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Abstract

Global disease transmission is an important area, since knowledge of the time of
the onset of an epidemic in a region might help authorities to save many lives.
In this thesis I have used a deterministic model with eight parameters, of which
two were time dependent, for spreading of the SARS disease. My model is an
extension of a model by Colizza and co-workers, where I have added a Heaviside
step function, that prevent latent people to interact if they are to few. I have
also added a ”repulsion factor”, that reduces the traffic to an infected city. In my
model I used data on how 3,147 of the airports of the world are connected. The
strength of the connections were not given, so they were estimated, using the
population sizes of the cities. The corresponding rate equations was solved by
computer programs, written by me in Java, one of which displayed the result on a
map. A major finding of this thesis is that vaccination can be used to prevent an
epidemic from fully break out, and the doses are preferably concentrated to well
connected regions, although the effect is not dramatical. This is demonstrated
by comparing the effect of vaccinating London, with the effect of vaccinating
Tianjin, and with the effect of vaccinating New York. I also demonstrate that
the latency of a disease is an important factor for mortality of a disease.
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1 Introduction

By understanding the mechanisms of diseases spreading, countermeasures can
be optimised so that epidemics can be prevented, and the number of effected
people reduced. The epidemics problem can be divided into two parts, the
behaviour in a population and the interaction between populations[1]. The
last century bullet trains and air-planes have made it possible to travel so far
and fast, that it is appropriate to look at the entire world population as one
big population, with the regions close to the stations and airports as subpopula-
tions. A few research groups have looked into this aspect of epidemic modelling,
both to analyse specific cases of epidemics[2] and to be able to predict future
epidemics[1].

What is required of a disease to make big enough impact to be considered an
epidemic, and is it possible to prevent an epidemic if it appears? Is it possible
to find the strength of the individual couplings between cities (i.e. number of
persons travelling per day) given only connections and data from known dis-
eases? These are examples of questions that I attempt to answer in this thesis.
The first of the two questions are probably the most interesting, since it might
be a support to people who try to prioritise among limited resources and coun-
teractions, in case of possible epidemics. Among the possible counteractions are
to vaccinate parts of the population, or quarantine some cities or regions.

In this thesis I will look into the global transmission of Severe Acute Respi-
ratory Syndrome (SARS), which is a disease caused by the corona-virus SARS-
CoV[3]. The first cases of SARS was found in Guangdong Province, China, in
November 2002, but were only identified as such in April 2003[4]. On Febru-
ary 21 an infected medical doctor carried it to Hong Kong, where it spread to
others[4]. During the spring of 2003 SARS turned into a global epidemic, with
totally 8,096 confirmed cases, of which 774 were fatal[5].

This thesis is organised as follows: in section 2.1 different models, used for
simulating spreading of diseases, are presented, starting with the simplest and
after adding some complexity finally arrives at the model that I used. This model
include the travel between 3,147 cities, inhabited by totally 998,328,995 people,
and I will try to capture some of the psychological effects (such as changes in
travelling patterns) caused by an epidemic. Previous studies usually ignore this
effect, so it is still a rather unexplored, yet crucial, aspect of disease dynamics.
In section 2.2 the programs (whose code can be found in the appendix) I used
will be introduced. Section 3 will contain the results I have produced, and
they will be discussed in section 4. Section 4 will also contain some discussion
on choices for parameters and models, that I have made, and some alternative
methods. My main conclusions will be given in section 5, and in section 6 I will
briefly mention things that might be interesting to look at in the future.
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2 Methods

2.1 Models

Disease transmission can be modelled as a stochastic process, for example by
using a Gillespie algorithm[6], where the probability for every event are decided,
and with some help from randomly generated numbers the next time step is cal-
culated. In this thesis, however, deterministic rate equations will be discussed,
that is, only mean values of population sizes are considered. The population
will be divided into different categories, and the mean number of members of
every category will change with a certain rate.

2.1.1 SIS

The simplest model for disease spreading is the SI model[7], in which S is the
number of susceptible members of the population and I is the number of infected
members of the population, i.e. this model has two categories. The susceptible
part of the population will, through encounters with infected people, gradually
turn into infected, and will then stay that way, unless a feedback term is added,
turning the SI model to a SIS model. This later model is described by the
following differential equations:

∂tS = −βSI
N

+ αI (1)

∂tI = β
SI

N
− αI (2)

where N = S + I is the total population size. From equations (1) and (2) we
see that

∂tN = ∂tS + ∂tI = 0 (3)

that is, the total population stays constant. Equations (1) and (2) describe how
the number of people in the different categories changes with time. The first
term on the right-hand sides remove people from the category denoted S, and
add them to the category denoted I, thus it describes people getting infected.
The more susceptible people present, the more people will get infected, if there
are any infectious people. A higher concentration of infectious people in the
population should make it more probable to meet someone infectious, and thus
be infected. This is the reason for the I/N -factor. β is a rate constant, with
dimension inverse time, characterising the disease. The second terms are the
feedback terms that removes people from the category denoted I, and add them
back to the category denoted S, that is, people recover from the disease. Since
people recover by themselves, independent of the other people in the population,
these terms are only proportional to the number of infected. The rate constant
α, characterising the disease, is the inverse of the average recovery time. For a
disease from which it is impossible to recover, α = 0, we have the SI model. It
can be seen as the disease has an infinite recovery time.

From an SIS model, it is easy to calculate the ”basic reproductive ratio”,
R0, which is the average number of secondary cases produced by an average
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infectious individual in a totally susceptible population, and it is defined by
equation (4)[7].

R0 =
β

α
(4)

If R0 is greater than one, then each infected person will infect more than one
susceptible person, and the disease will spread. If, on the other hand, R0 is less
than one, the disease will die out, since less new infected will be generated each
generation. With R0 it is possible to calculate the fraction of the population
that will be infected at equilibrium in the SIS model[8]:

IE
N

= 1− 1

R0
(5)

To consider two separate, yet interacting, populations, a ”travel term” is
added[8], which gives the following differential equations for the rate of change
of the n:th population:

∂tSn = −βSnIn
Nn

+ αIn +
∑
m6=n

[ωnmSm − ωmnSn] (6)

∂tIn = β
SnIn
Nn

− αIn +
∑
m 6=n

[ωnmIm − ωmnIn] (7)

where ωmn determines the strength of the connection between the populations m
and n, so for example ωmnSn is how many in the susceptible part of population
n that travels to population m per unit time. The sum is over all populations,
and by imposing detailed balance[8] (which means that ωnmNm = ωmnNn for
all populations), equation (3) will still be valid, and the total populations will
remain constant.

2.1.2 SIR

In slightly more advanced models, a third population category is introduced.
Usually this category is denoted R (recovered) and is the number of people in
the population who have gained immunity against the disease. The total pop-
ulation is now N = S + I + R. The flow will usually be from S to I to R, but
to consider vaccination of the population, a rate from S directly to R can be
introduced. R is usually a dead end, that is, there is no flow from R, but it
could be interesting to consider a flow from R if one would consider a disease
which immunity wears off after some time (e.g. hepatitis[9]) or it might be a
simple way to model a disease with high evolution rate (e.g. influenza[10]). An
example of a set of differential equations describing this model is the following:

∂tS = −βSI
N
− V S + %R (8)

∂tI = β
SI

N
− αI (9)

∂tR = V S + αI − %R (10)
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In this case the number of vaccinated per unit time is the constant V times the
number of susceptible, and % is the rate at which R turns back to S. To obtain
the basic SIR model, V and % are set to zero. Travelling between cities can be
added to equations (8)-(10) in the same manner as in the SIS model. By adding
up equations (8)-(10) we see that the total population is constant, that is,

∂tN = ∂tS + ∂tI + ∂tR = 0 (11)

also for this model.

2.1.3 Colizza’s SARS model

When choosing a model to use, it is good to know what disease it is suppose to
describe. Knowledge of the disease will make it possible to make good choices
of population categories, and transitions between them. I chose to look at
Severe Acute Respiratory Syndrome (SARS), since there is good data on the
epidemic[5], and because similar studies have been made before[1, 2].

SARS is caused by corona-virus SARS-CoV[3]. The entire genome of SARS-
CoV has been sequenced, showing that it was not closely related to any other
known corona-virus at the time of the outbreak[3]. Recently however, similar
viruses have been found in animals such as civet cats, thus it is possible that
SARS-CoV was an animal virus that adapted to humans[3].

SARS has two phases[3]. The first (acute) phase lasts for about 10 days, and
is characterised by diffuse alveolar damage (DAD) which means that the alveoli
in the lungs (the end of the respiratory tree, where the actual gas exchange is
performed) are flooded with transudate (a water solution, rich in salts but low
in protein), which triggers hyaline (≈cartilage) membrane formation[3]. In the
late part of this phase antibody start to kill infected cells[3]. The second phase
is characterised by increasing fibrosis (scar tissue) in the lungs and the state is
no longer acute, but it can still be lethal[3]. All this can be seen in histological
pictures, that is, sliced tissue viewed through a microscope[3]. It can be hard to
diagnose SARS, since it not only infects the respiratory systems, but can also
cause diarrhoea and infect the kidneys among other things[3].

To make a realistic model for SARS seven population categories have to be
introduced[2], as was done by Colizza et al. The categories are susceptible (S),
latent (L), infectious (I), hospitalised and recovering (HR), hospitalised and
dying (HD), recovered (R) and dead (D) and the flow between the categories
is graphically interpreted in figure 1. The latent (L) are the number of people
in the population that have been exposed to the disease, but have yet to show
symptoms. They act much as the susceptible; they are able to travel, and they
cannot infect others. The hospitalised categories (HR and HD) are the number
of people in the population that have been taken care of, and are being partially
isolated from the rest of the population. The reason for two different hospitalised
categories is that the recovering spend, on average, less time in hospital than
the dying (that is µ−1R < µ−1D , see below). The following differential equations
describes the model:

∂tS = −βSI
N
− rββ

SHR

N
− rββ

SHD

N
(12)
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∂tL = β
SI

N
+ rββ

SHR

N
+ rββ

SHD

N
− εL (13)

∂tI = εL− dµI − (1− d)µI (14)

∂tHR = (1− d)µI − µRHR (15)

∂tHD = dµI − µDHD (16)

∂tR = µRHR (17)

∂tD = µDHD (18)

The total population is N = S+L+I+HR+HD+R+D which, in combination
with equations (12)-(18) gives constant population:

∂tN = ∂tS + ∂tL+ ∂tI + ∂tHR + ∂tHD + ∂tR+ ∂tD = 0 (19)

Equation (12) describes how the number of susceptible changes with time. Since
those who recover are immune, there is no positive term (unless susceptible peo-
ple are allowed to travel in from different populations), and thus will the number
of members in this category steadily decrease. Each of the three terms repre-
sents the effect from the respective infectious category, I, HR and HD, and rβ
is a factor that reduces the infectivity of the hospitalised part of the population.
Equation (13) describes how the number of latent changes with time. The three
positive terms are the people that disappeared from equation (12), and the neg-
ative term is the number of people that develop symptoms, thus turn into I.
The constant ε is the inverse of the average time that an individual spend in
this category. Equation (14) describes how the number of infectious changes
with time. The first term represents those L who developed symptoms. When
someone is identified as infectious (this take on average µ−1 days), this person
will be taken to hospital, which is represented by the two negative terms. Since
d is the case fatality rate, the fraction dµI of the infectious will be classified as
hospitalised and dying, the rest of the hospitalised ((1−d)µI) will be recovering.
This can be seen in equations (15) and (16), which describes how the number of
hospitalised and recovering respectively hospitalised and dying is changing with
time. The negative terms are those who recovers (recovery takes on average
µ−1R days) respectively dies (the average time from hospitalisation till death is
µ−1D days). Equations (17) and (18) simply keeps track of those who recovers
respectively dies, and they will steadily increase.
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Figure 1: A graphic interpretation of Colizza’s SARS model (equations (12)-(18)) in one city.
The symbol by each black arrow represents the rate for the respective ”reaction”, for example
the number of recovered people will each time step increase with the number of recovering
people at hospital times µR. The purple arrows with square arrow heads indicates that the
fraction of the population in the category from which the arrow originates will effect the rate
at which the arrow points. For example the infected people will make S · βI/N susceptible
people latent each time step.

Since the dimension of all the rate constants are inverse time, it is possible
to get the rates from the existing data simply by inverting the average time that
is spent in each category. The values of the parameters used by Colizza can be
found in table 1.

Table 1: Values of the parameters used by Colizza et al.[2] in their model of transmission of
SARS. The rate of transmission (β) and the number of initial latent individuals (L(t = 0)),
were found by fitting the model output to data. The rest of the parameters were found by
analysing the data provided by WHO[5]. The step function sf (t) is a scaling factor that
changes β with time, so that the actual value is βsf (t) at a given time t. This should be seen
as the effect of control measures, and will be discussed in section 4.2.

Parameter Description Value

β Rate of transmission (days−1) 0.57
L(t = 0) Number of initial latent individuals 10

sf (t)

Scaling factor for β:
t1 = 21 February-20 March 1.00
t2 = 21 March-9 April 0.37
t3 = 10 April-11 July 0.06

rβ Relative infectiousness of hospitalised patients 0.2
ε−1 Average latency period (days) 4.6

µ−1(t)

Average time before admission (days):
t1 = 21 February-25 March 4.84
t2 = 26 March-1 April 3.83
t3 = 2 April-11 July 3.67

µ−1R Average period from admission to recovery (days) 23.5

µ−1D Average period from admission to death (days) 35.9
d Case fatality rate 0.2

Hospitalisation is important in this model since the people in that category
are much less contagious than those in the infected category (adjusted in the
model by the constant rβ), and the interpretation of that should be that those
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in hospital are being isolated and treated. The latent category is important
since those in it will be treated as if they are susceptible and unexposed, which
makes it unlikely to succeed with a quarantine. In this model, the recovered are
immune and will never be infected or infectious again.

To this model Colizza et al. added the possibility to travel, in a similar way
as in section 2.1.1 and section 2.1.2. Since Colizza’s model is stochastic, the
probability pmn to travel is used rather than the rate ωmn that I used. When
the possibility of travelling is added, it is reasonable to only let some of the
population categories be able to travel. How this is done in Colizza’s model
is not clearly described in their article[2], so in my model (described further
in section 2.1.4) I chose to let the the susceptible, latent and recovered people
travel. It is obvious why the dead and hospitalised don’t travel, and the reason
why the infected don’t travel can be both because the individual are too tired
or feel too miserable to travel, or because authorities don’t let them travel, as
a way to restrict the spreading.

2.1.4 My SARS model

The model I used for modelling SARS is very similar to Colizza’s model. There
are three major differences though. The first is that my model is fully determin-
istic, whereas Colizza’s model is stochastic. The other two differences are both
in the travelling part. Firstly I only considered the air traffic, and not trains,
boats or any other way of transportation, and secondly I introduced a repulsion
factor, as a way to satisfy the detailed balance premiss[8], thereby making sure
that the total number of inhabitants of each city is constant:

∂Nn
∂t

= 0 (20)

Adding travelling to Colizza’s model is done in the same way it was done in
section 2.1.1 and section 2.1.2. This time however, a ”repulsion factor” Γn,
defined in equation (21), is multiplied to each of the travel-terms.

Γn =

(
In +HRn +HDn +Dn

Sn + Ln +Rn
+ 1

)
(21)

Only the people classified as S, L or R will be able to travel, so the differential
equations for this model will thus be:

∂tSn = −βSnIn
Nn

− rββ
SnHRn

Nn
− rββ

SnHDn

Nn
+
∑
m6=n

[ωnmSmΓm − ωmnSnΓn]

(22)

∂tLn = β
SnIn
Nn

+rββ
SnHRn

Nn
+rββ

SnHDn

Nn
−εLn+

∑
m 6=n

[ωnmLmΓm − ωmnLnΓn]

(23)
∂tIn = εLn − dµIn − (1− d)µIn (24)

∂tHRn = (1− d)µIn − µRHRn (25)

∂tHDn = dµIn − µDHDn (26)
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∂tRn = µRHRn +
∑
m 6=n

[ωnmRmΓm − ωmnRnΓn] (27)

∂tDn = µDHDn (28)

The repulsion factor Γn is intended to be interpreted as an unease from travelling
to a contaminated area. If a large part of the population is infected, hospitalised
or dead, it will probably scare off travellers from going there. The repulsion
factor is thoroughly described and discussed in section 2.1.6.

2.1.5 Fractions of individuals

Since I use rate equations to model disease transmission, it is rather cumbersome
to look at populations as integers. Even though it is quite counter-intuitive I
allow parts of people to travel and change category. This shouldn’t be taken
as body parts roll off on their own, but rather as the mean number of people
averaged over many stochastic simulations.

One actual problem is that all the cities are connected in some way, so after
very few time steps, every city will be infected, even if the number of infected
people in the connected cities are a fraction of an individual. For most of
the cities the number of infected will seem insignificantly small, but since they
are present, the transmission process can start within that population. This
phenomenon will lead to a faster epidemic, which makes it more dangerous,
since there will be less time to prepare counter measures. A simple but effective
way to fix this is to introduce a Heaviside step function1 for the latent category:

Θ(L− Lc) =

{
1 if L > Lc
0 if L < Lc

(29)

The Heaviside step function will deny the latent people in a population to in-
teract, unless they are more than a certain critical number, Lc, which can be
seen as that there are no latent people until they are sufficiently many. I used
Lc = 1 throughout this study. The reason for choosing the latent people to
have a theta-function is that they are a bottleneck category, as seen in figure
1. Since the infectious don’t travel, the only way to get infectious persons in
a population is when latent changes category. Without any infectious people,
the only way to get latent people in the city is for them to travel in from other
cities. Thus will the disease not break out unless enough latent people travel to
the city and start to turn infectious.

2.1.6 The repulsion factor

To make the discussion a little easier to follow I will introduce two acronyms:
SLR and HDI. SLR stands for ”Susceptible, Latent and Recovered” and repre-
sents the part of the population that is allowed and capable of travelling. HDI
stands for ”Hospitalised, Dead and Infectious” and represents the part of the
population that isn’t allowed or is incapable to travel.

The repulsion factor Γn (see equation (21)) was introduced to keep the de-
tailed balance condition fulfilled, and thereby making sure that Nn (the total

1I am grateful to Dirk Brockmann for pointing this out.
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number of people in city n) is kept constant. The reason that it is needed is that
only people in three of the seven categories are allowed to travel. Because of
that, in the unmodified model the number of people travelling from the city will
decrease with an increasing number of HDI. The cities with healthy populations
will not be affected by this, so the number of people travelling from the infected
city will be less than the number of people travelling to the infected city, which
will increase its population. This phenomenon isn’t very intuitive, it is more
likely that people will avoid going to a contaminated area. The problem could
be solved by recalculating the coupling strengths every time step, using only
the SLR part rather than the entire population. One problem with this is that
it will take long time to do, and it has to be done many times.

Trying to interpret the repulsion factor, it can be considered as information
available to the inhabitants of the world. When a big part of the population in
a city is HDI it will be big, noticeable news compared to if only a small part
of the population is HDI. That makes a greater infection more known, thus it
effects the travel pattern more. It can also be seen as a journey to a city with
a bigger fraction HDI will be associated with a greater risk than a journey to a
city with a smaller fraction HDI. Both these ways of looking at it will result in
people avoiding infected cities.

There might be problems with devastating round off errors when SLR goes
to zero (division with zero in the first term of equation (21)) if a numerical
approach is used to solve the problem. Analytically this isn’t a problem since
the repulsion factor is multiplied with ether Sn, Ln or Rn, which will be positive,
but also go to zero. Since Sn ≤ (Sn + Rn + Ln), L ≤ (Sn + Ln + Rn) and
Rn ≤ (Sn+Ln+Rn) the ratios of Sn and (Sn+Ln+Rn), Rn and (Sn+Ln+Rn)
and Ln and (Sn+Ln+Rn) respectively can never be larger than one, that is, the
numerator goes to zero faster than the denominator, which makes it impossible
to go to a city with no SLR.

2.1.7 Network connection strength

The connections between the cities used in my SARS model are the same as those
used by Guimerà et al. in their analysis of the worldwide air transportation
network[11]. Their data contains the 531,574 passenger flights operating in
the time period November 1, 2000, to November 7, 2000, between 3,883 cities
distributed according to table 2[11]. I didn’t have the data for all the population
sizes for all those cities, so my model only used 3,147 cities (see section 2.1.8).
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Table 2: The number of cities, and their spatial distribution, used by Guimerà et al.[11] in
their analysis of the worldwide air transportation network.

Region No. of cities

Africa 364
Asia and Middle East 719
Europe 691
Latin America 523
North America 1,064
Oceania 522

Total 3,883

From that data 27,051 city pairs could be found[11], however those connec-
tions are either 1 or 0, that is, the information they hold is only whether there
is a connection or not, independently of how strong the connection is, i.e. how
many people is travelling between the the city in a certain time. To calculate
the strength of the connections I made three assumptions:

• The total population (including the dead) in each city is constant over
time

• The number of people travelling to large cities is greater than the number
of people travelling to small cities

• The number of people travelling from large cities is greater than the num-
ber of people travelling from small cities

The easiest way to satisfy these assumptions is by assuming that the weights
to use in my model are those in equation (30), which has the consequence that
the relation in equation (31) is satisfied. In these equations N is the total
population, and the indices are the cities that are considered. The weights ωmn
are actually the fraction of the population in city n that is travelling to city
m each day. The number of people travelling from city n to city m each day
is thus the product ωmnNn, so equation (31) is the required detailed balance
condition[8].

ωmn = CNm (30)

ωmnNn = ωnmNm (31)

The constant C (with unit per day) in equation (30) should be the same for
every pair of cities, since the weights were assumed to only be depending of the
sizes of the cities. Statistics on the yearly number of people passing through an
airport is often available on the respective airport’s web page, so by choosing
airports with only one connected airport, it is possible to find the strength of
that connection. To find a good C I chose ten pairs of cities from ten different
countries, and calculated the their respective C from the weights using equation
(30) (see table (3)). The different values of C is probably biased, since all the
cities chosen to be m are big and well connected, whereas all the cities chosen
to be n are small and have only one connection (the one to m). The average
value of C is C̄ = 3.99 · 10−8 per day.
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Table 3: List of the city pairs and the weights that were used to calculate C. The distances
d between the cities are also listed. The weights are the fraction of the population in city n
that is travelling to city m each day.

Citym Cityn Country d (km) ωmn Cmn

Ankara Batman Turkey 763 1.31 · 10−3 3.84 · 10−10

Ottawa Kitchener Canada 428 7.52 · 10−4 3.20 · 10−9

Jamestown Devil’s Lake USA 133 1.27 · 10−3 8.18 · 10−8

Tallinn Kärdla Estonia 109 7.66 · 10−3 1.91 · 10−8

Rio de Janeiro Campos Brazil 250 7.19 · 10−5 6.50 · 10−12

Naha Kumejima Japan 86 2.17 · 10−2 1.81 · 10−7

Kota Kinabalu Lahad Datu Malaysia 270 8.21 · 10−3 5.66 · 10−8

Patna Ranci India 255 6.47 · 10−4 4.70 · 10−10

Cali Guapi Colombia 200 7.03 · 10−3 4.14 · 10−9

Perth Newman Australia 1020 7.29 · 10−2 5.22 · 10−8

2.1.8 Population division

The number of inhabitants in 2,445 of the 3,147 cities that are connected in my
model, were extracted from a database[12]. The rest of the population sizes were
found on various places on the Internet. The most important tool to find them
was wikipedia.org, which links to relevant local census reports, but wolframal-
pha.com was also used for some cities. Information on which region and country
the cities belong to as well as the coordinates, IATA-name and ICAO-name of
the associated airport were stored. The regional division is according to the
18 WHO influenza transmission zones[13]. In total 998,328,995 people are ac-
counted for in my model, which is about 14% of the entire world population[14].

One problem for theoretical epidemiology is to correctly identify separate
communities[8]. When counting the population of a city there might, for exam-
ple, be problems deciding how much of the suburb that should be taken into
account. Sometimes it might be more convenient to place an airport in a smaller
city close to a big city, than to place it in the big city. Should the sum of the two
city’s populations be used in this case? Since the only way to travel between
cities in my model is by air, it is probably better to use overestimations, where
a better model would have used more cities which would have been connected
with trains, cars and maybe more means of transportation.

2.1.9 Time dependent parameters

Two of the parameters in the model (namely sf (t) (scaling factor for β) and
µ−1(t) (average time before admission in days)) changes with time. In table 1
the values for them can be found, and these are based on data from Hong Kong.
In my model I assumed that these step functions, with the same intervals, are
the same everywhere, but with different starting dates. I introduced one of each
function for each WHO region[13], and chose the starting date, as the first day
that the total number of people categorised as infectious in the respective region
where more than one.
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2.2 Program

Initially I used the Euler method to solve the rate equations presented in section
2.1, since it is fast and easy to implement. After some test, I felt that I could
afford to use a more complex and accurate method, so I changed to the 4:th order
Runge-Kutta method[15]. Whenever I made a major change to my algorithm,
I started with the Euler method, so that I would have something to compare
with.

2.2.1 Two city model

Before simulating a real disease spreading in the entire world, I tried an SIS
model in two cities. This way a lot of non-intuitive phenomenon can be cleared
up, so that the number of numerical problems that have to be solved in the full
model can be minimised. It is also easy to solve the long time-limit for the rate
equations analytically, making it possible to tell whether a numerical solution
is good or not. In this model equation (6) and equation (7) are the appropriate
ones to use, however they can be written as one equation by introducing jn =
In/Nn, that is, the fraction of the population that is infected. In equation (32)
I used that (In + Sn)/Nn = 1, see appendix for full derivation (there is a typo
in equation (32) in the review article of Brockmann et al.[8]).

∂tjn = βjn(1− jn)− αjn +
∑
m 6=n

ωmn (jm − jn) (32)

The cities I chose in this model was the two Turkish cities Ankara (population[12]:
3,764,000) and Batman (population[12]: 293,024). Among the reasons that I
chose them of all cities is:

• The airport of Batman has only one connection

• The airport of Ankara has many connections

• Both cities are quite large

• The ratio of the populations is about 0.1

Since Batman only have one connection it is easy to find the number of people
using that connection, thus the connection strength. If it is interesting to add
a few more cities to the model, it can be done since Ankara is fairly well con-
nected. The population difference is good, because it might lead to a difference
in jn, and if the cities would have had the same population sizes, it would be
impossible to see that phenomenon. Since the difference isn’t extreme, and the
cities are large, the risk for numerical errors should be low.

After simulating a scenario where one person in Batman got infected with a
disease with the properties β = 0.04 per day and α = 0.01 per day, it turned out
that the same result was reached (to at least five decimal places) when equation
(32) was solved, as when equations (6) and (7) were solved (I used 0.01 days as
step size, and fourth order Runge-Kutta algorithm in both cases). The results
can be seen in table 4, and the analytic derivation can be found in the appendix.
Figure 2 shows how the number of people in the different categories in the
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different cities changes with time. Just as expected, the number of susceptible
in each city will decrease, and the number of infected will increase. After about
700 days equilibrium is reached in both cities, and unless the parameters of the
disease is changed, the system will stay in this equilibrium. From figure 2 (and
by looking at the actual numbers at the end of the simulation) we see that the
total population in each city is constant, which is as it should be.

Figure 2: The development of the health situation in the two connected cities Ankara and
Batman. At time zero one person (in Batman) were infected with a disease characterised by
β = 0.04 per day and α = 0.01 per day. The fourth order Runge-Kutta algorithm was used on
equation (6) and equation (7) with the step size 0.01 days. After about 700 days, equilibrium
is reached in both cities.

Since it is an SIS model, equation (5) can be used to calculate the fraction
of the population that will be infected at equilibrium. To get R0 equation (4)
is used:

R0 =
β

α
=

0.04

0.01
= 4 (33)

Inserting R0 = 4 in equation (5) gives j = 0.75, so it looks as if Ankara and
Batman reaches the same equilibrium as they would have if their connection
would have been broken just after the disease had spread to both the cities.

Table 4: The different values for the fraction of the population that were infected at equilib-
rium in a SIS model. To calculate them, the method in the first column was on the equations
in the second column. The values of the parameters were β = 0.04 per day, α = 0.01 per day.
For the numerical results ∆t = 0.01 days and fourth order Runge-Kutta was used. Initially
all the 3,764,000 inhabitants of Ankara were susceptible, and one of the 293,024 inhabitants
of Batman were infected, the rest were susceptible.

Approach Equation jAnkara jBatman

Numerical (32) 0.75000 0.75000
Numerical (6) and (7) 0.75000 0.75000

Analytic (32) 0.75000 0.75000
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2.2.2 Graphic output

To make it easy to get an overview of the problem, I wrote a Java program
with graphic output. Figure 3 is a screen shot of the program after simulating
SARS, using Colizza’s parameters, step size 0.01 days, and no Heaviside step
function or scaling factor for β. Each dot in the big map (equirectangular
projection) corresponds to a city, and the colour of the dots changes with the
health situation in the respective city (see table 5). By clicking on the dots, it
is possible to get detailed information on the specific city, or infect it with the
disease. The small map (also equirectangular projection) is divided according
to the 18 WHO influenza transmission zones[13]. Just like the dots, the zones
changes colour with the regional health situation, but it uses a different scale
(see table 5).

Figure 3: A screen shot of my graphic program. Each dot in the big map (totally 3147 dots)
represents a city, and the colour represents the health situation in that city (see table 5). The
small map has been divided into the 18 WHO influenza transmission zones[13], and the colour
of a region depends on the health situation in all the cities in that region (see table 5). The
value of the parameters that are used are those in the lower left corner, and are those used
by Colizza et al. (see table 1). The screen shot was taken 100 days into the simulation which
took, on a desktop computer, about fifteen hours to simulate.
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Table 5: Legend for the graphic program. The left part is for the large map, and the right
part is for the small map. The lower part of the legend for the large map is prioritised over
the upper part, that is, if someone dies in a city with 100 inhabitants (the rest is susceptible),
the dot representing that city will immediately go from green to black (and not yellow).

Large map Small map

Circumstance Colour # regional deaths Colour

< 1 infectious and < 1 dead Green 0− 1 Green
≥ 1 infectious and < 1 dead Blue 1− 10 Turquoise

≥ 1 dead Yellow 10− 100 Blue
> 0.1% of population dead Orange 100− 1, 000 Yellow
> 0.5% of population dead Red 1, 000− 10, 000 Orange
> 1.0% of population dead Black 10, 000− 100, 000 Red

> 100, 000 Black

2.2.3 Maps and coordinates

Both maps that I use in my program with graphic output I found on the Internet.
The URI for the large map is http://upload.wikimedia.org/wikipedia/commons/c
/cf/WorldMap-A non-Frame.png, and the URI for the small map is http://maps-
world.cn/map/world map gif.gif. I modified the small map, by removing the
text. Both maps uses equirectangular map projection, and the coordinates that
I got for the airports were measured in arc-seconds from the Prime Meridian
and the Equator, with positive direction east and north. Equirectangular map
projection uses the geographical coordinates as Cartesian coordinates, and get
in that way a rectangular map[16]. The poles will however be very stretched
compared to the equator. In my program (0, 0) is in the top left corner and
the positive direction is down and right. The large map is 1000 pixels wide and
500 pixels high, so the transformations and rescaling I had to do are those in
equations (34) and (35).

x =

(
λ

3600
+ 180

)
· a (34)

y =

(
90− φ

3600

)
· a (35)

In equations (34) and (35) (x, y) are the Cartesian coordinates, and (λ, φ) are
the geographical coordinates (longitude, latitude). The division with 3600 is to
get the longitudes and latitudes from arc-seconds to degrees. Adding 180 to this
result respective subtracting the result from 90 is to get the coordinates in the
interval 0 ≤ x ≤ 360 and 0 ≤ y ≤ 180. By choosing a = 2.777 (dimension length
per angle), the new intervals will be 0 ≤ x ≤ 1000 respectively 0 ≤ y ≤ 500,
and they will fit on the map.

2.2.4 Data generator

I also wrote a program optimised for generating data. It uses the same model
as the graphic program, i.e. solves equations (22)-(28) using fourth order of the
Runge-Kutta algorithm, but generates a file as output. The idea is that the data
generating program should be used to find interesting scenarios, which then can
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be simulated in the graphic program. The generated data is qualitatively better,
and more suited for analysis, but it is much easier to get an overview with the
graphic output.

3 Results

3.1 Simulations with Colizza’s parameters

When I used the parameters from table 1, and step size 0.01 days, in my model,
the number of people categorised as latent in Hong Kong (where the disease was
initiated) would decrease dramatically, and before the end of the first day, less
than one person was categorised as latent in Hong Kong. A small fraction of
a person had become infectious, but the majority had travelled to other cities.
Due to this, the latent people spread around the world, but since they were so
few initially, the number of latent people in each city, would always be less than
one. Since the Heaviside step function (see equation (29)) made it impossible
for a latent person to turn infectious if the total number of latent people in that
population was less than one, there wouldn’t be anyone turning infectious, and
the disease would get extinct before breaking out.

Using my model, without the Heaviside step function, to simulate SARS
with the parameters from table 1, and with step size 0.01 days, will give very
different results compared to when the Heaviside step function was present. In
this case an epidemic breaks out, and the number of total deaths in Hong Kong
is about 30 people. According to the measured data[5] 298 people died from
SARS in Hong Kong, which is roughly ten times the result of the simulation.

Simulating SARS with the parameters from table 1, and with step size 0.01
days, but with neither the Heaviside step function, nor scaling factor for β (that
is, the behaviour of people will not change with time), will give an immense
epidemic, and 220 days after the ten latent people were placed in Hong Kong
only about four million people is still susceptible in the world. That is less than
half a percent of the people in my model, and can be compared to the data for the
epidemic of 2003[5] after which more than 99.999% were susceptible. After that
comparison it is obvious that these model parameters does not describe the real
epidemic. Simulating this latter scenario in my program with graphic output
will, for day 100 (after about 15 hours of simulating on a desktop computer),
give the output that is shown in figure 3.

3.2 Adjusting to the measured data

According to Colizza et al.[2], their value of β and initial number of latent peo-
ple were found by simulations and curve fitting. Since the other values of the
parameters (see table 1) were extracted from measured data, it should be the
β and initial number of latent people that I should change to try to get better
agreement between my model’s output and the measured data[5].

Choosing β = 0.8 per day and L(t = 0) = 100 will give the behaviour
shown by the curve titled ”Simulation 1” in figure 4 for Hong Kong. The shape
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of the curve, representing the number of dead in the simulation, looks much
like the shape of the measured data. The slope of the simulated data should
be a little steeper, and that can be achieved by choosing a larger β, however
when the slope starts to decrease, it does that to slowly, so the total number of
death will be to much in the end. To get a better behaviour when the the slope
starts to decrease, the disease should pass faster, that is, the time from infection
till recovery or death should be shorter. This is a bit problematic, since it is
extracted from measured data.

Figure 4: The points represents the measured data[5] for SARS in Hong Kong from March
17, 2003, to July 11, 2003. The curves represents the result from simulations with my program.
In ”Simulation 1” the parameters found in table 1 was used, except that I instead used β = 0.8
per day and L(t = 0) = 100. In ”Simulation 2” the parameters found in table 1 was used,
except that I instead used β = 0.73 per day, L(t = 0) = 100, ε = 0.35 per day, µD = 0.048
per day, sf (t2) = 0.25 and sf (t3) = 0.03. The step size in the simulations was 0.01 days.

Even if it looks acceptable in Hong Kong (data: 299 fatal cases, simulation:
311 fatal cases), the number of deaths in other cities in the simulation is not
that good. In Singapore and Taiwan there were 180 and 173 fatal cases re-
spectively, and according to the measured data it should be 33 fatal cases in
Singapore and 37 fatal cases in Taiwan[5]. Totally in the world 42,797 died in my
simulation, to be compared to the 774 deaths according to the measured data[5].

To get a better curve for the fatal cases in Hong Kong, I try to change some
of the parameters that were extracted from the measured data. By changing ε
(the inverse average latency period) I can effect the slope. A larger ε will lead to
a steeper slope, just like a larger β, however a larger ε will shorten the latency
period, which will reduce the number of latent (in opposite to β), and thus will
it effect its surroundings a little less. The curve titled ”Simulation 2” in figure 4,
uses Colizza’s parameters (see table 1) with the following exceptions: β = 0.73
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per day, L(t = 0) = 100, ε = 0.35 per day, µD = 0.048 per day, sf (t2) = 0.25
and sf (t3) = 0.03. It is the scaling factor for β, and the inverse average period
from admission to death that governs how fast equilibrium is reached.

With these values the effect on the world is still too much to be realistic (the
number of fatal chases in Hong Kong is this time 315). In Singapore and Tai-
wan there were, with the new parameters, 181 and 157 fatal cases respectively
(should be 33 in Singapore and 37 in Taiwan[5]). Since Taiwan lies closer to
Hong Kong than Singapore does, and there is more fatal cases in Singapore than
in Taiwan in my simulation, and the opposite in the measured data, there are
reasons to suspect that there is some kind of distance dependence of the weights
(the number of inhabitants in the two different areas are within the same order
of magnitude), but since it is only one case, there might be many other reasons.
The reason for the similar result in Singapore, but so different in Taiwan, might
have something to with the fact that Hong Kong and Taiwan lies in the same
region (east Asia), and that Singapore lies in another one (south-east Asia). The
regions are important for the time dependent parameters, of which one (sf (t))
was changed in the second simulation.

Totally 44,339 people died in the world in this simulation, to be compared to
the 774 deaths according to the measured data[5]. The reason that the impact
on the surrounding world is bigger in this simulation (where ε was larger) is
probably because of the changes in sf (t) and µD.

3.3 Vaccination

In this section I used the adjusted parameters and simulated SARS. The differ-
ence from the last section (”Adjusting to the measured data”) is that some peo-
ple will be vaccinated before the epidemic, that is, they will be initiated as mem-
bers of the R-category. I compare seven different cases; no one is vaccinated,
everyone in London is vaccinated (7,172,091 people), the same amount of vac-
cine (7,172,091 doses) is distributed evenly across the world, the same amount of
vaccine (7,172,091 doses) is used in the Chinese city Tianjin (7,499,181 inhabi-
tants), the same amount of vaccine (7,172,091 doses) is used in the American city
New York (8,008,278 inhabitants), everyone in Tianjin is vaccinated (7,499,181
people) and finally everyone in New York is vaccinated (8,008,278 people). The
reason that I chose London is because it is (with is 239 connections) one of the
most connected cities in the world. The reason for Tianjin is that it is almost
the same size as London, but it is much less connected (it is only (directly)
connected to 25 other cities). Another interesting feature for Tianjin is that it
lies within the same region (east Asia) as Hong Kong, in which the disease is
initiated. The reason for New York is again that it is almost the same size as
London, but it is less connected (it is only (directly) connected to 177 other
cities). Moreover, it is not in the same region as Hong Kong, so it might be
interesting to compare the result from New York, with the result from Tianjin.
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Table 6: The result of different strategies for vaccination. The numbers in the table are from
equilibrium, 300 days after initiation (step size 0.01 days).

Doses Distributed in Recovered globally Deaths globally

0 The world 174,836 44,365
7,172,091 The world 7,336,322 41,672
7,172,091 London 7,762,944 41,356
7,172,091 Tianjin 7,326,981 41,386
7,499,181 Tianjin 7,653,164 41,251
7,172,091 New York 7,576,533 41,455
8,008,278 New York 8,439,560 41,133

From table 6 we see that it is better to concentrate the operation to a con-
centrated area, rather than spreading the doses evenly around the world. The
reason for that, I think, is because vaccination of a key location like London,
will close a pathway for the disease, and thus delay the disease transmission.
The case with least fatal cases were when entire New York was vaccinated. That
is probably because 836,187 more doses of vaccine was used, but it might also
be because, those in the city that were not vaccinated made a big enough path
for the disease. The same phenomenon can be seen in Tianjin.

When equal amounts of vaccine are compared, the least number of fatal
cases will be achieved if London is vaccinated, and the least effective way to
vaccinate is to spread the vaccine evenly across the world. Even though New
York is more connected than Tianjin it is more efficient to vaccinate Tianjin in
this case. I think that is because Tianjin is in the same region as Hong Kong,
but it might also be since there is less susceptible in Tianjin after vaccination
compared to New York after vaccination.

3.4 Exploring the phase space

In my model, there are eight parameters that governs the disease dynamics
in each population. Since only three of the seven categories are allowed to
travel, the dynamics of the individual populations will effect the global disease
transmission. Apart from that, it is the connections and their weights that
governs the global disease transmission. Since I wasn’t able to get the real
weights, I tried to use the simplest possible model to get them (equations (30)
and (31)), since it was hard to get better results with other models (see section
4.3).

The number of initial latent individuals (L(t = 0))

With a larger number of initially latent individuals, the total number of recov-
ered and dead will increase. This is because the disease will be more established
when counter-measures are initiated (the time dependent step functions).

Rate of transmission (β)

A larger β will increase the slope seen in figure 4. This will lead to more dead
and recovered in the end.
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Scaling factor for β (sf (t))

The scaling factor for β is a way to capture how people react when there is
an epidemic. Intuitively this will decrease with time, but there is of course the
possibility that people react in a ”wrong” way, and their new behaviour makes
it easier for the disease to spread. If sf (t) is low enough, the number of latent
people will start to decrease, otherwise will a low sf (t) just delay the disease,
and the reason for a decrease in number of latent people is then because of few
susceptible people to infect. The limit that separates the two behaviours is R0.

Average time before admission (µ−1(t))

By increasing µ(t) the average time before admission to hospital is shortened,
that is, the time as infectious is shortened. That will ultimately lead to less
fatal cases, since there were less time for the infectious to spread the disease.

Relative infectiousness of hospitalised patients (rβ)

When rβ = 1 there will be no difference in infectivity between before and after
hospitalisation. It is intuitive to think that rβ < 1, but one plausible scenario
when this isn’t true is if there is a central hospital, that treats people from a
large and sparsely populated area. A larger rβ will increase the slope seen in
figure 4.

If rβ = 0, that is, hospitalised people will not be contagious at all, the
only category that can infect susceptible people is the infectious people. In
that case it will be meaningful to talk about R0, since β is, on average, the
number of people that an infected individual will infect per day, in an otherwise
totally susceptible population. The α in this case is µ(t), since it is the average
number of infectious people that is hospitalised every day. If infectious people
are hospitalised faster than they infect the susceptible, the disease will die,
otherwise there will be an epidemic. If rβ 6= 0 there will be some corrections,
but the main point is still valid.

Average latency period (ε−1)

A larger ε will increase the slope seen in figure 4. This will lead to more dead
and recovered in the end. The difference between the effects of a change in β
and the effects of a change in ε is the contact with other cities. β governs the
transition from susceptible to latent, and people from both of these categories
are allowed to travel. ε governs the transition from latent to infectious, and
only the people from the latent category are allowed to travel. This means that
ε will change the number of SLR, and β will not, that is, if two simulations are
made, each simulation with different β and ε, but in such way that the number
of deaths in Hong Kong is the same in both cases, then the number of deaths
will have changed globally.

If the sum ε + β is kept constant, and SARS is simulated with different ε
and β, the behaviour in figure 5 will be found. Each point is the result of a
simulation with step size 0.01 days, ε + β = 1.10, L(t = 0) = 100, µD = 0.048
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per day, sf (t2) = 0.25 and sf (t3) = 0.03. The other parameters are those from
table 1, and the measurement is done 300 days after initiation.

Figure 5: Each data point represents the number of fatal cases in the world after 300 days,
for different values of ε. Each simulation is done with step size 0.01 days, and ε + β = 1.10
per day in all cases. The other parameters are those from table 1, except that L(t = 0) = 100,
µD = 0.048 per day, sf (t2) = 0.25 and sf (t3) = 0.03.

A small εmeans a very long latency period, and with the the assumption that
ε+β = 1.10, the β will be large, and thus will the disease be very contagious. If
the latency period is too long, the epidemic will start very slow, and there will
be long time to prepare (the clock for µ−1(t) and sf (t) will start long before
the epidemic gets serious). A large ε means a short latency period, and small β
(low infectivity). If the latency period is too short the disease will have problem
spreading to other cities, since it does that with the latent people. A low β
will make the epidemic slow, since the increase in the number of infectious each
generation is low. With low enough β, each infected person will infect less than
one person, and thus will the disease die. The number of fatal cases is peaking
at ε ≈ 0.42 · β.

Average period from admission to death (µ−1D )

A small µD will mean a long average period from admission to death. The effect
(both locally and globally) is that the number of effected will increase, since a
long time in hospital before death will mean a long time exposing others. The
time till equilibrium will be longer with a smaller µD.

Average period from admission to recovery (µ−1R )

The response from the system to a change in µR is the same as to a change in
µD, that is, low µR will lead to larger but slower epidemic.
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Case fatality rate (d)

With higher case fatality rate the number of deaths will in general increase both
locally and globally. The total number of affected might however be less. That
is if there is big enough difference between those categorised as ”hospitalised and
dying” and those categorised as ”hospitalised and recovering”. There might also
be a difference since a different d will give a different ratio between SLR and
HDI.

4 Discussion

4.1 Stochastic models versus deterministic models

In this thesis I have only used purely deterministic equations. With enough peo-
ple this should generate the same result as the average result from the stochastic
model, that is, when there is enough people in the model, the behaviour of in-
dividuals should not effect the big picture. The problem with deterministic
equations in my model is that there sometimes isn’t enough people. Some cities
only have population sizes of the order of magnitude of ten, so in these cities
the fate of each individual will greatly effect the city mean.

More importantly though is in the initial phase of the epidemic. If, for
example, one person is infected with a disease, then this person will, in the
deterministic model, start to spread it in the area, and it may ultimately lead
to a global epidemic. In the stochastic case this person might die before meting
someone else, thus is there no opportunity for the disease to be transmitted, and
the epidemic will not happen. In this example the behaviour of one person had
great significance in the end, so a stochastic model is better in that sense. On the
other hand, with a deterministic model, the same results will be reached every
time, whereas the stochastic model will reach different results with different
seeds for the random number generator. The stochastic simulation has thus to
be done many times to get a statistically reliable result. With this approach the
deterministic model is better, since it is much faster computationally.

4.2 Psychology

The next step for modelling transmission of diseases is to look at the change of
behaviour of people. At present it is (in models) assumed that the travel habits
of people doesn’t change when an epidemic is on the rise. Intuitively one would
think that people would avoid infected cities (which may lead to faster extinc-
tion of the disease, since there will be a lack of hosts), and even try to leave their
city if it is infected (which may lead to faster spreading, since latent people will
unknowingly carry the disease to uninfected cities). My repulsion factor takes
this into account to a certain degree, but it was primarily introduced as a way
to satisfy the detailed balance condition.

A way to handle the change of behaviour is to change the parameter β with
time. It may be interpreted as people avoid contact with other people, they start
to wear masks, wash their hands more often and are more careful in general.
It may seem a little blunt, but even though this model can be made better by
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investigating the behaviour more thoroughly, it is important to remember that
the more complexity that is added to the model, the less general it will become,
and it will be harder to get an overview and to make predictions. Without
noticing it, properties that belong to a specific disease, or abiotic effects such as
change of weather, might be added to the model of general behaviour of people.
Influenza, for example, shows very strong seasonal variations in the temperate
areas of the earth[17]. These effects are important as well, but to be able to
understand them, they should be treated separately.

Another way to model the psychological effects is by using an agent-based
modelling (ABM) approach[18]. In this model groups of people (each group
may contain only one person), called agents, will be given different properties.
These properties can for example be what condition the agents are in (S, L, I,
etc.), how inclined they are to travel, how social they are (how much people they
spend time with), in what condition their immune system is in, etc. This way
the transmission of diseases can be studied with very high resolution, and with
a practically arbitrary number of parameters, the result from a simulation can
be almost arbitrarily close to measured data. As mentioned before, a problem
with to many parameters is that it is hard to explore the entire phase space,
thus making it very hard to fully understand the dynamics of the system, or
even to identify key features.

4.3 Alternative models for connection weights

The strength of the weights that I used to find an average value of C were very
diverse (see table 3), which implies that using the average is an oversimplifi-
cation. One reasonable assumption is that the weights are dependent, in some
way, of the distance between the cities. A shorter trip should be more probable
than a long trip. It has been suggested[19] that the connection strength should
decrease exponentially with the distance, resulting in equation (36) in which the
r is a constant.

ωmn = CNme
− dmn

r (36)

The group that suggested this relation found that it only is good if d < 300 km,
but they included other kinds of transportation, as well as air traffic, in their
analysis. By plotting log (ωmn/Nm) against dmn using the data in table 3, it
is possible to see if equation (36) might work. The result (see figure 6a) isn’t
clear though, the Australian value (5.22 · 10−8; 1020) is far too strong relative
to the distance, and the Brazilian value (6.50 · 10−12; 250) looks a bit too weak
relative to the distance. These two values might however be some kind of excep-
tions or extreme cases, so more points should be used to get a conclusive answer.

It has also been suggested that some power law, like the one in equation
(37), should be used to calculate the couplings[8].

ωmn = CNmd
−(2+µ)
mn (37)

By plotting log (ωmn/Nm) against log(dmn) it is possible to see if equation (37)
might work. The points in this plot (see figure 6b) doesn’t seems to lie on a
line, which would speak against equation (37). Still the Australian point and the
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Brazilian point stands out a bit, so it would be better with some more points,
so that the theory can be dismissed with more confidence.

(a) Log-Normal (b) Log-Log

Figure 6: (a) The logarithmic weight per inhabitant plotted against the distance between the
cities presented in table 3. If a linear approximation could be made, it would imply that the
number of people travelling between two cities will decrease exponentially with the distance.
(b) The same as in (a), but this time the distance is plotted on a logarithmic scale as well. If
a linear approximation could be made in this case, it would imply that the number of people
travelling between two cities will decrease with the distance raised to some power.

Among other things that probably affect the weights, but are harder to put
a number on, are politics, geography and climate. With politics I mean that
the relationship between countries might have an effect on how people travel
between them. For example, two major cities may lie close to each other, but
if they happen to lie in separate countries, with hostile attitude to each other,
there will be little traffic going on between them. By geography I mean that
some places might be hard to get to without using air plains. In some places
the probability for attractive weather might be high, which is why those places
might have strong connections despite the fact that they are small and remote.
In this case the climate is an important factor.

Even if the, from data, measured couplings were used, there would still be
some problems in a disease transition model. That is because some people only
make stopovers in an airport, and within hours they are on a new flight. They
will contribute to the weight, but they will never be a part of the disease dy-
namics of that city. To get a good result, it would be better to treat them as
they went directly to their final destination. This is of cause very hard to do,
and it will create some problems of its own.

If only the air traffic is considered the model won’t be perfect, since there
are more means of transport, which may be faster, or more effective in short
distances.

5 Conclusions

The conclusions are that the air traffic couplings are not only dependent on the
city sizes, but there is no easy connection between the strength of the couplings
and the distance between the cities, or any other variable that I have found. To
minimise an epidemic, the scaling factor for β is an important tool. This can
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actually be altered in a case of a real epidemic. Vaccination is another way to
reduce the impact of an epidemic, and it pays off to find important areas, and
focus the resources on that.

If SARS would have been more lethal, that is, the case fatality rate would
be higher, more people would have died, but if by ”more lethal” one means the
time from contamination till death, then it might actually be less, since there
will be to little time fore the disease to be transmitted. For example will a very
short latency period lead to few fatal cases in the world, since the disease will
have problem to spread between cities. A very long latency period will, on the
other hand, lead to a very slow transmission of the epidemic. In both of these
cases there will be much time for the population to change behaviour, so that
the disease dies. This can be seen in figure 5.

6 Outlook

There is more to be done when it comes to exploring the phase space, for
example, it might be interesting to see more extensive studies on how the number
of fatal cases in the world is dependent on the different parameters. It might
also be interesting to see what happens if β would be dependent on the number
of infectious rather than dependent on the time since the first infectious was
detected. That is because people might be more keen to avoid contact with
others, wash their hands thoroughly and more frequent etc., if they know that
there are many infected people in the area, rather than if they know that there
were a confirmed case a while back. After that, it might be possible to find
better values for the parameters and the critical value for the Heaviside step
function, to get a better agreement with the measured data. The natural next
step after that is to introduce stochasticity in the model. Other things that
needs to be taken into consideration is for example weather, seasons and school
holidays.
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A Supplementary information

A.1 Analytic solution to equation (32)

For the case of only two connected cities, the stationary state (long-time limit)
of equation (32) will, by setting the left-hand sides to zero, become:

βj1(1− j1)− αj1 + ω21j2 − ω21j1 = 0
βj2(1− j2)− αj2 + ω12j1 − ω12j2 = 0

}
(38)

From the first equation of equation system (38) j2 is isolated by dividing every-
thing with ω21, and then by moving every term, except the third, to the right
hand side, which gives:

j2 = j1

(
α+ ω21 − β

ω21
+ j1

β

ω21

)
= j1

(
c+

β

ω21
j1

)
(39)

The second equation of equation system (38) can be written

0 = βj2 − βj22 − αj2 + ω12j1 − ω12j2 (40)

and inserting the result from equation (39) gives

0 = βcj1 +
β2

ω21
j21 −β

(
cj1 +

β

ω21
j21

)2

−αcj1−
βα

ω21
j21 +ω12j1−ω12cj1−

ω12βj
2
1

ω21

(41)
so that finally

j1

(
βc− αc+ ω12 − ω12c+ j1

(
β2

ω21
− βc2 − βα

ω21
− ω12β

ω21
+

+j1

(
−2cβ2

ω21
+ j1

(
− β3

ω2
21

))))
= 0 (42)

Inserting equation (42) with β = 0.04 per day, α = 0.01 per day, ω12 = 0.001
per day and ω21 = 7.784909670563230 · 10−5 per day in the Matlab R2009a
function ”solve” gives the following solutions:

j1,1 = −0.001881347557858
j1,2 = 0
j1,3 = 0.747988892722544
j1,4 = 0.750000000000032

(43)

Inserting the different j1 in equation (39) will give the following j2:
j2,1 = 0.724935120140279
j2,2 = 0
j2,3 = −0.024935120152573
j2,4 = 0.750000000012353

(44)

Since j is the fraction of the population that is infected, a necessary assumption
is that 0 ≤ j ≤ 1. The only pairs that meet that requirements is (j1,2 =
0; j2,2 = 0) and (j1,4 = 0.750000000000032; j2,4 = 0.750000000012353). The
first pair corresponds to the repulsive node before the epidemic breaks out, and
the second pair corresponds to the attractive node when equilibrium is reached.
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A.2 Derivation of equation (32)

Since jn = In/Nn, equation (32) can be derived by dividing equation (7) with
Nn, which gives

∂tIn
Nn

= β
SnIn
NnNn

− α In
Nn

+
∑
m6=n

[
ωnm

Im
Nn
− ωmn

In
Nn

]
(45)

Rewriting it using Sn = (Nn − In) and 1 = Nm/Nm gives

∂tIn
Nn

= β
(Nn − In)In

NnNn
− α In

Nn
+
∑
m6=n

[
ωnm

ImNm
NnNm

− ωmn
In
Nn

]
(46)

and with jn = In/Nn it is

∂tjn = β(1− jn)jn − αjn +
∑
m6=n

[
ωnmjm

Nm
Nn
− ωmnjn

]
(47)

According to the detailed balance condition (see equation (31)) we have ωmn =
ωnm

Nm

Nn
, and with that we finally arrive at equation (32):

∂tjn = β(1− jn)jn − αjn +
∑
m 6=n

ωmn (jm − jn) (48)
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