

1. ABsTRACT

2. ATMOSPHERIC PRESSURE MEASUREMENTS

2.1 INTRODUCTION

2.2 EXPERIMENTAL DETAILS

2.3 DIAGRAMS

2.4 RESULTS

3. HIGH-PRESSURE MEASUREMENTS

3.1 INTRODUCTION

3.2 EXPERIMENTAL DETAILS

3.3 DIAGRAMS

3.4 RESULTS

4. DISCUSSION

5. SUMMARY

6. ACKNOWLEDGEMENTS

7. REFERENCES

8. APPENDICES

A THE RS-232C INTERFACE

B. CoMMUNICATION/CALCULATION PROGRAM

One way of improving the performance of an internal combustion engine is

to improve the ignition. The aim of this study was to investigate how

the flame speed in a burning gas is influenced by the electrical

properties of the spark.This was done by recording the voltage, current

and flame front of single sparks and comparing them individually and

statistically. Two different ignition systems were used, one based on an

inductive discharge and one on a capacitive discharge. The explosive gas

was a mixture of propane and air, just above stoichiometry. The

measurements were performed at atmospheric pressure and at 4 bar. Two

different types of spark plugs were used: one with steel electrodes and

one with copper electrodes.

Although it may seem advantageous to study the process under conditions

normally found in an engine, carrying out the experiments at atmospheric

pressure has some important advantages. Firstly, it is a fast way of

making measurements. No filling of high-pressure cells is needed, no

time-wasting opening or closing of valves etc. Therefore it is

possible to observe a large number of sparks at each parameter setting,

which will reduce statistical errors. Secondly, the behaviour of flames

under atmospheric conditions, i.e. flame front speed etc, is well known
for all air/fuel ratios.

The optical arrangement can be seen in fig. 2. 1 and the electrical

arrangement in figs 2.2 - 2.4. From the gas tubes the gases are premixed

using two flow meters. The air/fuel mixture then passes through a glass

tube, as shown in fig. 2.5. An almost perfectly homogeneous velocity

distribution is provided by the sintered glass disc. The spark plug is

positioned about an inch above the tube opening. (For optical reasons it

must be above, but to obtain smaller cycle-to-cycle variations we would

prefer it to be in the tube). Once the gas is ignited, it will continue

to burn until extinguished by a pressurized air blast, controlled by a
magnetic valve.

Mach- Zender
interferometer

"

Master
1rigger

Ill IV

Matra
mirror~

,____.__~

Beam
expander

L.J

Nd:YAGiase
frequency dou led)

IR dump

Fig. 2.1 The optical arrangement

Ignition
system

Magnetic
valve

IBM
XT

Tektronix
2230

Fig. 2.2 The electrical arrangement

nn

+
12 V DC

BATTER'/

IGNITION
CURCUIT

IGNITION
COIL

Fig. 2.3 The inductive system

JUL._~ CONTROL
UNIT

IGNITION
CRSSETTE

+
12 V DC

BATTERY

Fig. 2.4 The capacitive system

Fig. 2.5 The glass tube

The voltage over and current through the spark plug were measured with a

Tektronix 2230 digital storage oscilloscope and a Tektronix P 6015 high­

voltage probe. Stored data were transferred to an IBM XT computer for

processing, as described in Appendices A and B.

We chose to record the current and voltage at the 10 ~s/div setting of

the oscilloscope as this was needed to resolve the fast voltage ramp,

but still gave the opportunity to observe the whole of the interesting

time region. According to the literature, the most important part of the

energy lies in this region (see Discussion). This means that the curves

recorded on the oscilloscope appeard as those shown in fig. 2.6 with ~V

and ~t (i.e. the breakdown voltage and the time lag to breakdown after

the voltage is applied) shown. Typical values of ~V and ~t at

atmospheric pressure are 8.5 kV and 30 ~s for the inductive system, and

10 kV and 2,5 ~s for the capacitive system. The spark energy is shown in

diagram 2.7 and 2.8 and the power level in diagram 2.9.

Inductive system Capacitive system

fig. 2.6 The oscilloscope curves

For optical measurements, a pulsed Nd:YAG laser, working at a wavelength

of 1.064 ~. was controlled by the master trigger. A frequency doubling

crystal gave green light at a wavelength of' 532 nm, and remaining

infra-red light was dumped using a Matra mirror 3B. Since the refractive

index of' a burning gas is very different from a gas at room temperature,

the resulting interferogram from the Mach-Zender interferometer clearly

indicates the position of the flame front at different time delays. A

single 50 em lens and a Nikon SLR 35 mm camera with a 300 mm lens were

used to record the interferogram. The delays of the laser trigger signal

were measured with a fast responding photodiode and the oscilloscope,

comparing the output from the diode with a signal directly from the

trigger. To evaluate the interferograms, an ordinary Abbe comparator was

used. The exact value of the magnification is very sensitive to lens and

camera positioning. There is also a certain magnification due to the

shrinkage of the film. The total ef-fect of these two phenomena can

hardly be calculated, but is easily measured by making an exposure of a

vernier cuplier set at 10.0 mm.

DIAGRAM 2.3.1 A

Kernel radius/mm

15,
Flame propagation

141

131 Inductive system, steel electrodes I/

(Outer)/

121 (Flames from outer sparks marked) /
111 / .
101

(Outer) I /
91 /Theoretical

/
value

81 I
71 1/ (x)

I
/

61 .
5. - (x)

I

41 I I
31 I
2

11 lime/ms

1 2 3 4 . 5 6

Kernel radius/mm
DIAGRM1 2.3.1 B

15i Flame propagation, outer sparks
141

131 Inductive system, steel electrodes XX

/
121

/
111

101
XX /
X .. XXX

/ 9 I
X Theoretical

value

8 I /
7 I /

X

6 XX
X

5
XX

4 XX
X

3

2
X

(2ift)

1 I lime/ms

•
1 2 3 4 5 6

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Kernel radius/mm

1

Flame propagation
Inductive system, copper electrodes

2 3 4 5

DIAGRM1 2.3.1 C

1ime/ms

6

Kernel radius/mm
DIAGRAM 2.3.1 D

I
15

14!

Flame propagation (Outer sparks)
131

Inductive system, copper electrodes X
X

121

11

10

9

8
~

7

X

6 X
X

5
X.

X

4 I X

3

2

1 I lime/ms

•
1 2 3 4 5 6

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Kernel radius/mm

I

1

DIAGRAM 2.3.1 E

Flame propagation /
Capacitive system, steel electrodes /

/

·.

/

/
/

/
/ T~eoretical

~ value

/

lime/ms

2 3 4 5 6

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Kernel radius/mm Flame propagation
Capacitive system, copper electrodes

1 2 3 4 5

DIAGRAM 2.3.1 F

(X)

Ttme/ms

6

8

6

4

2

Number of sparks

Breakdown voltage
Inductive system, steel electrod

250 sparks

1 2 3 4 5 6 7 8 9 10

DIAGRAM 2.3.2 A

Breakdown
voltage/kV

11

5

4

3

2

1

Breakdown voltage
Inductive system, steel electrodes

Number of sparks
Outer sparks

1 2 3 4 5 6 7 8 9 10

DIAGRAM 2.3.2 B

Breakdown
voltage/kV

11

8

6

4

2

Number of sparks

Breakdown voltage
Inductive system, copper elect

1 2 3 4 5 6 7 8 9 10

DIAGRAM 2.3.2 C

Breakdown
voltage/kV

11

Number of sparks

20

18

16

14

12

10

8

6

4

2

Breakdown voltage
Capacitive system, steel electrodes

5 6 7 8 9 10 11 12 13

DIAGRAM 2.3.2 D

Breakdown
voltage/kV

14

1

1

1

1

1

9

8

7

6

5

4

3

2

1

Number of sparks

1

Breakdown voltage
Capacitive system,
copper electrodes

2 3 4 5

DIAGRAM 2.3.2 E

6 7 8 9 10 11

8

6

4

2

Number of sparks

1

First part of energy
Inductive system, steel electrodes

250 sparks

5 10 15 20

DIAGRAM 2.3.3 A

Energy/mJ

3

2

1

First part of energy
Inductive system, steel electrodes

Numberofsparks Outer sparks

1

DIAGRAM 2.3.3 B

Energy/mJ

8

6

4

2

Kernel radius/mm

1

First part of energy
Inductive system, copper electrodes

DIAGRAM 2.3.3 C

Energy/mJ

5 10 15 20

8

6

4

2

First part of energy
Capacitive system, steel electrodes

20

DIAGRAM 2.3.3 D

Energy/mJ

Second part of energy
Capacitive system, steel electrodes

Number of sparks

5 10 15 20

DIAGRAM 2.3.3 E

Energy/mJ 25

First part of energy
Capacitive system, copper electrodes

40

36

8

4

Number of sparks

Energy/mJ

1 2 3 4 5 6 7 8 9 10 11 12 13

DIAGRAM 2.3.3 F

48

44

40

36

32

28

24

20

16

12

8

4

Second part of energy
Capacitive system, copper electrodes

Number of sparks

DIAGRAM 2.3.3 G

~A}\ 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
l=norn\1/rn I

DIAGRAM 2.7

Energy/mJ
Capacitive system

30

20

10

100 200 300 400 500 600 700 Time/us

co

N

:::E
c::(

0::
t!'
c::(
.......
0

-,
E
>:.
!2>
Q)
c
w

-E
Q) -~
(/)

Q)

·~
:J
'U
c

::::=..

(/)

E as
E
F

DIAGRAM 2.9

Power/W

1000 Inductive system

Capacitive system

100

10

Time/us
10 100 1000

Atmospheric pressure

The results from the flame propagation measurements are shown in

diagrams 2. 3. 1. A - E. From these diagrams one can see, in particular,

two important characteristics. First, an extrapolation of the radius­

versus-time line would not pass through the origin. Second, the speed of

the flame front seems to alter abruptly at a radius of about 9-10 mm.

As the energy is primarily bound to the spark plasma, its transfer to

the gas is of great importance. This transfer takes a relatively long

time - from the breakdown there is no noticeable growth of the kernel

\ for as long as almost one millisecond. During this time heat is

transferred from the plasma to its surroundings, and ignition takes

place. To optimize the heat transfer, the space angle occupied by the

electrodes must be as small as possible. This is the case of the "outer

sparks". Furthermore, the unwanted heating of the electrodes has very

large cycle-to-cycle variations, which provides the same effect as a

random delay of the spark itself. We believe this to be the most

important factor causing variations in kernel radius at a certain time

after breakdown.

The change in the flame front speed is of a more inevitable origin. In

the beginning, the curvature of the front is not very different from the

thickness of the front itself. Under such conditions, the flame front

speed is considerably lower than normal. · The values found in the

litterature correspond well to the highe~ ones measured here. The dashed

lines in diagrams 2.3.1 A, B, and E correspond to the theoretical value

calculated for a propane/air mixture of 4.2% at room temperature, i.e. a

progagation velocity of the flame front of about 2. 95 m/s. We did not

find any changes between copper and steel electrodes.

The distribution of the breakdown voltages is shown in diagrams

2.3.2. A- E. There is no correspondence between outer sparks and a high

breakdown voltage (the distributions in diagrams 2.3.2 A and Bare about

the same) which indicates that it is not a high breakdown voltage that

generates an outer spark. The higher breakdown voltage and greater

spread of the capacitive system are due to the much faster voltage ramp

of the system. The effect of copper electrodes is not significant. The

energy diagrams 2.3.3. A - G indicate no coupling between outer sparks

and energy. The energies measured show extremely large variations,

especially those associated with the capacitive system. Undoubtedly, the

variations are large, but we strongly suspect electrical noise to have

distorted the recorded current more than our digital filter could

"straighten out". The filter (PROCEDURE SMOOTHCURRENT in the computer

program, Appendix B) smoothens out all high-frequency disturbances, but

cannot always give an alarm when receiving a "good-looking", but

nevertheless, distorted current curve from the oscilloscope. However,

one well-defined energy measured is the "second part" in the capacitive

system, i.e. the energy dissipated 10-70 ~s after breakdown. This energy

shows practically no variation at all, as it originates from the

oscillations of the capacitive discharge system and has nothing to do

with the breakdown voltage. The diagrams from measurements with copper

electrodes are almost identical.

As the impedance of the plasma does not depend on the breakdown voltage,

the current, and hence the energy, show quite good correlation with the

breakdown voltage. The statistical variations are large, as seen in

diagrams 2.3.4 A and B, but nevertheless the dependence is clear.

Another dependence that one would intuitively search for is the one

between energy and flame propagation. However all efforts here showed

clearly that such a correlation did not exist.

In order to more closly resemble conditions in a normal engine, we used

a high-pressure cell with opt leal access through two quartz windows.

These were ground with very high precision to approximately 5% of a

wavelength; thus the interferograms would not be seriously affected.

After ignition, the pressure in the cell rises by a factor of seven.

Satisfactory operation of the valve was guaranteed only at pressures

below 20 bar. In addition, the valve proved to "wait" for the 220 V A.C.

to reach zero Volts, causing a delay evenly distributed between 0 and 10

ms. Considering this, we chose an initial pressure of 4 bar.

The whole system for the gas supply had to be completely altered.

Premixed air/fuel was stored in a gas tube. The fuel could be let into

the cell via a series of valves after the cell had been evacuated. The

gas system is shown in fig. 3.1.

Hi h pr~sure
manometer

Pressure
norm1 alizing

vave

Highpressu
~--------:*--1 cell ~----~

Outlet valve
(magnetic)

Premixed fuel/air

Diffusion
pump

Low Rressure
manometer "----------

Fig. 3.1 The gas system

Electrically, however, many modifications had to be made before

measurements could take place. The outlet valve - an ASCO B210B27

magnetic valve - had to be carefully synchronized. Opening too early

would naturally have spoiled the measurement, and too late an opening

(i.e. at a time when all or most of the gas in the cell had burned out)

would have caused a dangerously high pressure in the cell. More

disastrous was the fact that a commercial ignition system is designed to

work at quite a high repetition frequency, and will not work at all

below about 1 Hz. Furthermore, the very first spark given after a long

non-active period ("long" is here to be interpreted as "more than a few

seconds") will show characteristics very different from the desired

ones. This problem was solved by two quite different approaches, one for

each system. For the inductive system a device with three relays

"evoked" the system and, after closing some switches, some 100 ms later

gave another pulse, the latter one also synchronized with the pulses

from the master trigger to laser and magnetic valve. For the capacitive

system the solution was not so sophisticated, but nevertheless just as

functional. Another spark plug, which gave a spark at a relatively low

voltage, was connected to the first plug, and an extra trigger was used.

Block schemes are shown in figs 3. 2 - 3. 3. At high pressure the !J.V

values of fig. 2.6 become larger and the spark energy in diagram 2.7 and

2.8 is changed as shown in diagram 3.4 and the power level in diagram

2.9 is changed as in diagram 3.5.

Optically, not many changes were necessary. The quartz windows mentioned

above caused no severe problems. After several ignition cycles, however,

some vapour condensed on the inside of the windows and did not vaporize

until after quite a long time about five minutes. For future

experiments, this delay will have to be decreased, for instance by

letting pressurized air into the cell.

Man. trigger

aster Laser
trigger
II Ill IV

Relay pack

Ignition

system

Fig. 3.2 Blockscheme inductive system

IBM
XT

Tektronix~-.

2230

Ignition
system ~-----:-------.~

I

Fig. 3.3 Block scheme capacitive system

IBM
XT

Tektronix
2230

15

14

Kernel radius/mm

Flame propagation
131 Inductive system, steel electrodes
12

11

10

9

8

7

6

5

4

3

2

1

High pressure marked

1 2

High
pressure

3

(Outer)

4

I High
pressure

DIAGRAM 3.3.1 A

(Outer)

(x)

(x)

lime/ms

5 6

Kernel radius/mm
I

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

1

Flame propagation DIAGRAM 3.3.1 B

Capacitive system, steel electrodes

2

High pressure marked

High
pressure

3 4

High
pressure

5

Time/ms

6

Number of sparks

32

24

16

8

1 5

Breakdown voltage
Inductive system,
steel electrodes
High pressure

10 11 12 15

DIAGRAM 3.3.2 A

Breakdown
voltage/kV

12

10

8

6

4

2

Number of sparks

1

Breakdown voltage
Capacitive system

steel electrodes

High pressure

5 10 11 12 13 ' 14 15

DIAGRAM 3.3.2 B

Breakdown
voltage/kV

5
4
3
2
1

First part of energy
Inductive system, steel electrodes

High pressure

Number of sparks

DIAGRAM 3.3.3 A

Energy/mJ

4 8 12 16 20 24

12

8

4

First part of energy
Capacitive system, steel electrodes

High pressure

Number of sparks

Energy/mJ

1 2 3 4 5

D I A G R Ar•1 3 • 3 . 3 B

12

10

8

6

4

2

Second part of energy
Capacitive system, steel electrodes

High pressure

Number of sparks

2 4 6 8 10 12 14

DIAGRAM 3.3.3 C

Energy/mJ

16

DIAGRAM 3.4

Energy/mJ

30

Capacitive system

20

Inductive system

10

100 200 300 400 500 600 700 Time/us

DIAGRAM 3.5

Power/W

1000 Inductive system
I

100 Capacitive system

10

.__ _____ ____,___ ____ ______,__--+Time/us
10 100 1000

High pressure

The measurements at high pressure gave results very similar to the

atmospheric ones. The results of flame propagation are shown in diagrams

3.3.1 A and B, the breakdown voltage distributions in diagrams 3.3.2 A

and B, and the energy distributions in diagrams 3. 3. 3 A - C. The

breakdown voltages, and consequently the energies, are greater, due to

the better isolation of the compressed gas. An interesting result is

that the spread in the breakdown voltage has become narrower, clearly

for the capacitive system, but even more for the inductive one, probably

because of its slower voltage ramp. The narrow spread does not depend

solely on the pressure, although it seems to be the major factor. The

premixing of air and fuel gives a very homogeneous gas mixture with no

"lean spots" which could require abnormally high voltage if located at

the electrodes. We could not find any correlations between the flame

propagation and breakdown voltage or spark energy at high pressure.

"'
Due to the small variations in energy and breakdown voltage, the

correlations seen in diagrams 2.3.4 A and B of the atmospheric pressure

measurement are not equally obvious at high pressure. As before, no

correlation was found between energy and flame propagation.

Cyclic variations originate during the initial stage of combustion, from

the time of the breakdown to a "noticeable" departure of the cylinder

pressure from the compression pressure [3, 4, 5]. A way of improving

this early phase of combustion is through the ignition process. This is

at least the method of most practical interest in the immediate future.

The total electrical energy dissipated per spark in a practical ignition

system is between 30 and 100 mJ. There are several points of view, some

direct contradictions, as to the best way of delivering this in terms of

the nature and duration of the spark.

The spark of a typical coil ignition system consists of three different

phases: the breakdown phase, the arc phase, and the glow phase, defined

in different time intervals as shown in fig. 4.
I I

I I I
104 I I I

I I I
I

> 103
I I I I I I

QJ' I Ol I "' I ~ 102 I
> I

I 1-JmJ I -o.s mJ

10 I (90%) I (50%)

I
I I

Fig. 4 The phases of the spark

Most of the energy is dissipated in the glow phase. According to Maly

[13], these phases are not equally efficient in transferring heat to the

gas. Comparing three different ignition systems, the breakdown, the

capacitive discharge, and the inductive system, Maly argues the

conversion efficiencies to be of the order of 90%, 50%, and less than

30% respectively. The measurements of Saggau [6] show the thermal

conversion efficiencies to be of the order of 50%, 15%, and 10%. This is

due to the fact that the ignition system works at highly different power

levels. In the first instance the spark must raise the temperature

sufficiently in a small volume to cause thermal runaway. Then there is a

certain minimum energy (depending on the gas, the pressure, the ignition

system, etc.) needed before the flame has grown to a critical size and

is able to propagate by itself as a combustion wave.

In the literature, there is no evidence that the amount of energy

delivered is particularly critical as long as it exceeds the minimum

energy (and we could not find any either). Increasing the pressure

markedly decreases the minimum ignition energy [4, 43]. Since the

ignition systems mentioned above work at different power levels, they

also work at different time intervals as the total energy delivered is

limited. Kono et al. [7] found that the optimum spark duration was

between 50 ~s and 300 ~s. depending on the mixture strength and

quenching action of the electrodes. With small electrode gaps, thick

electrodes and lean mixtures, the optimum spark duration is longer. This

means that energy dissipated long after breakdown does contribute to

ignition, especially under difficult operating conditions when laminar

burning velocity is low (i.e. low load, lean mixtures, high exhaust gas

recirculation [8, 9, 10]). It is in these regions that cycle-to-cycle

variation is at its worst. Longer arc duration and greater arc gaps

improve combustion stability but the significance of the effect is

dependent on ignition timing and engine load [11]. An inc~ease in timing

advance or a reduction in load (both of which reduce the temperature at

the ignition time) will lead to an increased sensitivity to arc quality.

There is a weak link between cycles and the magnitude of this link

decreases with arc duration under conditions of large advance and low

load.

In a real engine the fuel is unlikely to be completely premixed under

all conditions at the time of ignition. Under such circumstances, if the

discharge event were to last only a short time, there would be a

possibility that it would take place when the local mixture strength was

below the flammable limit. This could be alleviated, to an extent, by

using wider spark gaps and longer spark duration (up to 5 ms) which

provides a longer "time window".

However Maly has studied the discharge process in detail, and has argued

that the best results for ignition are obtained if the spark energy is

concentrated in the breakdown component [12, 13, 14]. In an idealized

engine with a homogeneous flow field and an accurate timing of the crank

angle (spark advance) this might be more valid. This demands a breakdown

that is well defined in time. This suggests that a capacitive discharge

with its much faster voltage ramp, compared with an ordinary inductive

system, would be of advantage.

Another way of improving the ignitability is through the geometry and

material of the spark plug. Data in the literature indicate that larger

electrodes increase heat transfer from the initial flame kernel and

thereby increase the minimum ignition energy required. The rate of

initial flame kernel development will also be adversely affected. This

is in agreement with our measurements which showed that "outer sparks"

propagate faster at early stages. Use of a plug with platinum tipped

electrodes is proved to extend the lean ignition limit by allowing a

wider gap and a reduced electrode diameter, which results in less heat

loss from the initial flame kernel [3]. Another advantage of this plug

is that it reduces electrode wear. In general, an increase in the spark

gap ifuproves ignitability. However, at the same time the voltage

required for breakdown becomes higher, often exceeding the available

voltage. Recent data prove the requirement of a larger spark gap with a

capacitive discharge system in order to provide hydrocarbon emission

comparable to that of an inductive system. On the other hand, the

capacitive discharge system is capable of this due to its much faster

voltage ramp.

Amongst the various approaches suggested, perhaps the best strategy is

to increase the energy avai !able to the gas throughout the period of

early flame growth, i.e. while the flame front is still near enough to

the spark discharge channel to be influenced by it. The lower the

laminar burning velocity, the longer this period. With a short spark

duration it becomes more important to ignite at a specific time as a

long-duration spark provides a reduced sensitivity to the spark advance

angle in engines.

5. SUMMARY

Hier we are going to write a short summary.

We would like to thank the people who have given us help and support

throughout our work. GOran Holmstedt at the Combustion Centre, Lund

Institute of Technology, and Hans Johansson at Mecel AB, SAAB-Combitech,

deserve special thanks. We would also like to thank Professor Thure

Hogberg at the Combustion Centre and Ake Bergquist at the Department of

Atomic Physics.

1. Gautam T. Kalghatgi, Spark ignition, early flame development and

cyclic variation in I.C. engines, SAE paper 870163.

2. Richard W. Anderson, The effect of ignition system power on fast

burn engine combustion, SAE paper 870549.

3. Norihiko Nakamura, Tatsuo Kobayashi, Masanori Hanaoka, and Noboru

Takagi, A new platinum tipped spark plug extends the lean misfire limit

and useful life, SAE paper 830480.

4. Peters, B.D. and Borman, G.L., SAE paper 700064

5. Arrigoni, V., Calvi, F., Cornetti, G.M., and Pozzi, U.,

~SAE paper 730088

6. Saggau, B., Calorimetry of the three discharge Modes of the

electrical ignition spark, Archiv flir Elektrotechnik, 64, 1981.

7. Kono, M., Humagai, S., and Sakai, T., Sixteenth symposium

(international) on combustion, p. 757, The Combustion Institute, 1977.

8 Kono, M., Nakagawa, Y., Hamal, K., and Sonc, M., Stabilized

combustion in a spark ignited engine through a long spark duration, SAE

paper 850075.

9. Hancock, M.S., Buckingham, D.J., and Belmont, M.R., SAE paper

860321.

10. Hamai, K., Kawajiri, H., Ishizuka, T., and Nakai, M., Twenty-first

symposium (international) on combustion, Munich 1986.

11. Hancock, M.S., Buckingham, D.J., and Belmont, M.R., The influences

of arc parameters of combustion in a spark-ignition engine, SAE paper

860321.

12. Maly, R., and Vogel, M., Seventeenth symposium (international) on

combustion, The Combustion Institute, 1979.

13. Maly, R., "Spark ignition: Its physics and effect on the internal

combustion engine" in Fuel economy: Road vehicles powered by spark

ignition engines, 1984.

14. Ziegler G.F.W., Wagner, E.P., Saggau, B., Maly, R., and Herden, W.,

SAE paper 840992.

As an opt ion, the Tektronix 2230 asci lloscope

interface for RS232-C connection (option 12).

was equipped with an

The standard RS232-C

connector consists of 7 pins, in general. However, for convenience, we

chose to make a standard installation by using only three of them. The

asci lloscope is "intelligent" enough to work with no more than three

pins connected: Transmit, receive and signal ground (TXD, RXD, and GND).

At the other end of the cable we had to "fool" the computer by

connecting pins 5, 6, 8, and 20 to together. With this arrangement, the

computer will interpret its own questions as answers to themselves. The

effect of this is that all informatio11 will flow freely, as fast as

possible. When in automatic mode, i.e. executing a program, our system

still has to have some confirmation to be sure that everything sent is

also received. Unfortunately, with no handshaking available we had to

delay the program for some milliseconds to be sure of this. The loss in

speed was, however, estimated to be less than 2%.

program inductive(input,output);

·Const resistance
array length
curve length
probeattenuation
sparklirnit

0.188; (*resistance of the current shunt*)
511;
2500;
1000; (* For high voltage probe *)
1;

type
regpack

charactervector
integervector
real vector
post type

var sample interval
spark
i,j ,k
channel
startindex,
flankpos,
flank index
store
voltageint,
currentint
powerarray,
energyarray
resultfile
OK
badcurves
chan
ch
seconds,
voltage

record
ax,bx,cx,dx,bp,si,di,ds,es,flags:integer;

end;
array [l .. curvelength] of char;
array [O .. arraylength] of integer;
array [0 .. arraylength] of real;
record

nr
del tat
deltav
firstpart
total

end;

real;
integer;
integer;
integer;

integer;
real;
real;
real;
real;

integer;
charactervector;

integervector;

real vector;
file of posttype;
boolean;
integer;
real;
char;

real;

(**)

PROCEDURE SEND_CHAR(CH:CHAR);
var

a:regpack;
begin

a.dx:=O;
a.ax:=$100+ord(ch);
intr($14,a);

end;

(**)

FUNCTION READ_CHAR:CHAR;
var

a:regpack;
begin

a.ax:=$300;
a.dx:=O;
intr($14,a);
if (a.ax and 256 <> 0) then
be~in

a.ax:=$200;
a.dx:=O;
intr($14,a);
read char := chr(lo(a.ax) and $7f);

end else
read_char:=CHR(O);

end;

(**)

PROCEDURE SETCHANNEL(channel: integer);
begin

case channel of
1: begin

delay(lOOO);
write(aux,chr(l3));
delay(lOO);
write(aux,'CURSOR, CHANNEL:CHl' ,chr(l3));
delay(200);
write(aux,'DATA, CHANNEL:CHl' ,chr(13));
delay(200);

end;
2: begin

end;
end;

delay(lOOO);
write(aux,chr(l3));
delay(lOO);
write(aux,'CURSOR, CHANNEL:CH2' ,chr(l3));
delay(200);
write(aux,'DATA, CHANNEL:CH2' ,chr(l3));
delay(200);

end;

(**)

PROCEDURE READ_IN;
var loop : integer;

ch char;
begin

loop := 1;
repeat

repeat
ch :=read_char;

until ch<>CHR(O);
store[loop] := ch;
loop := succ(1oop);

until ((ch=chr(13)) and (loop> 5)) or (loop= curvelength);
if loop = curvelength then

writeln('Error while trying to read in: No carriage return.');
end;

(**)

PROCEDURE CURVEIN;
I

var k : integer;

begin
write(aux,chr(13));
delay(100);
write(aux,'CURVE?' ,chr(l3));
READ_IN;

end;

(**)

procedure TRANSFORM (var charvect : charactervector;
var intvect : integervector);

var c, i
tal
zero level

integer;
integer;
integer;

begin
c := 1;
i := 0;
repeat

while not (('0' <= charvect[c]) and (charvect[c] <= '9')) do
c := c + 1;

tal := 0;
while ('0' <= charvect[c]) and (charvect[c] <= '9') do
begin

tal := lO*tal + ord(charvect[c]) - ord('O');
c := c + 1;

end;
intvect[i] := tal;
i := i + 1;

until (charvect[c] =';')or (c = curvelength);
if c = curvelength then

writeln('FEL I TRANSFORM!')
else

writeln('Curve transformed to array with' ,i,' elements:');
zerolevel := 0;

for i := 1 to 50 do
zerolevel := zerolevel + intvect[i];

zerolevel := round(zerolevel/50);
writeln('Zerolevel=' ,zerolevel);
delay(2000);
for i := 0 to arraylength do
begin

intvect[i] intvect[i] - zerolevel;
end;

end;

(**)

PROCEDURE WAITFORSPARK;

var j,k,a
I

: integer;

begin
write(aux,chr(l3));
DELAY(lOO);
write(aux,'SGLSWP ARM' ,chr(l3));
writeln('SINGLESWEEP ARMED.');
j := 1;
repeat

delay(lOO);
write(aux,'SGL?' ,chr(l3));
read_in;
k := 1;
repeat

write(store[k]);
k := k + 1;

until ((store [k] = chr(l3)) and (k>S)) or (k = 15);
j := j + 1;

until ((store[S] ='D') and (store[6] = '0')) or (j = 300);
writeln;
if j = 300 then (* j = 300 means time
begin

writeln('Oscilloskopet triggar inte.');
OK := false;

end;
end;

30 sec *)

(**)

FUNCTION READVALUE: REAL;

var

begin

answer
i,k,
exponent
ch
value,
weight

k :- 1;
exponent :- 0;
repeat

repeat

array [1 .. 30] of char;

integer;
char;

real;

ch := read_char;
until ch <> chr(O);
answer[k] := ch;
k := k + 1;

until (ch = chr(l3)) or (k = 30);
writeln('All characters are read.');
writeln ('SENT FROM SCOPE ');
I := 1;
repeat

write(' ',ANSWER[I]);
i := i + 1;

until answer [i] = chr(l3);
k := 4;
repeat

k := k + 1;

(* Begin search at FIFTH position *)

until (answer[k] in ['0' .. '9']) or (k 30);
if k <> 30 then
begin

value := 0;
while answer[k] in ['0' .. '9') do
begin

value := lO*value + ord(answer[k]) - ord('O');
k := k + 1;

end;
if answer[k] = ' ' then
begin

k := k + 1;
weight := 1;
while answer[k] in ['0' .. '9'] do
begin

weight := O.l*weight;
value :=value+ weight*(ord(answer[k]) - ord('O'));
k := k + 1;

end;
end;
if answer[k] 'E' then
begin

k := k + 1;
if answer[k] = '-' then

exponent := - (ord(answer[k+l]) - ord('O'))
else if answer[k] = '+' then

exponent := ord(answer[k+l]) - ord('O')
else

exponent := ord(answer[k]) - ord('O');
end;
value :=value* exp(exponent * ln(lO));
readvalue :=value;

end
else

readvalue := 0.0;
end;

(**)

PROCEDURE FINDPOSITIONS;

(* Note that when scope is in dual channel mode, the 1024/4096 points
are shared between the channels. Consequently, each 'integervector' will
contain 512/2048 integers, BUT the scope will nevertheless report posi­
tions from 2 to 1048/4096. No odd numbers are reported. Not to be confused,
carefully notice the use of 'index' numbers and 'position' numbers. *)

const downinterval
up interval
downsteps

10;
2;
10;
4;

var

up steps

newpoint,
ready
index,
steps
i

boolean;

integer;
integer;

begin
index := 0;
steps := 0;
newpoint
ready :=
repeat

false;
false;

repeat
if voltageint[index+downinterval] < voltageint[index] then
begin

steps := steps + 1;
index := index + downinterval;

end
else
begin

newpoint := true;
index := index - steps*downinterval + 1;
steps := 0;

end;
until (steps= downsteps) or (newpoint);
if steps = downsteps then
begin

startindex := index - (downsteps-l)*downinterval - 1;
write(aux,'CURSOR, SELECT:CURSl, TARGET:ACQ, POSITION:' ,2*startindex,chr(l3));
delay(lOO);
ready := true;

end;
until (ready) or (index>= 400);
OK := index < 400;
if OK then
begin

writeln('OUT OF FIRST OUTER REPEAT. POS = ',2*startindex);

steps := 0;
newpoint := false;
ready := false;
index:=startindex;
repeat

repeat
if voltageint[index+upinterval] > voltageint[index] then
begin

steps := steps + 1;
index := index+ upinterval;

end
else
begin

newpoint := true;
index := index - steps*upinterval + 1;
steps :- 0;

end;
until (steps= upsteps) or (newpoint);

if steps = upsteps then
begin

flankindex := index-(upsteps-l)*upinterval - 1;
flankpos := flankindex * 2;
write(aux,'CURSOR, SELECT:CURS2, TARGET:ACQ, POSITION:' ,flankpos,chr(l3));
delay(lOO);
ready :- true;

end;
until (ready) or (index>- 500);
writeln('OUT OF SECOND OUTER REPEAT. POSITION=' ,flankpos);
OK := index < 500;

end;
end;

(**)

PROCEDURE SMOOTHCURRENT(startindex,stopindex:integer);

const tolerance 20;

var index,
flipout,
goodagain
i, k
oldvalue
diff

integer;
integer;
integer;
real;

begin
index := startindex;
repeat

repeat
oldvalue := currentint[index];
index := index+ 1;

until (abs(currentint[index] - oldvalue) >tolerance) or (index= stopindex);
flipout := index;
i :- 0;
if index <> stopindex then

repeat
oldvalue := currentint[index];
index := index + 1;
if abs(currentint[index] - oldvalue) <= tolerance then

i := i + 1
else

i := 0;
until (i = 3) or (index stopindex) or (index- flipout >=50);

if i - 3 then
begin

goodagain := index - 3;
diff := (currentint[goodagain] - currentint[(flipout-1)])/(goodagain-flipout+l);
for k := flipout to (goodagain-1) do

currentint[k] := currentint[(flipout-1)] + round(diff*(k-flipout+l));
end;

until (index>= stopindex) or (index - flipout >-SO);
OK:- (index>= stopindex);
if not OK then

end;

for i :- 100 to stopindex do
write(currentint[i],' ');

(**)

PROCEDURE CALC;

var i,j,k
voltdivl,
voltdiv2
coeff
trigpos,
trigindex
timeincr
thispost
channel
dummy

: integer;

real;
real;

integer;
real;
posttype;
integer;
real;

begin
write(aux,'CHl? VOLTS' ,CHR(l3));
voltdivl := readvalue;
write(aux,'CH2? VOLTS' ,CHR(l3));
voltdiv2 := readvalue;
coeff := (voltdivl * voltdiv2 * probeattenuation) / (25 * 25 *resistance);
writeln ('Coefficient is ', coeff,' .');
writeln ('Voltdivl = ',voltdivl, 'Voltdiv2 = ',voltdiv2);
k := 0;
i := flankindex;
for j := 1 to (flankindex - 1) do

energyarray[j] := 0;

repeat
powerarray[i] := voltageint[i] * currentint[i] * coeff;
if powerarray[i] < 0 then
begin

powerarray[i] := 0;
k := k + 1;

end;
energyarray[i] := energyarray[i-1] + powerarray[i]*sampleinterval;
i := i + 1;

until i = arraylength;

with thispost do
begin

nr := spark;
deltat := seconds;
deltav :=voltage;
firstpart := energyarray[flankindex+50]; (*One division after breakdown*)
total := energyarray[i-1];

end;

writeln('Calculation of power aborted at i = ',i);
write(resultfile,thispost);

with thispost do
writeln(nr:2,' ',deltat:8,' ',deltav:lO,' ',firstpart:lO,' ',total:lO);

writeln('Number of negative powers after breakdown=' ,k);
end;

(**)

PROCEDURE INIT;

begin
auxinptr := ofs(read char);
auxoutptr := ofs(send_char);
assign(resultfile,'RESULT.DAT');
rewrite(resultfile);
for i :- 1 to curvelength do

store[i] :- chr(O);
badcurves := 0;
write(aux,chr(l3));
delay(100);
write(aux,'REMOTE ON' ,CHR(13));
delay(100);
write(aux,'DATA, SOURCE:ACQ,TARGET:REF1,ENCDG:ASCII' ,chr(13));
delay(100);
write(aux,'WFM ENCDG:ASCII' ,chr(13));
repeat

delay(40);
write(aux,'WFM? XINCR' ,chr(13));
sampleinterval := readvalue;
write1n('Sampleinterval is read to' ,sampleinterval);

until (sampleinterval > 0.0) and (sampleinterval < 1.0);
end;

(**)

(****~********** S T A R T 0 F MAIN P R 0 G R A M ****************)

(**)

begin
init;
spark := 0;
repeat

spark := spark + 1;
OK := true;

(* waitforspark; *)
writeln(#7); (*Beep*)
writeln(#7);
writeln('Armera skopet. Ge sedan ny gnista och tryck ENTER.');
readln(ch);
if OK then
for channel := 1 to 2 do
begin

setchannel(channel);
write(aux,'DATA? CHA' ,CHR(13));
READ_IN;
k := 1;
repeat

write(store[k],' ');
k := k + 1;

until (store[k] = chr(l3)) or (k = 30);
curvein;
case channel of

1 : begin
transform(store, voltageint);

OK := true;
findpositions;
delay(400);
if not OK then
begin

writeln('The flanks of the voltagecurve are not found');
badcurves :- badcurves + 1;

end;
write(aux,'DELTAT?,VALUE' ,chr(l3));
seconds:=readvalue;
write(aux,'DELTAT?, VALUE' ,CHR(l3));
seconds := readvalue;
writeln('TIME IS READ TO ',seconds);
write(aux,'DELTAV?, VALUE' ,CHR(l3));
voltage := readvalue*probeattenuation;
writeln('VOLTAGE IS READ TO ',voltage);

end;
2 if OK then

begin
transform (store, currentint);
smoothcurrent(l,arraylength);
if OK then

calc
else
begin

badcurves := badcurves + 1;
writeln('Curve too noisy for acceptance!');

end;
end;

end;
end;

write(chr(7));

i :- flankindex - 3;
begin

(* Beep *)

writeln('Push return.');
readln(ch);
for k := 1 to 20 do
begin

if i = flankindex then write('*');
writeln(i:3,voltageint[i]:6,currentint[i]:9,powerarray[i]:l2:2,energyarray[i]*lOOC
i := i + 1;

end;
end;
writeln('Number of generated sparks so

until (spark - badcurves) >= sparklimit;
writeln('PROGRAM TERMINATED.');
writeln('NUMBER OF ACCEPTED CURVES
writeln('NUMBER OF NOT ACCEPTED CURVES

far .. ' , spark) ;

spark- badcurves:3);
badcurves: 3) ;

end.

program capacitive (input,output);

const resistance (* resistance of the current shunt *)
array length
curve length
probeattenuation
offset
sparklimit

0.188;
511;
2500;
1000;
100;
37;

(* For high voltage probe *)
(* With parallel! spark plugs *)

type
regpack

charactervector
integervector
real vector
posttype

var sample interval
spark
i,j ,k
channel
startindex,
flankpos,
flank index
store
voltageint,
currentint
powerarray,
energy array
resultfile
OK
badcurves
chan
ch
seconds,
voltage

record
ax,bx,cx,dx,bp,si,di,ds,es,flags:integer;

end;
array [l .. curvelength] of char;
array [O .. arraylength] of integer;
array [O .. arraylength] of real;
record

nr
del tat
deltav
firstpart
total

end;

real;
integer;
integer;
integer;

integer;
real;
real;
real;
real;

integer;
charactervector;

integervector;

real vector;
file of posttype;
boolean;
integer;
real;
char;

real;

(**)

PROCEDURE SEND_CHAR(CH:CHAR);
var

a:regpack;
begin

a.dx:=O;
a.ax:=$100+ord(ch);
intr($14,a);

end;

(**)

FUNCTION READ_CHAR:CHAR;
var

a:regpack;
begin

a.ax:=$300;
a.dx:=O;
intr($14,a);
if (a.ax and 256 <> 0) then
begin

a.ax:=$200;
a.dx:=O;
intr($14,a);
read char := chr(lo(a.ax) and $7f);

end else
read_char:=CHR(O);

end;

(**)

PROCEDURE SETCHANNEL(c
begin

case channel of
1: begin

integer);

delay(lOOO);
write(aux,chr(l3));
delay(lOO);
write(aux,'CURSOR, CHANNEL:CHl' ,chr(l3));
delay(200);
write(aux,'DATA, CHANNEL:CHl' ,chr(l3));
delay(200);

end;
2: begin

end;
end;

delay(lOOO);
write(aux,chr(l3));
delay(lOO);
write(aux,'CURSOR, CHANNEL:CH2' ,chr(l3));
delay(200);
write(aux,'DATA, CHANNEL:CH2' ,chr(l3));
delay(200);

end;

(**)

PROCEDURE READ_IN;
VAR LOOP :INTEGER;

CH :CHAR;
BEGIN

LOOP :=1;
REPEAT

repeat
ch :=read_char;

until ch<>CHR(O);
STORE[LOOP] :=CH;
LOOP :=SUCC(LOOP);

UNTIL ((CH=CHR(l3)) and (LOOP> 5)) or (LOOP= curvelength);
if loop = curvelength then

writeln('Error while trying to read in: No carriage return.');

END;

(**)

PROCEDURE CURVEIN;

var k : integer;

begin
write(aux,chr(13));
delay(lOO);
write(aux,'CURVE?' ,chr(13));
READ_IN;

end;

(**)

procedure TRANSFORM (var charvect : charactervector;
var intvect : integervector);

var

begin

c, i
tal
zero level

c :- 1;
i :=- 0;
repeat

integer;
integer;
integer;

while not (('0' <= charvect[c]) and (charvect[c] <= '9')) do
c :- c + 1;

tal := 0;
while ('0' <= charvect[c]) and (charvect[c] <= '9') do
begin

tal := 10*tal + ord(charvect[c]) - ord('O');
c := c + 1;

end;
intvect[i] := tal;
i := i + 1;

until (charvect[c] =';')or (c
if c = curvelength then

writeln('FEL I TRANSFORM!')
else

curvelength) ;

writeln('Curve transformed to array with' ,i,' elements:');
zerolevel := 0;
for i := 1 to 50 do

zerolevel := zerolevel + intvect[i];
zerolevel := round(zerolevel/50);
writeln('Zerolevel=' ,zerolevel);
delay(2000);
for i :- 0 to arraylength do
begin

intvect[i] :- intvect[i] - zerolevel;
end;

end;

(**)

PROCEDURE WAITFORSPARK;

var j ,k,a : integer;

begin
write(aux,chr(l3));
DELAY(lOO);
write(aux,'SGLSWP ARM' ,chr(l3));
WRITELN('SINGLESWEEP ARMED.');
j := 1;
repeat

delay(lOO);
write(aux,'SGL?' ,chr(l3));
read_in;
k :- 1;
repeat

write(store[k]);
k := k + 1;

until ((store [k] = chr(l3)) and (k>S)) or (k = 15);
j := j + 1;

until ((store[S] ='D') and (store[6] = '0')) or (j = 300);
writeln;
if j = 300 then (* j = 300 means time
begin

write1n('Oscilloskopet triggar inte.');
OK := false;

end;
end;

30 sec *)

(**)

FUNCTION READVALUE: REAL;

var

begin

answer
i,k,
exponent
ch
value,
weight

k := 1;
exponent := 0;
repeat

repeat

array [1 .. 30] of char;

integer;
char;

real;

ch :- read_char;
until ch <> chr(O);
answer[k] := ch;
k := k + 1;

until (ch = chr(l3)) or (k = 30);
writeln('All characters are read.');
WRITELN ('SENT FROM SCOPE ');
I := 1;
REPEAT

WRITE(' ',ANSWER[!));
I :- I + 1;

UNTIL ANSWER [I] = CHR(13);
k := 4;
repeat

k :- k + 1;

(* Begin search at FIFTH position *)

until (answer[k] in ['0' .. '9']) or (k = 30);
if k <> 30 then
begin

value :- 0;
while answer[k] in ['0' .. '9'] do
begin

value := 10*va1ue + ord(answer[k]) - ord('O');
k := k + 1;

end;
if answer[k] = ' ' then
begin

k := k + 1;
weight :- 1;
while answer[k] in ['0' .. '9'] do
begin

weight := O.l*weight;
value :=value+ weight*(ord(answer[k]) - ord('O'));
k := k + 1;

end;
end;
if answer[k] 'E' then
begin

k := k + 1;
if answer[k] = '-' then

exponent := - (ord(answer[k+1]) - ord('O'))
else if answer[k] = '+' then

exponent := ord(answer[k+l]) - ord('O')
else

exponent := ord(answer[k]) - ord('O');
end;
value :=value* exp(exponent * 1n(l0));
readvalue :=value;

end
else

readva1ue := 0.0;
end;

(**)

PROCEDURE FINDPOSITIONS;

(* Note that when scope is in dual channel mode, the 1024/4096 points
are chared between the channels. Consequently, each 'integervector' will
contain 512/2048 integers, BUT the scope will nevertheless report posi­
tions from 2 to 1048/4096. No odd numbers are reported. Not to be confused
carefully notice the use of 'index' numbers and 'position' numbers. *)

canst downinterval
up interval
downsteps
upsteps

var newpoint,
ready
index,

1·
' 1•
' s· ' 2;

boolean;

begin

steps
i

integer;
integer;

index :- 0;
steps :- 0;
newpoint := false;
ready := false;
repeat

repeat
if voltageint[index+downinterval] < voltageint[index] then
begin

steps := steps + 1;
index := index + downinterval;

end
else
begin

newpoint := true;
index :- index - steps*downinterval + 1;
steps := 0;

end;
until (steps= downsteps) or (newpoint);
if steps = downsteps then
begin

startindex := index - (downsteps-l)*downinterval - 1;
write(aux,'CURSOR, SELECT:CURSl, TARGET:ACQ, POSITION:' ,2*startindex,chr(l3));
delay(lOO);
ready := true;

end;
until (ready) or (index>- 400);
OK := index < 390;
if OK then
begin

WRITELN('OUT OF FIRST OUTER REPEAT. POS = ',2*startindex);

steps :- 0;
newpoint := false;
ready := false;
index:=startindex;
repeat

repeat
if voltageint[index+upinterval] >- voltageint[index] then
begin

steps := steps + 1;
index := index+ upinterval;

end
else
begin

newpoint := true;
index := index - steps*upinterval + 1;
steps := 0;

end;
until (steps= upsteps) or (newpoint);
if steps = upsteps then
begin

flankindex := index-(upsteps-l)*upinterval - 1;
flankpos := flankindex * 2;
write(aux,'CURSOR, SELECT:CURS2, TARGET:ACQ, POSITION:' ,flankpos,chr(l3));
delay(lOO);
ready :- true;

end;
until (ready) or (index>= 500);
WRITELN('OUT OF SECOND OUTER REPEAT. POSITION-' ,flankpos);

OK := index < 490;
end;

end;

(**)

PROCEDURE SMOOTHCURRENT(startindex,stopindex:integer); (*Capacitive system*)

const tolerance 10;

var index,
flipout,
goodagain
i, k
oldvalue
diff

integer;
integer;
integer;
real;

begin
index :- startindex;
repeat

repeat
oldvalue :- currentint[index];
index := index+ 1;

until (abs(currentint[index] - oldvalue) >tolerance) or (index= stopindex);
flipout := index;
i := 0;
if index <> stopindex then

repeat
oldvalue := currentint[index];
index := index + 1;
if abs(currentint[index] - oldvalue) <= tolerance then

i := i + 1
else

i := 0;
until (i = 3) or (index stopindex) or (index- flipout >= 20);

if i = 3 then
begin

goodagain := index - 3;
diff := (currentint[goodagain] - currentint[(flipout-1)])/(goodagain-flipout+l);
for k := flipout to (goodagain-1) do

currentint[k] := currentint[(flipout-1)] + round(diff*(k-flipout+l));
end;

until (index>= stopindex) or (index- flipout >= 20);
OK:= (index>= stopindex);
if not OK then

end;

for i := 100 to stopindex do
write(currentint[i],' ');

(**)

PROCEDURE CALC;

var i,j ,k integer;

begin

voltdivl,
voltdiv2
coeff
trigpos,
trigindex
timeincr
thispost
channel
dummy
correction

real;
real;

integer;
real;
posttype;
integer;
real;
integer;

write(aux,'CHl? VOLTS' ,CHR(l3));
voltdivl := readvalue;
write(aux,'CH2? VOLTS' ,CHR(l3));
voltdiv2 := readvalue;
coeff :- (voltdivl * voltdiv2 * probeattenuation) / (25 * 25 *resistance);
k := 0;
correction:= round(offset*25/voltdivl/probeattenuation);
for i := 1 to arraylength do

voltageint[i] := voltageint[i] + correction;
i := flankindex;
for j := 1 to flankindex do

energyarray[j] := 0;
repeat

powerarray[i] :- (voltageint[i] * currentint[i] * coeff);
if powerarray[i] < 0 then
begin

powerarray[i] := 0;
k := k + 1;

end;
energyarray[i] := energyarray[i-1] + powerarray[i]*sampleinterval;
i := i + 1;

until (i = arraylength);

with thispos t do
begin

nr := spark;
deltat := seconds;
deltav := voltage;
firstpart := energyarray[flankindex+5];
total:= energyarray[arraylength-4];

end;

write(resultfile,thispost);

with thispost do
writeln(nr:2,' ',deltat:8,' ',deltav:lO,' ',firstpart:lO,' ',total:lO,' DIFF: '

writeln('Number of negative powers=' ,k);
end;

(**)

PROCEDURE INIT;

begin
auxinptr :- ofs(read_char);
auxoutptr := ofs(send_char);
assign(resultfile,'RESULT.DAT');

rewrite(resultfile);
for i := 1 to curvelength do

store[i] := chr(O);
badcurves := 0;
write(aux,chr(l3));
delay(lOO);
write(aux,'REMOTE ON' ,CHR(13));
delay(lOO);
write(aux,'DATA, SOURCE:ACQ,TARGET:REFl,ENCDG:ASCII' ,chr(13));
delay(lOO);
write(aux,'WFM ENCDG:ASCII');
repeat

delay(40);
write(aux,'WFM? XINCR' ,chr(13));
sampleinterval := readvalue;
writeln('Sampleinterval is read to ',sampleinterval);

until (sampleinterval > l.OE-10) and (sampleinterval < 1.0);
writeln('Program assumes capacitive system.');

end;

(**)

(*************** S T A R T 0 F MAIN P R 0 G R A M ****************)

(**)

begin
init;
spark := 0;
repeat

spark := spark+ 1;
OK := true;

(* waitforspark; *)
write(#7); (* Beep *)
write(#7);
writeln('Ge ny gnista och tryck ENTER.');
readln(ch) ;
if OK then
for channel := 1 to 2 do
begin

setchannel(channel);
write(aux,'DATA? CHA' ,CHR(13));
READ_IN;
k := 1;
repeat

write(store[k],' ');
k := k + 1;

until (store[k) = chr(13)) or (k- 30);
curve in;
case channel of

1 : begin
transform(store, voltageint);
OK := true;
findpositions;
delay(400);
if not OK then
begin

writeln('The flanks of the voltagecurve are not found');
badcurves :- badcurves + 1;

end;
write(aux,'DELTAT?,VALUE' ,chr(13));
seconds:=readvalue;

write(aux,'DELTAT?, VALUE' ,CHR(l3));
seconds := readvalue;
WRITELN('TIME IS READ TO ',seconds);
write(aux,'DELTAV?, VALUE' ,CHR(l3));
voltage := readvalue*probeattenuation;
WRITELN('VOLTAGE IS READ TO' ,voltage);

end;
2 if OK then

end;
end;

begin
transform (store, currentint);
smoothcurrent((flankindex-lO),arraylength);
if OK then

calc
else
begin

badcurves := badcurves + 1;
writeln('Curve too noisy for acceptance!');

end;
end;

writeln('Number of generated sparks so
until (spark - badcurves) = sparklimit;
writeln('PROGRAM TERMINATED.');
writeln('NUMBER OF ACCEPTED CURVES
writeln('NUMBER OF NOT ACCEPTED CURVES

far ' , spark) ;

spark- badcurves:3);
badcurves : 3) ;

end.

rewrite(resultfile);
for i := 1 to curvelength do

store[i] :- chr(O);
badcurves :- 0;
write(aux,chr(l3));
delay(lOO);
write(aux,'REMOTE ON' ,CHR(l3));
delay(lOO);
write(aux,'DATA, SOURCE:ACQ,TARGET:REFl,ENCDG:ASCII',chr(l3));
delay(lOO);
write(aux,'WFM ENCDG:ASCII');
repeat

delay(40);
write(aux,'WFM? XINCR',chr(l3));
sampleinterval :- readvalue;
writeln('Sampleinterval is read to ',sampleinterval);

until (sampleinterval > 1.0E-10) and (sampleinterval < 1.0);
write1n('Program assumes capacitive system.');

end;

(**)

(*************** S T A R T OF MAIN P R 0 G R A M ****************)

(**)

begin
init;
spark := 0;
repeat

spark := spark + 1;
OK := true;

(* waitforspark; *)
write(#7); (* Beep *)
write(#7);
writeln('Ge ny gnista och tryck ENTER.');
readln(ch);
if OK then
for channel := 1 to 2 do
begin

setchannel(channel);
write(aux,'DATA? CHA' ,CHR(13));
READ_IN;
k :- 1;
repeat

write(store[k],' ');
k :- k + 1;

until (store[k] - chr(l3)) or (k- 30);
curve in;
case channel of

1 : begin
transform(store, voltageint);
OK := true;
findpositions;
delay(400);
if not OK then
begin

writeln('The flanks of the voltagecurve are not found');
badcurves :- badcurves + 1;

end;
write(aux,'DELTAT?,VALUE' ,chr(13));
seconds:=readvalue;

write(aux,'DELTAT?, VALUE' ,CHR(13));
seconds := readvalue;
WRITELN('TIME IS READ TO ',seconds);
write(aux,'DELTAV?, VALUE' ,CHR(13));
voltage := readvalue*probeattenuation;
WRITELN('VOLTAGE IS READ TO' ,voltage);

end;
2 if OK then

end;
end;

begin
transform (store, currentint);
smoothcurrent((flankindex-lO),arraylength);
if OK then

calc
else

·begin
badcurves := badcurves + 1;
writeln('Curve too noisy for acceptance!');

end;
end;

writeln('Number of generated sparks so
until (spark - badcurves) = sparklimit;
writeln('PROGRAM TERMINATED.');
writeln('NUMBER OF ACCEPTED CURVES
writeln('NUMBER OF NOT ACCEPTED CURVES

far ' , spark) ;

spark- badcurves:3);
badcurves: 3) ;

end.

