
PROTOTYPE TEMPERATURE CONTROL SYSTEM
FOR COMBINED

HYPERTHERMIA I PDT TREATMENT

Diploma paper
by

Niklas Hildebrand

Lund Reports on Atomic Physics, LRAP-115
Lund , September 1990

PROTOTYPE TEMPERATURE CONTROL SYSTEM FOR COMBINED

HYPERTHERMIA/PDT TREATMENT

CONTENTS

1 INTRODUCTION

1.1 The purpose of this work
1.2 Photodynamic therapy (PDT
1.3 Hyperthermia
1.4 Light penetration
1.5 Combining treatments

2 THEORY

3 EXPERIMENTAL SET UP

3.1 The cooling system
3.2 The test tube

4 CIRCUITS

4.1 The pump circuit
4.2 The port amplifiers
4.3 The heater switch
4.4 The probe box

5 TERMISTORS & CALIBRATION

6 USER'S MANUAL

7 CONCLUSION

8 REFERENCES

Appendix A DEVELOPER'S MANUAL

Appendix B PROGRAM LISTINGS

PAGE

2

5

7

8

10

11

16

16

17

24

DEV NOTE: Refers to information meant for a future developer.

1

1 INTRODUCTION

1.1 The purpose of this work

Photodynamic therapy (PDT) has over the last few years proved to be
an effective and interesting way of treating superficial malignant
tumours. When treating thick tumours, however, the PDT laser is unable
to penetrate the tissue enough to kill the deepest lying cells. In order
to reach a higher efficiency, a combined treatment using both PDT and
hyperthermia might be the answer. This work contains a description of a
computerized temperature control system that can be used in connection
with such a treatment.

1.2 Photodynamic therapy (PDT)

During photodynamic treatment the drug hematoporphyrin derivative
(HpD) is administered to the patient and distributed evenly throughout
the body by the vascular system. After 2-3 days the drug has been washed
out again apart from tumours (due to various circumstances such as, for
example, a chemical reorganization resulting from differences in pH
values and lipophilicity [6]). HpD is a photosensitizing drug, i.e. it
absorbs light of a particular wavelength (630 nm) and transfers that
energy to the oxygen in the tissue. The oxygen changes from the normal
state to a highly aggressive one that effectively destroys living
tissue. A laser is ideal for this purpose as it is capable of producing
light with high intensity within a narrow spectral range. The ~atient is
exposed for 30-40 minutes of a power density of 10 - SO mW/cm . After a
few days cell necrosis can be seen [3].

1.3 Hyperthermia

Hyperthermia is a much older form of cancer treatment than
photodynamic therapy. It has roots back in the 19:th century when it was
observed that patients with malignant melanoma and inoperable sarcoma
recovered from these tumours after periods of high fever [2]. A more
controlled use of hyperthermia began at the turn of the century.

Local hyperthermia treatment uses a heat source to raise the
temperature of the tumour to between 41 oc and 45 oc. Above a critical
limit, about 43 oc, a majority of the exposed cells are killed and the
recovery rate for cancer cells is less than for normal tissue [2]. The
duration of the treatment is 1 - 2 hours. Fig 1 below shows the general
principle of hyperthermia treatment.

There are many ways to accomplish hyperthermia but the clinically
used methods are:
*Ultrasound (frequencies 0.3- 3 MHz)
* Electromagnetic fields (radio frequencies below 300 MHz)
* Electromagnetic radiation (microwave frequencies 300 - 2450 MHz)

It is also possible to use an IR source like a Nd-YAG laser or an
ordinary lamp.

2

HEAT RADIATION

FIG 1. General principle of hyperthermia. treatment.

Before the hyperthermia treatment begins, small electronic
thermometers, called termistors, are inserted in the tumour so that the
temperatures at various depths are known at all times. By letting a
computer read the termistors and control the heat source and/or the
surface cooling, an automatic hyperthermia system can be constructed.

Cancer cells can develop thermotolerance, i.e. they can stand heat
better, if their temperature is raised considerably for a short time and
then brought back to normal again. This thermotolerance ability makes it
necessary to keep a stable temperature during the treatment [2].

1.4 Light penetration

The main mechanisms in the interaction of light with biological
tissue is reflection, scattering and absorption. Which mechanism has the
greatest influence is dependent on the wavelength of the light and on
the molecular composition of the tissue [6]. Tissue contain various
degrees of water, fat, proteins, haemoglobin and melanin depending on
its function. Fig 2 below shows the molar extinction coefficient for
different tissues and hematoporphyrin derivative at various wavelengths.

In the case of a combined treatment there is both the laser and the
heat source to consider. The laser (630 nm) has a penetration depth
(i.e. the depth where the intensity has fallen by a factor e) of
approximately 3 mm in basal cell carcinoma. 3-GHz microwaves has a
penetration depth of 1 em in muscle-like tissue and 8 em in fatty [2].

3

,Ci'-
100 200 300

ENERGY

500 700 1000

F. (eV)

2000

WAVELENGTH >. (nm)

Figure 2. Molecular extinction coefficient. [3]

1.5 Combining treatments

02 01

1

4000 100CXl

By combining hyperthermia and photodynamic therapy it is possible to
treat thicker tumours than with PDT alone. There may also be a
synergistic effect seen in the overall kill ratio. Such effects have
been observed during combined hyperthermia/ionizing radiation therapy.

When making this kind of combination it is important that both
treatments work with as much efficiency as possible and without a
disruptive influence on each other. For example, the water bolus used to
control the surface temperature should be transparent for both laser and
IR wavelengths and the termistors used to measure the temperature of the
tumour should not be affected directly by the electromagnetic radiation
[2].

4

2 THEORY

A one dimensional model , is used as a first approximation for a
theoretical deduction of the steady state temperature distribution in a
tumour. This distribution can be useful when developing the regulating
routine for the computer, since the temperature should be kept constant
during the treatment.

The temperature change in a one dimensional model, can according to
thermal conducting theory, be written as

~· (ql + ... + ~)

where x is the thermal diffusivi ty and A is the thermal conductivity.
The q-terms are heat source or sink densities. In the proposed
experiment two such densities will be present. One is the lamp which is
supposed to irradiate the tumour with an intensity Io. According to
diffusion theory [4] the light intensity in tissue follows Beer
Lambert's law, i.e.

I(x) = I *e-O"X
0

where a- is an optical attenuation coefficient. The optical penetration
depth (OPD) is defined as 1/o-, i.e. where the light intensity has
decreased by a factor of e (OPD is depending on the wavelength of the
light which means that if the heating effect of the laser in a combined
hyperthermia/PDT treatment is taken into account another source term
with a different OPD has to be added). The change in intensity at a
depth x is

ai = -o-*I *e-O"X ax 0

This means that the tissue absorbs o-*Io*e-O"X which is the
term. The second heat source (or sink) is the blQod. If
perfusion rate (1/s), c is the specific heat of the blood
p is the blood density (kg/m3) then

q = w*c*p*(T - T)
blood b

first source
w is the blood
(J/kg•c) and

where T is the blood temperature, can be considered the source term of
the blo8d [1], [5]. W*c*p is called the blood perfusion exchange factor.
The complete temperature change can now be written as

(T -Q"X
-*I(t)*e +
A .

* * w c p*(T -T)
A b

(1)

where I(t) is the intensity of the heat source. Because the treatment is
supposed to be static (1) is solved as a steady state equation. With

aT= 0
at

w*c*p =
A r

5

(1) becomes

(2)

which has the limited solution

-J.;•x ~·r -~ T(x) = T + A*e - -2--*e
b A(~ - al

where A is a constant. The boundary condition on the surface

T(O) = T
s

determines this constant.

~·r
A = T5 - Tb +A (~2~

The complete solution to (2) is

T(x) = T +
b

T - T
s b

~·r -vr*x ~·r -~
+A(~ 2~)*e - A(~2~*e (3)

DEV NOTE: A program called TERMO is supplemented, which produces a
graphic display of (3). To run it just load TERMO. EXE and
enter termo on the command line. The program starts to ask for
some parameters.Typical values for these are

Heat intensity (I)
Optical penetration depth (1/~)

Blood perfusion exchange factor (w*c*p
Thermal conductivity (A)
Blood temperature (T)

b

Surface temperature (T)
s

1-3 mW/mm2
5-8 mm
0.007 mW/mm3 oc
0.3-0.5 mW/mmoc
35-37 oc

20-30 oc

The equation is drawn for 20 different surface temperatures
the lowest being the one given as a parameter.
The x-axis is scaled from 0 to 12 mm and the y-axis from 30 to
52 oc with a special mark at 43 oc.
The program is documented in the program listings.

rEHP Fig 3. below shows an example of the curve.
·c

50

30 DEPTH
[AA]

Fig 3 Sample curve from TERMO program.

6

3 EXPERIMENTAL SET UP

TERM IS TORS

LIGHT SOURCE

3.1 THE COOLING SYSTEM

WtHER
TANK

There are two practical ways to regulate the temperature in the
tumour. One is by changing the light intensity and the other by altering
the surface temperature. The second alternative is the one implemented.

The surface temperature is locked by placing a water bolus on the
tumour. The distilled water in the bolus is circulated by a Bi=COMET 12
V DC bi~membranes pressure pump to a container where a heater is placed.
By switching the heater on the surface temperature is raised. When the
heater is off the water in the system cools off to room temperature.
DEV NOTE: A faster cooling effect can be achieved by putting some part

of the system, e.g. the container, in a cold reservoir.
Total volume of water needed in the system is 2 liters. The hoses

used have inner diameters of 10 mm and 4 mm. The smaller hose is only
used in connection with the test tube.

3.2 THE TEST TUBE

In order to test the system some sort of model for the tumour is
needed. This is provided by a small metallic test tube. The small part
with plastic windows and hose connections represents the water bolus.
The plastic is transparent for both IR and laser (630 nm) wavelengths.
DEV NOTE: It may become necessary to exchange the soft plastic windows

with hard ones to eliminate any focusing effects.
The tube itself can be filled with a phantom and termistors can be

inserted through the holes. It may be possible to simulate blood flow
by putting the tube under running water. The length of the tube is
approximately 10 times the depth of a treatable tumour and the optical
and thermal properties of the phantom should be chosen accordingly.

7

4 CIRCUITS

4.1 THE PUMP CIRCUIT

220 \lAC
MK II

---l REG!'!
VDLT

DIODE BRIDGE

TR!'!NS-
1---~ FORMER

12 VC'I.C

+

10 ITlF
GND

When the pump starts it requires a large current which many power
supplies cannot handle. Therefore it has it's own power supply as seen
above. An AC-transformer is fed by a Mkii RegaVolt voltage regulator and
connected to a diode bridge from which the 12 VDC required to drive the
pump is taken. To maintain the voltage during switch-on a 10 mF
capacitor is put parallel to the pump.

4.2 THE PORT AMPLIFIERS

55 K

1B'K

-TERM.
PROBE
-1.2K

·j

7805.

GND ·

1 K

+l. 2. v

.·

Out.
(conput.er)

-1~-------· -l.:.Z. v
1B p.F

';' I 13ND

: .; :

..

Since the termistors basically are resistors they have to be part
of a circuit in order to give information about the temperature. This
information must be in a form that can be comprehended by the computer.

8

•

~ ·. . .

The computer is a Joint PC with a AD/DA-12 analog-digital/digital
analog high-performance data conversion card operating at a twelve-bit
resolution. The input voltage range is 0-9 V (adjustable). This means
that the computer is able to read a voltage between two set values and
translate it to an integer between 0 and 4095 (212-1). This integer can
then be used directly as a parameter in the programs.

The amplifier is a 741 OP with negative feedback. The 1 K variable
resistor (Rv) determines the amplification of the voltage over the
termistor (Vterm) as

Vcomp = Vterm * (1 + 10)
Rv

where Vcomp is the voltage read by the computer.
Two large (56 K and 10 K variable resistors are connected

serially with the termistor probe to ensure that the current is
approximately 100 MA. The voltage over the termistor is

5 v
Vterm =

56.KQ + Rvar)
(1 + Rc_:te_r_m_.;_; __

where Rvar is the resistance of the variable 10 K resistor.

4.3 THE HEATER SWITCH

.. ·

+5 v B
·------t--1

(COJTIPUter)

GND
r-----------------------~

(coJTJputer)

7805

llF 10

SOLID

STATE

RELAY

GND

.·, -.

220 v ~c

+12• v

HEClTER

':·

In order to be able to switch the heater on and off from the
computer a solid state relay is used. The positive input on the relay is
connected to a transistor's emitter while the negative is connected
directly to computer ground. The strobe output on the computers printer
card is connected to the transistor's base.

9

4.4 THE PROBE BOX

.. r-
"""'

switch~, .HEATER

• SWITCH 220 VAC
CIRCUIT

TRllNSFORMER I- .
CIRCUIT

- 0 + l.2 v

PORT llMPLIFIER CIRC.
: r-- .- -

+ l.2 v
~ ~

0 v (GND) - f- • . .

' - f-

- ~

....__- -...__f-~..__

CH
CH
CH

1 :- STROBE
z'.· GND GND
3

To make hardware interfacing with the computer more simple a probe
box has been constructed. The box is fed by ordinary 220 VAC. The
termistors is plugged into the front of the box as is the heater. The
computer cable is plugged into the rear.

Inside the box is a 220 VAC/12 VDC transformer, the heater circuit,
three port amplifiers and one switch.

5 TERMISTORS & CALIBRATION

The termistors used are polyethylene-coated YSI 511 (Yellow Springs
Inc., Model 511) with an outer diameter of 0.6 mm. They are flexible and
can be inserted in the tumour through a needle. The termistors are
however not unbreakable and should be handled with care. The current
through a termistor should not exceed 200 ~A (0.2 rnA).

The calibration is based on data points stored in an array. The
computer's integer representation of the voltage over the termistor at a
given temperature is stored for every tenth of a deg C. When a value is
read from a termistor it is rounded of to the nearest stored value and
the temperature is calculated from the index in the array of that value.

The calibration is made in a water bath that cools off while being
stirred.

10

...
...

--
6 USER'S MANUAL

--
6.1 NECESSARY FILES

These are the files that must be loaded so that the
temperature control program, Hyperthermia Control, can run:

HTCTRL. EXE
HERC.BGI or EGAVGA.BGI depending on what graphic system is used.
*.CAL the files with known termistor data in them.

(this is optional since .CAL files can be created but not
fetched from the program.

6.2 STARTING HYPERTHERMIA CONTROL

Hyperthermia Control is run by the file HTCTRL. EXE. To start the
program just enter htctrl on the command line.

6.3 THE MAIN MENU

There are only three options enabled on the main menu:
* Calibration
* Treatment
* Quit

Fig 4 below shows the structure of the menu.

If
: :ypertherM i a Control 1.0

CAL I BRAT ION PATIENT DATA TREATMENT EUALUATION

Manual
AutoMatic
Monitor port .
Edit files ~EDIT~

Create
Erase
ReMove
Transfer
List r==LIST=
Plot da List ID
Dir List data

List the calibration data of a terMistor

Fig 4 Example of menu structure. 'List data' under LIST chosen.

11

QUIT II

6. 4 CALIBRATION

Before calibrating a termistor it is a good idea to prepare the file
in which the calibration data are to be stored. It is not essential since
a new file can be created during calibration. It is also a good idea to
check the signals on the termistor ports with the 'Monitor port' option.

6.4.1 MANUAL CALIBRATION

When the 'Manual' option is chosen the computer asks for the number
of the port on which the termistor is to calibrated. The number entered
should be one of the available ports on the probe box. The computer then
displays some information about the manual calibration and a menu.

The temperature of the water that the termistor is calibrated in can
be raised above the upper limit of the temperature interval by using the
heater. The heater is switched on by pressing [H], and [0] switches it
off.

When the temperature of the water has reached the upper limit of the
interval it should cool off while being stirred. If a slow thermometer
(e.g an Hg-thermometer) is used for calibration, the cooling rate
should not be to high since that would probably result in a systematic
error in the calibration data.

Whenever the thermometer shows the temperature displayed on the
screen [Space] should be pressed. This enters the port value seen as the
latest calibration point and a new temperature (0. 1 "C lower is
shown.

By pressing [I] the latest value is ignored and a new value can be
entered by pressing [Space].

To quit calibration before finished press [Esc].
WARNING! All data entered will be lost.

When the last temperature is entered all the calibration data will
be shown. Since the program makes sure that the calibration curve is not
ambiguous (i.e. no peaks or valleys on it) there could be adjacent
data points with the same value. These values can be separated by hand
after viewing the data. When asked for it enter the data point to be
changed. The old value will be shown and a new one can be entered.

After manipulation of the calibration data the program asks for the
name of the file in which the termistor is to be stored. If the file
entered does not exist it may be created or a new file may be specified.
Then the ID of the termistor should be entered. If the ID-PS of that
termistor already exists in the chosen file it may either be overwritten
or a new ID could be specified.

6.4.2 AUTOMATIC CALIBRATION

When the 'Automatic' option is chosen the computer asks for the
number of the port on which the new termistor is to calibrated. The
number entered should be one of the available ports on the probe box.
Next the port on which the known termistor is to be plugged in should be
entered. The computer then asks for the file that contains the
calibration data of the known termistor and the ID of the termistor.
Then some information about the automatic calibration and a menu are
displayed.

12

The temperature of the water that the termistor is calibrated in can
be raised above the upper limit of the temperature interval by using the
heater. The heater is switched on by pressing [H), and [0] switches it
off.

When the temperature off the water has reached the upper limit of
the interval it should cool off while being stirred. To start the
calibration press [Space]. The calibration from here on is automatic.

The number in brackets is the known termistor' s value for the
temperature displayed, the second number is the current value read on
the known termistor' s port and the third number is the current value
read on the unknown termistor's port.

To quit calibration before finished press [Esc].
WARNING!All data entered will be lost.

When the lower limit of the temperature interval is reached all the
calibration data will be shown. Since the program makes sure that the
calibration curve is not ambiguous (i.e. no peaks or valleys on it)
there could be adjacent data points with the same value. These values
can be separated by hand after viewing the data. When asked for it enter
the data point to be changed. The old value will be shown and a new one
can be entered.

After manipulation of the calibration data the program asks for the
name of the file in which the termistor is to be stored. If the file
entered does not exist it may be created or a new file may be specified.
Then the ID of the termistor should be entered. If the ID-PS of that
termistor already exists in the chosen file it may either be overwritten
or a new ID could be specified.

6.5 MONITOR PORTS

This option allows a channel on the AD/DA card to be read. It can be
used to check the signal from a termistor before calibration or
when adjusting the amplification of a new port.

6. 6 EDIT FILES

Under this heading there are several options that allow handling of
the termistor files.

Create

Creates a new termistor file. Enter the name of the file to be
created. If the file already exists it can be emptied.

Erase

Erases a termistor file. Enter the name of the file to be erased. A
warning is displayed if the file is not empty.

Remove

Removes a termistor from a file. Enter the name of the file from
which the termistor is to be removed. Then enter the ID-PS number of the
termistor.

13

Transfer

Copies a termistor from one file to another. Enter the name of the
source file and the name of the destination file. Then enter the ID-PS
number of the termistor.

List

The 'List' choice contains two options:

List ID

Lists the ID:s of the termistors in a file. Enter the name of the
file to be listed.

List data

Lists the calibration data of a termistor. Enter the name of the
file that contains the termistor. Then enter the ID-PS of the termistor.
This option also allows the calibration data to be changed.

Plot data

Plots the calibration curve of a termistor. Enter the name of the
file that contains the termistor. Then enter the ID-PS of the termistor.
The curve that is displayed can now be altered by pressing [NumLock] and
using the arrows to move the dot cursor. If [5] is pressed the dot
cursors position will be the new value in that column and the cursor
will move one step to the right. The new curve must be stored
afterwards if the changes are to remain. The program will not allow an
ambiguous curve to be stored.

Dir

Lists the names of all the *.CAL files in the current directory.

Treatment

This choice has only one option and that is

6.7 TEMP MEASUREMENT

Reads the temperature from three already calibrated termistors
ID:s : 1-1, 2-2, 3-3). Enter the name of the file that contains the

termistor data. Then enter the time interval between readings and the
duration of the measurement. If the measurement is to be saved on file,
enter the name of the file next (File extension *.HTC).

Begin measuring by pressing [Space]. The heater can be switched on
and off by pressing [H] and [0] from the program. Press [Esc] to quit
measurement. An example of the display is shown below [Fig 5].

14

HEATER ON : [Hl
HEATER OFF : [0 l
QUIT : lEscl
START MEASUREMENT

TeMp [Cl

50

45

40

35

30

[Space]

PORT
~

2
3

TEMP
38.8
36.3
2'7.3

Heater: OFF

25 -+--------------~-------------r------------~r-----~------,-------------~
TiMe [Minl

Fig 5. Temperature measurement display.

6. 8 QUIT

Quits Hyperthermia Control and returns to DOS.

15

7 CONCLUSION

Using a combined treatment of hyperthermia and PDT, thicker tumours
can be treated than with PDT alone. This is done by letting the PDT
laser kill the superficial part of the tumour while a temperature peak
of approximately 43 oc is maintained further into the tissue.

The computerized system described above is not complete, i.e. it is
not fully automatic. The addition of a control routine is necessary.
This routine should control the surface temperature with the heater and
make adjustments based on the temperature read from termistors placed at
various depths in the tumour.

It may become necessary to control the amount of irradiation also to
get a stable approach to the desired temperature during the initial
heating of the tumour. The hardware for such a control can be added to
the probe box and run from the computer.

[1]

8 REFERENCES

L. 0. Svaasand, D. R. Doiron, T.
during photoradiation therapy
Med. Phys.10(1) 1983 pages 11-17.

J. Dougherty, "Temperature rise
of malignant tumors" in

[2] P. Nilsson, "Physics and technique of microwave-induced
hyperthermia in the treatment of malignant tumours", Lund 1984.

[3] S. Andersson-Engels, "Laser-induced fluorescence for medical
diagnostics", Lund Reports on Atomic Physics LRAP-108 1989.

[4] L. 0. Svaasand, "Optical dosimetry for direct and interstitial
photoradiation therapy of malignant tumors", in Porphyrin
Localization and Treatment of Tumors, pages 91-114, 1984 Alan R.
Liss, Inc.

[5] R. Ellingsen, "Optical and thermal dosimetry during laser induced
photochemical and hyperthermal treatment of cancer", University of
Trondheim, Norway February 1984.

[6] K. Svanberg, "The interaction of laser light with tissue", Lund
University Hospital, Lund 1989.

16

Appendix A DEVELOPER'S MANUAL

The program is written in Turbo Pascal 4.0. It also uses the Turbo
Pascal Professional 5.0 Toolbox for menu making. When it reads {number}
it is a page reference to the Borland Turbo Pascal 4.0 manual.

In order to make the program lucid it is divided into a main
program and several units. Each unit handles a certain aspect of the
control system, e.g. communication with environment, calibration,
graphics, menus and file editing. This makes it easy to change both
conditions outside the computer and internal data representation without
having to rewrite the entire program.

1 THE UNITS

1.1 The Termistor File Editing Unit (TFEdit

TFEdit handles the editing of the files which contain the
calibration data. It is an essential unit since all termistors must be
calibrated separately on each port and the idea is that the data of the
termistors used in treatment is put together in one file for the program
to use. This is easily accomplished by using the procedures in this
unit.

1.1.1 Types & Constants

A termistor is represented by an identification number and
calibration data. This is done by the following type:

type termtype = record
ID : string;
data : termarray;

end;

The ID is a string of unspecified length which is created during
calibration only. It consists of the termistor' s physical ID number, a
hyphen (-) and the number of the port on which the termistor was
calibrated. When the program asks about the termistor ID then the
physical ID is enough but when it says ID-PS both physical ID and port
specification should be entered (with the hyphen !) . The data are
stored in an array of integer

type termarray = array[O .. range] of integer;

where range is a constant that defines the temperature
interval together with the constant Maxtemp. Default values:

canst Maxtemp = SO;

range = 250;

(deg C)
1

(Ito deg C)

The lower limit of the interval becomes Maxtemp-(range/10) (Default:ZS
deg C) .
WARNING! If these constants are changed previous calibrations become
useless.

17

DEV NOTE:This can be changed with a routine that keeps old data that are
in the new interval and calibrates the termistor only in the part(s)
outside the old interval. Default values of the temperature interval can
be initialized in the unit {64} and then changed as an option in the
program.

The termistors are stored in typed files

type termfile = file of termtype;

which lie in the directory determined by the constant

canst DestDir = 'C:~HTCTRL~'

1.1.2 Procedures

All the procedures implemented in this unit can be used by another
program, i.e. they are all declared in the interface.

* Readfile(var f:termfile;var filename:string;var found:boolean)
reads a filename, character by character, from the keyboard ignoring
everything after a dot (including the dot). It creates the string
variable filename by adding' .cal'. Filename is then assigned to the
termfile variable f. The automatic input/output error checking is
turned off {530} so that when Reset tries to open the file, the
boolean variable found is set to true if the operation was
successful. It means that if found is true then filename is assigned
to the existing open file variable f, if found is false filename is
assigned to the non existing f which then have to be created.

* NoFile
writes
input.
false.

an error message to the screen and waits for a keyboard
It is generally used when ReadFile has returned found as

* NoTerm
writes an error message to the screen and waits for a keyboard
input. It is generally used when SeekTerm has returned exist as
false.

* Create(var f:termfile)
creates and closes a file with the name previously assigned to f by
ReadFile.

WARNING! If the file already exists it is erased and replaced with a
new empty file.

* CreateCalFile
is a complete procedure for creating new files or clearing old ones
of data.

* EraseCalFile
is a complete procedure for erasing files. It double checks if the

file is not empty.

18

* SeekTerm(var f:termfile; termiD:string; var exist:boolean;
var place:word)

seeks a termistor in f with an ID of termiD. It returns exist as
true if the termistor was found in the file otherwise as false.
Place is the position of the termistor in the file. If exist is
false then place is in end of file.

* Removeitem(var f:termfile; place:word)
removes a termistor from the position place in the file f. It uses a
file HOLD.TRF, that it creates and erases, to hold the termistors,
which are not to be removed, temporarily.

* RemoveTerm
is a complete procedure for removing a termistor from a file.

* CopyTerm
is a complete procedure for copying a termistor from one file to
another. It double checks against overwriting of termistors.

* ListTerm
is a complete procedure for listing the termistor ID:s of a file.

* TermDir
is a complete procedure for listing all the *.CAL files in DestDir.

* GetData(var f:termfile: place:word; var T:termarray)
copies the calibration data of the termistor in position place in
the file f into the termarray variable T.

* Scroll(T:termarray)
displays the calibration data in T on the screen and allows for
scrolling.

* Manipulate(var T:termarray)
allows manipulation of the calibration data in T. Should always be
checked afterwards with CheckData.

* CheckData(T:termarray; var OK:boolean)
checks the calibration data in T. OK is returned as false if one or
more of the calibration values are smaller than it's predecessor. In
that case the calibration curve is ambiguous and should be altered

with Manipulate.

* ListData
is a complete procedure for listing the calibration data of a
termistor. It also allows the calibration data to be changed.

1.2 The Calibration Unit HTCal

HTCal handles the two possible types of calibration, manual and
automatic.

* AutoRead
is a complete procedure for monitoring a port on the AD/DA card. It is
useful when a new port is installed or to make sure that a signal is
read from a termistor before calibration.

19

* GetTemp(T:termarray;port:word;var temp:real;var inrange:boolean)
is a general procedure for reading the temperature on a port. T is
the termarray containing the calibration data and port the number of
the port to be read. Temp is the resulting temperature in deg C and
inrange tells whether the port value was inside the temperature
interval.

* StoreCal(T:termarray;portnr:char)
is the storing procedure in common for manual and automatic
calibration. It begins by displaying the calibration data (contained
in T) on the screen (Scroll) and offering the possibility to
change it (Manipulate). Then StoreCal stores the calibration data
in a file asked for in the procedure. It also asks for the
termistors ID and connects it with the port specification (portnr).

* ManuCal
is the complete procedure for manual calibration. It begins by
asking on which port the calibration will be made.

DEV NOTE: If more ports are constructed their numbers must be added to
the first case statement (Line 178).

The calibration then proceeds as follows:
Each time [Space] is pressed the port is read and its value is
stored in a termarray unless it is smaller than the last one
entered. In that case the new value becomes the same as the previous.
If [I] is pressed the latest value will be ignored and can be
reentered. This continues until the lower limit of the temperature
interval is reached. The last value cannot be ignored but it can be
changed before storage by Manipulate. During the calibration the
heater can be used to warm the water by pressing [H) and [0].
ManuCal ends by storing the calibration data with StoreCal.

* AutoCal
is the complete procedure for automatic calibration of a termistor.
It begins by asking for port numbers to be used in the calibration.

DEV NOTE: If more ports are constructed their numbers must be added to
the first case statement (Line 253).

Then it asks for the file in which the known termistor is located
and its ID. The port specification does not have to be entered at
this point since the program already have it. When everything is
ready for calibration, i.e. the ports are defined and the known
termistor data have been found, AutoCal waits for [Space] to be
pressed. The value read from the known termistor is checked to see
if the upper limit of the temperature interval has been reached. If
so then both variables v1 and v2 are assigned the value read from
the unknown termistor. AutoCal then enters a loop which continues
until the lower limit of the temperature interval is reached or
[Esc] is pressed.

The principle of the calibration is the following: When a new
temperature (0. 1 •c lower) is reached, i.e. the known termistor
reaches a new calibration point, the mean value of the two variables
v1 and v2 is taken and stored as a calibration value for the unknown
termistor's previous temperature. Then the value read from the
unknown termistor when the new temperature was reached is assigned
to v1 and v2 (the variable v3 serves as a temporary memory so that
both termistors are read as simultaneously as possible) . If the
temperature read by the known termistor should rise above the
current temperature again the variable above is set to TRUE. This
means that when the lower temperature is reached again, the value

20

read from the unknown termistor is assigned to v2. This is why it is
the mean value of v1 and v2 that is stored. The principle is shown
in a diagram below .

. . .-.

TEMP

PREVIOUS TEMP

CURRENT TEMP

· ~v2

·····························~~·········· s·························
NEXT TEMP ... ~ ~\

v3 (next vl) ~

1.3 The Communication Unit (Commo)

Commo handles the communication with the environment, e.g. the
keyboard and the probe box.

Three constants are defined in this unit:

const adport = $270;
prctrlport = $3BE;
readprec = 100;

The first constant, adport, is the address of the computers I/0 memory
area where the AD/DA card is located. The second, prctrlport, is the
address in the I/0 memory area for the strobe pin on the computers
printer card. The third, readprec, is the number of conversions to be
done by the AD/DA card.

* WaitKey
is general procedure that halts program execution until a key is
pressed on the keyboard.

* ReadPortNr(var port:word)
is a general procedure that asks for a port number between 0 and 15.

* ReadPort(portnr:integer):integer
is a general function for reading a channel on the AD/DA card.
ReadPort takes a mean value over readprec readings. A reading begin
by selecting the channel and clearing the register (offset 3) .
Then offsets 4 and 5 are looped back seven times to start the high
and low 6-bit conversions. After that the results of the conversions
are read from offsets 1 and 2 (low and high word) and added.

21

TIME

* HighOut
is a general procedure for putting the strobe pin on the printer
card high (by assigning it zero ; inverse logic on the strobe).

* LowOut
is a general procedure for putting the strobe pin on the printer
card high (by assigning it one ; inverse logic on the strobe).

DEV NOTE It may be possible to use the DA output on the AD/DA card as a
source for switching the heater on/off instead of the strobe
on the printer card.

1.4 The Menu Unit HTMenu)

HTMenu contains the source code for the main menu and its submenues.

* InitMenu(var M:Menu)
initializes the menu identified by M.

* ShowMenu(var M:Menu)
is a redefinition of ReDrawMenu so that the main program does not
have to use TPMenu. ShowMenu redraws the menu M as it was last
displayed.

* Choice:MenuKey
is a redefinition of MenuChoice so that the main program does not
have to use TPMenu. Choice returns the menu choice as an integer
value. That value is the fourth parameter in a Menuitem statement.

There are two ways to change the menu; by changing the source code
in HTMENU.PAS or by using the MAKEMENU program.
For small changes, like a new help line for an existing item, it's

easiest to alter the source code directly in the HTMENU. PAS file and
recompile.

If the menu is to be changed a lot do the following:

*Run MAKEMENU.EXE.
* Choose 'File' on the main menu.
* Choose the 'Read lib' option on the File sub menu.
* Enter latmenu as the menu library.
* Enter latmenu as the menu library ID.
* Make the changes of the menu by using the various options in MAKEMENU.
* Choose the 'Write lib' option on the File sub menu.
* Choose the 'Generate source' option on the File sub menu.
* Quit MAKEMENU.
* Use the Turbo Pascal Editor to replace the Ini tMenu procedure in

HTMENU.PAS with the InitMenu procedure in LATMENU.PAS.
* Recompile the main program with MAKE.

1.4 The Graphics Unit (HTGraph)

This unit contains procedures for graphic representation of
calibration curves. Graphic procedures for treatment and experiments can
also be placed here. A makeshift routine for temperature measurements is
also placed here.

22

* InitGraphics
is a general procedure for initializing the graphics on the current
drive. It should only be called once by the main program preferably
in the beginning.

* TermPlot
is a complete procedure for plotting the calibration curve of a
termistor. It also allows a rough manipulation of the curve.

DEV NOTE : A modified TermPlot could serve as a procedure to pick out
good points for an equation-based calibration.

* HeatCtrl
is a makeshift routine that uses the three termistors

3-3 specifically in order to measure the temperature.
recommended as a basis for further development due to
structure.

2 THE MAIN PROGRAM (HTCtrl)

1-1, 2-2 and
It is not

its lack of

The main program consists of a simple loop which polls the menu for
a choice. Depending on the choice made, a complete procedure in one of
the units is called. After each choice and when the loop is exited the
heater is turned off to be on the safe side.

23

1 ** a
2 * * a
3 * Hyperthermia Control * a
4 * Main Program * a
5 * * a
6 ** a
7
8 program HTControl;
9 aon+a

10
11 uses TPCrt,
12 HTMenu,
13 COITITIO,
14 TFEdit,
15 HTCal,
16 HTGraph;
17
18 a* MAIN PROGRAM *a
19
20 begin
21 InitMenu(M);
22 repeat
23 LowOut; a Make sure that heater is off a
24 ClrScr;
25 ShowMenu(M);
26 key:=Choice;
27 ClrScr;
28 case key of a MENU ITEM a
29 4: ; a QUIT a
30 5: ManuCal; a Manually a
31 6: AutoCal· a Automatic a
32 11: HeatCtrll· a Temp measurement
33 14: CreateCa File; a Create a
34 15: EraseCalFile; a Erase a
35 16: RemoveTerm; a Remove a
36 17: CopyTerm; a Copy a
37 24: ListTerm; a List ID a
38 23: TermDir; a Dir a
39 26: TermPlot a Plot data a
40 25: ListData a List data a
41 27: AutoRead a Monitor port a
42 end·
43 until key=4;
44 LowOut; a Make sure that heater is off a
45 end.

, •

a HTMenu a
a Commo a

I~ a HTMenu a a HTMenu a z
t:J
H

a HTCal a 1: a HTCal a a a HTGraph a a TFEdit a a TFEdit a a TFEdit a 'tJ
a TFEdit a t-1
a TFEdit a 0
a TFEdit a a HTGraph a t-1
a TFEdit a PJ
a HTCal a ;:J

t-t
a Commo a 1-' ·

tn
rt
1-'·
::J
.Q
tn

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

a *************•**************************************
* * * UN IT HTMenu *
* *

This unit contains procedures and functions *
: for displaying the main menu. : *

** a
unit HTMenu;

interface

uses
TPString,
TPCrt,
TPCmd,
TP\Iindow,
TPMenu;

var
M : Menu;
Ch : Char;
Key : MenuKey;

P.rocedure InitMenu(var M : Menu);
a Initiates the main menu a

P.rocedure ShowMenu(var M : Menu>;
a Displays the main menu as it was last seen a

function Choice:MenuKey;
a Returns the the menu choice as an integer value a

a---a
implementation

procedure InitMenu(var M : Menu);
canst

Color1
Frame1
Frame2

MenuColorArray
FrameArray = '
FrameArray = '

(nOE, n2E, n03, n78, n09, nOE, n08, n78); ..
I , . ,

begin
acustomize this call for special exit characters and custom item displaysa
M := NewMenu(AA, nil);

SubMenu(3,7,24,Horizontal,Frame1,Color1,'Hyperthermia Control 1.0');
MenuMode(False, True, False);
Menu\lidth(73);
Menultem('CALIBRATION'[4,1,1,'Calibrate new termistor'>;
SubMenu(4,9,24,Vertica ,Frame2,Color1,'');

MenuMode(False, True False);
Menultem('Manual' 1 1, i 5 'Manual input using Hg-thermometer')(
Menultem('Automatlc' .~,i 46~'Automatic input using known termlstor');
Menultem('Monitor port' .~,Y 27,'Monitor a port on the ADDA card');
Menultem('Edit files' 1 4,1,1~,'Edit termistor files,create new ones etc.');
SubMenu(16, 13(24,Vertlcal,Frame1,Color1,'EDIT');

MenuMode(Fa se, True False);
Menultem('Create', 1, ~. 14,'Create new termistor file');
Menultem('Erase ',2 1 15 'Erase a termistor file from directory')·
Menultem('Remove '.~ ~ 16 'Remove a termistor from a termistor file•);
Menultem('Transfer' ,4~i,1~,'Transfer a termistor from one file to anothe
Menultem('List' 1 5,1,2~,'List all the termistor IDs in a file');
SubMenu(25, 18(24,Vertical,Frame1,Color1,'LIST');

MenuMode(Fa se, True, False)(
Menultem('List ID', 1,6,24 'Llst the termistor ID:s in a file');
Menultem('List data' ,2,1,~5,'List the calibration data of a termistor'
PopSublevel;

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113

Menultem('Plot data' 46, 1,26,'Plot calibration data of a termistor');
Menultem('Dir' ,7, 1,2~,'L1st all *.CAL files in directory');
PopSublevel;

PopSublevel;
Menultem('PATIENT DATA'[20,1,2~'Enter ID and notes about the patient');
SubMenu(25,9,24,Vertica ,Frame~,Color1,'');

MenuMode(False True, False);
Menultem('ID', ~. 1 18,'Enter an identification number for the patient to be
Menultem('Notes' .~. 1, 19,'Enter optional information about the patient');
PopSublevel;

Menultem('TREATMENT' 1 37[1L3,'Set up and begin treatment');
SubMenu(35,9,24,Vertlca ,trame2,Color1,'');

MenuMode(False, True, False);
MenuHeight(5);
Menultem('Temp measurement' ,2, 1,11,'Start temperature measurement');
PopSublevel;

Menultem('EVALUATION' ,51, 1, 12,'Evaluation of treatment');
SubMenu(54,9,24,Vertical,Frame2,Color1,'');

MenuMode(False, True False);
Menultem('List' ,1~1 1 ~0 1 'List temperatures for all termistors during treatm
Menultem('Graph' .~, 1,21,'Draw graph showing temperatures for all termistor
PopSublevel;

Menultem('QUIT' ,65, 1,4,'Quit Hyperthermia Control');
PopSublevel;

ResetMenu(M);
end·
a End lnitMenu a

pro~edure ShowMenu(var M : Menu);
beg1n

ReDrawMenu(M);
end·
a End ShowMenu a

function Choice:MenuKey;
begin

Choice:=MenuChoice(M,Ch);
end·
a Ef1d Choice a
end.
a End HTMenu a

1
2
3
4
5
6
7
8
9

a ***********•**
*
*
*
*
*
*

UNIT Corrmo

This unit contains procedures and functions
for computer communication with the environment.

*
*
*
*
*
* ** a

10: unit commo;
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

interface

uses TPCrt;

const adport=o270;
prctrlport=o3BE;
readprec=100;

procedure YaitKey;
a Halts program execution until a key on the keyboard is pressed a

procedure ReadPortNr(var port:word);
a Reads and returns a port number from the keyboard a

function ReadPort(portnr:integer):integer;
a Reads a channel (portnr) on the ADDA card

and returns it as an integer mean value a

procedure HighOut;
a Puts strobe pin on printer output high (inverse logic) a

procedure LoWOut;
a Puts strobe pin on printer output low (inverse logic) a

a--··-·---a

implementation

procedure YaitKey;
var dumpchar : char;

begin
repeat ;
until KeyPressed;
dumpchar:=ReadKey;

end·
a End YaitKey a

pro~edure ReadPortNr(var port:word);
beg1n

repeat
writeln('Portnr must be an integer between 0 and 15.');
write('Portnr: ');

aoi-a a Turn off automatic input error checking a
readln(port);

aoi+a a Turn on automatic input error checking a
until (IOResult=O) and (port<=15) and (port>=O);

end·
a End ReadPortNr a

function ReadPort(portnr:integer):integer;
var n,k,adhigh,adlow,dummy : integer;

sum : long1nt;

begin
sum:=O;
for k:=1 to readprec do
begin

a Mean value over readprec readings a

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107

portAadportA:=portnr·
dummy:=portAadport+31;
n:=7;
repeat

dummy:=portAadport+4A;
n:=pred(n);

until n=O;
n:=7;
repeat

dummy:=portAadport+SA;
n:=pred(n);

until n=O·
adhigh:=portAadport+2A;
adhigh:=adhigh and oF;
adhigh:=adhigh shl 8·
adlow:=portAadport+11;
sum:=sum+(adhigh or adlow);

end·
readPort:=round(sum/readprec);

end·
a End ReadPort a

procedure HighOut;
begin
portAprctrlportA:=O;

end·
a End'HighOut a

procedure LowOut;
begin
portAprctrlportA:=1;

end·
a End'LowOut a

end.
a End Commo a

a Inverse logic a

a Inverse logic a

1
2
3
4
5
6
7
8
9

A ******•**
* *
*
*
*
*
*

UN IT TFEdi t

This unit contains procedures for editing
of the termistor files .

*
*
*
*
* *** a

10: unit TFEdit;
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

interface

uses TPCrt,dos,commo;

canst MaxTemp=50; a Maxtemp defines the upper limit of the termistor interval
range:250; .. a Ra~ge m~st _ be 10*(temperature in!erval jn de~ C? a
DestDlr='C:OHTCTRLO'; a Directory to store term1stor f1les 1n a

type termarray=arrayAO •. rangeA of
termtype=record

ID : string;
data : termarray;

end·
termfile=file of termtype;

integer;

procedure ReadFile(var f:termfile;var filename:string; var found:boolean);
a Assigns and open file filename 1f it exists a

procedure NoFile;
a Error message for use when file not found a

procedure NoTerm;
a Error message for use when termistor not found a

procedure Create(var f:termfile);
a Creates and closes an file a

procedure CreateCalFile;
a Complete procedure for creating a termistor file a

procedure EraseCalFile;
a Complete procedure for erasing a termistor file a

procedure SeekTerm(var f:termfile;termiD:string;var exist:boolean;
var place:word);

a Searches for termiD in file f.Returns place in file if it exists a

procedure Removeltem(var f:termfile;place:word);
a Removes termistor in place from f1le fa

procedure RemoveTerm;
a Complete procedure for removing a termistor from a file a

procedure CopyTerm;
a Complete procedure for copying a termistor from one file to another a

procedure ListTerm;
a Complete procedure for listing the termistor ID:s in a file a

procedure TermDir;
a Complete procedure for listing the .CAL files in DestDir a

procedure GetData(var f:termfilel·place:word;var T:termarray);
a Returns the termarray T from pace in file fa

procedure Scroll(T:termarray);
a Displays and scrolls the termarray T a

procedure Manipulate(var T:termarray);

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

a Enables manipulation of termistor data in T a

procedure CheckData(T:termarray;var OK:boolean)i
a Checks termistor data in T against ambiguity a

procedure ListData;
a Complete procedure for listing a termistor a

a· ···· · ························ · --- -- -- ·- · · ·····---------------------------a
implementation

procedure ReadFile(var f:termfile;var filename:string;var found:boolean);
var ignore : boolean;

chr : char·
be in '

~i lename:=' ';
re~Jeat

ignore:=false;
found:=false·
while not eoln do
begin

read(chr);
if chr='.' then

ignore:=true;
if not ignore then

filename:=ConCat(filename,chr);
end·

readln·
until filename<>''; a Must have a filename a
writeln;
filename:=ConCat(filename,' .cal')·
Assi~n(f,Concat(DestDir,fllename));
aol·a a Turn off automatic input/output error checking a
Reset(f);
aoi+a a Turn on automatic input/output error checking a
if IOResult=O then

found:=true;
end·
a End ReadFile a

pro~edure NoFile;
beg1n

writeln('File did not exist.Press any key to return to menu.');
WaitKey; a Comma a

end·
a End NoFile a

pro~edure NoTerm;
beg1n

writeln('Termistor did
writeln('Press any key
WaitKey;

not exist in that file.');
to return to menu.'); a Conmo a

end·
a E~ NoTerm a

pro~edure Create(var f:termfile);
beg1n
Rewrite(f);
Close(f);

end·
a End Create a

procedure CreateCalF
var created,found

filename: str
f : termfile;

begin

le ·
boolean;

ng;

repeat
created:=true;
writeln('Enter the name of the file.(*.CAL)');

141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:

ReadFile(ftifilename,found);
if found t en

begin
writeln('File already exists.Do you want to clear it of data? AY/*A'>;
case ReadKey of

'Y','Y' : Create(f);
else

created:=false;
end·

end '
else

Create(f);
until created;
writeln('File ',filename,' created. Press any key to return to menu.');
~aitKey; a Commo a

end·
a End CreateCalFile a
procedure EraseCalFile;
var f : termfile;

filename : string;
OK,found : boolean;

begin
writeln('Enter the name of the file to be erased.');
ReadFile(f,filename,found);
if not found then

NoFile
else

begin
OK:=true·
if FileS~ze(f)<>O then

begin
writeln('File is not empty. Are you sure you want to erase it? AY/*A'
case ReadKey of

'Y' 'Y' •.
else ' · '

OK:=false;
end·

end· '
if OK'then

begin
Close(f);
Erase(f);
writeln('File erased.Press any key to return to menu.');
~aitKey; a Commo a

end·
end· '

end; '
a End EraseCalFile a

procedure SeekTerm(var f:termfile; termiD:string; var exist:boolean;
var place:word);

var k : integer;
term : termtype;

begin
Reset(f);
exist:=false;
place:=FileSJze(f); a If element does not exist place is in end of file a
k·=1·
whil~ (k<=FileSize(f)) and (not exist) do

begin
k:=succ(k);
read(f, term);
if term.ID=term!D then

begin
exist:=true;
place:=pred(FilePos(f)); a File pointer is behind the read element a

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

end·
end· '

end· '
a End SeekTerm a

procedure Removeltem(var f:termfile;place:word);
var k,MaxPlace : word;

term : termtype;
holdf : termfile;

begin
Reset(f);
Assi~n(holdf~ConCat(DestDir,'hold.trf'));
Rewrlte(holdr);
MaxPlace:=pred(FileSize(f)); a Last element before end of file a
for k:=O to MaxPlace do

begin
read(f,term);
if k<>place then a Do not copy term on place, it is to be removed a

write(holdf,term);
end·

Rewr it:e(f);
Reset (ho l df);
while not EOF(holdf) do
begin

read(holdf,term);
write(f,term);

end·
Clos~(holdf);
Erase(holdf);

end; a End Removeltem a

procedure RemoveTerm;
var f:termfile;

filename,term!D:string;
exist,found:boolean;
place:word;

begin
writeln('Enter name of the file from which you want to remove termistor');
ReadFile(f,filename,found);
if not found then

NoFile
else

begin
writeln('Enter the ID-PS number of the termistor to be removed');
readln(term!D);
SeekTerm(f,termiD,exist,place);
if not exist then

No Term
else

begin
Removeltem(f,place);
writeln('Termistor removed. Press any key to return to menu.');
~aitKey;

end·
Close(f>;

end·
end· '
a EOd RemoveTerm a

procedure CopyTerm1· var f1 f2 : termfi e;
fi!ename1,filename2,term!D : string;
place1,place2 : word;

281:
282:
283:
284:
285:
286:
287:
288:
289:
290:
291:
292:
293:
294:
295:
296:
297:
298:
299:
300:
301:
302:
303:
304:
305:
306:
307:
308:
309:
310:
311:
312:
313:
314:
315:
316:
317:
318:
319:
320:
321:
322:
323:
324:
325:
326:
327:
328:
329:
330:
331:
332:
333:
334:
335:
336:
337:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:
348:
349:
350:

exist1,exist2,0K,found : boolean;
hold : termtype;

begin
write('From file : ')·
ReadFile(f1,filename1:found);
if not found then

NoFile
else

begin
write('To file : ')·
ReadFile(f2,filenam~2,found);
OK:=true;
if not found then

be~~?teln('File did not exist. Do you want to create it? AY/*A'>;
case ReadKey of

'Y' ,'y' : Create(f2);
else

OK:=false;
end·

end· '
if OK'then a File to write to exists a

begin
write('Termistor ID-PS :'>;
readln(term!D);
SeekTerm(f1,termiD,exist1,place1);
if not exist1 then

begin
OK:=false;
Close(f2);
No Term;

end
else

begin
SeekTerm(f21 termiD,exist2,place2);
if exist2 tnen

begin
writeln('Termistor already exists in' ,filename2);
writeln('Do you want to write over? AY/*A');
case ReadKey of

'Y' ,'y' : Removeltem(f2,place2);
else

begin
OK:=false;
Close(f2);

end;
end·

end· '
end· '

end· '
if oK'then

begin
Reset(f1)·
Seek(f1,place1);
read(f1 .._hold);
Reset(f.::>;
Seek(f2.._FlleSize(f2));
write(f.::,hold);
Close(f2);
writeln('Termistor ',term!D,' copied from ',filename1,' to ',filename2
writeln('Press any key to return to menu');
llaitKey;

end·
Close(f1);

end·
end· '
a End CopyTerm a

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

procedure ListTerm;
var f : termfile;

filename : string;
term : termtype;
found : boolean;

begin
writeln('Enter the name of the file that you want listed.');
ReadFile(f,filename,found);
if not found then

NoF ile
else

begin
writeln('Termistors in ',filename,':');writeln;
while not Eof(f) do

begin
read(f,term);
writeln(' ',term.ID>;

end·
writeln;
writeln('Press any key to return to menu.');
llaitKey;

end·
end· '
a End ListTerm a

procedure TermDir;
var free : SearchRec;

begin
ClrScr;
writeln('These are the .CAL files in' ,DestDir);writeln;
FindFirst(ConCat(DestDir,'*.cal'),anyflle,frec);
while (DosError=O) do
begin
writeln(frec.name>;
FindNext(frec);

end·
writ~ln;
writeln<'Press any key to return to menu.');
llai tKey;

end·
a End TermDir a

procedure GetData(var f:termfile;place:word;var T:termarray);
var term : termtype;

begin
Seek(f ,place);
read(f,term);
T:=term.data;

end;
a End GetData a

procedure Scroll(T:termarray);
var k,j : integer;

begin
ClrScr;
writeln('This is the calibration data.')·
writeln('Press AFA to scroll forward, AB~ to scroll backward and');
w~iteln('AEscA to quit scrolling.');
lllndow(1,4,80,25);
for k:=O to (range-20) do

begin
for j:=k to (k+20) do

wrlteln('Datapoint ',j,': ',TAjA);

421:
422:
423:
424:
425:
426:
427:
428:
429:
430:
431:
432:
433:
434:
435:
436:
437:
438:
439:
440:
441:
442:
443:
444:
445:
446:
447:
448:
449:
450:
451:
452:
453:
454:
455:
456:
457:
458:
459:
460:
461:
462:
463:
464:
465:
466:
467:
468:
469:
470:
471:
472:
473:
474:
475:
476:
477:
478:
479:
480:
481:
482:
483:
484:
485:
486:
487:
488:
489:
490:

ease ReadKey of
#a1B : k:=range-20;
'F','f' : if k=range-20 then k:=-1·
'B','b' : if k>O then k:=k-2 else ~:=range-21;

else
k:=k-1;

end·
Cl rScr;

end·
Window(1,1,80,25>;
ClrScr;

end;
a Ei1d Scroll a

procedure Manipulate(var T:termarray>;
var OK : boolean;

k : integer;
begin

repeat
OK:=true·
writeln(~Enter the number of the data point you want to change.');

aal-a a Turn off automatic input error check1ng a
repeat

writeln('Datapoint must be an integer between 0 and ',range);
wr1te('Datapo1nt: '>;
readln(k);

until (IOResult=O) and ~k<=range) and (k>=O>;
writeln('Old value: 1 ,TAkA>;
writeln('Enter the new value.');
repeat

writeln('Value must be an integer between 0 and 4095.');
write('New value: ');
readln(TAkl);

until (IOResult=O> and CTAkl<=4095) and (TAkl>=O>;
aal+a a Turn on automatic input error checking a

writeln('Do you want to change more? AY/*l');
case ReadKey of

'Y','Y' : OK:=false;
end·

until'OK;
end·
a Ena Manipulate a

procedure CheckData(T:termarray;var OK:boolean>;
var k : integer;

begin
OK:=true;
for k:=1 to range do
if TAkA < TAk-1A then

begin
writeln('Data point ',k-1,' or ',k,' wrong.');
OK:=false·

end· '
if not'oK then

writeln('Ambigious data. Change the above data points.'>;
writeln('Press any key to continue.'>;
WaitKey;

end·
a Ena CheckData a

procedure ListData;
var f : termfile;

term : termtype;
T : termarray;
filename,termiD : string;
exist,OK,found : boolean;
place : word;

491:
492:
493:
494:
495:
496:
497:
498:
499:
500:
501:
502:
503:
504:
505:
506:
507:
508:
509:
510:
511:
512:
513:
514:
515:
516:
517:
518:
519:
520:
521:
522:
523:
524:
525:
526:

begil) l ' f h f "l · h · h h · · wr1te n(Enter name o t e 1 e 1n w 1c t e term1stor exlsts.'>;
ReadFile(f,filename,found);
if not found then

NoFile
else

begin
writeln('Enter the ID-PS number of the termistor to be listed');
readln(termiD);
SeekTermCf,termiD,exist,place);
if not exist then

No Term
else a Both File And Termistor Exist a

begin
GetData(f,place,T)· a Get Termistor From File a
Removeltem(f,place); a Remove Termistor. No Doubles a
repeat
Scroll(T); a Shows Calibration Data a
writeln('Do you want to manipulate the data? AY/*l'>;
case ReadKey of

'Y' ,'y' : Manipulate(T); a Allows Change Of Data a
end;
CheckData(T,OK); a Checks If Data Are Correct a

until OK; a Data Correct a
term.ID:=termiD;
term.data:=T(
Seek(f FileSlze(f));
writeCf,term); a Write Termistor To File a

end;
Close(f);

end·
end· '
a EOd ListData a

end.
a End TFEdi t a

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

a **********••••••w*•******************************
* *
*
*
*
*
*

UNIT HTGraph

This unit contains procedures for graphic
representation of calibration curves.

*
*
*
*
* *** a

unit HTGraph;

interface
ann+ a
uses

dos,
TPCrt,
graph,
Corrrno,
TFEdi t,
HTCa l;

var GraphMode,GraphDriver,MaxX,MaxY: integer;

erocedure InitGraphics;
a Initiates graphics on current drive a

erocedure TermPlot;
a Complete procedure for plotting and changing a calibration curve a

erocedure HeatCtrl;
~ Complete procedure for plotting and storing a temp measurment a
a---a

implementation

procedure InitGraphics;
var Errorcode : integer;
begin

GraphDriver:=Detect;
InitGraph(GraphDriver,GraphMode,'OtpO');
Errorcode:=GraphResult;
if Errorcode<>grOK then
begin

writeln('Graphics error: ',Grapherrormsg(Errorcode));
writeln('Program Aborted');
WaitKey; ii Corrrno a
RestoreCRTMode;
Exit;

end·
SetfextJustify(CenterText6centerText);
SetTextStyle(DefaultFont, , 1);
MaxX:=GetMaxX;
MaxY:=GetMaxY;
RestoreCRTMode;
TextColor(white);

end·
ii End InitGraphics a

procedure TermPlot;
const step=2·
var x,y,x1,y~,k~j : integer;

ex1st,OK,OK~,drop,found,quit,plot : boolean;
f : termfile;
filename,termiD : string;
place : word;
T,Hold : termarray;
term : termtype;

begin

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

writeln('ln which file is the termistor to plot?');
write('Filename: ')·
ReadFile(f,filename:found); ii TFEdit a
if not found then

NoFile iiTFEdita
else

begin
wrjteln('Whjch termistor do you want to plot ?');
wr1te('Term1stor ID-PS : ');
readln(termiD);
SeekTerm(f,termiD,exist,place); ii TFEdit a
if not exist then

begin
writeln('Termistor ',termiD,' did not exist in' ,filename,'.');
writeln('Press any Key to return to menu.'>;
WaitKey; ii Corrrno a

end
else

GetData(f,place,T); ii TFEdit a
Close(f);
if exist then

repeat
plot:=false;
lnitGraphics;
SetGraphMode(GraphMode);
ClearViewPort;
OutText('Press Numlock and use arrows to move dot cursor and remove do
OutTextXY(O, 12,'Press A5A to enter a dot on the screen. This removes t
OutTextXY(0,25,'previous dot from the screen but does not alter the cu
OutTextXY(0,38,'unless it is stored later on.');
OutTextXY(0,51,'Press AEA to end plotting.');
for k:=1 to range do

begin
x:=2*k+50·
y:=round(~0.083*TAkA+383);
PutPixel(x,y, 1);

end·
x:=round(MaxX/2);
y:=round(MaxY/2);
OK:=false;
repeat

OK2:=true;
drop:=false;
if GetPixel(x,y)<>O then

drop:=true;
PutPixel(x,y, 1);
x1:=x;
y1:=y;
case ReadKey of

'2' : y:=y+1;
'4' : x:=x-step;
'8' : y:=y-1;
'6' : x:=x+step;
'5' : if (x mod step)=O then

begin
drop:=true;
k:=round((x-50)/2)·
TAkA:=round((y-383)/-0.083);
for j:=70 to MaxY do

PutPixel(x,j,O);
PutPixel(x,y, 1>;
x:=x+step;

end;
'E' ,'e' : OK:=true;

end·
if not drop then

PutPixel(x1,y1,0);
until OK;

RestoreCRTMode;

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

~riteln('Do you want to store the modified calibration curve? AY/*A');
writeln('The old calibration curve will be stored as old',term!D,'.');
case ReadKey of

'Y', 'Y' : repeat
quit:=true;
CheckData(T,OK);
if OK then

begin
Reset (f);
GetData(f,place,Hold);
Removeltem(f,place);
term.data:=T;
term.ID:=term!D;
Seek(f FileSize(f));
write(~,term)l· a ~rite new curve to file a
term.data:=Ho d;
term.ID:=ConCat('old',termiD);
SeekTerm(f term.ID,exlst,place)·
if exist then a Avoid double old curves a

Removeltem(f,place);
Seek(f FileSize(f));
write(~,term); a ~rite old curve to file a
Close(f);

end
else
begin

writeln('AMA to correct by manipulating.');
writeln('APA to correct by plotting.');
writeln('AEscA to ignore new curve and return to menu
case ReadKey of

'M', 'm': begin
Mani pulate(T);
quit:=false;

end·
'P' 'p': plot:=trye; .
#a1B :; a AEscA Option a

end·
end· '

until quit;

plot;
end·

until'not
end·

end· '
a E~ TermPlot a

procedure Drawline(time1,T1,time2,T2,timefactor:real;mintemp:integer);

var x1,x2,y1,y2:integer;

begin
x1:=(round(0.1*MaxX)+round(0.85*timefactor*time1*MaxX));
x2:=(round(0.1*MaxX)+round(0.85*timefactor*time2*MaxX));
y1:=(round(0.9*MaxY)+round((mintemp-T1)*0.025*MaxY));
y?:=(round(0.9*MaxY)+round((mintemp-T2)*0.025*MaxY));
L1ne(x1,y1,x2,y2);

end;

procedure HeatCtrl;
var f : termfile;

savef : text;
quit,started,save,ignore,exist,found,inrange: boolean;
time1nt,timerange,maxtime,time elapsed:integer;
timefactor:real; -
temp1 1 temp2 : array A0 .. 2A of real;
k1 n,M1nTemp : integer;
cnr : char;
termiD filename,ak outstr : string·
hour1,hour2,minute,,minute2,second~,second2,hund1,hund2: word;
place,year.6month,day,dow: word;
T : arrayA .. 2A of termarray;

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

begin
writeln('ln which file is calibration data?');
ReadFile(f,filename,found); a TFEdit a
if not found then

NoFile a TFEdit a
else

begin
for k:=1 to 3 do
begin
str(k,ak);
term!D := ConCat(ak,ConCat('-' ,ak));
SeekTerm(f,termiD,exist,place); a TFEdit a
HiddenCursor;
if not exist then
begin
writeln('Termistor
writeln('Press any
~aitKey;

',term!D,' did not exist in ',filename);
key to return to menu');

a Commo a
Exit;

end
else

GetData(f,place,TAk-1A);
end;

a TFEdit a

writeln('How long interval between measurements? (seconds)');
repeat

writeln('Time interval must be an integer between 1 and 600.');
write('Time interval: ');

aol-a a Turn off automatic input error checking a
readln(timeint);

aol+a a Turn on automatic input error checking a
until (IOResult=O) and (timeint<=600) and (timeint>=1);

writeln('For how long do you want to measure? (minutes)');
repeat

writeln('Duration must be an integer between 1 and 300.');
write('Duration: ');

aol-a a Turn off automatic input error checking a
readln(timerange);

aol+a a Turn on automatic input error checking a
until (lOResult=O) and (timerange<=300) and (timerange>=1);

writeln('Do you wish to save the measurment in a file? AY/*A');
save:=false;
case ReadKey of

'Y','Y' : save:=true;
end;

if save then
begin
write('Filename (*.HTC) :');
filename:=''·
repeat '
ignore:=false;
found:=false·
while not eoln do
begin
read(chr);
if chr=' .' then
ignore:=true;

if not ignore then
filename:=ConCat(filename,chr);

end·
read(n;

until filename<>''; a Must have a filename a
writeln;
filename:=ConCat(filename 1 ' .htc');
Assign(saveffConcat(DestDir,filename));

aoi-a a urn off automatic input/output error checking a

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

Append(savef);
aul+a a Turn on automatic input/output error checking a
if IOResult<>O then
Rewrite(savef);

end;

InitGraphics;
SetGraphMode(GraphMode);
ClearViewPort;
MinTemp:= MaxTemp - round(range/10);
timefactor:=timeint/(timerange*60);
maxtime:=round(1/timefactor);
OutText('HEATER ON : AHA'>;
OutTextXY(O, 12 1 1 HEATER OFF : ADA'>;
OutTextXY(0,25 1 1 0UIT : AEscA');
OutTextXY(0~38 1 1 START MEASUREMENT : ASpaceA');
OutTextXY(2) 1 round(0.22*MaxY) 1 1 Temp ACA')·
OutTextXY(round(MaxX*0.85) 1 round(MaxY*0.9~) 1 1 Time AminA');
OutTextXY(MaxX-200 1 round(0.1*MaxY) 1 1 Heater:');
OutTextXY(MaxX-140 1 round(0.1*MaxY) 1 1 0FF');
OutTextXY(round(MaxX*0.4) 1 0~'PORT TEMP');
OutTextXY(round(MaxX*0.4) 1 1~ 1 1 1');
OutTextXY(round(MaxX*0.4) 1 25 1 1 2'>;
OutTextXY(round(MaxX*0.4) 1 38 1 ' 3');
Drawline(0 1 MinTemp1 maxtime 1 MlnTemp1 timefactor 1 MinTemp)6· (* Drar x-axeln; ti
Drawline(0 1 MinTemp1 01 MaxTemp 1 timefactor 1 MinTemp); (* rar y-axeln; tempera
for k:=O to timerange do
Drawline(round(60*k/timeint) 1 (MinTemp-0.25) 1

round(60*k/timeint) 1 MinTemp1 timefactor 1 MinTemp); (* Skalar x-axel
for k:=O to round(MaxTemp-MinTemp) do
if ((MinTemp+k) mod 5) = 0 then
begin
Drawline(-0.02*maxtime 1 (MinTemp+k) 1 01 (MinTemp+k) 1 timefactor 1 MinTemp);
str((MinTemp+k) 1 outstr);
OutTextXY(round(0.05*MaxX) 1 round(MaxY*(0.9-k*0.025))-4 1 outstr);

end
else

Drawline(-0.01*maxtime 1 (MinTemp+k) 1 01 (MinTemp+k),timefactor 1 MinTemp); (*
k:=O;
quit:=false·
started:=fa1se;
repeat
if KeyPressed then

case ReadKey of
#u1B : quit:=true;
' H' I ' h' : be9 i n

H1ghOut;
SetViewPort(MaxX-140 1 round(0.1*MaxY) 1

MaxX 1 round(0.1*MaxY+15) 1 true);
ClearViewPort;
SetViewPort(0 1 0 MaXX 1 MaxY true);
OutTextXY(MaxX-~40 1 round(6.1*MaxY) 1 1 0N 1);

end;
1 0 1 1 1 0 1 : beg1n

lowOut;
SetViewPort(MaxX-140 1 round(0.1*MaxY) 1

MaxX 1 round(0.1*MaxY+15) 1 true);
ClearViewPort;
SetViewPort(0 1 0 MaXX 1 MaxY true);
OutTextXY(Maxx-l40 1 round(6.1*MaxY) 1 1 DFF');

end·
#u20 : if not started then

begin
for n:=O to 2 do

GetTemp(TAnA 1 n+1 1 temp1AnA 1 inrange)·
GetTime(hour1 1 minute1 1 second1 1 hund1);
SetViewPort(0 1 38 1 round(MaxX*0.3) 1 50 1 true);
ClearViewPort;
SetViewPort(0 1 01 MaxX 1 MaxY 1 true);
if save then

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

begin
GetDate(year month 1 day 1 dow);
writeln(savef 1 1 Temperature measurement

month:2 1 1 1 year:4);
',day:2~' I' I

end·
if started then
begin

writeln(savef 1 1 TIME PORT 1 PORT 2 PORT
writeln(savef 1 hour1:26':' 1 minute1:2 1 1 :' 1 Second1:2 1

1 1 1 temp1A ~:4:1 1 ' 1 ,temp1A1A:4:1,
' ',temp1A2A:4:1);

end·
started:=true;

end;

3' >;

GetTime(hour2 1 minute2 second2 hund2);
time elapsed:=(hour2-hour1)*3600+(minute2-minute1)*60+(second2-second1);
if tTme elapsed >= timeint then
be in-
if save then

write(savef 1 hour2:2 1 1 : 1 1 minute2:2 1 1 : 1 1 Second2:2 1 1

for n:=O to 2 do
begin .. , .. , .
GetTemp(TAnA,n+1 1 temp2AnA 1 1nrange);
if inrange tnen

I);

begin
Drawline(k 1 temp1AnA 1 k+1 6temp2AnA 1 timefactor 1 MinTemp);
SetViewPort(round(MaxX* .5) 1 round(12*n+13) 1

round(MaxX*0.7) 1 round(12*n+25) 1 true);
ClearViewPort·
str(temp2AnA:4:1 1 outstr);
OutText(outstr);
SetViewPort(0 1 01 MaXX 1 MaxY 1 true);
if save then

write(savef 1 temp2AnA:4:1 1 1

end
else

I);

begin
SetViewPort(round(MaxX*0.5),round(12*n+13) 1

round(MaxX*0.7) 1 round(12*n+25) 1 true);
ClearViewPort;
OutText('Out of range');
SetViewPort(0 1 01 MaxX 1 MaxY 1 true);
if save then

write(savef 1 1 0ofR' 1 1 '>;
end·

temp,AnA:=temp2AnA;
end·

hour,:=hour2;
minute1:=minute2;
second1:=second2;
hund1:=hund2;
k:=k+1;
if save then

writeln(savef);
end·

end· 1

until 1 (k=maxtime) or quit;

lowOut;
SetViewPort(MaxX-140 1 round(0.1*MaxY) 1

MaxX 1 round(0.1*MaxY+15) 1 true);
ClearViewPort;
SetViewPort(0 1 0 MaxX 1 MaxY true);
OutTextXY(MaxX-~40 1 round(6.1*MaxY) 1 1 0FF');
OutTextXY(0 1 38 1 'Press any key to return to menu');
WaitKey;

RestoreCRTMode;
Normal Cursor;
Close(f);

421! if save then
422: Close(savef)·
423: Window(1,1,80,~5);
424: end;
425: end;
426: a End HeatCtrl a
427:
428:
429:
430: end.
431: a End HTGraph a

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

a ••••••••••••••••*************************************
* *
* UNIT HTCal *
* This unit contains procedures for calibration *
* of termistors and ports.It also contains *
; general procedures for temperature measurements. ;

*** a
unit HTCal;

interface

uses TPCrt,
COilll1o,
TFEdit;

procedure AutoRead;
a Complete procedure for monitoring the ports on the ADDA card a
procedure GetTemp(T:termarray;port:word;var temp:real;var inrange:boolean); a General procedure for converting a port value to a temperature a
procedure StoreCal(T:termarray;portnr:string);
a General procedure for storing calibration data a
procedure ManuCal;
a Complete procedure for manual calibration of a termistor a
procedure AutoCal;
a Complete procedure for automatic calibration of a termistor a
a--- ------------------------------a
implementation

procedure AutoRead;
var value : integer;

port: word·
quit : boolean;

begin
writeln('Which port do you want to monitor? ');
ReadPortNr(port); a Commo a
ClrScr;
writeln('Press AEscA to return to menu.');writeln;
writeln('Port ',port,':');
quit:=false;
Window(10,3,80,25);
HiddenCursor;
repeat

ClrEol;
value:=ReadPort(port); a Commo a
writeln(value);
Delay(1000);
GotoXY(1,1);
if Keypressed then if ReadKey=#a1B then quit:=true;

until quit;
Window(1,1,80,25);
Normal Cursor;

end· a E~ AutoRead a
procedure GetTemp(T:termarray;port:word;var
var value,k : integer;

quit : boolean;

temp:real;var inrange:boolean);

begin
value:=ReadPort(port);
inrange:=true;

a Commo a
k:=O;
quit:=false;

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

repeat
if value>TAkA then

if k=ran9e then
begin 1nrange:=false; quit:=true; end a Below temp interval a

else
k:=k+1 a Continue search a

else
if k=O then

begin inrange:=false; quit:=true; end a Above temp interval a
else

be9fin l .. ,_ , .. , .. ,_ 1,
1 ((va ue-TA~-1A)/(TAkA·TA~- A)) < 0.5 then

k:=k-1; a Round to nearest value a
quit:=true;

end·
until qui!:;
temp:=(maxtemp-k/10);

end· a End GetTemp a

procedure StoreCal(T:termarray;portnr:string);
var OK,OK2,exist,found : boolean;

place : word;
f : termfile;
term : termtype;
filename,term!D : string;

begin
ClrScr;
repeat

Scroll(T)·
writeln('6o you want to manipulate the data? AY/*A'>;
case ReadKey of

'Y' ,'y' : Manipulate(T);
end·
CheckData(T,OK);

until OK;
ClrScr;

a Storing a
repeat

writeln('Enter the name of the file in which you');
writeln('want to store the calibration data.(*.CAL)');
ReadFile(f,filename,found);
OK:=true·
if not found then

a TFEdit a

a TFEdit a
a TFEdit a

a TFEdit a

begin
writeln('File did not exist. Do you want to create it? AY/*A'>;
case ReadKey of

'Y' ,'y' : Create(f);
else

OK:=false;
end·

end· '
if OK'then a File to write to exists a

a TFEdit a

repeat
OK2:=true·
writeln('Enter 10 number of termistor and remember to mark it');
readln(termiD);
termiD:=ConCat(termiD,ConCat('-' ,portnr)) ; a Make 10 in 10-PS form a
~eekT~rm(f 1 termiD,exist,place); a TFEdit a
1f ex1st tnen

begin
writeln('That termistor already exist in ',filename,''· Do you want');
writeln('to replace the existing data with the new? AY/*A•);
case ReadKey of

'Y' ,'y' : begin
Removeltem(f,place);
term.ID:=termiD;
term.data:=T;

a TFEdit a

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

Seek(f~FileSize(f));
write(r,term);

end;
else

OK2:=false;
end·

end '
else a Termistor did not exist in file already a

begin
term.ID:=termiD;
term.data:=T·
write(f,term);

end·
until OK2;

until OK;
Close(f);
writeln('Calibration stored. Press any key to return to menu.');
~aitKey· a Commo a
~indow(~, 1,80,25);
ClrScr;

end·
a E~ StoreCal a

procedure ManuCal;
var k : integer;

OK : boolean;
T : termarray;
filename,portnr : string;
port : word;

begin
repeat
OK:=true·
writelnclon which port do you want to calibrate the termistor?');
writeln('Available ports: 1 2 3');
ReadPortNr(port); a Commo a
case port of

1 •• 3 : str(port,portnr);
else

begin
writeln('Port ',port,' does not exist.');
OK:=false;

end·
end· '

until OK;
Cl rScr;
writeln('Plug in
writeln('Put the
writeln('Place a
writeln('let the

the termistor to be calibrated on port ',portnr,'.'>;
termistor in water that is heated to above ',Maxtemp,' deg C.'
thermometer near the termistor in the water.');
water cool off at any rate you wish to less than ',(Maxtemp-ro

writeln;
writeln('* AS~aceA
writeln('* AlA
writeln('* AHA
writeln('* ADA
writeln('* AEscA
~indow(26 1 15,55,18);
GotoXY(1, 1 >;
write(#oC9);for k:=1
writeln(#oBA '
write(#oC8);for k:=1
~indow(281 16,53,17);
GotoXY(1, 1 >;

Register temperature displayed on the screen');
Ignore last value');
Turn on heater (~ARNING! Must be in water!).');
Turn off heater ');
Abort calibration and return to main menu');

to 27 do write(#oCD);writeln(#aBB);
I #aBA);

to 27 do write(#aCD);writeln(#aBC>;

HiddenCursor;
write(MaxTemp,' deg C ');
for k:=O to range do a Start calibration a
begin
GotoXY(1,1);
repeat

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

OK:=true;
case ReadKey of

#a20 : begin
TAkA:=ReadPort(port);
if k > 0 then

a ASpaceA a
a Commo a

'H' ,'h'
'0' 'o'
I I I , I i I

#a1B
else

OK:=false

if TAkA < TAk-1A then
TAkA:=TAk-1A;

end·
beg\n HighOut; k:=k-1; end; a
begin LowOut· k:=k-1; end; a
if k>O then k:=k-2 else k:=k-1·
begin ~indow(1, 1,80,25); Normalcursor;

Commo a
Commo a
Exit; end;

end·
until' OK;
Cl rEol;
write(-(k+1)/10 +

end;
Maxtemp:3:1,' deg C Port ',portnr,': ',TAkA);

LowOut; a Turn off
~indow(1,1,80,25);
Normal Cursor;
StoreCal(T,portnr);
end·
a E~ ManuCal a

heater a a Commo a

procedure AutoCal;
var k,value,v1,v2,v3 : integer;

OK,exist,inrange,above,found: boolean;
portnr1,portnr2 : string;
temp : real;
port1,port2,place : word;
filename,termiD : string;
f : termfile;
Tk,Tuk : termarray;

begin
writeln('Automatic calibration requires a known termistor.');
repeat

a AEscA a

OK:=true·
writelnclon which port do you want to calibrate the termistor? (1, 2 or 3)')
ReadPortNr(port1); a Commo a
case port1 of

1..3 : str(port1,portnr1);
else

begin
writeln('Port ',port1,' does not exist.');
OK:=false;

end·
end· '

until' OK;
repeat

OK:=true·
writelnclon which port do you intend to plug in the known termistor ?');
ReadPortNr(port2); a Commo a
if port1=port2 then

begin
writeln('You cannot use the same port as before.');
OK:=false;

end
else

case port2 of
1 •• 3 : str(port2,portnr2>;

else
beg n

wr teln('Port ',port2,' does not exist.');
OK =false·

end '
end;

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

until OK; ~Both ports exist~ 351:
writeln('Enter the name of the file where the known termistor is to be found.' 352:
write('Filename: ')· 353:
ReadFile(f,filename:found); a TFEdit a 354:
exist:=false; 355:
if not found then 356:

NoFile a TFEdit a 357:
else 358:

begin 359:
write('Termistor ID of known termistor: '>; 360:
readln(termiD); 361:
termiD:=ConCat(ConCat(termiD,'-'),portnr2); 362:
SeekTerm(f1 termiD,exist,place); a TFEdit a 363:
if exist tnen 364:

GetData(f,place,Tk) a TFEdit a 365:
else 366:

NoTerm; a TFEdit a 367:
Close(f); 368:

end· 369:
if ex~st then a Ready for calibration a 370:

begin 371:
ClrScr; 372:
writeln('Plui in known termistor (',termiD,') on port ' 1 portnr2,' and the 373:
writeln('callbrated on port ',portnr1,'.Heat water to aoove ',MaxTemp,' de 374:
writeln('and place the termistors close together in the water. Let it cool 375:
writeln('to less than ',round(MaxTemp-range/10),' deg C while being stirre 376:
wri teln; 377:
writeln('* AEscA : Abort calibration and return to main menu')(378:
writeln('* AHA : Turn on heater (YARNING! Must be in water! J.'>; 379:
writeln('* AOA : Turn off heater '); 380:
writeln('* ASpaceA : Start calibration.'); 381:
Hi ddenCursor; 382:
repeat 383:

OK:=false; 384:
case ReadKey of 385:
#c20 : OK:=true; a ASpaceA a 386:
'H' ,'h' : HighOut; a Commo a
10 1 'o' : LoWOut· a Commo a
#c1B : begin Window(1,1,80,25); NormalCursor; Exit; end; a AEscA a

else· end·
until 6K; '
LowOut; a Commo a
Cl rScr;
writeln('Press AEscA to abort calibration.'>;
Yindow(15 1 15,62,20);
GotoXY (1, I) ;
write(#cC9);for k:=O to 44 do write(#cCD);writeln(#cBB);
writeln(#cBA' ',#cBA);
write(#cC8>;for k:=O to 44 do write(#cCD);writeln(#cBC);
Yindow(171 16,59,18);
GotoXY (1, I) ;

a Calibration a
repeat

GetTemp(Tk,port2,temp,inrange);
v1:=ReadPort(~rt1); a Commo a
write('Not in interval yet. Temp: ',temp:1:1,' deg C.');
GotoXY< 1, 1);
if KeyPressed then case ReadKey of

#c1B : begin Yindow(1,1,80,25); NormalCursor; Exit; end; a AEscA a
end;

until inrange; a Upper limit of temp interval reached a
v2:=v1;
for k:=O to (range-1) do

begin
above:=false;
repeat

OK:=false;
if Keypressed then case ReadKey of

#c1B : begin Yindow(1, 1,80,25); NormalCursor; Exit; end; a AEscA

end·
value:=ReadPort(pgrt2); a Commo a
if value > TkAk+1A then a Next temp reached a

begin
v3:=ReadPort(port1)· a Commo a
TukAkA:=round((v1+v~)/2)i· a Enter calibration point a
if (k > 0) and (TukAk < TukAk-1A) then

TukAkA:=TukAk-1A;
v1:=v3;
v2:=v1;
OK:=true;

end·
Cl rEo(;
write(-k/10+MaxTemp:3:1,' deg c Port 1 ,portnr2 'A' ,TkAk+1A,•A:');
write(value,' Port ',portnr1,':',ReadPort(port1)); a Commo a
GotoXY(1,1)·
if value < tkAkA then a Temp rises above current temp a

above:=true·
if above and (value > TkAkA) then

begin
v2:=ReadPort(port1);
above:=false;

end·
until OK;

end·

a Temp drops below current temp a

a commo a

TukArangeA:=v1;
LoWOut;
Yindow(1,1,80,25);
Normal Cursor;

a Make sure that heater is off a a commo a

StoreCal(Tuk,portnr1);
end·

end· '
a En~ AutoCal a
end. a End HTCal a

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:

erogram termoreg;
aan+a
uses

dos,crt,graph;
var GraphMode,Gra~Driver[MaxX,MaxY[para : integer;

I,K1 TO,Tb,~pef. 1 opd,va ue: doub e;
WlSn : str1ngA1A;
slut : boolean;

procedure Initgraphics;
var Errorcode: integer;
begin

GraphDriver:= Detect;
InitGraphCGraphDriver[GraphMode,'OtpO');
Errorcode:= GraphResu t;
if Errorcode<>grOK then
begin

writeln('Graphics error: ',Grapherrormsg(Errorcode));
writeln('Program Aborted');
Halt(1);

end·
SetfextJustify(CenterText6centerText);
SetTextStyle(DefaultFont, ,1);
MaxX:= GetMaxX;
MaxY:= GetMaxY;
RestoreCRTMode;
TextColorCwhite);

end;

procedure Drawli~e(mm1,T1,mm2,T2:double);
var x1,x2,y1,y2:1nteger;

begin
x1:=Cround(0.2*MaxX)+round(0.05*mm1*MaxX));
x2:=(round(0.2*MaxX)+round(0.05*mm2*MaxX));
y1:=Cround(0.9*MaxY)+round((30-T1)*0.0364*MaxY)); r?:=Cround(0.9*MaxY)+round((30-T2)*0.0364*MaxY>>;

1ne(x1,y1,x2,y2);
end;

procedure PlotT~Cheatint,opd,surftemp,bloodtemp,heatcond,bpef:double);
const maxdepth=12; (* Djup i mm, temperaturer i C *)

mintemp=30;
maxtemp=52·
treattemp=~3;
termdepth=5;

var ON : char;
k,n: integer· -
gamma,sigma,A,temp1,temp2:double;

begin
sigma:=1/opd·
gamma:=bpef/~eatcond;
A:=heatint*sigma/(heatcond*(sqr(sigma)-gamma));
SetGraphMode(GraphMode);
Drawline(O,mintemp,maxdepth,mintemp); (* Drar x-axeln; djupet i mm *)
Drawline(O,mintemp,O,maxtemp); (* Drar y-axeln; temperatur i C *)
for k:=1 to maxdepth do
DrawlineCk,Cmintemp-0.25),k,mintemp); C* Skalar x-axeln *)

for k:=1 to round(maxtemp-mintemp) do
Drawline(-0.1,(mintemp+k),0,(mintemp+k)); (* Skalar y-axeln *)

Drawline(-0.2,treattemp,O,treattemp); (* Markerar intressant tem~ratur *>
Drawline(termdepth,Cmintemp-0.5),termdepth,mintemp); (*Mark. termistor *)
for n:=O to 20 do

begin
temp1:=surftemp+n;
for k:=1 to 12 do
begin

temp2:=((surftemp+n) - bloodtemp + A)*exp(-sqrt(gamma)*k) - A*exp(-sig

71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:

Drawline((k-1),temp1,k,temp2);
temp1:=temp2;

end·
end· '

ON:=ReadKey;
RestoreCRTMode;

end;

(****** MAIN PROGRAM ******)
begin

Cl rscr;
Initgraphics;
writeln('Heat Intensity AmW/mm02A (1) ?'>;
readln(I);
writeln('Optical penetration depth AmmA (2) ?');
readln(opd);
writeln('Heat conductance AmW/mm CA (3) ?');
readln(K);
writeln('Blood perfusion exchange factor AmW/mm03 CA (4) ?');
readln(bpef)·
writeln('Sur+ace temperature A CA (5) ?');
readln(TO)·
writeln('Blood temperature A CA (6) ?');
readln(Tb);
repeat
PlotTemp(l,opd,TO,Tb,K,bpef);
slut:=true;
repeat

writeln('Change Parameter ? (y/n)');
readln(wish);
if wish='y' then
begin

slut:=false·
writelnC'C1)Heatint: ',1:6:4,' mW/mm02');
writeln('(2)0PD: ',opd:6:4,' mm'>;
writeln('(3)Heat conductance: ',K:6:4,' mW/mm C')i
writeln('(4)Blood perf EF: 't~f:6:4,' mW/mm03 C >;
writeln('(5)Surface temp: ' 0:6:4,' C'>;
writeln('(6)Blood temp: ',Tb:6:4,' C'>;
writeln('Which? (N:o 1,2,3,4,5 or 6)');
readln(para);
writeln('New Value ?' >;
readln(value);
case para of
1:1:= value;
2:opd:= value;
3:K:= value·
4:bpef:= value;
5:TO:= value;
6:Tb:= value;

else
WritelnC'No Such Parameter.'>;

end;
end·

until'(wish='n');

until slut;
end.

