
Scanning knife-edge method for
laser plasma size measurements

Diploma paper by

Johan Anderberg

LRAP-165
Lund, September 1994

Abstract

In this Diploma paper the knife edge method is developed to measure
the size of a small laser-plasma x-ray source. The method is
theoretically discussed, showing that very high spatial resolution
(~2 !J.m) is feasible. Accurate computer control of a DC motor for
knife edge positioning and simultaneous data acquisition has been
implemented. Experimental measurements on small (20-25 !J.m)
water-window laser plasma x-ray sources demonstrate the method.
Compared to other x-ray size measurement methods, the simplicity
and high resolution of the knife edge method make it attractive for
fast 1-D measurements of plasma size. 2-D imaging can be performed
using tomographic methods.

Table of contents

TABLE OF CONTENTS ... I

1 INTRODUCTION ... 3

1.1 0VERYIEW .. 3
1.2 LASER PRODUCED PLASMA (LPP) 0 ooooo.oo o• 0 000000 ooo.oooooo ooo•o··········o o. o •• o• •••••••••• o o•··o··· 3
103 X-RAY EMISSION oo 0 .. 000o0 o oo 4
1.4 X-RAY MICROSCOPE SOURCE- DROPLET TARGET .. 5
1.5 SIZE MEASUREMENT- SMALL SOURCES ... 6

2 THEORY .. 7

2.1 SCANNING KNIFE EDGE METI-IOD .. 7
2.2 OTHER METHODS .. 11
2.3 CONCLUSIONS ... 13

3 COMPUTER CONTROLLED POSITIONING OF KNIFE EDGE 14

3.1 HARDWARE .. 14
3.2 SOFIWARE .. 15
3.3 How TO MEASIJRE ... 17

4 EXPERIMENTS ... 19

4.1 EXPERIMENTAL ARRANGEMENTS FOR LPP .. 19
4.2 RESITLTS ... 21

5 CONCLUSION/DISCUSSION ... 22

6 ACKNOWLEDGEMENTS .. 23

APPENDIX A ... 24

A.1 CLASS MOTOR ... 24
A.2 CLASS COMPORT .. 25
A.3 CLASS MENU ... 25

APPENDIX B ... 27

8.1 HEADER FILE 'KNIVMENY.H' ... 27
8.2 MENU FILE 'MENU.CPP' ... 27
8.3 MOTOR FILE 'MOTOR.CPP .. 34
8.4 COMPORT HEADER FILE 'COMPORT.H' .. 37
8.5 COMPORT FILE 'COMJ'ORT.CPP' .. 41

APPENDIX C ... 44

APPENDIX D ... 45

REFERENCES .. 47

1 Introduction

In this Diploma paper, the knife edge method for measurements of
the size of a small soft laser-plasma x-ray sources, is investigated.
Sect. 1 provides a background to x-ray emission from laser-produced
plasmas. In Sect. 2 the knife edge method is theoretically described
and compared to other size measurement methods. In Sect. 3 the
equipment of the knife edge method is described and in Sect. 4 the
experiment and results are discussed.

1.1 Overview

The source of a soft x-ray microscope must have a high brightness.
Since brightness is defined as the number of photons emitted per
sqlm2·BW, the size of the source is important. Thus, exact size
measurements are important. Many methods are available, and each
have their advantages, but the knife edge method has a considerable
high resolution and is very simple.

A brief introduction of laser produced plasma and the soft x-ray
microscope source is made in this section as well as size measure­
ments.

1.2 Laser Produced Plasma (LPP)

Plasma is regarded as the fourth state of matter and is characterised
as an assembly of ions and electrons. In its simplest form it is a state
of ionisation, either partial or complete, but it retains its overall
neutrality. There are five main atomic processes in plasmas. In
collisional excitation or ionisation an electron either excitates an ion
or neutral atom or has enough kinetic energy to remove another
electron from an atom. Photo- excitation and ionisation work both in
the same way but they use photons instead of electrons.
Bremsstrahlung involves an encounter between an electron and an ion
and may be regarded as in a continuum state of a charged atomic
system. In the inverse process a photon is absorbed by the electron-ion
system and the electron is lifted from a lower level in the continuum
to a higher one. Both Bremsstrahlung and the inverse one are of great
importance in laser produced plasmas.

The basic features of LPP1 are high density, very high temperature
and that it lasts mainly the same time as the length of the laser pulse.
In Fig. 1.1 (a) a cross-section of a plasma is shown. Figure 1.1
(b-d) displays important plasma parameters. The laser radiation field
penetrates a very short depth in a metal but the strength of the field is
~~ufficient to result in a powerful interaction with conducting electrons
so that heating, evaporation and ionisation occur rapidly. This is true
for a irradiance of 1016-1020 W /m2• Isolators that are transparent at
optical wavelengths have a much higher ionisation potential.
Nevertheless free electrons are produced. When the initial electrons

3

are formed, the laser energy starts being absorbed and a thin sheet of
plasma is created near the smface. Laser radiation is now absorbed by
inverse Bremsstrahlung. At the beginning the plasma frequency is
much smaller than the laser frequency, ~)<<ro, and the rate of
absorption depends on the square of the electron density, ne2• The
absorbed energy causes an increase in electron temperature which
produces further ionisation and a consequent increase in ne until ne
reaches the critical density nc. The surface then becomes opaque to
incoming radiation and in the layers just in front of the surface the
absorption becomes very large. This does not stop the plasma growth.
Because of the heating which follows the absorption of energy by
inverse Bremsstrahlung the plasma is driven away from the target
surface and ne decreases resulting in a laser absorption closer to the
target. These two absorption processes are self regulating. Altogether
it results in a heating and expansion of plasma throughout the pulse.

1.3 X-ray emission

There are three processes that result in a radiative emission from a
plasma2 • The two which involve free electrons, Bremsstrahlung from
hot electrons colliding with ions and recombination radiation, which
give a continuous radiation spectrum. The third is a bound-bound
process, radiative decay of excited
ions, that gives line radiation. The
relative contributions of these
processes depend on the target
material, power density of the laser
pulse and the spectral region to be
studied. Some general aspects can be
said about the total spectrum. Low
atomic number target with moderate
plasma temperatures (T. = 10-100 e V)
is dominated by line radiation. With
the increase of temperature ions are
stripped of their electrons. This
increases the Bremsstrahlung. For
higher atomic numbers the
dominating process is recombination.
The emission is then quasi-blackbody
with spectral structure resulting from
the free-bound and bound-bound
transitions.

Different regions of the X-ray
spectra originate predominately from
specific zones of the plasma. Figure
1.2 show a typical x-ray spectrum
from a plasma where the different
zones are marked. Starting from low
energies, X-rays below 1 keY are

4

Shock Deflagation
front front

< (a)

lrradiance ,

Target Plasma

::t----~ {b)

>Z

(c)

>Z

(d)

:>Z

Figure 1.1 Some plasma
features along the irradiation
axis.
a) A cross-section of a
plasma.
b) The electron density.
c) The electron temperature.
d) The plasma density.

emitted primarily from the over dense region of the plasma. The
subkilovolt spectrum exhibits sharp structure by the final state shell
designation. X-rays in the kilovolt region are mostly emitted from the
corneal plasma zone. Bound- bound lines and bound-free continuum
from highly charged ions are the principal emissions. There are K, L
and M-shell spectra depending on where the electron vacancy is. The
X-ray spectrum above about 10 ke Vis generally dominated by
Bremsstrahlung from superthermal electrons.

1.4 X-ray microscope source- droplet target

Biological cell investigation may be the most important field for the
X-ray microscope. With visible light, structures below 0.2).lm can not
be observed due to diffraction. An electron microscope has a
resolution of 0.1-10 nm, but the cells have to be dehydrated, thinly
sliced and stained with contrast elements. With a soft x-ray
microscope3 , a resolution of~ 10-20 nm is possible and preparations
are not needed. Of course the cell will not live for a very long time
depending on how long it is exposed to radiation, but the advantages
are dominating.

The soft x-ray region is roughly defined as the spectral range
between 0.2 nm and 30 nm. The most important region for
microscopy is called the 'water window'. Between the oxygen
absorption edge at 2.3 nm and the carbon absorption edge at 4.4 nm
the absorption coefficient of water is 10 times smaller than that of
protein. This gives a natural contrast for biological samples.

Today, the most common x-ray source is synchrotron radiation
which uses a bending magnet or a undurlater at a synchrotron that
emits broadband radiation in the soft x-ray regime with great
brightness. However, to get a tabletop soft x-ray microscope one
needs a much smaller machine. A laser produced plasma source is
compact, has high brightness and high spatial stability. However, most
targets used for the source are solids, which create a big problem
dealing with debris. The majority of the debris is hot ions and larger

!
/ K, Lor M-band from

interaciion region

..; T erma! x-rays

.2 from over dense
.s
.£ plasma

Free-bound and
free-free radiation
from corona

I
Photon energy

Bremsstrahlung
from supertermal

eOctrons l
~

Figure 1.2 Typical x-ray spectrumfrom a plasma disk reaching from
100 eV to 100 keV. Different energies emitji-om different zones in the
plasma. (Adapted from Ref 2)

5

particles. These particles most certainly will damage any optical or x­
ray component that is close to the plasma. There are ways of reducing
the effect of the debris but it also often reduces the emitted x-ray
intensity. A better way is to redu·ce the production of debris which can
be done with a droplet target4

•

In this experiment a target of small ethanol droplets is used, so small
that the focused laser beam will efficiently evaporate and ionise them.
Because of the low debris production and that the source is in free
space, all x-ray components may be placed much closer to the source
and radiation is available in almost any direction in space. Two
conceivable fields where improvements can be made are within high
resolution imaging of wet biological objects and narrow-linewidth
semiconductor processing.

1.5 Size measurement - small sources

To determine how efficient and useful the source is, one needs to
know the extension of the x-ray emitting part of the plasma. In this
case we used the knife edge method5 due to its simplicity and very
high resolution. Like the x-ray components the knife-edge may be
positioned close to the source and it will not interfere with the laser
beam. This gives a high resolution and the alignment is easier when
small distances to the plasma are necessary. In the experiment the
distance between plasma and knife-edge was 4 mm and between
knife-edge and monochromator 180 mm resulting in a theoretical
resolution of -2).lm. The method is one dimensional but can be
extended to two dimensions with tomographic techniques6 • A
disadvantage is that the measurement takes quite a long time.

Other methods available are the hole camera and the zone-plate
coded imaging method7 • The hole camera is of course two
dimensional and fast but the resolution is poor if the geometrical
arrangements are the same as other methods. It is hard to position the
pinhole close enough to the plasma to get a good resolution. The
zone-plate coded imaging method (ZPCI) is attractive in a few ways.
The resolution can be up to -8).lm and the method is two dimensional.
The signal to noise ratio is excellent because of the zone-plate camera.
Problems arise with the object distance. The zones-plates are often
destroyed near the object. Another disadvantage is difficulties in the
absolute calibration of the data reconstruction.

6

2 Theory

The scanning knife edge method will be described in detail for
measuring the size of the source. Other methods will be mentioned in
comparison to the first.

2.1 Scanning knife edge method

The most common applications of the knife edge method is for
measurements of Gaussian laser beam. This application is important
in any experiment where the focal point intensity of a laser beam
needs to be determined.

The basics of the theor/ is the Fresnel diffraction because we are
dealing with a near-field region, which cancels some approximations
within the Fraunhofer diffraction. Therefore we must go back to the
Huygens-Fresnel principle. The Huygens's principle is:
Eve1y point on a primary wave front serves as the source of spherical
secondwy wavelets, such that the primary wavefront at some late time
is the envelope of these wavelets. Moreover, the wavelets advance
with a speed and frequency equal to those of the primary wave at each
point in space.
Fresnel continues and says:
The amplitude of the optical field at any point beyond is the
superposition of all these wavelets if we consider both amplitude and
relative phase.
With this in consideration we shall derive the Fresnel integrals and use
these first on a rectangular aperture and then on a semi-infinite opaque
screen, which is the knife-edge. Observe Fig. 2.1 where S is the
monochromatic point source and dS is an area element at some
arbitrary point A. The contribution to the optical disturbance at P

p

Figure 2.1 A monochromatic source and a picture plane. 1 n betvveen
there is a rectangular aperture with some arbitrary point A.

7

from the secondary sources on dS has the form given by

K(8)c
dEP = 0 cos[k(p+r)-wt]dS,

prA

where p is distance between the source and the aperture, r is the
distance between the aperture and picture plane, and A is the
wavelength.

(2.1)

The obliquity factor, K(8), is set to one. Let 1 I pr = 1 I para, because

the dimensions of the aperture are small in comparison to distances
SO and OP. Doing a more sensitive approximation than that used in
the Fraunhofer, analysis the disturbance at P in the complex
representation is

-iror

E toC IY' Ic' ik(r+r) d , = e dv z.
I p 1· '\ V c ~ (I (1/\., . I I

(2.2)

We now introduce the dimensionless variables u and v defined by

u=y
2(pll + 'il)

AP"'i,
r=z

Utilising the new variables, we arrive at

2(Po + 1i1)

AP"'i,

E o i•ro+r0 -ull - nr;u·;2j · mv/2d £ ['·() l J"' . ' J''• . 2 = e e cu e v.
P 2(Po + 1i1) 111 ,.1

(2.3)

(2.4)

The integral can be evaluated using the Fresnel integrals, which are
defined as

<D(w) = r cos(m·v' 2 I 2)dw', \fl(w)= rwsin(rcw' 2 12)dw', (2.5) Jil

where w can either u or v. The term in front of the integral represents
the unobstructed disturbance at P divided by two, E" /2. If we change

the exponential function to its form of cos and sin, the Fresnel
integrals can be used, and be entered in Eq. (2.4). The disturbance at P
is then written as

E
E = -" [<D(u) + i\fl(u)]"' [<D(v) + i\fl(v)]v' (2.6)

p 2 UJ VI

An easier way to demonstrate the function within physics to
calculate the irradiance, which is

Ip =I; {[<DCu2)-<DCui)r +[\flCu2)-\fl(ui)r}

X {[<!> (V2) -<!>(VI) r + [\}1 (V2) - \}1 (VI)]2 }

(2.7)

It is now very simple to change the rectangular aperture into a semi
infinite opaque screen. We just set z2 = yi = y2 = oo and the irradiance
becomes

Ill { [I] 2 [I J 2 } I =- .,--<D(v) + .,-\fl(v)
p 2 . I - I

(2.8)

This is also the irradiance distribution of a knife edge with a point
source theoretically. In fact neither source or detector is small enough
to be represented as a point but they may be simulated as many points
in a row. The slit of the detector has a certain extension. This slit
width is not a serious deviation because the irradiance distribution is
often much larger than the slit. More troublesome is the source
extension as it turns out to be a incoherent light source instead of a
monochromatic one. Incoherence makes the fringes of the irradiation
distribution to smooth out and the falloff becomes more gradual, as
seen in Fig. 2.2.

To calculate some kind of resolution of the method we shall consider
the two-point resolution. The comparison criterion rests on the ability
of the respective systems to resolve two closely spaced point sources.
This has been done by summarising two inadiance distributions with
different displacements. ln Fig. 2.3 a characteristic extra knee can be
seen and if we differentiate the function, two peaks evolve. These two
peaks conespond to the two sources. As we move the two sources
closer to each other, the knee will gradually move to the left and

\/\ ...
Cohereni

Incoherent - - - - -

-3 -2 -1

Intensity (arb. units)

1 5 I
1.251

'0-. 75

0.5 '

0.25

0 2

Figure 2.2 Theoretical intensity responses of coherent and incoherenT
systems to a knife-edge object.

-1.5

Figure 2.3 Two summarised irradiance distributions with different
displacements and the differentiated function. Coherent and
incoherent light.

become smaller. The peaks will then be lower too. When one can't
detect the knee nor the peaks, the limit of the resolution is reached.
This has been done for a numerous geometrical arrangenients. For our
experimental arrangement (cf. Sect. 4.1), where the knife-edge to
plasma distance was 4 mm, the resolution was theoretically
determined to ~ 2 pm.

s

Figure 2.4 The hole camera imaging system. A monochromatic source
and a picture plane. Betv.Jeen there is a pinhole aperture. Distance L
is much lonr;er than distance l.

10

2.2 Other methods

Hole camera method

This very simple imaging system builds its theory on Fraunhofer
diffraction. Figure 2.4 shows the geometry of the system. Under
Fraunhofer conditions the hole diameter, d, is much smaller than the
distances SO and OP. This means that the optical waves are plane
with good approximation when they arrive to the hole. The irradiance
distribution is described as

I= £~A 2 [211 (kdq I R)l 2

2R 2 kdq I R '
(2.9)

where JI(kdq!R) is a Bessel function and A is the aperture area. R is
assumed to be essentially constant over the pattern. Because of the
axial symmetry, the towering central maximum corresponds to a high
inadiance circular spot known as the Airy disk. With good
approximation one can get an optimal hole diameter by assuming that
L is much larger than /. The diameter of the spot is

d = ~2.44ALL.
L+l

(2.10)

We can use the two-point resolution here too, or the so-called
Rayleigh criterion of resolution. Using this, the minimum resolvable
separation of the image is

8 = 1.22 "-1.
d

(2.11)

This means that two incoherent point sources are just resolved if the
centre of one Airy disk is separated from the other by the distance to

0.9

0.8

~ 0.7
= =
-e 0.6
.~

0.5
~
en

0.4 =
~

0.3

0.2

0.1

0 "

Figure 2.5 The solid line shows the intensity distribution of a pin
hole. The dashed line show the Rayleigh criterion of resolution..

11

Source

Reconstruction
light

>

Shadowgraph

Code aperture Shadowgraph

First order image

Figure 2.6 The principles of Fresnel zone-plate coded imaging.

A)

B)

A) Each zone plate shadow uniquely characterises the position of its
associated source point.
B) Original three dimensional source distribution is reconstructed
from the shadowgraph.

the first zero of the Airy disk. See Fig. 2.5.
The advantages of this method is that we get a 2-D image directly

and that there is no chromatic aberration. However, the resolution is
poor and different wavelengths are hard to separate. Even if the hole
is positioned very close to the source (e.g. 5 mm), resolution better
than ~6 1-JITI can't be obtained for waterwindow wavelengths and ten
times magnification.

Zone-plate coded imaging (ZPCI)

The method uses a shadow camera with a Fresnel zone-plate coded
aperture7• As shown in Fig. 2.6, shadow graphs are first recorded
photographically. The source pattern is then reconstructed optically.
Some methods have a package of multi-layer filter film to enable
many different spectra. The wavelength must be sufficiently short so
that a ray optics approach is satisfied and sufficiently long for
appreciable attenuation in the "opaque" zones of the coded aperture.
ZPCI has a much better radiation collection efficiency compared to
the hole camera of the same resolution, resulting in a better signal to
noise ratio (S/N). Although the ZPCI imaging technique as such
deteriorate the S/N, for small sources it is still better due to higher
light collection efficiency. A resolution of ~8)lin has been recorded.
A great disadvantage is the damage to the fragile zone-plates due to
the close distance to the source. The two-step process and the
variability in the reconstruction process of zone-plate images make ir
very difficult to calibrate in absolute numbers.

12

2.3 Conclusions

A hole camera gives a 2-D image directly but since it is impossible
to get close to the source the resolution is limited to ~6 f.IITI, which is
an optimistic calculation.

The ZPCI method also gives a 2-D image directly and has a better
radiation collection efficiency but sometimes suffers from chromatic
aberration. This is unfavourable when the source has many spectral
lines. The Fresnel zone plate is very fragile and can't be close to the
source. Absolute calibration of the data is difficult but the resolution
can be up to 8 pm.

The knife-edge method is slow and 1-D. 2-D imaging is possible
using tomographic techniques6• However, the method gets you close
to the source and has a high resolution. The equipment is also small
and compact. For our measurements these criterion are the most
important.

13

3 Computer controlled positioning of
knife edge

There are three important parts dealing with the source
measurement. First we want to position the knife edge accurately and
then we want to make the data acquisition. A computer program, the
third part, will control this. We will put some demands on positioning
of the knife edge to guarantee the best result of the measurements.
The positioning resolution should be 0.1 - 0.2)Jill and the total range
where the knife edge movement should be a few centimetres. Long
movements are therefor important too. The knife edge positioning was
implemented with a computer controlled DC-motor. Section 3.1
describes the hardware and Sect. 3.2 outlines the software. In Sect. 3.3
an description of the measurements and operation modes is made.

3.1 Hardware

There are of course many ways to implementate this construction.
We have chosen five essential components. As shown in Fig. 3.1, for
the motor controlled part they are: a PC, a PC multi-lab card, a home­
made electronic unit, a DC motor. For data acquisition a boxcar
integrator with a detector which is displayed in Fig. 3.2.

The PC can be of any kind with a 386 processor or better. It is
important that it has an extra serial port and that there are slots for
additional cards.

The PC multi-lab card (PCL-812) is a multifunctional analogue
and digital I/0 card with five different measurements: AID
conversion, 0/ A conversion, digital out- and input and
counting/timing. For our purpose we needed an analogue output to
control the speed and voltage of the motor and a digital out- and input
connection to count distance pulses from the motor and control the
motor direction. Of course, the card is too powerful but it gives the
opportunity to add a few control function in the future, for example an
additional motor or a more complex control.

/

a

IIIII
IIIII ..

b

@

c d

Figure 3.1 The PC to motor control Line. a) The PC (386). b) The PC
multi-lab card inside the PC. c) The motor control unit with amplifier.
d) The Encoder Mike DC- motor.

14

d

c

a b

Figure 3.2 The data acquisition control line. a) The PC (386). b) The
boxcar integrator and computer interface. c) The detector with x-ray
monochromater. d) The Nd:YAG laser with trigger.

The DC motor is a miniature motorised translator called Encoder
Mike™ (Oriel). It has a travel length of 25 mm and a <0.1)Jm
resolution just as required. An optical shaft encoder provides
information with a resolution of 0.1)Jm. Two optical sensors each
provide ten signal pulses per micron of spindle travel. The motor may
be operated at pressures around 10 6 ton which is important for our
experiments.

The home-made electronic unit between the PC and the motor has
been built because the PC can't support the motor with enough power.
The analogue signal from the PC is amplified from the range 0-5 V to
0-12 V with the DC motor control unit. To switch the direction of the
motor a relay is used which is controlled by the direction signal. The
signal which indicates each 0.1)Jm step is a short pulse. It is sent
through a Schmith-trigger to sharpen it and make easier for the PC to
read it. For details see Appendix D.

The data acquisition requires a boxcar integrator (Stanford
Research System) with a computer interface module (SRS 245).
Signals are sent by an x-ray detector to the boxcar integrator which
treats the signals and sends them over to the interface. The integrator
is externally trigged at the same rate as the laser, that is~ 10Hz.
Signals are often averaged from 3 up to 30 signals. The analogue
input to the interface can then be read by the PC via a serial port. To
communicate with the SR245 we use a high level language with
ASCII characters. The most useful feature is its ability to
independently read the input ports and store a series of data points just
by sending a command. Once a scan has been con1pleted you may
read the stored values with another command. Commands and data are
sent between the interface and the PC serial port with a rate of 19.2
Kbaud and everything is easily guided by a computer program.

3.2 Software

The computer program is written in Borland C++ for two reasons.
First of all C++ is a object oriented language and secondly because
C++ is the most common language in the industry at present time.
C++ is a development from the C language, in that way a C program
may work in a C++ environment. The different objects in C++ are

15

called classes and they
work as independent
programs. The
difference and the big
advantage is in the
program structure. InC
or Pascal you write the
pro gram from top to
bottom but in C++ you
write different classes.
In a class you describe
the object, what it can
do and how it
communicates with
other classes. Another
big advantage is that

•

Figure 3.3 The screen with menu, position­
and diagram-window.

you may use the same name for a function or a variable in different
classes without any danger of name conflicts.

When I started writing the software it was too much work making it
in a Window environment compared to today's version. That is why it
is written in DOS but I tried to make the screen similar to a window
system as seen in figure 3.3.

The program contains three classes: Menu, Motor and COMPort.
Both Motor and COMPort may work separately but the Menu class is
dependent of the other two, Here follows a short description of each
class. For details see Appendix A.

COMPort is basically a control program for a serial port. With it we
can of course open and close a certain port and set parameters like
baud rate, parity and stop bits. The main functions are writing and
reading ASCII characters through the port and both single characters
and strings are allowed. It is convenient to check if the
communication works with another program (e.g. Terminal) before
using COMPort.

Motor is created to control the DC motor by using the Multi-Lab
Card (PCL-812). There are a few different ways making the motor go
back and forth and the easiest way is just to press a button. By doing
so you send a signal to rise the motor voltage as long as the button is
pressed. This method has no precision what so ever. For that you need
a scale to show where the motor is. There is a relative scale where you
set the zero by yourself, but an absolute scale is not functional because
there is no good absolute zero. You can reset the scale whenever you
want. For a more precise movement you can either write the position
you want to go to or just write a distance. Naturally it works both
forward and backward. The signals sent to the motor are formed as
pulst;S where you can alter voltage ar.d pulse length. ~fhis is especially
used when the motor move its shortest step. Both voltage and pulse
length is increased slowly until the program detects a movement via
the encoder signals.

16

Menu is the class that unifies everything. It opens a motor object
and uses its facilities. Most important however, Menu describes the
border between PC and user, the appearance of the screen, the
interaction with the operator, how data should be presented ect. There
are three different windows; menu window, position window and a
diagram window. The purpose of the program, the different modes of
operation, are implemented here and will be described in the next
section.

3.3 How to measure

There are four modes of operation that deals with the motor
movement and one that makes a complete measurement. The first four
are essentially what the motor can do. Move it by pressing a button
and change the direction with another. Type a position in microns
where you want the motor to move to or type the distance and then
decide in what direction. Finally there is a reset operation of the scale.
However, most important is the automatic scanning operation when
you want a real measurement. Choosing this you will be asked to type
a few parameters that describes the scan. First, the full length of the
scan and then how long each step between the data acquisitions should
be. The step can be from I to I 000 microns or you can choose
'shortest step· which is O.I-0.3 microns. There is a scale factor to
assure that the graph won't reach outside the diagram (maximum
intensity) and finally you may want to make an average of many data
acquisitions.

The loop procedure starts with a motor movement, defined by the
operator, and a data acquisition from the x-ray detector. Both motor
position and intensity data are stored in two separate vectors and they
are then displayed in the position window and in the diagram. A new
motor movement starts and the loop continues until the end of the
scan. The vectors may be stored on data files.

How correct are the motor movements? The answer to that is
displayed in Fig. 3.4. The movements have been checked with a
Heidenhain MT l2B micrometer which has a resolution of 50 nm.
The worst results were made with many 'shortest step' operations in a
row as shown in (b). This is because the error originate from starts
and stops where a encoder pulse from the motor may be miscounted,
i.e. bit errors. Never the less the error is <I%. As seen in Fig. 3.4
(c-d) the results are much better for longer distances with few stops.
In Appendix A the exact routines for movements are explained.

I7

40 _ _r-
E" 35
-='=' 30
c

25 "' E a) "' 20 -t-+ >
0
E 15

iO ...,...,.

5
0

+

0 100 200 300 400
motor pulses

40

39 +
E" + ... -
-='='
= 38 + "' b) E

"' 37 - + >
0 +-E

36 +
+ +

35
350 360 370 380 390 400

motor pulses

45
40 ,--;t

35 +'

~ 30
.:f-,

+'
~· 25 --+ c)
E 20 -.+
<1> +++' > 15 0

E 10 +~:+

5 +

0
0 100 200 300 400 500

motor pulses

10000

~

~ 1000 d)

"' >
0
E

100 IB'

1000 10000 100000
motor pulses

Figure 3.4 Diagrams of motor pulses (one pulse each 0.1 pm) versus
the actual movement of the motor in microns. a) Different number of
'shortest step' from I to 200 steps. b) A section of the first diagram
where all points are from 200 'shortest step'. c) Longer movements
between 5 and 40 microns. d) Even longer movements up to one
centimetre.

18

4 Experiments

4.1 Experimental arrangements for LPP

The experimental arrangements for the laser produced plasma soft x­
ray droplet source4 is shown in Fig. 4.1. Ethanol droplets come from a
10).lin diameter vibrating capillary ink jet printing nozzle with a
frequency of~ 1 MHz. The speed of the droplets is ~50 m/s and the
separated distance is ~50).lin. The laser is a frequency-doubled
active/active/passive modelocked 10Hz Nd:YAG laser which
produces~ 140 ps pulses with 70 mJ/pulse at A-=532 nm. With a 50
mm lens the intensity in the focus reaches ~4·1014 W/cm". The x-ray
source is spectrally characterised with a grazing incidence
monochromator (Minuteman Lab. Inc.) at 90 degrees angle to the
incident laser beam. Figure 4.2 shows a spectrum of a droplet source.
The vacuum chamber operates at ~I 04 mbar pressure and is
continuously pumped because a part of the ethanol droplet evaporates
before entering the liquid nitrogen trap.

The knife edge method was used to determine the size of the plasma
source with the DC motor assembled as displayed in Fig. 4.3. On the
motor an ann and a razor blade was mounted so that they did not
interfere with the laser beam. The razor blade was levelled with the 20
IJITI slit on the monochromator. A second 1 mm slit was positioned
perpendicular and just in front of the entrance slit, to maximise

PC
Nd:YAG

Trigger Amplnier
electronics

Oscillator
Boxcar

integrator

Vacuum chamber Liquid N 2 trap

Figure 4.1 The experimental arrangements for the LPP soft x-ray
droplet source. There are fv.;o motors inside the chamber. One that
orientates the laser focus and one to move the knzfe-edge.

19

1 1.5 2 2.5 3 3.5 4 4.5

Wavelength (nm)

Figure 4.2 The spectrum of the droplet source within the soft x-ray
region. (from Ref 4)

resolution. Should the knife edge have an angle compared to the
entrance slit, the resolution would deteriorate. The distance between
the plasma source and the knife edge was measured to be 4 mm and
180 mm between knife edge and slit. Detection of x-ray was made
with the monochromator adjusted to x-ray flux at 3.374 nm (C VI:
2P112, l s-2p). To optimise the intensity on this line we had to
synchronise a few parameters to get a stable source. Another motor
was used to move the laser focus so that the plasma stays within
focus. The nozzle must be in perfect a lineament of the
monochromator. The size of the x-ray plasma sourc~ could now be
measured.

The software program was started and the source was found by
moving the motor until the intensity dropped on the box-car
integrator. Numerous scans were made with different resolutions and
the results of the experiments are shown in the next section.

Laser beam B20pmsl~
'
'

, 'X-ray
monochromator

Boxcar

PC

Figure 4.3 The special arrangements for the knife-edge positioning.

20

4.2 Results

The first series of measurements were made without the 1 mm
horizontal slit which results in lower resolution but gives a stronger
signal. The distance between the nozzle and the source was 6 mm.
Both the boxcar and the program was set to average ten shots per data
point and each knife edge movement was 10)Jm. In this way the
effects of fluctuation of the source were lowered. In Fig. 4.4 (a), three
measurements have been averaged together to get an even smoother
graph. A fast way to calculate the diameter of the plasma is to take the
50% range with the steepest slope. This gives the size of the central
core plasma. The size was ~24)Jm.

The last series were made with the 1 mm slit and the distance
between the nozzle and the source was 12.5 mm. Each step was set to
be 2)Jm and each data point consisted of 15 averaged shots. Tree
graphs have been averaged together but because of the higher
resolution the fluctuations are greater, as shown in Fig. 4.4 (b). At the
end of the graph there is a 'tail' due to excitation of a gas surrounding
the core. The central core plasma size was ~ 25)Jm. A more accurate
measurement of the x-ray core size require Abel inversion4 • This
results in slightly smaller diameters for the kernel which emits 50% of
the photons.

"' = =

"' =
~

0

~ 60~m)'

I I I 50%
' ' '

. :' ."~m •• H • • ·r:::
---------'-----'-----'------ --

- - - - - - - -' - - - - - '- - - - - -' - - - - - - - j 0~~

20 40 60 80 100 120 140 160
Distance (~m)

I 1 90% .- - - - : - - - - - - - -, - - ~- - -

; Best
i 50%

- - - - - - - - - - - ,- - - - - - - - - - - -, - - -~- - -

' ' 10% -----------------------
' ' ~--r--;---+-_,__-+--~--+-~--~~~

0 W ~ ~ ~ 100 1W 1~ 1~ 1~ ~

(a)

Distance (~m) (b)

Figure 4.4 Knife edge measurements. The central core plasma size is
taken as the 50 % intensity range where the slop is steepest.

21

5 Conclusion/Discussion

The knife-edge method was used to determine the size of a laser
plasma soft x-ray droplet source. A series of measurements has been
performed, resulting in a ~25 11m x-ray source size. The method has
been shown to have a theoretical resolution of ~211m for the geometry
in this case. The knife-edge was controlled by a computer via an
amplifier. To assure a good mechanical resolution, up to 0.1 !Jm, of
the motor a special software was created. The shortest possible
movement of the motor was 0.1-0.3 !Jm. The software also took care
of the data acquisition from an x-ray detector. A graph was displayed
showing the movement of the motor versus the intensity from the
monochromator.

The simplicity, high resolution and the ability to get very close to the
source makes this method favourable. The hole camera yields lower
resolution although it is fast and 2-D. The zone plate coded imaging
method has a fairly good resolution but the zone plate is fragile and
the extension in space does not fit into the experimental arrangements.

Further work will be performed to produce a tomographic image of
the source. Using two different motors with a knife edge on each will
do the job, and the software is easily extended to control two motors.
A simpler and cheaper way is to use the same motor twice in different
directions.

22

6 Acknowledgements

I am very grateful for all the help that I received from the people
working at the Division of Atomic Physics, Lund Institute of
Technology. Especially I would like to mention the following:

Hans Hertz, my instructor and inventor of the project, who supported
and helped me all through the project. He had a special ability of
detecting and giving possible solutions to all the problems that I was
stuck into. The project has been very varied, extending over many
technical fields, and in that way been very educating.

Lars Rymell, my co-instructor, who helped me install the knife edge
method into the laser-plasma vacuum tank system and made the
experiments possible.

Ake Bergquist, the electronic guru, who built the Motor Control Unit
and helped me with connections between PC and motor.

Bertil Hermansson, the computer guru, who made the PC work at all
times.

Lars Malmqvist, Jorgen Larsson, Anders Persson and Roger Berg
who helped me with software problems.

23

Appendix A

A.l Class Motor

The motor class controls the motor and make use of every feature
the motor has. You may position the motor in many ways with
different demands on accuracy. The positioning is done relative a
scale with the same resolution as the pulses given by the motor. A
description of all class variables and functions here follows.

Class variables

base is the base address on the PC-LabCard to which you add 0-15
depending what function you want.
volt is the voltage output on the analogue connector.
Max Volt is the maximum voltage allowed.
direction can either be forward or backward and sets the direction
of the motor.

Class functions

Motor is the constructor of the object. Here the class variables are
defined and initialised. The direction and its address is set to forward.
In Set Voltage the voltage is set. Decimals are allowed but any input
over maximum will be set to zero.
In SetDirection the direction is set. Input is either forward I
backward or 1 I 0. A digital outport is then set high or low which will
effect a relay in the amplifier box. Because of backlash the motor is
moved a few microns without adding on the scale. The backlash is not
constant all over the movement range so a more sophisticated routine
where you check for pulses might be necessary.
ResetReiPos sets class variable ReiPos to zero.
GetReiPos returns the value of the class variable ReiPos in microns.
Pulse generates a voltage pulse with a specified amplitude and
pulselength. When the motor moves it sends back short pulses which
are detected and summarised. After the generated pulse the motor
might move a bit further why a loop counts remaining position pulses.
The function returns the sum of short motor pulses.
ShortestStep makes the motor move its absolutely shortest
movement. In a loop voltage and pulselength are gradually increased.
First the pulse length increases with a fixed voltage until a maximum
pulse length or until a motor encoder pulse is detected. If maximum
pulse length is reached the voltage is enhanced one step and so on
until a motor pulse detection. Unfortunately the motor sometimes
moves more than one pulse due to mechanical irregularities in the
motor mechanism, resulting in movements of 0.1 - 0.3 IJITI. The
amount of pulses are returned and are also added to the position
variable ReiPos.

24

MoveDistance tells the motor to move a specified distance in
microns. Depending on how long the movement is, different pulses
are used. Longer than 10).lm the motor runs continuously but the
voltage is decreased gradually. When there are 10 microns left to the
destination shorter pulses are used and the final approach, 0.6)lm, is
made by ShortestStep to assure a correct movement independent of
how long it is. The distance is then added or subtracted to ReiPos
depending on in what direction the movement was made.
GotoPos is just a variation of MoveDistance. Here you give the
relative position you want to go to and the routine check if it is
forward or backward.

A.2 Class COMPort

The class COMPort is basically an already existing class with very
few adjustments. This class controls and uses all features of a serial
port or a so called communiq~tion port. There are a lot of definitions
which are all gathered in a he'ader file called COMPORT.H where
good explanations are written.

Class functions (private)

SetPort sets the port number to be used.
SetSpeed sets speed of communication, the baud rate.
SetOthers sets the rest of the communicating parameters like parity,
bits and stopbit.
ReadCOM returns a character from the serial port.
lnitCOMPort turns on communicative interrupts.

Class functions (public)

COMPort is the constructor where parameters port, baud rate, parity,
wordlength and stopbit are entered. It is then initialised.
ReadString reads a string from the serial port.
WriteString outputs a string to the serial port.
WriteChar outputs a character to the serial port.
MakeScan sends operations to the boxcar integrator and receives a
given amount of samples. The routine tells the box car integrator to
collect a sample from the detector and to send the result. The samples
are then averaged.
-COMPort is the destructor.

A.3 Class Menu

Class Menu is the class that unites class Motor and Scan. It is also the
interface between the PC and the user where the screen and typing is
controlled. To be able to write and draw on the same screen
everything is done in graphic mode which results in a "quasi-window
system". The difficult part is the entering of variables.

25

Class functions (private)

ActMenuWindow defines the boarders and colours of the menu
window and activates it.
ActPosWindow defines the boarders and colours of the position
window and activates it.
ActDiagramWindow defines the boarders and colours of the diagram
window and activates it.
WriteMenu activates the menu window and writes the options of
functions.
InitDiagram activates the diagram window and draws axis and labels
of the diagram.
DrawlnDiagram is given the former and the present point in the
diagram and draws a line between those. The spacing is dependent of
the scan length.

Class functions (public)

Menu is the constructor where the graphic mode is initiated. Here the
fonts are chosen by a file path and name and the different windows
are activated.
DoMenu activates the menu window and writes the options. It then
asks you to type your choice and activates that choice.
WritePosition activates the position window and checks in the motor
class for the position which is written.
ResetRelPos resets the position scale to zero.
MoveByButton clears the menu window and writes instructions. By
pressing 'a' the motor moves and the direction is changed with 'd'.
ESC returns you to the menu.
MoveTo clears the menu window and asks for a position to make the
motor move to. The procedure uses the motor class functions and then
writes the new position.
MoveDistance clears the menu window and asks for a distance and a
direction to make the motor move. The procedure uses the motor class
functions and then writes the new position.
Scan clears the menu window and initiates the communication port
class object. It asks for parameters for the scan such as scan length,
spacing between steps, intensity scale factor and the amount of
averaging samples. Before the scan loop starts the diagram is initiated,
the direction set to forward and the scale is reset. The loop stores
motor position and intensity on two vectors and they are displayed in
the diagram. The motor is moved to new position which is written in
the position window. After the loop the procedure asks if a file is to
be created. If yes, the vectors are stored on a data file, xxxx.dat, with
a space between every element.

26

Appendix B

B.l Header file 'knivmeny.h'

#include <dos.h>
#include <ctype.h>
#include <graphics.h>
#include <stdio.h>
#include <stdlib.h>
#include <iomanip.h>
#include <conio.h>
#include <string.h>
#include "COMPORT.H"
#include "COMPORT.CPP"
#include "MOTOR.CPP"

class Menu

Motor TheMotor,

);

B.2

void WriteMenuQ;
void lnitDiagram(float);
void DrawlnDiagram(float,.float,float,.float,float);
void ActMenuWindowQ;
void ActPosWindowO;
void ActDiagran1WindowQ;

public:

MenuO;
int DoMenuO;
void WritePositionO;
void ResetRelPosQ;
int MoveByButtonQ;
int Move ToO;
int MoveDistanceQ;
int ScanQ;

Menu file 'menu.cpp'
#include "KNIVMENY.H"

II Activate Menu window and write options
void Menu::WriteMenuO
{

);

ActMenuWindowO;
outtextxy(2,2,"MENU");
outtextxy(2,!5,"!) Manuel move of motor.");
outtextxy(2,25,"2) Move to a relativ position.");
outtextxy(2,35,"3) Move a distance.");
outtextxy(2,45,"4) Reset relativ position.");
outtextxy(2,55,"5) Scan.");
outtextxy(2,65,"6) Quit.");

I* Activate Diagram window and draw x-y-axis and lables *I
void Menu::initDiagraiL(float scanl<)ngtl:.)
{

char str[30];
float x;
float sl=sca.TJ.)ength;
ActDia.gram WindowQ;
settextsty le(2,0,6);

27

};

outtextxy(!OO,IO,"Scan diagram");
settextsty le(2,0,0);
outtextxy(55,255,"Knife edge displacement (microns)"):
settextsty le(2,1,0);
outtextxy(5,60,"lntensity (arb. units)");
settextstyle(2,0,0);
line(50,30,50,230);
line(50,230,3! 0,230);
settextjustify(2,1);
for (float i=O; i<=l; i=i+.25) II y-axis
{

putpixel(49,230-200*i,l5);
gcvt(i,2,str);
outtextxy(4 7 ,230-200*i,str);

};
settextjustify(l,2);
for (float k=O; k<=sl; k=k+sl/1 0) llx-axis
{

x=260*k/sl;
putpixel(x+50,23!,15);
itoa(k,str,10);
outtextxy(x+50,235,str);

};
settextjustify(0,2);

II Draw the graph in the diagram II
void Menu::DrawlnDiagram(float oldx, float oldy, float newx, float newy,

};

setviewport(0,!50,340,460,1);
setcolor(15);
oldx=50+260*oldx/scanlength;
newx=50+260*newx/scanlength;
oldy=230-200*oldy;
newy=230-200*newy;
line (oldx,oldy,newx,newy);
setcolor(14);

void Menu::ActMenu WindowO II Activate the menu window II
{

};

setviewport(350,50,630,460,1);
setcolor(8);
setfillstyle(1,8);
bar(l0,10,270,410);
setfillstyle(l,l);
bar(0,0,260,400);
setcolor(l4);

void Menu::ActPosWindowO II Activate the position window II
{

};

setviewport(50,50,300,140,1);
setcolor(l);
setfillstyle(1,8);
bar(l 0,1 0,250,80);
setfillstyle(l, 1);
bar(0,0,240,70);
setcolor(l4);

void Menu::ActDiagramWinrtowO II Activate the diagram window II
{

28

setviewport(O,l50,340,460,1);
setcolor(8);
setfillstyle(l,8);
bar(l0,10,340,310);
setfillstyle(l,9);

float scanlength)

);

bar(0,0,330,300);
setcolor(l4);

!* Constructor. Activate graphic mode. Draw the different windows.
Write the menu. *I

void Menu::MenuO
{

);

int gdriver=DETECT, gmode, errorcode;
initgraph(&gdriver, &gmode, "D:\BORLANDC\BGI\EGA VGA.BGI");
errorcode=graphresultQ;
if (errorcode!=grOk)
{

);

cprintf("Graphics error: %s\n", grapherronnsg(errorcode));
cprintf('Press any key to halt:");
getchQ;
exit(l);

setbkcolor(O);
settextstyle(2,0,0);
setusercharsize(l,l,l,l);
ActMenuWindowQ;
WritePositionQ;
ActDiagram WindowQ;

/*Activate and write the menu. Ask for choice and call it*/
int Menu::DoMenu()
{

};

ActMenuWindowQ;
WriteMenuQ;
II Ask for altemativs and then do the selected altemativ II
outtextxy(2,100,"Type your choise.");
int choise;
int incorrect=!;
while (incorrect)
{

);
return 0;

incorrect=O;
choise=getchQ;
switch (chaise)
{

);

case 49: MoveByButtonQ;
break;
case 50: Move ToO;
break;
case 51: MoveDistanceQ;
break;
case 52: ResetRelPosQ;
break;
case 53: ScanQ;
break;
case 54: return -I;
default: incorrect=!;

/*Activate position window write the position of the motor*/
void Menu::WritePositionO
{

float pos;
char str[20];
ActPos Window();
settextstyle(2,0,5);
outtextxy(20,10,"Relativ position (microns)");
settextstyle(2,0, 7);
settextjustify(2,2);
pos=TheMotor.GetRe!PosQ;

29

};

sprintf(str, "%4.1 f' .pos):
outtextxy(!50,30,str);
settextstyle(2,0,0);
settextjustify (0,2);

II Move motor by pressing 'a' or change direction and return to menu
int Menu::MoveByButronO
(

};

ActMenuWindowQ;
outtextxy(2, 2,"MANUEL MOVE OF MOTOR.");

outtextxy(2,20,"Press <a> to move the motor.");
outtextxy(2,35,"Press <d> to change direction .. ");
outtextxy(2,50,"Press <Esc> to return to MENU.");

int button;
int forward=!, backward=O;
int dir=forward;
TheMotor.SetDirection(dir);

button=getchQ;
while (button!=ESC)
(

};

if (button==' a')
(

}else

1l1eMotor.Set Yo ltage(9);

delay(30);

if (button=='d')

(
di r=dir" 1;
TheMotor.SetDirection(dir);

bar(2,70,200,90);
if (di=forward) outtextxy(2,70,"Direction: forward ");
if (dir==backward) outtextxy(2,70,"Direction: backward "):

}else return 0;
while (kbhitQ);

TheMotor.Set Yoltage(O);
button=getchQ;

delay(! 00);

return 0;

II Move motor to a relative position, write the position
II and return to menu
int Menu::MoveToO
{

30

ActMenu WindowO;
outtextxy(2, 2,"MOVE TO A RELATIY POSITION.");
outtextxy(2,20,"Type the position you want the");

outtextxy(2,30,"motor to go to:");
char ch;
char str[2],string [5];

int i=O;
int negativ=FALSE;

for (int k=O;k<5;++k) string[k]=O;
outtextxy(2,50,"Your input:");

while ((ch=getchO) != CR)
(

if (isdigit(ch))
(

ito a(ch-48,str, 1 0);
strcat(string,str);

outtextxy(80+i * 8,50,str);
t+i;

} else if (ch=='-')
(

outtextxy(80,50," -");
++i;
negativ= TRUE;

);

) else return 0:
);
float position=atof(string);
if (position> 10000) return 0;
if (negativ) position=-position;
TheMotor.GotoPos(posi tion);
WritePositionQ;
return 0:

II Move the motor a distance, write the new position
I I and return to menu
int Menu::MoveDistance()
{

);

char ch, str[2];
int forward=!, backward=O;
char string[5];
for (int k=O;k<5;++k) string[k]=O;
ActMenu WindowQ;
outtextxy(2, 2,"MOVE A DISTANCE.");
outtextxy(2,20,"Type the distance in microns you want the");
outtextxy(2,30, "motor to move.");
int i=O;
outtextxy(2,50,"Your input:");
while ((ch=getch()) != CR)
{

);

if (isdigit(ch))
{

itoa(ch-48,str, I 0);
strcat(string,str);
outtextxy(80+i * 8,50,str);
++i;

)else return 0;

float distance=alof(slring);
outlextxy(2,70,"Choose forward or backward motion.");
outtextxy(2,80,"<f>=forward, =backward. ");
int choise=O;
while ((choise!='f) && (choise!='b'))
{

);

choise=getchQ;
if (choise='f) TheMotor.SetDirection(forward);
if (choise=='b') TheMotor.SetDirection(backward);

if (distance> 10000) return 0;
TheMotor.MoveDistance(distance);
WritePositionQ;
return 0;

II Reset the relativ position, write it and return to menu
void Menu::ResetReiPos()
(

);

TheMotor.ResetReiPosQ;
WritePositionQ;

/* Define the serial port. Ask for scan parameters. Control the motor
and the boxcar integrator. Draw graph in the diagram. Create a file
and write the file.*/

int Menu::ScanO
{

int
inl
int
int bits =8;

port
sp,ed
parity

int stopbits=2;

=COM!; If Commnnication parameters//
=19200;
=NO_FARITY;

COMPort TheCOMPort(port,speed,parity,bits,stopbits);

31

ctrlbrk(My_break);
int nrofscan=O;
float motorvector[lOOO]; II Vectors for saving on file II
float scannervector[lOOO];
float newx, newy; II Graph parameters II
float oldx, oldy;
char ch, str[2],string[5];
for (int k=O;k<5;++k) string[k]=O;
int

ActMenuWindowQ;
II Ask for scan parameters II

outtextxy(2, 2,"SCAN.");

32

outtextxy(2,20,"Type the length of the scan in microns.");
i=O;
outtextxy(2,40,"Your input:");
while ((ch=getchQ) != CR)
(

};

if (isdigit(ch))
(

itoa(ch-48,str, 1 0);
outtextxy(80+i*8,40,str);
strcat(string,str);
++i;

} else return 0;

float scanlength=tof(string);
if (scanlength > 10000) return 0;
outtextxy(2,70,"Type the length of each scan-step.");
outtextxy(2,80,"If you want shortest possible step");
outtextxy(2,90,"(0.1-0.2 microns) type <0>.");

i=O;
outtextxy(2,110,"Your input:");
for (k=O;k<5;++k) string[k)=O;
while ((ch=getch()) != CR)
(

};

if (isdigit(ch))
(

itoa(ch-48,str, 1 0);
outtextxy(80+i*8, 11 O,str);
strcat(string,str);
++i;

} else return 0;

float scanstep=atof(string);
if (scanstep > 1000) return 0;

outtextxy(2,130,"Type maximum intensity scalefactor. ");
i=O;
outtextxy(2,150,"Your input:");
for (k=O;k<5;++k) string[k]=O;
while ((ch=getchQ) != CR)
(

};

if (isdigit(ch))
(

ito a(ch-48,str, 1 0);
outtextxy(80+i*8,150,str);
strcat(string,str);
++i;

} else return 0;

float intscale=atof(string);
if (intscale > 1 0000) return 0;
outtextxy(2,170,"Type au1ount of ~amples for ave rag~.");
outtextxy(2,180," (Max 100)");
i=O;
outtextxy(2,200,"Y our input:");
for (k=O;k<5;++k) string[k]=O;
while ((ch=getchQ) != CR)

} else return 0;
);

if (isdigit(ch))
(

ito a(ch-48,str, 1 0);

outtextxy(80+i * 8,200,str);
strcat(string,str);

++i:

int samples=atoi(string);
if (samples> 100) return 0;

InitDiagram(scanlength);

TheMotor.SetDirecti on(1);
ResetReiPosQ;

while [TheMotor.GetReiPosO <= scanlength+ 1) II Scan loop
(

};

++nrofscan;
sound(220);

delay(20);

nosoundQ;
scannervector[nrofscan] = TheCOMPort.MakeScan(sarnples);

motorvector[nrofscan] = TheMotor.GetReiPosQ;

if (nrofscan== I)
(

} else (

);

oldy=scannervedor[nrofsca.n]*intscale/1 0;
newy=oldy;
oldx=O;
new x=moto rvectori nrofscan];

oldy=scannervector[nrofscan-1]*intscalel1 0;
newy=scannervector(nrofscan]*intscal e/1 0:
oldx=motorvector[nrofscan-1];
newx=motorvector[nrofscan];

Draw In Diagram(oldx,oldy ,newx,newy ,scanlength);
if (scanstep==O) (TheMotor.ShortestStepQ;}

else TheMotor.MoveDistance(sca.nstep);
WritePositionQ;

II Create and write a file
unsigned count=O;
int handle;
char fi1ename[25], stri [1];

i.nt correct=O;
FILE *datafile;
ActMenuWindowQ;
outtextxy(2, 2,"CREA TEA FILE.");
outtextxy(2,20,"Do you want to save the graph on");

outtextxy(2,30,"a file? (yin)");

char choise=getchQ;
if (choise!='n')

(

while (correct==O)
(

outtextxy(2,50,"Type the filename.");

count=O;
filename[0]=\0';
while ((ch=getchO) != 13 && cou . .11t<8)
(

);

spri.ntf(stri," %c" ,ch);
strcat(filename,stri);
outtextxy (l20+cc::mt*8,50,stri):

++count:

strcat(filename,". dat");
outtextxy(2,70,"The file is:");
outtextxy(100,70,filename);

33

return 0;
};

int mainO
(

outtextxy(2,90,"ls it correct? (yin)"):
int answer=getchO;
if (answer=='y') (correct= 1;}
else bar(2,50,200, 11 0);

};

if ((datafile=fopen(filename,"wt"))=NULL)
(

};

printf("Cannot open output file.\n");
exit(O);

outtextxy(2,110,"1lle file is created.");
delay(3000);

for (i= 1; i<=(nrofscan); ++i)
fprintf(datafile, "%.1 f %.3f\n" ,motorvector[i],scannervector[i]);

fclose(datafile);
outtextxy(2,130,"The file is written.");
delay(5000);

};
TheCOMPort.-COMPortQ; II Close TheCOMPort

Menu TheMenu;
while (TheMenu.DoMenuO !=-I):
getchO:
closegraphO;
return (0);

8.3 Motor file 'motor.cpp
II The class Motor describes the motor and its uses.
#include <dos.h>
#include <stdio.h>

class Motor

int
float

base;
RelPos;

II class variables

float Max Volt, volt;
enum dir (backward, forward} direction;

public:

};

int
float
void
void
void
void
void
int

MotorO;
Pulse(int, float);

GetRe!PosQ;
ResetReiPosQ;
MoveDistance(float);
GotoPos(float);
SetVoltage(float);
SetDirection(dir);

ShortestStepQ;

II Constructor. Initialize class variables.
Motor::MotorO
(

);

MaxVolt=10;
volt=O;
base=Ox220; II CN2 on LabCard.
RelPos=O;
direction=forward;
outport(base+ 14, 0); II Direction forward

II Set the voltage of motor via Ana-port on LabCard
void Motor::SetVoltage(float voltage)

34

II constructor
II functions

int highbyte, lowbyte;
if (voltage> I 0) voltag=O; II 10 is max of voltage
int voltref=voltage*287;
highbyte=Voltref/256;
lowbyte=Voltref%256;
outport(base+4,lowbyte); II Set Ana-port out on LabCard
outport(base+5,highbyte);

);

II Set the direction and correct for backlash.
void Motor::SetDirection(dir d)
{

if (direction!=d)
{

di rection=d;
if (direction==backward)
{

outport(base+ 14, 128); II Set DIO-port

else

outport(base+ 14, 0);
};

MoveDistance(S);
if (direction=forward)
{

RelPos=RelPos-1 00; II Correction because of bachlash

else

RelPos=RelPos+ I 00;
);

);

);

void Motor::ResetRelPosO { RelPos=O; };

II Returns the class variable RelPos, relative position in microns.
float Motor::GetRelPosO { return Re!Pos/20;);

/* Generate a voltage pulse with amplitude <Voltage> and <pulselength>.
Read the position pulses from the motor and summarize them.
Continue to read after the pulse W1till the motor has stoped.
Return the sum of positions.

*I
int Motor::Pulse(int pulselength, float voltage)
{ //a certain pulselength in ms.

int position;
long highbyte;
long stop;
int newread, oldread;
volt=Voltage;
position=O;
highbyte=pul selength/1.22222+ 32;
outport(base+3, Ox20); II Interrupt on terminal coW1t, R/W MSB.
outport(base, highbyte); II Set counter.
outport(base+ 3, 0);
int i=l;
oldread=inport(base+6);
oldread=oldread&l;
stop=OxFFOO+highbyte;
SetVoltage(volt);
while (stcp>Dxff20)
{

newread=inport(base+6);
newread=newread& I;
if (newread!=oldread)
{

II Read position pulse from motor.
//Mask bit.

35

);

);

position=position+ I; II Summarize.
oldread=newread;

outport(base+3, 0);
stop=inport(base);
if (i<2) (stop=OxffOO+highbyte; position=O; ++i;);

);
SetVoltage(O);
for (long k=O; k<50000; ++k)
(

);

newread=inport(base+6); II Read position pulse from motor.
newread=newread& I;
if (newread!=oldread)
(

);

position=position+ 1;
oldread=newread;

return position;

/* Make the shortest possible step by altering the voltage pulse.
Set the relative position and return the amount of position pulses. *I
int Motor::ShortestStep()
(

);

float Min Volt=6;
int MinPulse=60;
float voltlnc;
int pulselength, pulselnc;
int step;
volt=Min Volt;
voltlnc=l;
pulselength=MinPulse;
pulselnc=IO;
step=O;

II loop until the motor while ((step<2)&&(volt<=10))
(II has steped.

pulselength=pulselength+pulselnc;

);

if (pulselength> 100)
(

);

pulselength=MinPulse;
volt=volt+voltlnc;

step=step+Pulse(pulselength, volt);

if (direction==forward) II Set RelPos.
(

RelPos=Re!Pos+step;

else

RelPos=RelPos-step;
);
return step;

/* Move a distance in microns. Depending on how long distance alter voltage and
pulses. When closing in on the right position slow down.

36

Finaly use ShortestStep.

*I
void Motor::MoveDistance(float distance)
(

float dist=di~tance*20;
float pos=O;
int newread, oldread;
oldread=inport(base+6);
oldread=oldread&l;
while (pos < (dist-200)) //Long pulses.

);

);

if ((pas>= (dist-200000)) && (pas< (dist-20000))) volt=6;
if ((pas>= (dist-20000)) && (pas< (dist-2000))) volt=4;
if ((pas>= (dist-2000)) && (pas< (dist-200))) volt=3;
SetVoltage(volt);
newread=inport(base+6); II Read positionpulse from motor.
newread=newread& I;
if (newread!=oldread)
(

);

pos=pos+ I;
oldread=newread;

SetVoltage(O); //Stop.
for (long k=O; k<IOOOOO; ++k)
{

);

newread=inport(base+6); II Read positionpulse from motor.
newread=newread& I;
if (newread!=oldread)

I

);

pos=pos+l;
oldread=newread;

while ((pas>= (dist-200)) && (pas< (dist-12)))
(

);

if (volt!= 6) volt=volt+ I; II Shorter pulses.
pos=pos+Pulse(l20, volt);

if (direction=forward) //Set RelPos.
(

RelPos=RelPos+pos;

else

RelPos=RelPos-pos;
);
while (pos < dist) pos=pos+ShortestStepQ; II Final aproach.

II Go to a specific position.

};

B.4

void Motor::GotoPos(float position)
{

);

dird;
float pos=position*20;
if (pos!=RelPos)
{

float distance=pos-Re!Pos;
if (distance<O) { d=backward; distance=-distance;}

else d=forward;
SetDirection(d);
distance=distance/20;
MoveDistance(distance);

COMPort header file 'comport.h'
/* --*

FILENAME: COMPORT.H

Some definitions used by COMf'ORT.CPP

* --*I

#define COM!
#define COM2 2
#define COM !BASE Ox3F8 /* Base port address for COM I *I

37

#define COM2BASE

!*
Ox2F8 /* Base port address for COM2 *I

The 8250 UART has 10 registers accessible through 7 port addresses.
Here are their addresses relative to COMlBASE and COM2BASE. Note
that the baud rate registers, (DLL) and (DLH) are active only when
the Divisor-Latch Access-Bit (DLAB) is on. The (DLAB) is bit 7 of
the (LCR).

o TXR Output data to the serial port.
o RXR Input data from the serial port.
o LCR Initialize the serial port.
o IER Controls intenupt generation.
o IIR Identifies intenupts.
o MCR Send contort signals to the modern.
o LSR Morutor the status of the serial port.
o MSR Receive status of the modem.
o DLL Low byte of baud rate divisor.
o DHH High byte of baud rate divisor.

*I
#defineTXR 0 /* Transmit register (WRITE)*/
#defineRXR 0 /* Receive register (READ) *I
#defmelER /* Intenupt Enable *I
#defmeiiR 2 /* Intenupt ID *I
#defmeLCR 3 /* Line control *I
#defineMCR 4 I* Modem control *I
#defineLSR 5 !* Line Status *I
#defineMSR 6 I* Modem Status *I
#define DLL 0 /* Divisor Latch Low *I
#define DLH /* Divisor latch High *I

!* ---*
Bit values held in the Line Control Register (LCR).

bit meaning

0-1 00=5 bits, 01=6 bits, 10=7 bits, 11=8 bits.
2 Stop bits.
3 O=parity off, !=parity on.
4 O=parity odd, !=parity even.
5 Sticky parity.
6 Set break.
7 Toggle port addresses.

* ---*I
#define NO _pARITY OxOO
#defmeEVEN_PARITY Oxi8
#defmeODD_PARITY Ox08

I*---*
Bit values held in the Line Status Register (LSR).

bit meaning

0 Data ready.
I Ovenun error - Data register overwritten.
2 Parity error - bad transmission.
3 Framing error - No stop bit was found.
4 Break detect- End to trarisrrussion requested.

5 Transmitter holding register is empty.
6 Transmitter shift register is empty.
7 Time out - off line.

* ---*I
#define RCVRDY OxOl
#define OVRERR Ox02
#define PRTYERR Ox04
#define FRMERR
#define BRKERR
#define XMTRDY
#define XMTRSR
#define TIMEOUT

Ox08
OxlO
Ox20
Ox40

Ox80

I*---*

38

Bit values held in the Modem Output Control Register (MCR).
bit n1eaning

0

2
3

4

Data Terminal Ready. Computer ready to go.
Request To Send. Computer wants to send data
auxiliary output #I.
auxiliary output #2.(Note: This bit must be
set to allow the communications card to send
interrupts to the system)
UART ouput looped back as input.

5-7 not used.
* --*I

#define DTR OxOI
#define RTS Ox02
#define MC_INT Ox08

I*--*
Bit values held in the Modem Input Status Register (MSR).

bit meaning

0
I
2
3
4

5

6
7

delta Clear To Send.
delta Data Set Ready.
delta Ring Indicator.
delta Data Carrier Detect.
Clear To Send.
Data Set Ready.
Ring Indicator.
Data Carrier Detect.

------------------------ ---*I
#define CTS Ox I 0
#define DSR Ox20

!* --*
Bit values held in the Interrupt Enable Register (IER).

bit meaning

0

2
3

4-7

Interrupt when data received.
Interrupt when transmitter holding reg. empty.
Interrupt when data reception error.
Interrupt when change in modem status register.
Not used.

* --*I
#define RX_INT OxOI

I*--*
Bit values held in the Interrupt Identification Register (IIR).

bit meaning

0 Interrupt pending
1-2 Interrupt ID code

OO=Change in modem status register,
Ol=Transmitter holding register empty,
lO=Data received,
ll=reception error, or break encountered.

3-7 Not used.
* --*I

#define RX_ID Ox04
#defme RX_MASK Ox07

I*

*I

These are the port addresses of the 8259 Programmable Interrupt
Controller (PIC).

#dr:fineJMR
#define ICR

0x21 I* Interrupt Mask Register port*/
Ox20 I* Interrupt Control Port *I

I*
An end of interrupt needs to be sent to the Control Port of

the 8259 when a hardware interrupt ends.

39

*I
#define EO! Ox20 /* End Of Interrupt *I

!*
The (IMR) tells the (PIC) to service an interrupt only if it
is not masked (FALSE).

*I
#define IRQ3
#define IRQ4

!*

OxF7 /* COM2 *I
OxEF I* COM! *I

The (IMR) tells the (PIC) to service an interrupt only if it
is not masked (FALSE).

*I
#define IRQ3
#define IRQ4

#include <bios.h>
#include <dos.h>
#include <string.h>

OxF7 I* COM2 *I
OxEF I* COM! */

#defme timeout 10000 /* Readln_com times out at 10000 milliseconds*/
#define max_ buffer 1000 /*Circular buffer size *I
#define near_full 900 /*When buffer_length exceeds near_full */

/* RTS line is disabled* I
#define near_empty 100 /*When buffer drops below near_empty */

#define _CPPARGS ... II It is a CPP program. II

#include <dos.h>
#include <conio.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "d:\borlandc\eget\comport.h"

#define VERSION OxOIOI

#define FALSE
#define TRUE

#defineCR
#define ESC
#define ASCII

40

0
(!FALSE)

13 II caniage return
Ox I B /* ASCII Escape character *I
Ox007F /* Mask ASCII characters *I

/* RTS line is enabled*/

B.S COMPort file 'comport.cpp'
class COMPort
{

);

int

int SetPort(int);
int St:tSpeed(int);
int SetOthers(int,int,int);
char ReadCOMQ;
void lnitCOMPort();
public:

COMPort(int,int,int,int,int);
void ReadString(char*);
void WriteString(char*);
int WriteChar(char);

COM

float MakeScan(int);
-COMPortQ;

=0; /1 Port adress

void I_ enable()
{

II Turn on cornmunicatin interrupts II

);

disableQ;
outportb(COM+IER,RX_IND;
enableQ;

void I_ disable()
{ //Turn off comrnunicatin interrupts//

disableQ;
outportb(COM+IER,O);
enableQ;

);

int My_ break() //Control-Break interrupt handler//
{

);

I_disableQ;
printf(''\nlnterrupts disabled!! !\n");
return (0);

/* Constructor. Set up the port *I
COMPort::COMPort(int Port, int Speed, int Parity, int Bits, int Stop Bit)
{

);

int flag= 0;

if (SetPort(Port))
flag=-!;

if (SetSpeed(Speed))
flag=-!;

if (SetOthers(Parity, Bits, StopBit))
flag=-!;

if (flag!=- I) InitCOMPortQ;

void COMPort::InitCOMPort() II Turn on communicatin interrupts//
{

I_enableQ;

int COMPort::SetPort(int Port) I* Set the port number to use *I
{

switch (Port)
{

case COM! : COM=COM!BASE;

41

return (0);

break:
ca.se COM2: COM=COM2BASE;

break;
default :return (-1);

/*This routine sets the speed; will accept funny baud rates.*/
/* Setting the speed requires that the DLAB be set on. *I
int COMPort::SetSpeed(int Speed)
{

char
int

if (Speed = 0)
return (-I);

else

c;
divisor;

!*Avoid divide by zero*/

divisor= (int) (115200L!Speed);
if(COM=O)

return (-1);
disableQ;

c = inportb(COM + LCR);

enable();

outportb(COM + LCR, (c I Ox80)); !*Set DLAB *I
outportb(COM + DLL, (divisor & OxOOFF));
outportb(COM + DLH, ((divisor» 8) & OxOOFF));
outportb(COM + LCR, c); !* Re.~et DLAB *I

return (0);
)

I* Set other communications parameters*/
int COMPort::SetOthers(int Parity, int Bit~ int Stop Bit)
(

int setting;

if(COM=O)
return (-1);

if (Bits< 511 Bits> 8) return (-1);
if (StopBit != 1 && StopBit != 2) return (-1);

if (Parity!= NO _pARITY && Parity!= ODD_PARITY && Parity!= EVEN_PARITY)
return (-1);

setting = Bits-5;
setting I= ((StopBit == 1) ? OxOO : Ox04);
setting I= Parity;

disableO;
outportb(COM + LCR, setting);
enableQ;

return (0);

char COMPort::ReadCOMO
{

II Returns a character from serial port I I

while(!(inp(COM+LSR)&1)); II Wait till data is ready II
return (inp(COM));

II Reads a string from serial port I I
void COMPort::ReadString(char *StrPoint)
{

};

42

cutp(COM+LS"R,inp(\.OM+LSR)&254):
do
{

*StrPoint=ReadCOMQ;
} while(CR!=*StrPoint++);

I* Output a character to the serial port *I
int COMPort::WriteChar(char ch)
(

);

long int timeout = OxOOOOFFFFL;

I* Wait for transmitter to clear *I
while ((inportb(COM + LSR) & XMIRDY) = 0)

if (!(--timeout))

disableO;
outportb(COM + TXR, ch);
enableQ;

return (0);

return(-!);

II Output a string to the serial port II
void COMPort::WriteString(char *StrPoint)
(

);

while(*StrPoint)
{

);

WriteChar(*StrPoint);
StrPoint++;

COMPort::~COMPortO II Destructor II
(

l_disableO;
);

I* Makes a scan with the boxcar integrator. Returns the average
of the samples *I
float COMPort::MakeScan(int samples)
(

II
II

);

char* string;
float data, average;
float datasum=O;

for (int i=O; i<samples; ++i)
(

WriteString("SCl: 1\r");
WriteString("N\r");
ReadString(string);
data=atof(string);
datasum=data+datasum;
delay(lOO);
printf("data %6.31:\n" ,data);

);
average=datasumlsamples;
return average;

43

Appendix C

In this appendix I will try to write down all the small problems that I
came across while programming with Borland C++. Some problems
might seem very trivial but they are not as long as you don't know the
answer. Most mistakes are simple and only done once but are very
time consuming. Therefore reading this might save you some time.

There are two programming modes, text and graphic mode. These
two can't work at the same time. If you want to both write and draw
on the same screen you'll have to work in graphic mode. Many useful
text commands doesn't exist in graphic mode why you have to create
them yourself. An example of this is when you want to input a
number or text from the keyboard to a variable and the screen. It is
shown in Menu::Scan().

To be able to use graphic mode you must include a graphic driver in
the same directory as your program, e.g. EGAVGA.BGL By default
all text is displayed as bit-mapped fonts. To use stroked fonts you
have to include a font file, e.g. LITT.CHR. This gives you a greater
freedom of changing text styles.

The compiler needs to be told that you are using graphic mode. This
is done in the compiling settings.

If you are not very familiar with C or C++ note that the compiler is
not sensitive to different types of variables within the same
expression. For example, 'number=var l·var2/var3'. If you mix int and
floattypes the result is often not what you expected, it becomes
sometimes char.

44

Appendix D

The pictures below show the essential electronic parts of the DC
motor control unit. There is an amplifier which enhances the analogue
motor signal from the PC. A relay is used to define the motor
direction which is controlled by a TTL signal. Counter signals from
the motor are sharpened by a Schmitt trigger. The power supply is not
represented. The DC motor control unit was constructed by Ake
Bergquist.

The tables show the connections to and from the unit.

Cable colour
yellow
green
grey
brown
shield
pink

Cable colour
blue
shield
white
N.C.
N.C.

Analog
input

D-sub to DC motor
Pin

1
2
6
7
8
9

D-sub to PC
Pin

1
2
6
7
8

51k

+12V

Function
motor winding
motor winding
counter signal 1 from motor
counter signal 2 from motor
0 V chassis (common)
+5 V from power supply

Function
direction (TTL)
0 V (common)
counter signal 1 to PC
counter signal 2 to PC
0 V chassis (common)

Relay

Motor

D'R 7.5k
I~_,__-

ffi 100k~

45

t5V

4.7k
Counter pulse
from motor To PC
(open collector)

t5V

4.7k

Spare

Spare

Spare

46

References

'P. K. Carroll and E. T. Kennedy, "Laser-produced plasma", Contemp. Phys., 22
61 (1981).
"R. Kauffman, "X-ray radiation from laser plasma", Handbook of plasma physics,
Eds. M.N. Rosenbluth and R.Z. Sagdeev, Vol3, Elsevier Science Pubishers B. V.,
(1991).
3 A. G. Michette, "Laser-generated plasma: source requirements for X-ray
microscopy", Journal of x-ray science and technology 2, 1-16 (1990);
J. Kirz and H. Rarback, "Soft x-ray microscopes", Rev. Sci. Instrum., 56 1-13
(1985);
A. G. Michette, "X-ray microscopy", Rep. Prog. Phys., 511525 (1988);
J. A. Trail, "A compact scanning soft x-ray microscope", Ph. D. Dissertation,
Edward L. Ginzton Laboratory, Stanford University (1989).
•L. Rymell and H. M. Hertz, "Droplet target for low-debris laser-plasma soft x-ray
generation", Opt. Comm., 103 105-110 (1993).
5 Y. C. Kiang and R.W. Lang, "Measuring focused Gaussian beam spot sizes: a
practical method", Appl. Opt., 22 1296 (1983);
J. M. Khosrofian and B. A. Garetz, "Measurements of a Gaussian laser beam
diameter through the direct inversion of knife-edge <L'lta", Appl. Opt., 22 3406
(1983).
"H. M. Hertz and R. L. Byer, "Tomographic imaging of micrometer-sized optical
and soft-x-ray beams", Opt. Lett., 15 396 (1990).
7 N. M. Celglio, D. T. Attwood and E. V.George, "Zone-plate coded imaging of
laser-produced plasmas", J. Appl. Phys., 48 1566 (1977);
"Fresnel zone plate coded imaging", Physics of laser fusion VII, Lawrence
Livermore National Laboratory.
'E.H. Hecht, Optics, chap. 10 (Addison-Wesley Publishing C()mpany, Inc, 1974).

47

