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Abstract

Thirteen stellar objects known as extended globular clusters were found in the

Halo of the Andromeda Galaxy. Three of these extended clusters have quantitative

properties which are subsequently used to determine whether clusters of extended size

could survive in the orbits of the Milky Way Galaxy. The question of whether extended

clusters could survive in the orbits of the Milky Way, is interesting to explore because

Astronomers hypothesize that the existence of these rare objects is not restricted to

M31. However, none have been found in the Milky Way to date; and it is the purpose of

this report to begin to investigate whether this fact is indeed curious or whether there

is a plausible explanation for why they are absent. Two major factors affecting the

likelihood of extended clusters surviving in the Milky Way Galaxy were investigated;

namely, Tidal effects on the extended clusters in the orbits of the Milky Way; and the

comparative cluster distribution of both Galaxies. The resulting data reveal that the

cluster distribution in M31 favors the existence of extended globular clusters more than

that of the Milky Way Galaxy; and that tidal shredding would play a prominent role

in removing most of the extended clusters from the Milky Way, if they were present in

the first place; however, despite the latter, a small fraction of extended clusters could

still survive despite the tidal forces present in these orbits.
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1 Introduction

The central theme of the present report can best be described as an attempt to in-

vestigate the possible activity leading to the lack of objects, known as extended globular

clusters, present in the Milky Way Galaxy, today, where the use of the term “extended” is

understood to be synonymous with a globular cluster with an unusually large half-light ra-

dius, Rh (Huxor, 2005). The absence of these unusual clusters is useful to investigate, since

Astronomers suspect that there are other Galaxies, in addition to M31, in which they reside.

The present report is based largely on the work of two publications, the 2005 paper by

A.P. Huxor et al. in which 3 extended globular clusters were found in the Halo of M31 (see

Figure 1 (Huxor, 2005) for details), as well as the 2006 paper by C. Allen et al. in which

orbits of 48 of the 150 globular clusters of the Milky Way are computed using available space

velocity data and their corresponding tidal radii, computed. Using the parameters of the

extended globular clusters provided by Huxor (2005), combined with the orbital informa-

tion provided by Allen (2006), the present report seeks to answer the question of whether

extended clusters could have existed in the Milky Way at one time but have been sub-

ject to tidal disruption, to such a degree that the present clusters are no longer extended,

but rather, classified as regular globular clusters. Placing the extended globular clusters in

these known orbits is one way of investigating the tidal effects on clusters of “extended”

dimension. Further, the result of such a test provides valuable information about some of

the possible conditions under which globular clusters of extended size could possibly exist.

There is currently no orbital information available for the remaining globular clusters of

the Milky Way, however, physical data; such as magnitude and globular cluster coordinates

provided by the Harris Catalogue (1996), is used in combination with information on the

known orbits (Allen, 2006), to predict the tidal radii of the remaining Milky Way globular

clusters.

Hence, the major objectives of this report are to:

• determine whether extended clusters would survive in the known orbits of the Milky

Way

• predict the orbits of the full set of Milky Way clusters based on information available

from the Harris Catalogue (1996) as well as the known orbits of Allen (2006)

• determine whether extended clusters can survive in the estimated orbits

• relaxing the definition of “extended globular cluster” to include extended clusters that

have undergone some degree of tidal shredding and see how many additional extended

clusters survive in the Milky Way orbits

• compare the distribution of clusters in M31 and Milky Way Galaxies

• determine whether Milky Way clusters could be considered a representative subset of

those found in M31
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• determine whether the cluster distribution in the Milky Way can explain the lack of

extended clusters observed

• determine how many extended globular clusters one would expect to see in the Milky

Way if the same ratio of extended to regular globular clusters existed in the Milky

Way as in M31

• determine the conditions under which one could expect to see extended clusters in the

Milky Way

The nomenclature found throughout this report is as follows: “Allen 48” is used to denote

the 48 orbits computed in Allen (2006), the orbits for which full orbital information is known,

“estimated orbits” is used to denote the orbits of the 102 Milky Way globular clusters for

which orbital information is not available but is inferred, and “Non Allen clusters” is used

to denote the globular clusters for which orbital information is not available.

4



-14 -12 -10 -8 -6 -4 -2 0
1

10

100

1000

Absolute Magnitude, Mv


Figure 1: Plot of log Rh against Mv of Milky Way globular clusters (squares) and M31
extended clusters (filled circles). Positions of extended clusters indicate globular cluster
luminosities comparable to those in the Milky Way, but significantly larger half light radii
(Huxor, 2005).
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1.1 Summary of Huxor (2005)

A globular cluster is a dense group of stars (∼ 105− 106), bound by gravity and spher-

ical in shape. Globular clusters reside in the Halo of a Galaxy, orbit the Galactic Center

and typically resemble the image in Figure 2, with the highest concentration of stars located

near the center, within a region known as the Core Radius. The Half Light Radius is the

radius of the globular cluster containing half of its total luminosity. In 2005, three extended

globular clusters were discovered in the Halo of M31 (Huxor, 2005). These clusters were so

named because they have the same characteristics (stellar population and spherical shape)

as regular globular clusters, but a different distribution of the stars of which they are com-

posed. The density of stars toward the center is lower and in particular, the half light radii

of these objects are found to be much larger.

Figure 2: The globular cluster pictured here is NGC 6093, one of the 150 globular

clusters found in the Milky Way Galaxy. Image Credit: The Hubble Heritage Team

(AURA/STScI/NASA).

Images of the 3 extended globular clusters in M31 were taken in projection. The resulting

images of the spherically shaped clusters resemble discs of varying luminous density, from

center to edge. The disc is subdivided into numerous, finite, concentric rings radiating from

its center. The intensity of light in each unit ring is determined by counting the number of

illuminated pixels registered by the CCD camera taking the image, the pixel count being

proportional to the amount of light emitted by the cluster, which is proportional to the den-

sity of stars emitting the light detected. Hence, the cluster’s Surface Flux Density Profile

can be determined, flux density being; the power of radiation per unit area.

Physical parameters of the extended clusters, such as core and tidal radii, rc and Rt,

were determined by fitting an Empirical King Profile to the Surface Flux Density Profile

mentioned earlier and adjusting the values of rc and Rt to make the fit.
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1.1.1 King Profile

The Empirical King Profile is an empirical law describing the surface density distribu-

tions of globular clusters, galactic clusters and Sculptor-type dwarf elliptical galaxies (King,

1962); surface density distribution being; the measured brightness of the object’s surface as

a function of radius.

Figure 3: An example of the King Profile fitting procedure, whereby cluster parameters are

adjusted in order to obtain the most ideal fit to the observed surface flux density profile.

The King Profile embodies the characteristics of a cluster’s density distribution and

hence, its surface brightness, at its minimum and maximum limits, and is defined in the

following manner (King, 1962):

Σ(r) = Σo

(
1

(1 + ( rrc )2)
1
2

− 1

(1 + ( rtrc )2)
1
2

)2

(1)

where Σo is the central surface density (surface brightness at cluster center), r is the radius

from the cluster center, rc is the core radius, the radius at which most of the enclosed stellar

distribution is more or less uniform, and Rt is the tidal or limiting radius which is set by

external forces acting on the globular cluster. The physical tidal radii of the three extended

clusters of Huxor (2005) are determined using this fitting procedure.

1.2 Summary of Allen (2006)

Orbits for 48 known clusters in the Milky Way are computed from initial conditions

(initial radius, obtained via magnitude measurements and initial velocity measurements)

relative to the Milky Way Galactic Center. Initial velocity is a combination of the cluster’s

radial velocity (obtained via Doppler measurements) and its transverse velocity or proper
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motion (obtained by measuring the cluster’s motion across the sky for a given time interval).

The simulations of Allen (2004), are computed using the potentials and mass distributions

of Allen and Santillan’s (1991) axisymmetric model and Pichardo’s (2004) nonaxisymmetric

galactic bar model. The adopted parameters of the model are as follows: Ro = 8.5 kpc

with circular velocity, V(Ro) = 220 km s−1, total mass of 9× 1011 M�, ρo = 0.15 M� pc3,

A = 12.95 km s−1 kpc and B = −12.93 km s−1 kpc where Ro is the Sun’s position relative

to the Galactic centre, ρo is the local mass density and A and B are Oort rotation constants.

Theoretical and Observed Tidal Radii are tabulated for the purposes of illustrating the effect

of the bar on the dynamics of the clusters.

1.2.1 Axisymmetric model of Allen and Santillan (2004)

The axisymmetric model of Allen and Santillan consists of a bulge and a flattened disc

of the Miyamoto and Nagai (1975) form and a massive spherical halo extending to a radius

of 100 kpc. The potential in each component of the Galaxy (Bulge, Disc, Halo) is in units

of 100 km2 s−2.

The Bulge has a potential and corresponding density of the following form:

Φ1(ω̃, z) =
−M1

(ω̃2 + z2 + b12)
1
2

(2)

ρ1(ω̃, z) =
3b1

2M1

4π(ω̃2 + z2 + b12)
5
2

(3)

where R2 = ω̃2 + z2, ω̃ =
√
x2 + y2, M1 = 606.0 and b1 = 0.3873. M1 indicates the relative

importance of the central component, b1 is the scale length and the total mass of the central

component is 1.41× 1010M�.

The Disc has a potential and corresponding density of the following form:

Φ2(ω̃, z) =
−M2(

ω̃2 + [a2 + (z2 + b22)
1
2 ]2
) 1

2

(4)

ρ2(ω̃, z) =

(
b2

2M2

4π

)a2ω̃2 + [a2 + 3(z2 + b2
2)

1
2 ][a2 + (z2 + b2

2)
1
2 ]2(

ω̃2 + [a2 + (z2 + b22)
1
2 ]2
) 5

2

(z2 + b22)
3
2

 (5)

where M2 = 3690.0 and is related to the relative importance of the disc component,

a2 = 5.3178 and b2 = 0.2500 and the total mass of the central component is 8.56× 1010M�
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The Halo has a potential and corresponding density of the following form:

Φ3(R) = −
(
M(R)

R

)
−
(

M3

1.02a3

)[
− 1.02

1 + ( Ra3 )
1.02 + ln

(
1 +

(
R

a3

)1.02
)]100

R

(6)

where M3 = 4615.0 and a3 = 12.0, M(R) =

(
(M3)Ra3

2.02

1+( R
a3

)1.02

)
and the total mass of the Halo

out to 100 kpc is 8.002× 1011M�.

The total potential of all three components is the sum total of the three potentials listed.

1.2.2 Nonaxisymmetric model of Pichardo et al (1991)

The Nonaxisymmetric model of Pichardo (1991) consists of a superposition of four el-

lipsoids which produce the apparent “boxy” edge on brightness profile of the Milky Way

Galactic bar (Pichardo, 1991). The gravitational potential of the galactic bar is superim-

posed on the axisymmetric mass distribution of Allen and Santillan (1991) and 70% of the

bulge mass is replaced with a galactic bar. The purpose of including the bar, is to examine

whether the kinematics of the globular clusters are altered by the presence of a bar when

compared to the axisymmetric model. The latter is true only if the resulting gravitational

potential includes orbits actually reaching the bar region. The modelled galactic bar is an

inhomogeneous ellipsoid that extends to a galactocentric distance of 3.13 kpc, has axial

ratios of 1.7 : 0.64 : 0.44 and the following mass distribution:

ρ(Rs) = sech2(Rs) Rs ≤ Rends
(7)

= ρosech2(Rs)e
−
(

Rs−Rends
hends

)2

Rs ≥ Rends
(8)

where Rs =
(
x2

ax2 + y2

ay2 + z2

az2

)1/2
and hends = hend

ax
and hend is the z component of angular

momentum of the inner region.

The potential and force field are obtained at any point ~r = (x, y, z) in the Cartesian

System of the principal axes of the bar using standard potential theory (Kellogg, 1953).

Newton’s Law of Gravitation applies to idealized point masses; and since such a treatment

of individual point masses in a Galaxy can become cumbersome, it is more convenient in

the context of Galactic Potentials, to consider a field as having a gravitational potential.

The notion of a gravitational field is defined in terms of the gravitational acceleration that

a test mass would experience as a function of its position in the vector field. Both the

axisymmetric and nonaxisymmetric potentials used by Allen (2006) to compute the orbits

of the Milky Way clusters, provide the potentials of each Galactic component as well as

their corresponding density distributions. Hence, the corresponding force acting at each
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position can be determined by taking the gradient of the given potential; which yields

the the gravitational acceleration for a given position in the field times the total mass of

that component of the Galaxy. Dividing the latter by the total mass and and multiplying

this acceleration with the corresponding mass at the same position in space, provides the

appropriate force acting at each position in each Galactic component.

2 Theory

2.1 Magnitudes Scale

The term “magnitude” is used in reference to the measure of the brightness of stars. It is

a negative logarithmic scale, meaning that brighter objects have more negative magnitudes.

Apparent magnitude, is the brightness of an object as it would appear to an observer on

earth. Absolute magnitude is the brightness an object would have at a distance of 10 pc

from earth.

The magnitude difference of two objects, 4m is related to the brightness ratio of the

two objects by the following:

4m = m2 −m1 = −2.5 log

(
L2

L1

)
(9)

where m2 and m1 are the apparent magnitudes and L2 and L1 are the luminosities of object

2 and object 1, respectively. For the purposes of this discussion, the absolute magnitude

will be denoted, Mv such that:

Mv = m− 2.5 log

(
d

10

)2

(10)

where d is the distance of the object in question and 10 refers to a distance of 10 pc. It is

evident from (10) that Mv = m when d = 10 pc.

Further, when the mass to light ratio of a stellar object is assumed to be constant, as is the

case in this report; the ratio of the masses is equivalent to the ratio of the luminosities:

M1

M2
=
L1

L2
= 100

(Mv2−Mv1)

5 (11)

where M1, M2, L1, L2, Mv1 and Mv2 are the masses, luminosities and absolute magnitudes

of object 1 and 2 respectively.

Note: a magnitude difference of 5 corresponds to a factor of 100 in brightness which is

apparent when the above exponent assumes a value of 1.

In the context of extended clusters in Milky Way orbits, the relationship between a
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cluster’s absolute magnitude and its corresponding mass is used extensively in order to

calculate its tidal radius.

2.2 Tidal Radius

Since globular clusters are not solid objects, they are especially subject to the influence

of tidal forces acting on the individual stars making up the cluster. In particular, the stars

on the cluster’s exterior, least bound by the gravitational forces produced by the cluster’s

core, are vulnerable to tidal forces; capable of removing these stars; thereby reducing the

cluster’s overall size.

In the context of globular clusters residing in Galaxies, one is concerned with the inter-

action between three masses; the force felt by a point mass, m, in a neighborhood of the

collective cluster mass, mc and the gravitational force exerted by a massive Galactic Center,

M, a much further distance away from the other two masses of interest. Tidal forces are of

particular relevance because the objects of interest, namely, globular clusters, are sitting in

a very massive Galaxy, and hence, are subject to very strong forces that can tidally shred

the globular cluster at critical distances. The tidal radius is the maximal distance in which

a mass element placed in the neighborhood of a point mass, mc, placed at a much further

distance to another point mass, M, can remain suspended in space due to the equal and

opposite forces acting on m.

Figure 4: A point mass, m, in the vicinity of a cluster mass, mc, residing in a very massive

Galaxy, represented by the point mass, M, located at the Galactic Center.

At this critical distance, the gravitational force due to mc and the tidal force on the mass

element are exactly balanced. Hence, the mass element would not remain in the vicinity

of mc at any distance greater than the tidal radius or put another way, the mass would be

tidally shredded from the collective body, mc at any greater distance. The tidal radius is

also referred to as the cluster’s physically observed radius. For clarity, all calculated tidal

radii referred to in the body of the report refer to the theoretical tidal radius derived here

and not the physical tidal radius, unless otherwise stated. Consider a point mass, m, in the

neighborhood of a collective mass, mc, separated by a distance, 4R such that m << mc.

If mc is located a distance, R, from the Galactic Center, M, such that 4R << R, then the
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forces acting on m are:

|~Fmc,m| =
Gmmc

(4R)2

|~FM,m| =
GmM

(R±4R)2
=

GmM

R2(1± (4RR ))2

Expanding the latter term using the McLaurin Series, one obtains:

GmM

R2
×

(
1∓ 2

(
4R
R

)
± 3

(
4R
R

)2

∓ 4

(
4R
R

)3

+ ...

)

|~FM,m| =
GmM

R2
± 2GmM

R2

(
4R
R

)
=
GmM

R2
± 2GmM4R

R3

where
∣∣∣ 2GMm4R

R3

∣∣∣ is the tidal force on mass element, m. When this tidal force is in

dynamic equilibrium with the gravitational force attracting m to mc, the following holds:

|~Ftidal| = |~Fmc,m| ⇔
∣∣∣∣2GMm4R

R3

∣∣∣∣ =

∣∣∣∣Gmmc

(4R)2

∣∣∣∣⇒ (4R)3 =
mcR

3

2M

hence,

4R = 3

√
mc

2M
R (12)

which defines the tidal radius.
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2.3 Half Light Radius

As discussed previously, the core radius is the radius of a globular cluster in which the

density of stars, and hence, surface brightness, remains more or less uniform. A cluster’s lu-

minosity steadily decreases with increasing distance from the cluster’s core. The Half-Light

Radius is an intermediate distance between the cluster’s core and physical tidal radius, which

contains half of the cluster’s total luminosity.

Figure 5: A schematic representation of what an extended cluster would look like in projec-

tion, subdivided into infinitesimal concentric rings radiating from its center. Integrating the

surface brightness of each ring (dA = 2πrdr) from center to edge (r = 0 to r = tidal radius),

gives the cluster’s total luminosity.

By integrating the flux density distribution of the globular cluster over the entire disc

shaped surface, one obtains the total luminosity of the object. This is achieved by integrating

the Empirical King Profile (King, 1962), with previously determined values of rc and rt:

Σ(r) = Σo

(
1

(1 + ( rrc )2)
1
2

− 1

(1 + ( rtrc )2)
1
2

)2

(13)

with respect to r to obtain the cluster’s total luminosity (King, 1962):

L(x) = πrc
2Σo

(
ln(1 + x)− 4

(
(1 + x)

1
2 − 1

(1 + xt)
1
2

)
+

x

1 + xt

)
(14)
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where L(x) is the cluster’s total luminosity obtained from the projected image, x =
(
r
rc

)2
,

xt =
(
rt
rc

)2
and r runs from 0 to rt. The radius corresponding to half the light contained

within the globular cluster, the Half Light Radius, is obtained by observing the radius from

the cluster center at which its integrated flux density or total luminosity drops by a factor

of 0.5.

2.4 Radial Velocity

The radial component of an object’s velocity is defined as:

~vrad =
dr

dt
r̂ = vrad r̂ (15)

where r̂ is the normalized unit vector directed along the line of sight. An object’s radial

velocity is obtained by making use of Doppler shifts of spectral lines. The relationship

between a star’s radial velocity and its associated Doppler shift is:

4λ
λrest

=
vrad

c
(16)

where 4λ is the wavelength shift associated with the star’s motion, λrest, is the wavelength

of the spectral line corresponding to the object at rest and c = 3.0×108m s−1. The Doppler

shift determines whether a given object is moving toward or away from an observer and

is obtained by observing the wavelength shift associated with the star’s motion. Since an

absorption line in the spectrum of a given star in motion should be coincident with the

spectrum of the star at rest, the resulting wavelength shift observed, is due solely to the

motion of the star in the line of sight; where the rest wavelength, λrest, is determined from

the laboratory measurements of emission lines, corresponding to the discrete wavelengths

and energies of electronic transitions.

Positive velocities indicate a star moving away from the point of observation. The re-

sulting wavelength of such a star will appear to be redshifted. Negative velocities indicate a

star moving towards the point of observation; the corresponding wavelength in such a case

will be blueshifted. The radial velocity is the velocity component most easily obtained for

most objects and is one of the velocity components making up the full space velocity of a

stellar object. As mentioned earlier, a star or star cluster’s full space velocity is one of the

parameters required in order to compute its orbit.

2.5 Proper Motion

As mentioned in 2.4, the radial velocity (motion of object along the line of sight) is only

one component making up an object’s space velocity, the other component, is the tangential

velocity, which is an object’s motion perpendicular to the line of sight. The object’s angular

or proper motion, dθ
dt , is required in order to calculate the tangential component of the

object’s motion and is measured by observing the object’s angular motion across the sky
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per unit time (”/yr). Since the objective is to obtain the tangential velocity of the object,

which is a linear velocity, the angular velocity must be converted into a linear velocity by

making use of the following relationship:

vtang = r× dθ

dt
(17)

where r is the distance from the point of observation to the stellar object, and dθ
dt is the

object’s proper motion measured in arcseconds (photons per year). The arcsecond measure

can be made unitless by converting to radians in the following manner:

1 arcsec =
1

3600
× 1◦ (18)

therefore 1 arcsec in radians is:

1◦

3600
× 2π

360◦
≈ 4.85× 10−6rad (19)

Once the proper motion is corrected to the appropriate units using the above relation

(19), the tangential velocity (17) can be determined. The complete space velocity of the

object can subsequently be determined in the following manner:

vtot = (vtang
2 + vrad

2)
1
2 (20)

2.6 Barred Potentials in Galaxies

Although there is strong evidence that a Galactic bar indeed exists at the center of

the Milky Way Galaxy (Blitz, 1991), it is not yet obvious what role it plays in triggering

the activity observed within the Galaxy (Friedli, 1993). Hence, it is useful to include the

potential associated with a Galactic bar in modeling methods in order to better understand

these processes; particularly in cases where unbarred and barred potentials can be compared.

A Bar is a linear, rotating, triaxial stellar structure crossing the disc of a Galaxy (Blitz,

1991). The presence of a rotating bar in a Galactic disc is believed to have accumulated

galactic matter over a long period of time, resulting from the gravitational pull induced

by the bar’s rotation (Gerhard, 1996). The barred potential is the mechanism for slow

evolutionary changes taking place within the Galaxy and therefore gives insight into the

origin of the Galaxy’s formation (Gerhard, 1996). Further, orbits of stellar objects near the

centre of the disc of a barred galaxy are more affected than ones further out from the centre

of the bar; which is useful to know when investigating the orbits of clusters affected by the

presence of a nonaxisymmetric potential induced by a Galactic bar.

2.7 Formulations for Estimating Tidal Radii

King’s formula is the tidal radius of a star at the moment of perigalactic passage such

that the star is pulled neither toward or away from the globular cluster of mass Mc, to which
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it belongs, sitting in a galactic force field, with galactocentric distance rmin, on an orbit of

eccentricity, e, and is defined as (King, 1962):

rk =

(
Mc

Mg(3 + e)

)1/3

rmin (21)

where Mg is the galactic mass producing the force felt by the cluster at the perigalactic point

and Mc is the cluster mass. Note that (21) is a variant of the tidal radius previously presented

(12), and differs in that it is the limiting tidal radius of the cluster at the perigalactic point

of its orbit rather than the instantaneous value at the cluster’s present location (12). An

alternative formulation for the tidal radius of a cluster in a general Galactic field can be

obtained in which at a certain position on the line joining the cluster and the Galactic

center, a test particle with velocity v′ = 0, measured in the non-inertial reference frame at

the center of the cluster, has an acceleration a′ in this frame with no component along this

line and is defined as (Allen, 2006):

r? =

 GMc(
∂Fx′
∂x′

)
r′=0

+ θ̇2 + Ψ̇2sin2θ

 1
3

(22)

where Mc is the cluster mass, G = 6.673× 10−11N m2 kg−2,
(
∂Fx′
∂x′

)
is the differential force

per unit mass or differential acceleration of the test particle at a fixed position along x’.

The angles, θ and Ψ are the angular and spherical coordinates of the cluster in an inertial

Galactic frame and θ̇2 + Ψ̇2sin2θ is the component of the noninertial acceleration in the x̂′

direction, where x̂′ points toward the Galactic centre.

2.8 Mass to Light Ratio

Where there is gravity, there is mass. Hence, in the context of globular clusters, there

must be enough matter inside the cluster to bind it sufficiently so that it manages not to dis-

perse while rapidly rotating within the Galaxy. However, the mass of the visually luminous

matter detected by Astronomers does not encompass the mass required to gravitationally

bind clusters. Calculations indicate that a typical cluster requires roughly 10 times the mass

of detectable matter in order to remain bound in orbit (Kaufmann, 1999). The latter has

lead Astronomers to distinguish between the type of matter of which Galaxies are composed;

namely, visible or luminous mass and nonluminous mass, known as dark matter.

The Mass to Light Ratio is the ratio of an object’s mass; to its luminosity, contained

within its spatial volume. This ratio is 1 for solar or sun-like objects, however, this value

is higher for stellar objects, such as clusters, since the emitted radiation is not entirely

detectable in correspondence with the known mass of the star cluster volume. A typical

mass to light ratio for clusters of stars is ∼ 2 − 3. Hence, the latter estimate is useful in

determining the mass of luminous objects such as globular clusters. The working hypothesis
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of this report is that the mass to light ratio of extended globular clusters is the same as that

of regular globular clusters.

The Mass to Light Ratio is defined as (Peebles, 1993):

Lx
L�
×Υx =

Mx

M�
(23)

using the relationship between magnitude and luminosity, the above relation can be rear-

ranged to obtain the following:

Υx =

Mx

M�
Lx

L�

= 100.4(Mvx−Mv�)
Mx

M�
(24)

where Mx is the stellar object’s mass, M� is the solar mass, Lx is the luminosity of the

stellar object, L� is the solar luminosity, Mvx is the absolute magnitude of the stellar object

in the v band and Mv� is the absolute magnitude of the sun in the v band.

Hence, the mass of the luminous object in question is simply:

M = Υx × 10−0.4Mvx−Mv� ×M� (M� = 1)
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3 Method

Computations performed in this project:

3.1 Extended Globular Clusters in Allen 48 Orbits

Since no extended globular clusters have been observed in the Milky Way, it is desirable to determine

the tidal radii that extended clusters would have if placed in the orbits of the Milky Way Galaxy.

This was achieved by substituting the extended cluster masses in the 48 known Milky Way Orbits

(Allen, 2006) and subsequently comparing the result to the physical tidal radii of the extended

clusters found in M31 (Huxor, 2005). The main purpose of this test was to determine whether any

extended clusters could in fact survive in some of the Milky Way Orbits; and if so, how many.

3.2 Extended Globular Clusters in Estimated Orbits

Since only 48 of the orbits of the Milky Way Galaxy are currently known, and it most desirable

to determine the tidal radii of the extended clusters (Huxor, 2005) in all of the Milky Way Orbits;

the orbits for which full orbital information is unavailable, were estimated. This was achieved by

using the tidal radii of the known Allen 48 Orbits (Allen, 2005) and establishing a relationship

between tidal radius and distance from the Milky Way Galactic Center. Since the latter scales

linearly with the former, this relationship was used to predict the tidal radii of the 98 other Milky

Way Orbits. Once this was achieved, the extended clusters were once again substituted, this time,

into the estimated orbits; and their tidal radii, computed.

3.3 Milky Way at orientation of M31

Since it was useful to compare the globular cluster distribution in M31 to that of the Milky Way,

it was necessary to view the Milky Way clusters from the same perspective that one observes M31;

in order to achieve this. Hence, the clusters of the Milky Way were placed at a distance of 780 kpc

from the point of observation and transformed to the orientation of M31.

3.1 Extended Globular Clusters in Allen 48 Orbits

Computation of tidal radii for the known Milky Way orbits using extended cluster

masses, was performed in order to determine the number of extended globular clusters that

could survive in the orbits of the Milky Way.

Recall from Section 2.2, the definition of the tidal radius, 4R:

4R ≡ RtidalMilkyWay = 3
√

mc

2MR

where mc is the mass of the Milky Way cluster, M is the mass of the Milky Way Galactic

Centre, R is the distance from the globular cluster to the Milky Way Galactic Centre. The

idea is to replace mc in the above formula with mext, the mass of the extended globular

cluster found in M31. However, masses of extended globular clusters are not given, absolute

magnitudes of Milky Way clusters (Harris Catalogue) and extended globular clusters (Huxor,

2005) are provided. Hence, it is possible to determine mext by the following method:
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Ratio of the Luminosities is equivalent to the Ratio of the Masses:

L1

L2
=
M1

M2

hence,

Lext
LHarris

=
mext

mHarris
= 10x

and

Mvext −MvHarris = −2.5 log
(

Lext

LHarris

)
= −2.5 log

(
mext

mHarris

)
therefore, (

Mvext −MvHarris

−2.5

)
= x

where Mvext is the absolute magnitude of the extended globular cluster, MvHarris is the

absolute magnitude of the Milky Way globular cluster found in the Harris Catalogue, Lext

is the apparent luminosity of the extended cluster, LHarris is the luminosity of the Milky

Way cluster, mext is the mass of the extended globular cluster and mHarris is the mass of

the Milky Way cluster. Hence, the following relation:

(
mext

mHarris

)
= 10

(
Mvext−MvHarris

−2.5

)
where mHarris ≡ mc

since, RtidalMilkyWay ∝
(
mc

M

) 1
3 ,

it follows that,

Rtidalext =
(
mext

mc

) 1
3 ×

(
mc

2M

) 1
3 ×R

equivalently,

Rtidalext =
(

10
(Mvext−MvHarris)

−2.5

)1/3
× (RtidalMilkyWay) (25)

where RtidalMilkyWay is the tidal radius reported for the 48 clusters of Allen (2005) and (25)

is used to compute the tidal radii of the extended globular clusters in the known Milky Way

orbits.
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3.2 Extended Globular Clusters in Estimated Orbits

In addition to the Allen 48, there are 102 other Milky Way clusters for which orbital in-

formation is not known, tidal radii were estimated for 98 of these 102 globular clusters, since

4 of the 102 Milky Way clusters do not have available magnitude measurements required for

the estimates. The sample calculation below is performed using r? (22), for convenience,

however, the estimated tidal radii are calculated in the following manner for both formula-

tions of the tidal radius in Section 2.7:

A linear relationship was found between the theoretical tidal radii of the 48 clusters for

which orbital information is known as a function of distance from the galactic centre.

The tidal radius, RtidalMilkyWay, is first normalized to 106M�:

RtidalMilkyWay = r? ×
(

106M�
Mc

)1/3
where Mc, in this case, denotes the cluster mass, expressed in solar masses

Recall from (26) that the mass to light ratio is:

Υx =
Mc
M�
Lx
L�

= 100.4(Mvc−Mv�) Mc

M�

Assuming a mass to light ratio, Υx, of 2, the cluster mass is:

Mc = 2× 10−0.4(Mv−Mv�)M�

and since M� = 1, Mv� = 4.83 in the v-band and Mv ≡MvHarris (absolute magnitudes for

the 98 Non-Allen clusters are taken from the Harris Catalogue), the cluster mass, Mc, can

be expressed in the following way:

Mc = 2× 100.4(4.83−MvHarris)

plotting RtidalMilkyWay = r?
(

106M�
Mc

)
as a function of distance, r = (x2 + y2 + z2)

1
2 in

kpc, from the Milky Way galactic centre and fitting the distribution linearly, results in a

relationship between tidal radius and distance from the Galactic centre that is subsequently

used for predictive purposes.
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Figure 6: Tidal Radius of known orbits (Allen 48) in pc as a function of distance from the

galactic center (kpc) for the General Galactic Field Model, r?, renormalized to 106 solar

masses. rt,avg = 6.33 (pc/kpc)× d + 19.23 (pc), R2 = 0.83, where d is the distance from the

Galactic Center in kpc and rt,avg is the tidal radius obtained via weighted linear regression.

Therefore, the new estimated tidal radius can be written as:

Rtidalest = (slope× r + intercept)×
(

10
(Mvext−MvHarris)

−2.5

) 1
3

×M
1
3
c × 10−2

where the slope and intercept are acquired via the linear fitting procedure described earlier

for the original Allen data set, r is the distance from the cluster to the galactic centre in

kpc and is a required field in the calculation. Mc, 10−2 and M� are included to rescale the

expression appropriately.

hence,

Rtidalest = r?avg ×
(

106M�
Mg

) 1
3 ×

(
Mext

Mc

) 1
3 ×M

1
3
c × 10−2

where r?avg is the average tidal radius obtained through linear regression and Mg is the

galactic mass.

The latter is equivalent to:

Rtidalest = α× dist×
(
Mc

2Mg

) 1
3 × 102 ×

(
M�
Mg

) 1
3 ×

(
Mext

Mc

) 1
3 ×M

1
3
c × 10−2

where α is the numerical scaling factor of the calculated slope (neglecting units) and dist is

the distance from the cluster to the galactic centre in (kpc)
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which is equivalent to:

Rtidalest = α× dist×
(
Mext

2Mg

) 1
3

(26)

as required.

(26) is used to calculate all estimated tidal radii for the 98 Non Allen clusters.

3.3 Milky Way at Orientation of M31

For comparative purposes, the Milky Way Galaxy is tilted and rotated to the orientation

of M31 as it is seen from earth. The three Cartesian spatial coordinates of the 150 Milky Way

globular clusters from the Harris catalogue are transformed where the distance components,

x, y, z are in kiloparsecs, in a Sun-centered coordinate system; with x pointing toward the

Milky Way Galactic center, y, in the direction of Galactic rotation and z, towards the North

Galactic Pole. The spatial coordinates are corrected so that the positions of interest are

relative to the Milky Way galactic center which is located 8 kpc from the sun in the x̂

direction. Since the sun and Galactic centre are always colinear, the adjusted x distance

component with respect to the Galactic centre, X, is simply the x distance component

found in Harris, - 8 kpc along the line joining these points. The other distance coordinates,

y and z are unchanged by correcting to a galactocenteric coordinate system. Hence, the

(X, y, z) distance coordinates of the Harris Catalogue are tilted and projected into a plane

and subsequently rotated.

According to Henderson (1979), M31 has an inclination of somewhere between 74◦ and

79◦, and the apparent major axis has a position angle of 38◦. An intermediate inclination

in Henderson’s right-handed coordinate system of 77◦ was assumed; in which the Z axis is

directed toward the viewer and the normal to the plane of M31 defined as the inclination

angle (Henderson, 1979). In this report, the inclination is defined as the angle between the

Z axis and the plane of M31, rather than the normal to the plane. Further, the position

angle of M31 is defined as the angle directed from the X axis to the North on the sky and is

taken to be 38◦ (Henderson, 1979). In this report, the position angle is defined as the angle

directed from the -Y axis to the North on the sky in Henderson’s coordinate system; which

results in a position angle equal to 52◦; consistent with Kaaret’s value measured from North

to East (Kaaret, 2002).

Hence, the 2D projection of the (X, y, z) plane inclined at an angle, φ = 13◦ (Henderson,

1979) gives the result:

xtilt = X

and

ytilt = y sinφ+ z cosφ

22



where xtilt and ytilt are the coordinates of the projected image.

(xtilt, ytilt) is then rotated by an angle, θ = 52◦ (Kaaret, 2002) in the following manner:

(
Xtrans

Ytrans

)
=

(
cos θ − sin θ

sin θ cos θ

)(
xtilt

ytilt

)

where Xtrans and Ytrans are the transformed coordinates of the Milky Way globular clusters

hence,

Xtrans = xtilt cos(52◦)− ytilt sin(52◦) (27)

Ytrans = xtilt sin(52◦) + ytilt cos(52◦) (28)

(27) and (28) are used to compute the Milky Way globular cluster coordinates as they would

be seen at the orientation of M31.

Figure 7: Orientation of M31 relative to the Milky Way.
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4 Results

The following figures and tables are meant to illustrate the differences between the

cluster distributions of the Milky Way and M31 Galaxies; as well as present the results of

substituting the extended globular clusters into the orbits of the Milky Way. The corre-

sponding cluster statistics; namely, the number of surviving extended globular clusters and

expected number of extended clusters in the Milky Way Galaxy are also presented.

Figures 8(a) and 8(b) illustrate the result of substituting the extended globular cluster

with absolute magnitude, −7.3, in the known (Allen 48) orbits of the Milky Way. The

purpose of such a test is to determine what fraction of the extended clusters could be

accommodated in these orbits; with the result being that a small minority of extended

clusters could be accommodated. Plots 8(a) and 8(b) are included for the purposes of

comparing the effects of unbarred and barred potentials; and illustrate that the extended

globular clusters are rather unaffected by the presence of a barred Galactic potential, since

the distributions of tidal radii do not differ significantly between the two plots.

Figures 9(a) and 9(b) illustrate the result of substituting the extended globular cluster

with absolute magnitude, −7.3, in the estimated orbits of the Milky Way. In this case,

more extended clusters can be accommodated in the orbits, however, the majority of them

are not capable of surviving, as in the previous case. It is also evident from Figures 9(a)

and 9(b) that there is no observable difference between the tidal radii distributions of the

axisymmetric and nonaxisymmetric potentials. The latter can be explained by the fact that

the modelled galactic bar only extends to a galactocentric distance of 3.13 kpc and since

most of the clusters are located at a greater distance from the galactic centre, the majority

of them are unaffected by the presence of the bar.

Figure 10 illustrates the projected cluster distribution in M31, relative to the Galactic

Center. It is evident from the figure that while most of the clusters are located closer to the

Galactic Center, there exist a number of clusters further out from this region. In particular,

the extended globular clusters are located at greater distances from the Galactic Center

than the regular globular clusters of M31.

Figure 11 illustrates the projected cluster distribution of the Milky Way, relative to

the Galactic Center; transformed to the orientation at which one observes M31, from our

position in the Milky Way Galaxy. From this figure, it is evident that the majority of the

globular clusters are located closer in to the Galactic Center.

When one compares Figures 10 and 11, it is evident that fewer globular clusters exist

further out from the Milky Way Galactic Center than those of M31. In addition, the ex-

tended globular clusters found in M31 are located further out from the M31 Galactic Center.

Since clusters located further out from the Galactic Center are capable of maintaining larger

tidal radii; the latter indicates that the cluster distribution in M31 favors the existence of

extended clusters; more than that of the Milky Way Galaxy.
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Figure 12 is the Cumulative Fraction Distribution of the globular clusters of M31 and

the Milky Way, superimposed. It quantitatively supports that a much greater fraction of

globular clusters in M31 are located further out from the Galactic Center than those of the

Milky Way.

Table 1 lists the number of surviving extended globular clusters in the Milky Way Galaxy

for the various extended cluster magnitudes and potentials computed using the King For-

mula, rk (King, 1962). The results indicate that as many as 9 and as few as 6 extended

globular clusters are expected to survive in the known (Allen 48) and estimated orbits.

Table 2 lists the number of surviving extended globular clusters in the Milky Way Galaxy

for the various extended cluster magnitudes and potentials computed using the alternative

formulation for estimating the tidal radius, r? (Allen, 2006). The results indicate that as

many as 9 and as few as 5 extended globular clusters are expected to survive in the known

(Allen 48) and estimated orbits.

Tables 1 and 2 indicate that in the most conservative estimate of expected extended

clusters in the Milky Way Galaxy, one would expect to see at least 5 extended globular

clusters, given the cluster population size and distribution.

Tables 3, 4 and 5 list the results of an experiment to determine the number of surviving

extended globular clusters which have experienced tidal shredding. The number of surviving

extended globular clusters with computed tidal radii in the range of the half light radius,

Rh and the physical tidal radius, Rt, of Huxor (2005) are counted in order to determine how

many could survive, having experienced varying degrees of tidal shredding.

Table 6 lists the total number of extended globular clusters one would expect to see in the

Milky Way if the definition of extended cluster was “relaxed”, such that it included extended

clusters having experienced varying degrees of tidal shredding. The results indicate that a

large number of extended clusters do survive in the Milky Way orbits with computed tidal

radii with values less than but close to the values of the physical tidal radii reported in Huxor

(2005). In fact, as many as 17 and as few as 7 extended clusters are expected to survive

according to this criteria; and since a total of 13 extended globular clusters were found in

M31, the stated values are comparable. Hence, it is indeed possible for the same number

of extended clusters found in M31; to survive in the orbits of the Milky Way, provided that

the tidal shredding experienced by the clusters is minimal (≈ 30 pc lost).

Table 7 lists the categories and corresponding fractions of clusters found in M31. Of

the known globular clusters in M31, only 3% classify as extended. However, given the fact

that more than half of the total clusters found, classify as candidate globular clusters; it

is a possibility that more extended globular clusters do in fact exist, but have yet to be

identified. It seems reasonable to hypothesize that more extended globular clusters exist

in M31 given the fact that the known globular cluster distribution favors the existence of
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extended clusters, unless there are other factors affecting the survival of extended globular

clusters which have yet to be explored.

Table 8 lists the number of extended globular clusters one would expect to see in the

Milky Way if the same fraction of extended clusters existed in the Milky Way as in M31.

Interestingly, despite the fact that extended globular clusters are incredibly rare in M31

(3%), one would still expect to see 4 extended clusters in the Milky Way Galaxy, which

makes the fact that none are found; rather unusual.

26



0
50

10
0

0

10
0

20
0

30
0

40
0

D
is

ta
nc

e 
fr

om
 g

al
ac

tic
 c

en
tr

e 
(k

pc
)


(a
)

0
50

10
0

0

10
0

20
0

30
0

40
0

D
is

ta
nc

e 
fr

om
 g

al
ac

tic
 c

en
tr

e 
(k

pc
)


(b
)

F
ig

u
re

8:
T

h
eo

re
ti

ca
l

T
id

al
R

ad
ii

(p
c)

as
a

fu
n

ct
io

n
o
f

D
is

ta
n

ce
fr

o
m

th
e

G
a
la

ct
ic

C
en

tr
e

(k
p

c)
fo

r
th

e
k
n

ow
n

o
rb

it
s

(A
ll

en
4
8
)

o
f

th
e

M
il

k
y

W
ay

,
co

m
p

u
te

d
fo

r
M
v

=
−

7.
3

fo
r

(a
)

ax
is

y
m

m
et

ri
c

an
d

(b
)

n
o
n

a
x
is

y
m

m
et

ri
c

p
o
te

n
ti

a
ls

w
it

h
h

o
ri

zo
n
ta

l
li

n
es

in
d

ic
a
ti

n
g

th
e

p
h
y
si

ca
l

ti
d
a
l

ra
d

iu
s

(1
6
6

p
c)

of
th

e
ex

te
n

d
ed

cl
u

st
er

(M
31

)
of

th
e

sa
m

e
ab

so
lu

te
m

a
g
n

it
u

d
e,

fo
r

co
m

p
a
ra

ti
ve

p
u

rp
o
se

s.
S

q
u

a
re

s
a
n

d
fi

ll
ed

ci
rc

le
s

in
d

ic
a
te

th
e

ti
d
a
l

ra
d

iu
s

co
m

p
u

te
d

fo
r

th
e

al
te

rn
at

iv
e

ap
p

ro
x
im

at
e

fo
rm

u
la

(A
ll

en
,

20
06

),
r?

,
a
n

d
th

e
K

in
g

fo
rm

u
la

(K
in

g
,

1
9
6
2
),
r k

,
re

sp
ec

ti
ve

ly
.

N
o
te

:
T

h
e

co
m

p
u

te
d

ra
d

ii
re

p
re

se
n
t

th
e

ti
d

al
ra

d
ii

th
e

ex
te

n
d

ed
cl

u
st

er
of

M
31

w
ou

ld
h

av
e

if
p

la
ce

d
th

e
k
n

ow
n

o
rb

it
s

o
f

th
e

M
il

k
y

W
ay

.
A

n
ov

er
w

h
el

m
in

g
m

a
jo

ri
ty

o
f

sa
id

k
n

ow
n

o
rb

it
s

ca
n

n
ot

ac
co

m
m

o
d

at
e

gl
ob

u
la

r
cl

u
st

er
s

of
16

6
p

c
or

gr
ea

te
r

a
n

d
n

o
o
b
v
io

u
s

d
iff

er
en

ce
b

et
w

ee
n

th
e

p
lo

ts
o
f

th
e

tw
o

p
o
te

n
ti

a
ls

is
ev

id
en

t.

27



0
20

40
60

80
10

0
12

0
0

10
0

20
0

30
0

40
0

50
0

D
is

ta
nc

e 
fr

om
 g

al
ac

tic
 c

en
tr

e 
(k

pc
)


(a
)

0
20

40
60

80
10

0
12

0
0

10
0

20
0

30
0

40
0

50
0

D
is

ta
nc

e 
fr

om
 g

al
ac

tic
 c

en
tr

e 
(k

pc
)


(b
)

F
ig

u
re

9:
E

st
im

at
ed

T
h

eo
re

ti
ca

l
T

id
al

R
ad

ii
(p

c)
as

a
fu

n
ct

io
n

o
f

d
is

ta
n

ce
fr

o
m

th
e

G
a
la

ct
ic

C
en

tr
e

(k
p

c)
fo

r
th

e
o
rb

it
s

fo
r

w
h

ic
h

M
il

k
y

W
ay

o
rb

it
a
l

in
fo

rm
at

io
n

is
n

ot
av

ai
la

b
le

,
co

m
p

u
te

d
fo

r
M
v

=
−

7.
3

fo
r

(a
)

a
x
is

y
m

m
et

ri
c

a
n

d
(b

)
n

o
n

a
x
is

y
m

m
et

ri
c

p
o
te

n
ti

a
ls

,
w

it
h

h
o
ri

zo
n
ta

l
li

n
es

in
d

ic
a
ti

n
g

th
e

p
h
y
si

ca
l

ti
d

al
ra

d
iu

s
(1

66
p

c)
of

th
e

ex
te

n
d

ed
cl

u
st

er
s

(M
3
1
)

o
f

th
e

sa
m

e
a
b

so
lu

te
m

a
g
n

it
u

d
e,

fo
r

co
m

p
a
ra

ti
ve

p
u

rp
o
se

s.
S

q
u

a
re

s
a
n

d
fi

ll
ed

ci
rc

le
s

in
d

ic
at

e
th

e
ti

d
al

ra
d

iu
s

co
m

p
u

te
d

fo
r

th
e

al
te

rn
at

iv
e

a
p

p
ro

x
im

a
te

fo
rm

u
la

(A
ll

en
,

2
0
0
6
),
r?

,
a
n

d
th

e
K

in
g

fo
rm

u
la

(K
in

g
,

1
9
6
2
),
r k

,
re

sp
ec

ti
ve

ly
.

N
ot

e:
T

h
e

co
m

p
u

te
d

ra
d

ii
re

p
re

se
n
t

th
e

ti
d

al
ra

d
ii

th
e

ex
te

n
d

ed
cl

u
st

er
o
f

M
3
1

w
o
u

ld
h

av
e

if
p

la
ce

d
th

e
es

ti
m

a
te

d
o
rb

it
s

o
f

th
e

M
il

k
y

W
ay

.
N

o
o
b
v
io

u
s

d
iff

er
en

ce
b

et
w

ee
n

th
e

p
lo

ts
of

th
e

tw
o

p
ot

en
ti

al
s

is
ev

id
en

t,
a
s

b
ef

o
re

.

28



100 50 0 -50
-100

-50

0

50

Projected Distance from galactic centre (kpc)


Figure 10: M31 globular cluster distribution, in projection (kpc scale), relative to the Galac-
tic Center, where squares and filled circles represent globular clusters and extended globular
clusters, respectively. Note: The 13 extended globular clusters found (Mackey, 2006); are a
considerable distance from the M31 Galactic Centre.
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Figure 11: Milky Way galaxy coordinates transformed to the orientation of M31, in projec-
tion (kpc scale), relative to the Galactic Center. Milky Way globular cluster distribution
seen here is what one would see if the Milky Way was viewed from the perspective from
which one currently observes M31. Note: Clusters appearing close in proximity may actually
be a considerable distance from one another since they are projected in an arbitrary plane.
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Figure 12: Cumulative Fraction Distribution of Milky Way and M31 clusters, superimposed,
as a function of projected distance from the galactic centre (kpc). Squares represent Milky
Way globular clusters and filled circles, M31 regular and extended globular clusters. The
distributions illustrate the disimilarity between the globular cluster population distribution
of both galaxies. In particular, an overwhelming majority of the Milky Way globular clusters
are concentrated closer to their galactic centre than are those of M31. Note: Reoriented
Milky Way globular clusters are compared to the M31 clusters in this image. Further,
globular clusters are far more numerous in M31. By inspection, a distance of ∼10 kpc from
the galactic centre comprises ∼0.80 of the Milky Way globular cluster population but only
∼0.55 of the M31 population.
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Potential; Known: Estimated: Number of
Extended rk > Rt rk > Rt surviving
globular cluster extended clusters
properties

ASP;
Mv = −7.3 0.02 0.05 6
Rh = 34 pc
Rt = 166 pc

NASP;
Mv = −7.3 0.02 0.05 6
Rh = 34 pc
Rt = 166 pc

ASP;
Mv = −7.8 0.02 0.08 9
Rh = 26 pc
Rt = 132 pc

NASP;
Mv = −7.8 0.02 0.08 9
Rh = 26 pc
Rt = 132 pc

ASP;
Mv = −7.2 0.02 0.06 7
Rh = 26 pc
Rt = 140 pc

NASP;
Mv = −7.2 0.02 0.05 6
Rh = 26 pc
Rt = 140 pc

Table 1: Fraction of extended globular clusters with computed tidal radii greater than the
observed tidal radii, Rt, of the extended clusters of Huxor (2005), computed in both the
known Allen 48 orbits of (Allen, 2006) and the estimated orbits. The fractions listed pertain
to calculations using King’s Formula (1962), rk. Rh is the extended cluster’s half light radius
(Huxor, 2005). The potential and extended cluster parameters are listed in the leftmost
column where the abbreviations, ASP and NASP are used to denote the Axisymmetric
and Nonaxisymmetric Potentials, respectively. In addition, the corresponding number of
surviving extended clusters are listed in the last column. The latter was computed using a
weighted average of the fractions listed and the cluster population in each set (Allen 48 and
Non Allen clusters).
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Potential; Known: Estimated: Number
Extended r? > Rt r? > Rt of surviving
globular cluster extended clusters
properties

ASP;
Mv = −7.3 0.02 0.05 6
Rh = 34pc
Rt = 166pc

NASP;
Mv = −7.3 0.02 0.04 5
Rh = 34pc
Rt = 166pc

ASP;
Mv = −7.8 0.02 0.08 9
Rh = 26pc
Rt = 132pc

NASP;
Mv = −7.8 0.02 0.08 9
Rh = 26pc
Rt = 132pc

ASP;
Mv = −7.2 0.02 0.06 7
Rh = 26pc
Rt = 140pc

NASP;
Mv = −7.2 0.02 0.05 6
Rh = 26pc
Rt = 140pc

Table 2: Fraction of extended globular clusters with computed tidal radii greater than the
observed tidal radii, Rt, of the extended clusters of Huxor (2005), computed in both the
known Allen 48 orbits (Allen, 2006) and the estimated orbits. The fractions listed pertain to
calculations using the alternative formulation for estimating the tidal radius (Allen, 2006),
r?. Rh is the extended cluster’s half light radius (Huxor, 2005). The potential and extended
cluster parameters are listed in the leftmost column where the abbreviations, ASP and
NASP are used to denote the Axisymmetric and Nonaxisymmetric Potentials, respectively.
In addition, the corresponding number of surviving extended clusters are listed in the last
column. The latter was computed using a weighted average of the fractions listed and the
cluster population in each set (Allen 48 and Non Allen clusters).
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Potential;
Extended tidal tidal tidal tidal
globular cluster Rh ≤ radius ≤ 2Rh 2Rh ≤ radius ≤ 3Rh 3Rh ≤ radius ≤ 4Rh 4Rh ≤ radius ≤ Rt

properties;
tidal radius (34pc) (34pc) (34pc) (30pc)
formulation

ASP;
Mv = −7.3 49 6 4 1
Rh = 34 pc
Rt = 166 pc
rk

NASP;
Mv = −7.3 46 6 4 1
Rh = 34 pc
Rt = 166 pc
rk

ASP;
Mv = −7.3 54 7 4 3
Rh = 34 pc
Rt = 166 pc
r?

NASP;
Mv = −7.3 52 7 4 3
Rh = 34 pc
Rt = 166 pc
r?

Table 3: This table lists the number of extended clusters that would survive in the orbits
of the Milky Way with computed tidal radii in the range between the half light radius,
Rh, and the physical tidal radius, Rt of Huxor (2005), with the range divided in multiples
of Rh. The corresponding tidal radii are computed using the King Formula (1962), rk,
and the alternative formulation (Allen, 2006), r?. The Rh value is listed in the leftmost
column for the given potential alongside the extended cluster parameters. The abbreviations,
ASP and NASP are used to denote the Axisymmetric and Nonaxisymmetric Potentials,
respectively. The purpose of this test was to relax the definition of “extended cluster” to
include extended clusters that have undergone some degree of tidal shredding and observe
how many additional clusters survive.
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Potential;
Extended tidal tidal tidal tidal
globular cluster Rh ≤ radius ≤ 2Rh 2Rh ≤ radius ≤ 3Rh 3Rh ≤ radius ≤ 4Rh 4Rh ≤ radius ≤ Rt

properties;
tidal radius (26pc) (26pc) (26pc) (28pc)
formulation

ASP;
Mv = −7.8 71 19 8 4
Rh = 26 pc
Rt = 132 pc
rk

NASP;
Mv = −7.8 70 19 8 6
Rh = 26 pc
Rt = 132 pc
rk

ASP;
Mv = −7.8 70 20 8 8
Rh = 26 pc
Rt = 132 pc
r?

NASP;
Mv = −7.8 68 19 7 6
Rh = 26 pc
Rt = 132 pc
r?

Table 4: This table lists the number of extended clusters that would survive in the orbits
of the Milky Way with computed tidal radii in the range between the half light radius,
Rh, and the physical tidal radius, Rt of Huxor (2005), with the range divided in multiples
of Rh. The corresponding tidal radii are computed using the King Formula (1962), rk,
and the alternative formulation (Allen, 2006), r?. The Rh value is listed in the leftmost
column for the given potential alongside the extended cluster parameters. The abbreviations,
ASP and NASP are used to denote the Axisymmetric and Nonaxisymmetric Potentials,
respectively. The purpose of this test was to relax the definition of “extended cluster” to
include extended clusters that have undergone some degree of tidal shredding and observe
how many additional clusters survive.
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Potential;
Extended tidal tidal tidal tidal
globular cluster Rh ≤ radius ≤ 2Rh 2Rh ≤ radius ≤ 3Rh 3Rh ≤ radius ≤ 4Rh 4Rh ≤ radius ≤ Rt

properties;
tidal radius (26pc) (26pc) (26pc) (36pc)
formulation

ASP;
Mv = −7.2 33 12 6 2
Rh = 26 pc
Rt = 140 pc
rk

NASP;
Mv = −7.2 40 14 8 5
Rh = 26 pc
Rt = 140 pc
rk

ASP;
Mv = −7.2 34 10 5 4
Rh = 26 pc
Rt = 140 pc
r?

NASP;
Mv = −7.2 39 8 6 7
Rh = 26 pc
Rt = 140 pc
r?

Table 5: This table lists the number of extended clusters that would survive in the orbits
of the Milky Way with computed tidal radii in the range between the half light radius,
Rh, and the physical tidal radius, Rt of Huxor (2005), with the range divided in multiples
of Rh. The corresponding tidal radii are computed using the King Formula (1962), rk,
and the alternative formulation (Allen, 2006), r?. The Rh value is listed in the leftmost
column for the given potential alongside the extended cluster parameters. The abbreviations,
ASP and NASP are used to denote the Axisymmetric and Nonaxisymmetric Potentials,
respectively. The purpose of this test was to relax the definition of “extended cluster” to
include extended clusters that have undergone some degree of tidal shredding and observe
how many additional clusters survive.
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Potential;
Extended
globular cluster tidal radius ≥ 2Rh tidal radius ≥ 3Rh tidal radius ≥ 4Rh

properties;
tidal radius
formulation

ASP;
Mv = −7.3 17; 20 11; 13 7; 9
Rh = 34 pc
Rt = 166 pc
rk; r?

NASP;
Mv = −7.2 17; 19 11; 12 7; 8
Rh = 34 pc
Rt = 166 pc
rk; r?

ASP;
Mv = −7.8 40; 45 21; 25 13; 17
Rh = 26 pc
Rt = 132 pc
rk; r?

NASP;
Mv = −7.8 42; 41 23; 22 15; 15
Rh = 34 pc
Rt = 132 pc
rk; r?

ASP;
Mv = −7.2 27; 26 15; 16 9; 11
Rh = 26 pc
Rt = 140 pc
rk; r?

NASP;
Mv = −7.2 33; 27 19; 19 11; 13
Rh = 26 pc
Rt = 140 pc
rk; r?

Table 6: Number of total surviving extended globular clusters with computed tidal radii
greater than multiples of the half light radius, Rh of Huxor (2005). This table lists the total
number of extended clusters one would expect to see if the number of extended clusters in the
Milky Way included those having undergone varying degrees of tidal shredding. The values
are listed alongside one other for the King formula (King, 1962), rk, and the alternative
formulation of the tidal radius (Allen, 2006), r?, respectively. The abbreviations, ASP and
NASP are used to denote the Axisymmetric and Nonaxisymmetric Potentials, respectively.
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Cluster Number of Total number Total number Fraction of Fraction of
Classification clusters of clusters of clusters total clusters total clusters

(candidate globular (candidate globular (candidate globular (candidate globular
clusters included) clusters removed) clusters included) clusters removed)

Globular 509 1571 522 0.32 0.97
Cluster
Candidate 1049 1571 522 0.67 0
Globular
Cluster
Extended 13 1571 522 0.01 0.03
Globular
Cluster

Table 7: Globular cluster statistics for M31: Extended cluster fraction of total M31 globular
cluster population (including candidate globular clusters), Extended cluster fraction of total
M31 globular cluster population with candidate globular clusters removed and Candidate
globular cluster fraction of total globular cluster population, respectively.

Ratio of extended globular clusters Number of expected extended globular
to regular globular clusters clusters in the Milky Way

observed in M31

13 : 509 4

Table 8: Number of extended globular clusters one would expect to see in the Milky Way
Galaxy if the same ratio of extended to regular globular clusters existed in the Milky Way
as in M31, assuming a Milky Way globular cluster population of 150.
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5 Discussion

In this section, the main questions regarding the plausibility of extended globular clus-

ters existing in the Milky Way Galaxy; found in the Introduction of the report, are revisited.

Since no extended globular clusters have been found in the Milky Way Galaxy to date, it

was necessary to investigate what factors favor or disfavor the existence of extended clusters

in the first place. More specifically, the influence of tidal shredding and cluster proximity to

the Galactic Center were considered. It is not known whether extended clusters have existed

in the Milky Way Galaxy at one time; since none exist presently. Hence, it was meaningful

to test the conditions under which extended globular clusters could survive; by placing them

in the orbits of the Milky Way Galaxy. The result of this test was that an overwhelming

majority of the extended globular clusters were not able to survive in the known (Allen 48)

and estimated orbits of the Milky Way, but a small minority of the clusters could. All of

the cases, where extended clusters were substituted in the orbits of the Milky Way, resulted

in non zero numbers of surviving extended clusters. In fact, a lower limit of 5 extended

globular clusters could be accommodated in the Milky Way, under the current conditions.

The latter indicates that tidal shredding in the orbits of the Milky Way could have played

a significant role in reducing the number of extended globular clusters in the Milky Way; if

they indeed existed, however, it is not a legitimate mechanism for removing all of them. It

is therefore a curious fact that no extended clusters exist in the Milky Way at all.

In addition, it was necessary to investigate the effect of tidal shredding on the extended

clusters to a further extent; and determine whether it is a reasonable method of removing

them from the Milky Way. By considering the subset of clusters with computed tidal radii

in the region between the half light radius and the physical tidal radius, reported in Huxor

(2005), it was possible to determine how many of these clusters could still survive. The

results reveal that if one defines an extended cluster to include extended clusters having

computed tidal radii approximately 30 pc smaller than those reported in Huxor (2005),

then as many as 17 and as few as 7 extended globular clusters would be expected to survive

in orbits of the Milky Way. Since a total of 13 extended clusters were discovered in M31,

it would not be unreasonable to expect to see the same number of extended clusters in the

Milky Way as are currently observed in M31.

By comparing the distribution of clusters in M31 and Milky Way galaxies, it became

apparent that the cluster distributions in the two Galaxies differed significantly and that

the cluster distribution in the Milky Way could not be considered representative of the
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distribution found in M31. In addition, since the M31 clusters are located further out from

the Milky Way Galactic Center, it would appear that the cluster distribution in the Milky

Way disfavors the existence of extended globular clusters. Hence, it would appear as that

the cluster distribution in the Milky Way could begin to explain the lack of extended clusters

observed. However, all of the calculations performed, indicate that one would expect at least

5 extended globular clusters to survive in the orbits of the Milky Way. Consequently, the

Milky Way cluster distribution may not favor the survival of very many extended clusters,

but fails to explain why none are seen at all. Furthermore, if one considers the Milky Way

to have the same ratio of extended clusters as M31, one would expect to see 4 extended

clusters in the Milky Way. This estimate does not consider cluster distribution, however,

when cluster distribution is considered, the lower limit of surviving extended clusters is 5.

Hence, none of the tests performed indicate that one should observe no extended clusters in

the Milky Way Galaxy.

When considering the conditions under which extended clusters could exist in the Milky

Way, it is apparent that the current conditions in the Milky Way could support the existence

of extended clusters already. The fact that none are actually observed, suggests that either

no extended clusters existed in the Milky Way in the first place or perhaps that there were

extended clusters in the Galaxy, but that they were somehow removed by factors that have

yet to be explored.
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