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Abstract

The Black Scholes Merton (BSM) contingent claims approach to modeling corporate default risk entails 

mapping a distance to default (DD) to a probability of default (PD) in application. To accomplish this, 

the research  community  typically  assumes  a  normal  distribution.  The authors  question the  practical 

relevancy of such research, since the BSM contingent claims approach most commonly used in practice, 

Moody's KMV, uses an empirical expected default frequency (EDF) for this purpose.

In this study, the authors test the assumption implied in prior research that PD calculated under a normal 

distribution can serve as a reasonable proxy for PD calculated with EDF. Without access to Moody 

KMV's  proprietary  database,  however,  the  authors  use  an  empirical  EDF distribution  based  on  an 

approximated simulation. 

The authors find that information content  does differ between the two approaches.  Furthermore,  the 

authors findings imply that, given a sufficiently large sample, the empirical EDF approach can provide a 

higher quality forecast of default probability than under a normal distribution.

Keywords: Bankruptcy Forecasting, Expected Default Frequency, KMV, Moody's, Probability of 

Default, Credit Risk
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Part 1 – Introduction

We  begin  the  introduction  by  outlining  the  relevance  of  the  credit  risk  question  in  the  current  
environment. We then provide the reader with topical credit risk definitions and define the boundaries  
of our study within the greater topic. Common models to determine credit risk are listed and we make a  
case for the usefulness of an additional approach.

Background

Credit Risk – Importance and Definitions

The current global financial crisis underscores the importance of credit risk management and the topic 

has recently attained an elevated place in the international economic consciousness. It has been widely 

acknowledged that  poor  understanding  of  credit  risk exposures,  particularly  in  regard  to  mortgage-

backed securities, led to misapplication of risk controls by major financial institutions. These failures 

resulted in a freezing of credit markets, and ultimately, a downturn in overall economic activity.

The importance of credit risk quantification, specifically, had been acknowledged already in 2004 with 

the publication of the the credit  risk portion of the Basel II accords. The directives recommend that 

credit  risk ratings  generated  for  each  debtor  be used  in  determination  of  institutional  capitalization 

requirements.  While  the  majority  of  world  financial  regulators  have  expressed  their  intention  of 

implementing some version of the accords1, many countries are still  struggling with implementation, 

often  noting  difficulty  surrounding  credit  rating  infrastructure2.  Interestingly,  these  same  Basel  II 

requirements are being criticized as a contributing factor to the financial crises in jurisdictions where it 

was implemented. Critics argue that financial institutions were encouraged to lower capitalization rates 

based on overly optimistic credit ratings3. The lesson? It seems that the use of credit ratings itself is not a 

panacea,  particularly  when  inaccuracy  can  even  exacerbate  the  problem  of  sub-optimal  capital 

allocation.  The degree to which the a credit rating is able to capture and accurately forecast default 

probabilities determines the usefulness, or harmfulness, of any rating in application.

"Credit risk" is defined as the risk of loss due to a counter-party's non-payment of its obligations. Within 

this definition, a 'counter-party' can be an individual, a company, a collateralized debt obligation (CDO), 

1 Financial Stability Institute; Occasional Paper No 4; 2004

2 Momentum in Plans for Introducing Basel 2 standards but Countries face implementation 
problems; Andrew Cornford; SUNS #6193 ; 22 February 2007

3 Has Basel II backfired?; Lilla Zuill; March 5th, 2008; Reuters Blogs; 15/04/2009
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or even a sovereign government. An 'obligation' can be a loan, a line of credit, or a derivative thereof. 

'Non-payment' refers to principal, interest, or both. To fully understand credit risk involved in a specific 

transaction requires measurement of three factors - default probability, or likelihood; credit exposure, or 

the value of the obligation at default; and the recovery rate, or the recoverable portion of the obligation 

in  the case of  default.  In  this  study we focus  on the  first,  and least  straightforward,  element  -  the 

calculation of probability of default.

Previous Research

A number of papers and models have addressed the quantification of default probabilities from various 

angles. These range from simple accounting ratios-based to sophisticated models that utilize modern 

financial theory. One model in particular that has gained a substantial user base is a proprietary solution 

offered by Moody's KMV Corporation. Currently, more than 2,000 leading commercial and investment 

banks, insurance companies, money management firms, and corporations in over 80 countries rely on 

KMV products. The use of KMV and similar models has been encouraged by regulators and official 

authorities, and the Basel Committee mentions the KMV model specifically as early as 1999.

Application of the KMV model to estimate probability of default (PD) has historically been limited to 

two methods in practice. Normal distribution (Hillegeist, Keating, Cram, Lundstedt (2004), Bharath and 

Shumway (2008), Agarwal, Taffler(2008)) or EDF using Moody KMV's proprietary database (Keenan 

and Sobehart(1999), Sobehart, Keenan and Stein(2001)). In the first option, the assumption of normal 

distribution of distance to default used in calculating default probability may be an oversimplification. 

As  an alternative  to  the  normal  distribution  assumption,  Moody's  KMV utilizes  the  world's  largest 

proprietary database for credit risk modeling, containing 30+ years of company default and loss data for 

millions of private and public companies. 

Research Question and Contribution

Despite the prevalence of Moody KMV's use in practice, it seems that the research community missed 

an important detail in evaluating the predictive power and the overall quality of the model.  The most 

commonly tested version of KMV model assumes the normal distribution of distances to default (DD). 

However, as noted by Maria Vassalou and Yuhang Xing (2004):

"Strictly  speaking,  [a  normally  distributed  PD] is  not  a  default  probability  because  it  does  not  

correspond to the true probability  of  default  in large samples. In contrast,  the default  probabilities  
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calculated by KMV are indeed default probabilities because they are calculated using the empirical  

distribution of defaults. For instance, in the KMV database, the number of companies times the years of  

data is over 100,000, and includes more than 2,000 incidents of default." 

In contrast  to the  bulk of  historical  literature,  we estimate  an empirical  expected  default  frequency 

(EDF) based on a simulation of Moody KMV's database.  We then compare this EDF model  to the 

normal distribution approach commonly applied in literature. For the purpose of estimating EDF, we 

created a database which we populated with default and other company data available to the majority of 

researchers in the area of finance.  We then follow the Agarwal, Taffler (2008) framework to compare 

the  two  versions  of  model  (theoretical  (ND)  and  empirical  (EDF)),  thus  taking  into  consideration 

differential error misclassification costs.

Whereas, we do not have access to the actual Moody's KMV database and EDF, this study cannot and 

should not be interpreted as an empirical assessment of  the performance of that model. Instead, we work 

with  a  smaller  subset  of  data  to  create  a  rough proxy of  Moody's  KMV adequate  to  disprove  the 

assumption that there is no significant difference between a KMV model based on normal distribution 

and one based on empirical distribution (EDF).

H0: There is no significant difference between a KMV model based on normal distribution (here we  

refer  to  naïve  model  suggested  by  Bharath  and Shumway (2004))  and one based  on an  empirical  

distribution (EDF).
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Part 2 – Literature Review
The literature review is divided into two subsections. We begin by reviewing the historical development 

of  some key credit  risk models.   We next  discuss the results  of  empirical  studies  that  compare the  

performance of various models and provide an overview of model comparison measures.

Review of Credit Risk Models

Historical Background

The history of credit analysis is almost as old as money itself and the way credit analysis is performed 

has evolved dramatically over time. 

The earliest  model  used in  default  prediction,  expert  systems are simply a subjective assessment  of 

default probability by a knowledgeable individual. The later use of formal accounting-based ratios in 

default prediction have evolved over time. FitzPatrick (1932) conducted a study of ratios and trends 

which included 20 company pairs, one bankrupt, one ongoing. The conclusions he presented could be 

interpreted as a form of multiple variable analysis. Beaver (1967) built on this study by applying t-test 

statistical analysis to the matched pairs. Altman (1968) applied formal multiple variable analysis to the 

problem,  resulting  in  the  z-score  still  in  use  today.  Ohlson  (1980)  applied  logit  regression  to  the 

problem. 

The idea of market, or contingent claims, -based models, dates back to Merton's (1974) application of 

Black and Scholes (1973) option pricing theory to default prediction. These models, including the KMV 

model used in this study, are explained in further detail in the following sections. 

Most recently, improvements in computing technology have allowed development of a new generation 

of tools. Such tools include neural networks and actuarial based models, among others. 

Expert Systems

The earliest approach to creditworthiness measurement, expert systems, is still in use today. Under this 

approach, the assessment is left to an individual with knowledge and expertise in the area. It's a rather 

subjective approach, but can include both quantitative and qualitative analysis. The five "Cs" of credit: 

Character, Capital, Capacity, Collateral, Cycle are an example of such a system.

There are both advantages and disadvantages to this approach. It can be inexpensive to implement and 
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easy to understand for stakeholders involved. It often may be the only available method, due to limited 

information about the borrowers. However, the subjectivity element means that similar borrowers might 

be treated differently and assessment consistency can be a problem. 

Sommerville & Taffler (1995) conducted an interesting study evaluating traditional expert systems vs. 

newer systems. When comparing a sample of banker's subjective debt ratings with multivariate credit-

scoring methods, they found that bankers tended to be over-conservative in assessing credit risk. In their 

study, multivariate credit-scoring systems proved to have better performance overall. 

Accounting Ratio-based Models

Accounting-ratio-based models were the first multivariate analyses applied to predict the probability of 

failure.  These  models  are  regressed  on  a  number  of  weighted  accounting  ratios  from a  company's 

financial statements based on a mixed sample of going concerns and bankrupt firms. The five variable z-

score  developed  by  Altman  (1968)  was  a  first  such  model  published.  Altman's  study  was  able  to 

distinguish the average ratio profiles for bankrupt vs non-bankrupt samples.

Other accounting-based models followed, with Altman et al. (1977) adding additional variables to the z-

score, and Martin (1977), Ohlson (1980), West (1985), and Platt and Platt (1991a) contributing, among 

others. 

Many studies have reflected positively on the effectiveness of accounting ratio-models in predicting 

short-term (1-2 year) company insolvency. Eidleman (1995), for example, shows the z-score model to 

predict more than 70% of company failures. Theoretical shortcomings have also been noted. Saunders 

and Allen (2002) note that such models' ratios and weightings are likely to be specific to the sample 

from which they are derived.  Agarwal & Taffler  (2008) add the concern that accounting statements 

represent historical,  not future,  performance;  and even these historical  values are suspect in light of 

potential management manipulation, accounting conservatism, and historical cost accounting. Hillegeist 

et al. (2004) identify an innate bias in the use of accounting statements in default prediction, as they are 

produced only by firms with continued operations. 

Merton Model

Also known as market based, or contingent claim based, models; the idea of applying option pricing 

theory to default prediction dates back to Merton (1974), whose own work drew from Black and Scholes 

(1973) theoretical valuation of options. In his z-score model, Merton assesses a company's risk-neutral 
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probability  of  default  through  the  relationship  between  market  value  of  the  firm’s  assets  and  debt 

obligations.  Merton proposed to  characterize  the company's  equity as a  European call  option on its 

assets, with maturity T, and strike price X equal to debt face value. The put value is then determined per 

the put-call parity, representing the firm's credit risk. Default occurs in the model when asset value is 

less than the debt obligations at time T. The model takes three company-specific inputs: the equity spot 

price, the equity volatility (transformed into asset volatility), and debt per share. Kealhofer (1996) and 

KMV (1993) are two applications of Merton.

A strength of Merton's model is, as opposed to the accounting-based models discussed earlier, market 

prices are independent of a company's accounting policies. Market value should reflect book value plus 

future abnormal cash flow expectations under clean surplus accounting, and thus, expectations of future 

performance.

However, the underlying Black-Scholes model makes some strong assumptions: lending and borrowing 

can be done at a known constant risk-free interest rate; price follows a geometric Brownian motion. No 

transaction costs exist; no dividend is paid; it is possible to buy any fraction of a share; and no short 

selling restrictions are in place. Other potential problems with the Merton model itself are: it can be 

difficult  to  apply  it  to  private  firms,  it  does  not  distinguish  debt  in  terms  of  seniority, collateral, 

covenants, or convertibility; and, as Jarrow and van Deventer (1999) point out, the model assumes debt 

structure to hold constant, which can be a problem in application to firms with target leverage ratios. 

Neural Networks and Other Methods

Artificial neural networks are computer systems that imitate human learning process; learning the nature 

of relationships between inputs and outputs by repeatedly sampling from an information set. They were 

developed largely to address the lack of standardization of subjective expert systems.

Hawley,  Johnson,  and  Raina  (1990)  find  that  the  artificial  neural  networks  perform well  in  credit 

approval when the decisions involve subjective and non-quantifiable information assessment. Kim and 

Scott (1991) report that, although the neural networks perform well in predicting bankruptcies within 

one-year horizon (87%), their accuracy declines rapidly as the forecast horizon is extended. Podding 

(1994) and Altman, Marco, and Varetto (1994) both compare the performance of neural networks and 

credit scoring models. They find dissimilar results, in the former study the neural networks performed 

better, while in the latter  paper there was no significant difference.  An important result comes from 

Yang, Platt,and Platt (1999) - neural networks, despite high credit classification accuracy, suffered from 
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relatively high type 2 classification error, which was higher than for discriminant analysis.

Overall, neural networks seem to have much to offer in supporting credit analysis; but complexity, lack 

of decision making transparency, and difficulty in maintenance limit their popularity in practice. Other 

models  not  addressed  in  this  section  include  the  hazard  model,  intensity-based  modeling,  rating 

migration, and using CDS or bond spreads as proxies for credit risk.

Moody’s KMV model

The focus of our study, the KMV model is one of the most common subsets of the Merton Model in use 

by financial  industry.  While  a full  description of this  commercial  solution is not available,  MKMV 

provides general overview of their methodology in enough detail to be useful. Occasional model updates 

reveal additional information, as Moody's release highlights differences in new approaches vs. latent 

ones. Consequently, we were able to prepare a short, but fairly comprehensive overview of the model. 

Estimation of asset value and default point 

MKMV works in similar fashion to Merton model in estimating asset value and default point, though the 

actual model used is a version of Vasicek-Kealhofer (VK). VK assumes that a company has a zero 

coupon bond maturing in 1 year and straight equity that pays no dividend. It then solves Black-Scholes 

formula to find asset value. On the other hand, MKMV allows for:

* Dividends, coupons and interest payments 

* Distinction between short-term and long-term liabilities 

* Common, preferred and/or convertible equity 

* Default at any point in time

The default point, which is equivalent to the absorption barrier of the down-and-out option, is set to 

short-term liabilities plus a portion of long-term liabilities less minority interest and deferred taxes4 (for 

non-financial  firms)  .  The  time  horizon  determines  the  portion  of  long-term  liabilities  that  are 

considered.  The default  point  is  then updated for  every firm on a monthly basis  based on publicly 

available information. 

Given the default point,  asset volatility and the risk-free interest rate, it is possible to solve the VK 

model for the asset value that sets modeled value of equity equal to the actual equity value. Up to this 

4 Dwyer and Qu (2007)
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point we haven't discussed how the volatility of assets is estimated. We turn to this problem in the next 

subsection. The value of assets and the volatility of assets are both interrelated and, therefore, calculated 

simultaneously. 

Estimation of asset volatility 

MKMV constructs the estimate of a firm's asset volatility using information on firm-specific variables 

(e.g. equity price, liabilities history) and information for the entire population of comparable firms (e.g. 

equity prices, liabilities history).  This process yields two measures:  empirical volatility and modeled 

volatility, respectively. The actual volatility used in further calculations is the combination of the two. 

The weight on empirical volatility relative to modeled volatility is determined by the length of the time 

series of equity prices that is used in estimating empirical volatility5. 

The empirical volatility is calculated in an iterative procedure, which is actually a maximum likelihood 

estimate of asset volatility, as shown by Duan, Gauthier, and Simonato (2004).  Dwyer and Qu (2007) 

describe the procedure as follows on page 31: "Using the VK model we compute a time series of asset  

values and hedge ratios from which we de-lever  equity  returns into asset  returns.  We compute the  

resulting volatility of asset returns, and then iterate until convergence." Thus, the empirical volatility 

and the asset value are estimated simultaneously in this procedure.

The modeled volatility in turn, is the expected volatility of a firm given certain characteristics (size, 

industry,  location and certain accounting ratios). Furthermore, as described in MKMV methodology: 

"Each  month,  modeled  volatility  is  recalibrated  so  that  on  average  modeled  volatility  is  equal  to  

empirical  volatility.  In  this  way,  modeled  volatility  neither  increases  nor  decreases  changes  in  

aggregate volatility that may occur as the result of changing business conditions."6 The asset volatility 

of firms that recently went public, underwent major restructuring, spin-off, merger etc. would rely more 

heavily on the modeled volatility in the model. 

Calculation of Distance-to-Default 

Since the VK model does not assume a simple geometric Brownian motion in asset valuation generation, 

the calculation of distance-to-default is slightly different from that applied in Merton model. Distance-

to-Default (DD)  is defined as follows: 

5 Dwyer and Qu (2007)

6 Dwyer and Qu (2007), pg 31
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DD V , X T , A ,T ,  , =

log  V
X T T −1

2
 A

2 T

 AT
(1)

Where V is the value of a firm’s assets, XT is the default point to the horizon, μ is the drift term, σA is the 

volatility of assets,  T is the horizon and  α represents cash leakages per unit  of time due to interest 

payments,  coupons  and  dividends.  Drift  is  the  expected  return  on  assets.  The  value  of  assets  and 

volatility of assets are both calculated as outlined in previous sections.  It is important to note that the 

default point can vary considerably as  T changes. The default point consists of short-term debt and a 

fraction of long-term debt proportional to T.

Through DD, we already have a measure that functions as a practical ranking criterion, which can be 

used as an ordinal scale for credit risk. Higher (lower) DD indicate lower (higher) credit risk. Still, this 

measure  can  be  improved  in  a  number  of  ways.  For  example,  a  nominal  scale  measure,  such  as 

probability of default,  is required to calculate capital  requirements for financial  institutions and take 

focused and appropriate loan pricing decisions. 

Since large-sample observed default frequencies do not correspond to theoretical probability of default 

measure, there is a need to utilize a mapping procedure from actual DD to observed default frequencies. 

This measure is referred to by MKMV as the expected default frequency, or EDF. Below, we present an 

excerpt from Crosbie and Bohn (2003), page 18, with further motivation for the use of mapping of DD 

to EDF: 

"[...] Normal distribution is a very poor choice to define the probability of default. There are several  

reasons for this but the most important is the fact that the default point is in reality also a random 

variable.  That  is,  we have assumed that  the default  point  is  described by the firm’s liabilities  and  

amortization schedule. Of course we know that this is not true. In particular, firms will often adjust their  

liabilities as they near default. It is common to observe the liabilities of commercial and industrial firms  

increase  as  they  near  default  while  the  liabilities  of  financial  institutions  often  decrease  as  they  

approach default. The difference is usually just a reflection of the liquidity in the firm’s assets and thus  

their ability to adjust their leverage as they encounter difficulties. 

Unfortunately ex ante we are unable to specify the behavior of the liabilities and thus the uncertainty in  

the adjustments in the liabilities must be captured elsewhere. We include this uncertainty in the mapping  

of distance-to-default to the EDF credit measure. The resulting empirical distribution of default rates  
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has much wider tails than the Normal distribution."

Mapping of DD to EDF 

The logic behind MKMV's mapping procedure is fairly straightforward.  MKMV publishes the general 

general mapping process, if not the precise one. We illustrate this general process as follows.  For any 

given distance to default, say DD=5, all companies in the sample with DD close to 5 are selected. EDF 

is then the number of defaulted companies divided by the total number of companies with DD close to 5. 

In  their  methodology,  MKMV  calls  this  collection  of  companies  with  similar  DD  a  "bucket".  In 

principal,  MKMV assumes that all the companies within a bucket have very similar probabilities of 

default. This is consistent with the assumption that DD is an accurate credit risk ranking measure. As a 

last step, MKMV calculates EDF for all buckets from the continuum of distances to default and then fits 

a smooth function through each bucket. The result is EDF as a function of DD. 

From a practical viewpoint, there are a couple of considerations required before a calculation of EDF is 

possible. First, a “default event” must be defined. Second, since no database includes all default events, 

a  decision  has  to  be  made  as  to  how missing  events  are  handled.  Finally,  after  exceeding  certain 

threshold of probability of default the actual likelihood of default does not change. In other words, above 

certain level of EDF, say 40%, EDF measure ceases to be a good indicator of true probability of default. 

On the other end of continuum, below certain level of EDF (about 0.1%) there are no defaults.

MKMV deals with these problems as follows. First, a default event is defined as any missed payment, 

bankruptcy,  or distressed exchange. Second, the model is calibrated on the population of companies 

where comprehensive information about defaults is available. The said population is composed of U.S. 

Public, non-financial firms with more than $300 million revenues from 1980 to 2009. Lastly, MKMV 

put cap on EDF of 35%. Thus, all the companies with EDF mapped above 35% and winsorized to 35%. 

On the low end, CDS spreads are used to extrapolate EDF for companies with EDF below 0.1%.  A 

floor at 0.01% is also defined for EDF, since, below a certain level, even CDS spreads cease to provide 

information adequate to differentiate companies.

Comparison of credit scoring models

Measures of Model Quality

Here we review some of the key metrics used in the comparison of various  models. The topic is very 

broad and at times very technical. A detailed analysis of different techniques is out of the scope of the 
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paper. Therefore, we focus on the methods used in our study and those closely related. For more detailed 

analysis and bigger variety of tests, we refer the readers to other sources, which we list at the end of the 

section.

As the finance community and the government regulatory bodies become more interested in measuring 

credit risk, they develop new ways of evaluating and comparing credit models. For the models focusing 

on the prediction of probability of default, validation proceeds along two different dimensions: model 

discriminatory power and model calibration. 

The power of a model refers to its ability to distinguish between defaulting ("low quality") and non-

defaulting ("high quality") firms. For example, if two models produce two ratings, "high quality" and 

"low quality,"  the  more  powerful  model  would  have  a  higher  percentage  of  defaults  and  a  lower 

percentage of non-defaults in its "low quality" category and had a higher percentage of non-defaults and 

a lower percentage of defaults in its "high quality" category.  This type of analysis can be performed 

using power curves, for example.

Calibration  describes  how  well  a  model's  predicted  probabilities  match  with  observed  events.  For 

example, assume we have two models, A and B, each predicting two rating classes, "high quality" and 

"low quality". If the predicted probability of default for A's "low quality" class are 5% B's is 20%, we 

might examine these probabilities to determine how well they matched actual default rates. If we looked 

at the actual default rates of the portfolios and found that 20% of B's "low quality" rated loans defaulted 

while 1% of A's did, B would have the more accurate probabilities since its predicted default rate of 

20% closely matches the observed default rate of 20%, while A's predicted default rate of 5% was very 

different  than  the  observed  rate  of  1%.  This  type  of  analysis  can  be  performed  using  likelihood 

measures.

Some of the most common methods for evaluating the discriminatory power of a credit scoring systems 

include:  Cumulative  Accuracy  Profile  (CAP)  and  its  Accuracy  Ratio  (AR),  Receiver  Operating 

Characteristic (ROC) and Area under ROC curve (AUROC).

CAP and ROC are graphical presentations of the model’s discriminatory power. Although the graphs 

themselves  do  not  provide  formal  tests  of  model  quality,  they  enable  quick  assessment  of  various 

properties and may indicate which formal tests should be applied. They can also be seen as a credit risk 

model version of the quantile-quantile plots used for evaluating distributions. 
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Engelmann et al. (2003) show that the AUROC and AR are simply linear transformations of each other. 

Thus, having one of these statistics suffices, since no additional information can be extracted from the 

other. The proof of the equivalence of AUROC and AR, and additionally the discussion on how to 

statistically evaluate the difference between the ROC curves of two different models can be found in 

Engelmann’s paper.

Evaluation of calibration of credit risk models poses additional challenges. A small number of default 

events often makes it difficult or impossible to evaluate the relationship between true default frequency 

and assigned probabilities of default for different risk classes within the same model. Therefore, the 

measurement is often concentrated on comparing true default frequency for the whole sample with the 

assigned probabilities of default. An alternative approach is to attempt to fit a regression model to the 

data  with  credit  scores,  or  forecasted  default  probabilities,  as  the  explaining  variable  and  default 

(non-)events as the explained variable. A model with higher likelihood measure is considered to have 

better calibration. 

As mentioned at the beginning of this section, the topic of model evaluation and comparison techniques 

is very broad and there is more specialized literature that covers it. For a general overview of the area we 

direct the reader to Moody’s publications: Stein (2002) and Sobehart and Stein (2004). Engelmann et al. 

(2003) provide an excellent overview of power curves evaluation techniques  and their  comparisons. 

Tasche (2006)  gives an overview of  great  variety  of tests  including:  Spiegelhalter  test,  information 

entropy, binomial test, Hosmer-Lemeshow test just to name a few. For more commercial publications on 

the topic refer to Christodoulakis and Satchell (2008) and, especially for Basel II relevant methodology, 

Ozdemir and Miu (2009).

Empirical Evidence from Model Comparison

This section provides an overview of the empirical studies comparing various credit scoring models. 

Though there are a substantial number of models, there is a relative scarcity of studies that rigorously 

evaluate the contribution of different approaches. One problem with empirical tests of models’ quality is 

difficulty  with  obtaining  large  datasets.  Since  corporate  defaults  are  fairly  rare  events  only  very 

comprehensive  databases  might  contain  all  the  information  required  to  conduct  the  tests.  Other 

important fact  is that  the development  of some of the more rigorous statistical  tests  occurred rather 

recently. The movement was spurred in a big part by the new Basel capital accord.

We begin by reviewing the results of a survey study that takes a bit different angle on the measurement 
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of the credit risk model quality. The study evaluates ability to valuate risky debt with contingent-claims 

credit  models  –  Bohn (2000).  Next,  we present  an  important  study by  Shumway (2001).  We also 

mention Duffie et al. (2007), which suggests an interesting credit risk model, though difficult to compare 

with MKMV. We then focus on studies that evaluate contingent-claim credit risk models similar in form 

to MKMV. Papers discussed include Hillegeist et al. (2004), Bharath and Shumway (2008), Agarwal 

and Taffler  (2008).  Finally,  we give  a  quick  overview of  a  study -  Sobehart  and  Stein  (2004),  as 

presented by the researchers employed by MKMV.

A survey by Bohn (2000) reveals an abundance of structural and reduced-form models for use in credit 

risk and risky debt valuation.  Bohn explains  that,  despite  this  variety of models,  there  is  a relative 

scarcity of empirical tests on bond data. In practice, the amount and quality of corporate bond data is 

very limited.  This, coupled with the relative complexity of bond structures and the large number of 

parameters  required  for  structural  models,  make  empirical  testing  very  challenging.  Consequently, 

studies that attempt to perform the tests often focus on special cases or limited samples. In this setting, it 

is unrealistic to expect generalizable and statistically robust results.

Bohn's review indicates weak-to-mixed support for the contingent-claim models’ ability to explain bond 

spreads. Early papers from Jones, Mason, and Rosenfeld (1984) and Franks and Torous (1989) find a 

significant mismatch between structural model spread predictions and true spreads. Another paper from 

the same year, Sarig and Warga (1989), report that the predicted term structures of credit spreads are 

consistent with the observed term structures. However, a small sample and lack of rigorous statistical 

testing prevented them from drawing strong conclusions. Another paper with small sample that finds 

support for Merton framework is Wei and Guo (1997). Delianedis and Geske (1998) use the Black-

Scholes-Merton  framework  to  estimate  risk-neutral  default  probabilities  and  test  them  on  rating 

migration and default data. They find evidence that the bond market predicts default events faster than 

the equity market. 

Overall, it seems that the research in this area is still open. Even though the contingent-claim models 

have solid theoretical foundation there is no strong evidence that they can predict bond spreads.

In his paper, Shumway (2001) develops a hazard model and then tests its discriminatory power against 

accounting-based z-score model. Another important finding, the paper determines that a discrete time 

logit model can be estimated as a simple logit model with correction for the multiple years per firm. We 

apply this approach in our study.
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Shumway estimates his model and tests  it  on 31 years of bankruptcy data.  He finds that the model 

outperforms the accounting-based model. He also reports that, by combining certain market variables 

and accounting information, one can significantly improve the predictive power of a model.

As mentioned, many of rigorous tests for the credit risk model quality were developed fairly recently, 

and thus, absent from Shumway’s study. A comparison of the discriminatory power is limited to the 

forecast  accuracy tables,  which might  be described as crude form of Cumulative  Accuracy Profiles 

(CAP).  Furthermore,  we notice  that  some comparisons  are  performed on different  samples  for  two 

different models. This undermines the quality of the comparison, as the sensitivity of CAP to changes in 

the underlying sample is high. Although Shumway contributes by developing the hazard model and 

showing the properties of discrete time logit estimation, we find his evaluation of the model quality 

insufficient.

Duffie  et  al.  (2007)  provide  maximum  likelihood  estimators  of  term  structures  of  conditional 

probabilities  of  corporate  default,  incorporating  the  dynamics  of  firm-specific  and  macroeconomic 

covariates. Their out-of-sample forecasts produce remarkable results that seem to dwarf other common 

credit  risk  models.  Although their  results  look impressive,  it  is  impossible  to  reliably  compare  the 

discriminatory power of their model and MKMV’s since they were not tested on the same samples. 

Hillegeist et al. (2004) assess whether two popular accounting-based measures, Altman’s (1968) Z-score 

and  Ohlson’s  (1980)  O-score  effectively  summarize  publicly  available  information  about  the 

probabilities  of  default.  They  compare  the  relative  information  content  of  these  scores  with  the 

probabilities of default derived from Black-Scholes-Merton model.

They  find  that,  irrespective  of  various  modifications  in  the  accounting-based  credit  models,  the 

contingent-claim  model  always  outperforms  the  Z-score  and  O-score.  The  test  for  the  information 

content is of the same form as the one applied in our study. We also use their method to transform our 

probabilities  of default  in  the  into logit  scores.  Though their  contingent-claim model  relies  on the 

normal  distribution  to  derive  the  implied  probabilities  of  default,  the  results  indicate  superior 

performance of this market-based model. 

Bharath and Shumway (2008) investigate  a credit  risk model  that  mimics  MKMV expected default 

frequency against  a  simpler  alternative  that  takes similar  functional  form and compare their  default 

prediction abilities.  They also investigate  the correlation of the implied probabilities  of default  with 

credit default swaps and corporate bond yield spreads. They find that their naïve version of MKMV 
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performs at least as well as the MKMV predictions. They also report that solving iteratively for the 

value of assets, as described in MKMV methodology, is less important and that solving simultaneously 

for  asset  value  and  volatility  yields  a  model  with  higher  predictive  power.  Finally,  the  correlation 

between  MKMV model  predictions  and  the  observed  CDS and bond  yield  spreads  are  weak after 

correcting for agency ratings, bond characteristics, and their alternative naïve predictor.

As we argue in the introduction, the model presented by Bharath and Shumway is not an appropriate 

proxy for the true MKMV, since it  assumes normal  distribution of distances to default.  Our further 

criticism of their paper includes the evaluation method used to compare the models’ quality. Once again, 

as in Shumway (2001), the sole reliance on accuracy tables to compare the discriminatory power of the 

models seems insufficient. 

Agarwal and Taffler (2008) present a comparison of contingent-claim and accounting-based credit risk 

models in their ability to predict corporate defaults on the UK market. Apart from two tests that are 

similar to those previously utilized in the literature, they also employ a simulation that helps to evaluate 

the quality of the models when the misclassification error costs differ. For the purpose of our study, we 

draw heavily from their methodology. It seems that their evaluation approach and the model comparison 

methods are the most comprehensive among the papers reviewed. They allow for testing the models’ 

power (ROC) and calibration (through the information content test and the simulation).

The main findings of their paper are that there is little or no difference in the discriminatory power of 

accounting-based Z-score and BSM prediction of probability of default; and very little difference in the 

information content of the two models (they seem to have similar amount of information, but slightly 

different  sets  of  information).  The  notable  difference  between  the  two  models  is  identified  in  the 

simulation. Agarwal and Taffler show that slightly higher information content of the Z-score leads to 

supreme performance of a bank that applies this method.

Finally, we look at the results presented by Soberhart and Stein (2004) who evaluate the actual MKMV 

model against other popular credit risk models. Although their paper focuses on the model validation 

methodology,  they present some results  of the comparison too.  According to their  CAP results  and 

accuracy ratios, the actual MKMV model outperforms a simple Merton model, Z-score and a tested 

version of hazard model.

Though the last paper includes the results of tests where the actual MKMV is evaluated against other 

methods, other references rely on cumulative normal distribution as a mapping function from distance to 
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default (DD) to probability of default (PD) when referring to contingent-claim approaches. 

Results are mixed as to whether the contingent-claim approach to credit risk evaluation is superior to 

other methods, but we also see a problem of incoherence. It seems that researchers have been applying 

normal distribution to calculate the implied probabilities of default from the BSM models. Unlike the 

research community,  the actual  MKMV model  uses empirical  default  frequency to map DD to PD. 

Therefore, it seems questionable whether we can infer the properties of true MKMV model from the 

theoretical  models  presented  in  the  literature.  Our  study  aims  at  confronting  the  two  models  and 

evaluating  whether  we can bridge  the  gap between the models  or  should  we rather  re-evaluate  the 

quality of MKMV default predictions. 
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Part 3 – Data and Methodology
We give an overview of the data used in our approach. A presentation of the methodology used follows. 

Data

In order to process the EDF approach to the KMV model, we gathered the type of data likely found in 

the MKMV database,  such as default  events  and other  company-specific  data.  A SQL-Server 2008 

database was constructed and populated for this purpose. 

We gathered a list of about 221 default  events by month and year  from Moody’s  Default Research 

comments7.  Defaults  included  corporate  bond,  commercial  paper,  and  syndicated  loan  defaults  for 

publicly traded firms spanning the 15 years between 1993 and 2008. We supplement this with financial 

statements,  stock  prices,  volatilities,  pulled  from  DATASTREAM.  This  data  was  gathered  for  all 

defaulted companies and an additional 2,914 going concerns, for a total of 3,254 companies. See Table 1 

for a summary of company year data and default information by year and time horizon. The shaded area 

indicates that data was not used in the study due insufficient information. Company information was 

gathered over the 15 years 1992- 2007 when available, giving a total sample of 33,350 company years. 

US Treasury Bill rates were also pulled from DATASTREAM for each of the above years for use as 

risk-free rate in Distance to Default calculations. The lagged sample default frequencies were used in the 

logistic regressions as a proxy for baseline hazard rates for the corresponding time horizons. 

7 Http://www.moodys.com
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It is important to note that our sample default frequencies are very close to half the default rates reported 

by Moody’s. The reason for our population of defaulters being smaller than Moody’s is that for some 

defaulters we weren’t able to obtain all the information required for the tests. Therefore, the defaulters 

with missing data were dropped from the sample.

In the following methodology section, we define a company's “company year” data as the market price 

and volatility as of September 30th in a given year, with long and short term debt obtained from the last 

available annual report.  A September market date is chosen, per  the example of  Agarwal and Taffler 

(2008), to ensure that all the information was available at the time of portfolio formation. Consequently, 

we also maintain this data within our definition of the default events used in our calculation of empirical 

EDF, and later, testing of respective model strengths. In each case, a default event is declared for a 

company year if default occurred within the specified time horizon as measured from September 30 th of 

the  company year.  1yr,  2yr,  3yr,  and 5yr  US Treasury  Bill  rates  were  also  pulled  as  of  this  date, 

respective for each time horizon modeled. We use the average of 3 and 5 -yr rates to model Distance to 

Default for 4 year time horizons.

It  should be noted that  this  sample size is  significantly  smaller  than that  of that  used in the actual 

MKMV database. Since the quality of an EDF is strongly related to the quantity of underlying data 

available  to it,  one would reasonably expect the EDF of Moody's  KMV model to provide a greater 

predictive power.

18

Table  1
Year Number of default events w ithin Sample default frequency w ithin

1 year 2 years 3 years 4 years 5 years 1 year 2 years 3 years 4 years 5 years
1992 2,127 5 8 10 13 19 0.24% 0.38% 0.47% 0.61% 0.89%
1993 2,130 3 5 8 14 24 0.14% 0.23% 0.38% 0.66% 1.13%
1994 2,081 2 5 11 24 34 0.10% 0.24% 0.53% 1.15% 1.63%
1995 2,388 3 10 25 41 67 0.13% 0.42% 1.05% 1.72% 2.81%
1996 2,418 7 24 43 74 99 0.29% 0.99% 1.78% 3.06% 4.09%
1997 2,342 11 34 68 94 121 0.47% 1.45% 2.90% 4.01% 5.17%
1998 2,216 27 60 91 118 132 1.22% 2.71% 4.11% 5.32% 5.96%
1999 2,337 29 66 98 114 125 1.24% 2.82% 4.19% 4.88% 5.35%
2000 2,155 35 71 88 99 107 1.62% 3.29% 4.08% 4.59% 4.97%
2001 2,022 37 57 68 79 84 1.83% 2.82% 3.36% 3.91% 4.15%
2002 1,920 17 28 38 44 53 0.89% 1.46% 1.98% 2.29% 2.76%
2003 1,815 10 21 27 35 49 0.55% 1.16% 1.49% 1.93% 2.70%
2004 1,701 8 15 20 34 40 0.47% 0.88% 1.18% 2.00% 2.35%
2005 1,580 5 10 26 33 33 0.32% 0.63% 1.65% 2.09% 2.09%
2006 1,486 6 22 31 31 31 0.40% 1.48% 2.09% 2.09% 2.09%
2007 1,374 11 20 20 20 20 0.80% 1.46% 1.46% 1.46% 1.46%
2008 1,258 5 5 5 5 5 0.40% 0.40% 0.40% 0.40% 0.40%

Sum : 33,350 221 461 677 872 1043 0.65% 1.34% 1.95% 2.48% 2.94% : Avg

Observations 
count



Model Methodology

Calculating Distance to Default

We estimate distance to  default by following the approach outlined by Bharath and Shumway (2007). 

We found similar approaches used by Agarwal and Taffler (2008), Crosbie & Bohn (2002), Vassalou & 

Xing (2004), Hillegeist et al (2004), and Duffie et al. (2007) with variations in the determination of 

unobservable variables. Duffie et al. (2007) give a straight-forward definition of distance to default in 

their appendix, in which they define it as "the number of standard deviations of asset growth by which a 

firm’s market value of assets exceeds a liability measure [for a certain firm]". 

DD  =
ln V t

L t −1
2
 A

2 T

AT
(2)

Vt is the market value of a company's assets at time t, μ is the asset mean return, σA is asset volatility, and 

T is the time horizon. Lt is the adjusted book value of a company's liabilities at time t. This is also often 

referred to as the model's 'default point', as a firm is considered in default when value of assets, Vt,  falls 

under this value. We calculate Lt as the book value of short term debt plus one-half long-term debt, as 

recommended in Moody's KMV (2003), for time horizon T of one year. We adjust this long-term debt 

weighting upward for horizons greater than 1. These weightings are determined on a straight-line basis 

relative to time horizon, such as we assume 50% for a 1 year, and 100% for 15 year time horizon. While 

some  studies  (e.g.  Hillegeist  et  al  (2004))  have  calculated  the  unobservable  inputs  Vt and  σA 

simultaneously via the Black-Scholes option pricing model, we follow a naive approach similar to that 

outlined by Bharath & Shumway (2004) and Agarwal and Taffler (2008). 

V t=V EL t (3)

A=
V E

V t
E

L t

V t
D (4)

D=1.050.25E (5)

V E=S t C t (6)

Where the calculation of Vt is determined as the market value of equity plus total book value of debt. 

Expected  return,  μ,  is  set  to  the  risk  free  rate,  which  we  take  as  the  historical  US  T-bill  rate 
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corresponding to the appropriate time horizon T, as outlined previously in the Data section. σE is simply 

the standard deviation of stock returns calculated over the past year.  Value of equity,  VE, is a given 

company's  market  capitalization,  which we calculate  as  the market  share price  St multiplied  by the 

number of shares outstanding Ct. 

We calculate Distance to Default thus for every company year represented in our sample for each time 

horizon tested – specifically, T of one, two, three, four, and five years.

Mapping DD to Probability of Default assuming Normal Distribution

The first of two approaches we use to estimate probability of default simply relies on the cumulative 

normal  distribution as a function to transform our previously calculated distance to default  (DD) to 

probability. In doing so, we follow the most commonly tested approach (see Equation 2 for definitions):

P def  = (-DD) = N  ln V A,t

X t −1
2
 A

2T
 AT  (7)

The resulting value is interpreted as the probability,  between 0 and 1, that a given firm will default 

within the stated time horizon and is calculated for all DDs.

Mapping DD to EDF

In our second approach, we attempt to simulate MKMV’s EDF mapping procedure. Thus, we abandon 

the assumption of normal distribution in an effort to capture a closer  representation of probability of 

default  distribution  from our  combined  samples  of  company year  data  and actual  historical  default 

events. 

We accomplish this by first sorting company year data in ascending order of calculated DD for a given 

time horizon. This data is then organized into overlapping groups, or 'buckets', of 1,075 company years 

each (for a 1 year horizon). Each bucket's median DD is identified as the bucket's representative DD 

value. The Expected Default Frequency (EDF) for the bucket is identified as the sum of all historical 

defaults within the bucket divided by bucket size (1,075). The result is essentially a historical default 

rate associated with a specific DD value (the bucket's median). This process is then repeated, with the 

bucket shifting one record at a time, through all  sorted DDs to the end of the sample.  This is done 

separately for each time horizon. The resulting list of DD values and associated default rates by time 
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horizon is used as the distribution in our next step, in which we calculate default probabilities. 

On a side note, a bucket size of 1,075 was determined as optimal based on a comparative analysis of 

forecasting strength as determined from a wide range of tested buckets sizes. Please see 'Estimation of 

Optimal Bucket Size' in the appendix for more information on this process.

Of course, by the nature of the process, some DDs and default rates at the lower and upper extremes are 

necessarily excluded from the above results. The number excluded is approximately equal to the bucket 

sized used; half at the lowest, and half at the highest, extremes will fail to appear as a representative 

median of any bucket.

It  should also be noted that  the above is  a simplification of the process,  as some modifications  are 

required  to  provide  a  logically  coherent   basis  for  later  comparison  of  historical  forecast  abilities 

between the two models. In our first approach, the normal distribution that defines the mapping between 

DD to probability of default does not change over time, since additional information gained does not 

change the nature of normal distribution itself. On the other hand, determination of EDF must logically 

be limited to information available at the time a forecast is made. Thus, the above approach is repeated 

for each year we attempt to forecast (1993-2008), with company years occurring after the forecast date 

excluded from EDF calculations.  Intuitively,  the  accuracy  of  EDF distributions  can  be  expected  to 

improve in later forecast dates as additional sample data becomes available.

In  a  similar  line  of  thought,  the  nature  and use  of  time  horizons  in  the  determination  of  an  event 

occurring  further  limits  potential  EDF  calculations  made  for  a  given  sample.  For  example,  when 

calculating 3-year horizon EDF forecast for the year 2000, one cannot include 3-year horizon DD and 

default events from 1999 in the calculation, since the referenced default events had not yet occurred. 

Thus, given a finite data set, one can imagine the list of all possible forecast year (y-axis) and time 

horizon (x-axis) combinations as rightward pointing triangle meeting at a point beyond which no higher 

time  horizon  can  be  calculated  for  any  forecasted  year.  Thus,  one  would  intuitively  expect  EDF 

distribution  accuracy  to  decrease  in  quality  as  time  horizon  increases  and  potential  sample  size 

decreases.

We illustrate the process with an example of determination of a single DD to EDF mapping. We sort the 

list of all DDs and default events. If we are forecasting for the year 2007 and a 3-year time horizon, we 

exclude from the list all DDs calculated for time horizons other than 3 years. We also exclude from this 
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sorted list all DD's calculated on company years after 2007. Also removed are all DD's with default 

events occurring after 2007. For a time horizon of 3 years, this would be all DDs calculated after 2007 

minus three years, or all such DD's calculated after 2004. With available default data starting in 1993, 

we are first able to calculate DD with default events in 1993 plus 3 years, or 1996. Years previous to this 

are also not included in the list. With our list of DDs and default events defined and sorted in this way, 

we define our first bucket as all DDs between the lowest and 1,075th lowest DD. We take the median DD 

in this bucket as the bucket's defining DD. We then sum of all corresponding default events occurring 

within three years. We divide this sum by 1,075 to determine the EDF for the bucket's median DD. This 

process is repeated for the next bucket, defined as the DD's between the 2nd lowest and 1,076th lowest 

DD,  and  so  on,  repeated  for  all  feasible  years  time  horizon  combinations.  This  gives  us  a  EDF 

distribution table by forecast year and time horizon associating each bucket's median DD with an EDF.

Finally, the probability of default is calculated for each company year and DD using the distribution 

table just described. The distribution table is referenced for the time horizon, company year, and DD to 

be forecasted. The closest DD is identified in EDF distribution table, and that EDF is accepted as the 

probability of default for the DD in question. This process is repeated for all company DDs and time 

horizons.  As  with  the  normal  distribution  approach,  the  resulting  values  are  interpreted  as  the 

probability, between 0 and 1, that a given firm will default within the stated time horizon. 

Model Evaluation Methodology

In the following three tests, we roughly follow the evaluation approaches outlined by Agarwal, Taffler 

(2008).  As  suggested  by Sobehart  et  al  (2004),  we conduct  walk-forward  testing  to  ensure  out-of-

sample, out-of-time and out-of-universe test. In short, we estimate the models on all the data available 

up to year t. Then we use the models to forecast the PD for the next year for all the companies that 

existed in the sample before year t (conditional on their survival until year t) and all the companies that 

have just entered the sample in year t. We save the pairs of data-points – (forecasted PD, default event=1 

or no event=0 in year t+1) for all the companies. We then add year t+1 to our in-sample, re-estimate the 

models, and repeat the procedure as before. 

The three tests described below measure model power, or predictive ability; unique information content; 

and practical economic value, respectively.
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Methodology - Testing Predictive Ability - The ROC curve

Receiver operating characteristics, or ROC curve, plots the sensitivity for a binary classifier system and 

can  be  used  to  measure  and  compare  the  predictive  ability  of  various  models.  Since  it  was  first 

developed by radar engineers in World War II as a tool to improve aircraft detection, ROC curves have 

been used to assess model quality across a wide range of disciplines including psychology, finance, and 

medicine. When applied to  internal credit rating models, Sobehart and Keenan (2001) find area under 

the ROC curve is indicative of model quality.

The ROC curve categorizes model results into two simple categories – correct, or not correct. Thus, it 

does not distinguish between type I and type II errors. In practice, the two errors have very different 

impacts. In the case of a type I failure, in which the model wrongly predicts a future defaulter will not 

fail,  the entire amount lent may be lost. With a type II error, we wrongly predict  that a future non-

defaulter will default, which simply implies a lending opportunity lost.

With this caveat in mind, the ROC curve is a graph depicting the power of a model. It is a plot of the 

false alarm rate (x axes) against the hit rate (y axes) for all possible cut-off points from the range of 

default probabilities. The area under ROC curve (AUROC) is the Wilcoxian (or equivalently,  Mann-

Whitney) statistic. We test the difference between the AUROCs as described by Engelmann et al (2003), 

using the online StAR ROC Analysis Tool provided by the Molecular Bioinformatics Laboratory at the 

Pontificia  Universidad Católica  de Chile8.  Into this,  we input  the  NPD and EDF probabilities  with 

corresponding default events for 1-5 year time horizons.

Methodology - Testing Information Content – Hazard Model

Hillegeist  et  al.  (2004)  note  that,  in  the  lending  business,  it  is  common  to  accept  the  majority  of 

borrowers, then differentiate pricing depending on their credit quality. Thus, the decision is not simply 

whether a loan should be granted or not, but rather how a loan should be priced. If this is the case, the 

tests for model discriminatory power, like ROC curve, do not provide a full picture. Hillegeist et al. 

(2004) suggest a test for the information content of a credit scoring model. The test is performed by 

fitting a discrete time logit model to the data. A model that better fits/explains the data is considered to 

bare more information content. It takes the following form:

8 http://protein.bio.puc.cl/cardex/servers/roc/roc_analysis.php
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P i,t=
e t X i , t 

1e t X i , t (8)

Where  Pi,t is probability of default of firm  i at time  t in the next 12 months for one-year horizon, 24 

months for 2-year horizon, etc. α(t) is baseline hazard rate proxied by the trailing year failure rate in our 

sample, X is matrix of independent variables and β is a column vector of estimated coefficients.  

Shumway (2001) shows that the model can be estimated as a simple logit regression. However, this 

introduces an inherent  bias into the standard errors, as there are multiple  observations for the same 

company in the sample. He suggests adjusting the test statistic by dividing it by the average number of 

observations per firm to obtain unbiased standard errors.

Similar to Hillegeist et al. (2004) and Agarwal, Taffler (2008), our credit risk models return probability 

of default as output. These probabilities cannot be used directly in the logistic regressions, as this would 

violate  the  underlying  assumptions  of  logit  model.  Therefore,  as  suggested  in  the  two  papers,  we 

transform the probabilities of default from our models into logit scores by:

score=ln  p
1− p  (9)

Following the convention from the two papers, we winsorize the probabilities to a narrower range to 

avoid arbitrarily small (or large) scores. Thus, we set all the probabilities of default from our two models 

to 0.00000001 if they are lower than this value, or 0.99999999 if higher. Thus, the scores are within the 

range +/-18.4207.

Finally, we compare the fit of the models to the data by performing a Clarke test. Though a Vuong test 

for the difference in mean log-likelihood is often performed in this situation, we drop this evaluation 

method for two reasons: (1) the test is less powerful for data with high kurtosis (the kurtosis of our log-

likelihoods ranges from 30 to 300), and (2) the initial estimations showed that the test is inconclusive for 

all the possible tested pairs of models. The Clarke test is a non-parametric test for the difference in 

median log-likelihood of two models. It performs particularly well when the data is very concentrated, 

as it is in our case. A more detailed discussion, comparison with Vuong test and example of monte carlo 

experiment are presented in Clarke (2003).

In short, the Clarke test is performed as follows. First we estimated the two models that we want to 

compare, saving the individual log-likelihoods from the estimations. We then perform a paired sign test 
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for the difference in median log-likelihood. A paired sign test does not make any assumption about the 

shape of the distribution in the two samples compared. If the median log-likelihoods of the two tested 

models are different, then the two models bare different information content. We perform both one-sided 

and two-sided tests to determine which model is better.

Methodology - Testing Economic Value – Lending Simulation

In our third and final test, we seek to capture the practical effectiveness of using the two models to drive 

the lending decision. In practice, there is a significant difference between the cost of giving a loan to 

poor quality borrower and cost of not giving loan to good quality borrower. We roughly follow the 

informal approach outlined by Agarwal, Taffler (2008), by which we replicate a competitive setting of 

two banks. In our simulation, one bank relies exclusively on the NPD model, the other on our EDF 

approach. The simulated banks then compete for borrowers from our sample. At the end of the sample 

period we evaluate their profitability (ROA), risk-adjusted profitability (RORWA), and other measures. 

Agarwal,  Taffler  (2008)  argue  that  this  simulation  is  a  test  for  the  effect  of  model  power  on  the 

profitability of banks that apply it. In our case, the test is also a calibration measure. Since the ranking of 

the borrowers provided by the two evaluated models is virtually identical, the hazard model used in the 

calculation of the loan spreads will effectively calibrate the two models. 

We utilize Excel VBA to run our simulation in all years that EDF forecasts are possible for a given time 

horizon. For a one year horizon, this turns out to be 1994 through 2007. We repeat the process for a two 

year (1995-2006), three year (1996-2005), four year (1997-2004), and five year (1998-2003) horizons. 

This  conforms  to  industry reality,  as  banks  can be assumed to  recalibrate  their  forecasts  of  default 

probabilities every year. For us, it means that every year we must re-estimate a logit regression of the 

same form as Equation 8. The out-of-sample forecasts of probabilities of default are used for calculating 

the interest rate spread that the banks charge their clients. For the sake of simplicity, we assume that the 

banks have complete prior-year information for all companies. Like Agarwal and Taffler (2008), we 

follow Blochlinger and Leippold (2006a) in deriving the credit risk spread as the following function of 

the probability of default:

R= p Y =1 | S=t 
p Y =0 | S=t 

LG Dk (10)

Where R is the credit spread, p(Y=1|S=t) is conditional probability of failure for a score of t, p(Y=0|S=t) 

is the conditional probability of non-failure for score  t,  LGD is loss given default, and  k is the credit 
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spread for the highest credit quality loan. 

In our simulation we follow the methodology outlined by Agarwal and Taffler (2008). We assume a loan 

market worth $100 million and each loan of equal value. Both banks refuse loans to companies scoring 

in the lowest 5th percentile as measured within their respective models. The hazard model, from the last 

test,  is used to calculate  the credit  spread quoted to all  accepted companies.  For the purpose of the 

simulation, we assume that the credit spread for the highest quality customers, k, is equal to 0.30% for 

both banks. The LGD of 45% is assumed to be constant and equal for both banks.  Companies choose 

the bank offering the best  deal.  If  the spreads are  identical,  each bank simply receives  50% of the 

business. We track bank market share, the loans granted each year, the share of defaulters each bank 

receives, average spread, and nominal profit. To assess the economic value of each model, we use return 

on assets (ROA) and the return on risk weighted assets (RORWA) as follows:

ROA= PROFIT
TOTAL VALUE OF LOANS GRANTED (11)

RORWA = PROFIT
TOTAL VALUE OF RISK WEIGHTED LOANS GRANTED (12)

Like Agarwal and Taffler (2008), we calculate BIS risk as per the Basel II Foundation Internal Ratings-

based Approach9. The risk-weight (RW) for each loan is determined using the following formulas: 

RW =12.5∗K (13)

K =[LGD∗N { 1
1−R

G PD  R
1−R

G 0.999}−LGD∗PD]1M −2.5∗b PD
1−1.5∗b PD

(14)

R= 0.121−e−50∗PD

1−e−500.24[1−1−e−50∗PD
1−e−50 ] (15)

b=0.11852−0.05478∗ln PD 2 (16)

Where, G(.) is the inverse cumulative normal distribution, N(.) is cumulative normal distribution and M 

is loan maturity.

9 Basel Committee on Banking Supervision (2006, pp. 63–64)
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Part 4 – Empirical Results
H0: There is no significant difference between KMV model based on normal distribution (here we refer  

to naïve model suggested by Bharath and Shumway (2004)) and the empirical distribution of the KMV-

based model described earlier.

Model Results

Fig. 1a  - PD for 1yr horizon Fig. 1b  - PD for 5yr horizon

In Figures 1a and 1b we show the distributions EDF and NPD as a function of distance to default for 

one-year (bucket size = 1,175) and five-year time horizons (bucket size = 300), respectively.  One can 

note that, while both functions decrease over the majority of their domain, EDF demonstrates multiple 

peaks.
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Results - Testing Predictive Ability - The ROC curve

Fig. 2

.        1 YR HORIZON         5-YR HORIZON

We include only ROC curves for one- and five-year time  horizons in Fig. 2. Complete ROC analysis 

results, including 2-4 year time horizons, can be found in the appendix. In Table 2, we list the area under 

the  curve  (AUC),  estimated  as  the  Wilcoxian  statistic  and  the  accuracy  ratio  (ACC),  calculated  as 

(ACC=2+AUC-0.5). N and P in the table refer to the count of negative (no default) or positive (default) 

occurrences  of  a  default.  Assuming  a  95%  confidence  level,  the  table  on  the  right  includes  the 

confidence interval for the difference in in the two curves.  For a 1-year time horizon, we calculate AUC 

as EDF 0.89 vs.  NPD 0.88 for  the one-year  horizon.  The relative  area  under the  EDF ROC curve 

steadily decrease with increases in Time Horizon. By the 5-year horizon, we calculate AUC at EDF 0.63 

vs. NPD 0.68. 
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Table  2

Clas s ifie r AUC ACC N P TEST1/TEST2 AUC_DIFF CONFIDENCE_INTERV AL P-val diff
e df1 0.89 0.99 29754 211 e df1/npd1 0 ( -0.0051282 , 0.0117609 ) 0.44
npd1 0.88 0.99 29754 211 e df5/npd5 -0.05 ( -0.06287 , -0.0402845 ) 0.000000
npd5 0.68 0.95 14136 671
e df5 0.63 0.95 14136 671



Results - Testing Information Content – Hazard Model

Table 3 holds the results of the estimation of logit regressions. The numbers in parentheses are Wald 

statistics adjusted for multiple observations per firm. They are divided by 9.2, 8.33, 7.45, 6.39 and 5.23, 

respectively, for the time horizons from 1 year to 5 years. The statistic is chi-squared distributed with 

one degree of freedom. The critical values for confidence levels 90%, 95% and 99% are: 2.71, 3.84 and 

6.63. P-values for the Clarke test are reported for both one-sided and two-sided tests. The respective p-

values are listed next to their alternative hypothesis. All Clarke tests have the null hypothesis that the 

median log-likelihoods of the two evaluated models are equal.

For all time horizons, NPD enters significantly at 5% significance level into the regressions when taken 
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Variable NPD4 EDF4 NPD4&EDF4 NPD5 EDF5 NPD5&EDF5
Constant -2.221 -1.638 -1.883 -2.102 -0.878 -1.440

(139.486) (25.071) (45.847) (133.104) (0.973) (8.198)
Baseline rate -19.193 -27.446 -23.118 -20.069 -30.335 -26.040

(10.812) (20.617) (13.970) (12.536) (13.322) (15.322)
Normal PD 0.132 0.097 0.110 0.068

(37.768) (15.249) (31.375) (6.643)
EDF 0.179 0.074 0.328 0.155

(10.730) (2.814) (2.887) (1.860)

Log-likelihood -2,787.20 -2,815.96 -2,775.64 -2,607.70 -2,608.84 -2,587.87
Pseudo-R̂ 2 0.060 0.050 0.064 0.045 0.045 0.053

P-values for Clarke:
two-sided <>NPD x 0.000 0.000 x 0.063 0.000
two-sided <>EDF 0.000 x 0.000 0.063 x 0.000
one-sided >NPD x 0.000 1.000 x 0.970 1.000
one-sided <NPD x 1.000 0.000 x 0.032 0.000
one-sided >EDF 1.000 x 1.000 0.032 x 1.000
one-sided <EDF 0.000 x 0.000 0.970 x 0.000

Table  3

Var iable NPD1 EDF1 NPD1&EDF1 NPD2 EDF2 NPD2&EDF2 NPD3 EDF3 NPD3&EDF3
Constant -3.602 -1.473 -2.752 -3.088 -1.667 -2.675 -2.582 -2.136 -2.229

(62.832) (0.870) (4.828) (107.137) (2.245) (24.206) (135.135) (40.541) (56.398)
Baseline rate 35.311 1.990 19.041 4.113 -16.456 -3.029 -12.290 -22.222 -17.994

(1.074) (0.002) (0.237) (0.108) (1.057) (0.047) (2.633) (7.490) (4.868)
Normal PD 0.236 0.155 0.189 0.156 0.156 0.059

(25.099) (3.720) (33.899) (24.300) (38.065) (3.146)
EDF 0.574 0.203 0.397 0.084 0.160 0.127

(3.464) (0.559) (3.488) (1.025) (13.121) (26.121)

Log-likelihood -1,021.63 -1,031.16 -1,013.70 -1,917.51 -1,982.78 -1,911.40 -2,538.04 -2,611.40 -2,525.52
Pseudo-R̂ 2 0.187 0.179 0.193 0.116 0.086 0.119 0.076 0.050 0.081

P-values for Clarke:
two-sided <>NPD x 0.000 0.000 x 0.000 0.000 x 0.000 0.000
two-sided <>EDF 0.000 x 0.000 0.000 x 0.000 0.000 x 0.726
one-sided >NPD x 0.000 0.000 x 0.000 1.000 x 1.000 1.000
one-sided <NPD x 1.000 1.000 x 1.000 0.000 x 0.000 0.000
one-sided >EDF 1.000 x 1.000 1.000 x 1.000 0.000 x 0.642
one-sided <EDF 0.000 x 0.000 0.000 x 0.000 1.000 x 0.363



individually.  EDF  is  also  always  significant  in  that  case,  but  sometimes  only  at  a  10% level.  In 

regressions where both credit scores were used as the explaining variables, we find that none of the 

variables are significant on a 5% level for a 1 year horizon. The transformed credit scores for EDF range 

from -18.42 to -2.59, while the range for NPD scores is +/-18.42.

Results - Testing Economic Value - Lending Simulation

We only  include  simulation  results  for  one-  and  five-year  time  horizons  in  the  the  above  results. 

Complete  simulation  results,  including  the  remaining  2-4  year  time  horizons,  can  be  found  in  the 

appendix.  

For  a  one-year  horizon,  the  return  on  risk-weighted  assets  for  bank  EDF increases  almost  tenfold 

between 1994 and 2007, market share increases by about 20%, and share of defaulters drops by around 

85%. In the meantime, bank NPD loses 20% market share and almost doubles it's share of defaulters. 

One can also note that, for a five-year horizon, Bank EDF ROA and RORWA is consistently negative 

while bank NPD's remains positive after the first year.
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Ta ble  4

EDF – 1 yr Horizon NPD – 1 yr Horizon

YR Profit ROA RORW A P rofit ROA RORW A

1994 14,384 51.67% 60.58% 0.54% $76,380 0.15% 0.67% 12,532 45.02% 27.88% 0.51% $135,452 0.30% 1.36%
1995 13,458 52.26% 60.68% 0.57% $79,088 0.15% 0.62% 11,438 44.41% 27.18% 0.54% $141,716 0.32% 1.30%
1996 13,407 57.38% 61.58% 0.57% $85,874 0.15% 0.61% 9,177 39.27% 26.11% 0.59% $128,214 0.33% 1.33%
1997 12,549 59.90% 62.24% 0.60% $97,987 0.16% 0.61% 7,702 36.76% 25.51% 0.66% $134,398 0.37% 1.35%
1998 10,691 57.46% 61.62% 0.65% $96,299 0.17% 0.55% 7,309 39.28% 25.41% 0.67% $150,189 0.38% 1.26%
1999 9,188 56.06% 63.29% 0.69% $112,172 0.20% 0.62% 6,667 40.67% 27.22% 0.69% $164,339 0.40% 1.24%
2000 7,280 51.80% 57.36% 0.71% $129,999 0.25% 0.84% 6,287 44.73% 31.01% 0.67% $170,932 0.38% 1.28%
2001 6,506 54.68% 57.45% 0.67% $161,195 0.29% 1.13% 4,949 41.59% 28.72% 0.68% $180,489 0.43% 1.66%
2002 5,349 54.16% 38.60% 0.54% $191,741 0.35% 2.02% 4,120 41.71% 38.60% 0.63% $162,704 0.39% 2.23%
2003 4,215 52.97% 20.00% 0.35% $141,594 0.27% 4.30% 3,381 42.49% 50.00% 0.58% $133,707 0.31% 5.06%
2004 3,339 54.37% 13.33% 0.32% $144,387 0.27% 7.51% 2,495 40.63% 43.33% 0.51% $110,591 0.27% 7.70%
2005 2,492 56.11% 13.64% 0.32% $149,256 0.27% 7.26% 1,727 38.89% 40.91% 0.47% $92,522 0.24% 6.50%
2006 1,653 57.80% 5.88% 0.32% $168,523 0.29% 8.66% 1,066 37.27% 52.94% 0.46% $31,672 0.08% 2.52%
2007 832 60.52% 9.09% 0.33% $164,069 0.27% 6.79% 475 34.53% 54.55% 0.46% -$36,474 -0.11% -2.65%

EDF – 5 yr Horizon NPD – 5 yr Horizon

YR Profit ROA RORW A P rofit ROA RORW A

1998 8,370 67.15% 87.45% 0.89% -$1,141,993 -1.70% -2.34% 3,922 31.46% 11.82% 0.67% -$22,687 -0.07% -0.10%
1999 6,726 65.62% 88.76% 0.99% -$977,847 -1.49% -1.83% 3,423 33.39% 11.48% 0.72% $29,917 0.09% 0.11%
2000 5,034 63.62% 89.42% 0.97% -$872,012 -1.37% -1.70% 2,800 35.38% 10.92% 0.71% $67,475 0.19% 0.24%
2001 3,608 62.66% 89.78% 0.82% -$793,963 -1.27% -1.72% 2,089 36.28% 10.75% 0.60% $62,325 0.17% 0.23%
2002 2,305 61.70% 90.20% 0.68% -$686,326 -1.11% -1.70% 1,384 37.04% 10.78% 0.53% $62,002 0.17% 0.26%
2003 1,125 61.96% 89.80% 0.57% -$735,051 -1.19% -2.12% 666 36.67% 12.24% 0.45% $17,342 0.05% 0.08%
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Part 5 – Analysis
Model Results

In Figures 1a/b we saw EDF and NPD distributions as a function of distance to default for one and five 

-year  time  horizons.  As  to  be  expected  with  a  limited  number  of  annual  observations,  the  EDF 

distribution in Figure 1b is not a smooth, monotonically decreasing function. However, the resulting 

function does decrease reasonably in the majority of its domain and is not dissimilar to the normal 

distribution in overall form. While the graphs each show a peak in EDF, we apply that peak probability 

value to all lower distance to defaults in actual results. Outside of this, no other smoothing is attempted. 

We also note  some sub-peaks  in  the EDF distribution.  This  implies,  rather  counter-intuitively,  that 

probability of default can increase (decrease) as the distance to default increases (decreases) over certain 

small ranges. One desirable property of EDF is it's thicker tails compared to NPD. This can be clearly 

seen in Figure 1b, but also in Figure 1a for DD range between 4 and 7.  Finally, we see the five year 

horizon distribution is more sporadic. This is likely a result of a reduction in the available sample set and 

the smaller bucket sized required. 

Overall, the shape of the EDF distribution appears to reasonably reflect the expected trend of lower DD 

being associated with higher PD, particularly for the one-year horizon. Satisfied by this, we continue to 

assess and compare the model to the NPD approach.

Results - Testing Predictive Ability - The ROC curve

The ROC curves in Fig. 2 yield some interesting information. Given a 1 year time horizon, we find that 

the NPD and EDF approaches perform with similar power, with EDF usually at least as strong as NPD 

in prediction  ability,  though not significantly.  The relative area under the EDF ROC curve steadily 

decrease with increases in Time Horizon. By the 5-year horizon, EDF strongly underperforms NPD over 

the majority of it's  domain (AUC 0.63 vs. NPD 0.68).  We find that this decrease in EDF power is 

consistent with the sample data loss, as noted earlier, associated with increases in time horizon. Rather, 

we see this trait as speaking to the sensitivity of the EDF model to the size of the underlying available 

sample, in general. Given this observed trend, we would anticipate continued positive movement of the 

space under the EDF ROC curve as additional company and default samples are made available to the 

model.  Interestingly,  EDF is consistently superior in its assessment of the lowest quality firms.  This 

quality could be useful in that (1) it allows banks to reject the absolute worst potential clients, and (2) it 
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allows banks to differentiate pricing based on the credit quality of lower quality firms. 

It should be noted that the curves presented above are estimated for the whole sample; they average out 

the early years when EDF was rather weak with relatively stronger recent years. Thus, if one were to 

limit the graphed ROC curves to recent years, the space under the curve, and therefor power, of the EDF 

model would increase relative to NPD. This would more likely be the case in practical use of the model, 

as we are generally more concerned with future, rather than past, probabilities of default. We would, of 

course, expect to observe the opposite effect when testing early years.

Results - Testing Information Content – Hazard Model

Before we can evaluate the results of the test in Table 3, it is important to note that the regressions were 

estimated as of 30th September 2008, thus all the information about default events up to that point is 

assumed to be known. There is no bias resulting from the use of information not available in the reality, 

since our EDF estimates are always ex-ante. Normal probabilities of default are independent of time and 

therefore there is no risk of introducing bias to the regression.

When we review the results of the regressions where both credit scores were used as the explaining 

variables, we find that none of the variables are significant on a 5% level for a 1 year horizon. This is 

despite the fact that the explaining power of the model is higher than for any individual scores.  This 

could mean that the scores bare very similar information. 

These results seem intuitively consistent with those from the ROC analysis. However, it should be noted 

that the models were estimated on the entire sample.  This means that very early predictions of EDF 

weight equally to the very recent ones. We are confident that their predictive powers are not the same, 

and if so, the significance of the estimated coefficients is missing something. There is another important 

factor that affects the results. The transformed credit scores for EDF range from -18.42 to -2.59, while 

the range for NPD scores is +/-18.42. Consequently, EDF is far more sensitive to outliers than NPD. It 

turns out that if we remove top 5 outliers (very few, in fact, for the sample of approximately 30,000 

observations),  the log-likelihood for EDF improves  to the levels  above log-likelihoods of NPD. We 

don’t  report  these  results,  but  mention  them  to  offer  context  for  the  reader's  interpretation  of  the 

regression output.

The results from Clarke test provide strong evidence that the expected default frequency estimated from 

the empirical sample contains more information about default events than that derived from distance to 
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default of a firm using normal distribution. In three out of five time horizons, the median log-likelihood 

for  EDF  model  is  significantly  higher  than  for  the  respective  NPD  model.  These  horizons  are, 

unsurprisingly,  1, and 2 and 4 years.  For all the time horizons,  the model that  includes both scores 

performs  worse than the strongest  individual  models.  This  is  as  expected,  as the credit  scores  bare 

similar information, and the model with more coefficients is penalized by Clarke test for the lack of 

parsimony. 

To sum up, the test for the information content of the two credit scoring methods shows that they bare 

similar information. Despite the first impression that EDF doesn’t offer any benefits, it turns out that 

after  closer  examination  for  the  shorter  horizons,  the  empirical  model  outperforms  the  theoretical 

distribution in terms of information content. Even if the two models have similar discriminatory power, 

as could be interpreted from the ROC analysis, EDF calibrates better to fit the true default frequencies. 

Results - Testing Economic Value - Lending Simulation

In Table 4, we saw the bank using EDF-based credit ratings show very strong performance in later years 

relative to the bank using the NPD model for a one-year time horizon. With this horizon, Bank EDF is 

better able to entice quality borrowers with lower spreads, thus gaining a larger market share over time, 

while its share of the sample defaulters decreases. It seems that Bank EDF is better able than Bank NPD 

to identify the best customers from the sample, while dismissing the worst. The behavior of the average 

spread is indicative of the quality of an average bank customer. In general, as creditworthiness of the 

average  client  increases,  average  spread decreases.  We see this  trend  play out  for  Bank EDF.  The 

spreads for Bank NPD, on the other hand, seem to follow the credit cycle rather than a distinguishable 

long-term trend. This may indicate that it captures customers in the mid-range of quality.  Perhaps the 

strongest measure of the economic value of the models, Bank EDF's ROA and RORWA consistently 

improve over time, with a particularly dramatic increase seen in RORWA.

As we saw earlier,  the quality of the EDF model increases with time, as the size of the underlying 

available sample increases. We see both ROA and RORWA for Bank EDF surpass that of Bank NPD at 

a certain point in time given a one-year horizon. Likely for similar reasons, Bank EDFs fortunes rapidly 

turn for  the  worse as  time horizon increases  and sample  availability  decays.  With  a  two-year  time 

horizon, we already see negative ROA for Bank EDF in all years, with Bank NPD remaining positive. 

This trend continues to Bank EDFs abysmal results seen in the five-year time horizon results above. 

Another  interesting observation is  that,  for the longer horizons,  Bank EDF wins mainly the poorest 
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quality customers. This relates directly to our observation from the ROC curves, where EDF seemed to 

outperform NPD on the lower end of the credit quality. 

With this final test, there is material evidence that EDF can outperform NPD, at least for the short time 

horizons. The simulation also vividly demonstrates the change in the quality of EDF credit scoring as the 

estimation samples increase. For a one-year horizon, the return on risk-weighted assets for bank EDF 

increases almost tenfold between 1994 and 2007, market share increases by about 20%, and share of 

defaulters drops by around 85%. These remarkable results should be compared with the 20% market 

share loss and near doubling of share of defaulters experienced by bank NPD. Consistent with the results 

from our previous test for information content, the bank utilizing EDF is better able to price loans for 

prospective customers, thus winning market share from bank NPD and benefiting handsomely through  a 

superior return on risk-weighted assets.
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Part 6 – Conclusion
We find that previous studies do not adequately explain the quality of probability of default forecasts 

created by the KMV model. This is the first independent study we are aware of to empirically assess a 

form of the KMV model vs. the common normal distribution approach. This paper may serve as a hint to 

financial  institutions,  regulators and researchers that a more detailed investigation of MKMV model 

properties is needed.

While the distributions appear similar, the actual information content of these two models are different. 

Though significantly more complex to calculate, we find that the empirical EDF approach outlined in 

our  paper  can  outperform  the  assumption  of  normal  distribution.  This  was  the  case  when  testing 

transformation  of  recent  years'  distance  to  default  with  a  forecast  horizon  of  one  year.  The  EDF 

approach falls  behind NPD, however,  in  terms of  predictive  ability  when faced with time horizons 

greater than one year or when calculated for earlier base years. These observed deteriorations in model 

quality seem to be strongly related to the size of the underlying sample available for use in the EDF 

calculation.  Sample  availability,  in  turn,  is  dually  impacted  by  forecast  year  and  time  horizon 

constraints.
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Part 7 – Recommendations
If additional company and default data were to be added to the database for use in EDF distribution 

estimation, we would anticipate further improvement of the EDF model. In addition to more sample 

data, improvements may be possible through adjustment of the model itself. For example, it is possible 

that  smoothing  algorithm  may,  if  applied  to  the  empirical  distribution  to  create  a  monotonically 

decreasing EDF function, help create a more coherent and consistent EDF distribution. The elimination 

of outliers from the estimation of the EDF distribution may also improve the performance of the EDF 

model to some degree.

We are aware that our study has its own limitations and we suggest our reader to weight carefully the 

importance of these. These weaknesses, apart from the data issues, stem from the fact that the empirical 

research on credit risk models’ quality is fairly new. Therefore we suggest also some possible areas of 

interest for future research. 

We are not able to rule out the scenario that we have a sample selection bias. Since, as we report in the 

Data section, our sample includes only about 50% of the actual default events. If there is some structural 

difference between the defaulters that are included in our sample and those that are absent, our results 

might misrepresent the true properties of the credit risk models. Also, if some true defaulters were not 

included in our original list of defaulted companies, it is possible that some of them were taken as going 

concern companies. In this case we would be mixing the populations of defaulters and non-defaulters, 

which could result in distorted results.

Another  possible  problem with our estimates  is  that  the optimal  bucket  size is  selected  ex-post,  as 

presented in the Appendix. We expect this impact to be minimal, however, since the power of the model 

proved rather insensitive to bucket sizes. It should be a consideration for other samples. 

Some interesting  research questions  result  from our study.  First,  what  is  the best  way to determine 

optimal bucket size for estimating empirical default frequencies? How does this optimal behave with 

changes  in  the  underlying  sample?  If  an  analytical  solution  were  found,  it  could  save  on 

computationally-intensive estimations and ease measurement of EDF power. Another question concerns 

the data requirements of the model. What sample properties (minimal sample size, etc.) are required to 

reliably estimate a powerful EDF mapping function? This question is of particular concern to financial 

institutions who may wish to estimate their own version of the KMV model, but in doing so, may find it 
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difficult to recognize the point at which the empirical model outperforms the theoretical version.
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Part 10 – Appendix
Estimation of Optimal Bucket Size

Since  MKMV does  not  provide  the  information  on  how to  select  the  size  of  buckets  used  in  the 

calculations, we have to estimate the optimal value given our sample. We can expect that the sizes of 

buckets used by MKMV are either optimal or near-optimal. The criterion we used to select the optimal 

bucket size for each time horizon is aimed at achieving maximum discriminatory power in estimated 

EDF. 

The bucket-size selection procedure we used can be described as follows. First, we select the bucket 

sizes that  want to investigate.  Second, we estimate a mapping function that  transforms distances  to 

default (DD) to expected default frequency (EDF) for all selected bucket sizes. The process is described 

in the Methodology chapter of the paper. Third and the last step, we compare the areas under ROC curve 

(AUC) for all the mapping functions estimated for different bucket sizes and select the one with the 

highest AUC. More technically, we calculate a Wilcoxian (Mann-Whitney) rank-sum test for the EDF 

functions, with the event series used as a grouping variable.

In this section we heavily draw from Engelmann et al. (2003). Let SD and SND denote two independent 

continuous random variables where the former indicates a score of a defaulter and the latter a score of a 

non-defaulter.  Assuming a defaulter  is expected to have lower credit  score than a non-defaulter,  the 

probability that this statement is true is  P(SD < SND). This, in turn, is exactly equal to the AUC for a 

given scoring model. If we randomly select a defaulter with score sD and a non-defaulter with score sND 

and define uD,ND as:

u D , ND={1, if s DsND

0, if s D≥s ND
(17)

then Mann-Whitney test statistic is defined as:

U = 1
N D N ND

∑
D , ND

uD,ND (18)

where  the  sum is  calculated  over  all  pairs  of  defaulters  and  non-defaulters  in  the  sample.  The  test 

statistic is an unbiased estimator of P(SD < SND). 
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In  our  case,  the  scores  assigned  to  the  companies  from  our  sample  are  actually  the  estimates  of 

probabilities  of default and, therefore, high probabilities indicate high risk and low probabilities low 

risk. Thus, the area under ROC curve for our models is equal to one minus the Mann-Whitney statistic 

for  that  model.We estimate  the  EDF mapping  functions  for  various  bucket  sizes  for  the  five  time 

horizons in question using VBA code. After this computationally intensive procedure was completed, 

we have conducted rank-sum Wilcoxon (Mann-Whitney) test using STATA. The results of the tests for 

the discriminatory power of EDFs with different bucket sizes are presented in the table below. The 

numbers in bold indicate the bucket sizes used in the study.
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Ta ble  5
(1 - Wilcoxon statistic) Forecast horizon
Bucket size 1.000 2.000 3.000 4.000 5.000

300 0.780 0.718 0.665 0.626
350 0.782 0.718 0.657 0.624
400 0.785 0.716 0.655 0.626
450 0.876 0.789 0.715 0.660 0.623
500 0.877 0.789 0.716 0.655 0.624
550 0.877 0.794 0.714 0.656 0.620
600 0.877 0.795 0.714 0.655 0.619
625 0.876
650 0.879 0.797 0.713 0.654 0.618
675 0.878
700 0.880 0.798 0.713 0.654 0.616
725 0.880
750 0.879 0.799 0.711 0.653 0.618
775 0.881
800 0.881 0.801 0.712 0.651 0.615
825 0.881
850 0.881 0.800 0.713 0.651 0.615
875 0.881
900 0.881 0.800 0.713 0.652 0.615
925 0.881
950 0.881 0.799 0.712 0.652 0.615
975 0.881

1000 0.883 0.799 0.712 0.652 0.615
1025 0.882
1050 0.882 0.800 0.711 0.650 0.613
1075 0.884
1100 0.883 0.799 0.712 0.650 0.613
1125 0.885
1150 0.885 0.798 0.711 0.651 0.610
1175 0.886
1200 0.886 0.798 0.711 0.649 0.609
1250 0.886 0.798 0.710 0.648 0.609
1300 0.886 0.798 0.710 0.650 0.608
1350 0.885 0.798 0.711 0.651 0.607
1400 0.885 0.798 0.710 0.650 0.606
1450 0.885 0.798 0.710 0.649 0.603
1500 0.885 0.798 0.710 0.648 0.602
1550 0.885 0.798 0.710 0.647 0.600
1600 0.884 0.799 0.709 0.645 0.598
1650 0.884
1700 0.883
1750 0.884
1800 0.883
1850 0.883
1900 0.883
1950 0.883
2000 0.883

normal distribution 0.885 0.813 0.754 0.710 0.677



Complete ROC Results
Ta ble  6

1y hor izon 2y hor izon

Classifier AUC ACC N P Classifier AUC ACC N P
edf1 0.89 0.99 29754 211npd2 0.81 0.98 26038 423
npd1 0.88 0.99 29754 211edf2 0.8 0.98 26038 423

Covarince matrix Covarince matrix
edf1 npd1 npd2 edf2

edf1 0.000086 0.000080 npd2 0.000085 0.000084
npd1 0.000080 0.000092 edf2 0.000084 0.000101

TEST1/TEST2 AUC_DIFF CONF_INTERVAL TEST1/TEST2 AUC_DIFF CONF_INTERVAL
edf1/npd1 0 ( -0.0051282 , 0.0117609 ) edf2/npd2 -0.01 ( -0.0200285 , -0.00299671 )

p-value for the diff 0.44 p-value for the diff 0.01
edf1 npd1 npd2 edf2

edf1 N.A. 0 npd2 N.A. 0.01
npd1 0.44 N.A. edf2 0.01 N.A.
3y hor izon 4y hor izon

Classifier AUC ACC N P Classifier AUC ACC N P
npd3 0.76 0.97 22302 592npd4 0.71 0.96 18235 691
edf3 0.72 0.97 22302 592edf4 0.66 0.96 18235 691

Covarince matrix Covarince matrix
npd3 edf3 npd4 edf4

npd3 0.000079 0.000078 npd4 0.000075 0.000070
edf3 0.000078 0.000109 edf4 0.000070 0.000092

TEST1/TEST2 AUC_DIFF CONF_INTERVAL TEST1/TEST2 AUC_DIFF CONF_INTERVAL
edf3/npd3 -0.04 ( -0.0483353 , -0.0261916 ) edf4/npd4 -0.05 ( -0.0552892 , -0.0352536 )

p-value for the diff 0.000000 p-value for the diff 0.000000
npd3 edf3 npd4 edf4

npd3 N.A. 0.04 npd4 N.A. 0.05
edf3 0.000000 N.A. edf4 0.000000 N.A.
5y hor izon

Classifier AUC ACC N P
npd5 0.68 0.95 14136 671
edf5 0.63 0.95 14136 671

Covarince matrix
npd5 edf5

npd5 0.000079 0.000072
edf5 0.000072 0.000098

TEST1/TEST2 AUC_DIFF CONF_INTERVAL
edf5/npd5 -0.05 ( -0.06287 , -0.0402845 )

p-value for the diff 0.000000
npd5 edf5

npd5 N.A. 0.05
edf5 0.000000 N.A.
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Fig. 3
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Complete Simulation Results
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Table 7
EDF – 1 yr Horizon NPD – 1 yr Horizon

YR Profit ROA RORWA Profit ROA RORWA

1994 14,384 51.67% 60.58% 0.54% $76,380 0.15% 0.67% 12,532 45.02% 27.88% 0.51% $135,452 0.30% 1.36%
1995 13,458 52.26% 60.68% 0.57% $79,088 0.15% 0.62% 11,438 44.41% 27.18% 0.54% $141,716 0.32% 1.30%
1996 13,407 57.38% 61.58% 0.57% $85,874 0.15% 0.61% 9,177 39.27% 26.11% 0.59% $128,214 0.33% 1.33%
1997 12,549 59.90% 62.24% 0.60% $97,987 0.16% 0.61% 7,702 36.76% 25.51% 0.66% $134,398 0.37% 1.35%
1998 10,691 57.46% 61.62% 0.65% $96,299 0.17% 0.55% 7,309 39.28% 25.41% 0.67% $150,189 0.38% 1.26%
1999 9,188 56.06% 63.29% 0.69% $112,172 0.20% 0.62% 6,667 40.67% 27.22% 0.69% $164,339 0.40% 1.24%
2000 7,280 51.80% 57.36% 0.71% $129,999 0.25% 0.84% 6,287 44.73% 31.01% 0.67% $170,932 0.38% 1.28%
2001 6,506 54.68% 57.45% 0.67% $161,195 0.29% 1.13% 4,949 41.59% 28.72% 0.68% $180,489 0.43% 1.66%
2002 5,349 54.16% 38.60% 0.54% $191,741 0.35% 2.02% 4,120 41.71% 38.60% 0.63% $162,704 0.39% 2.23%
2003 4,215 52.97% 20.00% 0.35% $141,594 0.27% 4.30% 3,381 42.49% 50.00% 0.58% $133,707 0.31% 5.06%
2004 3,339 54.37% 13.33% 0.32% $144,387 0.27% 7.51% 2,495 40.63% 43.33% 0.51% $110,591 0.27% 7.70%
2005 2,492 56.11% 13.64% 0.32% $149,256 0.27% 7.26% 1,727 38.89% 40.91% 0.47% $92,522 0.24% 6.50%
2006 1,653 57.80% 5.88% 0.32% $168,523 0.29% 8.66% 1,066 37.27% 52.94% 0.46% $31,672 0.08% 2.52%
2007 832 60.52% 9.09% 0.33% $164,069 0.27% 6.79% 475 34.53% 54.55% 0.46% -$36,474 -0.11% -2.65%

EDF – 2 yr Horizon NPD – 2 yr Horizon

YR Profit ROA RORWA Profit ROA RORWA

1995 9,991 40.98% 69.38% 0.73% -$234,128 -0.57% -1.30% 13,652 56.00% 27.03% 0.54% $94,413 0.17% 0.38%
1996 8,555 38.90% 68.87% 0.83% -$250,397 -0.64% -1.20% 12,787 58.14% 26.96% 0.57% $105,820 0.18% 0.34%
1997 7,559 38.61% 71.35% 0.94% -$267,832 -0.69% -1.09% 11,454 58.51% 23.96% 0.59% $136,288 0.23% 0.37%
1998 7,076 41.06% 75.71% 0.98% -$290,819 -0.71% -1.05% 9,702 56.30% 19.71% 0.63% $175,382 0.31% 0.46%
1999 6,102 40.64% 78.97% 1.07% -$249,770 -0.61% -0.83% 8,514 56.70% 18.62% 0.67% $217,695 0.38% 0.52%
2000 4,800 37.85% 76.34% 1.24% -$137,341 -0.36% -0.44% 7,519 59.30% 20.09% 0.71% $259,281 0.44% 0.53%
2001 3,219 30.59% 69.28% 1.59% $33,575 0.11% 0.11% 6,974 66.27% 25.49% 0.72% $310,395 0.47% 0.47%
2002 1,930 22.70% 54.17% 1.89% $154,251 0.68% 0.65% 6,267 73.71% 37.50% 0.71% $333,416 0.45% 0.43%
2003 1,097 16.66% 39.71% 1.63% $86,882 0.52% 0.56% 5,220 79.30% 48.53% 0.65% $291,649 0.37% 0.40%
2004 479 10.04% 19.15% 1.18% $33,053 0.33% 0.49% 4,067 85.31% 63.83% 0.62% $247,227 0.29% 0.43%
2005 237 7.73% 9.38% 0.80% $17,569 0.23% 0.52% 2,680 87.41% 71.88% 0.62% $202,300 0.23% 0.53%
2006 91 6.09% 9.09% 0.64% -$21,693 -0.36% -1.05% 1,321 88.86% 72.73% 0.61% $58,964 0.07% 0.20%

EDF – 3 yr Horizon NPD – 3 yr Horizon

YR Profit ROA RORWA Profit ROA RORWA

1996 11,658 56.85% 85.54% 0.58% -$736,552 -1.30% -3.33% 8,329 40.62% 15.52% 0.53% $20,937 0.05% 0.13%
1997 10,128 55.99% 85.50% 0.62% -$765,292 -1.37% -3.06% 7,552 41.75% 15.27% 0.56% $34,740 0.08% 0.19%
1998 8,549 54.29% 84.43% 0.68% -$731,658 -1.35% -2.65% 6,903 43.84% 15.35% 0.59% $60,379 0.14% 0.27%
1999 7,600 56.17% 86.58% 0.67% -$677,312 -1.21% -2.44% 5,671 41.91% 13.97% 0.60% $81,659 0.19% 0.39%
2000 6,130 54.76% 86.14% 0.68% -$551,717 -1.01% -2.10% 4,829 43.14% 14.23% 0.62% $116,052 0.27% 0.56%
2001 4,545 50.29% 82.68% 0.79% -$341,556 -0.68% -1.23% 4,275 47.30% 16.76% 0.66% $163,158 0.34% 0.62%
2002 2,966 42.27% 74.77% 1.02% -$100,264 -0.24% -0.32% 3,860 55.02% 24.32% 0.70% $211,800 0.38% 0.52%
2003 1,610 31.58% 63.01% 1.45% $52,375 0.17% 0.17% 3,332 65.37% 35.62% 0.74% $256,327 0.39% 0.40%
2004 736 22.42% 50.00% 1.66% $57,349 0.26% 0.25% 2,425 73.90% 45.65% 0.76% $273,320 0.37% 0.37%
2005 287 18.13% 42.31% 1.64% -$15,980 -0.09% -0.09% 1,227 77.63% 50.00% 0.75% $209,310 0.27% 0.28%

EDF – 4 yr Horizon NPD – 4 yr Horizon

YR Profit ROA RORWA Profit ROA RORWA

1997 11,233 68.05% 88.98% 0.60% -$1,086,607 -1.60% -3.41% 4,998 30.28% 12.97% 0.50% -$66,033 -0.22% -0.47%
1998 9,709 68.54% 89.48% 0.65% -$1,039,780 -1.52% -2.85% 4,288 30.27% 11.85% 0.54% -$32,110 -0.11% -0.20%
1999 8,106 67.83% 88.89% 0.65% -$917,336 -1.35% -2.54% 3,690 30.88% 11.85% 0.54% -$12,880 -0.04% -0.08%
2000 6,541 68.04% 90.38% 0.53% -$869,667 -1.28% -2.78% 2,944 30.62% 9.97% 0.47% $7,818 0.03% 0.06%
2001 4,975 66.70% 91.15% 0.47% -$739,612 -1.11% -2.81% 2,373 31.81% 8.85% 0.43% $35,161 0.11% 0.28%
2002 3,482 64.05% 89.38% 0.47% -$536,683 -0.84% -2.27% 1,857 34.16% 10.62% 0.43% $48,976 0.14% 0.39%
2003 2,048 58.23% 86.96% 0.54% -$453,360 -0.78% -1.67% 1,396 39.69% 13.04% 0.47% $70,000 0.18% 0.38%
2004 794 46.65% 79.41% 0.72% -$380,409 -0.82% -1.28% 863 50.71% 20.59% 0.52% $78,907 0.16% 0.24%

EDF – 5 yr Horizon NPD – 5 yr Horizon

YR Profit ROA RORWA Profit ROA RORWA

1998 8,370 67.15% 87.45% 0.89% -$1,141,993 -1.70% -2.34% 3,922 31.46% 11.82% 0.67% -$22,687 -0.07% -0.10%
1999 6,726 65.62% 88.76% 0.99% -$977,847 -1.49% -1.83% 3,423 33.39% 11.48% 0.72% $29,917 0.09% 0.11%
2000 5,034 63.62% 89.42% 0.97% -$872,012 -1.37% -1.70% 2,800 35.38% 10.92% 0.71% $67,475 0.19% 0.24%
2001 3,608 62.66% 89.78% 0.82% -$793,963 -1.27% -1.72% 2,089 36.28% 10.75% 0.60% $62,325 0.17% 0.23%
2002 2,305 61.70% 90.20% 0.68% -$686,326 -1.11% -1.70% 1,384 37.04% 10.78% 0.53% $62,002 0.17% 0.26%
2003 1,125 61.96% 89.80% 0.57% -$735,051 -1.19% -2.12% 666 36.67% 12.24% 0.45% $17,342 0.05% 0.08%
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