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Abstract

In this Master Thesis, pulse compression through �lamentation has been stud-
ied. The method is based on self-focusing of intense laser light in a noble gas like
argon. The subsequent plasma formation is used to guide the light over several
Rayleigh ranges and hereby to achieve a spectral broadening. In combination
with chirped mirrors, the emerging pulses can be compressed to a duration close
to the fundamental limit.

The Thesis focuses on the temporal aspects of �lamentation. The theoretical
part aimed at investigating the di�erent e�ects involved and the experimental
part at implementing and optimising the technique. The best result was a 12.2
fs pulse, for an input of 40 fs.
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Chapter 1

Introduction

The invention of the laser in the 1960s opened up a whole new world of possi-
bilities for scientists all over the world, pushing the limits of monochromaticity,
coherence, directionality and brightness. Today, one �eld of active research is
generation of ultrashort pulses, with a wide variety of applications. A recently
developed technique is based on self-guidance of laser light in a plasma channel
- so called �lamentation - the subject of this Master Thesis.

1.1 The need for short pulses
Many fundamental processes occur on a pico- or femtosecond time scale (1 ps
= 10−12 s, 1 fs = 10−15 s), so called ultrafast processes. Such fast phenomena
often concern energy transfer and have mainly been studied in the liquid or solid
phase. Examples of ultrafast processes are the photosynthesis together with
other chemical reactions that involve dissociation or formation of new molecules.
To be able to perform time-resolved measurements of ultrafast processes, pulses
less or equal to the duration of the process of study are required. This calls for
generation of short or even ultrashort (< 1 ps) optical pulses.

An additional driving force is the study of ultra-intense light-matter inter-
actions. Short pulses enable an increase of the peak power of the laser light,
without having to increase the pulse energy. There are a number of di�erent
techniques to produce short pulses and new ones are constantly developing.
In the next section some of the methods most relevant for this Thesis will be
presented.

1.2 Generation of high-intensity short laser pulses
The generation of high-intensity short laser pulses uses the technique of mode-
locking, together with chirped-pulse ampli�cation (CPA). The pulses can also
be sent through an external compression stage to become even shorter. There
exists a number of di�erent external pulse compression techniques, the most
recent being �lamentation.

5



6 CHAPTER 1. INTRODUCTION

1.2.1 Generation and ampli�cation
In order to generate short pulses directly in the laser oscillator, the active
medium must have a broad gain pro�le to be able to simultaneously support
many longitudinal modes and also be resistive to heat. The medium capable
of producing the shortest pulses today is a crystal consisting of sapphire doped
with three times ionised titanium-atoms, Ti3+:Al2O3. Under ordinary circum-
stances, the phases of the longitudinal modes have random values and a cw
oscillation beam will show a random time behaviour [1]. If the phase di�erence
between consecutive longitudinal modes instead is kept constant (locked), the
modes oscillate in phase. As a result, short pulses can be obtained according to
the time-bandwidth product

∆ω∆t ≥ 2πcB (1.1)

cB denotes a constant, whose value depends on the shape of the pulse [2]. With
the technique of mode-locking, it is possible to obtain pulses with a duration in
the fs-regime and with a peak power in the GW-TW range [3]. Mode-locking
can be either active, where an external device produces the desired e�ect, or
passive, which basically uses the inherent properties of some kind of medium.
One passive method that has been extensively used is Kerr-lens mode-locking,
see [4].

To reach even higher power levels, a substantial ampli�cation is needed. If
conventional ampli�ers are used, the diameter of the beam has to be considerably
increased in order not to damage the optical components. As such systems often
tend to be both expensive and have low repetition rates, the CPA-technique has
emerged. CPA is most easily described in connection with �gure 1.1. To reduce
the intensity of the laser light without having to expand the beam diameter, the
pulse is instead stretched in time by typically a factor of a few thousand. This
is accomplished by sending it through a stretcher device, for example consisting
of a lens and a grating arrangement, which separates the di�erent frequency
components of the pulse. The low-frequency components are then made to
travel a shorter distance than the high-frequency components and will thus
appear in the leading edge of the pulse, prolonging it in time.

After the pulse has been stretched, it can be ampli�ed. Because of the long
pulse duration, the peak power can be kept low and thus a small beam diameter
(typically 5 mm) can be maintained. The ampli�ed beam is then expanded
to a larger diameter and �nally recompressed in time to its original duration.
The compressor consists of two gratings and is based on the same principle as
the stretcher, in the sense that di�erent frequency components gets to travel
di�erent distances. The action of the compressor compensates for the action
of the stretcher and thus all the frequency components will exit at the same
time, resulting in a recompressed pulse. Since the energy of the pulse has been
increased, the peak power is now higher than before the stretching [5].
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Figure 1.1: Schematic overview of the di�erent steps involved in CPA [6].
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1.2.2 External techniques
To further compress the pulses from the laser, external devices must be used,
all of which are based on �rst achieving a spectral broadening of the input pulse
and then to compress it temporally, in accordance with the time-bandwidth
product. For high enough intensities of the laser light, the refractive index of
a medium will start to show a nonlinear intensity dependence, n = n (I). If a
Taylor expansion of n versus I is performed, the �rst term will be proportional
to I according to [7]:

n = n0 + n2I (1.2)

where n0 denotes the usual linear refractive index and n2 is the nonlinear co-
e�cient of the medium. This is often denoted nonlinear refraction. Since the
intensity varies across the pulse, di�erent parts will experience a di�erent refrac-
tive index, with a resulting spectral broadening. However, the refractive index
is also frequency dependent, n = n(ω), meaning that di�erent parts of the pulse
will propagate with di�erent speeds. This will either prolong or shorten the
pulse temporally. To be able to compress the pulse, the nonlinear and disper-
sive e�ects of the medium must balance each other and to accomplish this, the
cross section of the laser beam must be quite small over a certain distance.
Hence some kind of external guiding device is necessary. The �rst technique
was established in 1984, when Tomlinson et al. showed that it was possible to
compress laser pulses with optical �bres and gratings [8]. This technique could
however only compress pulses with an energy of a few nJ, since the material
otherwise was destroyed. As one of the primary aspects in producing short
laser pulses is to obtain high peak powers, the method had to be improved. In
1996 Nisoli et al. presented a method in which a gas-�lled hollow waveguide, a
capillary, was used instead of an optical �bre [9]. In this way, the energy could
be increased and higher peak powers were obtained.

Pulse compression through �lamentation has a lot in common with the gas-
�lled capillary, except that it is based on self-guidance of the light in a plasma
channel (also known as a �lament) and hence requires no constraining device
[10]. The technique works both with and without a �nal recompression stage,
due to self-shaping of the pulse inside the �lament (see section 3.4.1), and pulses
as short as 5.1 fs have been produced [11]. The medium used is generally a noble
gas like argon [12], but the method also works in air. Compared to the capillary,
�lamentation circumvents the problems associated with coupling light into the
capillary and the compressed pulses have higher energy. Spatially, a �lament
looks like a glowing, thin thread and is the result of an interplay between two
counteracting e�ects - one focusing and one defocusing. If the two contributions
are of equal strength, the radius of the laser beam can be kept more or less
constant over a certain distance. The light is thus guided in the same way as a
�ash of lightning during a thunderstorm. The formation of a �lament is usually
characterised by three di�erent steps [13]:

1. Focusing of the light in the di�raction plane, caused by the optical Kerr-
e�ect. As the intensity of the laser light increases, the refractive index
will be intensity dependent according to equation (1.2). Since the spatial
intensity pro�le of laser light in general has its maximum on the optical
axis, the refractive index will also exhibit the highest value there. The
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medium thus will act as a successively increasing positive lens, so called
self-focusing.

2. The formation of a plasma due to the increased intensity, creating a �la-
ment which is preserved for several Rayleigh ranges. The plasma di�racts
the light and hence counteracts the self-focusing.

3. The plasma contribution eventually exceeds the Kerr-e�ect, causing a �nal
di�raction of the light and the end of the �lament.

The exact radius of the �lament is not constant throughout the whole prop-
agation, but consists of a number of focusing/defocusing stages due to a very
precise interplay between self-focusing and plasma di�raction. Depending on the
relative strength of the two physical processes, the radius of the �lament will
either decrease (dominating Kerr-e�ect), increase (dominating plasma e�ect) or
be constant (equal strengths of the two contributions).

The physics behind the spatial part of �lamentation is rather straightfor-
ward. The propagation of the light is governed by the relative strength of two
e�ects, which is controlled by the intensity. But since this quantity not only
varies spatially but also temporally, I=I(t), the temporal aspects of �lamenta-
tion must also be considered. This has been the focus of this Master Thesis.
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1.3 Purpose of this Master Thesis
The purpose of this Master Thesis was to study the temporal aspects of �la-
mentation. The theoretical part of the work aimed at investigating the di�erent
mechanisms involved and how they a�ect the temporal and spectral properties
of the pulse. For that purpose a one-dimensional propagation code in Matlab
was written, that numerically simulates how the temporal and spectral pro�les
of the pulse are changed as it propagates in the �lament. In the experimental
part, the theoretical knowledge was used to study the parameter dependence
and try to optimise the technique. The aspiration was to obtain as short pulses
as possible, with the maximum output energy. The outline of the Thesis is as
follows: Chapter 2 is theoretical and covers the di�erent temporal e�ects in-
volved in �lamentation. Chapter 3 describes the numerical method used in the
simulations, together with some results and conclusions. Chapter 4 summarises
the experimental work, also with results and conclusions. Finally, chapter 5
provides some future aspects and applications of �lamentation.



Chapter 2

Temporal aspects of
�lamentation

To be able to theoretically study how an optical pulse is a�ected as it propagates
in a �lament, a propagation equation has to be solved. This is derived from
Maxwell's equations, which govern the properties of all electromagnetic �elds.
To fully understand the meaning of the di�erent mechanisms, a short description
of the mathematical properties of a light pulse is �rst needed.

2.1 Mathematical description of a light pulse
As is well known ever since the Treatise on Light by Christian Huygens in
1690 [14], light can be seen as an electromagnetic wave. A total description
of a short pulse includes both spatial and temporal characterisation, but since
this Thesis is focusing on the temporal properties of pulse propagation, the
spatial dependence will be neglected, i.e. E (x, y, z, t) = E (t). Experimentally,
the quantity most easily measured is the intensity of the pulse, related to the
electric �eld according to:

I (t) =
ε0cn |E (t)|2

2
(2.1)

where ε0 and c are the permitivity and speed of light in vacuum respectively. n
is the refractive index of the medium [15]. Mathematically, the electric �eld is
represented by the complex quantity

E (t) = |E (t)| ei(ϕ(t)+ϕ0) (2.2)

where ϕ (t) denotes the temporal phase of the pulse and ϕ0 the absolute phase.
Expression (2.2) can be further decomposed according to:

E (t) = |E (t)| ei(φ(t)−ω0t)eiϕ0 =
= |E (t)| ei(φ(t)+ϕ0)e−iω0t = A (t) e−iω0t (2.3)

In this way, the rapidly varying carrier wave e−iω0t is separated from the slowly
varying complex envelope A (t). ω0 represents the carrier frequency of the pulse,

11



12 CHAPTER 2. TEMPORAL ASPECTS OF FILAMENTATION

usually chosen close to the center of the spectrum [16]. In equation (2.3), the
absolute phase relates the position of the carrier wave to the temporal envelope
of the pulse and is also known as the carrier-envelope-o�set (CEO) phase. One
of the many advantages of �lamentation is a conserved CEO phase [10].

Figure 2.1: The envelope and the electric �eld of a pulse for two di�erent values
of the absolute phase. The solid line represents ϕ0 = 0 and the dashed line
ϕ0 = π/2 [17].

The instantaneous optical frequency of the electric �eld varies with the tem-
poral phase according to:

ω (t) = −dϕ (t)
dt

= −dφ (t)
dt

+ ω0 (2.4)

where the minus sign is due to the choice of e−iω0t in equation (2.3) [18]. If the
phase has a nonlinear temporal dependence, the instantaneous optical frequency
of the electric �eld will not be constant but will change with time. The pulse
is then said to be frequency modulated or chirped. If the frequency of the light
increases linearly with time, the pulse is referred to as being positively chirped
or upchirped and if the opposite prevails, negatively chirped or downchirped.
Depending on the temporal dependence, the chirp of a pulse can be more or less
complicated.

Figure 2.2: The electric �eld of a pulse with a strong, positive chirp [17].

A complete description of the electric �eld of a pulse can also be given in
the frequency domain, since it is connected to the temporal domain through a
Fourier transform. For the same reason as in the temporal domain, a complex
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representation of the electric �eld is often used

E (ω) = |E (ω)| eiϕ(ω) (2.5)

with ϕ (ω) representing the spectral phase of the pulse. The spectral phase can
be further decomposed by Taylor expansion according to [19]:

ϕ (ω) = ϕ0 +
∞∑

n=1

1
n!

an (ω − ω0)
n

an =
(

dnϕ (ω)
dωn

)

ω=ω0

(2.6)

Since the square of the spectral amplitude |E (ω)|2 represents the spectrum
of the pulse, which is very easy to measure experimentally, it is usually more
convenient to represent a pulse in the frequency domain. To be able to relate
this to the temporal representation, the inverse Fourier transform must be used,
since the complex representation of the temporal and spectral electric �elds are
connected according to:

E (t) =
1√
2π

∫ ∞

0

E (ω) e−iωtdω (2.7)

By inserting the Taylor expansion of the spectral phase into the expression for
the complex electric �eld, equation (2.5), the resulting exponent looks like:

exp
{

i

[
ϕ0 +

dϕ

dω
(ω − ω0) +

1
2

d2ϕ

dω2
(ω − ω0)

2 +
1
6

d3ϕ

dω3
(ω − ω0)

3 + . . .

]}
(2.8)

If this is inserted into equation (2.7), it can clearly be seen that a linear variation
of the spectral phase does not change the temporal pro�le of the pulse, but
instead induces a temporal shift of the entire pulse. A nonlinear phase variation,
on the other hand, will cause a frequency chirp in the temporal domain and
hence alter the shape of the pulse [19].

Since the temporal and spectral characteristics of an optical pulse are con-
nected, their respective widths will also be linked, in accordance with the time-
bandwidth product, see equation (1.1). For a Gaussian pulse, cB = 0.441.
Pulses with a duration corresponding to the equality in equation (1.1) are
unchirped, i.e. have a constant temporal phase, and hence as short as they
can possibly be. Such pulses are therefore referred to as being transform limited
[2].

As a short (∼ 10 fs), intense laser pulse propagates through a certain
medium, it is strongly a�ected and generally several mechanisms act simul-
taneously. Basically, these can be divided into dispersive and nonlinear e�ects.
The temporal and spectral evolution of the pulse inside the �lament is governed
by a propagation equation, the derivation and explanation of which can be found
in appendix A.
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2.2 Dispersive e�ects
2.2.1 Group-velocity dispersion
When a short laser pulse interacts with matter, it will be a�ected di�erently de-
pending on the optical frequency of the electric �eld. Hence di�erent frequency
components are in�uenced by di�erent amounts, a property commonly known as
chromatic dispersion, which manifests itself through the frequency dependence
of the refractive index, n (ω). Due to the frequency dependence of the refractive
index, the mode-propagation constant β = n(ω)ω

c will also vary with frequency.
This will a�ect the temporal pulse shape. To estimate the e�ect of dispersion,
a Taylor expansion around the center frequency can be performed according to
[20]:

β (ω) = n (ω)
ω

c
= β0 +

(
dβ

dω

)

ω=ω0

(ω − ω0) +

+
1
2

(
d2β

dω2

)

ω=ω0

(ω − ω0)
2 + . . . (2.9)

For short pulses, with broad spectral widths, it is necessary to include higher-
order expansions. If the second order expansion

(
∂2β
∂ω2

)
ω=ω0

(also known as β2)
is included, di�erent frequencies will have di�erent group-velocities. The group-
velocity represents the speed with which the whole pulse travels and should not
be confused with the phase-velocity ; the speed of the separate electromagnetic
waves (the di�erent constituents of the pulse). This group-velocity dispersion
(GVD) alters the temporal characteristics of the pulse. If β2 > 0, the phe-
nomenon is referred to as normal (positive) group-velocity dispersion and if
β2 < 0, anomalous (negative) group-velocity dispersion. For normal disper-
sion, low-frequency (red-shifted) components of an optical pulse travel faster
than high-frequency (blue-shifted) components, while the opposite prevails for
anomalous dispersion [21]. Most media exhibit normal dispersion. Because of
GVD, the temporal phase varies across the pulse, inducing a chirp. As the fre-
quency changes linearly with time, the chirp is linear. For normal dispersion
the chirp is positive, while anomalous dispersion produces a negative chirp. A
linear chirp can easily be compensated for by introducing a device with a GVD
of opposite sign. In �gure 2.3 the e�ect of GVD is shown.
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Figure 2.3: Temporal pro�le of the pulse, together with the frequency variation,
before (blue) and after (red) the in�uence of GVD.
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2.2.2 Third-order dispersion
For ultrashort pulses, even the second order of the Taylor expansion is not
enough to fully describe the mode-propagation constant, but higher-order terms
must also be included. If the next term in the Taylor expansion (2.9) (β3 =(

∂3β
∂β3

)
ω=ω0

) is added, the third-order dispersion (TOD) is taken into account
as well. Unlike GVD, TOD induces an asymmetric broadening of the pulse.
Depending on the sign of β3, it makes either the trailing edge (β3 > 0) or the
leading edge (β3 < 0) of the pulse longer and modulated. If the GVD contribu-
tion is negligible, the modulation increases. The shape of a pulse that is a�ected
only by TOD, can be seen in �gure 2.4 for β3 > 0 [22].
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Figure 2.4: Temporal pro�le of the pulse before (blue) and after (red) the in�u-
ence of TOD.
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2.3 Nonlinear e�ects
2.3.1 Self-phase modulation
As already mentioned in section 1.2.2, at high intensities the refractive index of
a medium starts to show an intensity-dependence, according to:

n = n0 + n2I (2.10)

Due to the temporal variation of the intensity, the refractive index will also
vary in time, which means that di�erent parts of the pulse experience cdi�erent
responses from the medium [23]. The variation in refractive index causes a
self-induced phase shift in the pulse, that increases with propagated distance
according to:

φ = βz − ω0t =
ω0n (t) z

c
− ω0t =

=
ω0n0z

c
+

ω0n2I (t) z

c
− ω0t (2.11)

where the intensity-dependent nonlinear phase shift φNL = ω0n2I(t)z
c is due to

nonlinear refraction. Since the instantaneous frequency of the pulse is given by
the derivative of the temporal phase, the frequency will also show an intensity-
and time-dependence according to:

ω = −∂φ

∂t
= ω0 − ω0n2

c

∂I

∂t
z (2.12)

It is thus obvious that new frequency components will be generated as the pulse
propagates in the medium. Depending on the sign of ∂I

∂t , the spectrum will be
either blue- or red-shifted. For the leading edge of the pulse, ∂I

∂t > 0 and the
spectrum correspondingly shifts towards the red. For the trailing edge, ∂I

∂t < 0
and the spectrum instead shifts towards the blue. This phenomenon is referred
to as self-phase modulation (SPM), the temporal counterpart to the optical
Kerr-e�ect.

The spectral broadening due to SPM is associated with an oscillatory struc-
ture over the entire frequency range, where the outermost peaks are the strongest.
This is easily seen in �gure 2.5. Due to the generation of new frequencies as the
pulse propagates, SPM induces a chirp in the pulse. Unlike GVD the induced
chirp is nonlinear, which makes the pulse impossible to compress [24]. If how-
ever SPM and GVD act together on equal footing, a spectral broadening will
result at the same time as a linear chirp will be produced. This can be used to
compress pulses and is further discussed in section 3.4.1. If normal dispersion
prevails, the pulse stretches more rapidly compared to the situation when only
GVD is present. This can be explained by the fact that SPM generates red-
shifted frequency components at the leading edge of the pulse and blue-shifted
at the trailing edge. Since low frequencies travel faster than high for normal dis-
persion, the pulse shows an enhanced temporal stretching. Due to the decrease
in intensity, the SPM-induced phase shift decreases, see equation (2.11). If the
dispersion instead is anomalous, the pulse instead initially stretches at a much
lower rate than if only GVD was present and eventually reaches a steady state.
Since the SPM-induced chirp is positive for the central part of the pulse, while



18 CHAPTER 2. TEMPORAL ASPECTS OF FILAMENTATION

the dispersion-induced chirp is negative, the two contributions will counteract,
thus limiting the temporal stretching of the pulse. Also the broadening of the
spectrum is reduced.
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Figure 2.5: Spectral pro�le of the pulse, together with the frequency variation,
before (blue) and after (red) the in�uence of SPM.
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2.3.2 Self-steepening
For ultrashort pulses, it is also necessary to include higher-order nonlinear ef-
fects. There are two nonlinear contributions of interest in this context; intra-
pulse Raman scattering and self-steepening. The �rst e�ect has to do with the
fact that nonlinear refraction is not instantaneous, but occurs after a certain
delay, the so called response time of the medium. The change in refractive
index of the medium is caused by either electronic polarisation or molecular
orientation and depending on which, the response time will be di�erent. The
medium used in this Thesis is the noble gas argon, in which molecular orienta-
tion is not present. Hence only the electronic polarisation has to be taken into
consideration and since its response time is very fast in comparison with the
pulse duration in this Thesis, the e�ect of intrapulse Raman scattering can be
neglected.

Self-steepening occurs since the group-velocity of a pulse is intensity-dependent
[25]-[28]. The higher the intensity, the lower the group-velocity, which for ultra-
short pulses mean that the peak will move slower than the wings. This leads to
an asymmetry in the temporal pro�le, where the trailing edge becomes steeper
and steeper. As a result, the SPM-modulated spectrum has a larger broadening
on the blue side [29]-[33]. In addition, due to the fact that both SPM and self-
steepening act instantaneously, the laser energy is accumulated in the ascending
part of the pulse, causing more intense red-shifted peaks [10]. The combined
e�ects of SPM and self-steepening can be seen in �gure 2.6.
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Figure 2.6: Spectral and temporal pro�les of the pulse before (blue) and after
(red) the in�uence of SPM and self-steepening.
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2.3.3 Plasma generation
As the intensity of the laser light increases due to self-focusing, the atoms of the
medium will be ionised (partially or completely) and a plasma is created. If the
energy of the individual photons is not su�cient to directly ionise the atoms,
i.e. h̄ω < Ip where Ip is the ionisation potential of a single atom, the process
is called optical �eld ionisation (OFI). Optical �eld ionisation can be further
divided into three di�erent regimes depending on the intensity and frequency of
the laser �eld: multiphoton ionisation, tunneling ionisation and over-the-barrier
ionisation. The �rst two regimes are separated by the Keldysh parameter (γ):

γ =
ω

Elaser

√
2Ip (2.13)

where Elaser denotes the electric �eld strength of the laser light [34]. If γ À 1,
i.e. for laser �elds with high frequencies and/or low intensities, an electron
successively will absorb a number of photons, rise to higher energy states and
eventually leave the atom. This type of ionisation is therefore called multiphoton
ionisation. If, on the other hand, the intensity of the laser �eld is high enough
(so that γ ¿ 1), the potential well in the atom will be deformed. This creates
a barrier, through which there is a possibility that the electron can tunnel,
thereby leaving the atom. The tunneling process is a pure quantum mechanical
concept and has no classical counterpart. Tunneling is the dominating ionisation
process for neutral atoms interacting with laser light of 800 nm and an intensity
exceeding 1014 W/cm2. For even higher intensities, the atomic potential well
is further deformed and the barrier will be suppressed below the ground state.
This means that the electron is now in an unbound state, from where it can
easily leave the atom [35].

Figure 2.7: Schematic description of multiphoton ionisation [35].
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Figure 2.8: Schematic description of tunneling ionisation [35].

Figure 2.9: Schematic description of over-the-barrier ionisation [35].
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As the laser pulse passes and a plasma is created, the properties of the
medium change. During the time of the interaction, the matter consists of a
varying number of ions, free electrons and neutral atoms, depending on I(t).
When the interacting pulse is of femtosecond duration, the heavy ions can be
considered immobile while the lighter electrons are easily disturbed by the ex-
ternal �eld and start to oscillate at the resonance plasma frequency:

ω2
p (t) =

e2ne (t)
meε0

(2.14)

where ne (t) is the density of free electrons due to ionisation [36]. This in turn
a�ects the refractive index of the medium, that changes according to:

∆n (t) = −ω2
p (t)
2ω2

0

= − e2ne (t)
2meε0ω2

0

(2.15)

The time-dependent variation of the refractive index leads to a change in phase,
just like SPM:

φPl = ∆kz = k0∆nz = −k0
e2ne (t)
2meε0ω2

0

z = − e2ne (t)
2meε0ω0c

z (2.16)

Here k0 = 2π
λ represents the propagation constant in vacuum [37]. Since the

degree of ionisation increases as the laser pulse passes, the refractive index
decreases with time, resulting in a blue-shift of the fundamental spectrum. In
addition, in contrast to most materials, the plasma introduces an anomalous
dispersion in the laser pulse.

The density of free electrons can be further expressed as:

ne (t) =
∑

k

kNk (2.17)

where Nk denotes the density of atoms with charge −ke [37]. If only the outer-
most electron is ionised, then equation (2.17) reduces to:

ne (t) = N1 (2.18)

During the time of the interaction, the density of atoms changes according to:
dNk

dt
= Wk−1Nk−1 −WkNk =⇒ dN1

dt
= W0N0

dN0

dt
= −W0N0 =⇒ N0 = N00 exp

[
−

∫ t

−∞
W0

(
t
′)

dt
′
]

=⇒

=⇒ dN1

dt
= W0 (t) N0 (t) = W0 (t) ·N00 exp

[
−

∫ t

−∞
W0

(
t
′)

dt
′
]
(2.19)

where Wk represents the ionisation rate of an atom with charge −ke and N00

denotes the density of neutral atoms before interaction with the laser light. If
this di�erential equation is solved, the free electron density as a function of time
can be written as:

ne (t) = N00

∫ t

−∞
W0

(
t
′)

exp

[
−

∫ t
′

−∞
W0

(
t
′′)

dt
′′
]

dt
′ (2.20)
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To further calculate this expression, the ionisation rate has to be determined.
Since in this Thesis, the atoms are ionised through tunneling, a quantum me-
chanical treatment is required. The result is merely stated here, for a complete
derivation, see appendix A.2. For a linearly polarised, alternating electromag-
netic �eld, the ionisation rate can be written in the following form (in atomic
units):

Wion,linear (E , ω) =
(

3E

πE0

)1/2

× |Cn∗l∗ |2 E
(2l + 1) (l + |m|)!

2|m| (|m|)! (l − |m|)!
(

2E0

E

)2n∗−|m|−1

×

× exp
(−2E0

3E

)
(2.21)

[38]. Here E0 = (2E)3/2, n∗ = Z (2E)−1/2, E is the electron energy, Z is the
charge of the resulting ion and E is the amplitude of the external �eld. l and m

are the orbital and magnetic quantum number respectively. The factor
(

3E
πE0

)1/2

appears from averaging over a period of the external �eld and (2E0/E )2n∗−|m|−1

is a factor which takes the Coulomb interaction into account. The expression
for the dimensionless constant |Cnl|2 is known only for the hydrogen atom, but
by applying the asymptotic Stirling formula, it can for an arbitrary atom be
written as:

|Cn∗l∗ |2 =
1

2πn∗

(
4e2

n∗2 − l∗2

)n∗ (
n∗ − l∗

n∗ + l∗

)l∗+1/2

(2.22)

n∗ = n− δl and l∗ = l− δl represent the e�ective quantum numbers, which take
the quantum defect δl = n− (2E)−1/2 into consideration [34]. If the expression
for |Cn∗l∗ |2 is inserted into the expression for the ionisation rate, equation (2.21),
it can be seen that the maximum rate is obtained for |m| = 0.



Chapter 3

Numerical simulation

3.1 Problem to solve
To theoretically study light propagation in a �lament, the following propagation
equation has to be solved, including both dispersive and nonlinear e�ects:

∂U

∂z
= −i

sgn (β2)
2LD

∂2U

∂τ2
+

sgn (β3)
6L

′
D

∂3U

∂τ3
+

+ i
1

LNL

[
|U |2 U + is

∂

∂τ

(
|U |2 U

)]
− i

n0ne (t) e2

2k0c2meε0
(3.1)

The equation is valid for the slowly varying amplitude U of the pulse. The �rst
two terms are due to dispersion (GVD and TOD respectively), the third term
is nonlinear (SPM and self-steepening), while the fourth term introduces the
e�ect of the plasma [37]. As stated earlier, k0 = 2π

λ represents the propagation
constant in vacuum and n0 represents the linear refractive index of the medium.
The de�nition of β2 and β3 is found in section 2.2. LD, L

′
D and LNL are length

scales, governing the relative importance of the dispersive and nonlinear e�ects,
de�ned according to:

LD =
T 2

0

|β2| (3.2)

L
′
D =

T 3
0

|β3| (3.3)

LNL =
1

γP0
(3.4)

T0 denotes the pulse duration (1/e2) and γ = n2ω0
cAeff

is a nonlinear parameter,
where n2 and Aeff represent the nonlinear refractive index of the medium and
the e�ective area of the beam respectively. Finally, P0 denotes the peak power
of the pulse. The parameter s governs the e�ect of self-steepening [39][40]

s =
1

ω0T0
(3.5)

For a derivation of the part of the equation valid for a neutral medium, see
appendix A.
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Since equation (3.1) is rather complicated to solve, a numerical approach in
most cases is of necessity. There are a number of di�erent methods to numeri-
cally simulate how the pulse is a�ected as it propagates through di�erent media
and can be divided into two broad categories known as:

1. Finite-di�erence methods

2. Pseudospectral methods
In general, pseudospectral methods are faster by up to an order of magnitude,
still achieving the same accuracy [41]. The pseudospectral method most com-
monly used for solving propagation problems in nonlinear dispersive media is
the split-step Fourier method [42][43], which has been used in this Thesis. In
the following section, the basic aspects of the method will be covered.

3.2 Split-step Fourier method
The split-step Fourier method used in this Thesis, can be rewritten in the rather
simple form

∂U

∂z
=

(
D̂ + N̂

)
U (3.6)

D̂ is a di�erential operator, taking dispersive e�ects in a linear medium into
account, while N̂ includes the nonlinear contributions:

D̂ = −i
sgn (β2)

2LD

∂2

∂τ2
+

sgn (β3)
6L

′
D

∂3

∂τ3
(3.7)

N̂ = i
1

LNL

[
|U |2 + is

1
U

∂

∂τ

(
|U |2 U

)]
− i

n0ne (t) e2

2k0c2meε0
(3.8)

In reality, dispersive and nonlinear e�ects act simultaneously as the pulse prop-
agates. However, if the propagated distance can be divided into a number of
su�ciently small steps h, then the e�ects can be considered to act independently.
This is the basic principle of the split-step Fourier method. The propagation
from z to z + h is consequently carried out in two steps. First the nonlinear
e�ects act alone and D̂ = 0 in equation (3.6), then dispersion is considered and
N̂ = 0. Mathematically, this is described by:

U (z + h, t) ≈ exp
(
hD̂

)
exp

(
hN̂

)
U (z, t) (3.9)

To obtain an expression for exp
(
hD̂

)
, the Fourier domain is used

exp
(
hD̂

)
U (z, t) = F−1

T

{
exp

[
hD̂ (iω)

]
FT U (z, t)

}
(3.10)

where FT and F−1
T denote the Fourier transform and the inverse Fourier trans-

form respectively. The expression for D̂ (iω) is obtained by replacing the oper-
ator ∂

∂τ in equation (3.7) by iω, i.e.

D̂ (iω) = i
sgn (β2)ω2

2LD
− i

sgn (β3)ω3

6L
′
D

(3.11)
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The split-step Fourier method is accurate to the second order in the step size h,
i.e. the smaller the steps, the higher the accuracy [44]. The propagation code
written in this Thesis is a continuation of a simulation software written by Dr.
Johan Mauritsson, see further [45].

3.2.1 Limitations
No numerical simulation exactly re�ects a real physical situation, but uses some
approximations. In this Thesis, the following approximations have been used:

• The slowly varying �eld approximation is used, restricting the simulations
to pulses longer than ∼ 10 fs for the visible and near infrared region [46].

• The simulations only consider one dimension and do not include any spa-
tial e�ects, like self-focusing and di�raction. In addition, only the average
pulse intensity is used, ignoring any spatial variations.

• The ionisation rate is considered to be constant in the �lament and deter-
mined by the input intensity.

• Losses due to absorption have been neglected.

3.3 Simulation overview
The simulation program is written for pulses from the kHz laser system at the
Lund High-Power Laser Facility. The speci�cations, together with a thorough
description of the system, are found in section 4.2. To give an overview of
how the program runs and to facilitate the interpretation of the results, the
simulations can be divided into the following steps, all depicted in �gure 3.1:

Input data

Entrance window Exit window

Gas cell

Pulse propagation:

1. Entrance window

2. Filament/neutral gas

3. Exit window

Output data - 

Temporal 

and spectral

characterisation

Figure 3.1: Simulation overview.

At �rst, the main program is provided with all the necessary input data
to run a simulation, e.g. the input energy and pulse duration, the data for
the di�erent optical components and the pressure in the gas cell. The position
and size of the geometrical focus in the gas cell are then calculated. The same
setup as in the experimental part has been used, see further section 4.1. After
that, the pulse starts to propagate; through the entrance window, self-focuses
in the gas and then passes through a �lament of variable length. Finally, the
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pulse is propagated through the exit window and the e�ects from the di�erent
contributions are plotted.

3.4 Results and discussion
The main purpose of the simulations was to try to understand the physics in-
volved in �lamentation (i.e. which e�ect does what to the pulse) and also
investigate how well the process can be described by only considering one di-
mension. To try to mimic a real �lament, the spot size has been varied along
the propagation. In each simulation, the following is plotted:

1. The temporal and spectral pro�les of the pulse, before and after propaga-
tion through a certain part of the setup.

2. The frequency variation across the output pulse.

3. The spectral phase of the output pulse.

The input pulse duration, pulse energy and Ar-pressure are 32 fs, 0.8 mJ and 870
mbar respectively. The light is linearly polarised. This corresponds to typical
experimental input parameters.

3.4.1 Self-shaping
Pulse propagation and evolution in a �lamentation-setup is governed by a bal-
ance between positive and negative dispersion, together with the simultaneous
action of nonlinear e�ects. If the di�erent contributions are exactly balanced,
the pulse will be compressed in time and there is no need for chirped mirrors.
This has recently been experimentally accomplished by Hauri et al. [47]. The
pulse �rst passes through the entrance window of the gas cell, which is made of
sapphire and 0.3 mm thick and then self-focuses in the gas. The result is seen
in �gure 3.2. The combined action of SPM (from the window and the neutral
atoms in the gas) and GVD (mainly from the window) produce a temporally
and spectrally broadened pulse with a linear, positive chirp over the central
parts. The pulse is also a�ected by self-steepening, tilting the pulse towards the
trailing edge. Eventually the intensity gets high enough to ionise the gas and
a plasma is created. Inside the �lament, the evolution of the pulse is governed
by a dynamical interplay between SPM and plasma e�ects, together with self-
steepening. In the early parts of the �lament SPM dominates, due to a high
number of neutral atoms. Later on, more atoms are ionised, the free electron
density increases and the plasma e�ects become more prominent. Since the
two contributions counteract, reducing and �attening the spectral phase, the
rough shape of the spectrum is determined by the entrance window and the
self-focusing stage. The plasma channel only provides a minor blue-shift to the
prior spectrum.

In addition to the above mentioned nonlinear e�ects, the plasma also adds
anomalous dispersion to the pulse. This is due to the fact that an increasing
density of free electrons decreases the refractive index of the medium. Hence
a negative chirp is produced, counteracting the chirp caused by the entrance
window and the self-focusing stage, compressing the pulse temporally. Since
the amount of dispersion induced is rather high, the temporal pro�le of the
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Figure 3.2: Temporal and spectral pro�les of the pulse before (blue) and after
(red) the entrance window and the self-focusing stage.

pulse will be a�ected by a comparable amount of GVD and TOD over a longer
distance. The result is an oscillating structure near the trailing edge, where the
minima do not reach zero. The impact of the �lament can be seen in �gure 3.3.
Here the propagated distance is about 12 cm. To get an optimal e�ect out of the
�lament, the contributions from SPM and the plasma must be comparable. SPM
alone lacks the necessary negative dispersion, while the plasma itself can not
acquire enough spectral broadening (only to the blue, while SPM generates both
a red- and a blue-shift). The balance between SPM and plasma contribution
is governed by a number of di�erent parameters. The most important being
the properties of the cell windows, the input intensity and of course also the
pressure of the gas, determining the atomic density.

The pulse �nally passes through the exit window of the gas cell. Since the
spot size is rather large at this point, due to di�raction caused by the plasma
at the end of the �lament, the nonlinear e�ects can be neglected. However, the
pulse will be a�ected by normal dispersion. Since the amount of GVD decreases
(opposite sign to the GVD introduced in the �lament), the oscillations at the
trailing edge reduce. The pulse is also stretched a bit. The �nal output pulse
is seen in �gure 3.4. Since the chirp induced by the exit window is positive, it
is important to generate a slightly negative chirp in the �lament, in order to
achieve a chirp-free output pulse. As comparison is also inserted the transform
limited output pulse, see �gure 3.5. It is clear that the self-shaped pulse is very
close to the fundamental limit.
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Figure 3.3: Temporal and spectral pro�les of the pulse before (blue) and after
(red) propagation in a 12 cm long �lament.
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Figure 3.4: Temporal and spectral pro�les of the pulse before (blue) and after
(red) the exit window of the gas cell.
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Figure 3.5: Transform limited output pulse.
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3.4.2 Spatio-temporal coupling
Although the simulations of this Thesis do not include any spatial e�ects, they
can explain rather well what actually takes place in a �lament in a real physical
situation. It is thus the conclusions from the simulations that pulse self-shaping
only is a result of di�erent temporal e�ects. The resulting chirp of the pulse is
the result of a balance between di�erent contributions, which for a speci�c set
of input parameters is governed by the intensity. The spatio-temporal coupling
exists in the sense that the spatial variation determines the amount of temporal
reshaping of the pulse. Just as the interplay between the optical Kerr-e�ect and
the plasma di�raction determines the spatial evolution of the light, the temporal
counterpart SPM together with nonlinear plasma e�ects and dispersion shape
the pulse temporally. To achieve a self-shaped, unchirped pulse for a speci�c
setup with a certain input energy and gas pressure, the light must be focused in
such a way that the number of focusing/defocusing stages add exactly the right
amount of the di�erent e�ects. It is also of importance that the input pulse is
short enough, to induce enough dispersion in the plasma.

Filamentation is a process with a rather complex parameter-dependence.
Changing the input parameters and amount of focusing, a new physical situa-
tion arises, resulting in a di�erent spatial variation in the �lament, not easy to
predict. Therefore, the simulations of this Thesis should only be used as an ex-
planation of a speci�c physical situation and not as a prediction of the outcome
of a certain experiment. For that purpose, a full three-dimensional code should
be used.

No matter the spatial variation inside the �lament, self-shaping will always
be present. However not necessarily with the right amount to achieve a near
transform limited output pulse. If the correct spatial variation, i.e. one that
induces exactly the right amount of SPM, nonlinear plasma e�ects and disper-
sion to the pulse, can not be achieved, the output pulse will have a chirp that
has to be corrected for. If the chirp is negative, the pulse can be made to pass
through a normal dispersive material (inducing a positive chirp), for example a
piece of glass. If, on the other hand, the resulting chirp is positive, the light is
made to impinge on a number of chirped mirrors, reducing the positive chirp.
Chirped mirrors are further described in section 4.3.1. In the experimental part
of this Thesis, a combination of the two solutions was used in order to achieve
an exact balance between positive and negative chirp.



Chapter 4

Experiment

4.1 Setup

From compressor Variable aperture

Telescope

Focusing mirror

Gas cell

DCM = Double-chirped mirrors

Collimating mirror

DCM

DCM
DCM

DCM
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DCM
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(SPIDER) 

Wedge
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Variable aperture

Figure 4.1: Schematic overview of the setup used in this Thesis.
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4.2 The laser system
The experimental work of this Master Thesis has been performed at the Lund
High-Power Laser Facility, with a 1 kHz-repetition rate, Ti:sapphire CPA-based
laser system. The speci�cations of the system are:

Table 5.1 The speci�cations of the kHz laser
Oscillator output 5 nJ@76 MHz
Beam diameter

(
1/e2

)
8 mm (variable)

Pulse duration 35 fs
Pulse energy 2.5 mJ@1 kHz
Spectral bandwidth ∼35 nm

The system consists of the following parts:

1. The oscillator
This device is based on Kerr-lens mode-locking in a Ti:sapphire crystal.
In the oscillator, the dispersion is controlled with a set of prisms. To
be able to precisely tune the temporal characteristics of the laser pulses,
an acousto-optical programmable dispersive light modulator (AOPDF) is
used, also known as a Dazzler [48]-[50]. This device shapes the pulses
both spectrally and temporally before the ampli�cation process starts.
The reason in doing so is to try to counteract processes in the following
chain of components, that will a�ect the �nal temporal output pro�le in a
negative way. The output from the oscillator is �rst temporally stretched,
using a grating-based device that introduces a positive chirp in the pulse,
and is then sent into the �rst ampli�cation step; the regenerative ampli�er,
also referred to as the regen. To couple the pulses from the oscillator into
the regen, a Pockels cell is used that changes the polarisation of a few
pulses, hereby making it possible for them to leave the oscillator.

2. The regenerative ampli�er (regen)
The regenerative ampli�er is nothing but a common oscillator, with a
Ti:sapphire crystal as the active medium. The pumping is provided by
a Nd:YLF laser, at a repetition rate of 1 kHz. On its own the regen
would produce pulses of only ns duration, but since it is seeded with the
output from the oscillator before self-lasing starts, it will instead act as
an e�ective ampli�er. The pulses are left to bounce back and forth in the
cavity, thus extracting all the available energy from the active medium.
The polarisation is then changed once more by a second Pockels cell and
the pulses are coupled out. Compared to the oscillator output, the pulses
are ampli�ed but still stretched in time, enabling further ampli�cation.

3. Further ampli�cation
To achieve further ampli�cation, the pulses are now made to pass through
two more ampli�cation steps (two- and multipass respectively), each with
a Ti:sapphire crystal. Just as the regen, these ampli�cation steps are
pumped by a Nd:YLF laser at the repetition rate of 1 kHz.

4. The compressor
The pulses have now been ampli�ed to the maximum extent of the system
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and should therefore be temporally recompressed before usage. This is
accomplished with a compressor, consisting of two parallel gratings. By
varying the angle of the gratings and their relative distance, compensation
for the dispersion introduced by the stretcher and the ampli�cation process
in general is provided.

The pulses leaving the compressor should be of the same duration as before en-
tering the ampli�cation section. The only di�erence being an increased amount
of energy. However, to be able to re-create the same pulse duration as before,
the spectral bandwidth of the pulses must be preserved during the di�erent am-
pli�cation stages. One factor counteracting this requirement is gain narrowing
in the ampli�cation process; arising since the central frequencies of the spectrum
(containing most of the pulse energy) extract the most gain from the medium.
This results in a narrowing of the spectrum. By reducing the power density in
the central part of the pulse, before or during the ampli�cation, more energy
will be left to amplify the wings, resulting in ampli�ed pulses with a broader
spectrum than before. In the kHz laser, the AOPDF is used to reduce the gain
narrowing [51].

4.3 Optics
In this section, the di�erent optical components used in the setup will be de-
scribed, as well as their function.

1. Apertures
Two apertures of variable size are placed before and after the gas cell.
The �rst aperture enables variation of the input energy, while the second
makes it possible to vary the transverse extent of the �lament used for
compression.

2. Telescope
This device consists of two silver coated mirrors, the �rst being concave
and the second convex, with a radius of curvature of 1 m and 0.50 m re-
spectively. By varying the separation between the two mirrors, the radius
of the beam at the focusing mirror changes, hence a�ecting the size of the
focus in the gas cell. In this way, a smooth variation of the input intensity
is possible.

3. Focusing mirror
Consists of a silver coated, concave mirror with a radius of curvature of 2.0
m. The mirror focuses the laser light in the gas, initiating �lamentation.
Depending on the mirror separation in the telescope, the location and size
of the focus varies.

4. Chirped mirrors
The setup includes six double-chirped mirrors, each inducing a negative
dispersion of approximately -50 fs2 in the re�ected pulse.

5. Collimating mirror
A silver coated, concave mirror collimates the re�ected light from the
chirped mirrors.
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6. Wedges
One wedge re�ects the collimated light into the detector, see section 4.4.
Two other wedges are used to induce a variable amount of positive disper-
sion in the setup, enabling an exact balance of the contribution from the
chirped mirrors.

7. Totally re�ecting mirrors
In the setup a number of totally re�ecting mirrors are also used, only
changing the direction of the beam.

4.3.1 Chirped mirrors
Chirped mirrors consist of multiple dielectric layers of varying thickness. Ac-
cording to the Bragg equation

mλ = 2d sin θ (4.1)

di�erent frequencies will be re�ected at di�erent depths, introducing a group-
delay dispersion (GDD), d2ϕ(ω)

dω2 , in the pulse. In equation (4.1), d denotes the
separation of the di�erent layers and θ the angle of incidence [52]. If the chirp
of a pulse is known, a re�ecting layer structure can be created in a way that
makes the di�erent frequency components exit at the same time, i.e. a chirp-
free pulse can be created. However, only a linear frequency modulation can be
compensated for in this way.

To obtain high re�ectivity and low absorption, layer pairs with alternating
high and low refractive indices are used, for instance TiO2 (n ≈ 2.4) and SiO2 (n
≈ 1.45). Depending on the layer structure, a number of di�erent types of chirped
mirrors exist. By using quarter-wave layer pairs of increasing thickness, the
Bragg wavelength increases linearly in the structure, re�ecting high frequencies
at the surface and lower frequencies at larger depths. The chirped mirror hence
induces a negative GDD in the pulse. This type of mirror is commonly referred
to as simple-chirped [53].

Since the induced group-delay neither varies linearly nor smoothly with
wavelength, the induced dispersion properties of simple-chirped mirrors are in-
adequate for generation of ultrashort laser pulses [54]. A mirror that however
can provide ultrashort pulses is the double-chirped mirror (DCM). The main
di�erence between simple- and double-chirped mirrors is the addition of an
anti-re�ection coating in the latter, as well as an impedance-matching layer at
the front of the mirror. The anti-re�ection coating matches the mirror to the
surrounding air and works over a broadband region [53][55].
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Figure 4.2: Schematic picture of the general layer structure of chirped mirrors
[56].
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4.4 Spectral phase interferometry for direct electric-
�eld reconstruction

To be able to measure an optical light pulse correctly, the response time of the
detector has to be comparable to the pulse duration. This causes problems for
ultrashort pulses, since the response times of the detectors available today are
many orders of magnitude too long. Therefore, alternative methods have to be
used. One method is SPIDER, an acronym for spectral phase interferometry
for direct electric-�eld reconstruction, which has been used to characterise the
electric �eld of the compressed pulses in this Thesis [57].

In spectral interferometry in general, the spectral phase is reconstructed by
calculating the phase di�erence, ∆ϕ (ω), between two pulses that are made to
propagate di�erent optical paths in the two arms of an interferometer. The
interferometer is based upon amplitude-division, which means that the initial
pulse is divided into two parts by some kind of beam splitter. Depending on
the value of ∆ϕ (ω), the electric �elds of the two pulses will either interfere
constructively or destructively at recombination. The resulting interferogram is
resolved by a spectrometer and can be written as:

I (ω) = |E0 (ω) + E (ω) exp (iωτ)|2 =

= |E0 (ω)|2 + |E (ω)|2 + [E∗
0 (ω)E (ω)× exp (iωτ) + c.c.] (4.2)

where E0 (ω) and E (ω) denote the Fourier transform of the two replicas and τ
represents their relative time delay (controlled by the di�erence in optical path
length in the interferometer). By retrieving ∆ϕ (ω) = arg [E (ω)]− arg [E0 (ω)]
from the interferogram, the spectral phase of the pulse can be reconstructed
and hence the temporal duration determined, see further [58].

The SPIDER reconstruction of the spectral phase includes some additional
aspects compared to the general method of spectral interferometry. Here the
two replicas have a relative temporal delay τ , as well as a spectral shear Ω. The
spectral shear is obtained by upconverting the two replicas with di�erent parts
of a chirped pulse in a nonlinear crystal. Since both τ and Ω are �xed, the
interferogram is described by:

D (ω) = |E (ω − Ω)|2 + |E (ω)|2 +
+ 2 |E (ω − Ω) E (ω)| cos [ϕ (ω − Ω)− ϕ (ω)− τω] (4.3)

with a nominal fringe spacing of 2π
τ . The phase di�erence, ϕ (ω − Ω) − ϕ (ω),

between two frequency components in the input pulse causes a perturbation of
the fringes, which is used to reconstruct the spectral phase.

The interferogram can be written as a sum of three di�erent parts, where two
of them contain information about the spectral phase. By Fourier transforming
the interferogram into the time domain, the di�erent contributions will be sep-
arated if the temporal delay between the two replicas is large enough. The term
of interest is then chosen by multiplying the Fourier transformed interferogram
with a �lter function. As a last step an inverse Fourier transform back to the
frequency domain is performed. For this purpose, an algorithm developed by
Takeda et al. is often used [59]. The argument of the chosen interferogram can
be expressed as:

ϕ (ω)− ϕ (ω − Ω) + τω (4.4)
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To be able to remove the linear phase term τω from equation (4.4), information
about this quantity is required. This is provided by recording a reference inter-
ferogram for the two relatively temporally delayed pulses, without any spectral
shear imparted. Since the interfering pulses now are identical, the only con-
tributing phase di�erence is due to the temporal delay, τω.

When the linear phase term has been removed, the spectral phase can be
reconstructed from the phase di�erence. The following expression is used:

θ (ω) ≡ ϕ (ω)− ϕ (ω − Ω) (4.5)

To reconstruct ϕ (ω) from θ (ω) concatenation is used, which returns a sampled
spectral phase at intervals of Ω across the spectrum. Since the phase is created
out of relative phase di�erences, the spectral phase at some arbitrary frequency
is set to zero, for instance ω0, so that ϕ (ω0 − Ω) = −θ (ω0). According to the
Whittaker-Shannon sampling theorem [60], it is then enough just to add up
these phase di�erences to reconstruct the spectral phase. If the spectral shear
can be considered as small relative to the structure of the spectral phase, the
phase di�erence is approximately described by the �rst derivative of the spectral
phase, i.e.

θ (ω) ≡ ϕ (ω)− ϕ (ω − Ω) ≈ Ω
dϕ (ω)

dω
(4.6)

From this expression, the spectral phase can �nally be constructed by integration
[57]

ϕ (ω) ≈ 1
Ω

∫
θ (ω) dω (4.7)

The SPIDER setup used in this Thesis is schematically depicted in �gure 4.3.
In order to measure the pulses correctly, the full bandwidth must be maintained
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pu
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To be chirped

Figure 4.3: Schematic picture of the SPIDER setup in Lund [61].

throughout the setup. The optical components that can limit the bandwidth are
the mirrors, the nonlinear crystal and the beam splitters. If silver mirrors and
a thin type II BBO crystal are used, a very broad bandwidth will be re�ected
and upconverted. Concerning the beam splitters, they must be very thin in
order not to stretch the short pulse replicas. By using two thin windows, a
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broadband re�ectivity is guaranteed, producing two pulses with little energy and
one pulse with more energy. Using this design, the incoming pulse enters the �rst
beam splitter, where only 4% is re�ected and is led to one of the interferometer
arms with an adjustable delay stage. The remaining 96% is transmitted and
enters the other arm. The two relatively temporally delayed replicas then reach
the second beam splitter, where the 4%-pulse is transmitted, since this side of
the beam splitter is anti-re�ection coated. Of the 96%-pulse, 4% is re�ected
and 92% is transmitted to a piece of glass, where it gets stretched and thus
chirped. To make sure that the two 4%-replicas become spectrally sheared,
the stretched pulse must be centred on them. The 92%-pulse therefore enters
another adjustable delay stage and �nally recombines with the two replicas in
a frequency doubling BBO crystal. If the two replicas and the stretched pulse
spatially overlap, a SPIDER interferogram can be generated [62].
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4.5 Results and discussion
Since �lamentation is a process with a complex parameter-dependence, it was
of interest to study this experimentally. The information gained was then used
to try to optimise the technique. Three di�erent measurement series were per-
formed and the outcome can be found in the sections below. In section 4.5.1, the
in�uence of the gas pressure in the cell is studied. In section 4.5.2, the diameter
of the aperture prior to the gas cell is varied, thereby varying the input energy
as well as the size of the geometrical focus. Finally in section 4.5.3, di�erent
mirror separations in the telescope are used, changing the size of the geometrical
focus. In all the measurements, the temporal and spectral characterisations of
the output pulses were performed with the SPIDER.

4.5.1 Pressure
To �gure out which e�ect a varying pressure had on the output pulse, a number
of di�erent pressures between 600 and 1200 mbar were used. The input energy
was 1.4 mJ (from the compressor) and the variable aperture before the gas
cell had a diameter of about 10 mm, to spatially �lter the beam sent into the
gas cell. The result is seen in �gure 4.4. The input intensity used should be
about 6 · 1013 W/cm2, according to calculations. As is seen in the �gure, the
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Figure 4.4: Output pulse duration (blue) as a function of the pressure in the
gas cell. Shown are also the transform limited pulses (red). The input energy
is 1.4 mJ and the diameter of the aperture before the gas cell is 10 mm.

transform limited pulses show a clear trend: the higher the pressure, the shorter
the pulses. This has to do with the fact that a higher pressure provides a higher
number of atoms and hence a larger spectral broadening, see �gure 4.5. This
trend is however only true up to a certain pressure, beyond which the spatial
beam pro�le is destroyed. This occurs in the region above 900 mbar. The
compressed pulses also seem to follow this trend, however not as clear as the
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Figure 4.5: Output spectrum as a function of the pressure in the gas cell.

transform limited counterpart. This probably has to do with the fact that a
certain input intensity only can ionise a certain number of atoms, in that sense
controlling the balance between SPM and plasma e�ects. If the pressure is too
high, the contributions from the di�erent e�ects will be unfavourable from a
pulse self-shaping point of view and beyond external correction by the chirped
mirrors.

Since maximising the output energy also was of interest in this Thesis, this
parameter was measured for each pressure. The region of interest is marked
in �gure 4.6. The output energy is thus rather constant over almost the entire
pressure region. The reason for this is probably that the input intensity is
constant, determining the balance between SPM and plasma e�ects, a�ecting
the light guiding properties inside the �lament.
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Figure 4.6: Energy throughput for di�erent pressures in the gas cell.
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4.5.2 Aperture
For further optimisation a constant pressure was used, while the diameter of
the aperture prior to the cell was varied. In this way both the input energy as
well as the size of the focus were a�ected, i.e. the input intensity was changed.
The result can be seen in �gure 4.7, together with the energy throughput. A
pressure of 959 mbar was used. Compared to the pressure measurements, it is
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Figure 4.7: Output pulse duration (blue) as a function of the size of the aperture
before the gas cell. Shown are also the transform limited pulses (red). The
region with optimum energy throughput is marked. The pressure in the cell is
959 mbar.

hard to draw any real conclusions here. Each aperture results in a di�erent input
intensity, creating a new spatial variation. In other words, another physical
situation arises [63]. However, it seems like there exists a minimum, supporting
the theory that the shortest pulse is obtained when an exact balance between
SPM and plasma e�ects is met. In the present case corresponding to an aperture
of 8.0 mm diameter.
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4.5.3 Telescope
As a �nal test, a few di�erent mirror separations in the telescope were used.
By varying the mirror separation, the radius of the beam is changed as well as
the position and size of the focal spot. Even the smallest change has a large
e�ect and in order not to risk damaging any optical components by moving the
focus too much, the number of measurement points were reduced. The result is
clear and can be seen in �gure 4.8. One mirror separation of 27.5 cm results in
the required balance of SPM and plasma contributions to produce the shortest
pulse. The pressure in the cell is 977 mbar and the diameter of the aperture
is 8.0 mm. Thus the highest amount of focusing does not produce the shortest
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Figure 4.8: Output pulse duration (blue) as a function of the mirror separation
in the telescope before the gas cell. Shown are also the transform limited pulses
(red). The pressure in the gas cell is 977 mbar and the diameter of the aperture
is 8.0 mm.

pulse. The reason for this is seen in �gure 4.9. A high degree of ionisation limits
the number of neutral atoms, responsible for the broadening.
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Figure 4.9: Output spectrum as a function of the amount of focusing.
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4.5.4 Best result
After having varied the parameters in three independent measurement series,
it was found that the following set provided the best result: a pressure of 977
mbar in the cell, an aperture of 8.0 mm diameter prior to the gas cell and a
spacing of 27.5 cm between the mirrors in the telescope. The resulting temporal
and spectral pro�les of the output are found in �gures 4.10 and 4.11.
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Figure 4.10: Temporal pro�le of the output pulse (blue) for the optimised setup
of this Thesis, together with the transform limited pulse (dashed red). The
pressure in the cell is 977 mbar, the diameter of the aperture is 8.0 mm and the
mirror separation in the telescope is 27.5 cm. The duration of the transform
limited pulse is 10.3 fs.
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Figure 4.11: Output spectrum, together with the spectral phase, for the opti-
mised setup of this Thesis. The pressure in the cell is 977 mbar, the diameter
of the aperture is 8.0 mm and the mirror separation in the telescope is 27.5 cm.



Chapter 5

Conclusion and outlook

In this Master Thesis, the temporal aspects of the �lamentation pulse com-
pression technique have been studied. The work has included both theory and
experiment. Theoretically, self-shaping of the pulse has been con�rmed and ex-
plained. Also, the somewhat complex spatio-temporal coupling has been brie�y
touched upon. It is the general belief of this Thesis that it only exists in the
sense that the spatial variations determine the amount of di�erent temporal
e�ects induced in the pulse. Experimentally, the parameter dependence of �la-
mentation has been studied in trying to optimise the technique. The best result
was a pulse with a duration of 12.2 fs (10.3 fs transform limited).

The work of this Thesis has been performed in the research group of "At-
tosecond Physics & High-Order Harmonic Generation" at Lund Institute of
Technology. High-order harmonic generation in gases has stimulated a lot of
research activity due to its ability to create short pulse, coherent radiation in
the XUV and soft X-ray wavelength region. By adding several high-order har-
monics, a broad spectral bandwidth can be obtained, enabling the generation
of pulses with a duration in the attosecond region (1 as = 10−18 s). This �eld
of science is hence called attophysics [64].

Filamentation is interesting for harmonic generation research in several as-
pects. If the output energy is high, the technique can be used to generate short
pulse harmonics with a high e�ciency. This will also be interesting for the pro-
duction of single attosecond pulses, so far obtained by using 5 fs laser pulses
[65].

Another idea is to generate harmonics directly in the �lament. It has recently
been veri�ed that the third harmonic generated in air during �lamentation by
an IR femtosecond laser pulse has a conversion e�ciency as high as 0.2% [66].
Another example is the third and �fth harmonic generated in an UV-�lament
in argon, which show a conversion e�ciency of 0.02% and 0.01% respectively,
corresponding to at least two orders of magnitude higher than without �la-
mentation [67]. This has to do with the fact that �lamentation provides a light
pulse with nearly constant high intensity and �at phase front, which helps phase
matching. Recently, high-order harmonics have been e�ciently produced in a
small �lament in Lund [68].
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Appendix A

The propagation equation

The propagation of light in media is governed by Maxwell's equations

∇×E = −∂B
∂t

(A.1)

∇×H = J+
∂D
∂t

(A.2)
∇ ·D = ρf (A.3)
∇ ·B = 0 (A.4)

where E and H represent the electric and magnetic �eld vectors, D and B the
corresponding electric and magnetic �ux densities and J and ρf the current and
charge densities of the medium. The �ux densities arise as a response of the
medium interacting with the electromagnetic �eld and can be written as:

D = ε0E+P (A.5)
B = µ0H+M (A.6)

where ε0 and µ0 are the vacuum permitivity and permeability respectively. P
and M are the induced electric and magnetic polarisation in the medium. As
the medium used in this Thesis is nonmagnetic, M = 0.

A.1 Neutral medium
To describe light-matter interaction in a neutral medium, equation (A.1) has to
be rewritten according to:

∇×∇×E = ∇×
(
−∂B

∂t

)
= − ∂

∂t
(∇×B) = {M = 0} = −µ0

∂

∂t
(∇×H) =

= {J = 0} = −µ0
∂

∂t

(
∂D
∂t

)
= −µ0

∂2

∂t2
(ε0E+P) =

{
µ0ε0 =

1
c2

}
=

= − 1
c2

∂2E
∂t2

− µ0
∂2P
∂t2

(A.7)

If then the relation

∇×∇×E = ∇ (∇ ·E)−∇2E = −∇2E (A.8)
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(valid in a medium with no charge density) is used, equation (A.7) can be written
like the following, also known as the wave equation:

∇2E =
1
c2

∂2E
∂t2

+ µ0
∂2P
∂t2

(A.9)

The wave equation describes how the electric �eld and the hereby induced polar-
isation in a medium change. If the optical frequency is far from the resonances
of the medium, P and E are related according to:

P = ε0

(
χ(1)E+ χ(2)E2 + χ(3)E3 + . . .

)
(A.10)

As the nonlinear e�ect of primary importance is nonlinear refraction, it is enough
to include only the third-order nonlinear contribution, governed by χ(3). The
induced polarisation then consists of two parts

P (r, t) = PL (r, t) +PNL (r, t) (A.11)

If this is inserted into (A.9), the wave equation now looks like [69]

∇2E− 1
c2

∂2E
∂t2

= µ0

(
∂2PL

∂t2
+

∂2PNL

∂t2

)
(A.12)

Before equation (A.12) can be solved, it is necessary to make some simpli-
fying assumptions. Since PNL is small compared to PL, it can be treated as
a small perturbation. The optical �eld is also assumed to maintain its polar-
isation along the propagation direction, which means that a scalar expression
can be used. The optical �eld is �nally considered to be quasi-monochromatic,
i.e. the spectral width ∆ω is much less than the central optical frequency ω0,
or mathematically ∆ω

ω0
¿ 1. The pulses are then signi�cantly longer than one

optical cycle and it is enough to only study the slowly varying amplitude of
the envelope, instead of the swiftly varying electric �eld. In the visible region
this corresponds to pulses longer than ∼ 0.1 ps [70]. With the above mentioned
approximations, the resulting expression for the slowly varying envelope of the
electric �eld is:

∂A

∂z
+ β1

∂A

∂t
+

iβ2

2
∂2A

∂t2
+

α

2
A = iγ |A|2 A (A.13)

with the nonlinear parameter γ de�ned as

γ =
n2ω0

cAeff
(A.14)

Aeff is the e�ective area of the beam. The parameters β1 and β2 arise due to
the frequency dependence of the mode-propagation constant β, according to the
Taylor expansion

β (ω) = n (ω)
ω

c
= β0 +

(
dβ

dω

)

ω=ω0

(ω − ω0) +

+
1
2

(
d2β

dω2

)

ω=ω0

(ω − ω0)
2 + . . . (A.15)
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and are expressed as:

β1 =
dβ

dω

β2 =
d2β

dω2
(A.16)

β2 causes a dispersion of the group velocity within the pulse and hence is respon-
sible for a temporal stretching. For a more thorough description of dispersive
and nonlinear e�ects, see sections 2.2 and 2.3. Equation (A.13) is often re-
ferred to as the nonlinear Schrödinger equation (NLS) and is valid for pulses of
picosecond duration. However, for shorter pulses it has to be modi�ed [71].

For ultrashort pulses, i.e. with a duration of less than 1 ps, the spectral width
is broad enough to include some additional terms [72][73]-[82]. In general, an
e�ect due to the delayed Raman vibrational response of a medium should be
included. But since argon has a very fast response time compared to the pulse
duration, it can be neglected. Two e�ects that however can not be neglected in
this context are third-order dispersion and self-steepening, see further sections
2.2.2 and 2.3.2. If these e�ects are added to equation (A.13), together with a
frame of reference moving with the pulse at the group-velocity vg, according to

T = t− z

vg
≡ t− β1z (A.17)

the resulting propagation equation is:
∂A

∂z
+

α

2
A +

iβ2

2
∂2A

∂T 2
− β3

6
∂3A

∂T 3
= iγ

[
|A|2 A +

i

ω0

∂

∂T

(
|A|2 A

)]
(A.18)

valid for pulses as short as ∼ 10 fs [83]. Here A is normalised such that |A|2
represents the optical power [84]. If, in addition, the time scale and pulse
amplitude are normalised according to

τ =
T

T0
(A.19)

U (z, τ) =
1√
P0

A (z, τ) (A.20)

where T0 and P0 represent the input pulse duration (at 1/e2-intensity point)
and peak power respectively, equation (A.18) becomes

∂U

∂z
= −i

sgn (β2)
2LD

∂2U

∂τ2
+

sgn (β3)
6L

′
D

∂3U

∂τ3
+

+ i
1

LNL

[
|U |2 U + is

∂

∂τ

(
|U |2 U

)]
(A.21)

LD, L
′
D and LNL are length scales, governing the relative importance of the

dispersive and nonlinear e�ects, de�ned according to:

LD =
T 2

0

|β2| (A.22)

L
′
D =

T 3
0

|β3| (A.23)

LNL =
1

γP0
(A.24)
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while the parameter s governs the e�ect of self-steepening [39][40]

s =
1

ω0T0
(A.25)

A.2 Quantum mechanical description of tunnel
ionisation

A.2.1 Ionisation by a static electric �eld
The electronic motion in atoms can generally be described by the time-independent
Schrödinger equation, which for a spherically symmetric potential is written as:

{
− h̄2

2m
∇2 + V (r)

}
Ψ(r) = EΨ(r) (A.26)

Due to the spherical symmetry, the Schrödinger equation is often separated in
spherical polar coordinates, but if the central potential is the Coulomb potential

V (r) = − Ze2

(4πε0) r
(A.27)

(as is the case for hydrogenic atoms) it can also be separated in parabolic coordi-
nates. This treatment is for example useful when the atom is subject to an exter-
nal electric �eld. The parabolic coordinates (ξ, η, φ) are related to the Cartesian
coordinates (x, y, z) and the spherical polar coordinates (r, θ, φ) through:

x =
√

ξη cos φ (A.28)
y =

√
ξη sin φ (A.29)

z =
1
2

(ξ − η) (A.30)

r =
1
2

(ξ + η) (A.31)
ξ = r + z = r (1 + cos θ) (A.32)
η = r − z = r (1− cos θ) (A.33)
φ = tan−1

(y

x

)
(A.34)

with 0 ≤ ξ ≤ ∞, 0 ≤ η ≤ ∞, 0 ≤ φ ≤ 2π [85]. Expressed in parabolic
coordinates, the Schrödinger equation is:

− h̄2

2µ

{
4

ξ + η

[
∂

∂ξ

(
ξ

∂

∂ξ

)
+

∂

∂η

(
η

∂

∂η

)]
+

1
ξη

∂2

∂φ2

}
Ψ−

− 2Ze2

(4πε0) (ξ + η)
Ψ = EΨ (A.35)

where µ = memN

me+mN
is the reduced mass of the electron and the nucleus. The

electric �eld changes the potential felt by the electron according to:

V = − Ze2

(4πε0) r
+ eE z = − 2Ze2

(4πε0) (ξ + η)
+

1
2
eE (ξ − η) (A.36)
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where E represents a static electric �eld, applied along the z-direction. The
potential hence approaches −∞ at the site of the nuclues, as well as for large
negative values of z; two areas separated by a barrier. In other words, there
exists a �nite possibility that the electron, which initially is in a bound state, will
leave the atom by tunneling through this potential barrier. The phenomenon is
therefore known as tunneling ionisation.

To obtain an approximate expression for the rate of ionisation, the proba-
bility to �nd the electron under the potential barrier must be calculated. This
requires knowledge about the perturbed ground state wave function Ψp

0, pro-
vided through the time-independent Schrödinger equation, treating the external
electric �eld as a perturbation. The following derivation can be found in refer-
ence [86].

The Schrödinger equation for a hydrogenic atom in the presence of a static
electric �eld is:

− h̄2

2µ

{
4

ξ + η

[
∂

∂ξ

(
ξ

∂

∂ξ

)
+

∂

∂η

(
η

∂

∂η

)]
+

1
ξη

∂2

∂φ2

}
Ψ−

−
(

2Ze2

(4πε0) (ξ + η)
+

1
2
eE (ξ − η)

)
Ψ = EΨ (A.37)

If the variables are separated by assuming that the eigenfunctions are expressed
by

Ψ(ξ, η, φ) = f (ξ) g (η)Φ (φ) (A.38)

the following equations, in atomic units, are obtained:

1
Φ

d2Φ
dφ2

= −m2 (A.39)
[

d

dξ

(
ξ

d

dξ

)
+

(
1
2
Eξ − m2

4ξ
− 1

4
E ξ2 + v1

)]
f = 0 (A.40)

[
d

dη

(
η

d

dη

)
+

(
1
2
Eη − m2

4η
+

1
4
E η2 + v2

)]
g = 0 (A.41)

The constants v1 and v2 ful�l the condition v1 + v2 = Z, where Z represents
the atomic number. The �eld strength considered is E ¿ 1. Equation (A.39) is
easily solved, according to

Φm (φ) =
1√
2π

eimφ (A.42)

where m is the magnetic quantum number, m = 0,±1,±2, . . .. If the substitu-
tions f = ξ−1/2F , g = η−1/2G are made in equations (A.40) and (A.41), two
one-dimensional Schrödinger equations are obtained, with the energy E/4 and
the potentials V1 and V2 according to:

−1
2

d2F

dξ2
+ V1 (ξ)F =

E

4
F (A.43)

−1
2

d2G

dη2
+ V2 (η) G =

E

4
G (A.44)
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V1 (ξ) =
m2 − 1

8ξ2
− v1

2ξ
+

E ξ

8
(A.45)

V2 (η) =
m2 − 1

8η2
− v2

2η
− E η

8
(A.46)

An expression for the unperturbed ground state wave function that satis�es
equations (A.43) and (A.44) with E = −1/2, as well as equations (A.45) and
(A.46) with E = 0 and v1 = v2 = 1/2, is:

Ψ0 = π−1/2 (ξη)−1/2
F0 (ξ)G0 (η) (A.47)

with

F0 (ξ) = ξ1/2 exp (−ξ/2) (A.48)
G0 (η) = η1/2 exp (−η/2) (A.49)

This means that an expression for the perturbed ground state wave function of
the form

Ψp
0 = π−1/2 (ξη)−1/2

F (ξ) G (η) (A.50)

should be sought.
The region of interest for calculating the ionisation rate is represented by �-

nite values of x and y, while z → −∞. In parabolic coordinates, this corresponds
to small values of ξ and large values of η, according to equations (A.28)-(A.30).
For E ¿ 1, the following approximation can be made for all ξ:

F (ξ) ' F0 (ξ) (A.51)

For large values of η however, the WKB-approximation has to be employed to
obtain an approximate expression for G (η). WKB is an acronym for Wentzel,
Kramers and Brillouin, who developed this theory in 1926 [87]. The WKB-
approximation can be used when the potential energy is a slowly varying func-
tion of position, i.e. only changes slightly over the de Broglie wavelength of the
particle. This is the case for V2 (η). If the WKB-approximation is applied to
equation (A.44) for large values of η, G (η) can be approximated by:

G (η) ' A |p (η)|−1/2 exp
[
i

∫ η

η0

p
(
η
′)

dη′
]

(A.52)

p (η) =
{

2
[
E

4
− V2 (η)

]}1/2

=

=
[
−1

4
+

1
4η2

+
1
2η

+
1
4
E η

]1/2

(A.53)

because E = −1/2. p (η) is expressed in atomic units and is a positive complex
quantity in the region of interest. The value of the constant A is given by:

A = [η0|p (η0) |]1/2 exp (−η0/2) (A.54)

For a more complete derivation, see [88]. To account for large values of η, G (η)
in the limit η → +∞ must be calculated. With the expression for A inserted,
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|G (η)| looks like:

|G (η)| = η
1/2
0

∣∣∣∣
p (η0)
p (η)

∣∣∣∣
1/2

exp
[
−

∫ η

η0

∣∣∣p
(
η
′)∣∣∣ dη

′ − η0

]
(A.55)

After some approximations, see [89], the �nal expression for large values of η is

|G (η)| ' 2

E 1/2 (E η − 1)1/4
exp

(
− 1

3E

)
(A.56)

which gives the following expression for the perturbed ground state wave func-
tion:

Ψp
0 = π−1/2 (ξη)−1/2

F0 (ξ)G (η) =

=
1

π1/2

2

E 1/2η1/2 (E η − 1)1/4
exp

(
− 1

3E

)
exp (−ξ/2) (A.57)

The ionisation rate equals the number of electrons passing through a plane
perpendicular to the z-axis per unit time as z → −∞ and has the following
mathematical formulation:

Wion =
∫ 2π

0

dφ

∫ ∞

0

dρρ |Ψp
0|2 vz (A.58)

Here vz is the z-component of the electron velocity and ρ =
(
x2 + y2

)1/2 =
(ξη)1/2. For a �xed value of −z, where |z| is large, the value of η is �xed since
the signi�cant values of ξ are small. The following substitution can therefore be
made:

dρ =
1
2
ξ−1/2η1/2dξ (A.59)

Equation (A.58) then becomes

Wion = (2π)
1
2

∫ ∞

0

η |Ψp
0|2 vzdξ (A.60)

since Ψp
0 is independent of φ. For large values of |z|, the motion of the electron is

considered to be classical and a mathematical expression can be derived, using
the conservation of energy

E =
1
2
v2

z + E z (A.61)

With E = −1/2 and −z ' η/2 the expression is

vz = (E η − 1)1/2 (A.62)

If equations (A.57) and (A.62) are inserted in equation (A.60), the �nal expres-
sion for the ionisation rate becomes:

Wion (E ) =
4
E

exp
(
− 2

3E

)
(A.63)

[89].
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A.2.2 Ionisation by an alternating electric �eld
The derivation of the ionisation rate in the previous section is only valid for
a static electric �eld. However, in most real cases, the electric �eld is usually
varying in time with the frequency ω. To derive an expression for the ionisation
rate for an alternating electromagnetic �eld, some approximations are often
made. If the strength of the �eld is much smaller than the intraatomic electric
�eld, the mean time of ionisation is large in comparison with characteristic
atomic times. If, in addition, the frequency of the �eld is much less than the
tunneling frequency, ωt = Elaser√

2Ip

, the external �eld can be considered constant
during the time the electron tunnels through the barrier. The last condition is
often referred to as the adiabatic approximation and is valied for γ ¿ 1, see
equation (2.13). The calculation of the ionisation rate then reduces to simply
averaging the ionisation rate for a constant �eld over a period of the external
�eld. According to Ammosov, Delone and Kra��nov in 1986 (the ADK-theory),
the ionisation rate for a linearly polarised, alternating electromagnetic �eld can
be written in the following form (in atomic units):

Wion,linear (E , ω) =
(

3E

πE0

)1/2

× |Cn∗l∗ |2 E
(2l + 1) (l + |m|)!

2|m| (|m|)! (l − |m|)!
(

2E0

E

)2n∗−|m|−1

×

× exp
(−2E0

3E

)
(A.64)

[38]. Here E0 = (2E)3/2, n∗ = Z (2E)−1/2, E is the electron energy, Z is the
charge of the resulting ion and E is the amplitude of the external �eld. l and m

are the orbital and magnetic quantum number respectively. The factor
(

3E
πE0

)1/2

appears from averaging over a period of the external �eld and (2E0/E )2n∗−|m|−1

is a factor which takes the Coulomb interaction into account. The expression
for the dimensionless constant |Cnl|2 is known only for the hydrogen atom, but
by applying the asymptotic Stirling formula it can be written as

|Cn∗l∗ |2 =
1

2πn∗

(
4e2

n∗2 − l∗2

)n∗ (
n∗ − l∗

n∗ + l∗

)l∗+1/2

(A.65)

for an arbitrary atom. n∗ = n−δl and l∗ = l−δl represent the e�ective quantum
numbers, which take the quantum defect δl = n − (2E)−1/2 into consideration
[34]. If the expression for |Cn∗l∗ |2 is inserted into the expression for the ionisa-
tion rate, equation (A.64), it can be seen that the maximum rate is obtained
for |m| = 0.

Equation (A.64) was derived for the case of linearly polarised light. In some
situations, however, the incident �eld is elliptically polarised according to:

E (t) = E (ex cosωt± εey sin ωt) (A.66)

0 ≥ ε ≤ 1 where ε = 1 represents circular polarisation. The ionisation rate for a
circularly polarised, alternating electromagnetic �eld di�ers somewhat from the
linear case and can be written (also in atomic units) according to [90]:

Wion,circular =
(

3E

πE0

)−1/2

Wion,linear (A.67)
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Since E ¿ E, the ionisation rate is always higher than for linear polarisation.
However, the corresponding �eld strength is a factor of 1

2 smaller for the same
intensity [91].



Appendix B

The refractive index

To be able to simulate the dispersive and nonlinear e�ects a pulse experiences
from a certain medium, the refractive index has to be known. For solid materials
the Sellmeier equation has been used, according to:

n2 = 1 +
B1λ

2

λ2 − C1
+

B2λ
2

λ2 − C2
+

B3λ
2

λ2 − C3
(B.1)

where Bn and Cn are constants, characteristic for a speci�c material. In equa-
tion (B.1), λ should be expressed in µm [45]. The solid material used in this
Thesis is sapphire, with the following constants [92]:

Table B.1 Material constants for sapphire
B1 1.43134930
B2 0.650547130
B3 5.34140210
C1 0.00527992610
C2 0.0142382647
C3 325.017834

For gases on the other hand, the refractive index is expressed by:

n2 = 1 + k1

(
1 +

k2

λ2
+

k3

λ4
+

k4

λ6
+

k5

λ8
+

k6

λ10
+ . . .

)
(B.2)

Here λ is expressed in Å instead and k1 − k6 denote constants. The gas used is
argon, with the following values [93]:

Table B.1 Speci�c constants for argon
k1 5.547 · 10−4

k2 5.15 · 105

k3 4.19 · 1011

k4 4.09 · 1017

k5 4.32 · 1023

k6 −
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As already has been stated in this Thesis, for high enough intensities the non-
linear refractive index of a medium must also be considered. For sapphire and
argon this is [94][95]:

Table B.1 The nonlinear refractive index, n2 (m2/W)
Al2O3 3.2 · 10−20

Ar 0.980 · 10−23


