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Abstract

The work presented in this report can be divided into two parts.

First, a novel scheme for fully scaleable White Monte Carlo (WMC) was devel-
oped. This light propagation model was used as a forward model for evalua-
tion of experimental photon migration data from a time-resolved spectroscopic
instrument intended for clinical measurements. The use of this model is mo-
tivated by the recent interest in the in vivo optical properties of organs such
as the prostate, where previously used models, e. g. diffusion theory, break
down. Both simulations and experimental work on tissue phantoms, were con-
ducted to investigate and compare the performance of diffusion modeling and
the proposed WMC model.

Secondly, the performance of the time-resolved spectroscopic instrument itself
was reviewed, and an error induced by the measurement of the instrument
response function (IRF) was found. An alternative way of measuring the IRF
was adapted and were found to resolve the error.

The results of this work should significantly improve the ability to perform
accurate spectroscopic analysis of the human prostate in vivo.





Sammanfattning

Prostatacancer är den vanligaste formen av cancer hos män i Sverige. Om än
många gånger behandlingsbar, så är det en plågsam sjukdom. För att försöka
förbättra behandlingsresultaten och göra livet enklare för patienterna håller
forskare och doktorer i bland annat Lund på att utveckla nya behandlingme-
toder baserade på ljus och ljuskänsliga läkemedel. Dessa behandlingsmetoder
bygger i korta drag på att det ljuskänsliga läkemedlet ansamlas i tumören. När
läkemedlet belyses med ljus omvandlas det till ett giftigt ämne som effektivt
dödar de närliggande cellerna. Om man vet koncentrationen av detta läkemedel
kan man därmed styra vilka områden som ska behandlas och vilka som ska
skonas genom att belysa olika områden olika mycket. Metoden visar lovande
resultat, men har i nuläget två problem: För det första är det inte alltid klart
vilka koncentrationer av läkemedlet som faktiskt ansamlas i tumören och för
det andra är människokroppen inte genomskinlig på samma sätt som t.ex. ett
vanligt fönster. Mänsklig vävnad är genonomskinlig i den mening att ljus inte
absorberas i någon större grad, men istället sprids ljus mycket vilket gör att
mänsklig vävnad, optiskt sett, är väldigt likt t.ex. mjölk eller grumligt vatten.
Detta medför ett problem då det är svårt att få fram tillräckligt mycket ljus för
att aktivera läkemedlet om tumören befinner sig innuit kroppen.

Ett led i utvecklingen av ljusbaserade tekniker för behandling av prostatacancer
är att lära sig att uppskatta vävnadens optiska egenskaper. Med hjälp av ett så
kallat tidsupplöst instrument som kan mäta hur ultrakorta ljuspulser breddas i
tiden när de utbreder sig i vävnad. Denna breddning av pulserna beror just på
att vävnaden sprider ljuset, vilket gör att ljuset tar en lång omväg när det går
igenom vävnaden. Genom att jämföra de breddade pulserna med matematiska
modeller för hur ljuset utbreder sig i spridande material, kan man utvärdera
de optiska egenskaperna för olika material. Genom att göra detta för olika
våglängder (färger) hos ljuset kan man uppskatta koncentrationerna av olika
ämnen i materialet och även beräkna hur man på bäst sätt fördelar ljuset i en
behandlingssituation.

I detta arbete beskrivs utvecklingen av en ny matematisk model för ljusutbred-
ning i spridande material. Denna model jämförs sedan med tidigare modeller
med slutsatsen att den nya modellen borde ge betydligt bättre möjligheter att
utvärdera de optiska egenskaperna i material som absorberar ganska mycket
ljus, likt prostatavävnad. Det tidsupplösta instrumentet testades också nog-
grannt, vilket medförde några små men viktiga ändringar i hur instrumentet
ska användas.



iv

Den nya modellen och de små skillnaderna i handhavandet av instrumentet visas
öka möjligheterna att göra bra mätningar av optiska storheter för prostata och
liknande material.
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Chapter 1

Introduction

1.1 Background

In the recent years, an effort has been made by the biomedical optics community
to utilise photodynamic therapy (PDT) as a modality to treat cancer in humans.
PDT is process involving a photosensitizer which accumulates in areas of high
metabolism, such as tumours, when introduced in the human body. When the
photosensitizer is excited by light it induces cytotoxic oxygen species, oxidizing
the nearby tissue and effectively killing it. PDT relies on the presence of oxygen,
photosensitizer as well as light. The dosimetry hence proves to be a difficult
matter. If the oxygen and photosensitiser concentration in the tumour was
known and the light distributions could be accurately modelled and optimised
PDT could provide an effective and highly selective way of treating cancer.

The Biomedical optics group in Lund is currently working with a company by
the name Spectracure, to develop an instrument to treat prostate cancer using
PDT. The optical properties of human prostate is therefor of great interest to
the group.

In a recent paper by Svensson et al.1 a Time-Resolved spectroscopic (TRS) in-
strument was used to investigate the in vivo optical properties of human prostate
tissue. The advantage of the TRS instrumentation is that it can measure both
the scattering properties, µ′s, of the tissue and the light absorption µa without
using the absolute intensity of the detected light. The information can then
be used to do spectroscopy, i.e. calculate the concentration of the major con-
stituents of the tissue. The optical properties, recovered using diffusion theory,
are presented in Table 1.1.

Although the study was generally successful the authors encountered some issues
that deserved further attention. The major issue was that the scattering did
not decrease with increasing wavelength as predicted by general theory on light
scattering. An evaluation of the instrument and the mathematical models used
to evaluate data was thus initiated. In particular the high µa measured in
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λ [nm] µa [1/cm] µ′s [1/cm]
660 0.5± 0.1 8.7± 1.9
786 0.4± 0.1 7.1± 1.6
916 0.6± 0.1 7.7± 1.8

Table 1.1: The in vivo optical properties of human prostate tissue at three different
wavelengths, From Reference 1

the prostate suggest that the mathematical model used to evaluate the TRS
data may not be valid in this region of optical properties. A more detailed
numerical model, based on stochastic simulation of light transport, i.e. Monte
Carlo simulations, may be more accurate.

1.2 Goals

Within the overarching goal to improve the performance of the time-resolved
system the main objectives of this work were:

• Evaluate robustness, accuracy and reproducibility with respect to photon
migration model, measurement geometry, source-detector fibre separation
and optical properties of the sample.

• Design, implementation and validation of a Monte Carlo based data evalu-
ation routine to extract the interesting optical properties, µ′s and µa, from
experimental data.

• Comparison of Monte Carlo based data evaluation with evaluation based
on diffusion theory.

• Support ongoing research on prostate tissue.

1.3 Outline

Chapter 2 will give a brief theoretical background on light transport in turbid
media such as tissue. Electromagnetic wave theory is briefly mentioned just to
introduce the Transport theory of radiative transfer. Here the optical properties
of interest within the field will be introduced followed by a description of two
different ways of solving the equations introduced by Transport theory; Ana-
lytical solutions based on the Diffusion approximation and numerical solutions
based on stochastic Monte Carlo simulations.
Chapter 3 will introduce the instrumentation and the techniques involved in
characterisation of turbid media using Time-Resolved techniques.
Chapter 4 will first give a brief introduction to the history of White Monte Carlo
and what’s been done in the field so far. The rest of Chapter 4 will be a com-
prehensive explanation of the White Monte Carlo model developed under the
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scope of this thesis. Some discussion and results are inevitably included in this
chapter as many thoughts, discussions and experiments created the foundation
to the work presented here.
Chapter 5 will be an explanation of the Method used for the simulations and
measurements performed in this work. Selected results will be presented in
Chapter 6 and qualitatively discussed in Chapter 7. More results, providing
the link between simulations and experiments, are presented and quantitatively
discussed in Paper I.
Chapter 8 will briefly state some of the conclusions that can be derived from this
work. Chapter 9 will comprise a short list of suggested future work connected
to the work presented here.





Chapter 2

Photon Migration Theory

As the theory of light propagation in turbid media previously have been thor-
oughly covered by many authors this chapter will only give a brief introduction
to the field, to make this thesis accessible to people how are not perviously famil-
iar with the subject. The book Optical-Thermal Response of Laser-Irradiated
Tissue by Welch and van Gemert, Reference 2 provides an excellent and exten-
sive summary of photon migration theory and this book is also the reference
for this entire chapter unless otherwise noted. Swartling and Thompson also
provide excellent, though much shorter, summaries of the subject and their re-
spective disertation thesises, Reference 3 and 4 respectively, are recommended
for the interested reader.

2.1 Introduction

Modelling of light propagation in complex media such as tissue is not an easy
task, despite the accurate models developed. The most accurate way of mod-
elling electromagnetic wave propagation, i.e. light, today would be the Maxwell’s
equations. In this theoretical model, sometimes called Wave theory, the optical
properties are described by the complex dielectric constant ε(r) where the real
and imaginary parts describe the refractive index (the local speed of light) and
absorption properties, respectively. However, most of the information in this
model is based on the spatial variations of the dielectric constant and wave the-
ory hence requires an extremely detailed model. This is of course not possible
for macroscopic tissue models, but for simple microscopic models, such as small
spherical particles of the same size, wave theory can be proved useful. The so-
lution to Maxwell’s equations for the former model provides the foundation for
Mie scattering theory, which accurately describes how light is scattered when
incident on particles roughly the same size as the wavelength of the light.

To model light propagation in a way that can provide usable solutions for macro-
scopic models of tissue, simplifications have to be made and some physical detail
is hence lost. A fairly accurate model is Radiative transport which unfortunately
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only provide numerical solutions. Further simplifications and approximations
provides Diffusion theory, which provides analytical solutions at the price of
reduced accuracy and model constraints. An overview of the mentioned models
is shown in Figure 2.1

Theory Physical 
quantities

Typical Solution 
techniques

Maxwell’s 
equations EM-field Mie theory

Radiative 
Transport

“Photons”
(Radiance, L) Monte Carlo

Diffusion 
theory
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(fluence rate !)
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Microscopic level
Macroscopic level

Figure 2.1: Overview of the different approaches to photon migration theory and
the respective solution techniques. (Modified from Soto Thompson4 and Forster5).

2.2 Transport theory of radiative transfer

To simplify the light propagation model in turbid media, transport theory is usu-
ally preferred. As with all simplifications and approximations some accuracy
of the model is lost. In this case all the wave properties of light, for example
polarisation and interference, are disregarded. The resulting model describes
energy conservation in an infinitesimal small volume as a flux of photons (light
particles) passes through and interacts with the medium within the volume el-
ement.

The radiative transport equation (RTE) can be written as:

1
c′
∂L(r, s, t)

∂t
= −s · ∇L(r, s, t)− (µa + µs)L(r, s, t) +

+µs
∫

4π

L(r, s′, t)p(s, s′)dw′ + q(r, s, t), (2.1)

where c′ is the speed of light in the medium, L is the radiance in the direction
s within the volume element. The first term on the right hand side describes
the losses over the boundary of the volume element, the second term describes
the losses from absorption and losses from the radiance in a certain direction as
light is scattered into other directions. The third term describes the gain from
light scattered from any other direction, s′, into the considered direction s. The
last term is simply a source term. Despite the simplifications made, RTE proves
to be hard to solve without further simplifications, such as discretization of the
directions considered or the diffusion approximation. However, RTE introduces
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the concept of discrete scatterers and absorbers as opposed to the continuous
variations of the permeability used by wave theory. This makes it possible to
describe the scattering and absorption properties of a medium using only three
parameters, µs, µa and a phase scattering function, p.

2.2.1 Scattering phase function

The scattering phase function is a function that describes how a lightwave prop-
agate after striking a scatterer. In wave theory the scattering phase function
would consist of several lobes as the wave would interfere with itself as it was
scattered. The position of the lobes would be dependent on the wavelength of
the wave and the size and shape of the scattering particle. In RTE the scatter-
ing phase is an average of scattering against particles of different sizes and the
lobes are hence averaged out, providing a smooth angular probability distribu-
tion describing the probability of scattering in different directions. In the case
of perfectly spherical scatterers of the same size Mie-theory would provide an
almost perfect scattering phase function but this is rarely the case in tissue. In-
stead the Biomedical optics community has adapted a scattering phase function
from the field of astrophysics called the Henyey-Greenstein function:6

p(cos θ) ≡ (1− g2)

2 (1 + g2 − 2g cos θ)3/2
, (2.2)

where g is is the so called the scattering anisotropy factor or g-factor. The
definition implies that g is equal to the average of the cosine of the scattering
angle, g = 〈cos θ〉. The g-factor is hence a number between -1 and 1, describing
the anisotropy. g = −1 means all light will be back scattered, g = 1 means all
light will be forward scattered and isotropic scattering (for which the scattering
in all angles are equal) is characterized with a g-factor equal to zero. Figure 2.2
illustrates this. The g-factor is usually in the range of 0.7-1 for tissue and tissue
phantoms.

Figure 2.2: An illustration of the Henyey-Greenstein phase function for three dif-
ferent values of g. Adapted from Swartling.3

2.2.2 Scattering

Scattering occurs when light interacts with structures, roughly the same size
as the wavelength of the light, featuring a change in refractive index. In the
case of tissue these structures are for example cells, cell organelles and lipids.
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Discretizing this concept on a macroscopic scale gives a coefficient, µs, describing
the probability of scattering per unit length.
As the size of the structure relative to the wavelength of the light is of importance
it is not hard to imagine that the scattering power of a medium will depend on
the wavelength of the light. The relationship between the scattering coefficient
and the light wavelength is given by Eqn. 2.3:

µs = A · λ−b, (2.3)

where A and b are constants and b is roughly 2 − 3 for the Mie-like scattering
of tissue.

In many case it is convenient to express the scattering in another way, as a
reduced scattering coefficient, µ′s:

µ′s = µs(1− g). (2.4)

The relevance of this quantity is that as the photon is scattered many times it
looses track of it’s initial direction and it will be hard to separate µs and the
g-factor in a measurement situation. Instead the phase scattering is assumed
to be isotropic and the scattering probability is described by µ′s rather than µs.
Over long distances this implies that a high µs and low g provides the same
light distribution as a low µs and high g as long as µ′s is the same.

2.2.3 Absorption

As a photon encounters a molecule with an electronic transition or rotational-
vibrational state matching the energy of the photon there is a chance that
the photon will be absorbed, transferring the energy to an excited state of the
molecule. As a match between the photon energy and the absorpers energy levels
is crucial for an absorption event to occur, the absorption depends strongly on
the wavelength of the light.
The probability of absorption per unit length is described by the absorption
coefficient for the substance, µa, which is actually the product of the extinction
coefficient, ε [M−1m−1], and the concentration of the absorber, c [M]. As tissue
usually is made up off several constituents, each with a different absorption
spectra, the total absorption coefficient can be written as:

µa(λ) =
∑
k

εk(λ)ck. (2.5)

The absorption spectra of the main absorbers in tissue can be seen in Figure
2.4. By looking at this figure it is clear that there is a region, 650 to 1300 nm,
where the overall absorption is fairly low and where the penetration depth of
light would be greatest. This region is sometimes referred to as the "Tissue
Optical Window".
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2.2.1 Tissue absorption 
The relation between the concentration of tissue constituent, CX [mol/dm3], and the 
corresponding absorption coefficient, , at a certain wavelength, !, is given 
by

)X(a
!"

6: 

XXa C)10ln()X( #$#%" !! , (2) 

where the product  is defined in units of cmXX C#$! -1,  

!$X  is the molar extinction 
coefficient. Tissue absorbers are commonly referred to as chromophores. 
 
In Fig. 5 the absorption coefficients of some major chromophores are shown, from 
the pioneering work of Boulnois7. The grey area in the Fig., between approximately 
630 nm to 1300 nm indicates where the tissue constituents have their lowest overall 
absorption. This region is generally called the tissue optical window, referring to the 
possibility to penetrate deeply with light into tissue.  
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Fig. 5. The absorption as a function of wavelength of some of the most 
prominent chromophores in tissue. Note the logarithmic scale on the 
y-axis. The shaded area is referred to as the optical window due to a low 
total absorption (Figure adapted from Boulnois7). 

In the UV- and the IR-region above approximately 1400 nm, the high specific 
absorption along with the mostly high contents of water in tissue makes water the 
dominant absorber. Minor absorption peaks also are also present at 975 nm, 1200 
nm and 1440 nm8. The high absorption of water in the IR and UV along with the 
available high intensity lasers in those ranges (CO2: 10600 nm, Excimer: 193 nm) 
has lead to the common use of lasers for surgical tissue cutting, tissue ablation and 
corrective laser eye surgery, LASIK. 

!"

Figure 2.3: The absorption coefficients of some of the constituents of tissue. The
Tissue optical window, where the absorption is low, is marked in grey. From
Reference 4

2.3 Modelling light distribution in tissue

To actually model light distribution in any turbid media one has to find solutions
to the theory describing light propagation. As illustrated by Figure 2.1 the
RTE can be solved by numerical solvers, such as Monte Carlo simulations, but
if analytical solutions are sought, further simplifications have to be made Even
though several solution techniques exists the only one covered here, and perhaps
the most utilised, is Diffusion theory, as it is the standard technique to evaluate
time resolved data today. A thorough derivation of the analytical solutions to
the Diffusion equation is provided by Star in Reference 7 and this is also the
source of information for Section 2.3.1 unless otherwise noted.

2.3.1 Diffusion Theory

Diffusion Theory is a way of reducing the RTE to a mathematically simple
diffusion equation, commonly encountered in many other areas of physics such
as heat transfer. This is done by expanding the radiance L of the RTE into
spherical harmonics:

L(r, s, t) =
∞∑
l=0

l∑
m=−l

√
2l + 1

4π
Llm(r, t)Ylm(s). (2.6)

The source term is expanded in the same way and the N + 1 higher order
terms of the two expansions are truncated, called the PN -approximation. By
further assuming an isotropic light source, Q, and and inserting the truncated



10 CH. 2 PHOTON MIGRATION THEORY

expansions in the RTE yields the time dependent diffusion equation:

1
c′
∂φ(r, t)
∂t

= ∇ (D∇φ(r, t))− µaφ(r, t) +Q(r, t), (2.7)

where φ is the fluence rate we are interested in and D is the diffusion constant.
The definition of D has been a matter of debate lately, but will in this work be
defined in the absorption independent way:8

D =
1

3µ′s
. (2.8)

Solution for infinite homogenous media

Solving Eqn. 2.7 for an infinite homogenous medium and an infinitely short
light pulse gives:9

φ(r, t) = c′E0(4πc′Dt)−3/2 exp
(
− r2

4c′Dt

)
exp(−µac′t), (2.9)

where E0 is the pulse energy and r is the distance from the pulse source. An
interesting thing to note is that the second exp() term simply is Beer-Lamberts
law.

Solution for semi-infinite homogenous media

Analytical solutions are also available for semi-infinite homogenous media. Since
this clearly is hard to describe using spherical symmetric functions the main idea
has instead been to place negative sources at opposite side of the boundary or
an imaginary boundary to replicate different boundary conditions. The cost
of this simplicity is once again lost accuracy. An excellent review of different
solutions for the semi-infinite case and comparison to Monte Carlo simulations
is available in Reference 10.

Sources of error

Looking back at the approximations and assumptions made to get to Eqn. 2.9,
there are two important things to remember: Using an expansion into spherical
harmonics is usually a good approximation in case of spherically symmetrical
problems. To transform the non-isotropic scattering to a isotropic scattering
case it was assumed that the photons can scatter several times without being
interrupted, i.e. absorbed.4 Hence it is assumed that:

µa << µ′s

Also, since the light source usually is directional, statistically the light has clearly
not lost its directinalioty until 1/µ′s from the source. A directional source is
therefore usually approximated with an isotropic source located 1/µ′s from the
directional source. This implies that diffusion will be an increasingly bad ap-
proximation the closer to the source.4
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2.3.2 Monte Carlo

The Monte Carlo method is a numerical solution to the RTE suitable for complex
geometries that diffusion theory cannot handle. The method is based on tracing
photon "packet" trajectories in a random walk through the considered model.
This is done by adapting the discrete scatterers and absorbers way of thinking,
as supposed by transport theory, where µs and µa are considered probabilities
of interaction per unit length travelled. The theory presented here is based on
work by Prahl et al.11 and Wang et al.12 as this is the de facto standard for
Monte Carlo simulations within the field of Biomedical Optics today through
the open source program MCML.12
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Figure 1: Flowchart for the variable stepsize Monte Carlo technique. The photon packet is initialized. The
distance to the first interaction event is found and the photon packet is moved. If the photon has left the tissue,
the possibility of internal reflection is checked. If the photon is internally reflected then the photon position is
adjusted accordingly and the program continues, otherwise the photon escapes and the event is recorded. For
photons which continue, some fraction of the photon packet (1− a)w will be absorbed each step. This fraction is
recorded and the photon weight is adjusted. If the weight is above a minimum, then the rest of the photon packet
is scattered into a new direction and the process is repeated. If the weight falls below a minimum, then roulette
is played to either extinguish or continue propagating the photon. If the photon does not survive the routette, a
new photon packet is started.
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Figure 2.4: A flowchart of traditional Monte Carlo with variable stepsize. From
Reference 11.
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Packet Initialisation

First the photon packet is initialised, i.e. it is launched into the medium. This
includes setting the position, direction and resetting the weight of the photon
packet. Often the position is set to origo of the coordinate system and the
direction along one of the axis of said coordinate system, simulating an infinitely
thin pencil beam.

Moving the packet

The step size ∆s is randomised according to an exponential attenuation model,
similar to Beer-Lamberts Law, to describe how far the packet will travel before
it interacts with tissue by either absorption or scattering. In practice this is
done by sampling a random, or in most cases a pseudo random variable, ξ, in
half-open13 interval (0,1] (0 < ξ ≤ 1) and calculating ∆s:

∆s =
− ln(ξ)
µt

, (2.10)

where µt = µs + µa is the total attenuation coefficient.

The packet is now simply moved the distance ∆s along it’s current direction.

Reflection

In case the generated stepsize and photon direction indicates that the photon will
cross the boundary to another medium featuring a different index of refraction
reflection and refraction has to be accounted for.

This is done by calculating the probabilities of Fresnel reflection determined by
the Fresnel reflection coefficient R(θi):

R(θi) =
1
2

(
sin2(θi − θt)
sin2(θi + θt)

+
tan2(θi − θt)
tan2(θi + θt)

)
, (2.11)

where θi and θt are the angles of incidence and transmission respectively, the
former calculated by:

ni sin θi = nt sin θt. (2.12)

The reflection coeffiecient, R(θi), is then simply compared to a random number ξ
sampled in the closed interval [0,1]. ξ ≤ R(θi) indicates reflection and ξ > R(θi)
indicated transmission and refraction.

Absorption

After each step, the weight of the package is reduced slightly based on the
relation between the absorption coefficient and the total attenuation coefficient:

fraction absorbed =
µa
µt

= 1− µs
µt

= 1− a, (2.13)
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where a is the albedo. Hence the new weight, w′, is the product of the old
weight, w and the albedo a:

w′ = aw (2.14)

In case the 3D photon distribution is sought after the lost weight, wlost =
(1 − a)w, is stored in the volumetric element defined by the detection grid as
illustrated in Figure 2.5

Packet Termination

After the weight of the packet has been reduced a quick check is made to see
if the weight of the packet is sufficiently large for the simulation to continue.
However, packet that don’t clear the check cannot simply be terminated, since
that would violate the energy conservation that the Radiative transfer theory
is built upon. Instead a technique called "Roulette" is utilised to statistically
ensure energy conservation. This is done by, for example, terminating 9/10
packets and instead increasing the weight of the remaining 1/10 packets by a
factor 10.

Scattering

After all the weight related calculations are done the packet is scattered, i.e. a
new direction is calculated. In case of anisotropic scattering the deflection angle,
θ is sampled using the Henyey-Greenstein function, Eqn. 2.2. This is done by
sampling a random variable, ξ, in the closed interval [0,1] and calculating θ
using:

cos θ =
1
2g

(
1 + g2 −

(
1− g2

1− g − 2gξ

)2
)
. (2.15)

The azimuthal angle, φ, is selected by sampling a random variable in the interval
[0,1) and multiplying by 2π:

φ = 2πξ. (2.16)

The new packet direction is calculated from the old direction and the above pair
of angles.

Photon Detection

How the photon distribution is recorded depends on the geometry and the nature
of the sought distribution. In many cases, such as simple layered structures or
homogenously scattering media, the distribution will be cylindrically symmet-
ric. In this case a simple r − z grid with spatial resolution dr and dz can be
used to keep track of the photon weights deposited in each volume element if
the spatial energy distribution is of interest. If diffuse reflectance is the only
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z

r r

z

dz

dr dr

Figure 2.5: An illustration of photon packet detection in most existing Monte
Carlo implementations. Left : A detection grid with spatial resolution dr and dz
in a cylindrical geometry. Each time a photon scatters inside a grid element,
the absorbed weight is added to the total absorbed dose of that element. All
the elements where the featured photon packet deposits weight are marked by a
darker shade of grey. Right : A semi-infinite cylindrical geometry where the diffuse
reflectance is recorded with spatial resolution dr. In this case the three features
photon packets add their respective weight to element 2, 3 and 5 as they leave the
medium.

thing considered, a simple radial vector can be used to keep track of the radial
distributions of photons leaving the medium. Both of these cases are illustrated
in Figure 2.5.

Time Resolution

Even though no de facto standard program exists to keep track of temporal vari-
ations in the photon distributions it is very easy to implement, in any existing
Monte Carlo code, such as MCML [?, wang95]

The local speed of light within the medium, c′ is simply the speed of light
divided by the refractive index of the medium, c′ = c/n. Hence, for a step, ∆s,
the elapsed time for this step is:

∆t =
∆s
c′
. (2.17)

An important aspect of time-resolved Monte Carlo is the increased complexity
in detection since an extra dimension has to be recorded. This means that the
total number of detection bins will be multiplied by the number of temporal
bins requested. Also more photons will most likely have to be simulated to get
decent statistics in all temporal channels.



Chapter 3

Time-Resolved Photon
Migration Instrumentation

Instruments built to measure Time-resolved photon migrations are a class of
instruments were short (picosecond) light pulses are sent into the turbid medium
of interest. As the pulses propagate through the medium, they are broadened in
time and this broadening is recorded by the instrument. The advantage of this
is that absolute light intensity measurements are not required. By comparing
the shape of the broadened pulse to models of light transport, information of
both the scattering and absorption of the medium can be extracted from a single
measurement.

Measuring temporal variations in the order of picoseconds (10−12 s) is not an
easy task as most detectors simply don’t have the bandwidth to resolve such fast
variations. Within the field of biomedical optics two different techniques have
been adapted from other fields of science to solve this problem, streak camera
systems and a technique called Time Correlated Single Photon Counting (TC-
SPC). The experimental work done within this work was done using a TCSPC
system and from hereon this will be the only system considered.

Becker provides a profound perspective on everything related to modern TCSPC
techniques in Reference 14. As the following section is a very brief review of
TCSPC, the interested reader is referred to Becker’s book for more information.
Classic papers on Time-resolved measurements of optical properties within the
field of biomedical optics are available by Patterson et al.9 and Jacques,15
among others.

3.1 TCSPC

TCSPC is a technique adopted for the field of physical chemistry where for
example very short fluorescence lifetimes are of interest. As the name implies
the technique relies on the ability to count single photons and hence require very
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little light actually reaching the detector. This makes the technique ideal for
applications within the field of biomedical optics as the photon migration models
often are increasingly accurate with increased source-detector separation while
input power must be minimised and the sample often feature high attenuation.

The TCSPC technique works by sending a very short light pulses into the sample
at high repetition rate. By making sure that the probability of a photon reaching
the detector in each period is far less than one, a non-biased measurement is
ensured, since two photons reaching the detector in the same period would result
in only the first photon being detected. The transit time for each detected
photon is recorded and a histogram of the recorded photon transit times is
constructed. A high repetition rate ensures a fast histogram build up and the
histogram is a very exact recording of the optical waveform in the time domain,
i.e. a recording of the temporal broadening of a short light pulse by the system
(sample and instrument).

Laser driver

Pulsed Laser

Sample
ComputerADC

CFDPMT

t

V

TAC

Sync
Stop

Start

dV = ! dt

Figure 3.1: A schematic illustration of a typical TCSPC system used for time
resolved spectroscopy.

Figure 3.1 shows a schematic picture of a typical TCSPC system. A high repe-
tition rate laser driver sends a train of pulses to a laser. The short light pulses
generated by the laser are guided into the sample by the means of for example
fibre optics. Another optical fibre collects light and guides this to the detector.
The detector has to be very sensitive since it has to be able to detect single
photons. Detectors that manages this are for example cooled photo multiplier
tubes (PMT) and sensitive avalanche photodiodes. Due to the amplification jit-
ter of sensitive detectors, such as PMT’s, the signals for the detector is sent to a
constant fraction discriminator (CFD). The CFD triggers at a constant fraction
of the pulse amplitude to avoid timing jitter due to the fluctuating amplitude
of the signal. The CFD also excludes pulses that are below or above certain
thresholds, thus reducing noise. The signal from the CFD is sent to a time to
amplitude converter (TAC). The TAC is a component that measures the time
between two electrical pulses and converts this time into a voltage. The intu-
itive way of using the TAC would be to start the TAC using the Sync signal
from the laser driver and use the signal from the detector, via the CFD, to stop.
This would, however, limit the repetition rate of the system to the repetition
rate of the TAC, which is fairly slow as the TAC basically is a capacitor that
has to be charged/uncharged every period. Instead most TCSPC systems use
a so called Reversed Start-Stop mode where the detector signal is used to start
and the Sync is used to stop the TAC. This makes it possible to run the system
at much higher repetition rates as photons rarely reach the detector. As long
as far less photons reach the detector per second than the maximum repetition
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rate of the TAC this works fine and can increase the overall maximum photon
count rate of the system. The resulting pulses form the TAC are sent to a
fast analog to digital converter (ADC) connected to a computer which bins the
pulses according to voltage into sought after histogram.

3.2 Instrument Response Function

The recorded histogram does not, however, describe just the transfer function
(temporal broadening of an impulse) of the sample but also includes the tempo-
ral broadening induced by the instrument itself. The total temporal broadening
of the instrument, called the instrument response function (IRF), describes the
convolution of the impulse response of all the individual components in the
system. This includes the pulse shape from the light source, the dispersion in
the fibre optics and the pulse broadening by the detector, cables and all the
electronics.

To retrieve the function describing the impulse response of the sample, the
measured histogram must be de-convoluted with the IRF, which of course has
to be measured. How the IRF is measured depends on the system, but it is
usually a matter of measuring without a sample in place. It is evident that the
IRF is a major factor limiting the resolution of a TCSPC system and great care
has to be take to measure the true IRF of the system as an erroneous IRF will
affect the results.

Another aspect of the IRF is that it is used to keep track of temporal drifts in the
system. As picosecond resolution is required several effects such as temperature
dependent delay in cables and temporal drifts of the light source becomes of
importance. By recording the IRF just before and after or even in parallel with
the intended measurements, such drifts can be monitored and accounted for.
Ideally the IRF would be recorded simultaneously with the measurements to be
able to account for fast temporal drifts, but this is hard to achieve as the IRF
should be measured with the same fibres as the measurements are performed
with. A possible solution would be to guide a small portion if the light going
into the source fibre, via an optical fibre to the detector to provide a temporal
reference for each measurement. The IRF could then be shifted with respect to
this reference to handle the drifts. Yet another way to handle drifts would be to
insulate and temperature stabilise the entire system, as temporal drifts account
for the major part of the drifts even after the system has warmed up.

3.3 Data analysis

The strength of the time-domain instruments within the field of biomedical
optics is their ability to extract information on both the scattering and ab-
sorption of the sample from a single measurement compared to spatially re-
solved instrument which only provides information on the effective attenuation,
µeff =

√
3µa(µa + µ′s). This is done by comparing a theoretical model of time-
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resolved light propagation to the experimental data. As most theoretical models
usually describes transfer function of a sample and de-convolution of the exper-
imental data might provide a noisy result, the currently most utilised way is
to convolute the theoretical model with the measured IRF and then compare
it to the experimental model. Denoting the theoretical model (as a function
of µ′s and µa), convoluted with the IRF, vi(µ′s, µa) and the experimental data
yi, where i is the channel number, the problem can be written as minimization
problem of the merit function:

χ2(µ′s, µa, k) =
N∑
i=1

(
yi − k · vi(µ′s, µa)

σi

)2

, (3.1)

where N is the number of channels involved, k is a free amplitude parameter and
σi are the weights of trustworthiness of the individual channels. This is a case
of non-linear curve fitting which usually is solved by a non-linear optimisation
algorithm such as the Levenberg-Marquardt algorithm.16,17

A non-linear optimization algorithm, evaluating experimental time-resolved data
is schematically illustrated in figure 3.2. This is called a forward solver since it
utilizes a forward model, generating a temporal dispersion curve from a set of
parameters, even though the opposite is requested.

Non linear optimization algorithm 

Experimental data

Instrument response 
function (IRF)

Initial guess of optical 
properties

Forward model

Convolute

Determine !2 Best guess of optical 
properties

New guess of optical 
properties

Converge?

Information on experi-
mental data

Figure 3.2: A schematic illustration of a non-linear optimization algorithm, using
a forward model to evaluate the optical properties from experimental data. The
forward model can be any model, Diffusion, Monte Carlo or any other as long as
it’s fast enough for the solver to converge in reasonable time.

3.4 Spectroscopy

An interesting possibility using the TCSPC system is that it is possible to use
several light sources and hence extracting the optical properties of a sample
simultaneously from a single measurement. This is done by separating all the
light-sources slightly in time so that they don’t overlap while keeping them
within the same period and thus fitting all of them within the time window
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defined by the TAC. This makes it possible to utilise the instrument for spec-
troscopic purposes. For example, in tissue, the major constituents are water,
lipids, oxy- and deoxy-hemoglobin. By using lasers at wavelengths correspond-
ing to the absorption peaks of these four constituents and evaluating the ab-
sorption coefficients, it is obvious from Eqn. 2.5 that it is possible to estimate
the concentration of each compound. The absorption coefficients of the four
major absorbers in tissue and the wavelengths of the four lasers used in the
TRS instruments is illustrated in Figure 3.3.
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Figure 3.3: The absorption coefficients of pure Water and Fat as well as Deoxy-
and Oxy-Hemoglobin at typical concentrations. Extinction coefficients taken from
the literature.18–20





Chapter 4

White Monte Carlo

In the mid 1990’s when personal computers started getting fast enough, scien-
tists started looking at Monte Carlo as a feasible way of solving the RTE. The
thoughts of using Monte Carlo to evaluate data also emerged. The advantages
of Monte Carlo based data evaluation are evident as Monte Carlo is a physically
more detailed model (comp. Figure 2.1). The major obstacle was the compu-
tation time as each Monte Carlo simulation can take anything from minutes to
several weeks depending on the required statistical accuracy. This rendered the
Monte Carlo approach useless for iterative algorithms. Graaff et al. presented
the first ideas towards a fully scaleable model21 partially solving the compu-
tation time problem. Scalability implies that the obtained photon distribution
can be scaled with respect to some of the input parameters of the Monte Carlo
simulation. Two groups simultaneously and independently presented an exten-
sion to the theory presented by Graaff et al.. Kienle and Patterson suggested a
scalable Monte Carlo (WMC∗) model24 based on an absorptionless simulation
while Pifferi et al. also suggested a similar technique and a method based on in-
terpolating results from a database of Monte Carlo simulation results to be able
to handle arbitrary geometries.25 Pifferi et al. also showed the usefulness of the
database method when evaluating actual experimental data.26 Swartling et al.
showed the usefulness of the WMC approach in fluorescence emission spectra
modelling.22 Swartling also raised an important question regarding the equiva-
lency of WMC vs. traditional Monte Carlo.3 While no group so far have shown
evaluation of actual experimental data using WMC, Xu et al. demonstrated
the superiority of the Monte Carlo based evaluation approach when comparing
light propagation models for evaluation of frequency domain data, generated by
a traditional Monte Carlo program.23 Xu et al. also demonstrated scaling of
simulations performed in absorbing media.

The idea behind WMC is to run a time resolved Monte Carlo simulation in a

∗Graaf et al. suggested the name Condensed Monte Carlo while Kienle and Patterson
called their method Mono Monte Carlo. Pifferi et al. picked the name White Monte Carlo as
the Monte Carlo simulations were absorptionless, i.e. white. Swartling also adopted the name
White Monte Carlo.22 Xu et al. chose to call the method Single Monte Carlo.23 In this work,
the scaleable Monte Carlo method will be denoted White Monte Carlo (WMC).
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non-absorbing medium, i.e. µa = 0. In case of an homogenously scattering
medium, the absorption for each packet is easily added post-simulation using
Beer-Lamberts law:

w(t) = exp(−µac′t). (4.1)

r !r

t

µs µs/!

!t

Figure 4.1: An illustration of the scaleability in mus in an absorption-less medium.
In the simulation to the left a photon packet is propagating through a material with
scattering coefficient µs. A a certain time t it leaves the medium at a distance r
from the source. To the right is another photon packet propagating through a
medium featuring a µs/α scattering coefficient. Assuming the same sequence of
random numbers is used to calculate step-sizes and deflection angle, the packet will
leave the medium at a distance αr at time αt. Adapted from Ref. 26

The scaleability in the scattering coefficient is illustrated in Figure 4.1. The idea
is that µs only changes the step-size, ∆s, while all the directional information is
expressed by the anisotropy coefficient, g, and the geometry i.e. spatial varia-
tions in µs. If the medium is considered homogenous, linear scaling can be used
for both infinite and semi-infinite geometries. However, since most Monte Carlo
programs utilise some kind of spatial and temporal binning to detect photons
this induces a problem as the detection grid will scale as well. This so called
scaling effect,23 reported by Xu et al., arises when the sought after scattering
coefficient differs a lot from the scattering coefficient used during the simulation.

4.1 Simulation Program

To utilise the WMC ideas for experimental time resolved data evaluation, a
simulation program and a set of post simulation scripts were developed. De-
spite MCML being available as easy-to-modify open source ANSI C code, the
simulation program was written from scratch with just a few snippets of code
borrowed from MCML. The major reason for this is the relatively old technology
used by MCML and the lack of precise numerical considerations in the existing
code. The new program was written in standard C and compiled using gcc 4.0.1
for the apple darwin environment. The computer used for simulations was an
Apple iMac sporting an Intel Core 2 Duo 2.16 GHz processor running OS X
10.4.10.
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4.1.1 Overview

The objective was to develop a fast and accurate program to run an absorption-
less Monte Carlo simulation in either an infinite or semi-infinite homogenous
medium. As the intended use for the model is a forward solver (comp. Section
3.3) for the time resolved instrumentation used by the Lund group for prostate
measurements, the simulation and post simulation program had a few desired
properties:

• The model should be fully scaleable in µ′s and µa over a large parameter
space and be valid in a sufficient time interval regardless of scaling.

• As many decisions as possible should be avoided during the simulation
stage, leaving them for the post simulation processing. Besides the ab-
sorption and scattering coefficients these decisions include fibre separation,
temporal-binning.

• The model should be able to account for the finite spatial size of the fibres.

• The model should not impose unreasonable restrictions to the measure-
ment geometry.

• The model should be fast enough to be feasible to use in a forward solver.

A majority of these objectives were fulfilled by using a novel detection scheme,
not based on the traditional fluence-through-volume-element method but the
uni-directional flow of photon packets through a mathematical plane. By launch-
ing all photon packets form the origo of a carthesian coordinate system and
detecting them individually as they pass through the mathematical plane, all
unwanted geometrical features were removed, eliminating the scaling problem
but making post-simulation processing slightly more complicated. This photon
detection scheme is illustrated in Figure 4.2.

A flowchart of the entire WMC model can be seen in figure 4.3.

4.1.2 Random Number Generation

The heart of any simulation based on sampling random number is the random
number generator. The method of acquiring random numbers will affect the
simulation speed as well as the accuracy of the results. As true random num-
bers are hard to acquire, especially in the quantities and at the speed required
by modern computer simulation setups, the preferred way of generation random
numbers for simulations today is to have a computer generate pseudo-random
numbers by the means of mathematical algorithms. While the field of research
connected with random number generation is far beyond the scope of this thesis
a few things are worth mentioning. Any good pseudo random number gen-
erator should have the following properties: long period, documented which
interval random numbers are generated, documented equidistribution proper-
ties in the specified interval, generate high precision random numbers, have a
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Figure 4.2: An illustration of the simulation and detection geometry in both the
semi-infinite (left) and the infinite (right) case. Despite this being a rotational
symmetrical problem a carthesian coordinate system is used for ease of calculations.
The xy-plane is used as the detection plane so that the z coordinate can be used as
a measure of depth in the semi-infinite case or simply the distance to the detection
plane in both cases. (a) In both geometries the photon packets are launched from
origo in a positive z-direction within the acceptance cone of the source fibre. (b)
Whenever a packet have a direction and step size that would cause it to leave
the medium fresnel reflection is taken into account. In this case the packet was
reflected and the simulation goes on. (c) Here the packet leave the medium with
an angle smaller than the acceptance cone of the detector fibre. As the detector
fibre is not in place during the simulation all the packets leaving the medium are
recorded without spatial restrictions. Whenever a photon packet is detected, the
distance between the detection event and origo, r =

p
x2 + y2, and the total time

of flight, t, is stored. As the packet leaves the medium it is terminated. (d) A packet
leaves the medium outside of the acceptance cone. This means termination but no
detection. (e) A photon packet crosses the detection plane with an angle outside
the acceptance cone. Nothing happens and the simulation carries on uninterrupted.
(f) A photon packet crosses the detection plane within the acceptance cone. The
detection event-origo distance, r and total time of flight, t, is recorded. However
the packet is not terminated and the simulation continuos. (g) The photon keeps
propagating until it is terminated. Each photon packet can hence be detected
several times. Photon packets are terminated as their total time of flight exceeds
a predefined maximum, tmax.
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Figure 4.3: A flowchart of the forward WMC model. The input data is fed into the
WMC simulation program which performs a single Monte Carlo simulation. The
input parameters are, the number of photons packets to simulate, the numerical
aperture (NA) of the source and detector fibres, the g-factor and two parameter,
µs,max and tmax. tmax is the maximum time of flight before the photon packets
are terminated in the simulation and µs,max is the scattering coefficient used in the
simulation and hence the maximum scattering coefficient where the post simulation
will be valid in the temporal interval [0, αtmax]. The data from the simulation is
sorted and used as input for a curve generation script. This script takes parameters
from the user and calculates the wanted time dispersion curves. The user supplied
data is the scattering and absorption coefficients, µs and µa, the source-detector
fibre separation, Rd and the fibre radii, Rf , and the temporal resolution of the
generated curve, ∆t. The curve generation script is equivalent to the forward
model box in figure 3.2

proper seeding mechanism and preferably it should be fast. Unfortunately the
pseudo random number generator used by the MCML code has none of these
features. The random number generation code used by MCML is taken from
the book "Numerical Recipes in C: The art of Scientific Computing" by Press
et al., reference 27, where several different generators are presented. The one
used by MCML, ran3, does not have a clearly stated period, and does not have
state in which interval (open, closed or half open) the numbers are generated.
In fact the authors of the book does not recommend the use of this generator
since "the subtractive method [of ran3] is not so well studied, and not a stan-
dard." .27 This is confirmed by code snippets in the MCML source code where
the numbers generated are checked for out-of-interval numbers. Also, stated in
the MCML source is a problem with the seeding routine. The seed, acquired
from the time() function in C which returns the number of seconds elapsed
since January 1 1970, is bit shifted from a 32 bit integer, to a 16 bit integer.
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Having a 16 bit seed based on time means that the seeding will repeat itself
roughly every 45 days. Yet another problem is the fact that ran3 generate 32-
bit floating point numbers, meaning 23 bit precision, while MCML converts this
float into 64-bit (53 bit normalised mantissa, 52 actual bits) double precision
floating point numbers and threats them as such.

Instead of using the old random number generator used by MCML, a state of
the art generator called the Mersenne twister28 (MT) is used in the new WMC
program. More precisely the Double precision SIMD-oriented Fast Mersenne
Twister29,30 (dSFMT) version 1.1 (2007/3/22), freely available from the inven-
tors homepage.31 The MT is a very fast algorithm for generating pseudo random
numbes, developed for Monte Carlo simulation applications. It featuring a mas-
sive 2132049 − 1 period, documented superb equidistribution properties and the
ability to generate double precision pseudo random number in the intervals:
(0,1), [0,1) and (0,1] using all the 52 bits of precision allowed by the IEEE 754
standard.

The entire 32 bit output of the time() function in C is used to seed the gen-
erator which ensures unique seeds for several thousands of years as long as two
simulations are not started in the exact same second.

4.1.3 Photon Launch

The photon packets are launched from origo, representing an infinitely small
source, by setting their initial coordinates to (x, y, z) = (0, 0, 0). Instead of
using the traditional pencil beam, i.e. (dx, dy, dz) = (0, 0, 1), the numerical
aperture (NA) of the source fibre is taken into account. First calculating the
maximum deflection angle:

θmax = sin−1 n

NA
, (4.2)

where n is the refractive index of the medium, and multiplying by a random
number, ξ ∈ [0, 1), yields the deflection angle, θ ∈ [0, θmax).

Though unnecessary in a rotational symmetric geometry, the azimuthal angle,
φ ∈ [0, 2π), is generated by multiplying a random number, ξ ∈ [0, 1), by 2π.
The set of spherical coordinates, θ, φ, are easily transformed into Cartesian
coordinates:

dx = sin θ cosφ
dy = sin θ sinφ (4.3)
dz = cos θ

By taking the NA of the fibres into account, the generated simulation database
is locked to fibres of a specific NA. However scaleability in the fibre diameter
is still possible as all the packets are launched from the same (mathematical)
point. This is conveyed in Section 4.2.2 and 4.2.2, as well as Appendix A.
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4.1.4 Photon Detection

Photon detection, being a crucial part of the Monte Carlo model, were per-
formed using a novel approach. The detection of the uni-directional fluence of
photon packets through a plane has previously been used exclusively for semi-
infinite and slab geometries as both feature infinite plane-like borders. The
simplicity of this approach provided a foundation upon which an equivalent for
infinite geometry was built. This enabled individual detection of photon pack-
ets, providing the ability to overcome the scaling effect problem encountered by
Xu et al.,23 by pushing the decisions on temporal and spatial binning to the
post simulation side of the model.

A concern is raised regarding the detection method as a single photon packet can
be detected multiple times. The question is wether the detection events can be
considered independent, i.e. the probability of a photon packet being detected
several times in a very small area is very low, or if the detection events have to be
linked to the corresponding photon packet so that "future" detection event’s can
be eliminated during post processing so that a single photon packet is ensured
to only be detected once. This issue is addressed during the verification, see
section 5.2.

Geometrical considerations

The considered fibre geometry for the time resolved measurement to be evalu-
ated where chosen to be two bare end optical fibres placed at the same depth (in
the interstitial case) or at the surface (in the semi infinite case), with the plane
ends of the two fibres in the same plane. This is of course a restriction to the
possible measurement geometries but a feasible one. In theory any plane that
includes origo could be used and the photons could be sent into the medium at
any angle but placing the fibres in parallel means that the cylindrical symmetry
can be used. This translates into a simple Monte Carlo model, where photon
packets are sent into the medium at the origo, as illustrated in Figure 4.2.

Taking the into account that bare end fibres does not accept photons incident
from all angles, only the photon packets passing upwards (from z > 0 to z < 0)
through this plane are eligible for detection. To give the photon packets further
restrictions they have to pass the detection plane within the angle of acceptance
defined by the numerical aperture of the detection fibre (comp. Figure 4.2). As a
priori information on the NA of the detector fibre is needed for this calculation,
this imposes a restriction to the generated database as it is locked to fibres of
a specific NA. This is ,however, the same restriction that was made for the
photon launch and does thus not limit the model any further.

By restricting the detected photons to those passing through the plane in a
certain direction through a narrow acceptance cone, the risk of a single photon
packet producing two detection event close to each other is greatly reduced.
Comparing this to traditional detection geometries, based on volumetric de-
tection elements, such a restriction is not possible and individual packets will
induce a larger, double-detection error.
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Numerical considerations

The major numerical advantage of utilising the detection plane is that the entire
photon paths does not have to be stored even as the photon packets are detected
individually. Photon packets at all distances from the source have to be recorded
due to the post simulation scaling and placing of detection fibre. A great number
of detection events has thus to be recorded to provide sufficient signal to noise
ratio at all fibre separations regardless of the scaling coefficient.

To reduce the amount of data from the simulation, without reducing the ac-
curacy, the rotational symmetry of the problem was used. The symmetry axis
is simply the z-axis yielding the only spatial information of interest for each
recorded packet to be the source-detection event separation, r =

√
x2 + y2. To-

gether with the temporal information, the total time of flight until the detection
event, t, these are the only variables of interest for each event. Storing both of
them as 32 bit floating point variables yields 64 bits of data for each detection
event. This means that 217 detection events can be stored per Megabyte (220

bytes) of available memory of the computer running the curve generation script.
Using memory efficient algorithms all the way to the temporal dispersion curve
generation this means that even a database of 108 photon detection events can
be dealt with by a computer of just 1 GB of physical memory. Comparing
this to a Monte Carlo method based on traditional binning clearly illustrates
the scaling effect. If scaleability is sough after in the interval 0.5 ≤ µs ≤ 50
[1/cm] with a temporal and spatial resolution of ∆t = 1 ps and ∆r = 0.1 mm
respectively, over the entire scaling range. With a minimum temporal interval
of validity, t = [0, 2] ns and spatial validity in the range r = [0, 30] mm over
the entire range this would require approximately 22 GB of memory and the
WMC model would still be better in the terms of spatial and temporal resolu-
tion. However, the size of the WMC-based database model will grow as more
photon packets are simulated whereas the database of the Monte Carlo method
utilising the traditional detection grid would have a constant size. There must
hence be a S/N vs. Memory usage sweet-spot that might be worth considering
in a few years time.

4.1.5 Photon Propagation

The photon propagation is very similar to any other time resolved Monte Carlo
program. Each step the length of the current step is calculated using the scat-
tering coefficient instead of the total attenuation coefficient:

∆s =
− ln(ξ)
µs,max

. (4.4)

The random variable ξ is sampled in the interval (0,1], meaning ∆s will be
in the interval [0,∞). Since a zero step size has no meaning in a model where
absorption is added post simulation using Beer-Lamberts law ξ could be sampled
in the open interval (0,1) instead, meaning ∆s ∈ (0,∞).

After each step the photon packet direction is changed. This is done by cal-
culating the deflection and azimuthal angles from the current direction using
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the Henyey-Greenstein function. MCML provides an excellent implementation
of these calculations and this code was hence used with minor modifications to
utilize the improved random number generator. When calculating the deflection
angle, θ, the calculations calls for a random variable, ξ ∈ [0, 1]. As the dSFMT
implementation used does not provide random variables sampled in a closed
interval a semi open interval, (0,1] was used instead. As ξ = 0 would repre-
sent complete back scattering (comp. Eqn. 2.15) and most tissues are forward
scattering (g ≈ 0.9) using this interval will minimize the numerical error.

Apart from scattering, photon packet propagation in a nonabsorbing homoge-
neously scattering medium is fairly event less. The only thing that has to be
checked each step taken by the photon packet is wether it crosses the xy-plane
or not. In the case of an infinite medium the propagation will continue unin-
terrupted but in the case of a semi infinite medium fresnel reflection has to be
accounted for.

An implementational difference between traditional Monte Carlo and WMC is
that the WMC model is unable to handle partial reflections, i.e. depositing
weight based on the reflection coefficient, as the weight of the photon packet
is not kept track of. Hence when the photon reaches the border it is either
reflected or transmitted. This also implies that in the semi-infinite case, the
double detection problem is non-existent.

4.1.6 Photon termination

As the program was developed for evaluation of time resolved data and thus only
cares about the photon distributions in a user specified time interval, t ≤ tmax,
energy conservation is not of importance. The photons can hence be allowed to
propagate until the total time of flight exceeds that of the specified maximum
time of flight, t > tmax. After that the photon packets are simply terminated.

In the semi-infinite case, photons leaving the medium are also terminated.

However, tracking photons in a highly scattering medium for long times can
prove costly in the terms of computing time. Since only photon packets crossing
the xy-plane are of interest, photons with zero chance of reaching the plane
within the maximum allowed time can also be terminated. This condition can
be expressed as:

(tmax − t) >
|z|
c′
. (4.5)

This test is, however, computationally costly since it has to be executed very
often. Even though it wasn’t used in the program, as it proved to actually
slow down the simulations in the parameter space of interest for this work, it
is presented here for future reference. It could for example be used in a hybrid
photon termination model, where check made each round is whether t > tmax/k,
where k is a constant, k ≥ 2. If this check is true, Eqn. 4.5 can be used.
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4.2 Post Simulation Processing

4.2.1 Sorting

A MATLAB script to sort the simulation data by the origo-to-detection event
distance, r, was written. As this is a one-time only operation speed was not
of major importance but memory usage was of utter importance, hence the
selection of an in-place sorting algorithm, the Combsort11.32 This algorithm
features an O(1) memory usage and a worst case O(n log n) time complexity.
This means that any set of data that can be loaded in the memory of the
computer can be sorted within reasonable time.

The sorted data was then stored in a MATLAB struct together with all the
necessary simulation data, such as the g-factor, µs,max, tmax and the number
of photons launched into the medium..

4.2.2 Curve generation

The curve generation script (comp. Figure 4.3) is the "forward model" in the
data fitting procedure (see figure 3.2) and must hence be as fast as possible.
Being a forward model, the script takes several input arguments and recon-
structs the simulation data, providing the temporal dispersion curve for those
parameters. The two major parameters are µs (or µs´) and µa but the script
also needs some data on the measurement, namely the fibre separation, Rd, and
fibre radius, Rf , as well as the temporal channel width, ∆t.

Scaling and selecting data

First a scaling coefficient, α = µs,max/µs is calculated. Secondly a data set
with the properties, Rd − 2Rf ≤ αr ≤ Rd + 2Rf , is extracted from the original
dataset. The reason for the interval is explained in Appendix A. This is done
very quickly since the data is already sorted. The only processing necessary
is finding the two interval borders, which is very fast using a standard binary
search algorithm.

The extracted t and r components are multiplied by the scaling coefficient,
r′ = αr, t′ = αt.

Weighting

Each packet is assigned a weight, wtot, based on absorption, wabs(t′), through
means of Beer-Lamberts law (Eqn. 4.1) and due to the fibre geometry, wfibre(r′).
The fibre geometry weight is a result of the finite size of the source and detector
fibres and the integration over all angles to improve statistics, made possible
by the rotational symmetry. The calculations of this weight can be seen in
Appendix A. Since the fibre geometry does not change during the data fitting
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procedure, all the fibre geometry data can be pre-calculated to avoid multiple
calculations of the same problem.

The final weight is the product of the two weights, wtot = wabswfibre.

Binning

Temporal binning is an easy but computationally heavy task. A modified version
of Shai Bagon’s33 weighted histogram MEX implementation, whist ,was used
for speed. A weighted histogram is very similar to an ordinary histogram, but
each entry is assigned a weight instead of all entries having the same weight.
This means that a channel cn will be the sum of the all the weights where
n∆t ≤ t′ < (n+ 1)∆t:

cn =
∑

n∆t≤t′i<(n+1)∆t

wtot(r′i, t
′
i). (4.6)

4.3 Data fitting

As discussed in Section 3.3 any forward model can be used in the iterative
forward solver and utilising the WMC approach should hence be a simple case
of implementing in the already existing Marquardt-Levenberg based solvers used
to evaluate data using diffusion theory. However, as the WMC model is based
on statistics, rather than analytical derivation, the time-dispersion histograms
will have some noise in them, making the convergence of ML unsure. The effect
of the noise is illustrated in Figure 4.4, where data at large source-detector
separation (26 mm) in a low-scattering, high absorption phantom has been
evaluated. The figure illustrates the merit function χ2 as a function of µ′s and
µa minimised with respect to k:

f(µ′s, µa) = min
k
{χ2(k, µa, µ′s)} (4.7)

Owing the banding structure illustrated in Figure 4.4, using the M-L algorithm
to find the minimum of χ2 with respect to all three parameters is not recom-
mended. Instead the problem is reduced to the minimisation of

χ̃2(µ′s) = min
k,µa

{χ2(k, µa, µ′s)}. (4.8)

To solve the global minimisation problem, χ̃2(µ′s) is now evaluated for several
within a predefined interval with a specified resolution, ∆µ′s. The resulting
curve, which is basically the value of the merit function f along the valley of
Figure 4.4, is shown in Figure 4.5, featuring the same data as Figure 4.4.

This also has a computation advantage as the temporal dispersion curve, c of a
certain µa can be re-scaled to accurately estimate a curve, ĉ, with absorption µ̂a
without the need for another curve extraction given that the other parameters
(apart from k) is the same.
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Figure 4.4: An illustration of the banding problem in an extreme case of data
fitting. The bands are perpendicular to the iso-µa direction indicating that the
bands are due to amplitude noise in the extracted curves.

For each channel, ci, the average time, t̄i, is estimated or calculated during the
temporal binning. The weight for that channel due to absorption is approxi-
mately:

wi,abs ≈ exp (−µac′t̄i) . (4.9)

The estimation of ĉ can hence be expressed using:

ĉi ≈ ci exp (−(µ̂a − µa)c′t̄i) . (4.10)

This is advantageous since the curve generation is computationally heavy com-
pared to the optimisation algorithm.

To illustrate the good fit that can be used using this method combined with the
WMC method, a fit using more typical data, is illustrated in Figure 4.6.

4.4 White vs. Traditional Monte Carlo

In his Phd thesis,3 Swartling raised the question whether White Monte Carlo is
equivalent to traditional Monte Carlo as presented by Prahl et al.11 Traditional
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Figure 4.5: redo χ̃2!!! An illustration of χ̃2 as a function of the trial µ′s (left) and
the corresponding best choice of µa and k (right). The ripple from Figure 4.4 is
visible, especially in the bet choice of k indicating that the ripple is due to intensity
noise.
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Figure 4.6: An illustration of the fit of more typical data (µ′s ≈ 10, µa ≈ 0.2, 15
mm fibre separation). The smoothness of the left curve indicate that the WMC
database used for fitting is sufficiently large for accurate fitting.

Monte Carlo with variable step size utilises an average 1/µt stepsize whereas the
absorption less White Monte Carlo approach uses a 1/µs average step size. This
eventually leads to different photon distributions depending on the albedo a =
µs/µt of the medium. This difference originates for the assumption in traditional
Monte Carlo that the scattering dominates the absorption, i.e. µs >> µa.13
This assumption allows quick and easy calculations of the fraction of the weight
of a photon packet that should be absorbed each step: fractionabsorbed =
1− a. Swartling demonstrates that this is equivalent to absorption using Beer-
Lamberts law as a→ 1 and a→ 0, but notes that equivalence is not guaranteed
in the intermediate region, µs ≈ µa. This is, however, rather a concern for
traditional Monte Carlo as the White Monte Carlo approach does not rely on
the high albedo approximation, µs >> µa. Farina et al.34 provide a short guide
to absorption independent step size in traditional, non-white, Monte Carlo for
those interested in simulating photon propagation in low-albedo media.





Chapter 5

Simulations and
Measurements

5.1 Instrumentation

All the time-resolved measurements were performed using compact and portable
time-domain photon migration system intended for spectroscopy of biological
tissues in clinical environments.1,35,36

The system utilises a laser driver (SEPIA PDL 808, PicoQuant, Germany) con-
trolling four pulsed diode lasers (LDH, PicoQuant, Germany, 660, 786, 830,
916 and 974 nm available) with wavelengths chosen to enable spectroscopy of
hemoglobin, water and lipids as well as monitoring tissue oxygenation. The
lasers were operated at 40 MHz at 1-2 mW output power, generating short,
<100 ps FWHM pulses. The light from the diode lasers were coupled using short
200-µm graded index (GRIN) fibres (G 200/280 N, ART Photonics, Germany)
into a single, ∼2 m long, 600-µm GRIN fibre (G600/840 P, ART Photonics,
Germany) serving as the source fibre. A second identical fibre were used as
detector fibre, guiding the light to the detector via an adjustable neutral den-
sity (ND) filter. The detector was a cooled microchannel plate photomultiplier
tube (MCP-PMT; R3809-59 Hamamatsu Photonics, Japan). A TCSPC card
(SPC-300, Becker&Hickl, Germany), connected to a compact PC, was used to
obtain the time-dispersion histogram.

5.2 White Monte Carlo Verification

Proper verification of Monte Carlo code is important to avoid numerical glitches
and to verify that the simplifications made are valid. This is usually done by
comparing ones code, and/or the results, to previously published results. In the
case of Monte Carlo for simulating photon transport in turbid media, results
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from Van de Hulst37 (for slab geometries) and Giovanelli38 (for semi infinite
geometries) are often used. Another popular way is to compare ones results to
those provided by MCML12 or programs derived from MCML.

5.2.1 Comparison with MCML

As no other, previously published, similar approach to Monte Carlo simulations
exist and the WMC program is not based on energy conservation the validation
proved a challenge as no directly comparable data was easily available. Instead
MCML was modified to provide the same kind of data while making minimal
changes to the original code.

Performance

The MCML code was compiled using recommended command:
cc -o mcml mcmlio.c mcmlnr.c mcmlgo.c mcmlmain.c
and the same line with the -O3 optimisation level option:
cc -o mcml mcmlio.c mcmlnr.c mcmlgo.c mcmlmain.c -O3

The WMC code was compiled with the line:
gcc -msse2 -DSFMT_MEXP=132049 -DHAVE_SSE2 -O3 -fno-strict-aliasing

--param max-inline-insns-single=1800 --param inline-unit-growth=
500 --param large-function-growth=900 -o WMC dSFMT-src-1.1/
dSFMT.c WMC.c,

as recommended by the authors of the Mersenne Twister algorithm used.

Each program were set to simulate 10000 photon packets using the following
parameters:
g=0.7, n=1.33, µs,max=90 cm−1, tmax=2 ns, NA=0.29, infinite medium.

The simulation was executed 5 times for each program and the average CPU
time was noted.

Accuracy

To validate the WMC simulation program code and the implementation of the
scaling relationships, MCML was modified to monitor the temporal distribution
of photon weight leaving a semi infinite homogenously scattering medium. Three
1 mm wide detectors, centered around 10, 15 and 20 mm recorded the time
dispersion historgrams with 10 ps temporal resolution. The simulations were
performed with the four combinations of mu′s = 5, 10 cm−1, µa = 0.1, 0.5 cm−1,
with g = 0.7, n=1.33, 108 photon packets simulated.

The recorded time dispersion histograms were fitted using WMC with the fol-
lowing database: g=0.7, n=1.33, µs,max=90 cm−1, tmax=2 ns, NA=0.29, semi-
infinite medium, , 109 photon packets simulated.
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5.2.2 Multiple photon detection events

The perhaps biggest assumption made in the WMC program development is
that of independence of the photon detection events (comp. Section 4.1.4). To
study the implications of this assumption the radial distribution of the detection
events of individual photon packets had to be studied. Instead of connecting
the detection events to their respective photon packets, the WMC program was
modified to send the photon packets, within the acceptance cone of the detector
fibre, in the opposite z-direction, as illustrated in Figure 5.1. This provides
an equivalent radial distribution without the need to keep track in individual
photons, i.e. minimal post simulation processing. The time it takes to reach the
first detection event is, however, neglected and the fraction of double-detected
photons may thus be overestimated. As the risk of back scattering and hence

xy-plane

z

(a)

(b) (c)

rdd

Figure 5.1: An illustration of the reversed z-direction launch WMC program. In
the ordinary WMC program the photon packets would be launched at origo, (a),
and later on detected at (b) and (c), the sought after distance between the two
detection events, rdd, would in that case have to be calculated. In the reversed
program, photon packets are instead launched through the cone at (b) which is
now located at origo. The detection event separation is now simply the distance
from origo.

the risk of photons being back scattered back and forth over the border increases
with decreasing g-factor (comp. Fig. 2.2) the simulation was performed with a
fairly low g-factor to provide "worst case" data.

The parameters for the simulation using the modified WMC program where:
g=0.7, n=1.33, µs,max=90 cm−1, tmax=2 ns, NA=0.29, infinite medium, 106

photon packets simulated.

The simulation can provide an estimate of the number of photons that contribute
twice or more to the total weight of the time-dispersion histogram. Getting a
more exact value is, however, difficult as the photon packets can no longer be
considered as single photons with a weight according to their probability to reach
the detector, but rather an infinite number of photons due to the convolution
of the infinitely small source with the finite size and shape of the source fibre.
Further processing of the simulation will hence not be performed in this work.
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5.3 Monte Carlo vs. Diffusion

To get an estimate of the errors induced by the model and in a time-resolved
measurement situation when evaluating experimental data from high absorp-
tion media using Diffusion theory two sets of simulations/evaluations were per-
formed.

The parameter space covered was all combinations of the following parameters:

• Fibre separation, Rd: 10, 15 and 20 mm

• µa: 0.1, 0.25 and 0.5 cm−1

• µ′s: 5, 7.5 and 10 cm−1

• Fibre radius, Rf : 300 µm

5.3.1 Impulse response

The White Monte Carlo model was used to extract the impulse response tempo-
ral dispersion curves from a WMC simulation (g=0.7, n=1.33, µs,max=90 cm−1,
tmax=2 ns, NA=0.29, infinite medium, 2∗108 photon packets simulated) for the
entire parameter space defined above. The extracted curves where then evalu-
ated using the Marquardt-Levenberg algorithm to find the parameters, µ̃′s, µ̃a
and the less interesting but important free amplitude parameter, k, correspond-
ing to the best fit using Eqn. 2.9. The variance, σ, in Eqn. 3.1 was assumed
constant. The data range used to evaluate χ2 were 90% of maximum intensity
on the rising flank to 1% of maximum intensity on the trailing flank.39 The
temporal resolution was set to ∆t=10 ps.

5.3.2 With ideal IRF

The temporal dispersion curves for the parameter space were once again ex-
tracted. To mimic an actual time-resolved measurement situation the curves
were also convoluted with an ideal IRF, a ∼70 [ps] FWHM gaussian pulse, illus-
trated in Figure 5.2. The best fit using Eqn. 2.9 convoluted with the same ideal
IRF were found once again using the Marquardt-Levenberg algorithm. Once
again the variance was assumed to be constant. The data range evaluated was
50% to 20% of the maximum intensity of the rising and trailing flank respec-
tively to comply with previous data evaluation of prostate tissue.1 The temporal
resolution was set to ∆t=10 ps.

5.3.3 With actual IRF

The procedure in the last section was repeated but with an actual IRF used
as convolution kernel. This typical IRF is illustrated in Figure 5.3. As the
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Figure 5.2: The pure gaussian IRF used as convolution kernel.

temporal resolution of the system is limited to be able to fit all four temporal
dispersion curves in the time-window the temporal width of the channels were
set to the typical ∆t=24.43 ps.
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Figure 5.3: The actual IRF recorded by the system used as convolution kernel.

5.4 IRF-measurement

Evaluating old data using the WMC model it was evident that Monte Carlo
alone could not solve the scattering-wavelength dependence problems reported
by Svensson et al. Based on an paper by Schmidt et al.,40 the focus was shifted
to the IRF-measurement. During their IRF-measurements they introduced a
thin sheet of paper just in from of the detector fibre to diffuse the incident light
and "ensure uniform excitation of all modes in the fibre bundle", even though
GRIN-fibres supposedly have near-zero temporal mode-dispersion.
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5.4.1 Arm-measurement

To observe the dispersion originating from the difference in incidence angle on
the detector fibre an "arm", illustrated in Figure 5.4, was constructed.

Source fibre

Detector fibre

!

150 mm

Figure 5.4: The setup for the measurements of angular dependence of the IRF
measurements

The IRF’s at three different angles θ ≈ 0°, 20°and 45°were recorded, and the
experiment was repeated tree times.

5.4.2 Evaluation of real data

To study the effect on the IRF on actual data, two new ways of measuring
the IRF were developed based on the ideas by Schmidt et al. These two ways
are illustrated in Figure 5.5 together withe the old way. These three ways of
measuring the IRF will hereon be referred to as blackIRF, redIRF and oldIRF.
The main idea was to measure the IRF in a way that would scatter light from
all angles (from the source fibre) into all angles of the detector fibre. Ideally this
would be done by an infinitely thin Lambertian single-scatter diffuser positioned
to minimise the fibre separation. As no such diffuser exists and would deliver to
much light to the detector for the system to handle alternative solutions were
sought.

blackIRF: The flat absorption spectrum and scattering properties of ordinary
printer toner41 was used in conjunction with an ordinary paper. The paper was
coated with layers of toner on both sides until sufficient light absorption was
achieved. While measuring the IRF the two fibres were held in close contact
with the paper, aligned with each other, providing an almost zero temporal
offset (paper thickness <0.1 mm).

redIRF: Thin red papers were placed on both sides of an ND filter (2 mm Schott
NG4) featuring a flat absorption spectrum in the desired wavelenght region (660-
916 [nm]). Red paper was choosen over ordinary white paper as it proved to
have the flattest absorption spectrum of all easily available paper tested. During
IRF measurements the fibres were aligned and pressed against the red paper on
each side of the filter/paper sandwich.
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Figure 5.5: An illustration of the three ways of measuring the IRF tested. Top: The
old way of measuring the IRF. The fibres were aligned inside a test-chamber made
of black Delrin. They were separated exactly 150 mm by two stop apertures. In
the middle of the chamber was a pinhole helping to minimise all reflexes. Bottom
Left:The fibres were aligned using two black Delrin fibre-holder. A white paper
coated with toner on both sides were the only thing separating the fibre ends.
Bottom Right: Basically the same setup as blackIRF but here here an ND-filter
with red paper on both sides separated the fibre ends.

To test the ways of measuring the IRF for several phantoms the test were
performed in conjunction with the Absorption series further described in Section
5.5.2.

5.5 Instrument performance

5.5.1 Conditions

Phantoms

All the tissue phantoms used were based on the light scattering abilities of
intralipid42,43 and the absorption properties of India ink.44 Pogue and Patterson
provides a review of tissue simulating phantoms in Reference 45.

All phantoms were based on tap water, fresh Fresenius Kabi 200 mg/ml in-
tralipid solution and a 1:100 stock solution of Pelikan Fount India Ink. The
phantom constituents were mixed in a clear plastic container, Ø=110 mm, height
70 mm using a magnetic stirrer

Setting

The (CFD) countrates were at all times keept at ∼20 ksps.

During measurements the fibres were in place by a fibre holder featuring con-
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trolls for coarse and fine height adjustments and a micrometer adjuster for the
fibre separation in the range 10-30 mm. This fibre separation adjuster had a
spatial offset of -0.3 mm meaning that a measurement performed at 15 mm fibre
separation were actually done at 14.7 mm. For clarity the fibre separations will
be denoted as integers, i.e. before the offset adjustments. However the offset
was accounted for during evaluation.

WMC evaluation

All Monte Carlo evaluations were performed in the data range 50% on the rising
flank to 20% on the trailing flank, using the following database unless otherwise
noted:
g=0.7, n=1.33, µs,max=90 cm−1, tmax=2 ns, NA=0.29, infinite medium, 2∗108

photon packets simulated

5.5.2 Absorption series

An absorption series, utilising the Added Absorber technique,46 was performed,
measured and evaluated, using both diffusion and the WMC approach, using
the three different IRF’s.

The measurements were performed with a fibre separation of 15 mm and the
fibre tips placed at a depth of 30 mm in the centre of the container. The
phantom used is stated in Table 5.1: The order of measurement were: redIRF1,

Water 577 ml
Ink (1),2,3,4,5,6,7,8 ml
Intralipid 22 ml

Table 5.1: The phantom used for the absorption series. Unfortunately the mea-
surement of the 1 ml ink was not saved, hence the parenthesis.

blackIRF1, oldIRF1, 1 ml ink, 2 ml ink, redIRF2, blackIRF2... ending with, 8
ml ink, redIRF5, blackIRF5, oldIRF5.

5.5.3 Scattering series

A scattering series, where more and more scatterer (Intralipid) was added to
the phantom in small increments using the following concentrations:
The measurements were performed with a fibre separation of 15 mm and the

fibre tips placed at a depth of 30 mm in the centre of the container. The measure-
ments were performed in rapid succession with the IRF (blackIRF) measured
before and in the middle of the phantom measurements. The scattering series
measurements were done outside of the temperature stabilised lab.
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Water 577 ml
Ink 4 ml
Intralipid 10,12,14,...,24 ml

Table 5.2: The phantom used for the scattering series.

5.5.4 Fibre separation series

A fibre separation series was performed, using a single phantom, stated in Table
5.3, but varying the source-detector fibre separations. The fibre separations were
10-26 mm with 2 mm increments, fibre tips at 30 mm depth. The series were
performed twice, with the fibre separations in ascending and descending order,
with the IRF (blackIRF) measured before and after each series.

Water 577 ml
Ink 4 ml
Intralipid 22 ml

Table 5.3: The phantom used for the fibre separation series.

5.5.5 Infinite vs. Semi-infinite

In an effort to compare measurements in infinite and semi-infinite media, the
phantom used in the fibre separation series (Table 5.3) was measured with the
fibre tips just touching the phantom. This measurement was done at 10, 16, 20
and 26 mm fibre separation.

The semi infinite measurement were evaluated using a WMC database with the
following attributes:
g=0.7, n=1.33, µs,max=90 cm−1, tmax=2 ns, NA=0.29, semi-infinite medium,
109 photon packets simulated





Chapter 6

Results

6.1 White Monte Carlo Verification

6.1.1 Comparison with MCML

Performance

The average CPU times for the three programs are presented in Table 6.1.1.

Program Average CPU time [s]
WMC 13.57
MCML 21.24
MCML -O3 16.10

Table 6.1: The average CPU time of five runs simulating 10000 photon packets for
the WMC and MCML (optimised/non-optimised).

Accuracy

Evaluating the time dispersion curves from the MCML simulations resulted
small realtive differences between derived optical properties and MCML in-
put parameters: -0.4±3.2% in absorption, and -1±1.4% for reduced scattering
(mean±st.dev.).

6.1.2 Multiple photon detection events

The WMC simulation with reversed z-direction launch resulted in 372177 de-
tection events. A graph showing the fraction of detection events within 2Rf of
the reversed source is shown in Figure 6.1.
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Figure 6.1: The fraction of photon packets returning within 2Rf from the source
in the reversed WMC simulation. As the source-detection event scale with µs the
fraction decreases as the scattering decreases.

6.2 Monte Carlo vs. Diffusion

The best fit of optical parameters, µ̃′s and µ̃a, using diffusion theory to evaluate
data from a Monte Carlo time dispersion curve of parameters µ′s and µa was
evaluated over a large parameter space. A summary of some data is presented
in Figure 6.2 and 6.3. More data is presented in Paper I.
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Figure 6.2: An illustration of the over-estimation of the scattering, ∆µ′s, and the
absorption, ∆µa, as a function of the source-detector fibre separation, Rd. The
simulations used are the ones from each set (Impulse, Ideal IRF and Real IRF)
with the input parameters µ′s=7.5 cm−1 and µa= 0.25 cm−1.

A few selected curves and their respective fitted Diffusion curves are presented
in Figure 6.4 and 6.5.

The apprarent increase in relative error as a convolution is involved are partly
due to a change in the data fitting range, which was 90% on the rising flank and
1% (90/1) for the impulse response fitting and (50/20) for the fittings involving
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Figure 6.3: Left: The over-estimation in scattering, ∆µ′s, as a function of the
absorption, µa. Right: The over-estimation in absorption, ∆µa, as a function of
the scattering, µ′s. All the data is taken from the simulation involving a convolution
with the actual IRF at 15 mm fibre separation.

the convolution with the IRF’s. Even if a 90/1 range were to be used the effective
range would be different as the convolution effectively smears out the fitting
range limits as well. The 50/20 fitting range utilised is motivated by the use of
this range in previously published results using the time resolved spectroscopy
instrument.1 Considering the convolution with the ideal IRF, a comparison of
the 50/20 case compared to a 80/1 fitting range is presented in Paper I where
the relative errors were found to be similar the region corresponding to prostate
tissue, µa > 0.3, µ′p < 10 cm−1.

6.3 IRF-measurement

The resulting IRF’s for 786 nm for the three different angles are shown nor-
malised in Figure 6.6.

6.3.1 Arm-measurement
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Figure 6.4: The impulse time dispersion curve for the worst case parameters. The
red line shows the time dispersion curve extracted from the WMC model. The blue
dashed is the curve of the same parameters from Diffusion theory and the black line
is the best fit, using Diffusion theory, to the Monte Carlo curve, evaluated within
the vertical dashed lines. It is evident that Diffusion theory does not model the
early photons very well, causing and overestimation of both the scattering and the
absorption.
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Figure 6.5: The impulse time dispersion curve for the worst case parameter, convo-
luted with the Ideal IRF. The red and blue dashed lines are simply their equivalents
in Figure 6.4 convoluted with the Ideal IRF. The Black line is the best fit, using Dif-
fusion theory convoluted with the ideal IRF, to the Monte Carlo curve convoluted
with the ideal IRF, evaluated within the vertical dashed lines, i.e. the convolution
is involved in the curve fitting procedure.
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Figure 6.6: The results of the Arm-measurements for 786 nm. It is evident that
there is an angular dependence as the curves 0°and 20° IRF’s differ slightly. The
45° IRF is very different from the other two. It is evident that light incident at
angles even far outside the acceptance cone of the fibres propagate in the fibres and
reach the detector.
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6.3.2 Evaluation of real data

Using Monte Carlo evaluation, the scattering in the absorption series were eval-
uated using the three different IRF’s. The result is illustrated in Figure 6.7. For
each data point, the IRF used during evaluation was the one measured closes
in time to the specific data point. Comparing the IRF’s as a function of time
it was determined that the temporal drifts during the measurement were 1.6 ps
on average over the 42 minute measurement.
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Figure 6.7: The reduced scattering as a function of wavelength and the volume of
added ink, evaluated with the three different IRF’s using WMC.

6.4 Instrument performance

Below is a qualitative summary of the results of the results from the experimental
work. Further results, both qualitative and quantitative are presented in Paper
I.

6.4.1 Absorption series

The measured reduced scattering and absorption as a function of the added
volume of ink, evaluated using diffusion and Monte Carlo with the blackIRF are
illustrated in Figure 6.8. The datasets were evaluated using the IRF measured
closest in time to the dataset. The temporal drifts in the system were on average
1.6 ps over the 42 minute measurement.

6.4.2 Scattering series

The measured reduced scattering and absorption as a function of the added vol-
ume of Intralipid, evaluated using diffusion and Monte Carlo with the blackIRF
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Figure 6.8: Absorption series. Left: The evaluated reduced scattering as a func-
tion of the volume of added ink. Right: The evaluated absorption as a function
of the volume of added ink. Both: The data evaluated using Diffusion Theory
is represented by solid lines and the dashed lines represent data evaluated using
WMC.

are illustrated in Figure 6.9. The datasets were evaluated using the IRF mea-
sured in the middle of the dataset as the average drifts between the two IRF’s
was negligible and as the IRF after the measurement was not recorded as one
of the fibres broke.

6.4.3 Fibre separation series

The measured reduced scattering and absorption as a function of the fibre sep-
aration, Rd, evaluated using diffusion and Monte Carlo with the blackIRF are
illustrated in Figure 6.10. The second series recorded featured less temporal
drift and is hence the one considered. Still the drifts were on average 2.9 ps
over the 13 minute measurement. The datasets were evaluated using the IRF
measured closest in time to the dataset, i.e. 26-20 mm were evaluated using the
IRF taken before the measurement and 18-10 mm with the IRF taken after.

6.4.4 Infinite vs. Semi-infinite

The measured reduced scattering and absorption as a function of the fibre sep-
aration, Rd, evaluated using diffusion and Monte Carlo with the blackIRF are
illustrated in Figure 6.11. The datasets were evaluated using the IRF measured
closest in time to the dataset, i.e. 10 and 16 mm were evaluated using the IRF
taken before the measurement and 20 and 26 mm with the IRF taken after. The
average temporal drift was 1.8 ps over the 12 minute measurement.
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Figure 6.10: Fibre separation series. Left: The evaluated reduced scattering as a
function of the volume of the fibre separation. Right: The evaluated absorption as
a function of the volume of the fibre separation. Both: The data evaluated using
Diffusion Theory is represented by solid lines and the dashed lines represent data
evaluated using WMC.



6.4 Instrument performance 53

!" !# $" $#
#

%

&

'

!"

!!

!$

!(

)*+,-./-01,12*34.5667

µ
/8.
59
6
!!
7

:9122-,*4;

.

.

##".5467.<*==>/*34 %&#.5467.<*==>/*34 &(".5467.<*==>/*34 '!#.5467.<*==>/*34 ##".5467.?@A %&#.5467.?@A &(".5467.?@A '!#.5467.?@A

!" !# $" $#
"B$C

"B(

"B(C

"BD

"BDC

)*+,-./-01,12*34.5667

µ
1.
59
6
!!
7

E+/3,02*34

.

.

Figure 6.11: Semi-infinte geometry measurement. Left: The evaluated reduced
scattering as a function of the volume of the fibre separation. Right: The evaluated
absorption as a function of the volume of the fibre separation. Both: The data
evaluated using Diffusion Theory is represented by solid lines and the dashed lines
represent data evaluated using WMC.
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Discussion

7.1 White Monte Carlo Verification

7.1.1 Comparison with MCML

The WMC program seem to produce the similar data as the current gold stan-
dard Monte Carlo program for light transport simulations, MCML. Not surpris-
ing as the photon deflection code, being the part where a numerical mistake
would be most probable, is borrowed from MCML. The deviations are actu-
ally surprisingly small considering that the WMC program used to evaluate the
MCML generated time dispersion curves take fibre geometry into account. This
indicate that the blunt method used in the modified MCML perhaps could be
sufficient for data evaluation.

The change in pseudo number generator and the increased numerical precision
does not seem to have affected the data output significantly. Detecting actual
problems with the pseudo number generator used by MCML would probably
require a much larger simulation and further statistical analysis. However, the
new way of generating random numbers and seeding the random number gen-
erator significantly decreases the risk of repeating simulations while being the
major contributor to the gain in performance over MCML. Even if the risk of
repeating simulations when using MCML still is very slight, the 16 bit seed and
limited period could cause problems in the future as more and more photon
packets are simulated as the computers get faster and cheaper. The risk also in-
creases if parallel or multi-core computers are used as each independent instance
of the simulation require its own seed and the seed has a limited range.

In terms of simulation speed the WMC simulation program offer a slight advan-
tage over MCML, mostly due to the highly optimised pseudo random number
generator. A faster simulation program is always good news, but as the WMC
databases only has to be build once perhaps it is of little importance.
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7.1.2 Multiple photon detection events

The multiple photon detection problem, being the major concern during the
development of the current WMCmethod is clearly not yet resolved. The reverse
WMC program generate great data for analysis, but due to the convolution
involved in the curve generation the problem turns into a surprisingly hard
problem, involving integration, involving several different photon distributions,
over all possible dimensions. For an accurate estimate of the actual extra weight,
one also has to include a three-circle intersection calculation in these integrals,
making the problem less compelling to actually solve.

However, the simulations indicate that the problem is limited and preliminary
estimates indicate that the actual extra weight, i.e. the weight that is actually
detected twice is well below 1%, still not counting the loss of weight due to
absorption.

One can also conclude that the suggested WMC model should be better in this
concern compared to any Monte Carlo model based on a volumetric detection
grid, as the photon packets are only eligible for detection as they pass upwards
through the detection plane and as they have to be within the relatively narrow
acceptance cone of the detector fibre.

7.2 Monte Carlo vs. Diffusion

The Monte Carlo vs. Diffusion simulations considering the impulse responses
confirm what has been known for a long time. The diffusion approximation is an
increasingly bad approximation closer to the source and that the approximation
is better at high scattering and worse at high absorption. This is mainly due
to the early photons, which are not described well by Diffusion theory. This
is illustrated very well in Figure 6.4 (compare the blue dashed and solid red
lines) as this simulation features the worst case parameters in the simulation
parameter space.

To our knowledge, no one within the field has noted or discussed the increase
in the error due to the convolution with the IRF. The simulations involving
the ideal IRF show that the errors are not due to the shape of the IRF from a
specific instrument but applicable for all TRS instruments using a forward solver
including a convolution to evaluate data. The solution is to use a better model,
such as the proposed WMC model. Other solutions could be to investigate the
data evaluation limits or to try out a deconvolution. This could work as the
induced error most likely is due to the fact that the convolution will smear out
the error of the early photons in the diffusion-based model so that the important
peak cannot be included without a significant part of the early photon error
being included in the evaluation.
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7.3 IRF-measurement

As the WMC model did not solve the initial problems with the increasing scat-
tering at longer wavelengths it was concluded that the problems were due to
something concerning the instrumentation.

The focus was shifted towards the measurement of the IRF solely based on the
article by Schmidt et al.40 Comparison of the oldIRF and the way suggested
there showed little difference but during data evaluation the difference was sig-
nificant, regardless of the model used.

Systematic measurements to explain these differences were inconclusive. The
arm measurements show some kind of angular dependance but the reason for
these differences are not known. A possible solution is light traveling through
the cladding of the fibres as the fibres are to short for ordinary optical fibre
mode extinction to apply.

Comparing the two ways of measuring the IRF, redIRF and blackIRF little or
no difference was found, indicating that the "from all angles to all angles" way of
thinking is correct. A more detailed study of the influence of IRF measurements
on the data evaluation could reveal not yet spotted details and could prove
fruitful.

7.4 Instrument performance

7.4.1 Absorption series

The absorption series is a great example of the superiority of Monte Carlo
based data evaluation compared to evaluation based on Diffusion. Neglecting
the change in volume as the ink is added and assuming very low scattering of
the ink44 a constant scattering level can be assumed while the absorption should
increase linearly. As predicted by simulations the scattering seem to increase as
more ink is added when evaluated using the diffusion approximation but remain
fairly constant when evaluated with WMC. The absorption increase linearly in
both cases but as predicted by the simulations the absorption over-estimation
due to the diffusion approximation model error increase as the volume of ink is
increased.

7.4.2 Scattering series

The scattering series also confirms the results seen in the simulations. Neglecting
the small absorption from the added Intralipid and disregarding the change in
volume a constant absorption is expected while the scattering should increase
linearly. The measurements show a decreasing absorption coefficient as more
Intralipid is added when evaluated with Diffusion. When evauluating the same
data with WMC the absorption remains roughly constrant. Scattering seem
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to increase linearly in both cases but when extrapolating linearly to 0 ml of
Intralipid, the diffusion-evaluated dataset exhibit large offsets, due to the model
error, while WMC show much smaller offsets. Ink, featuring an approximate
0.5 albedo44 explain a small part of this offset but further studies are required
to fully understand this. One possible explanation is drifts in the system during
measurements as the entire dataset was evaluated using a single IRF, due to the
unfortunate fibre-breakage. As the series is performed at fairly high absorption,
i.e. far from 0 ml of added Intralipid, a small drift could be the source of a
relatively large offset.

7.4.3 Fibre separation series

The fibre separations series looks terrible, and the data is almost useless due
to the large drifts during the measurements. The drifts were later tracked to
insufficient stabilisation of the temperature in the temperature stabilised lab. A
log of the temperature in the lab, a few days from the measurements is shown
in Figure: 7.1
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Figure 7.1: The log of the ambient temperature in the temperature stabilised lab

Even if it is unfortunate that the measurements were ruined, an important
lesson can be learned from this. A temperature stabilisation system can actually
negatively influence the performance of a system if the stabilised temperature
is not perfectly stable. This as the stabilisation system forces the system into a
non-equilibrium temperature, a small change in temperature can cause large and
rapid drifts, whereas the temperature in an ordinary room is a slowly changing
system. The drift will hence be slow as well and the system will have the chance
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of find a new temperature equilibrium. This is a valuable lesson to learn if a
new TRS system is to be built.

7.4.4 Infinite vs. Semi-infinite

Even if the semi-infinite measurements had limited drift problems the reference
measurements were ruined as the fibre-separation series measurements were un-
usable. Another problem also occurred during these measurements. As a large
portion of the light is diffusely reflected out through the border and just a small
fraction of the light reaches the detector fibre end the measurements get sen-
sitive to any reflections from objects near the phantom border. To suppress
this effect all surfaces close to the phantom were covered in mate black paper.
Still the reflections of the black surfaces were intense enough to be observed
by the naked eye, causing a significant portion of the reflected light to re-enter
the phantom. This illustrates the a problem with all semi-infinte measurements
using the TSR instrument. A possible solution would be to incorporate some
kind of light trap in the measurement, minimising the amount of light reflected
back into the medium.





Chapter 8

Conclusions

The experimental and simulation work presented here form a strong argument
that the proposed WMC method is the better photon propagation model to use
when evaluating time-domain data form highly absorbing media, such as human
prostate tissue. The proposed WMC model is both fast an accurate enough,
regardless of the data fitting range. The proposed WMC model is valid in both
infinite and semi-infinite geometries even though the semi-infinite measurements
in this work were inconclusive. Evaluation of experimental data, using the WMC
approach were demonstrated. A feat that has not yet been demonstrated by
any other group for a fully scaleable WMC model. These results have been
submitted to a peer-review journal in Paper I.

A new way of measuring the IRF was adapted and showed promising results.
The reasons for the previous way of measuring the IRF not being good enough is
still puzzling. Especially when visually comparing the new and the old IRF side
by side almost no difference in the curve-shapes can be noted but apparently,
during data evaluation the difference is very noticeable.





Chapter 9

Future Work

It is evident that there’s much more work to be done concerning White Monte
Carlo and Time-resolved spectroscopy in Lund, now that a state of the art light
propagation model has been developed and the instruments seems to be working
the way it’s intended. The natural follow up is of course to get back in the clinic
to do new measurements on prostates as this was the entire aim of this work.
However, it would be a shame to leave so many questions unanswered. Below
is a short list of some possible work to do:

• Construct a new IRF measurement chamber. The temporary chamber
used in this work was a major obstacle when doing measurements and
broke several fibres.

• Redo all measurements, especially the fibre-separation series.

• Optimise fitting procedure and make the developed software more user
friendly.

• Investigate the importance of fibre geometry data.

• Investigate the effects of the model errors in the frequency domain. If the
simulations indicate similar errors the developed WMC model could be of
interest to a lot of people.

• Borrow the MedPhot36 phantoms and measure them several times. This
could also provide a good test for how to measure in semi-infinite geome-
tries.

• Try measuring the series using microspheres and molecular dyes to rule
out scattering effects from the ink and to understand the offsets when
extrapolating the scattering series.

• Try obtaining empirical analytical expression for the time dispersion his-
tograms provided by the WMC model to simplify the fitting procedure.

• Further study on temperature stabilisation and further work to make the
system less sensitive to temperature variations.
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Appendix A

Fibre geometry calculations

The WMC simulation program does not in any way consider the fibre geometry,
leaving it for post processing of the simulation data. This is easily done as both
the source and each detection lack spatial size, i.e. they are pure mathematical
points. This means that fibre size’s and irradiance distributions can be emulated
using a simple convolution and multiplication. The idea of convoluting output
data from Monte Carlo simulations have previously been conveyed by Prahl47
and Wang and Jacques.48 However, their calculations differ from what have
been used in this work as individual photon packets are considered.

Throughout this work it is assumed that both the source and detector fibres
has the same radius, denoted Rf and that they both exhibit a uniform near
field irradiance distribution/spatial response, i.e. the source fibre have a top-hat
emission profile and the source fibre, transmit equal amounts of light, regardless
of where on the fibre end the light is incident.

A.1 Calculations for Monte Carlo data evalua-
tion

All the necessary notation for this section is illustrated in figure A.1. To use the
circular symmetry around the source, the overlap function O is integrated over
all angles, θ, removing the need to store any spatial information but Rp for each
photon packet detection event. This also makes use of all photons, improving
overall statistics.

Please note that the source-photon separation Rp is the same distance as the
already scaled r′ in section 4.2.2. The name Rp is used here for clarity as there
are many radii to keep track of.
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Rf

RfRd

O(Rpd)Source
!

Detector

Photon

Rp

Rpd

Figure A.1: An illustration of the source and a single photon packet, before convo-
lution, as points, and after convolution with the source fibre irradiance distribution,
coarse dashed circles. The source-photon distance, denoted r in the rest of this the-
sis is here denoted Rp. Rd is the user supplied source-detector fibre distance, also
illustrated with a dotted circle, and θ is the angle between Rp and Rd. Rpd is the
detector-photon distance and O(Rpd) is the area of overlap between the detector
fibre and the photon (convoluted with the source fibre irradiance responce). Rf is
the radius of both the source and detector fibre.

A.1.1 Normalised Overlap function

The normalised overlap function for two circles of the same size at distance Rpd
from each other is:49

O(Rpd) =
2

Rf
2π

Rf 2 arccos
(
Rpd
2Rf

)
− Rpd

2

√
Rf

2 − Rpd
2

4

 (A.1)

A.1.2 Rpd(θ)-function

For a single photon packet detection event, i.e. Rp and Rp are fixed, Rpd does
only depend on the angle θ and the relation can be expressed:

Rpd(θ) =
√
Rp

2 +Rd
2 − 2RdRp cos(θ) (A.2)

=
√
e− f cos(θ) (A.3)

where e and f are constants.

Using the small angle approximation:

cos(θ) ≈ 1− θ2

2
,
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Eqn. A.2 can be written as:

Rpd(θ) =
√

2RpRd

√(
R2
p +R2

d

2RpRd
− 1
)

+
θ2

2
(A.4)

= g

√
h+

θ2

2
, (A.5)

where g and h are constants.

A.1.3 Evaluating integration limits

Eqn. A.1 is only valid in the 0 ≤ Rpd ≤ 2Rf interval. Hence the integration
limits θ0 must be found. θ0 is the angle where the photon and detector circles
tangent each other, i.e. when Rpd = 2Rf This also explains the Rd − 2Rf ≤
Rpd ≤ Rd + 2Rf data extraction limits in section 4.2.2.

θ0 = arccos
(
Rp

2 +Rd
2 − (2Rf )2

2RpRd

)
. (A.6)

A.1.4 The integration

With the above equations in mind, the weight originating from the fibre geom-
etry is:

wfibre =
∫ 2π

0

O (Rpd(θ)) dθ = 2
∫ θ0

0

O (Rpd(θ)) dθ (A.7)

This integral can be solved numerically but a faster way would be to find an
approximate analytical solution.

Analytical solution

The first step in finding an approximate analytical solution is to approximate
Eqn. A.1 with a third order polynomial:

O(Rpd) ≈ aRpd
3 + bRpd

2 + cRpd + d. (A.8)

The coeffiecients a, b, c, and d, depend only on Rf and can be calculated
numerically.

Inserting Eqn. A.3 and Eqn. A.5 where necessary into Eqn. A.8 yields:
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2
∫ θ0

0

O (Rpd(θ)) dθ ≈ 2a
∫ θ0

0

g3

(
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θ2

2

)3/2

dθ (A.9)

+ 2b
∫ θ0

0

(e− f cos(θ)) dθ (A.10)

+ 2c
∫ θ0

0

g

(
h+

θ2

2

)1/2

dθ (A.11)

+ 2d
∫ θ0

0

dθ (A.12)

The two integrals, (eqn .A.10) and (eqn. A.12)), are easily solveable. The other
two integrals require the small angle approximation to be easily solvable and
are thus presented in this form.

The solutions to the four integrals are presented below:∫ θ0

0
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2
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dθ =
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√
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+
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√
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dθ = θ0

This sums up to:

wfibre = 2
∫ θ0

0

O (Rpd(θ)) dθ ≈ (A.13)
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1
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A.1.5 Spatial binning

Even if the analytical solution is faster than a numerical integration of Eqn. A.7
the analytical expression still has to be evaluated for each photon packet, a task
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that does take some time. To solve this problem, a spatial binning of the photons
is suitable. This is done by dividing the interval Rd − 2Rf ≤ Rpd ≤ Rd + 2Rf
into several smaller interval of width ∆R,

Rd − 2Rf + n∆R ≤ Rn < Rd − 2Rf + (n+ 1)∆R.

The weight for each interval, wn,fibre, can be calculated outside of the curve
generation script (comp. figure 4.3). Since this calculation only has to be per-
formed once the number of intervals can be very large without any performance
loss and increased accuracy. During the data weighting procedure the each pho-
ton packet is assigned the fibre geometry weight according to which interval
its source-detection event distance falls into. It might seem as this makes the
analytical solution presented above obsolete but for it might prove useful if, one
day, the source-detector separation from a measurement with known optical
properties has to be evaluated.


