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Abstract

The aim of this Thesis is to investigate high order harmonic generation in pres-
ence of a two color driving field. A dilute rare gas is exposed to the output of
a Titanium Sapphire laser mixed with its second harmonic. This quantum me-
chanical process is calculated in Matlab using the Strong Field Approximation.
The single atom response to fields of both few and many cycles is computed.

The results show that the high harmonic generation process can be improved
significantly using a two color field. The output intensity can be increased and
tuned to specific central frequencies. The results also show that the duration
of single attosecond bursts can be reduced by a factor of two. It is, however,
not possible to combine amplification and temporal compression in the output.
The calculations show good agreement with recent experiments in Lund.

Deeper insight into the spectral features of the two color high order harmonic
generation has been gained using the Feynman Path Integral formalism. These
predictions have been verified by simulations in Matlab.



2

Populärvetenskaplig sammanfattning

Övertonsgenerering är ett fascinerande fenomen som inträffar d̊a intensivt ljus
samverkar med materia. Ljuset som används i experimentet best̊ar av en laser-
puls som komprimeras till s̊a kort längd som möjligt för att optimera inten-
siteten. Laserpulsen best̊ar därför endast av ett f̊atal svängningar och dess
längd motsvarar ungefär 10 femtosekunder för en infraröd puls. D̊a laserpulsen
fokuseras p̊a en atom blir den resulterande kraften s̊a stor att den tillfälligt
löser upp banden mellan elektronerna och kärnan. En elektron kan d̊a slungas
ut p̊a en l̊ang färd i den fria rymden. I nästa ögonblick byter laserpulsen rik-
tning p̊a sitt elektriska fält. Elektronen bromsas därför in och sedan dras den
tillbaka mot kärnan. Banden mellan elektronen och kärnan bildas p̊a nytt och
den överblivna energin sprutar ut i form av en extremt kort ljusblixt. Längden
p̊a blixten är cirka 100 attosekunder, vilket är hundra g̊anger kortare än den
komprimerade laserpulsen.

Genom att utnyttja tv̊a laserpulser med olika färger kan man p̊averka och
kontrollera övertonsgenereringen. Kvantmekaniska beräkningar visar att man
p̊a detta sätt kan öka intensiteten p̊a de genererade blixtarna och att man kan
styra blixtarnas energier. Detta öppnar för praktiska tillämpningar och mer
precisa experimentalla metoder.
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Chapter 1

Introduction

1.1 Nonlinear Optics in a Nutshell

An atom consists of a small nucleus and a bunch of orbiting electrons. When an
electric field is applied to the atom, the nucleus will be pulled in the direction
of the electric field, and the electrons will be pulled in the opposite direction.
The result of this relative displacement, is a small dipole moment which creates
an electric field opposite to the applied field [1]. The dipole moment increases
when the applied field strength increases, but the increase is not linear, because
the forces keeping the atom together are not linear.

Matter is made up of many atoms and therefore responds in a similar way.
When matter interacts with strong laser fields, the polarization of the material
will be nonlinear. This nonlinearity can be taken into account by expanding the
susceptibility of the material in a power series:

P (t) ≡ P (1)(t) + P (2)(t) + ... = ε0(χ(1)E(t) + χ(2)E2(t) + ...),

where P (t) is the total polarization, χ(n) is the n’th order susceptibility and E(t)
is the electric field. Because the polarization now depends on integer powers of
the driving field, there will be new frequencies appearing in the emission. Atomic
gases have inversion symmetry and can therefore only emit at odd harmonics
of the driving field, see Figure 1.1 [2].

1.2 High Order Harmonic Generation (HHG)

The atom can be ionized due to quantum-tunneling when the laser intensity
gets even higher (above 1018 W/m2 for 800 nm laser light). The electrons
leave the atom and accelerate to high velocities in the laser field. When the
laser field changes sign, the electrons will be decelerated, and some may return
to the vicinity of the nucleus. These electrons can then recombine with the
nucleus and release energetic photons [3]. The generated photons have energies
corresponding to odd harmonics of the driving field. The higher the intensity of
the driving field is, the higher energy photons can be produced. Qualitatively,
there is one important difference between conventional nonlinear optics and high
order harmonic generation. In high order harmonic generation, a large number
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CHAPTER 1. INTRODUCTION 6

Figure 1.1: Due to the nonlinearity of the interaction with the atom, the output
laser beam will include multiples of the input laser frequency. Even harmonics
can only be created when there is an time-average dislocation of the electron
distribution. Net dislocations can’t be created from monochromatic driving
fields and atoms with inversion symmetry because the electron will always be
at the nucleus on time average.

of harmonics have equal strength, whereas in conventional nonlinear optics the
harmonic strength always decreases with the harmonic order.

1.3 Bichromatic Driving Field ω/2ω

Recent experimental work in Lund have showed that the harmonic intensity
can be increased if the generation is driven by two laser fields instead of one,
see Figure 1.2. We investigate a particular bichromatic laser field called ω/2ω,
which includes two monochromatic beams: ω = 2πc/λ, λ = 800 nm; and
2ω, where ω denotes an angular frequency, c is the speed of light and λ is
the corresponding wavelength in vacuum. Optimizing the output intensity is
important, because increasing the number of generated photons improves the
quality of applications and experiments. The ω/2ω field has several other nice
features, such as one attosecond pulse per period [5], and in situ measurements
of the generated harmonic phases [6].

Single attosecond bursts (> 100 as) can be produced using ultra short driving
pulses (< 5 fs) of ω fields [7]. It has been predicted that the driving fields don’t
have to be as short if ω/2ω fields are used instead of ω fields. Experiments
with short phase locked ω/2ω pulses (12 fs) have recently been carried out by
E. Gustafsson, at ETH in Zürich, to verify these predictions. Early results from
experiments, with single laser shots (9 fs) and an unlocked absolute phase, imply
that single bursts can be obtained [8].
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Figure 1.2: The high order harmonic generation from a monochromatic field,
ω, consists of odd harmonics (red line). The harmonic intensity decreases fast
for wavelengths under 28 nm. This cut off energy depends on the intensity of
the driving field and it will be discussed in detail in the following chapters. The
intensity of the lower harmonics (46-33 nm) can be increased using a two color
driving field, ω/2ω (blue line). The ω/2ω spectrum contains both even and
odd harmonics and there are two cut offs: 42 nm and 28 nm, where the latter
coincides with the cut off of the ω field [4].
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1.4 Aim of Thesis

The aim of this theoretical Thesis is to investigate the high order harmonic
generation from ω/2ω fields. The duration of the driving pulse is varied from
ultra short to continuous. A program, based on the Strong Field Approximation
[9], has been written in Matlab. The program is very general and can be used
to calculate the high order harmonic generation of any arbitrary low frequency
driving field.

Outline of Thesis

The outline of the Thesis is as follows: Chapter 2 explains high order harmonic
generation using classical mechanics. A semi-classical picture called the Simple
Man’s Model [3] is reviewed. The Hamiltonian of the system is constructed
and electrodynamic gauge transformations are made to fit the Strong Field
Approximation formulation. Chapter 3 covers the limitations of the classical
picture. The Feynman Path Integral formulation of quantum mechanics is used
to derive a few qualitative results for ω/2ω fields. The method described was
created by the Author, but the idea that the Feynman Path Integral can be
used in combination with high order harmonic generation has been known for a
long time [9] [10]. Chapter 4 reviews the Strong Field Approximation, starting
from the Schrödinger equation and ends up with an explicit expression for the
dipole moment, written with propagator operators. The implementation in
Matlab is then discussed in some detail. Chapter 5 is divided into three parts,
where each part contains key results from the Matlab simulations: A method is
described for separating classical trajectories in the Strong Field Approximation;
the high order harmonic spectra is studied for a large range of relative intensities
of adiabatic ω/2ω driving fields; and the ω/2ω field is used to improve the
attosecond bursts from ultra short driving pulses. Chapter 6 summarizes the
results and gives an outlook.



Chapter 2

Classical Trajectories

2.1 Simple Man’s Model

High order harmonic generation (HHG) is a quantum mechanical process. It
is, however, extremely useful to have worked through the classical problem of
a charged particle in an electromagnetic field before dealing with the full com-
plexity of HHG. This semi-classical treatment is often referred to as the Simple
Man’s Model, see Figure 2.1. In this model, the electron tunnels into the con-
tinuum through the atomic potential, which is deformed due to the strong laser
field. This tunneling process is illustrated in Figure 2.2. After tunneling into the
continuum, the electron is accelerated away from the atom by the laser field. At
a later time the laser field changes sign and the electron is pulled back toward
the atom. The electron can recombine with the atom and radiate some photons.
The photon energy is the sum of the binding potential and kinetic energy of the
returning electron due to energy conservation [3].

Figure 2.1: In the Simple Man’s Model, the electron tunnels at T, accelerates
along A and then recombines and generates a photon at R.

2.2 Newtonian Mechanics

Using Newtonian mechanics, particles are accelerated when they are affected
by forces. The force acting on a charged particle in an electromagnetic field is

9
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Figure 2.2: The electron is trapped in the Coloumb potential when there is
no external E-field (left plot). The electron can tunnel through the Coloumb
potential into the continuum when a strong E-field acts on the atom (right plot).

known as the Lorentz force:

~F = q( ~E + ~v × ~B),

1
2

1
2 where q is the charge and ~v ≡ d~r

dt is the velocity of the particle, ~E =
~E(t, ~r) is the electric field and ~B = ~B(t, ~r) is the magnetic field evaluated
at the location of the particle, ~r ≡ ~r(t) at time t [1]. The electron in the
Simple Man’s model is accelerated by a focused femtosecond laser pulse, but
the corresponding electromagnetic field is assumed to be a linearly polarized
plane wave propagating along the ẑ-axis in vacuum:{

~E(t, ~r) = E0 sin(ωt− ~k · ~r)x̂
~B(t, ~r) = − 1

c ẑ × ~E

where E0 is the amplitude of the field, ω = 2πc/λ is the angular frequency and
~k = 2π/λ ẑ is the wave vector 1. The effective intensity of the driving field
I = cε0|E0|2/2 is of the order of 1018 W/m2. The main purpose of the Thesis
is to study harmonic generation from two colors laser fields: ω and 2ω, but we
start by considering the simpler case with a monochromatic driving field.

The classical trajectories of the electron in the field are completely deter-
mined by the initial conditions. We therefore define a tunneling time t′ and
assume that the electron appears at the origin with zero velocity right after
tunneling has occurred: {

~r(t′) = 0
~v(t′) = ~0.

The problem is now fully defined and can be solved by integrating Newton’s
second law:

m~̈r = ~F −→ ~r(t) =
1
m

∫ t

t′
dt′′

∫ t′′

t′
dt′′′ ~F (t′′′, ~r)

In the Simple Man’s Model only trajectories that return to the origin at some
time t > t′ are of interest, since these are the only trajectories that can recombine

1The laser pulse is a few cycle pulse in reality, but we model it as a continuous wave for
simplicity. In this Thesis, we refer to driving pulses as continuous if they are longer than 20
fs. Shorter driving pulses (5-20 fs) are referred to as ultra fast pulses.
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and generate photons. The magnetic field has a small effect on nonrelativistic
particle trajectories and can be neglected for the intensities considered in this
Thesis. By neglecting the B-field the problem is reduced to one dimension:

mẍ = qE(t) −→ x(t) =
1
m

∫ t

t′
dt′′

∫ t′′

t′
dt′′′qE(t′′′, x).

The IR-field has a very long wavelength compared to the characteristic distance
xEc that the electron travels in a constant E-field Ec during a time T = λ/c:

λ

xEc

=
2mc2

qE0λ
≈ 46 � 1,

for an intensity I = 1018 W/m2. This suggests that the dipole approximation
can be used, which allows us to neglect the x-dependence in the E-field for tra-
jectories in the Simple Man’s Model. The analytical trajectories are calculated
for the monochromatic driving field.

x(t) =
1
m

∫ t

t′
dt′′

∫ t′′

t′
dt′′′qE0 sinωt′′′ = − qE0

mω2
sinωt + vDt + x0,

where the drift velocity vD = qE0
mω cos ωt′ and the position x0 ≡ x(0) = qE0

mω ( 1
ω sinωt′−

cos ωt′) are integration constants determined by the initial conditions. The ki-
netic return energy is plotted for a large number of different tunneling times t′

in Figure 2.3.
It is sufficient to consider tunneling times t′ ∈ [0, T/2], because of the

antisymmetry of the E-field. Electrons that appear in the continuum with
t′ ∈ [T/4, T/2] return to the origin at some time t > T/2. The amount of
kinetic energy that the electrons return with depends on the tunneling time, t′.
In the middle plot of Figure 2.3, we find that:

Ek ≤ 3.17Up,

where:

Up =
q2λ2I

8π2ε0c3m

is the average oscillating kinetic energy that the electron has in the IR-field 2

[3]. This is one of the key results from the classical treatment of the electron
trajectories because it implies that the maximal photon energy is Ip + 3.17Up,
where Ip is the potential energy of the bound electron.

2.3 Numerical Approach

In the previous section, the analytical equations for the classical trajectories,
generated by monochromatic laser fields, were calculated. In the next section,
we will consider more general fields with temporal envelopes and two colors. We
disregard all spatial effects, such as phase matching and spatial envelopes.

2Up is also known as the ponderomotive energy
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Figure 2.3: The left plot shows the IR field driving the harmonic generation.
The blue arrow represents a long trajectory that tunnels at t′ ≈ 0.25T (where
the arrow starts) and returns approximately one period later, at t′′ ≈ 1.25T
(where the arrow ends). The longest returning trajectory spends one period in
the continuum. Even longer trajectories must be considered if the the electron
is not fully recombined when it returns to the atom. The red arrow represents a
short trajectory that tunnels just before the electric field changes sign, t′ ≈ 0.5T ,
and then returns very quickly to the nucleus, t′′ ≈ 0.5T . The shortest trajectory
possible spends no time in the continuum. The middle plot shows the kinetic
energy that the electron can return with at different times. The right plot shows
the corresponding time of flights, τ , i.e. the amount of time that the electron
spends in the continuum before recombining with the atom. We define short
trajectories to have τ < 0.65T ; and long trajectories to have τ > 0.65T , see
Figure 5.1 for more details.
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Envelopes

It is possible, but cumbersome, to calculate the trajectories of particles in laser
pulses. Instead of doing all this integrating, a Matlab program is written that
solves the classical trajectories numerically for arbitrary driving fields.

We choose to model the temporal envelope as a cos2-envelope, labeled ΛN ,
and not as a Gaussian envelope, because a cos2-envelope becomes zero in a
finite time. The Gaussian envelope, on the other hand, only approaches zero
as the time goes to infinity, which complicates numerical calculations. The
cos2-envelope is defined as:

ΛN (t) = cos2(ωt/2N)× (Θ(t + NT/2)−Θ(t−NT/2)) ,

where N is the number of IR-periods that the envelope spans and the Θ’s
are step functions ensuring that the envelope is zero for t /∈ (−NT/2, NT/2).
Multiplying the envelope with the carrier frequency gives the electric field of
the laser pulse:

E(t) = E0 sin(ωt + φR)× ΛN (t),

where E0 is the amplitude, ω is the carrier frequency and φR positions the
oscillations relative to the envelope 3. A typical laser pulse is found in the left
plot of Figure 2.4.

When the harmonic generation is driven by a laser pulse, we find that the
return energies are damped at the start and at end of the pulse. This is easy
to understand because the driving field is weaker there, making the effective
ponderomotive energy smaller.

The time of flight, τ , is independent of the applied intensity for continuous
fields, which is easy to understand because the longest trajectory always spends
one period, T , in the continuum before returning. There is, however, a small
perturbation in the time of flight due to the slowly varying amplitude during
each period of the pulse.

Figure 2.4: The arrows indicate trajectories that return with maximal kinetic
energy. The early (green)- and the late (red) trajectories return with less energy
than the center trajectory (blue), because the electric field is stronger in the
center of the pulse.

3φR is sometimes called that Carrier-Envelope delay (C-E). Note that the C-E was defined
for a sin-type E-field, and not for a cos-type E-field which might be a more common definition.
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ω/2ω Fields

We are especially interested in studying a bichromatic laser field, referred to as
the ω/2ω field. We add the second harmonic of the fundamental in the driving
field:

E(t) = E0(sin(ωt + φR) + ξ sin(2ωt + φB)),

where φR − φB is the relative phase between the two laser beams and ξ is the
relative amplitude. In experimental setups the 2ω field is usually generated
using a phase matched doubling crystal. Continuous fields are easy to phase
match because they consist of only one frequency. In HHG, on the other hand,
all driving fields are short pulses which are hard to phase match because they
have very broad bandwidths. Due to the poor phase matching of short pulses,
the 2ω field is relatively weak, ξ < 1.

The middle plot of Figure 2.5 shows that the return energies of the electron
will be different in consecutive half periods due to the 2ω field. Photons gen-
erated in consecutive half periods will therefore have different maximal energy,
i.e. there will be two different cut off energies. In Figure 1.2 we experimentally
observe these two cut offs. The two-cut-offs idea is semiclassical and we need
the full quantum mechanical picture to verify it. This is done in later chapters
using the Strong Field Approximation.
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Figure 2.5: In the left plot we see that the ω/2ω field is symmetric in T , rather
than antisymmetric in T/2. In the middle plot, we see that the blue trajectories
get higher kinetic return energies than the red trajectories. We associate the
red trajectory with the low energy cut off and the blue trajectory with the high
energy cut off.

2.4 Lagrangian Mechanics

Newton’s second law is the quickest and easiest way to obtain the classical tra-
jectories. There is, however, quite a large gap between these simple calculations
and the quantum mechanical formulation of harmonic generation. This gap can
be reduced using Hamiltonian mechanics and electromagnetic gauge transfor-
mations, obtained through Lagrangian mechanics [11].
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In Lagrangian mechanics, potentials are used instead of forces. A charged
particle in an electromagnetic field is expressed by the following Lagrangian:

L = L(t, ~r,~v) =
m

2
~v2 − qΦ(t, ~r) + q~v · ~A(t, ~r),

where ~r = ~r(t) is the position, ~v = ~v(t) = d~r
dt is the velocity, q is the charge

and m is the mass of the particle. Φ is the scalar- and ~A is the vector potential
describing the EM-field [11]:{

~E = −∇Φ− ∂ ~A
∂t

~B = ∇× ~A.

The action, S, plays an important role:

S =
∫ t,~r

t′,~r′
dt′′L,

because the dynamics of the particle are obtained by finding paths, ~r(t) of
stationary action. This is most often done with Euler-Lagrange’s equation:

δS = 0 ⇔ d

dt

∂L

∂vi
=

∂L

xi
.

Going ahead and solving for the classical trajectories is straightforward but it
would be a waste of time, because the solutions were found in the previous
section by other means. Instead, the next step is to obtain the Hamiltonian.

2.5 Hamiltonian Mechanics

While the Lagrangian is a function of time, position and velocity. The Hamil-
tonian is a function of time, position and canonical momentum, ~p. The canonical
momentum is defined though the Lagrangian as:

pi =
∂L

∂vi
= mvi + qAi,

and it is not the same as the kinetic momentum, ~Π = m~v. In general, there is
no physical interpretation of the canonical momentum because it is not gauge
invariant [12]. This particular canonical momentum is a conserved quantity:

ṗ = mẍ + qȦ = mẍ− qE = 0,

which we interpret as the drift momentum, corresponding to the net drift dis-
cussed earlier. The Hamiltonian of a particle in an EM-field is constructed from
the Lagrangian using a Legendre transformation:

H = H(t, ~r, ~p) = ~p · ~v − L =
m

2
v2 + qΦ =

1
2m

(~p− q ~A)2 + qΦ.

This Hamiltonian is the starting point of most undergraduate textbooks on
quantum mechanics. This formulation of the problem is written in the Velocity
gauge 4, which implies that the vector potential satisfies:

∇ · ~Av = 0.

4Also known as the the Coulomb gauge and the Transversality condition [13].
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All relevant physical measurements are gauge invariant. Nonphysical quantities
can be gauge dependent, see Table 2.1 for details.

QUANTITY ~r ~v ~Π ~p ~E ~B Φ ~A
GAUGE INVARIANT Yes Yes Yes No Yes Yes No No

Table 2.1: Physical quantities are measurable and they must therefore be gauge
invariant. The constructed quantities do not have to be gauge invariant because
they are unmeasurable.

From electromagnetic theory it is known that the allowed gauge transforma-
tions are given by [1]: {

Φ
χ→ Φ′ − ∂χ

∂t
~A

χ→ ~A′ +∇χ,

where χ = χ(t, ~r) is a scalar function. Changing the gauge from Velocity to
Length is done using a particular χl:

χl = −~r · ~Av(t,~0) →


∂χl

∂t = −~r · ∂ ~Av

∂t = ~r ·
(

~E(t,~0) +∇Φ(t,~0)
)

∇χl = ∇
(
−~r · ~Av(t,~0)

)
= − ~Av(t,~0).

Substituting the new potentials into the Hamiltonian yields:

Hl =
1

2m

(
~p− q( ~Av − ~Av(t, 0))

)2

+ q
(
Φ− ~r · ( ~E(t,~0)−∇Φ(t,~0))

)
.

We make some more approximations: assuming that the particle is close to the
origin at all times ~A ≈ ~A(t,~0); and that the external field is a slow function of
position: ∇Φ ≈ 0 which finally yields:

Hl =
1

2m
p2 − q~r · ~E,

where the scalar potential has been chosen so that Φ(t,~0) = 0. This Hamil-
tonian is the starting point for the Strong Field Approximation that will be
used in the quantum mechanical treatment of high order harmonic generation
in a later chapter. In the Length gauge and within these approximations, the
canonical- and the kinetic momentum are identical. This makes the final ex-
pression look very intuitive; the Hamiltonian is simply the sum of the kinetic-
and the potential energy:

H = Ek + V = mv2/2− qxE,

in the one dimensional case.
It is worth stressing that the conclusions obtained in this classical treat-

ment are very useful for understanding the process of harmonic generation.
The Simple Man’s Model and the Cut Off Law provide great insight and phys-
ical intuition, which must be appreciated before the level of abstraction can
be increased. The derivation of the Hamiltonian and the distinction between
different kinds of momenta, might be harder to appreciate at first, but they are
absolutely necessary for understanding the full quantum mechanical treatment
of the process.



Chapter 3

Quantum Interference

3.1 Limitations of the Classical Theory

When an atom interacts with a strong laser field, an electron can tunnel out
though the atomic potential and gain a large kinetic energy in the continuum.
The laser field then changes sign and the electron is pulled back to the atom
with a kinetic energy ranging continuously between:

0 < Ek(t′′) < 3.17Up,

where t′′ is the return time and Up is the average oscillating kinetic energy of
the electron in the laser field. Combining the kinetic return energy with the
ionization potential of the atom, Ip, yields the cut off law: Photons that can
be produced in HHG have energies, Eγ , ranging between:

0 < Eγ < 3.17Up + Ip,

depending on whether the electron is fully recombined or simply decelerated by
the atom [3]. When studying the experimental spectrum in Figure 1.2, we can
verify that the cut off law is valid. We also observe that the emitted photons
are not continuously distributed. For the IR field, the emitted HHG photons
come in discrete peaks centered at the odd harmonics:

EγIR
= h̄ωHodd, Hodd ∈ [1, 3, 5..., HCO],

where HCO is the cut off harmonic and h̄ω is the energy of the fundamental
laser photon. The ω/2ω field HHG photons are emitted at all harmonics:

Eγω/2ω
= h̄ωHall, Hall ∈ [1, 2, 3..., HCO].

The plateau region, 5h̄ω < Eγ < h̄ωHCO, has roughly constant harmonic inten-
sities; while the cut off region, Eγ > h̄ωHCO, has strongly decreasing harmonic
intensities. The lowest harmonics, 0 < Eγ < 5h̄ω, are typically much more
intense than the plateau harmonics.

The electrons can return with a continuous energy Ek, but we only detect
photons with discrete energies. The discretization of the photon energies occur
because the electron motion is repeated in time. If the electron is pulled up

17
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and down only once, then the photon spectrum will be continuous. These
conclusions are straight forward but rather abstract and mathematical. We will
instead attempt to describe the photon generation in a quantum mechanical
context, with the Feynman Path Integral formalism. This will give us more
insight and understanding of the physical process. Interference of light can be
modeled with each photon having a complex oscillating phase spinning at a
specific rate:

eiωγt,

determined by the photon energy Eγ = h̄ωγ . In this treatment, we assume
that the photons are infinite in extent and we consider an arbitrary position,
say x = 0. If there are many photons with the same energy then we will detect
some intensity only if the photons don’t destructively interfere. This is of course
very well known, and a common feature of standing waves in laser cavities for
instance. If we assume that N photons all have the same complex amplitude
at a given point in space, then the probability P of detecting such a photon is
proportional to the complex square of the sum of all photon phases:

P (Eγ , t) ≡ |P(Eγ , t)|2 ∝

∣∣∣∣∣
N∑

n=1

ei(ωγt+φn)

∣∣∣∣∣
2

,

where φn is the relative phase of photon n at the given point in space and P is
called the complex probability. We use the proportional-to sign to avoid writing
the normalizing factors explicitly.

Quantum mechanics extends this concept so that complex phases can be
associated with particles. These phases have a slightly more complicated na-
ture, because they depend on how much of the particle energy is kinetic versus
potential.

3.2 Feynman’s Path Integral

The probability of a particle moving between two points in space-time is ex-
pressed with the following bracket [19]:

P (x : x′ → x′′, t : t′ → t′′) = |〈x′′, t′′| x′, t′〉|2 .

The motion of an electron can be expressed as a sum of complex numbers in
the Feynman path integral formalism:

〈x′′, t′′| x′, t′〉 ∝
∑
S

eiS/h̄,

where the sum includes all possible space-time paths from (x′, t′) to (x′′, t′′) and
S is the corresponding action of each path [14]. A path is defined as a sequence
of positions x(t), one for each time t. As an example we consider:{

x = (..., xn, xn+1, xn+2...)
t = (..., n, n + 1, n + 2, ...)×∆t

where the path is written for small discrete time steps of ∆t. In reality, we
must take the limit where ∆t → 0. A path constructed like this, with xn+1
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being independent of xn, implies that the velocity can by discontinuous. Some
paths may appear unphysical and resemble Brownian motion1 while others will
coincide with those of classical mechanics.

All complex numbers corresponding to all paths, no matter how strange,
are added with the same amplitude, resulting in a final complex number with
a certain amplitude and phase. The square of this amplitude is proportional to
the probability of the electron moving from (x′, t′) to (x′′, t′′):

P (x : x′ → x′′, t : t′ → t′′) ∝

∣∣∣∣∣∑
S

eiS/h̄

∣∣∣∣∣
2

.

Using this formalism for solving standard QM-problems is not very conve-
nient, because you are often not interested in a particle moving from here to
there. Particles in confining potentials are spread out in space and it is very
hard to calculate the evolution of complex fields (wave functions) using the Feyn-
man formalism. In fact, for confining potentials it is easier to use the standard
Schrödinger formulation.

In high order harmonic generation, on the other hand, some electrons (or
some part of an electron) can tunnel away from the confining atomic potential
and end up in the continuum. There is no confining potential in the continuum,
so we expect no strange QM-behavior due to confinement. Instead we can expect
that the laws of classical mechanics rule the dynamics, with some additional
interferences and quantum diffusion! We know from classical mechanics that
the path a particle follows is given by the stationary action δS = 0:

Sc =
∫ (x′′,t′′)

(x′,t′)

dt {L(xc(t), vc(t), t)} ,

where xc(t) is the classical path (c is short for classical) which satisfies the initial
conditions xc(t′) = x′ and xc(t′′) = x′′. Because the action is stationary at Sc,
other paths x′(t) that are close to the classical path x(t), will have roughly the
same action:

S′c ≈ Sc, x′c(t) ≈ xc(t),

and therefore also approximately the same complex phase. The contributions
from Sc and S′c constructively interfere resulting in a complex vector with a
complex phase of the classical action and a big complex amplitude.

We now consider a strange path xs(t) (s is short for strange) that is far
from the classical xc(t). We also consider a path x′s(t) which is close to xs(t).
Paths that are not close to the classical solution will not constructively interfere
because the action is not stationary, the phase always changes very fast:

S′s 6≈ Ss, x′s(t) ≈ xs(t),

even if x′s(t) is very close to xs(t) at all times. Adding contributions from many
strange narrow paths therefore result to nothing. For a schematic picture of the
classical and strange paths, see Figure 3.1.

1Brownian motion is another word of a random walk in discrete steps. We gladly skip the
additional complications that develop in the math, when the step size goes to zero!
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Figure 3.1: A free particle moves with constant velocity, i.e. along a straight
line in space-time. This classical path is associated with a stationary action Sc.
Another path, associated with the nonstationary action Ss, is unphysical in the
classical sense but may contribute to results predicted by quantum mechanics.
It is, however, more and more probable that the electron follows the classical
path when the distance ∆x = |x′ − x| increases.

We proceed by neglecting all strange paths and approximating the sum with
a single contribution from the classical solution 2. The sum is reduced to a
single complex number:

〈x′′, t′′| x′, t′〉 ∝ eiSc/h̄,

where (x′′, t′′) must be somewhere along the classical path xc(t) connecting to
the tunneling at (x′, t′). If (x′′, t′′) is some other point, then the bracket is zero,
resulting in zero probability of making the transition. We are therefore requiring
that the electron moves on the classical trajectories, and that it has a complex
phase which is given by the action in units of h̄. The phase of the electron will
be used to keep track of the phases of the generated photons in the high order
harmonic generation.

Photon Creation and Interference in HHG

The next step is to consider the consequence of multiple tunneling times. There
are many tunneling times t′n that all result in classical trajectories returning
to the atom with a specific kinetic energy Ek ≡ Ek(t′′n), where n labels all
possible contributions. We assume that the electron is fully recombined and
that it generates photons with energy Eγ = Ek + Ip when it returns at time
t′′n ≡ t′′n(t′n). The tunneling probability depends on the instantaneous magnitude
of the E-field, and there are also different probabilities for different scatterings,
but we will not worry about these effects 3.

The probability of creating a photon with energy Eγ is proportional to the
square of a sum of all the complex contributions from all electron trajectories

2This approximation works fairly well for the high HHG photons, h̄ωH > Ip; and not at
all for the low HHG photons, h̄ωH < Ip.

3The dipole transitions from bound to the continuum is roughly constant for the electron
energies considered here [15].
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returning to the nucleus:

P (Eγ) ∝

∣∣∣∣∣∑
n

eiφn(t)

∣∣∣∣∣
2

,

where φn(t) is the phase of photon n at time t.
We know that there are 4 trajectories per period that can contribute to a

specific Eγ : 1 short and 1 long from each half period of the ω field 4.

HHG of Monochromatic Fields

We neglect the long trajectories and consider only the contributions from the
short trajectories. We furthermore assume that the electron is fully recombined
when it returns to the atom. We label the short trajectories with n. Figure 3.2
shows a schematic picture of the photons being created by two different short
trajectories: n and n + 1.

Figure 3.2: Photons with energy Eγ are produced by a large number of trajecto-
ries. There are two such trajectories per period, one which is created when the
driving field is positive and another when the field is negative. In order to find
out if there is a nonzero probability of detecting such a photon, we need to con-
sider all generated photons γn and we need to keep track of all their individual
phases.

We now determine the phase of a photon at time t generated at time t′′ by
an electron that tunneled at time t′. The phase is constructed by multiplying
the complex numbers of four individual processes, see Table 3.1.

The recombination phase is inspired by the quantum mechanical bracket for
dipole recombination:

〈g|x |c〉 ,
4If we had not already assumed that the electron is fully recombined at the atom, then we

would also have contributions from even longer trajectories corresponding to electrons that
were not fully recombined on their first rendez-vous with the atom.
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PROCESS Bound → Continuum → Recomb. → Photon
PHASE eiIpt′n/h̄ × eiπneiSn/h̄ × e−iIpt′′n/h̄ × eiEγ(t−t′′n)/h̄

Table 3.1: The electron oscillates with the binding energy, Ip/h̄, when it is
bound to the atom. After tunneling, it accumulates a phase corresponding to
the classical action of the trajectory in the continuum, Sn/h̄. It then recombines
and the generates a photon. The photon oscillates with the photon energy,
Eγ/h̄.

where |c〉 is a continuum state, 〈g| is a ground state and x is the dipole operator
along the linear polarization [13]. Note that the ground state phase is complex
conjugated, which results in a total phase that depends on the difference between
the phase of the electron that stays in the ground state and the phase of the
returning electron. This fact has been used by P.B. Corkum to interpret the
high order harmonic process as a beam splitter with interfering electrons wave
functions [6]. We have inserted a factor eiπn = (−1)n in the continuum phase
to account for the changing sign of the E-field between each half period. For
monochromatic, continuous fields we have:

t′n = t′0 + nT/2
t′′n = t′n + τn

τn = τ
Sn = S,

where n extends from minus- to plus infinity. Note that all Sn are equal, even
for consecutive trajectories: n and n + 1, which move in opposite directions.

All factors that do not depend on n can be neglected. We find that the prob-
ability of generating a photon with energy Eγ ∈ [Ip, Ip + 3.2Up] is proportional
to:

P (Eγ) ∝

∣∣∣∣∣∑
n

e−i(EγT/2h̄+π)n

∣∣∣∣∣
2

.

The normalization factor ensures that the probability is nonzero only when the
phases in the sum are constructive. The probable energies are therefore:

EγT/2h̄ + π = 2πZ,

where Z is an integer. Some rearranging result in odd harmonics of the funda-
mental ω = 2π/T frequency:

Eγ = h̄ω(2Z − 1),

which is the harmonic structure we expected to find. Note that we don’t need
to calculate the value of Sn to obtain this result. The probability function,
P (Eγ), should be seen as a toy model of HHG. It allows us to play with HHG
and obtain qualitative quantum mechanical results that are very hard to derive
from the full quantum mechanical treatment. In the next section we play with
P (Eγ) and figure out how the harmonics respond to a ω/2ω driving field. The
results are verified in the next chapter using the Strong Field Approximation.
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Phase Perturbations from the 2ω Field

We modify P (Eγ), so that it includes effects from the 2ω field, by inserting a
small antisymmetric phase perturbation e(−1)nδ:

P (Eγ) ∝

∣∣∣∣∣∑
n

e−i(EγT/2h̄+π)n+(−1)nδ

∣∣∣∣∣
2

.

The perturbation is periodic in T , and it can be used to describe the 2ω field
as a perturbation on the IR field in the harmonic generation with ω/2ω fields,
see Figure 3.3. We interpret 2δ as the continuum action difference, Sn+1 − Sn,
of electrons from two consecutive half periods: n and n + 1. It is not necessary
to know the the analytical form of δ at this point.

Even Harmonics

Inserting even harmonics: EγT/2h̄ = 2πZ, where Z is an integer, into P (Eγ)
results in:

P (Eγ = 2Zh̄ω) ∝

∣∣∣∣∣∑
n

e−i(πn+(−1)nδ)

∣∣∣∣∣
2

∝ |sin δ|2 ,

because the probability is constructive along the imaginary axis. This is reason-
able because the even harmonics must vanish for δ = 0, i.e. when the driving
field is monochromatic.

Odd Harmonics

Inserting odd harmonics: EγT/2h̄ = π(2Z + 1), where Z is an integer, into
P (Eγ) implies that:

P (Eγ = (2Z + 1)h̄ω) ∝

∣∣∣∣∣∑
n

e−i(−1)nδ

∣∣∣∣∣
2

∝ |cos δ|2 .

It is reasonable to assume that neighboring harmonics have similar phase pertur-
bations: δn ≈ δn+1. We therefore conclude that the even and the odd harmonics
behave in opposite ways when they are equally perturbed by (−1)nδ.

Analytical Derivation of δ

The ω/2ω field can be modeled in terms of the vector potential:

A(t) = AR(t) + AB(t) = A0 (cos(ωt) + ξA cos(2ωt + φB)) ,

where R is short for red (ω), and B is short for blue (2ω). The relative vector
potential amplitude, ξA, is given by the relative electric field amplitude: ξA =
1
2ξ, for continuous fields. The relative delay between the two fields is denoted
φB .

It is tricky to find the analytical equation for δ in general ω/2ω fields. The
main problem is that the tunnel- and return times change between consecu-
tive half periods for given return energies. It is, however, possible to find an
approximate equation for δ when the 2ω field is very weak, if we assume that
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Figure 3.3: For antisymmetric perturbations, the electron trajectories with re-
turn energy Ek will be different depending on the sign of the electric field. There
will be one slightly shorter (n) and one slightly longer trajectory (n + 1). The
photons can interfere because they have the same energy so wee need to con-
sider their relative phases. We assume that the short trajectory accumulates
less phase than the long trajectory: Sn < Sn+1. We include the phase difference
by setting: Sn = S0 − h̄δ and Sn+1 = S0 + h̄δ, where it is not necessary that:
S0 = S.
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the trajectories are not perturbed at all by the 2ω field [6]. The unperturbed
velocity vR(t, t′) from a monochromatic field, ω, is:

vR ≡ vR(t, t′) = −qE0

mω
cos(ωt) + vD(t′),

with the drift velocity vD(t′) = qE0
mω cos(ωt′), where t′ is the tunneling time. We

can approximate the tunneling time t′ as a linear function of the return time t′′

for the short trajectories 5:

t′ ≡ t′(t′′) = t′′ − τ(t′′) ≈ −0.44t′′ + 0.72T.

We write the action of the electron in the ω/2ω field as:

S =
∫ t′′

t′(t′′)

dt

{
mv2

R

2
+ qvR ×A0 (cos(ωt) + ξA cos(2ωt + φB))

}
≡ ...

≡ SR(t′′) + h̄δ(t′′), δ(t′′) =
A0ξA

h̄

∫ t′′

t′(t′′)

dt {vR × cos(2ωt + φB)} ,

where SR(t′′) is the action of an electron returning at time t′′ from a short
trajectory in the ω field. The second term, δ(t′′), describes how much the
electron phase is perturbed by the 2ω field. Evaluating the integral in δ is a
simple task, using Euler’s formula:

δ(t′′) = − q2E2
0ξ

2h̄mω2

∫ t′′

t′(t′′)

dt {(cos(ωt)− cos(ωt′))× cos(2ωt + φB)} = ...

= −Up

h̄ω

√
RI

[
sin(ωt + φB) +

1
3

sin(3ωt + φB)− cos(ωt′) sin(2ωt + φB)
]t′′

t′
,

where we inserted the ponderomotive energy of the pure IR field, Up = q2E2
0/4mω2

and the relative intensity between the two beams, RI = ξ2. We immediately
see that δ has a simple sinusoidal dependence on φB . We rewrite δ and obtain
an equation where this dependence can be seen more clearly:

δ(φB , t′′) = −Up

h̄ω

√
RI |C| sin (φB + arg(C)) ,

where C is a complex number:

C =
[
eiωt +

1
3
ei3ωt − cos(ωt′)ei2ωt

]t′′

t′
.

The prefactor in the equation above is approximately:

−Up

h̄ω

√
RI ≈ 3.88×

√
RI ,

for I = 1 × 1018 W/m2. In this regime, the phase perturbation will be small,
|δ| < π/100, when the relative intensity is less than 10%. We approximate the
intensity of the even harmonics as:

Ieven ∝ | sin δ|2 ≈ |δ|2 ∝ | sin(φB + arg(C))|2.

We now proceed and consider some specific trajectories:
5To do this, we use the fact that τ = 0, t′′ = 0.5T for the shortest possible trajectory; and

τ = 0.65T, t′′ = 0.95T for the longest short trajectory. See the right plot in Figure 2.3, to
verify that a linear approximation can be made to describe τ(t′′) = t′′ − t′. This particular
linearization works for electrons returning in the second half period: t′′ ∈ [0.5, 0.95]T .
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• Photons with Eγ ≈ Ip

The shortest possible trajectory tunnels and returns at the same time: t′ = t′′ =
0.5T . Intuitively there can be no effect from the 2ω field because the electron
spends no time in the continuum. In the equations, it is clear that there is no
dependence on φB because |C| = 0 which makes δ = 0.

• Photons with Eγ ≈ Ip + 3.2Up

Photons with energies in the cut off regime are created by the longest short
trajectory: t′ = 0.3T, t′′ = 0.95T . We find that φB ≈ 1.28 (mod π) rad makes
the even intensity go to zero (δ = 0) for RI = 1%.

One Dominant Trajectory per Period

The tunneling probability depends on the instantaneous electric field strength
in a nonlinear fashion. We have earlier explained that this leads to only one
dominant trajectory per period for fields for certain ω/2ω fields. The probability
of generating a photon of energy Eγ is:

P (Eγ)one traj. ∝

∣∣∣∣∣∑
n

e−in(Eγ)T/h̄

∣∣∣∣∣
2

,

which is constructive for any harmonic: Eγ = Zh̄ω, with Z being an integer,
which is exactly what we expect for a driving field that makes a permanent
dislocation of the electron 6.

6There is a net displacement of the electron because the field only pulls the electron out
in one direction.



Chapter 4

Strong Field Approximation

4.1 QM-Hamiltonian for HHG

This chapter closely follows Lewenstein’s approximate method for solving the
problem of high order harmonic generation using the Strong Field Approxi-
mation (SFA) [9] [16]. In the chapter on classical trajectories we derived the
Hamiltonian in the Length gauge which is the starting point of this quantum
mechanical treatment. We also found that the kinetic- and the canonical mo-
mentum were equal in this gauge within the dipole approximation:

Π ≈ p.

In quantum wave mechanics we have:

p ≡ −ih̄∇,

where ∇ ≡ ( ∂
∂x , ∂

∂y , ∂
∂z ). The electron is initially bound to an atom, so we need

to introduce an atomic potential V (r) ∝ −1/r into the Hamiltonian H:

H =
Π2

2m
− qxE(t) + V (r),

where Π is the kinetic momentum operator, qxE(t) is the electric dipole moment
operator from a x̂-linearly polarized IR-field E(t) and V (r) is the atomic poten-
tial 1. The electron dynamics |Ψ(t)〉 from the Hamiltonian H are described by
the time dependent Schrödinger equation:

ih̄
∂

∂t
|Ψ(t)〉 =

[
Π2

2m
− qxE(t) + V (r)

]
|Ψ(t)〉 .

The equation above only describes the physics of one single electron. Atoms
used in high order harmonic generation often have more than one electron, but
we restrict the calculations to the Single Electron Approximation (SEA). It
is reasonable that this approximation is valid, because once one electron has
tunneled, the remaining electrons will be more strongly bound, making it less
probable for them to tunnel. Different electrons do not interfere so most of the
important features will be present in SAE and in Hydrogen like atoms.

1Inserting the 1/r term in the potential invalidates one of the assumptions we made in
the classical chapter. The kinetic- and the canonical momentum will therefore differ in the
vicinity of the atom, but this effect will be neglected, as explained in the assumptions section.

27
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4.2 Assumptions

Solving for the electron dynamics is very hard. We therefore need to make three
key assumptions, denoted I), II) and III), which allow us to make some useful
approximations:

I) No internal resonances

The atom is described by one bound state only, denoted |0〉.
Resonant interactions between bound atomic states must be avoided. This
implies that the ionization potential Ip must be much larger than the photon
energy h̄ω of the driving IR field:

Ip � h̄ω.

In the case of Argon and IR we have Ip/h̄ω = 15.76/1.55 ≈ 10, which satisfies
the requirement.

II) No depletion

The ionization is weak.
The IR-field intensity must be below the saturation intensity of the atom:

Up < Usat.

Isat for Argon is 4 × 1014 W/cm2, which therefore may not be exceeded. This
implies that most of the electron population stays in the bound state at all
times.

III) Free particle trajectories

The continuum electrons will not be influenced by the atomic potential V (r).
For this to be valid, we need the ponderomotive energy to be larger than the
ionization potential:

Ip < 2Up,

so that the main acceleration of the electron is due to the IR-field, and not due
to the atomic potential. For Argon, with Ip = 15.76 eV, the intensity therefore
has to be at least 1.3× 1014 W/cm2.

4.3 Computational Basis

Before going into detail about the solution of the electron evolution, we need to
discuss what basis to use in the quantum mechanical computation.

Bound State Basis

Using Assumption I), we replace all bound states with the ground state |0〉.
The exact shape of this state is of little importance. For Argon it should be
a p-state, but we will simplify things and assume that it is a s-state with full
spherical symmetry. The ionization potential, Ip = 15.76 eV, is set to match
that of Argon.
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Continuum State Basis

The choice of basis for the continuum states is less trivial. First we consider the
familiar momentum basis of a free particle 2:

ϕΠ(x) ≡ 〈x |Π〉 = eiΠx/h̄,

which is an eigenbasis of the kinetic energy operator:

− h̄2

2m
∇2 |Π〉 =

1
2m

Π2 |Π〉 ,

where Π2 is an eigenvalue of the −h̄2∇2 operator. When the electron is accel-
erated in the IR-field, the motion is given by the following bracket:

〈Π| qx |Π′〉 = iqh̄
∂

∂Π
δ(Π−Π′),

which follows from Fourier analysis 3. Most readers are probably content with
this basis in combination with Assumption III), but we need to stress that |0〉
and |Π〉 to not form an orthogonal basis.

We proceed by defining another momentum basis ϕπ̌ ≡ 〈x
∣∣Π̌〉

which includes
the effect of the atomic potential:[

1
2m

Π2 + V

] ∣∣Π̌〉
= Π̌2

∣∣Π̌〉
,

where
[

1
2mΠ2 + V

]
is an operator and Π̌2 is the corresponding eigenvalue for

the eigenvector
∣∣Π̌〉

. The newly defined wavefunction, ϕΠ̌, oscillates faster than
ϕΠ close to the atom because it is being accelerated to higher energies by the
atomic potential, V . An orthogonal basis is obtained by combining |0〉 and

∣∣Π̌〉
.

This basis is great for symbolic computations even though we don’t know the
analytical shape of ϕΠ̌.

Because V → 0 for |x| → ∞, we expect the two momentum functions to be
equal far from the origin:

ϕΠ̌ ≈ ϕΠ, |x| � 0.

This implies that: xϕΠ ≈ xϕΠ̌, for any x. The electron dynamics in the contin-
uum can therefore be approximated as independent of V :〈

Π̌
∣∣ qx

∣∣Π̌′〉 ≈ 〈Π| qx |Π′〉 ,

which essentially implements Assumption III).

2The following is written in one dimension, but the actual calculations must be carried out
in three dimensions. See Bethe and Salpeter [17], page 36, for more details on the momentum
basis expressed in spherical coordinates.

3The integral is taken over all space and it describes the transitions from one kinetic
momentum state to the next, i.e. how the electron accelerates. In one dimension, we can
evaluate the element in a more familiar notation by setting x ∝ t and Π ∝ ω:

F (teiω′t) ∝
Z

dt
n

te−iω′teiωt
o
∝

d

dω
δ(ω − ω′),

which is easy to verify using standard Fourier tables.
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4.4 Electron State Expansion

The state of the electron is denoted as |Ψ(t)〉 ≡ |Ψ〉. This state will include both
bound- and continuum states and can be expanded in our orthogonal basis:

|Ψ〉 =
(

a(t) |0〉+
∫ ∞

0

d3Π̌ b(Π̌, t)
∣∣Π̌〉)

eiIpt/h̄,

where the oscillation of the bound state has been factored out, making a real
and slow. The left side of the Schrödinger equation is:

ih̄
∂

∂t
|Ψ〉 = ih̄

(∫
dΠ̌′

{
ḃ(Π̌′, t)

∣∣Π̌′〉 + ib(Π̌′, t)Ip/h̄
∣∣Π̌′〉} + iIp/h̄ |0〉

)
eiIpt/h̄

where we set a(t) ≈ 1 using Assumption II). The right side of the Schrödinger
equation is:

H |Ψ〉 =
[

Π2

2m
− qE(t)x + V

](
|0〉+

∫
Π̌′b(Π̌′, t)

∣∣Π̌′〉) eiIpt/h̄ = ...

=
([

Π̌2

2m
− qE(t)x

]
|0〉+

∫
dΠ̌′

{[
Π̌′2

2m
− qE(t)x

]
b(Π̌′, t)

∣∣Π̌′〉})
eiIpt/h̄,

where we hid the atomic potential using:
[

Π2

2m + V
]

= Π̌2

2m .

A differential equation for b(Π̌, t) is found by multiplying the Schrödinger
equation from the left with

〈
Π̌′′

∣∣:
ih̄ḃ(Π̌′′, t)− Ipb(Π̌′′) = ...

= b(Π̌′′, t)
Π̌′′2

2m
− qE(t)

〈
Π̌′′∣∣ x |0〉+ qE(t)

∫
dΠ̌′ {〈

Π̌′′∣∣ xb(Π̌′, t)
∣∣Π̌′

〉}
.

The last term can be rewritten using Fourier analysis and a partial integration:

h̄
∂b(Π̌, t)

∂t
= −i

(
Π̌2

2m
+ Ip

)
b(Π̌, t) + iE(t)d∗x(Π) + h̄qE(t)

∂b(Π̌, t)
∂Π̌x

.

Note that the the field free transition element, d(Π), from the ground state |0〉
to the continuum is computed using ϕΠ rather than the unknown function ϕΠ̌.
This is a simplification that is made in SFA that is hard to justify. The element
has been calculated by Lewenstein 4:

d(Π̌) SFA−→ d(Π) = 〈Π|x |0〉 = i
27/2α5/4

π

Π
(Π2 + α)3

,

in atomic units, with α = 2mIp in the case of hydrogen like atoms.

4A similar expression can be derived easily in the one dimensional case, where the transition
element can be interpreted as the following Fourier transform:

F (te−a|t|) ∝
Z

dt
n

te−a|x|eiωt
o
∝

ω

(ω2 + a2)2
,

where t ∝ x and ω ∝ Π. Note the difference in power in the denominator.
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The differential equation can be simplified using a clever trick. In the chapter
on classical trajectories, we showed that the drift momentum, pv, is a conserved
quantity. We therefore make the following substitution: b(Π̌, t) → b̃(pv, t),
where the kinetic momentum, Π̌, was substituted for the drift momentum, pv =
Π̌ + qA(t). The simplified differential equation becomes:

h̄
∂b̃

∂t
= −i

(
1

2m
(p− qA(t))2 + Ip

)
b̃ + iE(t)d(p− qA(t)),

which can be solved:

b(pv, t) = i

∫ t

0

dt′
{

E(t′)dx(pv − qA(t′))e−iS(pv,t,t′)/h̄
}

.

The phase factor:

e−iS(pv,t′,t)/h̄ = e−i
R t

t′ dt′′[(pv−qA(t′′))2/2m+Ip]/h̄ ≡ e−i
R t

t′ dt′′H(t′′)/h̄,

corresponds to the accumulated phase of the drift momentum state, which can
be identified as the propagator operator of a time dependent Hamiltonian [19].
Note that we now use quantum mechanical states rather than the classical tra-
jectories to describe the dynamics.

4.5 Dipole Emission

The electromagnetic radiation emitted from the atom is proportional to the
atomic dipole 〈x(t)〉. We use the electron state |Ψ(t)〉 to calculate the expecta-
tion value of the electron position:

〈x(t)〉 ≡ 〈Ψ(t)|x |Ψ(t)〉 ∝ ...

i

∫ t

t0

dt′
∫

d3pvE(t′)d∗x(pv − qA(t))dx(pv − qA(t′))e−iS(pv,t,t′)/h̄ + c.c..

Interpretation:
(Reading the equation from right to left) The electron tunnels into the contin-
uum at time t′ with drift momentum pv. It propagates in the continuum until it
recombines to |0〉 at time t. The integral over drift momentum space accounts
for all possible drift momenta.

The expression for 〈x(t)〉 can be simplified by approximating the integral over
pv using a mathematical technique, called the saddle point approximation. The
action S is expanded in a 2nd order Taylor series about the stationary points (the
trajectories corresponding to classical mechanics). The approximated integral
is a Gaussian which is easy to evaluate 5. The dipole becomes:

〈x(t)〉 ∝ i

∫ t

t−t0

dτζ(τ)d∗x(ps− qA(t))e−iS(ps,t,τ)E(t− τ)dx(ps− qA(t− τ))+ c.c.,

5There are some extra complications because the integrals are complex, but the idea is the
same, see Ivanov’s lecture for more details [18].
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where ps is the canonical momentum that corresponds to stationary action.
We find ps by requiring that the action S has a vanishing first derivative with
respect to pv:

∂S

∂pv
=

∂

∂pv

(∫ t

t−τ

dt′′
{
(pv − qA(t′′))2/2m + Ip

})
= ...

∂

∂pv

(
τp2

v − 2qpv

∫ t

t−τ

A(t′′)dt′′ + q2

∫ t

t−τ

A2(t′′)dt′′ + 2mτIp

)
/2m = ...

=
(

τpv − q

∫ t

t−τ

A(t′′)dt′′
)

/m = 0|pv=ps
→ ps(t, τ) =

q

τ

∫ t

t−τ

A(t′′)dt′′,

where we used that the canonical momentum is conserved: ṗv = 0. The quan-
tum diffusion is described by ζ(τ):

ζ(τ) =
(

π

ν + iτ/2mh̄

)3/2

,

which attenuates the amplitude of long trajectories, with big τ , making the
recombination probability smaller 6.

4.6 Implementation

We approximate the dipole moment as a sum:

〈x(tm)〉 ≈
m∑

n=n0

∆xnm ≡ i∆t
m∑

n=n0

ζ(τmn)d∗x(pmn − qA(tm))×

e−iS(pmn,tm,τmn)E(tm − τmn)dx(pmn − qA(tm − τmn)) + c.c.,

where the time is taken to be discrete tn+1 = tn+∆t. The sum includes electron
trajectories recombining at tm which tunneled at tn ≥ t0. The stationary drift
momentum is approximated as a sum:

pmn ≡ ps(tm, τmn) ≈ ∆t

τmn

m∑
i=n

qA(ti),

which corresponds to an electron tunneling at tn and recombining at tm, spend-
ing a time τmn = tm − tn in the continuum.

It is clear that these approximations are not exact. There is, however, an
easy way of verifying that the step size, ∆t, is small enough for our purposes.
Decreasing ∆t, includes higher energies in the numerical calculation: Take the
Fourier transform of the dipole moment, and verify that the entire plateau with
some cut off is resolved. For intensities of 1018 W/m2, we typically need 100
steps per period. More information about the implementation can be found in
Appendix A.

6ν is a regulation constant from the integration.



Chapter 5

Calculations

5.1 Separation of Quantum Orbits

Most of our understanding of HHG comes from the classical trajectories. In
the following section different types of classical trajectories (quantum orbits)
are separated in the SFA formalism. This is done by limiting the integration
bounds in the SFA equation for the dipole moment 〈x(t)〉, calculated in the
previous chapter.

Separation of the Short Trajectory

The short trajectory includes all classical trajectories returning before the max-
imum kinetic return energy. In Figure 5.1, we find that this corresponds to
trajectories that spend: τ < 0.65T , in the continuum, where τ is the time of
flight and T is the IR-period. Using the SFA we can therefore calculate the
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Figure 5.1: The maximal time of flight τ = 0.65 for a short trajectory has the
highest possible kinetic return energy Ek = 3.2Up.

dipole moment from the short trajectory by limiting the lower bound in the

33
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integration:

〈qx(t)〉short ≈ i

∫ t

t−0.65T

dτ {...}+ c.c..

This is very useful because it allows us to separate the short trajectory contri-
butions to the harmonic spectrum. In experiments, this separation can be done
spatially [6]. Selection of the short trajectory is often done automatically due
to phase matching effects [5]. We verify that the separation works, see Figure
5.2, where the intensity of the 35th harmonic is plotted for increasing intensity.
We conclude that the separation works well because there should be no inter-
ference in the harmonic emission as a function of intensity, if the harmonic is
constructed by a single trajectory.
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Figure 5.2: The intensity of a harmonic changes irregularly when the intensity
is increased (blue line). This is due to an interference effect between the long
and short trajectories. The long trajectories gain more phase than the short
trajectory because they spend a longer time in the continuum. The interference
pattern disappears when the short trajectory has been separated (red line) and
the intensity is high enough (I > 2.75×1018 W/m2). There is some interference
close to the cut off for the short trajectories because the short and the long
trajectories merge when τ ≈ 0.65T . In the lower plot we see that the phase
of the short trajectory varies much slower than for the long trajectories. It is
common to write the phase as e−iαI , which is possible due to the nice linear
behaviour of the phase with intensity I in the plateau (from I > 1.75 × 1018

W/m2). In this plot the green line includes more than one long trajectory and
it is therefore irregular. We can, however, see that the first part of the plateau
only includes one long trajectory because the green line remains smooth for
higher intensities than the blue line.
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Separation of the Long Trajectories

A similar separation for the first long trajectory is made by changing the inte-
gration bounds to:

〈qx(t)〉long ≈ i

∫ t−0.65T

t−T

dτ {...}+ c.c.,

because this trajectory has 0.65T < τ < T . We can also study all long trajec-
tories by setting:

〈qx(t)〉all long ≈ i

∫ t−0.65T

−∞
dτ {...}+ c.c..

This includes both the first long trajectory and trajectories that don’t recom-
bine on their first return to the atom. Quantum diffusion and rescattering,
however, limit the contributions from the longer trajectories and it is therefore
not necessary to integrate from minus infinity to obtain realistic results. In this
Thesis integration from a few periods back was used to approximate the minus
infinity. This includes the first few long trajectories.

Separation of Trajectories in Perturbed IR fields

The method described above assumes a continuous IR field. It will remain ac-
curate also for small perturbations, such as a weak additional 2ω field. The
separation is not exact for short pulses because the separation assumes con-
tinuous fields. We know, however, that the time of flight of continuous fields
is intensity independent, so the we can expect the separation to work well for
slowly varying pulses.

5.2 Many Cycle Fields

When the driving pulses are several tens of femtoseconds, we can model them
as continuous fields. This is convenient because it reduces the required compu-
tational power and allows us to calculate harmonic spectra using SFA efficiently
and fast.

In this Thesis, we use the word pulse for the driving field (10-30 fs) and the
word (atto)burst for the generated emissions (100-300 as)

IR-field

The intensity emitted from HHG with a continuous IR field gives one attosecond
burst per relevant trajectory [20]. In Figure 5.3 we can clearly see three bursts,
corresponding to the short and two long trajectories.

ω/2ω-fields

When the 2ω laser is introduced, we can vary the relative delay- and the relative
intensity of the pulses. Using the short trajectory filter, we find that most
relative delays generate only one pulse per period, see Figure 5.4. This has been
demonstrated experimentally by J. Mauritsson and co-workers [5].
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Figure 5.3: The top left plot shows the driving electric field and the top right
plot shows the corresponding atomic dipole moment. The bottom left plot shows
the harmonic spectrum. We verify that the cut off agrees with: Ip +3.2Up, from
the classical treatment. The bottom right plot shows the temporal emission
from the atom. There are three bursts per half period, one burst per trajectory
type: The short (S), the long (L1) and an even longer (L2). L2 is generated by
electrons that originally were on a short trajectory but didn’t recombine until
on their second return to the atom (τ > T ). Even longer trajectories have been
separated out. We identify the short trajectory using the short filter (red dots).
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Figure 5.4: The ω/2ω driving field can be used generate one attosecond burst
per period. This is done by selecting the short trajectories; and synchronizing
the beams so that the electric field in one half period is decreased (red) while
it is increased in the other (blue). The dipole is clearly more excited in the 2nd

half period (blue) where the electric field is stronger. The spectrum can has two
plateaus and two cut offs: one with high intensity and low electron energies (1st

cut off); and one with low intensity and high electron energies (2nd cut off).
Strong bursts are generated when the electric field is strong (blue) because the
instantaneous ionization is larger, but the kinetic energy that the electrons can
return with is small because the field that pulls them back is weak (red).
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In the chapter on quantum interference, we argued, that the 2ω field can be
described as antisymmetric perturbations (−1)nδ in the phase between trajec-
tories from different half periods in the IR field. This phase difference occurs
because one of the trajectories gets longer, and the other gets shorter. The
result of this perturbation is a sinusoidal oscillation in the harmonics:{

Ieven ∝ | sin δ|2
Iodd ∝ | cos δ|2. .

Increasing the relative intensity of the 2ω field, increases δ in a nonlinear
fashion, and reveals the predicted oscillations, see Figure 5.5.
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Figure 5.5: Increasing the relative intensity, RI , of the 2ω field gradually in-
creases δ between the contributing trajectories in each harmonic. For harmonic
34 and 35, there are some nice sinusiodal oscillations before the harmonics di-
verge. The divergence is due to the tunneling probabilities changing, making
one trajectory per period dominant.

Very Weak Perturbing 2ω-field

When the 2ω field is very weak, the antisymmetric perturbations are very small,
|δ| � 1: {

Ieven ∝ | sin δ|2 ≈ |δ|2
Iodd ∝ | cos δ|2 ≈ 1,

.

Figure 5.6 shows that a 2ω field, with 0.1% relative intensity, perturbs the
harmonic structure in the predicted fashion. In a previous chapter we computed
that δ is a simple function of the relative phase; and a complicated function
of the harmonic energies. We verify that the harmonics oscillate with φB as
predicted: δ ≈ | sin(φB +arg(C))|2. We note that the oscillation off-set, arg(C),
becomes constant in the cut off and that the even harmonics have zero intensity
for φB ≈ 1 rad. This is quite close to 1 rad which was computed in the previous
chapter.
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In this regime, Corkum and co-workers have made in situ measurements of
the harmonic phases. They obtain an analytical expression for δ by assuming
that the trajectories are unchanged but that the action is slightly perturbed due
to the 2ω field [6]. We verify that the in situ method gives the same result as
the well known Rabbitt technique, see Figure 5.7.

Weak Perturbing 2ω-field

When the intensity of the perturbation is increased to 1% of the IR, the phase
difference becomes larger |δ| < π/2 and the odd harmonics start to decrease in
intensity: {

Ieven ∝ | sin δ|2 ≈ |δ|2
Iodd ∝ | cos δ|2 ≈ |1− δ2/2|2.

When the phase difference becomes large enough (δ > arctan(1) ≈ 0.79) the
even harmonics will become more intense than the odd harmonics for some
delays, this can be seen in Figure 5.8.

In this regime we can also control the emission time of the long trajectory as
seen in Figure 5.9. The short trajectory, on the other hand, is mostly unaffected
by the relative phase because it spends such a short time in the continuum.

Intermediate Pertubing 2ω-field

A tunable axis starts to form. Small additional contructive peaks appear in the
spectrum as side bands to a main tunable axis due to δ exceeding π, see Figure
5.10.

Strong Perturbing 2ω-field

When the perturbing 2ω fields gets even stronger, 40% of the IR intensity, the
tunneling probablities play an important role. One short trajectory per period
becomes dominant creating a harmonic spectrum with a tunable peak in the
plateau, 0 < φB < 2 rad. The tunable axis indicates that the generated bursts
can be tuned to any central frequency in the cut off. At the end of the chapter on
quantum interference, we showed that single bursts are obtained when the even
and the odd harmonics are of equal strength. We therefore expect the tunable
axis to generate one burst per period. The single burst generation energy can
be fine tuned from the ionization potential to the cut off, see Figure 5.11. The
remaining part of the spectrum, 2 < φB < π, contains two attobursts with
comparable intensity per period. This results in a pattern that resembles the
case of weak-intermediate relative intensities. These is a side band structure
in the spectrum next to the tunable axis. The side bands can be reproduced
qualitatively using the approximate equation for δ, calculated in the last part
of the chapter on quantum interference 1.

Being able to amplify specific parts of the harmonic spectrum is useful, be-
cause it enables us to create attobursts with specific energies. These bursts can
be used to make precise experiments on electron states in atoms and molecules.

1Note that the approximate δ is not valid in this regime of ω/2ω fields and that even higher
relative intensities have to be applied in the equation to obtain side band structures.
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Figure 5.6: For perturbations of 0.1% relative intensity, the odd harmonics
remain dominant (solid dark lines). The even harmonics can be controlled by
adjusting the relative delay between the two fields. At the high harmonics (H:32-
38), δ becomes almost constant (or shifted by integer values of π between the
even harmonics). In the plateau (H < 30), δ changes smoothly from harmonic
to harmonic. Two paths of arrows have been hand drawn on the spectrum
indicating the difficulty of knowing how the phase changes.
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Figure 5.7: The harmonic phases can be determined using the Rabbitt tech-
nique. The pattern is essentially the same for the two methods, which validates
the in situ measurement. The same paths of arrows have been hand drawn to
ease the comparison between the two spectra.
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Figure 5.8: For perturbations with 1% relative intensity, both even and odd
harmonics depend on the relative delay between the laser beams. In the high
harmonics (H:31-38) we can amplify either the odd (red) or the even (blue)
harmonics. The oscillation offset, arg(C), is constant in this region. In the
plateau (H < 30), δ changes smoothly and fast.
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Figure 5.9: The left plot shows attobursts from the short trajectories (S). The
right plot shows the attobursts from all trajectories, including the short (S), the
long (L1) and an even longer (L2). The emission of the attosecond burst from
the long trajectory can be controlled by adjusting the relative delay between
the IR and the 2ω beam. The other two bursts are mostly unaffected by the
relative delay: The short because it is only in the continuum for a short time;
and the longer because it is in the continuum for nearly a whole period.
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Figure 5.10: When the 2ω field has an relative amplitude of 20%, the harmonic
spectrum looks complicated because δ exceeds π for some relative delays between
the laser beams. We also begin to see a tendency of the harmonics to line up
along a tunable axis (red). This structure becomes more visible for even higher
relative intensities.
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Figure 5.11: When the perturbing 2ω field is strong, 40% relative intensity, the
relative delay between the laser beams can be tuned so that a specific part of
the spectrum is amplified (red line). In this way, attobursts can be generated
with fine tuned energies. Close to the tunability axis, there are some side bands.
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5.3 Single Attosecond Bursts

We will now turn our attention to short driving pulses (FWHM < 12 fs) and
investigate the possibility to create an isolated attosecond burst per driving
pulse. Making the driving pulse short reduces the number of bursts because the
E-field at the edges of the pulse is not strong enough to generate harmonics.
We define a single attosecond burst as a sequence of bursts where the second
strongest burst is less than 10% of the strongest burst.

There are many potential applications for single attosecond bursts. Making
the driving pulse very short is a brute force approach of generating such bursts.
Reducing the laser pulse to the critical duration from 10 fs to 5 fs can be done by
broadening the spectrum using filament or capillary methods, but these methods
are hard to engineer. It is therefore of great interest to generate single bursts
with a more sophisticated technique. We investigate the possibility of creating
single attosecond bursts using a combination of slighly longer driving IR pulses
and 2ω pulses. Recent experiments with unlocked phase and single shots have
been carried out by Y. Oishi [8]; and with locked phase by E. Gustafsson.

IR-pulses

It has been shown by A. Baltuska that single attosecond bursts can be created
from 5 fs IR laser pulses [7]. In this Thesis, simulations have been made to
verify that the maximal IR duration of the driving pulse is somewhere between
4 and 5 fs (FWHM) for single attoburst generation. The driving IR pulses are
modelled in terms of the vector potential:

A(t) = A0 cos(ωt + φR)× ΛN (t),

where φR is carrier-evelope (C-E) phase and ΛN (t) is a N period long cos2-
envelope centered at t = 0. The advantage of writing the electric field in terms
of the vector potential is that it reduces the number of numerical integrations
that have to be carried out in the SFA calculation. The disadvantage is that the
laser pulse will get slighly distorted for very short envelopes (N small). This
effect occurs because:

E(t) = −dA

dt
= A0

(
ω sin(ωt + φR)× ΛN − cos(ωt + φR)× dΛN

dt

)
,

where the first term is the correct shape for the electric field; and the second
term is an error term. We note that the error term vanishes for large N because
the error depends on 1/N :

dΛN

dt
=

d

dt

{
cos2

( ω

2N
t
)}

= ...

= −2 cos
( ω

2N
t
)

sin
( ω

2N
t
)
× ω

2N
, t ∈ [−TN/2, TN/2].

In the following, we will study pulses with N = 4, which is quite critical, becuase
the error term has an amplitude of 25% 2.

In total, we have a 4 dimensional parameter space:
2The program has not been verified to be accurate for short driving pulses.
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Envelope duration N
IR intensity I
C-E delay φR

High pass filter Hhp

A high pass filter needs to be applied to select the single attosecond bursts.
In the calculations, this filter is modelled as a discrete stepfunction that removes
all contributions from all frequencies below a specific harmonic Hhp.

We study pulses with N = 4, which corresponds to approximately 4 fs
(FWHM), and with intensities from 1 × 1014 - to 2 × 1014 W/cm2 . Changing
the C-E phase dramatically alters the cut off structure and the number of bursts
produced, see Figure 5.12.
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Figure 5.12: Single attobursts are produced for a specific C-E delay, φR =
0.7 (blue line). The cut off is smooth because of there is only one trajectory
contributing to the burst. Changing the C-E delay, to φR = 2, results in two
attobursts and a modulated cut off.

Single attosecond bursts can be identified in the spectrum as nonmodulated
regions. The modulation is a result of several electron trajectories generating
photons that interfere at the same energies. We find that single attosecond
pulses can be produced with a high pass filter at harmonic Hhp = 27 for a
specific C-E delay:

φR ≈ 0.8± 0.1 rad,

which approximately corresponds to a cos type driving field. The high pass
filter is set as low as possible, without allowing multiple bursts, in order to keep
as much of the spectrum as possible. A broad bandwidth implies possibility
of short pulses, and a low setting on the high pass filter also implies a larger
number of photons (high conversion efficiency). The calculations are made with
the short filter, there are therefore no bursts from the long trajectories.

The C-E phase determines the harmonic structure in the plateau, see Figure
5.13. With I = 1 × 1014 W/cm2 we can move harmonics from odd to even by
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simply changing the C-E phase (works only for few cycle driving pulses).

Figure 5.13: The harmonics from an ultra short IR pulse can be tuned from
odd to even by changing the C-E phase, φR.

ω/2ω-pulses

Having found the optimal C-E phase for single attoburst generation using IR
pulses, the generation is optimized with an additional 2ω field:

A(t) = A0 (cos(ωt + φR) + ξA cos(2ω + φB))× ΛN (t),

where ξA ≈ ξ/2 = EB/2ER is the relative amplitude of the two vector potentials
and φB is the delay of the 2ω field relative to the envelope ΛN . Even with this
very ideal description of the pulse, there is a large number of parameters that
can be tuned to optimize the generation:

Envelope duration N
IR intensity IR

Relative intensity RI

C-E delay φR

2ω delay φB

High pass filter Hhp

where RI = ξ2 is the relative intensity. We set φR = 0.8 rad, because it is
reasonable to assume that this delay will be remain optimal for weak relative
intensities3. The IR intensity is set to 2× 1014 W/cm2 and relative intensities
are studied from 1% to 40%. We find that the optimal 2ω delay is contant for
all studied relative intensities:

φB ≈ 3± 0.1 rad.

This delay corresponds to a single trajectory at the end of the plateau, and
multiple trajectories in the cut off. Figure 5.14 and Figure 5.15 shows that

3This was later verified to be true.
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the optimal generation occurs when the cut off is located at the lowest possible
energy. The peak intensity of the bursts increases strongly with the relative
intensity. It is possible that the increase in intensity is exaggerated in the SFA
model because it does not include any saturation effects due to ionization. The
results agree qualitatively with recent experiments in Lund [4]. More experi-
ments, with locked relative delays, must be made to verify this result.

The intense bursts that are produced by the ω/2ω pulses, with φR ≈ 0.8
and φB ≈ 3, are not shorter than those of the IR pulses. The effective amount
of bandwidth remains the same for the two different pulses. The bandwidth
can be increased by choosing a different value of φB , see Table 5.1. This is
demonstrated in Figure 5.16, where φB = 0 and a long smooth second plateau
is created.

Pulse duration [as] Transform limited With phase
IR 241 261

ω/2ω 125 180

Table 5.1: The duration of the single attosecond burst can be reduced using a
special synchronization of the ω/2ω field.

It is interesting to compare the ω/2ω spectra with those of IR- and 2ω
pulses, see Figure 5.17. The shape of the ω/2ω spectrum can be explained as a
combination of the ω- and the 2ω spectra: The ω spectrum has low intensity but
high cut off energy; while the 2ω spectrum has a high intensity but a low cut off
energy. High burst intensity can be realized when the beams are synchronized
so that we can create a single trajectory in the 2ω regime.

Single Bursts from 10 fs Pulses

Using a 2ω field we can generate single bursts from longer IR pulses. We need
a relative intensity of at least 20% to generate single bursts from 10 fs pulses,
see Figure 5.18. Increasing the relative intensity results in a cleaner burst and
an elevated first plateau, see Figure 5.19. The optimal laser beam delays vary
for different pulse durations. Using φR = 0.8, the best generation is found for
φB = 2.5± 0.1. Further optimization can be done, but we are satisfied with the
conclusion that single bursts can be obtained using 10 fs laser pulses. It does
not seem possible to single bursts from ω/2ω pulses when the pulse duration is
longer than 10 fs.
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Figure 5.14: Using a 2ω field we can greatly improve the harmonic generation
and the intensity of the attoburst. The dotted bursts are transform limited.
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Chapter 6

Discussion

High order harmonic generation (HHG) and attosecond electron dynamics has
been studied intensely in the last decade. The generation of XUV attosecond
bursts will become an important component of time resolved pump-probe ex-
periments of atoms and molecules.

The strong field approximation (SFA) consists of a comprehensive mathe-
matical framework that describes the HHG process in a nonperturbative man-
ner. The main goal of this Thesis was to implement SFA in Matlab so that
the HHG can be calculated from arbitrary low frequency driving fields. The
second goal of the Thesis was to study the properties of HHG with an ω/2ω
driving field. The atomic response depends on the relative intensity of the 2ω
component which leads to a range of different applications.

6.1 Results

The HHG of a pure ω field results in two attosecond bursts per laser period. The
corresponding spectrum consists of odd harmonics of the driving field. When
the 2ω field is relatively weak, the ω/2ω field can be used to make an in situ
measurement of the harmonic phases of the pure ω field. We have shown that
the Rabbit method produces the same trace as the in situ measurement for
attosecond pulses generated by the SFA program.

Increasing the relative intensity of the ω/2ω field completely alters the har-
monic structure. Attosecond bursts are now generated once per period and the
spectrum contains even and odd harmonics of the driving field. It is possible
to fine tune the energy of generated attosecond bursts by simply adjusting the
relative delay between the ω and the 2ω fields. This “tunability” will improve
the quality of future pump-probe experiments.

Single attosecond bursts (SAB) can not be generated from ω driving pulses
exceeding 5 fs. When ω/2ω driving pulses are used, SAB can be generated from
pulses as long as 10 fs. It is therefore clear that the ω/2ω is the better choice
when generating SAB. It has also been shown that the intensity of the burst
can be increased significantly due to the influence of the 2ω field. The duration
of the SAB can be reduced using a special synchronization of the ω/2ω field.
It is, however, not possible to combine the amplification and the compression
properties.
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6.2 Perspectives

The ω/2ω field shows a lot of promise because it can increases the control and
the intensity of the HHG process. The in situ measurement and the tunability
have already been demonstrated experimentally. It would be interesting to take
part in an experiment where the conversion efficiency and the tunability are
optimized using phase locked ω/2ω pulses.

The next step in the theoretical work is to study other kinds of polychromatic
driving pulses. The ω/2ω−δ consists of two incommensurable frequencies which
leads to new applications and phenomena. Also the effects of chirped polychro-
matic driving pulses will be studied. Because the SFA program is fully general,
it is now straight forward to calculate the HHG of any low frequency field.
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and for providing housing. I want to thank Thierry Ruchon for constantly pro-
viding me with interesting reading material and for sharing his french humor.
I thank Marko Swoboda for all the interesting coffee breaks and for a crash
course in Inkscape; and I thank Thomas Remetter for running a Rabbit simu-
lation on one of my theoretical attosecond bursts. I thank Miguel Miranda for
reading though my Thesis and for his insightful comments. Thanks to Mikkel
Brydegaard for sharing his views on Physics and Applications.



Bibliography

[1] D.J. Griffiths, “Introduction to electrodynamics”, Prentice hall
(1999)

[2] R.W. Boyd, “Nonlinear optics”, Academic press (1992)

[3] J.L. Krause, K.J. Schafer, and K.C. Kulander,“High-order har-
monic generation from atoms and ions in the high intensity
regime”, Phys. Rev. Lett. 68, 3535 (1992)

[4] E. Georgiadou, “Study of harmonic generation with a two-color
field”; Lund university, LRAP-375 (2007)

[5] J. Mauritsson, P. Johnsson, E. Gustafsson, A. L’Huiller, K.J.
Schafer, M.B. Gaarde, “Attosecond pulse trains generated using
two color laser fields”, Phys. Rev. Lett. 97, 013001 (2006)

[6] N. Dudovich, O. Smirnova, J. Levesque, Y. Mairesse, M.YU.
Ivanov, D.M. Villenevue, P.B. Corkum, “Measuring and control-
ling the birth of attosecond XUV pulses”, Nature physics 434
(2006)

[7] A. Baltuska, Th. Udem, M. Uiberacker, M. Hentschel, E. Gouliel-
makis, Ch. Gohle, R. Holzwarth, V.S. Yakovlev, A. Scrinzi, T.W.
Hansch, F. Krausz, “Attosecond control of electronic processes
by intense light fields”, Letters to nature 42, 611 (2003)

[8] Y. Oishi, M. Kaku, A. Suda, F. Kannari, K. Midorikawa, “Gen-
eration of extreme ultra violet continuum radiation driven by a
sub-10-fs two color field”, Optics Express 14, 7230 (2006)

[9] M. Lewenstein, “Theory of high-harmonic generation by low-
frequency laser fields”, Phys. Rev. A, 49, 49 (1994)

[10] P. Salieres, B. Carre, L. Le Deroff, F. Grasbon, G. G. Paulus, A.
Sanpera, M. Lewenstein, “Feynman’s path-integral approach for
intense-laser-atom interactions”, Science reports 292, 902 (2001)

[11] L.N. Hand, J.D. Finch, “Analytical Mechanics”, Cambridge Uni-
versity Press (1998)

[12] E. Cormier, P. Lambropoulos, “Optimal gauge and gauge invari-
ance in a non-perturbative time-dependent calculation of above-
threshold ionization”, J. Phys. B: At. Mol. Opt. Phys. 29, 1667
(1996)

53



BIBLIOGRAPHY 54

[13] J.J. Sakurai, “Advanced quantum mechanics”, Addison Wesley
(1967)

[14] R.P. Feynman, “Space-time approach to non-relativistic quantum
mechanics”, Rev. of Mod. Phys. 20, 367 (1948)

[15] M. Lewenstein, P. Saliers, A. L’Huillier, “Phase of the atomic
polarization in high-order harmonic generation”, Phys. Rev. A
52, 4747 (1995)

[16] M. Lewenstein, A. L’Huillier, “Principles of single atom physics:
High-order harmonic generation, above-threshold ionization and
non-sequential ionization”, Springer-Verlag, (in press 2007)

[17] H.A. Bethe, “Quantum mechanics of one- and two-electron
atoms”, Plenum (1977)

[18] M.Y. Ivanov, “Femtosecond science program”, Steacie Institute
of Molecular Sciences (Feb 21, 2002)

[19] J.J. Sakurai, “Modern quantum mechanics”, Addison-Wesley
(1994)

[20] P. Antoine, A. L’Huillier, M. Lewenstein, “Attosecond pulse
trains using high-order harmonics”, Phys. Rev. Lett. 77, 1234
(1996)

[21] G. Sansone, E. Benedetti, C. Vozzi, L. Avaldi, R. Flammini, L.
Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De
Silvestri, M. Nisoli, “Isolated single-cycle attosecond pulses”, Sci-
ence rep. 314, 443 (2006)



Appendix A

Matlab files

nydipol.m

The dipole moment is calculated using a dipole matrix ∆X and a mask matrix
M . The dipole matrix contains the dipole integration elements ∆xnm; while
the mask matrix determines the integration bounds for the dipole, see Figure
A.1. The standard shape of M is given by:

Mnm =
{

1, n ∈ [n0, n̂− m̂ + n]
0, n /∈ [n0, n̂− m̂ + n] ,

which corresponds to an integration from as far back as possible: t0 to tm, for
all m ∈ [1, m̂]. Specific electron trajectories can be studied if the mask marix is
modified.

Figure A.1: The ∆X matrix contains all the matrix elements ∆xnm. We create
a matrix M with a specific shape, so that the integration bounds are fullfilled
when the rows are summed. Specific trajectories can be seleced by changing the
shape of M .

The numerical integration is carried out by summing the rows of ∆X. ∗M ,
which is a efficient to do with Matlab 1.

The input parameters for nydipol.m are: startAt, endAt and saveAs. If
startAt = a and endAt = b, then nydipol.m will plot the dipole from IR period
a to b. The calculated dipole is saved as saveAs.mat or as quicksave.mat if
no specific filename is chosen.

1We denote elementwise multiplication of two matrices A and B as A. ∗ B. The same
notation is used in Matlab.
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getConstants.m

Loads a bunch of physical constants into a global vector CONSTANTS :

CONSTANTS(1) T Period of IR
CONSTANTS(2) ω Ang. freq. of IR
CONSTANTS(3) A0 Ampl. of vector potential
CONSTANTS(4) I Intensity
CONSTANTS(5) Ip Ionization potential
CONSTANTS(6) e Unit charge
CONSTANTS(7) c Speed of light
CONSTANTS(8) m Electron mass
CONSTANTS(9) h̄ Dirac’s constant
CONSTANTS(10) ν Integration paramter
CONSTANTS(11) Up Ponderomotive energy

explicitA.m

The vector potential A(t) is used to describe the driving field.

fouriertransform.m

A file saved by nydipol.m is loaded and the Fourier transform of the dipole
moment is calculated using the FFT routine in Matlab. The spectrum is passed
through a high pass filter, starting at harmonic Hhp, and then transformed back
to the time domain.

The input parameters are startAt, stopAt, fileToLoad and gcol, where the first
two arguments should be 0 and b − a for maximal resolution. The harmonic
spectrum and the pulse structure is plotted in the color specified by gcol.

spectrum.m

A super function, called spectrum.m, is used to run nydipol.m and fourier-
transform.m multiple times, for varying input parameter values of the driving
field. The result of the simulation is saved and can be viewed using studyS-
pectrum.m.

The input parameters are NEL, startAt, endAt and saveAsSPEC, where
NEL specifies the number of simulations to produce.

studySpectrum.m

A file saved by spectrum.m is loaded and plotted.
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Two-Color Fields in HHG
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The intensities of high harmonic combs 
generated with either a single- or two-
color field are compared. 
Both spectra extend to roughly the same 
harmonic order, but with the two-color 
field (blue spectrum), the intensity of the 
lower order harmonics is greatly 
increased. 
The two plateaus are visible as the cutoff 
of the increased-efficiency region, 
mentioned already to the left.  The High-
Order Harmonic Generation efficiency is 
greater at a frequency of 2ω.

We employ the measurement principle of an 
attosecond streak camera [4] to measure the 
time evolution of the probing IR field.
The scan is the cut of the central line of a 
sequence of velocity maps, obtained for different 
delays between attosecond pulse train and probe 
IR. The vector potential of the IR probe will then 
alter the observed photoelectron spectrum.
The intrinsic chirp [5] of the harmonic emission 
is visible in the imbalance of rising and falling 
edge of the oscillation, visible also as a 180 
degree shift between upper and lower harmonic 
spectrum.  

Conclusions
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Experimental ω/2ω Relative PhaseSFA Calculated ω/2ω Relative Phase

The harmonic generation can be tuned from even to odd harmonics using the 2ω driving 
field (1% relative intensity)[3]. The 2ω field extends the quantum paths of one half infrared 

(IR) period and diminishes the other. Due to the perturbation, the paths accumulate 
different phases in the continuum, leading to the observed interferences with relative delay.
The central energy of the attobursts can be fine-tuned using stronger 2ω driving fields(40% 
relative intensity). Also, the strong dominance of one quantum path per period leads to the 
emission of only attosecond pulse per IR cycle.

The experimental results show good correspondence with the SFA calculations on the left.  
We control whether odd or even harmonics dominate the spectrum when the 2ω intensity is 
low. Tunability of the harmonic central energy is shown on the right for higher relative 2ω 

intensity .
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TUNABILITY
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We break the inversion symmetry using an additional 2ω field in High-Order Harmonic 

Generation[1]. This enables us to generate single bursts of harmonic radiation per driving 
laser period. The shape of the harmonic spectrum is altered, showing a structure of two 
plateaus. They are the result of the different harmonic generation efficiencies of the two 
frequencies, where the high-gain-but-low-energy cutoff is corresponds to the 2ω plateau.

The one pulse/IR cycle attotrain allows the stroboscopic measurement of electron wave 
packet scattering on its parent ion. A single ionization instant can be frozen in time and the 
electron afterwards steered by the probing IR field. The subsequent electron wave packets 
are coherent and add up in phase, increasing the signal by n2 [3].
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Here, we present calculations in the Strong-Field-Approximation and corresponding 
experiments on High-Order Harmonic Generation with bichromatic driving laser fields. A 
fraction of the initial infrared pulse is frequency-doubled and overlapped with the 
fundamental beam in the generation gas, showing great influence on the harmonic emission 
temporal and spectral properties.

In conclusion, two-color driving laser fields present a viable and efficient method to control 
the harmonic emission temporal and spectral structure, allowing the production of tunable 
attosecond pulse trains with one pulse per IR cycle.
The tunability is a consequence of the engineered electron quantum paths in the 
continuum. Two cutoffs appear in the spectrum, and the dominance of either odd or even 
harmonics can be obtained by only a weak perturbing field at certain relative phase. We 
perform several experiments, using these pulse trains as a stroboscope to capture 
attosecond electron wave packet dynamics.
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