θE ∝ m1/2
L (16)

rel. rate ∝ m1/2 (17)

As we pointed out before we aren’t interested in the exact number of events,
but the relative number of events. So the use of the proportionality (without
any constants) is sufficient. In order to easily handle the data, the entire
examined mass range (planetary masses + stellar masses) was divided into
log-histograms, each with N?,i stars and Np,i planets in the i:th bin and a
mean mass

< mi >=

∑
j=1m(j)

N?,i +Np,i

Since planetary and stellar masses never overlap, when handling planetary
masses (in the low part of the mass range) the stellar part N?,i of the above
equation is equal to 0. Correspondingly, when moving to stellar masses, the
planets don’t contribute to the mean mass. The reason for the use of log-
histogram is because the entire mass range examined, planetary and stellar
mass combined, stretches many orders of magnitude. That makes it easier
to handle the data in log-space.

The relative rate, now with the use of log-histograms, becomes:

Γi = (N?,i +Np,i) ·
√
< mi > (18)

In the same way, the average Einstein-time for each bin:

tE,i ≈ 25 d
(
< mi >

0.5 M�

)1/2

Summarising Stage Two, the star- and planet-populations where binned up
into logarithmic histograms with the i:th bin having a mean mass of < mi >,
N?,i stars, Np,i planets, a duration of tE,i and a relative event rate Γi.
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4.4 Stage Three

Detectors rarely have a uniform detection. That is, they seldom have equal
chance of detecting two objects that are at different sides of the spectrum.
In µL surveys the signals at low masses are briefer (Equation 5) and there-
fore the resolution in time for an instrument restricts it. Having uniform
detection will not change the relative distribution of the detected objects.
In other words, it won’t change the “shape” of the curve, only the scaling.
This is important to remember since we’re only interested in the relative
distribution of detected FFPs to stars and not any exact numbers.

The Microlensing Observations in Astrophysics (MOA)2 carried out a µL
survey during 2000 with a non-uniform detection probability (Sumi et al.,
2003, Fig.18 therein). A fit was extracted from their detection curve rep-
resenting the detector efficiency of all possible source stars (Equation 19,
Figure 10).

ln ε = −6.44 + 1.01 ln(tE/d)− 0.15[ln(tE/d)]2 (19)
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Figure 10: MOA detection efficiency for the ngb1–2 subfield for all source stars
against tE from Sumi et al. (2003) using an extracted fit (Equation 19). Low mass
objects (for instance FFPs) are only detectable via µL through high magnification
events (excellent alignment) which has a smaller probability of occuring.

2MOA homepage: http://www.phys.canterbury.ac.nz/moa/
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The number of detected planets and stars is then a combination of Equa-
tion 19 and Equation 18:

Υ(tE) = Γ(tE) · ε(tE) (20)

For every bin, a value of Υi(tE,i) will be calculated. When plotting Υ against
tE the result will be similar to (Sumi et al., 2003, Fig.28). My own version
of the plot is created for comparison using the Kroupa (2001) IMF, see
Figure 11.
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Figure 11: A plot displaying event duration tE versus the number detected. The
figure is adapted from Fig. 28 in Sumi et al. (2003) where the histogram displays
the distribution for 28 observed events from the MOA survey whereas the curve is
a theoretical prediction, using the PDMF, relative event rate and MOA detection
efficiency from this paper. The power-laws inherited from the IMF are visible
compared to the figure in Sumi et al. (2003) due to that there is no Galactic model
taken into account in my theoretical prediction. What a Galactic model would do
is mainly specify where in the galaxy our lenses are. Since the event duration tE
depends on the position of the lens (for same proper motions), the inclusion of such
a model would “smoothen” out the curve of the theoretical prediction.

Figure 11 is a semi-log plot of the number of detected stars versus tE . The
curve represents the theoretical prediction of the stars whereas the histogram
is observational data from 28 events (Sumi et al., 2003). As mentioned,
Figure 11 only takes stellar objects into account. The lack of log-scale on
the y-axis doesn’t allow for planetary time-scales to be visible on the plot.
In this paper I treat both planets and stars so instead of only having a peak
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caused by stars, there will be an additional peak caused by the free floating
planet population much like (Kamiya et al., in prep.) presents (Figure 12).

Figure 12: (Kamiya et al., in prep.) A collection of 2006-2007 data from the MOA
collaboration. The line is a theoretical distribution from stellar population with
a galactic model taken into account whereas the crosses are observational data.
There seems to be an excess of short events that might be caused by free floating
planets.

Additionally one must mention again that there won’t be any effort put into
getting the normalisations of all the parameters used to acquire the result,
therefore the number of detections will instead be the relative number of
detections.
Summarising Stage Three, for every bin the relative detected events Υi(tE,i)
is calculated. The result is then presented by plotting Υ(tE) against tE .

5 Results

5.1 First run

5.1.1 Stage One

I assume for every star with planet, 1 planet has been ejected.

∴ N? w.planets = NFFp

The outcome of Stage One was N? = 1, 000, 000 and N? w.p = NFFp ≈ 7000
All the processes in this stage are manifested in Figure 13 through Figure 17.
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Beginning with Figure 13, a uniform distribution of stellar ages was chosen
which is easily noted in the figure.
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Figure 13: Histogram showing the relative distribution of stellar ages in the PDMF.
The stellar ages are uniformly distributed because of the chosen uniform SFR.

From Figure 14 one can depict the logarithmic behaviour inherited from the
IMF on the x-axis and the uniformly distributed stellar ages on the y-axis.
To be clear, each point in the figure represents a stellar object. The curve
cutoff at high masses is the MS lifetime restriction that doesn’t allow for old
heavy stars to exist as MS stars. Additionally, the three lines with higher
density of points are the remnants (see Table 3).
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Figure 14: Logarithmic plot of the present-day population of stars showing their
mass in M� against their age in years. The slope noticeable at higher masses is due
to the MS lifetime restriction and the density shifts of the points follow the IMF.

When examining metallicity vs. mass for the stellar objects (Figure 15),
the mass distribution is noticed, as before, along the x-axis aswell as the
uniformity of the metallicity.

26



5 RESULTS

10
−2

10
−1

10
0

10
1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Mass (M
sol

)

[F
e/

H
]

Figure 15: Logarithmic plot of the present-day population of stars. The stellar mass
presented in logarithmic scale follows the IMF and is manifested by the density
shifts of the points. The uniformity of metallicity is also clearly displayed.

Heavier and more metal rich stars are favoured in the process to have planets
(Johnson, 2010). Figure 16 displays the population of stars with planets
(created using Equation 11) and how they fit in a Mass versus Metallicity
plot. The cutoff at lower masses comes from the use of KK2007 that causes
the probability to be zero at stellar masses of ' 0.3 M�.
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Figure 16: Logarithmic plot displaying the population of stars harboring planets.
Stars with higher metallicities are favoured when creating planets which is mani-
fested in this plot by the higher density of points at higher metallicities. The same
goes with stellar mass with the addition of a low cutoff at a stellar mass of ' 0.3 M�

Since a potential correlation between planet creation and stellar age is ne-
glected, the plots showing the masses of the population of stars with planets
plotted against their age, will be similar to the one containing all stars
(PDMF) except for the cutoff introduced from KK2007.

The mass distribution of the planets where chosen to follow the power-law
presented earlier (Marcy et al., 2005). Seen in Figure 17, the distribution
follows the trend given by the power-law within the limits put at 0.5 and
15 Mju. The free floating planets are then assumed to follow the same
distribution.
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Figure 17: The planetary mass distribution of observed exoplanets using the single
power-law of Equation 13 radial velocity measurements from Marcy et al. (2005).
The drastic drop at low masses is a limit set at 0.5 Mju in order to prevent the
function to otherwise explode when moving towards 0 Mju and thus not astrophys-
ically motivated. An upper limit of 15 Mju was also set. The free floating planets
are assumed to follow the same mass distribution.

5.1.2 Stage Two & Three

In order to acquire a Kamiya et al.-like plot, the relative rate of events (Stage
Two) is multiplied with detector efficiency fit Figure 10 (Stage Three, MOA
detection efficiency plot), which yields Figure 18.
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Figure 18: Kamiya et al. like plot using the Kroupa (2001) stellar mass distribution,
a uniform star formation rate and metallicity range, a simple equation for the MS
lifetime and the Marcy et al. (2005) planetary mass distribution. As explained
earlier, the differences in shape (when comparing to Kamiya et al. (in prep)) of the
lines arise from the fact that no Galactic model was used in my model. Inclusion
of that would smoothen out the shape. The three points/bars standing out of the
curve at durations of roughly 30, 40 and 100 days are the three different compact
remnants (white dwarf, neutron stars and black holes respectively) caused by stellar
evolution.

By taking the area below the detected stars (Det?) and dividing with the
area below the detected free floating planets (DetFFP ) in Figure 18, one
answers the main question: “How many stellar µL-events does one need to
see before one expects to see one that is caused by a FFP?”

Det?
DetFFP

=
∑

i h?,iw?,i∑
i hFFP,iwFFP,i

where h is the height of the peak and w is the width of the bin. Since the
width didn’t change in log space with bin number and object type (planet
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or star), the above equation is simplified to

Det?
DetFFP

=
∑

i h?,i∑
i hFFP,i

' 3.0 · 103 stars

Comparing the relative height between the peak caused by stars and planets
from the observational data (Figure 12) and the plot generated from the
first run (Figure 18), the later has a higher difference, so the Det?/DetFFP
from the MOA observational data are many orders of magnitude lower,
i.e there are more low-duration objects detected per detected star in the
observational data. This might be due to uncertainties in the assumptions
used for calculating Figure 18.

5.2 Uncertainties

Figure 18 was generated by a program with editing capabilities. Stellar and
planet attributes can easily be altered in order to see how much impact they
will have on the result. The following attributes were altered

5.2.1 Stellar metallicity

The metallicity range was altered between the previous uniform distribution
(between 0 and +0.5 dex), to all being solar-like (0).

5.2.2 Star formation Rate

The SFR history being formerly uniform could be exponentially declining
with time simulating an explosion in stellar creation at the beginning of
time.

SFR =
dN

dt
∝ e−t/T (21)
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Figure 19: Histogram showing the relative distribution of stellar ages in the PDMF.
Since this SFR assigns generally higher ages, there’ll be less number of older stars
left in present time compared to when one uses the uniform SFR.

where T was set to 1 Gyr. Displayed in Figure 19 is a histogram of the
stellar object’s age distribution using the above relation for the SFR. This
is to be compared with the uniform distribution of ages shown in Figure 13.
As an effect of the Non-uniform SFR assigning higher ages, there will be a
less number of older stars when comparing to the uniform SFR due to their
short MS lifetimes.

5.2.3 Main sequence lifetime

The uncertainty in the Main sequence lifetime calculation was checked with
a more advanced formula. Eggleton et al. (1989) presents the following
formula for calculating the MS lifetimes.

τMS =
2550 + 669M2.5 +M4.5

0.0327M1.5 + 0.346M4.5
Myr

A comparison of the two MS lifetime formulae is seen in Figure 20.
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Figure 20: Log-log plot of stellar mass in M� against MS lifetimes in GYears
using the more advanced formula (Eggleton et al., 1989) in continuous line, to
be compared with the simpler single power-law relation from Marcy et al. (2005)
(Figure 8) in dashed line.

5.2.4 Planet mass distribution

The planetary mass distribution of Marcy et al. (2005) was checked against
one presented in Mordasini et al. (2009). Seen in Figure 21 the alternative
distribution covers a larger span of planetary masses and can populate the
low mass end since it doesn’t explode when moving towards 0 Mju. It is
therefore in no need of a low mass limit as the previous planetary mass
distribution did.
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Figure 21: Adapted version of the planetary mass distribution presented in Mor-
dasini et al. (2009) to be compared with the single power-law distribution from
Marcy et al. (2005). Unlike the previous distribution, no limits has to be set which
allows for low planetary masses.

For the above mentioned alterations, simulations can be run with all the
permutations (which adds up to a total of 16 simulations). The answer to
the main question in this project, i.e “How many stellar µL-events does one
need to see before one expects seeing one that is caused by a FFp?” is
answered for each combination and presented in Table 4, including the first
run.
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Z SFR MS Mp NFFP Detected N?
NFFP

(/103)
1 1 1 1 5600 3.2
1 1 1 0 5700 3.7
1 1 0 1 6000 3.1
1 1 0 0 5900 3.5
1 0 1 1 6400 2.9
1 0 1 0 6400 3.3
1 0 0 1 7200 2.6
1 0 0 0 7100 3.0
0 1 1 1 2900 6.6
0 1 1 0 2900 7.2
0 1 0 1 2900 6.2
0 1 0 0 3000 6.8
0 0 1 1 3200 5.9
0 0 1 0 3200 6.5
0 0 0 1 3700 4.9
0 0 0 0 3700 5.7

Table 4: All the configurations from the listed variations.
Z marks whether the metallicity is solar like for all (0) or uniform between 0 to
+0.5 dex (1)
SFR is either uniform (0) or exponentially declining with age (1)
MS (Main sequence lifetime) is either determined with a simple relation (0) or more
complex (1)
Mp distribution is either determined by the power-law from Marcy et al. 2005 (0)
or Mordasini et al. 2009 (1).
The final column displays how many stars that are detected per detected free float-
ing planet rounded to one decimal and is the answer to the main question in this
project. N? = 1, 000, 000 in all simulations. The first run had a configuration of
1,0,0,0

For comparison, a plot similar to that of Figure 18 was generated but using
the opposite configurations (Figure 22). That is: All stellar metallicities be-
ing solar, exponentially declining stellar age distribution (more older stars),
more complex MS lifetime calculation and Mordasini et al. (2009) planetary
mass distribution.
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Figure 22: This figure shows the event duration versus relative number of detections.
It’s generated using different assumptions compared to the first run (Figure 18).
Specifically, this figure was generated with the following attributes: All stellar
metallicities being solar, exponentially declining stellar age distribution (more older
stars), more complex MS lifetime calculation and Mordasini et al. (2009) planet
mass distribution. When comparing to the first run, there are more points for the
planetary peak at lower durations because the planetary mass distribution used
allows for low mass planets to exist. Again the three points/bars at durations of
roughly 30, 40 and 100 days are the three types of remnants (white dwarfs, neutron
stars and black holes) resulted from stellar evolution. Also, the decrease in points
at high durations is a consequence of the exponentially declining SFR. Generally
higher stellar age means generally less remaining stars, especially at higher stellar
masses

From Table 4, one can see that Detected N?
NFFP

varies at about a factor 2 be-
tween the different combinations. So the uncertainty would be at about this
level. However, this level of uncertainty still doesn’t account for the differ-
ence seen between Figure 18 (first run) and Figure 12 (MOA Observational
data).
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6 Discussion

The height of the planetary or stellar peaks are only dependent on how
many objects (planets or stellar objects respectively) there are. In order to
reach the same relative difference, the planetary peak of the first run must
be increased by a factor of ≈ 470 resulting in the following populations.

N? = 1, 000, 000
NFFP ≈ 3, 400, 000

⇒NFFP

N?
' 3.4 (3)

Detected
N?

NFFP
' 6.2 (6)

The parentheses in the end are to emphasise that one cannot have non-
integer number of objects. The calculated number of free-floating planets
per star (NFFP

N?
) is equal to the one presented in Gaudi (2010b) for the obser-

vational data. This was by assuming that the observational data (Figure 12)
is unbiased, has enough number of observations to avoid large uncertainties
due to standard deviations and that all short-timescale events are caused
by free-floating planets. The fact that the two values are equal validates
the program used in this project. Using this data and the MOA detection
efficiency, I get that one detects approximately 6 stars before one expects to
detect a free floating planet.

The plausibility of this, is in my opinion, doubtful since it would mean 470
free-floating planets per star with planets (first run was 1 free-floating planet
per star with planets). It is however not clear whether the short-duration
peak in the observational data was only due to FFPs, as planets in very wide
orbits (similar to those that have been imaged directly orbits of ∼ 100s AU)
may also add to these (Gaudi, 2010b) and cause the increased height in the
planetary peak. Another possible explanation is that there might be a larger
percentage of stars that have planets than what is known. A higher fraction
of extrasolar systems means more FFPs which would up the planetary peak.

The knowledge of the free floating planet population is crucial to our un-
derstanding of planetary creation processes and the stability of planetary
systems. A number of questions that can be answered are for instance the
frequency of FFPs (as discussed previously), how usual is planet ejection?
With knowledge of their masses: How does their masses distribute?, Does
it differ with other planetary distributions, and if so, why? There are two
competing theories for planet creation, one being the core accretion method
mentioned in this report. The other one is called gravitational instability.
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The latter one predicts production of planets at large orbits. These have
higher tendencies of being pulled away, making them free floating planets
by passing stars, as opposed to the more close-bound planets predicted by
core-accretion. If the observed free floating planetary mass distribution is
heavier than suspected from core accretion, then it might be an observa-
tional proof of this.

Using a similar program as the one created for this project and better ob-
servational data that’ll come out of future surveys, one can work out what
the free floating planet mass distribution is but also verify the stellar mass
function. Additionally, knowing how many free floating planets that ex-
ist out there, might put a restriction on the fraction of extrasolar systems
compared to stars.
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