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Abstract

In this work an Acousto-Optic Programmable Dispersive Filter has been used
to temporally shape femtosecond pulses from the oscillator of the T3-laser in
Lund. The actual shaping has been done through a feedback loop, controlled
by a genetic algorithm implemented as part of the work. The goal was to opti-
mize the efficiency for second harmonic generation, thus expecting to minimize
the pulse length. The diagnostics have been made through measurements of the
pulse length using a multi-shot autocorrelator and measurements of the spectral
phase using Spectral-Phase Interferometry for Direct Electric field Reconstruc-
tion (SPIDER). The experimental investigations have shown that the algorithm
works, finding pulses with a pulse length of a few percent above the transform-
limit. During the work experience has been gained on the pulse shaper as well
as on the practical application of a genetic algorithm in a feedback loop.
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Chapter 1

Introduction

At the present time laser technology has advanced to the point where laser
pulses in the femtosecond range are available from easy-to-use table-top devices.
While laser researchers now strive to reach the attosecond domain, femtosecond
technology constantly finds new applications in both research and real-world
systems. Previously liquid dye lasers were most often used for femtosecond
pulse generation. Advances in solid-state laser technology have now made these
lasers more common. The advantages of solid-state lasers over their dye laser
counterparts are among other things an increase in both output power and
stability.

The attractiveness of ultrashort laser pulses lies first in the possibility to observe
and manipulate processes on a femtosecond time scale. Ten femtoseconds cor-
respond to around five optical cycles in the visible regime and the geometrical
length of such a pulse is only 3 pym in vacuum. For comparison the period for
the motion of an electron in a hydrogen atom, excited to the state with quantum
number n = 10, is around 150 fs in a semi-classical picture [1]. With the short
duration of a femtosecond pulse, it is possible to probe very fast processes. An
important application is femtochemistry, where ultrashort pulses are used to
diagnose and control chemical reactions. The large bandwidths associated with
short pulses are also expected to be useful in data-transfer technology.

In a femtosecond laser pulse, energy can be concentrated into a very short time
interval, causing pulses with rather modest pulse energies to exhibit high peak
powers. As an example a 50 fs laser pulse with an energy of 1 mJ exhibits a peak
power of 20 GW. If this pulse is focused to a 100 um? spot, the peak intensity will
be 10 PW/cm?, corresponding to an electric field strength of around 3 GV /cm.
For comparison a typical inner-atomic field has a strength of 1 GV/cm. The
high peak-powers associated with ultrashort laser pulses are thus comparable to
typical inner-atomic fields, implying interesting applications within strong-field
atomic physics. If an ultrashort laser pulse is focused onto a solid-state target,
i.e. a metal, it is possible to generate broadband X-rays which may be useful in
for example various medical applications [2]. If instead the pulses are focused
into a jet of inert gas, high harmonic generation can be achieved, an application



for which this work can be said to be a pre-study.

In many of the applications mentioned above, it is important not only to have
short pulses, but also to be able to measure and control their characteristics. If
an intense laser pulse suffers from pre-pulses, say only with a peak intensity of
a few percent of the main pulse, the energy in those may still be high enough
to for example ionize an atom, making any examination of the atom in ques-
tion impossible. Many experiments, especially those using solid targets, require
elimination of the pre-pulses. In femtochemistry, where a laser pulse is used to
control a chemical reaction, the pulse shape determines which chemical reaction
that takes place. Thus with the ability to control the pulse characteristics, it is
possible to synthetically produce molecules of a certain kind. For the high har-
monic generation experiments mentioned above, it has been shown [3] that the
pulse characteristics of the exciting pulse have influence on the phase of the gen-
erated harmonics. Other experiments have demonstrated that the pulse shape
also affects the relative intensities of the different harmonic orders [4]. Through
constructive interference between the different harmonics, it is believed that
attosecond pulses can be generated. Thus the control of the phase of the har-
monics, through pulse shaping of the exciting pulse, is an important topic in
current attosecond pulse research. Pulse shaping is a growing field within short
pulse laser research and its applications.

Pulse shaping can be done in many ways. Traditionally it is done by a technique
known as spatial masking, where a dispersive element is used to transform the
frequency spectrum of a pulse into a spatial distribution, which can be filtered
by a spatial mask. This setup is often called a zero dispersion-line, since if no
mask is used, the pulse characteristics will be unchanged. The spatial mask used
as the frequency filter may be of different types. First of all it is possible to use
a fixed mask, affecting the amplitude (by variation of the transmission) or the
phase (by variation of the refractive index) for the spectral components of the
pulse. It is also possible to do a combination of amplitude and phase filtering.
Recent experiments have payed increasing attention to the use of programmable
filters, referred to as adaptive pulse shaping. Those make it possible to change
the filtering during the experiment, allowing also for automatic control based
on feedback from the experiment. The most common programmable filters
today are implemented as liquid-crystal arrays, using the same technique as
for liquid-crystal displays. By applying an electric voltage to a specific array
element (or pixel), the transmission or the refractive index of the array element
may be varied. To obtain both amplitude and phase filtering a combination of
LC-arrays has to be used. Another common implementation is with an Acousto-
Optic Modulator (AOM) operated in the Bragg-regime. However such a device
can not be used in a zero dispersion-line as described above and the setup has
to be slightly modified.

In 1997, P. Tournois [5] proposed a novel design for a pulse shaper using acousto-
optic interaction in a crystal to obtain collinear pulse shaping. Collinear does
in this case mean that the shaped pulses will propagate in the same direction as
the input pulses. This device does not require a zero dispersion-line to function
and by the collinear arrangement it is fairly easy to implement the pulse shap-
ing in an existing setup. The device, called the Dazzler, is an Acousto-Optic



Programmable Dispersive Filter (AOPDF) and will be used in the present study.

This work will investigate the possibilities to use the Dazzler AOPDF for adap-
tive pulse shaping. In the future the device is to be used at the 1 kHz laser
system in Lund, shaping the pulses used to generate high harmonics in a gas
jet. The approach is to control the pulse shaper using a genetic algorithm,
which is a search method belonging to the field of evolutionary programming.
The algorithm will perform the search based on some feedback from the exper-
imental setup. Previously Reitze et al. has reported optimization of high order
harmonic tuning using a genetic algorithm [6].

This pre-study will however not be made on the 1 kHz-system, but instead the
pulses from an oscillator producing laser pulses in the femtosecond range will
be used. The goal is to optimize the efficiency for second harmonic genera-
tion, which is in general equivalent to minimizing the pulse length. Hence it is
expected that as short pulses as possible will be achieved from the optimization.

This report is organized as follows. In chapter 2 the theory of short laser pulses
is presented. Emphasis will be put on the frequency-domain description, useful
to understand the concept of pulse shaping. The process of second harmonic
generation will be discussed, concentrating on the efficiency for second harmonic
generation, since this is used as a feedback signal during this work. This chapter
also presents some techniques used in the study to characterize ultrashort laser
pulses. In chapter 3 the theory of genetic algorithms is presented, and the actual
implementation done for this work is described. Finally, chapter 4 focuses on the
experimental work done. After a description of the setup and the experimental
methods, the main results will be presented and discussed.



Chapter 2

Short laser pulses

2.1 Mathematical description of short pulses

This chapter will be concerned with the mathematical description of short laser
pulses. It will also treat nonlinear interaction, characterization of short pulses
and pulse shaping.

2.1.1 Time-domain description

A laser pulse is often described by its complex representation E (t) expressed as
the product of an amplitude function and a phase term:

E(t) = A(t)e™® (2.1)

The real electric field can then be written as E(r) = Re E(t). In most cases the
frequency components of the pulse are centered around a carrier frequency wy,
so that

E(t) = A(t)e?Meiwrt — A(t)evrt (2.2)

where o(t) is the time dependent phase of the pulse. A(t) is called the field
envelope and A(t) the complex field envelope. The instantaneous frequency
w(t) of the pulse is given by the time derivative of the phase function I'(¢):

w(t) = %ff) =wp + dfl—it) (2.3)

If the phase across the pulse is constant , dp/dt = 0, the instantaneous frequency
is equal to the carrier frequency. If the phase of the pulse is linearly increasing
(or decreasing) with time, the instantaneous frequency is still constant but no
longer equal to the carrier frequency. A higher order phase implies that dp/dt is
a function of time leading to a varying instantaneous frequency along the pulse,
called a chirp. If w(t) is increasing the chirp is said to be positive, and if it is
decreasing, the chirp is negative.



2.1.2 Frequency-domain description

The temporal and spectral properties of a laser pulse are related through a
Fourier-transform relation. More precisely, the spectral electric field E(w) is
the Fourier transform of the temporal electric field E(t). Since E(t) is a real
quantity, the properties of the Fourier transform imply that E(w) = E*(—w)
making it possible to describe the spectral electric field as E(w) = A(w) +
A*(—w) where A(w) is the complex spectral amplitude, being nonzero only for
positive frequencies. The complex spectral amplitude is given by the Fourier
transform of the complex temporal electric field

Aw) = / ™ Bl)e-tat (2.4)

— 00

while the complex temporal electric field is in turn given by the inverse Fourier
transform of the complex spectral amplitude:

+oo

) 1/ Aw)etdu (2.5)

:% .

As for the complex field envelope, the complex spectral amplitude fl(w) might
be written as the product of an amplitude function and a phase term

A(w) = A(w)e™ @) (2.6)

where A(w) is the spectral amplitude and p(w) is the spectral phase. Here it can
be seen that a constant phase will only lead to a phase shift, not affecting the
pulse in any way, while a phase function that is linearly dependent on frequency
will displace the pulse in time, not affecting the pulse shape. If the spectral
amplitude is large over a sufficiently broad range, it is necessary to regard higher-
order frequency-dependence of the phase function expanded around the carrier
frequency wy, as p(w) = wo+¢1 (W —wp)+ 3 (W — wr)?+... . Different spectral
regions of the pulse are then affected differently, changing the shape of the pulse
envelope and introducing a chirp. From this discussion one can also infer that
the situation in which all high-order coefficients (p,,n > 2) are zero, represent
the shortest pulse achievable for a given spectral amplitude distribution A(w).

2.1.3 Pulse propagation

Propagation along the z-axis is included by generalizing (2.5) as

~ +OO ~ .
E(t,z) = % / A(w)el@t=k@)z) g, (2.7)

—0o0

where k(w) = n(w)w/c is the propagation constant with n(w) as the frequency-
dependent index of refraction and ¢ the velocity of light in vacuum. The effect of
the propagation constant is that it introduces an accumulated phase k(w)z to the
pulse as it propagates. In cases when the spectral amplitude is sharply peaked



around the central frequency wy, it is possible to approximate the wavenumber
k(w) with a first-order Taylor expansion around wy,:

k(W) = k(wr) + (g—z)% (W—wr) + ...
:kL+k/L (w—wL)+... (28)

Inserting this expansion for k(w) into (2.7) yields

~ i(thkaz) +oo ~ . ,
E(t,z) = GT / A(w)el@=n)(t=k2) g, (2.9)

— 00
and since the integral in (2.9) is a function of the composite variable ¢ — k} z
only, this in turn might be rewritten as

E(t,z) = A(t — k z)etwrt=ke) (2.10)

where A(t) is the complex field envelope.

Group velocity

Comparing (2.10) with (2.2) it can be seen that the complex field envelope
moves without changing its shape. The velocity of the pulse given by

—1
dz 1 ok

is called the group velocity of the pulse and represents the energy transport of
the pulse. In terms of the refractive index, the group velocity may be written
as:

c

n+ w (On/0w) (2.12)

Vg =

Here it can be seen that only in the case when the refractive index is frequency-
independent (On/dw = 0), the group velocity of a pulse is the same as the phase
velocities of the individual modes (v, = ¢/n). When dn/0w > 0, a material
is said to exhibit normal dispersion. This is the case for most materials and
as a result, the group velocity is generally smaller than the individual phase
velocities.

Group velocity dispersion

If the spectral bandwidth Awy, of the pulse is very broad!, the expansion (2.8)
may no longer be a good approximation for the dispersion relation. In this
case different frequency components of the pulse will move with different group

IThe spectral bandwidth Awy, is often chosen as the FWHM of the spectral intensity.
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velocities, causing a temporal broadening of the pulse. By including the second
order term in the approximation (2.8) it becomes

1
k(@) = ki + Ky (0 —wp) + 5K (w—wp)+ ... (2.13)

The time necessary for a pulse to go through a material with propagation con-
stant k(w) and length [ is 7, = I /v, = Ik} and thus the difference in time delay
between the different frequency components contained in Aw is

A, ~ 1|k |Awy, (2.14)

describing the pulse broadening. The quantity k7 = 92k/0w? is often referred to
as the group velocity dispersion (GVD) of a material. It has the unit [s?/m] and
describes the pulse broadening per unit bandwidth and unit material length for
propagation of a pulse through a medium?. The pulse broadening originating
from GVD is due to a spreading along the propagation axis of the different
frequencies. For example, if k7 is positive the group velocity of a low frequency
component is higher than that of a high frequency component, causing the low
frequency components to spread towards the trailing edge of the pulse. Because
of this, the instantaneous frequency of the pulse will increase along the pulse
giving a positive chirp (see section 2.1.1). Most materials have k7 > 0, and are
then said to exhibit positive dispersion.

Higher order effects

The effects of higher order coefficients in the dispersion relation (2.13) are gen-
erally dominated by the group velocity dispersion. However, for very short
pulses (large bandwidths Awy) or if the GVD for some reason is very small,
the quadratic approximation fails to describe the pulse propagation correctly.
In these cases it might be necessary to also include third and fourth order dis-
persion (TOD and FOD). These effects do not simply broaden the pulse, but
might also introduce some internal structure, like pre- and post-pulses.

2.1.4 Gaussian pulses

To get a better understanding of the properties of a laser pulse it is useful to
consider a known pulse envelope. A Gaussian pulse shape is often used as an
approximation, mostly because it is preserved under Fourier transformation. In
many actively mode-locked systems, the generated pulses have a shape very close
to Gaussian [7]. In passively mode-locked systems, the steady-state solution for
the pulse shape is a hyperbolic secant function [8], somewhat harder to treat
than the Gaussian.

Considering a Gaussian pulse with a complex field envelope of the form

A(t) = A(t)e?®) = g=at gibt® (2.15)

2The concept of GVD is straightforward only for a homogenous medium. When talking
about compound optical elements exhibiting dispersion, instead the group delay dispersion
(GDD) is used, having the unit [s2].
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the pulse length 7,, chosen as the FWHM of the temporal intensity, is related

to the parameter a by
2In2
=1/ 2 (2.16)

while the phase function () = bt? introduces a quadratic temporal phase.
Using equation (2.3) it is seen that the instantaneous frequency of this pulse
is given by w(t) = wr + 2bt. Thus b is a chirp parameter, determining the
magnitude of the linear chirp of the pulse. To obtain the complex spectral
amplitude of this pulse, one has to take the Fourier transform of (2.15) (see
equation (2.4)). In this case, this is particularly easy, since a Gaussian simply
transforms into another Gaussian. Ignoring a scaling constant and a constant
phase term the complex spectral amplitude gets the form:

B (wwa)z _n,(u}—mL)Q _ib(w—wL)z .
Alw) = e T =¢ a@70?) ¢ a(@@H2) = A(w)e W) (2.17)

From the spectral amplitude A(w) an expression for the bandwidth Awy can
be obtained. The bandwidth is normally chosen as the FWHM of the intensity

spectrum.
2 2) 1 2 2
Awy = w — V8In2y/a(1 + %) (2.18)

From this expression it is seen that for a given pulse length determined by the
parameter a according to (2.16), the presence of a linear chirp determined by
the parameter b requires a wider spectral bandwidth Awy,. In the same way, for
a given spectral bandwidth Awy,, the presence of a linear chirp causes the pulse
to spread out in time increasing the pulse length 7,.

From the spectral phase in expression (2.17) it is seen that a linear frequency
chirp, caused by a quadratic temporal phase, also implies a quadratic spectral
phase.

The time-bandwidth product

Something that is often considered when it comes to ultrashort laser pulses is
the time-bandwidth product. If (2.16) and (2.18) are multiplied together one

obtains
b2
Tp - Awp =2m-0.441-4/1 + — > 2m-0.441 (2.19)
a

which shows that there is a minimum value for the product between the pulse
duration and the spectral bandwidth. A pulse for which the equality in (2.19)
holds is indeed the shortest possible pulse given that spectral bandwidth. Such
a pulse exhibits no frequency chirp and is said to be transform-limited.

The properties of the time-bandwidth product holds for all pulse shapes, al-
though the minimum value differs. As shown above, for a Gaussian pulse the
value is 0.441. For the other common pulse shape, the hyperbolic secant, the
corresponding value is 0.315 [9].

12



2.2 Nonlinear optical processes

The propagation of electromagnetic waves in material is governed by Maxwell’s
equations [10] from which it is possible to obtain wave equations for both the
electric and the magnetic field. When an electric field is present in a medium,
a displacement of charges within the material is obtained. This displacement
is described by the electric polarization P. The electric polarization acts as
a source term in the wave equation for the electric field, causing radiation to
be emitted at the frequency of the polarization wave. Under moderate field
strengths the relationship between the polarization and the electric field can be
assumed to be linear, causing emission of electromagnetic radiation at the same
frequency as the original field. This is the process behind the propagation of
electromagnetic waves in a medium, with the refractive index determined by
the dependence of the polarization on the electric field.

When the field is sufficiently strong, the linear approximation of the electric
polarization fails, making it necessary to consider higher order effects.

2.2.1 Second harmonic generation

One particular nonlinear process, commonly used in various applications of laser
optics, is second harmonic generation (SHG) or frequency doubling. To study
this, one may consider the first nonlinear term of the electric polarization

PNL — oD E? + ... (2.20)

where x(? is called the second order nonlinear susceptibility and &g is the per-
mittivity of vacuum. Consider an incident one dimensional plane wave of fre-
quency w

A, .
E,(t,z) = %el(wt—’“@ + c.c. (2.21)
where c.c. denotes the complex conjugate. Using relation (2.20) this results in
a polarization wave

@4
_ 50&% [ei@wt=2ko2) 4 1] 4 coc. (2.22)

PNL(t, 2)
Apart from the DC term, equation (2.22) describes a polarization wave Pa,
with frequency 2w propagating at the phase velocity v}f = w/k,. Since the
origin of the electric polarization is a displacement of the electric charges within
the material, at each point the displaced charges oscillates and radiates with a
frequency 2w. The electric field produced by the polarization at one particular
point in the material can then be described as

Ao, |
Esy(t,z) = TQe“M*’%@ + e (2.23)

which is a plane wave of frequency 2w propagating with the phase velocity

vf = 2w/ka,,. This shows that in the presence of a second order polarization, a

13



sufficiently strong elecric field will give rise to an electric field oscillating at the
double frequency.

When doing frequency doubling, another important factor needs to be consid-
ered. If the phase velocities of the polarization wave and the frequency-doubled
electric wave differs, the radiated fields at different positions along the prop-
agation direction will be out of phase. This causes the generated frequency
doubled light to increase and decrease in intensity during its passage through
the medium. At a position where Py, is exactly out of phase by a whole cycle
with Fs, at the entrance of the medium, the frequency-doubled light will cancel
itself out.

To solve this problem, and get an efficient frequency doubling, it is necessary
to match the two phase velocities vf: and vp, a procedure known as phase-
matching. Since the phase velocity is given by v, = ¢/n, it is possible to express

the phase matching condition as:
N = N, (2.24)

This condition is not possible to obtain in a material with normal dispersion
where the refractive index increases with frequency. However, by using an
anisotropic medium, the frequency doubled light may be generated with a dif-
ferent polarization, experiencing a different refractive index than the incident
light, making it possible to match them. In an anisotropic crystal the relation
(2.20) is replaced by a tensor relation, since in this case an electric field may
introduce a polarization that is not parallel to the direction of the electric field.

Short pulse phase-matching

When it comes to frequency doubling of very short pulses, implying a broad
range of frequencies around the central frequency w, it is hard to achieve phase-
matching over the whole spectrum of the pulse, because of the dependence of
the refractive index on frequency. This will give a larger doubling-efficiency for
the phase-matched central frequencies than for the wings of the spectrum which
will be suppressed. This causes a narrowing of the frequency-doubled spectrum
giving a longer pulse (see section 2.1.4). Another equivalent way to describe
this is that the group velocity of the frequency-doubled pulse differs from that
of the fundamental pulse and thus the position where a frequency-doubled pulse
is created will not overlap with the position of previously generated second
harmonic pulses.

2.2.2 SHG-efficiency

Under the assumption of scalar fields in one dimension, the electromagnetic
wave-equation may be solved for the fundamental and second harmonic fields
(see Appendix A). This results in two coupled differential equations for the field
variables A/, and Aj_, which are defined in such a way that |A/,|> and |A,_|? are
directly proportional to the intensity of the fundamental and second harmonic

14



fields respectively.
DA

0 = —RAX AL e 1Ak (2.25)
Al oy
—aaj’ = KkAZeAkz (2.26)

In these equations « is the coupling constant and Ak = ko, — 2k,, describes the
phase mismatch between the modes. Here the solutions to these equations are
presented for some particular cases in order to get a measure of the efficiency
of the second harmonic generation.

Non-depleted input beam

In the case when Akz > 1, the situation is far from phase matched. In this
case the conversion efficiency is so low that there is negligible depletion of the
input beam at frequency w. Then A’ (z) = A/ (0) is constant throughout the
whole crystal, making it possible to integrate (2.26) and obtain an expression
for Al (L) at the output of the crystal:

L L
Ao (L) = / RAZ(0)e' 2 dz = H/ng(o)/ Bk
0 0
A? _
L Awk(()) - eka] (2.27)

The efficiency for second harmonic generation 7 is defined as the ratio between
the power of the generated second harmonic beam and the power of the incident
fundamental beam.

A, (L)

n(L) = A 0)

2 . 2
= K2 ’A;(mf L2 (%) (2.28)

When Akz > 1, the efficiency vares periodically with crystal length, having
its first maximum when L = 7/Ak, a distance known as the coherence length.
This periodic transfer of energy is due to the fact that the fundamental and
the second harmonic wave move with different phase velocities, causing the
frequency doubled light generated at different positions in the crystal to interfere
destructively with itself (see section 2.2.1).

In the phase matched case (2.28) is only valid for small efficiencies, since the
derivation of this expression assumes a non-depleted input beam.

Depleted input beam

In the case of perfect phase-matching Ak = 0, equations (2.25) and (2.26)
become:

Al

a;;“ = —rAXAL (2.29)
A7
8‘84;“ = kA (2.30)
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From these expressions it is seen that if fl{d (0) is taken to be a real quantity,
both A/,(z) and A} ,(z) will be real quantities for all z. From the Manley-Rowe
relation (A.15) one can then infer that

AZ(2) + A5, (2) = AZ(0) (2.31)

and from (2.30) one obtains a differential equation

/
O = 5 [A2(0) - A2()] (2.32)
with the solution
A (2) = AL (0) tanh (A!,(0)kz2) (2.33)

From this expression, the second harmonic conversion efficiency 7 can be calcu-
lated for a crystal length L:

2

A2 (L) " 2 (A", (0)sL) (2.34)

A;(0)

() = |

This shows that it is actually possible to get a full conversion of light from the
fundamental frequency to the second harmonic. In most practical cases however,
there are other processes involved making it difficult to achieve.

2.2.3 Total conversion efficiency and pulse length

The dependence of second harmonic generation efficiency on input beam inten-
sity, as discussed in the previous section, suggests that the amount of frequency
doubled light obtained for a pulse of constant energy will be strongly dependent
on the pulse length. Let us consider an incident Gaussian pulse of the form

@6—41112(%)2

Tp

Loa(t) =

s

(2.35)

where 7, is the pulse length and C), is a constant proportional to the total energy
of the pulse. The pulse energy W is obtained by integrating the intensity profile
over the entire pulse?, giving:

“+o0 +oo C 2
o _ _ Cp %mz(é) _ T
Wi /_ N I, (t)dt /_ . e dt = Cpy/ N (2.36)

Assuming for simplicity a conversion coefficient 7(L) which is independent of
the instantaneous frequency, the intensity of the frequency-doubled pulse at the
output of the crystal is given by

I2w,o(t) = n(L)Iw,i(t) (237)

3Note that the pulse energies in this section is defined as pulse energy per unit area of the
beam, i.e. with the unit [J/m?2]. Normally the intensity is also integrated over the spatial
coordinates of the beam, but for this analysis this is not necessary.
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Non-depleted approximation

Under the non-depleted approximation, holding for low conversion efficiencies,
the conversion coefficient is given by (2.28) and is proportional to the input
intensity. The pulse energy of the frequency-doubled pulse is then

+o00 2 2L2 +oo
W2w,o = / n(L)Iw,Z(t)dt: . / Ii,z(t)dt

— 00 EpC 00
272 +oo 2 f )2 2 2L2 2

L G ey, WG [T
€0¢  J_oo Tg TpEOC 81n2

where perfect phase-matching has been assumed (Ak = 0). Substituting C),
from equation (2.36) into equation (2.38) and dividing by the pulse energy of
the input pulse gives a measure of the total conversion efficiency for the pulse:

1% 262L*W,; [2In2 W,
ot = Tt = T = 2 (2.39)
w,i TpEQC T Tp

To conclude the results of this simplified calculation, for low conversion efficien-
cies the total pulse conversion efficiency is, not only proportional to the energy
of the incident pulse, but also inversely proportional to the pulse length.

Depleted input pulse

In the depleted case, the conversion efficiency n(L) is given by expression (2.34)
and the pulse energy of the frequency doubled pulse is then

400
Wgw’o = / U(L)Iw’i(t)dt
— 00
Foo 21, (¢
= / I,i(t)tanh® [ KL 2oil®) | (2.40)
—c0 gpcC

From this expression, it is seen that it is not easy to find a good analytical
expression for the total pulse conversion coefficient 7,0, = Way /W, in the
depleted case. This calls for a numerical approach and in figure 2.1 the to-
tal conversion efficiency is plotted for both the non-depleted and the depleted
case, as a function of the fundamental pulse energy for a constant pulse length.
As seen, the non-depleted approximation will only be valid for sufficiently low
conversion efficiencies.

Under the assumption of a constant pulse energy, figure 2.2 shows the total
conversion efficiency as a function of pulse length. From this figure it is seen
that the total conversion efficiency for a pulse is strongly dependent on the pulse
length. Hence, to maximize the total SHG-efficiency is equivalent to minimizing
the pulse length. This will be used in the present study. In agreement with the
previous plot, figure 2.2 clearly shows that the non-depleted approximation is
in good agreement with the true result only for low conversion efficiencies.
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Figure 2.1: Variation of the total conversion efficiency with the input pulse
energy. The dashed line shows the non-depletion approximation and the solid

line is drawn for a depleted input pulse. The plot was made for a pulse length
of 40 fs.
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Figure 2.2: Variation of the total conversion efficiency with the input pulse
length. The dashed line shows the non-depletion approximation and the solid

line is drawn for a depleted input pulse. The plot was made for a pulse energy
of 3 nJ.
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The plots in figure 2.1 and figure 2.2 were made for a wavelength of 800 nm,
using the estimated parameters for the experiments performed in this work.
The crystal used was a 100 ym thick BaB2O4 (BBO), with an effective nonlinear
coefficient deg¢ = 1.6-107'2 m/V [11]. The refractive indices needed to calculate
the coupling constant were calculated using the Sellmeier formulas for BBO [12],
and the calculated value was x = 4.9-107% V—1. The spot size of the laser beam
in the crystal was estimated to be 230 um?. The plot in figure 2.1 was made
for a pulse length of 40 fs. Figure 2.2 was plotted for a pulse energy of 3 nJ.

2.3 Characterization of short pulses

In section 2.1 a mathematical description of short laser pulses was made. Con-
cepts like amplitude and phase was introduced and discussed both in the time-
domain and in the frequency-domain. An important issue that is involved in
almost all practical situations, is how to measure these quantities. When dealing
with ultrashort laser pulses with a time duration in the order of femtoseconds,
it is obvious that traditional electronic equipment will not be adequate due to
the long response time of electronics . Measurements of the spectral amplitude
of short pulses pose no additional problems as compared to continuous light,
and an ordinary spectrometer may be used.

Most methods used today for time characterization of ultrashort laser pulses,
uses a reference pulse as a probe for doing the measurement. However, to
correctly resolve the time behaviour of a laser pulse, the reference pulse needs
to be shorter than the measured pulse, which is a problem since the measured
pulse is often the shortest pulse available. If however a shorter reference pulse
is available, in turn its time behaviour needs to be well known, and we are back
where we started. The solution to this is to use the pulse itself as the reference.
In this way at least some properties of the time profile may be extracted. If such
a measurement is combined with for example spectral data, the pulse shape can
be fully characterized.

2.3.1 Autocorrelators

As the name implies, an intensity autocorrelator is used to record the intensity
autocorrelation signal defined as

A7) = / T I — )t (2.41)

— 00

where I(t) is the temporal intensity of the pulse. This signal, which is always
symmetric and thus contains very little information of the pulse shape, can be
used to measure the duration of an ultrashort laser pulse, under the assumption

4The fastest photodiodes today have a response time 100 ps, while for example a streak
camera might be able to do measurements with a time resolution of a few hundred femtosec-
onds.
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Figure 2.3: Multi-shot autocorrelator. The input pulse is split at the beamsplit-
ter BS and one part is reflected at mirror M1 while the other part is reflected at
the roof-top mirror M2, which is placed on a translation stage. Both parts are
then focused by the mirror M3 and crossed in the crystal C. The autocorrelation
signal is recorded by the photomultiplicator D.

of a known pulse shape. More precisely, the FWHM of the autocorrelation signal
Tac and the pulse length 7, are related by

Tac = ATy (2.42)

where the constant a depends on the pulse shape. For a Gaussian pulse the
constant is @ = 1.414 while for a hyperpolic secant pulse shape, the constant is
a = 1.543 [1]. Using the relation 2.42 and assuming a specific pulse shape, the
pulse length of an ultrashort laser pulse can easily be retrieved from an autocor-
relation trace. The pulse length is an important parameter and, when working
with an experiment, often the first thing that needs to be measured. Further-
more, the autocorrelation is a rather fast and comparingly simple measurement
to carry out, and due to this it is widely used in practice.

In figure 2.3 a possible design of a multi-shot autorrelator is shown. The incom-
ing laser pulse is split using a beamsplitter, and the two replicas of the pulse
takes different paths before they are both focused and crossed in a crystal. Due
to the focusing, the intensity in the crystal is high, allowing for sum-frequency
generation® to occur between the two pulses. Due to the phase-matching condi-
tion for the crossed beams, the sum-frequency signal is generated at the bisector
of the two beams, and may then be detected by a photomultiplier. In this way
the value of the overlap integral (2.41) may be measured and by translating the
roof-top mirror M2, the time delay 7 between the pulses may be scanned while
the autocorrelation signal is recorded.

5Sum-frequency generation is caused by the same physical process as second harmonic
generation, as described in section 2.2.1, with the difference that the second order term in
(2.20) is now the product between the amplitudes of two different pulses.
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Figure 2.4: SPIDER-apparatus. The two time-delayed replicas are overlapped
with a chirped third replica in the crystal. The spectrum of the sum-frequency
pulses along the bisector between the crossed beams is detected using a spec-
trometer.

The intensity autocorrelator used in this work has a slightly more sophisticated
design, where a rotating parallel mirror assembly is used to vary the time delay
T.

2.3.2 SPIDER

SPIDER stands for Spectral-Phase Interferometry for Direct Electric-field Re-
construction and is a technique based on frequency-domain interferometry with
spectral shearing as described in Appendix B. The time-delayed replicas of the
pulse are easily obtained in the same way as for the autocorrelator above (see
figure 2.3), while the spectral shear between the two pulses corresponds to a
linear temporal phase modulation, which is not obtainable by any electronic
modulator today. To solve this, the non-linear process of sum-frequency gen-
eration may be used. By focusing the two time-delayed replicas into a crystal,
together with a chirped third replica of the pulse, the sum-frequency generation
will occur with different parts of the chirped pulse for the two time-delayed
pulses. In this way, the nonlinear signal will contain both replicas, upshifted
with different frequencies, and thus spectrally sheared relative to one another.

In figure 2.4 the SPIDER-apparatus used in this work is depicted, and in figure
2.5 the overlap between the two time-delayed pulses and the chirped pulse in
the crystal is shown. Note that since the chirped pulse is considerably longer
than the time-delayed pulses, it can be assumed that the frequency shift for
each pulse is the same for all frequencies. After recording the SPIDER-signal,
the time-delay can be measured by recording the spectrum of the direct-doubled
time-delayed pulses and measuring the fringe distance (see Appendix B). The
spectral shear {2 may finally be determined by blocking one of the replicas at a
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Figure 2.5: Overlap between the two time-delayed replicas and the chirped pulse
in the crystal.

time, measuring the displacement of the spectrum.

When the spectral phase has been measured and calculated using the FTSI-
method described in Appendix B, it is possible to reconstruct the temporal
shape of the pulse through an inverse Fourier transform. To do this it is nec-
essary to know the spectral intensity of the input pulse, readily measured by a
spectrometer.

2.4 Pulse shaping

This section describes different techniques used to change the shape of laser
pulses, starting with pure compression in the time-domain, continuing with
some common pulse shaping techniques and finishing off with the description of
the Acousto-Optic Programmable Dispersive Filter (AOPDF) that was used in
this work.

2.4.1 Pulse compression techniques

As seen above in section 2.1.4, the shortest pulse for a given spectral band-
width, the transform-limited one, is obtained when all higher-order phase terms
are zero. If one wants to compress a pulse to a pulse length shorter then the
transform limit, it is therefore necessary to increase the spectral bandwidth.
This can be done, for example, by self-phase modulation in a hollow fiber [9].
The increase in bandwidth is however always accompanied by a chirp which
needs to be compensated.

More generally, since most materials exhibit positive dispersion (see section
2.1.3), a laser pulse will always accumulate a second order phase term upon
propagation. Even in air a laser pulse broadens as it propagates, gaining an
increasing linear chirp. This calls for optical elements exhibiting a negative
GDD, i.e. a group delay that decreases with increasing frequency.
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Figure 2.6: Parallel grating compressor. The incident beam at A is dispersed
by the grating G1. After reflection at grating G2, the different frequency com-
ponents are parallel but spatially spread and the component of frequency wo
has travelled a shorter distance than the component with frequency w; when
reflected at the mirror M.

Pl

Figure 2.7: Prism compressor. The angular dispersion of prism P1 causes the
different frequency components of the beam to pass through different amount
of material in prism P2.

The grating compressor

A common approach is to make use of the angular dispersion of gratings, ar-
ranging them in such a way that low frequency components of a pulse will be
delayed more than high frequency ones. In figure 2.6 an arrangement of two
parallel gratings is depicted.

Let us consider the two frequency components w; and ws of the incident beam,
with w1 < ws. Due to the angular dispersion of the first grating, the high
frequency component wo travels a shorter optical path AB’C’B’ A than the low
frequency component wy (ABCBA). In this way the grating pair introduces a
negative GDD, compensating for a positive second order phase.

The prism compressor

By using a pair of prisms, arranged as in figure 2.7, a negative GDD may
be achieved. In this case it is the angular dispersion of the first prism (P1)
that is used to separate the frequency components of the beam. Depending on
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Figure 2.8: Zero dispersion-line used for pulse shaping in the Fourier plane.

frequency, the components will then pass through different amounts of material
in the second prism (P2). More precisely, the low frequency components will
experience less deviation by the first prism, thus passing through a larger amount
of material at the second prism, being delayed relative to the high frequency
components. By adjusting the distance between the prisms, it is possible to
control the amount of negative GDD introduced by the compressor and by
translating the first prism along the normal to its base plane, it is possible
to control the amount of material that all frequency components go through,
making it easy to do fine adjustments to the applied compression.

2.4.2 Common pulse shaping techniques

As seen from section 2.1, a laser pulse can be fully characterized by its com-
plex spectral amplitude. A pulse can then be "shaped" by manipulating both
its spectral amplitude and the phase. A common and straightforward way to
achieve this, is to spatially spread the frequency components of the laser pulse,
and then use filters to control the amplitude and phase for different spectral
regions.

The basic apparatus used for this type of pulse shaping is referred to as a "zero
dispersion pulse compressor" or a "zero dispersion-line" and is depicted in figure
2.8. In a zero dispersion-line the frequency components in the input beam are
angularly dispersed by the first grating, and then collimated by the first lens.
Components with different frequencies are in this way focused at different points
in the back focal-plane of the lens. The effect of the lens is to transform the
angular dispersion of frequencies into spatial separation at the focal plane, thus
performing a Fourier transform (the focal plane is also called the Fourier plane).
The second lens then performs the inverse transform back to angularly dipersed
frequencies and then the last grating collimates the beam again.

By inserting a filter in the Fourier plane, the different frequency components
may be arbitrarily modulated in amplitude or phase. If no filter is used, a
well-aligned zero dispersion-line should have no effect on the pulse at all.
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Using this type of setup, a variety of filters might be used, both fixed and
programmable. In the latter case, the pulse shaping is said to be adaptive. The
filters might be phase-only, affecting only the phase of the spectral components,
or amplitude-only, changing the shape of the spectral amplitude. It is also
possible to use filters which modify both the amplitude and the phase of the
spectral components.

When adaptive pulse shaping is required, programmable masks have to be used.
One common type of programmable mask is the Liquid Crystal Spatial Light
Modulator (LC SLM), using electronically addressed liquid crystal displays.
Modulators of this kind have the disadvantage of a finite resolution depending
on the size of the smallest programmable point of the mask. Another approach
is to use an Acousto-Optic Modulator (AOM), operated in the Bragg-regime
[13], giving a lower transmission due to the acoustic diffraction efficiency, but
offering today a factor of 2 better resolution than the LC SLM [14].

2.4.3 The Dazzler

The Dazzler® is a pulse shaping device proposed and designed by P. Tournois
[5]. Tt is an Acousto-Optic Progammable Dispersive Filter (AOPDF) based on
collinear” acousto-optic interaction in a crystal of Paratellurite (TeQ3). Paratel-
lurite is a positive uniaxial crystal, and as such, it can be described by two
indices of refraction, an ordinary n, and an extraordinary n., corresponding to
two different states of polarization. The dielectric tensor for a uniaxial crystal
may be written as:

nz 0 0
e=e | 0 nZ 0 (2.43)
0 0 n?

For a positive crystal the extraordinary index is larger than the ordinary one
while for a negative crystal n, < n,.

Interaction between acoustic and optical waves

Acoustic waves are pressure waves, propagating through a medium at the speed
of sound, generally much slower then the speed of light. This makes it possible
to study the interaction of light with acoustic waves under the assumption that
the acoustic wave is stationary or "frozen" during the short interaction time.
As a pressure wave, an acoustic wave introduces strain into a medium, and as
a result of the photoelastic effect [10] the refractive index will change with the
amount of strain introduced. A common approach is to regard this change in
refractive index as a perturbation to the dielectric tensor (2.43). In a medium
where an acoustic wave is propagating in the z-direction the dielectric tensor

6The Dazzler is manufactured and sold by Fastlite, Ecole Polytechnique, XTEC Batiment
404, 911 28 Palaiseau, France.

"Collinear interaction means that the acoustic and optical waves travels in parallel through
the material, thus maximizing the interaction length.
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Figure 2.9: An acoustic wave launched in a Paratellurite crystal with its
wavevector K directed at an angle 6, from the principal z-axis will have its
direction of energy transfer in an angle 3, from the z-axis.

may be written as
e(z) =e+ Ac(z) (2.44)

where ¢ is the unperturbed dielectric tensor in 2.43 and Ae(z) is the perturbation
caused by the acoustic wave, having off-diagonal elements.

As mentioned above, there are two possible modes of propagation in a unixial
crystal, and light propagating as an ordinary or extraordinary wave will stay
in its state during propagation. The effect of the pertubation Ae(z) is that it
couples these modes of propagation, so that energy can be transferred between
the two modes by interaction with the acoustic wave [10]. This transfer will
only occur in the case of phase matching between the optical modes and the
acoustic wave, a condition that may be written as

ke = ko £ K (2.45)

where ko, and ke are the wavevectors of the ordinary and extraordinary modes,
and K is the acoustic wavevector with magnitude K = 27 f/V where f is the
acoustic frequency and V is the speed of sound in the material.

If an acoustic wave is launched in a paratellurite crystal, with its wavevector K
directed in an angle 6, from the principal z-axis, the actual direction of energy
transfer is different from the direction of the K-vector and at an angle g3, from
the principal x-axis (see figure 2.9). This is due to the strong anisotropy of the
crystal, causing the acoustic phase velocities V,, and V, along the = and z-axis
to differ.

The incident ordinary ray is directed at an angle 8, = (3, from the principal
x-axis. This choice is made in order to maximize the interaction length with the
acoustic wave and thus minimize the acoustic power needed. Coupling between
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Figure 2.10: Phase-matching in a Paratellurite crystal between an ordinary wave
k, and an extraordinary wave k. with an acoustic wave K.

the ordinary and extraordinary waves and the acoustic wave is achieved when
the phase-matching condition (2.45) is fulfilled and in figure 2.10 this situation
is depicted.

From (2.45), using the fact that the optical anisotropy An = n. —n, is generally
small compared to ng, an expression for the ratio a between the copuled acoustic
and optical frequencies can be obtained (see [15]).

V(0,) cos?by
v ¢ cos(fp —0,)

(2.46)

where V(6,) is the acoustic phase velocity along the direction 6.

For the device used in this thesis, the crystal is cut so that the angle of the
acoustic wavevector is 6, = 8°. For maximized interaction length, the incidence
angle of the ordinary wave is 6, = 58.5° and for a wavelength of 800 nm « =
1.42-107". In order to transfer light at the wavelength 800 nm, corresponding to
a frequency of 375 THz, the acoustic wave must have a frequency of 53.2 MHz,
easily obtainable with todays RF generators. Furthermore, due to the dispersion
of the Paratellurite crystal, the optical anisotropy An and hence the ratio « is
wavelength-dependent.

Amplitude and phase control of short pulses

This section will describe in a phenomenological way how an acoustic wave can
be used to introduce a linear chirp to a laser pulse. For each frequency com-
ponent in an incident ordinary laser pulse, it is possible to find an acoustic
frequency that fulfills the phase-matching criterion, transfering part of the fre-
quency component into an extraordinary mode of propagation. In the Dazzler,
both the acoustic wave and the laser pulse propagate together through the length
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of the crystal L. The acoustic wave is produced using a transducer excited by
an RF generator. Since the acoustic wave propagates through the crystal with
the velocity V' (6,), its temporal profile is reproduced spatially in the crystal for
a given moment of time. Due to the short duration of the laser pulse, and to the
fact that the speed of light far exceeds the speed of the acoustic wave, the laser
pulse can be assumed to encounter a fixed dielectric grating upon entering the
crystal. Locally this dielectric grating has only one spatial frequency, related to
the corresponding temporal frequency of the acoustic wave, and hence only one
frequency component of the incident laser pulse will be phase-matched at a cer-
tain position in the crystal and coupled to the extraordinary mode. Depending
on the time behaviour of the acoustic signal, it is then possible to transfer dif-
ferent frequency components of the incident pulse into the extraordinary mode
at different positions in the crystal.

After the crystal, the extraordinary mode contains all the frequencies that have
been phase-matched at different positions in the crystal. Depending on the
amplitude of the acoustic wave for different frequencies, the coupling efficiency
may be controlled individually for each frequency component, making it possible
to directly modify the spectral amplitude of the laser pulse.

Since paratellurite is an anisotropic crystal, a frequency component will experi-
ence different indices of refraction when travelling in the different modes. Hence
if the coupling takes place at a coordinate x along the crystal (x being zero at
the front face), the phase shift of the component due to propagation through
the whole length L of the crystal is

Ap(z) = —kox — ke(L —x) = —k.L + (%nwx (2.47)

where k, and k. are the propagation constants for the ordinary and extraordi-
nary waves and dn is the difference in refractive index between the extraordinary
and the ordinary wave in the direction of propagation. The first term represents
the normal effect on the phase and does not depend on where in the crystal the
coupling takes place. The second term describes the phase that is controlled
by the acoustic wave. Consider for example an acoustic signal with a negative
linear chirp, that is with a linearly decreasing instantaneous frequency. Inside
the crystal, this signal reproduces itself spatially with a positive linear chirp (as
seen when travelling in the direction of the laser pulse). More specifically the
low frequency components are at the beginning of the crystal and the high fre-
quency components at the end. Lower optical frequency components will thus
be coupled earlier in the crystal than higher frequency ones. Neglecting disper-
sion, assuming that « and dn are frequency-independent, x in equation (2.47)
becomes proportional to w. Thus the second term in the introduced phase shift
is approximately quadratic in frequency, meaning that a negative linear chirp is
introduced to the pulse (see section 2.1.4).

An illustration to this situation is depicted in figure 2.11 where an incident
pulse with an initial positive chirp is compressed through the application of an
acoustic wave with a negative linear chirp.
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Figure 2.11: Compression of a pulse with positive chirp using an acoustic wave
with negative chirp. The red components of the pulse gets coupled earlier in
the crystal than the blue ones, thus travelling a longer distance experiencing the
higher extraordinary refractive index. In this way the low frequency components
are delayed relative to the high frequency components, causing a compression
of the pulse.

Theoretical result for the Dazzler

A more thourough investigation shows that [5] the output optical pulse is pro-
portional to the convolution between the input pulse and the scaled acoustic
signal

Bout(t) o Ep(t) ® S(t/) (2.48)

where S is proportional to the electric signal driving the piezoelectric transducer
used to excite the acoustic wave in the crystal and « is the ratio between the
acoustic and optical frequency as defined in (2.46). In the frequency-domain
(2.48) becomes

Eout(w) x Eip(w)S(aw) (2.49)

Group delay compensation

As seen above the Dazzler can apply a negative GDD on a laser pulse. The
maximum applicable GDD is dependent on the crystal length and the actual
bandwidth of the pulse. The larger the bandwidth of the pulse, the longer crystal
is needed to introduce a fixed amount of GDD. An important issue is that the
crystal itself introduces a positive GDD of around 12500 fs?. If this is to be
compensated by the Dazzler itself, there is an upper bandwidth limit for which
this is possible. At 800 nm, with a crystal length of L = 25 mm, the maximum
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Figure 2.12: Limits for the amount of introduced negative GDD with the crystal
dispersion included. Note that the limit for the introduced GDD is zero at the
maximum self-compensation bandwidth of 100 nm.

total bandwidth of self-compensation called the cut-off bandwidth®, is 100 nm.
In order to preserve the wings of the spectrum it is therefore in practice not
possible to have a bandwidth larger than about half of this maximum bandwidth.
In figure 2.12 the maximum negative GDD that can be introduced by the Dazzler
is shown as a function of the pulse total bandwidth. In this plot the crystal
dispersion has also been included.

Another important consideration related to the introduced group delay is the
interaction efficiency of the acoustic wave with the laser pulses. A single fre-
quency treatment with coupled mode analysis [10] allows to relate the diffracted
light intensity to the incident light intensity and to the acoustic power density
in the interaction area. Due to material properties there is however a limit for
the maximum allowed acoustic power density in the crystal. Because of this it
is preferrable to spread out the local frequencies of the acoustic wave so that
the whole crystal is used for diffraction, allowing for a larger total interaction
efficiency. As discussed above, this spreading is controlled by the chirp of the
acoustic wave, making it important to at least introduce some GDD in order to
fill the crystal sufficiently with the acoustic wave.

To allow the Dazzler to operate within a dynamic range where none of the above
limits are violated, it is often necessary to introduce a fixed GDD by external
means. In this work a prism compressor was used before the Dazzler to achieve
this.

8Note that this is truly the total bandwidth, as opposed to the usual FWHM-bandwidth.
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Figure 2.13: Topview of crystal unit. The crystal is cut so that both direct and
diffracted beams deviate a little from the input beam. Picture from [16]

Wavelength resolution and calibration

The Dazzler used in this work is constructed to work at a central wavelength of
800 nm, allowing for a spectral bandwidth of 200 nm limited by the bandwidth
of the piezoelectric transducer. For a collimated input beam, the spectral res-
olution is 0.6 nm, which means 340 individually programmable points within a
bandwidth of 200 nm. A divergent incident beam degrades this resolution and
the maximum allowed divergence is d6;/, = 0.04°. The angle of incidence of the
input beam is more tolerant to misalignment, causing only a degradation of the
spectral calibration for small misalignments. This is due to the fact that the
frequency ratio « in (2.46) is calculated for a specific angle of incidence and thus
has to be changed in the software if another angle of incidence is required. A
large misalignment of the input beam will however lead to poor interaction with
the acoustic wave. The normal procedure for fine tuning of the incidence angle
is to match the wavelengths set in the software with those of a spectrometer by
tilting the crystal.

Dazzler setup and control software

The optical setup of the Dazzler crystal is shown in figure 2.13. The polarization
of the input beam should be vertical, leading to a horizontal polarization of the
diffracted beam, which has a deviation of 1° from the direction of the input
beam. The acoustic wave is launched in the crystal by the transducer, recieving
its signal from the RF generator via a coaxial cable.

The RF generator has a waveform memory, making it possible to operate the
generator in a stand-alone mode, as soon as a wave form has been sent to it
from the control computer. The launch of the waveforms may be triggered either
internally or by an external signal. In internal trigger mode, it is possible to
set the delay between subsequent launched acoustic signals. When externally
triggered, it is possible to set the internal delay between the trigger signal and
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the acoustic signal. In usual operation, working with a pulsed laser system, the
RF generator is triggered externally by a signal from the laser system?, to assure
that the acoustic signal is fully present in the crystal when the laser pulses
arrive. In order to get a higher throughput through the crystal, for example
when aligning the setup, it is also possible to let the RF generator work in a
continuous mode, where the next acoustic signal is sent directly following the
previous one, allowing for an acoustic signal repetition rate of approximately
34 kHz'0,

The control software delivered with the Dazzler, allows the user to arbitrarily
apply a filter to the laser pulse. For the amplitude, a supergaussian profile with
a hole can be applied. The position and width of the profile and the position,
width and depth of the hole can be adjusted by panel controls. For the phase,
a polynomial with variable coefficients up to the fourth order can be applied.
It is also possible to feed the program with two files, one for the amplitude and
one for the phase, containing values of the amplitude and the phase for different
wavelengths, written in a standard column format. When reading such files, the
program makes a linear interpolation between the specified points.

When a filter function has been chosen, the software computes the corresponding
RF signal in the frequency domain, using the scaling factor o as described
above. The signal is then transferred to the time domain via an inverse Fourier
transform, and sent to the RF generator.

In many applications, there is a need to control the applied pulse shape from an
external program. For these cases the Dazzler software supports a loop-mode,
in which the software is idle until a request is made through a request file. The
request file is a text file containing the file path to a parameter file with the
front panel settings described above. Upon finding a request file, the software
reads the desired parameter file, calculates the corresponding RF waveform and
sends it to the RF generator. When the waveform has been sent, the request
file is deleted indicating that the requested pulse shape is now active.

Due to the maximum allowed acoustic power density in the crystal, caution has
to be taken not to use a to high trigger rate. The maximum allowed trigger
rate is dependent on the average power of the acoustic waveform. In normal
operation, the control software calculates the maximum trigger frequency and
sends it together with the waveform to the RF generator. If the trigger frequency
at any moment exceeds this maximum value, the RF generation is stopped
and the user is alerted. When operated in loop-mode, this safety feature is
however not active since it would considerably slow down the switching between
waveforms.

9Tn a laser system using a pulse picker to select the pulses, this signal is most conveniently
used to trigger the RF generator, and the internal delay may then be adjusted to synchronize
the acoustic signal with the arrival of the pulse.

10This repetition rate is due to the sampling frequency of the RF generator, fs = 70 MHz,
and the number of sampling points, N = 2048, causing the signal to repeat itself after N/fs =
29.3 ps.
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Chapter 3

Genetic algorithms

3.1 Theory

Genetic Algorithms are a class of search algorithms, belonging to the field of
Evolutionary Programming, using natural evolution as the model for a specific
problem!. The concept of genetic algorithms was developed by Holland et al.
at the University of Michigan in 1975, in hope to transfer the important natural
mechanisms of adaptation and exploration into artificial systems [17].

Genetic algorithms are parallel in the sense that the search is not done from
a single point in the search space, but rather from a set of points called a
population. Each search point in the population is called an individual. Each
individual contains encoded information about the parameters representing the
search point. In this way the genetic algorithm does not work directly with the
parameters themselves. Each population, or each set of individuals, is referred
to as a generation, and the strategy of the search procedure is to evolve the
current population creating a new generation with better suited individuals.

An important concept of genetic algorithms is the fitness or objective function.
The fitness function is needed to direct the search, describing what a good
individual should look like. In fact, the fitness function may be regarded as a
function mapping each possible individual to a fitness value and the higher the
fitness, the better the individual. The process of calculating the fitness? for each
individual in a population is an important step in a genetic algorithm and is
often referred to as the evaluation of the population.

In figure 3.1 a flow-chart of genetic algorithm operation is shown. Starting from

In many cases the term "genetic algorithm" is reserved for implementations using a bit
encoding of the search parameters while implementations with a more complex encoding are
called Evolutionary Algorithms. In the present work, a bit encoding was used and hence the
term "genetic algorithm" will be used.

2In this case, "calculating" does not necessarily refer to a raw calculation, since the fitness
of an individual might sometimes be determined by for example the result of an experiment
or the performance of the individual in solving a specific problem.
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Figure 3.1: Flow-chart describing genetic algorithm operation.

an initial random population, the population is evaluated and reproduced to
obtain a new generation. The new generation is then evaluated and the process
goes on until some pre-defined stop-criteria is met. The completion of the entire
process of optimization, starting from a random population and stopping when
the criteria is met, is often referred to as a "genetic algorithm run" or just a
"run". The reproduction step creates the new generation based on the fitness
of the different individuals. Reproduction is often divided into three steps, or
operators, called selection, crossover and mutation which are discussed in section
3.1.3.

3.1.1 Advantages over normal search procedures

Traditional calculus-based search methods may be divided into two main classes:
indirect and direct. Indirect methods try to localize a maxima by solving the
non-linear set of equations describing the problem, setting the gradient of the
function to zero®. Direct methods on the other hand, search from a point
in the search space, moving in the direction of the local gradient. Calculus-
based methods are thus depending on the existence of local derivatives over
the whole search-space, a condition that is hard to fulfill for search spaces with
discontinuities and noise. Another problem with these methods is that they
only search for local maxima, with a risk of missing the global maximum far
away from the current point in the search space.

Another type of search method is the enumerative approach. As the name
implies, these simple schemes uses brute force to calculate the function value at
every possible point in the search space, keeping the best-so-far as they go on.
The problem with such an approach is obvious. In a search space with a large
number of dimensions, the number of possible points gets enormous, making it
impossible to examine all of them in a reasonable time.

During the evaluation step, a genetic algorithm only needs to calculate the value
of the fitness function for the individuals in the current population, making it in-
dependent of derivatives or other indirect information. Thus a genetic algorithm

3Here the goal of the search is described as finding a maximum value of a function. This is
a true description in all searches if the function considered is the fitness function of the search
space as described in section 3.1.
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can be expected to perform well even in a search space with discontinuities and
noise. As described above, a genetic algorithm does not search from a single
point, but rather from a whole set of points, contained in the current popula-
tion. Because of this it is less likely to get stuck on a local maximum, since it
never ceases to explore other parts of the search space as well.

3.1.2 Parameter encoding

In a genetic algorithm, the parameters describing a point in the search space are
not handled directly, but are encoded as a bit-string or chromosome. The indi-
vidual bits of the string are often referred to as genes. Consider a chromosome
with 10 genes

(agva87a77a67a57a47a37a27a17a0) (31)

where the genes a; may take on the values 0 and 1. The most common decoding
of such a string is to regard the chromosome as an positive integer A expressed
in the base 2:
9
A= "a; 2 (3.2)
i=0

Generally for a chromosome with [ genes, this decoding means that the unsigned
integer A may take on 2! different values, ranging from 0 to 2! — 1.

Mapping of real parameters

In most cases, the search space can not be described by an unsigned integer, but
rather by real numbers. This makes it necessary to discretize the parameters
and map them to the integer value of the chromosome. Considering the real
search parameter x, allowed to vary between the values x,,;, and x4, being
mapped to a chromosome with [ genes, a straightforward mapping is

Zé;(l) a; 2"
2l —1

which is the mapping that was used in this work. The precision of the mapping
can be calculated as

(xmaz - xmzn) (33)

Tmax — Tmin

Ax = o 1 (3.4)
showing that when the limits x,,,;, and x,,4, have been set, the number of genes
[ has to be chosen so that the required precision is obtained. A multiparameter
coding is easily obtained by concatenation of several single-parameter codings.
If for example a point in the search space can be described by the three real
parameters z,, x;, and x. and these are to be coded with [,, ;, and [. genes
each, the multiparameter chromosome will look like

(alafla -5 @0, blbfla "'7b07cl6717 "',CO> (35)

with the total length [ = [, 41, +1. and where the genes a; encode the parameter
z, and so on.
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3.1.3 Reproduction operators in a conventional genetic al-
gorithm

The heart of the genetic algorithm is the process of reproduction, the aim of
which is to preserve high-scoring individuals as well as to create new individuals
to explore other parts of the search space. The first thing that needs to be
done is to decide which individuals in the current population should be given
offspring populating the next generation. This is done by the selection operator,
and the choices are based on the fitness values assigned to the individuals in
the evaluation step. When the selection is made, the chosen individuals are
combined (or mated) to produce offspring for the next generation. By this
mating, or crossover, the promising characteristics of one individual may be
combined with some other characteristics of another individual. The last step is
the mutation step, in which the individuals may be randomly changed by some
usually small probability. This step prevents that the algorithm will converge
prematurely, forcing it to try random and unexplored points of the search space
once in a while.

This section will describe the standard set of operators commonly used in a
conventional genetic algorithm. The particular choice of reproduction operators
together with the associated parameters discussed below is commonly referred
to as the reproductive plan.

Selection

In a population containing N individuals the fitness of a single individual is
denoted f; where ¢ ranges from 1 to N. The task of the selection operator is
to select a total of N individuals out of this population. The selection is done
with replacement so that the same individual may be selected several times.

The most common way of doing this is to decide that the probability of a
certain individual being chosen should be proportional to its fitness. A selection
mechanism doing this type of proportionate selection can be implemented by the
steps shown in figure 3.2. This method is often referred to as Roulette-Wheel
Selection [18], since it may be described by a roulette wheel with circumference
fsum where each individual is assigned a sector occupying a length f; of the
circumference.

Crossover

For each two individuals that have been selected by the selection operator,
there is a chance, determined by the crossover probability, that they will be
mated before they are copied to the next generation. Working with binary
strings as chromosomes there are many ways in which this can be done. The
most common scheme is the Single-Point Crossover. Single-Point Crossover
randomly chooses a crossover-point between two genes in the chromosome. The
chromosomes of both individuals are then cut at this position and the first
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1. Calculate the sum of all the individual fitnesses in the
population fsum.

N
fsum = Zfl
i=1

2. Pick a random number fs between 0 and fsym

3. Select the first member in the population whose fitness,
added to the sum of all previous fitnesses, exceeds or
equals the random number fs. If j is the smallest inte-
ger for which

J
Zfi > fs
i=1

is true, the individual j should be selected.

4. Repeat from step 2 until N individuals has been se-
lected

Figure 3.2: Roulette-Wheel Selection-scheme.

15 I i
TN

Parents Offspring

Figure 3.3: Single-Point Crossover. The crossover-point is shown as dashed
lines.

part of one individual’s chromosome is merged with the second part of the
other individual’s chromosome, and vice versa. Figure 3.3 shows a Single-Point-
Crossover between two individuals with chromosomes of length 10.

Mutation

Of the three basic operators, mutation is the simplest to implement. After two
individuals have been selected, and in some case mated, they are to be copied
to the next generation. When copying the individuals, the mutation operator is
introduced as a small probability that each of the copied genes will change its
value, from 0 to 1 or from 1 to 0.
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3.1.4 Modifications and improvements

Many modifications and improvements to the "Standard Genetic Algorithm"
described above have been suggested. One of these, called fitness scaling, is
used in this work. Other modifications as additional selection schemes and
variants of the crossover operator can be found in [17] and [18].

Linear fitness scaling

The fitness scaling mechanism is introduced in order to keep a balance in the
level of competition between different individuals in a population. In the be-
ginning of an optimization run, the average fitness of the population is often
low, due to the random choice of the initial population. In this case the few
individuals with a rather high fitness will be selected with very high probability,
causing it to dominate the other individuals and risking a premature conver-
gence of the algorithm, possibly to a local maximum. To avoid this, there is a
need to scale down the fitness early in a run. Later on in the run, there are many
individuals with rather high fitness, and the average fitness of the population
may be quite close to the fitness of the best individual, causing the probability
that an average individual is selected to be almost as high as the probability
of selecting the best individual. In this case the fitness needs to be scaled up,
directing the search towards the most promising individuals.

Both of these situations can be solved by a technique known as linear scaling.
With this technique the scaled fitness f; is calculated through f] = af;+b, where
fi is the raw fitness and a and b are suitably chosen scaling constants. Normally
the scaling constants are chosen so that the average scaled fitness f/ is equal to
the average raw fitness f, and the maximum scaled fitness f},,, = C- f,, where
C is a constant, normally set to 2. In some cases it is not possible to scale the
fitness as much as the constant C requires since it will lead to negative fitness
values and in that case the fitness is scaled as much as is possible, so that the
individual with the lowest fitness gets the scaled fitness 0. In figure 3.4 the raw
and scaled fitnesses are shown for a real situation, early in the run, and later on
when the algorithm has converged. In this case the scaling constant C' was set
to 2.

3.1.5 Measuring convergence by off-line performance

To quantify the performance of a genetic algorithm, some suitable measure is
needed. In complex systems the goal is not necessarily only to obtain optimum
performance, but rather to reach some satisfying performance quickly. To un-
derstand the differences between different performance measures, it is useful to
assume that the algorithm is used to find the optimal control parameters for
some application, where the fitness of an individual is determined by the ac-
tual performance of the application when the control parameters described by
that individual are used. In 1975, De Jong introduced the off-line performance,
which is a measure of convergence in the cases where not all evaluated individ-
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Figure 3.4: Linear fitness scaling. The left plot shows the raw and scaled fit-
ness early in the run and the right plot shows the situation later on when the
algorithm has converged. Each cross represents an individual. The dotted lines
indicates that the average fitness is not changed when scaled. Note that early
in the run the maximum fitness is scaled down while later in the run it is scaled

up.

uals have to be used for the application. A typical case is when the individuals
are evaluated using a simulation of the application, and the best-so-far individ-
ual* is used in the application. De Jong also introduced the on-line performance
[17], measuring the ongoing performance, which is a better measure in the case
where all evaluated individuals have to be evaluated by applying them to the
actual application.

The state of a genetic algorithm run can be described using a variable g, being
the number of the current generation with g = 1 for the initial generation. As a
measure of an individual’s performance, often the value of the fitness function is
used, but in many applications it is often convenient to use some other quantity.
In the current work, the goal is to maximize the SHG-efficiency for a laser pulse,
and since this efficiency is inversely proportional to the pulse length (see section
2.2.3), the pulse length may be used to calculate the off-line performance. In
this case good performance will correspond to a low performance value. If the
performance of a single individual in generation ¢ is denoted w;(g), with i as
the number of the individual, the performance of the best individual in the
generation may be denoted uy(g). Defining the "best performance so far" as

up(G) =best[up(9)], g=1,2,...,G (3.6)

the off-line performance in generation G is the average of the best performance
so far for each generation up to and including generation G:

1 G
U(G) ==Y up(9) (3.7)

4The best-so-far individual is the individual that up to the current point of the run has
shown the highest fitness.

39



By this definition the off-line performance depends not only on the best perfor-
mance found, but also on whether it was found early in the run. Thus the off-line
performance is a relevant measure of the convergence of a genetic algorithm.

3.2 Implementation

3.2.1 The LabVIEW programming environment

LabVIEW is a graphical programming language using dataflow programming,
meaning that the execution of a program written in LabVIEW is determined by
the flow of data rather then by the instructions. A LabVIEW program, called
a Virtual Instrument (VI), consist of a front panel and a block diagram. The
front panel represents the user interface, or if the VI is a subroutine, the inputs
and outputs. The block diagram contains graphical representations of functions
wired together so that it resembles a flowchart. The objects on the front panel
are represented in the block diagram as data sources or sinks.

The graphical interface makes LabVIEW an ideal environment for writing pro-
grams that are easy to grasp, and thus easy to modify and debug. Its many
predefined functions and its built-in capabilities of communication with pe-
ripherical equipment make it easy to write programs that work well in many
experimental situations. The genetic algorithm used in this study was written
in LabVIEW.

To make the implementation more abstract, and thus easier to modify later,
the whole algorithm was written to work with a set of predefined structures
or building blocks. These structures are either pure data types, describing an
individual or a whole population, or templates, defining operators and functions
by specifying their inputs and outputs.

In section 3.2.2 the connections between the genetic algorithm and the experi-
mental setup are discussed, while the different building blocks used are described
in Appendix C.

3.2.2 Evaluation process

So far only the genetic algorithm has been considered. There is however a
problem-dependent part required to get the algorithm running, namely the
evaluation step. First of all, the algorithm needs to know how to decode an
individual’s chromosome into some useful information and second, how to mea-
sure the fitness associated with this information.

In this work the individuals of a population will each represent a waveform to
be sent to the Dazzler (see section 2.4.3). These waveforms are represented as
parameters in a parameter file which is fed to the Dazzler control software, thus
the decoder function needs to know how to map a string of bits into parameters
for the Dazzler. The decoder function will be further discussed in the next
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Figure 3.5: Sketch of the relationship beween the experimental setup, the con-
trol and measurement routines and the genetic algorithm. By letting all com-
munication with the genetic algorithm pass through the file system, the actual
algorithm implementation is independent of the practical details of the experi-
ment.

section.

After a waveform has been requested, the algorithm needs some way of mea-
suring the fitness of the current waveform. In order to get a general adaptive
system, the measurement routine and the fitness calculation has been imple-
mented separated from the genetic algorithm, working in the same way as the
Dazzler control software in its loop-mode as described in section 2.4.3. This
means that the fitness calculation routine is idle as long as no request for fitness
is made. The communication with the routine is made through a specific file,
hereafter called the fitness file. When this file is available, the fitness calculation
routine stays idle. When the algorithm wants the fitness of the waveform that
it has just requested, it deletes the file. When the file is deleted, the fitness
routine does some measurement, calculates the fitness from the result of the
measurement, and writes the fitness value back to the fitness file.

In figure 3.5 a sketch of the relationship between the actual experimental setup,
the control and measurement routines and the genetic algorithm is shown. As
can be seen, using this implementation, the genetic algorithm is not dependent
or adapted to any specific type of measurement, since it really doesn’t matter
what the measurement routine actually does, as long as it handles the fitness
file as the algorithm expects it to.
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Chapter 4

Experimental methods and
results

4.1 Setup

4.1.1 Laser source

In the experimental part of this work, laser pulses from the oscillator of the Lund
T3-laser! was used. Normally this oscillator is used to seed a chain of amplifiers
operating at a pulse repetition rate of 10 Hz. To be able to pre-compensate
amplitude- and phase-effects of the amplification, a Dazzler AOPDF triggered
at 10 Hz is placed directly after the oscillator. By using the pulses not diffracted
by the Dazzler, i.e. those that are not used for amplification, the experiments
could be made without interfering with other ongoing experiments at the facility.

The active medium of the oscillator is a crystal of titanium-doped sapphire
(Ti:Al;03), pumped at a wavelength of 514.5 nm by an Argon-ion laser. The
width of the gain profile of Ti:sapphire is large, about 230 nm with the peak
at 800 nm, theoretically allowing for tranform-limited pulses of 4 fs duration
(see section 2.1.4). To obtain pulsed operation of such a laser, the phases of
the individual frequency-components have to be locked relative to one another,
a technique known as mode-locking. Practically this can be achieved by modu-
lating the losses of the oscillator cavity in such a way that one favors frequency-
components with relative phases giving rise to short pulses [8]. In the oscillator
used in the present work, mode-locking is achieved by a technique called Kerr-
lens mode-locking. The optical Kerr-effect, or the quadratic electro-optic effect
[10], causes the refractive index of a material to be intensity-dependent. For a
laser beam with a gaussian spatial profile, this causes the material to act es-
sentially as a lens [8] with a focal length being shorter for higher intensities.
By letting the active medium act as a Kerr-lens and aligning the cavity in such
a way that a harder focused beam experiences smaller losses, mode-locking is

ITable-Top Terrawatt laser
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achieved. To compensate for cavity-dispersion, i.e. the dispersion introduced
by the optical elements in the cavity, the oscillator has an intra-cavity prism-
compressor (see section 2.4.1).

During the experiments described here, the bandwidth of the oscillator was
generally around 30 nm, allowing transform-limited gaussian pulses of about 30
fs. The repetition-rate of the oscillator is 80 MHz with an average power of
about 500 mW, giving a pulse energy of 6-7 nJ.

The experiments were performed in another room than the one of the T3-laser
and thus the beam had to be transferred a distance of about 15 m before entering
the experimental setup. As mentioned in section 2.4.3 it is important to have a
collimated beam at the Dazzler and to achieve that a telescope placed directly
after the T3-oscillator was aligned so that the beam waist was located at the
Dazzler crystal.

4.1.2 Pulse preparation

In figure 4.1 the experimental setup is depicted with the input beam entering
the optical table from the left.

Since the input beam was taken from the non-diffracted (zeroth order) beam
of the T3-Dazzler, it was necessary to compensate for at least 12500 fs? of
GDD introduced by that Dazzler. The actual compensation needed will actually
be somewhat larger due to the positive GDD introduced by the telescope and
the propagation distance in air. There is also a small positive GDD in the
beam leaving the oscillator, due to dispersion in a part of the titanium-sapphire
crystal and in the outcoupling mirror. The total dispersion introduced by these
elements can be estimated to be no higher than 1000 fs®2. As can be seen in
figure 2.12 a compensation of this magnitude would give a cut-off bandwidth of
less than 50 nm, which is too narrow, making an external compressor necessary.
Therefore a four-pass prism compressor was used with prisms made of SF10
glass (see figure 4.1).

Figure 4.2 shows intuitively how to think when considering the necessary GDD
to be introduced by the compressor. In this picture the dispersion effects of the
used Dazzler are considered to be introduced by a dispersive element. The Daz-
zler itself is considered to exhibit zero dispersion. As discussed above the GDD
of the pulses entering the optical table can be estimated to be 12500 + 1000 =
13500 fs2 due to the dispersion of the oscillator, the first Dazzler, the telescope
and the propagation in air. Including the dispersion of the used Dazzler through
the dispersive element, this leaves us with a total positive GDD of 26000 fs?. As
seen in the figure, the pulse entering the Dazzler is called the "input pulse", and
from here on when talking about the input pulse of the Dazzler, the dispersive ef-
fects of the Dazzler has already been included. If one wants to introduce a GDD
of -10000 fs? with the Dazzler, the GDD of the input pulse has to be 10000 fs2.
Hence the compressor has to be aligned so that it introduces -16000 fs? of GDD.
As seen in section 2.4.3 it is possible to introduce a maximum negative GDD of
12500 fs? with a cut-off bandwidth of 100 nm, giving a rather large range for
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Figure 4.1: Experimental setup. The input beam passes the compressor before
entering the Dazzler crystal. After the crystal the zeroth order beam is blocked
and the diffracted pulses are sent either to the feedback arm or to a diagnostic
arm by the insertion of the mirror M. In the feedback arm the beam is focused
in the BBO crystal by the lens L1. The lens L2 is placed so that a focus
is obtained at diode 1, maximizing the signal for the frequency-doubled light.
DM1 and DM2 are dichroic mirrors, separating the fundamental component
from the second order harmonic. Above the picture a side view sketch of the
passage of the beam through the prism compressor is shown.
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Figure 4.2: Picture to regard when considering the amount of GDD necessary to
introduce by the compressor. The dispersive effects of the Dazzler are regarded
as a dispersive element placed before the compressor.
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second-order phase-corrections with the operating point chosen as -10000 fs?.
A theoretical calculation (see [22]) shows that the prism distance required to
introduce this amount of GDD in four passes is around 0.8 m, and this was the
distance used during the first experiments.

After the compressor the beam was sent through the Dazzler. The polarization
of the input beam was in this case horizontal and the Dazzler was therefore
aligned side-up to match this polarization (compare with figure 2.13). Thus the
polarization of the diffracted beam was vertical, matching the required input
polarization for the used autocorrelator. After the Dazzler an iris (I3) was used
to block the zeroth order beam, letting the diffracted beam pass. In figure 4.1
two more irises can be seen (I1 and 12) placed at the entrance of the setup and
before the Dazzler respectively. These were used as references when realigning
the setup, assuring the correct beam path through the compressor and the
mirrors before the Dazzler. This arrangement was necessary due to the large
long-term spatial drift of the input beam, resulting from the long propagation
distance and many reflections of the beam prior to the setup.

Finally the diffracted pulses were sent to the feedback arm or alternatively to a
diagnostic arm by the insertion of the mirror (M).

Triggering and timing

When the Dazzler is used in a laser system, the triggering of the acoustic wave-
form is made at the same rate as the pulse picking mechanism in the system. In
this work no pulse picker was used and the repetition rate for the input pulses
was 80 MHz. The Dazzler was triggered at a constant rate of 1 kHz, in order to
imitate the conditions of a complete laser system. With a trigger rate of 1 kHz,
there is no risk to exceed the maximum allowed acoustic power density of the
crystal, making it possible to use the device in loop-mode without the need to
worry about applying an excessive power. A drawback of operating the Dazzler
without a pulse picker is that not only the requested pulse shaping takes place.
In figure 4.3 a time-domain picture of the result of such operation is shown.

Pulses that arrive when the entire acoustic wave is in the crystal will be diffracted
as expected, while pulses arriving at times when only a part of the acoustic wave
is present will only be partly diffracted, seen as the wings of the diffracted pulse
envelopes in figure 4.3. This means that the feedback measurement should be
made within the time . —t, indicated in the figure, measuring only on correctly
diffracted pulses. In a system with a pulse picker, the used pulse should be
picked from inside this time range. For the used crystal ¢, &~ 24 us, meaning
that for an acoustic wave filling 90% of the crystal, there will be about 200
useful pulses when using a repetition rate of 80 MHz. Due to the fact that
the acoustic wave has a linear chirp, the pulses that are diffracted at the wrong
times will get a narrower bandwidth with a spectrum built up only by the optical
frequencies corresponding to the acoustical frequencies present in the crystal at
that instant. One can thus expect the incorrect pulses to have a pulse length
much larger than the correct ones (see section 2.1.4). The phase within this
bandwidth will however still be the applied one.
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Figure 4.3: Time-domain picture of diffraction of a pulse train without the use
of a pulse picker. ¢ is the duration of the acoustic wave. tq =~ 5 us is the delay
related to the propagation of the RF signal to the crystal. t. ~ 24 us is the
propagation time for the acoustic wave through the crystal. Only pulses within
a time range of t. — t, are diffracted by the whole acoustic wave.
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4.1.3 Feedback signal

The goal of this work is to use the genetic algorithm to optimize the SHG-
efficiency since it in section 2.2 was concluded that the second harmonic gen-
eration is more efficient when the pulse is shorter. It was also seen that the
SHG-efficiency is dependent on the pulse energy (see figure 2.1) and as dis-
cussed in section 2.4.3 the acousto-optic interaction efficiency, and hence the
diffracted pulse energy, is dependent on how the acoustic wave fills the crystal.
This makes the feedback signal dependent on the applied amplitude and phase
through the pulse energy as well. However if one assumes that the diffracted
pulse energy is only weakly dependent on the diffraction conditions around a
maxima of the SHG-efficiency, the dependence of the feedback signal on pulse
energy might be an advantage, helping the algorithm to avoid solutions with
low pulse energy.

To measure the SHG-efficiency the diffracted pulses are focused by the lens
L1 with a focal length of 50 mm into a BBO crystal (BaB20O,4). The crystal
is aligned so that second harmonic generation is achieved and by the dichroic
mirrors DM1 and DM2 the fundamental and frequency-doubled pulses are sep-
arated and detected by two photodiodes. The second harmonic pulses are weak
and to enhance the signal, a lens L2 with a focal length of 100 mm is used to
focus the frequency-doubled light onto diode 1. During this work it was not
practically possible to gate the measurement and hence the entire diffracted
pulse train of figure 4.3 was detected. To get a strong enough signal the signals
from the photodiodes had to be terminated with a 1 M) resistance, making
it impossible to temporally resolve even the envelope of the diffracted pulses
due to the associated slow response time. Instead the peak-to-peak value of the
diode signals had to be used as a measure of the total energy in the diffracted
envelope.

Another important issue is that the ratio of the diode signals is not the SHG-
efficiency as defined in section 2.2.3 since the fundamental pulse energy should
then be measured before the second harmonic generation. For low conversion
efficiencies the measured signal will however be a very good approximation of
the SHG-efficiency since the depletion of the fundamental beam can then be
ignored. Using one of the acoustic waveforms resulting from an optimization,
the SHG-efficiency was measured by a power meter to be lower than 3%. This
means that the non-depleted approximation does indeed hold in the experiments
presented here (see figure 2.1 and figure 2.2).

Practically the diode signals were sent to an oscilloscope triggered on the RF
signal from the Dazzler RF generator. The built-in measurement function of the
oscilloscope was used to determine the peak-to-peak values of the two signals
and the results were transferred using GPIB2 to the measurement routine as
described in section 3.2.2.

2General Purpose Interface Bus
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4.1.4 Diagnostics

In order to be able to get quantitative results from an optimization, a diagnostic
arm was also present in the experimental setup. By inserting the mirror M in
the diffracted beam from the Dazzler, the light was coupled to the diagnostic
equipment. The window W as seen in figure 4.1 was made of the same mate-
rial as the lens L1 having a thickness almost equal to the lens. The reason for
introducing this additional material into the diagnostics arm is understood if
one considers that the actual measurement of the SHG-efficiency is not done
directly after the Dazzler but rather in the BBO crystal, after the lens L1. The
effect of the window is then to assure that the phase measured by the diagnostic
equipment is equivalent to the one for which the SHG-efficiency was measured
during the optimization. During the experiments aimed at choosing a reproduc-
tive plan a multi-shot intensity autocorrelator and a grating spectrometer were
used as diagnostics while the analysis of the applied spectral phase was done
using SPIDER as described in section 2.3.

The autocorrelator used was a Femtochrome FR103-XL autocorrelator. In this
device the time delay is achieved by a rotating parallel mirror assembly. The
separate scans are made with a repetition rate of 10 Hz and the signal from the
photodiode may be viewed on an oscilloscope triggered from the autocorrelator.
As a first approach the autocorrelator was operated separately while the Dazzler
was set to operate in continuous mode when measuring the pulse length. With
a pulse train of identical pulses this method is often used successfully but by
studying figure 4.3 one can understand why it does not work here. Even if the
Dazzler is operated continuously there will always be pulses that have passed
the crystal when the acoustic wave is not present in full. These pulses will, as
discussed in section 4.1.2, have a pulse length longer than the one resulting from
a correctly diffracted pulse and hence some of the autocorrelator scans will be
incorrect and even asymmetric. Tests confirmed this and when averaging the
autocorrelator signal over several scans the resulting trace was much wider than
expected leading to an incorrectly measured pulse length.

In order to be able to measure the pulses correctly with the autocorrelator
it is necessary to synchronize the autocorrelator scan with the diffracted pulse
envelopes in such a way that the actual signal from the autocorrelator is recorded
within the time range t. — t, depicted in figure 4.3. As a result of this it will
not be possible to measure the correct pulse length of pulses that are so long
that they can not be scanned by the autocorrelator in the time ¢, — t;. For an
acoustic wave filling the crystal well, as required for high interaction efficiency,
the time range t. — ts will be short and thus even shorter pulses are required if
they are to be measured correctly.

To synchronize the autocorrelator with the diffracted pulse envelopes, it was
necessary to trigger the RF generator on the autocorrelator trigger signal. A
digital time delay was used for this signal and by adjusting the delay between the
autocorrelator trigger and the launch of the acoustic waveform it was possible to
diffract the pulse envelope just when the autocorrelator scan was at the position
of overlap between pulses. By fine tuning the delay it was seen that there existed
a maximum for the autocorrelation signal, as predicted by this discussion, just
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Parameter Unit | Min Max Precision | Gene
width nm 0 90 0.09 70..79
hole position | nm 700 900 0.20 60..69
hole width nm 0 70 0.07 50..59
hole depth au 0 1 1.0-1073 | 40..49
delay fs 0 3600 3.5 30..39
order 2 fs? -20000 | -5000 14.7 20..29
order 3 fs3 -100000 | 100000 | 195.5 10..19
order 4 fs? -300000 | 300000 | 586.5 0.9

Table 4.1: Waveform parameters used for the genetic algorithm.

when the scan was including the correctly diffracted pulses. Due to the fact that
the diffraction in the Dazzler crystal might take place at different positions, the
diffracted pulse envelope may also be delayed in time, making it necessary to
do the fine tuning over again for each pulse to be measured on.

From this discussion it is realized that the autocorrelator measurement will
probably not give any reliable value for the pulse length, at least not for long
pulses, since the measurement might, and probably will, be made partly on
pulses that are not the correct ones. The problems described are solely due to
the fact that there are no pulse picker in the used system.

4.2 Method

The reproductive plan is the particular choice of reproduction operators to-
gether with the associated parameters for those operators (see section 3.1.3).
In this experiment the standard set of operators described in section 3.1.3 was
implemented and used. The population size and the probabilities for crossover
and mutation were varied in order to find a combination leading to good con-
vergence measured by the off-line performance with respect to pulse length. To
improve the effect of the selection mechanism, a linear fitness scaling mechanism
as described in section 3.1.4 was used.

4.2.1 Encoding of waveform parameters

The waveform parameters corresponding to the Dazzler front panel controls was
encoded using ten bits each, except for the position of the supergaussian ampli-
tude which was fixed to the central wavelength of the spectrum. In table 4.1 the
used parameters are shown together with their minimum and maximum values
and the precision obtained. In figure 4.4 a picture of the actual chromosome
with 80 genes is shown and the location of each parameter is indicated. In the
table it can be seen that the precision of the three first parameters is unnec-
essarily good, since the actual wavelength resolution of the Dazzler is around
0.6 nm (see section 2.4.3). This however is not a problem and simply means
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Figure 4.4: The chromosome with 80 genes used to encode the parameters.

that some of the genes in the chromosome are not important in the search.

4.2.2 Description of a genetic algorithm run

As mentioned in section 3.1, a genetic algorithm run corresponds to a single
optimization, starting from a random population and stopping when some pre-
defined stop-criteria is met. The stop-criteria might be that a certain perfor-
mance is achieved or that a certain number of evaluations have been made. In
this study several algorithm runs were to be made, some of them with different
population sizes. To be able to compare those it is important that one mea-
sures the progress in terms of the number of evaluations rather than in terms
of generations. This is due to the fact that for different population sizes, a
different number of evaluations have to be made for each generation. Hence
the stop-criteria was here chosen to be a certain number of evaluations, namely
1200.

Due to the long-term drift of the input laser beam, the fitness value, i.e. the
measured SHG-efficiency, could not be used for reliable comparison between dif-
ferent generations in the run. Hence the pulse length was measured when the
run was completed as discussed in section 4.1.4 and the off-line performance was
then calculated with respect to the measured pulse length (see section 3.1.5).
To calculate the off-line performance, the pulse length of the best-so-far individ-
ual, i.e. the individual representing the shortest pulse length up to the current
time, has to be calculated for each generation in the run. It was however prac-
tically impossible to measure the pulse length of every single individual in each
generation®, and hence only the pulse length for the best individual in terms
of fitness was measured in each generation. In figure 4.5 the best-so-far pulse
length is plotted together with the calculated off-line performance in terms of
pulse length.

It can be noted that in the experiments presented here, the "true" pulse length
will always be smaller than the value of the off-line performance. Firstly because
the off-line performance is a running average, including the pulse lengths from
all previous generations, and secondly because of the limitations on the auto-
correlator measurements discussed in section 4.1.4. Being an important point,
the conclusion from section 3.1.5 is repeated here: The off-line performance in

3Doing this would require 1200 pulse length measurements for each single run, and for the
current experiment involving 60 separate runs, a total of 72000 single measurements.
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Figure 4.5: The best-so-far pulse length plotted together with the calculated
off-line performance in terms of pulse length for a single genetic algorithm run.

terms of pulse length is a better measure of convergence than the actual pulse
length, since it does not only depend on the current pulse length, but also on
whether it was reached early or late in the run.

4.2.3 Choice of a reproductive plan

The choice of the parameters N, p. and p,, which is the population size, the
crossover probability and the mutation probability respectively, is not straight-
forward. This is due to the fact that the optimal parameters are critically
dependent on the nature of the problem itself. There exist however some rec-
ommendations based on experiences which are useful as a starting point.

When it comes to the choice of the population size a larger population leads to a
decreased number of reproductive steps for a fixed number of fitness evaluations,
causing the evolution and thereby the convergence to slow down. A too small
number of individuals makes the population unable to maintain its diversity
and the algorithm’s ability to simultaneously search around different maxima is
degraded [19]. This would then make the algorithm more likely to converge to a
local maximum rather than to the global one. In this test population sizes of 20,
40, 60 and 100 were used. The mutation is important in making the search try
unexplored parts of the space while a too high mutation rate makes the search
analog to a random search. In general mutation rates between 0.001 and 0.01
are recommended. In the present study mutation rates of 0.001, 0.005, 0.01,
0.05 and 0.1 were tested.
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For the crossover probability, in [20] it is suggested a value of 0.6 for large popu-
lation sizes while in [21] it is shown that for smaller populations it is reasonable
to increase the crossover probability to 0.9 in order to prevent premature con-
vergence. In the experiments performed here, a crossover probability of 0.8 was
used while the population size and mutation rate was varied. For the chosen IV
and p,,, the crossover rate was then varied between 0.5 and 1.0 in steps of 0.1.

To be able to compare the different runs the optimizations were made for a fixed
number of 1200 evaluations. With the population sizes 20, 40, 60 and 100 this
means that the algorithm was run for 60, 30, 20 and 12 generations. For each
combination of parameters three independent runs were made and the results
were averaged in order to suppress the noise introduced by day-to-day variations
of the input pulses.

Choice of population size and mutation rate

In figure 4.6 the off-line performance is plotted for the different combinations
of population size N and mutation rate p,,. These results give an indication of
which population size and mutation rate that is best adapted to the problem at
hand. An indication of lack of statistics can be seen by regarding the values of
the off-line performance for the initial population, as seen leftmost in each plot
of figure 4.6. Since the initial population is selected at random the initial off-line
performance should be the same for a given population size independently of
the mutation rate. This makes difficult the comparison between the different
curves, but however there is a clear converging trend in all of them.

The left plot of figure 4.7 shows the average initial off-line performance as a
function of population size. As can be seen the performance of the initial pop-
ulation decreases with population size, which is expected since a larger number
of individuals means a higher probability that at least one of them will be a
high scoring individual. However this strong dependence might also indicate
that the problem posed is actually not complicated enough to benefit from a
genetic algorithm approach. This becomes especially clear for the population
of 100 individuals where the initial guess is not at all far from the result of the
search after 1200 evaluations.

The right plot of figure 4.7 shows the final off-line performance for each pop-
ulation size N plotted against the mutation rate. Due to the low number of
averages taken these results are not that clear but one can see a tendency of
higher mutation rates for the smaller populations. For NV = 20 the best results
are obtained with the highest mutation rate of 0.1 while for N = 40 a muta-
tion rate of 0.05 seems to be a better choice. This can be expected since it is
hard to maintain the diversity in small populations and hence mutation helps to
reintroduce gene values that might otherwise be lost due to the selection mech-
anism. For the population of 60 individuals the best performance is achieved
for a mutation rate of 0.01, but here it is also seen that the highest mutation
rate leads to high performance. The population of 100 individuals seems to be
rather independent on the mutation rate with just a slight tendency for higher
probabilities. This is probably due to the good initial guess obtained due to
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ulation sizes N and for each N is shown the off-line performance for different
mutation probabilities p,,.
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the lack of complexity as described above. For the analysis of all these cases
caution has to be taken when regarding the highest mutation rate. A proba-
bility of 0.1 for mutation is high compared with the recommended ones and is
very likely to in principle cause a random search. This is especially true for the
larger populations where less reproductive steps are taken for a fixed number of
evaluations.

It is difficult to draw reliable conclusions from the runs made. The best per-
formance measured was for a population size of 100 individuals and a mutation
rate of 0.1. The mechanism behind the results in those cases is however very
likely to be more random than evolutionary based on the good initial guess
made for all mutation rates with this population size. If that reproductive plan
was then to be applied to a more complex problem, it could not be expected
to perform better than a random search. For the population of 60 individuals
there is however a minimum value for a mutation rate of 0.01, with almost as
good performance as for the largest population. This choice of population size
and mutation rate is also in good agreement with the ones recommended in the
literature [18], [21].

Choice of crossover probability

With the chosen values for the population size and the mutation rate two in-
dependent runs were made for different values of the crossover probability and
the resulting off-line performance is shown in figure 4.8. The best performance
was obtained for a crossover probability p. = 0.9, but it is also seen that the
differences in performance are rather small except for p. = 0.5 and p. = 0.8
which suffers from a poor initial off-line performance due to the small number
of averages taken. The weak dependence of the performance on the crossover
probability is disturbing in the sense that it implies that the search is not so
strongly dependent on the evolutive process as one may expect. This is however
in agreement with the above suspicions that the problem is not complex enough
to benefit from a genetic approach.

4.3 Results

4.3.1 Pulse length analysis

Here the main results based on pulse length measurements with the autocor-
relator are presented and analyzed. For this three independent runs of 2400
evaluations each were made using the reproductive plan obtained in section
4.2.3, i.e. N = 60, p,, = 0.01 and p. = 0.9. The resulting average off-line
performance is shown in figure 4.9 together with the average of the shortest
measured pulse lengths so far. As discussed in section 4.1.4, the pulse length
can probably not be trusted to be correct early in the run, but the plot still
shows that the initial decrease in pulse length is rather fast, finding pulses with
the length 41 fs after around 600 evaluations. From there on, the convergence
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Figure 4.8: Performance for N = 60 and p,, = 0.01 for different crossover
probabilities p.. To the left is the off-line performance for 1200 evaluations
and to the right the final off-line performance is plotted against the crossover
probability.

is slower, but still the pulse length decreases steadily along the run.

To study the actual effect of the optimization one of the runs can be studied
more closely. The optimization leading to the shortest pulse length resulted in
an individual with a pulse length of 39 fs after 1800 evaluations. The applied
amplitude filter for this individual is shown in figure 4.10 together with the
measured spectrum both before and after optimization. The bandwidth of the
spectrum is 31 nm, and the transform-limited pulse length obtained by the
inverse Fourier transform is 36 fs.

As can be seen from the figure the amplitude filter is chosen in such a way as to
make the spectrum more symmetric and thus increasing the FWHM-bandwidth.
An inverse Fourier transformation of the measured spectra assuming a flat phase
shows that the decrease in pulse length obtained by the amplitude filter is about
1 fs. This form of the amplitude filter was observed in almost all of the runs,
meaning that the algorithm is able to apply an amplitude filter in such a way
as to increase the spectral bandwidth and thus decrease the pulse length.

The spectral phase determines the pulse shape as seen in section 2.1.2 and in
figure 4.11 the coefficients of the phase polynomial is plotted for each individual
in the population throughout the run. The second order phase is crucial for the
pulse length and as can be seen, it quickly finds its value around -11500 fs? and
stays there for the rest of the run. The convergence of the second order phase
is then responsible for the first rapid decrease in pulse length seen in figure 4.9.
The GDD introduced by the compressor was in section 4.1.2 chosen so that
the input pulse should have a positive GDD of 10000 fs?> and thus the found
optimal second order phase deviates with -1500 fs? from the expected value. The
theoretical calculation made was only aimed at finding an approximate prism
distance so the actual GDD of the input pulse will probably deviate a little from
the expected value. That the error would be as large as 1500 fs? is however hard
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Figure 4.9: Performance for N = 60, p,, = 0.01 and p. = 0.9. In the plot
both the off-line performance and the shortest pulse length so far is shown for a
genetic algorithm run of 2400 evaluations. The plot shows the average of three
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Figure 4.10: Spectrum measured both before and after the optimization together
with the amplitude filter function.
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Parameter value
width 80 nm
hole position | 762 nm
hole width 65 nm
hole depth 0.30

delay 1601 fs
order 2 -11466 fs?
order 3 45845 fs3
order 4 -139296 fs*

Table 4.2: Waveform parameters of the individual with a pulse length of 39 fs
found after 1800 evaluations.

to believe, and even if it was so the optimization should still be able to find an
optimal pulse length closer to the Fourier limit of 36 fs. The conclusion must
then be that at least some of the deviation is due to a difference between the
shortest pulse and the pulse showing the highest fitness.

There are several possible explanations to this difference. First of all it might
have to do with the differences between measuring the SHG-signal and measur-
ing the pulse length. As seen in figure 4.1 a window W is used to introduce
the same dispersion for the pulses in the diagnostic arm as the lens L1 does in
the feedback arm. This compensation might not be exact and thus the pulse
length is measured for a pulse with a slightly different phase than the pulse
for which the feedback signal was measured during the run. The difference in
introduced GDD between the window and the lens will however be very small
(around some hundred fs?). Another issue, briefly mentioned in section 2.2.1,
is the phase-matching conditions for short pulses in the BBO-crystal. With
the broad spectra of short pulses the phase-matching conditions will not be the
same for all frequencies, and thus it is not guaranteed that the shortest pulse
at the entrance of the SHG-crystal will yield the highest SHG-efficiency.

Another possible explanation is based on the dependence of the SHG-efficiency
on the pulse energy as seen in section 2.2.3. Since the diffracted pulse energy
in the Dazzler crystal is strongly dependent on the applied second order phase
it is possible, and even probable, that the maximum of the SHG-efficiency will
occur for an applied GDD that is a trade-off between a flatter phase and an
increased pulse energy, thus with a tendency toward a larger negative GDD.

The third order phase converges as well, but is not so well localized as the
second order term. For the fourth order term convergence can not be concluded
from the figure. The reason is probably that the pulse length is not so sensitive
to the fourth order term and hence the algorithm has difficulties in finding an
optimum value. The waveform parameters of the individual with a pulse length
of 39 fs found after 1800 evaluations is shown in table 4.2.

It is useful to investigate how the different phase coefficients affect the pulse
shape. If one assumes that the found optimal individual has a flat phase*, i.e.

4This is of course not entirely true since the pulse length of a transform-limited pulse would
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Figure 4.12: Results from simulation. The first third plots shows what happens
when the second, third and fourth phase orders are corrected one at a time.
The dashed line shows the pulse shape before the correction is applied and the
solid line shows the pulse shape after the correction (Note that the time scales
are different). The bottom right plot shows the resulting pulse length when the
different orders are varied around zero in units of their resolution during the
optimization run.

all phase coefficients zero, the input pulse® will have the opposite of the phase
seen in table 4.2. In figure 4.12 the result of a simulation using the measured
spectra is shown. In the top left plot, the temporal profile of the input pulse
is shown as the dashed line, while the solid line shows the pulse shape after
the second order phase correction of -11466 fs2 has been applied. In the top
right plot the dashed line shows again the pulse shape after the second order
correction, this time on another time scale, and the solid line shows the temporal
profile after the third order phase correction of 45845 fs? has been applied. The
bottom left plot in the same way shows the effect of the fourth order phase
correction of -139296 fs?.

It can be seen that the second order compensation shortens the pulse signifi-
cantly but is unable to correct for the asymmetry of the pulse which is taken
care of by the third order compensation. The second order compensation short-

be 36 fs and the measured pulse length is 39 fs or 1.08 times the transform-limit.
5Remember the definition of the input pulse from section 4.1.2 and figure 4.2.
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Parameter | 300 evaluations
delay 1548 fs

order 2 -10220 fs?
order 3 38807 fs®

order 4 -165396 fs*

Table 4.3: Phase coefficients for the individual with the highest fitness after 300
evaluations.

ens the pulse from the initial pulse length of 1022 fs down to 51 fs. The third
order compensation makes the pulse more symmetric and shortens it further
down to 36 fs. The impact of the fourth order term is much smaller, leading to
shortening of less than 0.5 fs.

In the bottom right plot the effect of the different phase coefficients on the pulse
length is plotted against the units of resolution for the current optimization (see
table 4.1). Generally the treatment of the different terms should not be done
independently, since the value of one may determine the impact of another. In
this case it is however useful to see that around an optimum as determined by
the second order term, the pulse length is much less sensitive to the higher order
terms on the scale used during this optimization. This explains the increased
diversity for the higher order phase terms among the individuals in figure 4.11.
It also suggests that the limits for at least the fourth order phase coefficient
should have been wider.

4.3.2 Spectral phase analysis using SPIDER

The previous results suggest that the optimized output pulse was not transform-
limited, having a duration of 3 fs above the transform-limit. To get a closer
look on the solution found by the algorithm, access to a SPIDER-apparatus as
described in section 2.4 was possible for a few days, thus making it possible to
fully characterize the spectral phase of the optimized pulses. As described in
section 4.1.4 the SPIDER replaced the autocorrelator in the experimental setup.

Prior to this analysis the T3-oscillator was adjusted in order to get a broader
spectrum, and since the optimized second order phase in the previous runs were
close to the limit for a cut-off bandwidth of 100 nm, a slight adjustment was
made to the compressor just to be on the safe side. This shows up as the second
order phase found in this run being different from the one found in the previous
runs. Previously the optimized second order phase was approximately -11500 fs?
and here it is around -10500 fs2.

For this experiment the same reproductive plan as in section 4.3.1 was used and
a run was made for 300 evaluations. In this run only the phase was modified
and the amplitude was set to a supergaussian of width 80 nm without a hole.
In table 4.3 the phase coefficients of the individual with the highest fitness after
300 evaluations are shown.
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Figure 4.13: SPIDER measurement. To the left the recorded SPIDER-
interferogram is shown and in the right plot the measured pulse spectrum is
shown as the dashed line together with the calculated spectral phase (solid
line).

The bandwidth of the optimized pulse was 46 nm and the corresponding transform-
limited pulse length was calculated to be 28 fs. In figure 4.13 the measured
SPIDER-interferogram is shown in the left plot and to the right the pulse spec-
trum is shown together with phase calculated with the Fourier-Transform Spec-
tral Interferometry method described in Appendix B. As can be seen, there are
still uncompensated phase terms remaining and the pulse length was calculated
to be 35 fs, or about 1.25 times the transform-limit.

The uncompensated phase-terms indicates that the algorithm had not fully con-
verged after 300 evaluations. A continuation of the same run up to 600 evalua-
tions also showed that this was the case and the change of the phase coefficients
obtained with the continued run was -308 fs2, -17204 fs® and -189247 fs* for the
second, third and fourth order respectively. At this point it was unfortunately
not possible to do any additional SPIDER-measurements and thus the change
in the phase was applied mathematically. Figure 4.14 shows the expected phase
after 600 evaluations obtained by adding the polynomial phase difference to the
phase measured after 300 evaluations.

As can be seen the result of the continued evaluation is to further flatten the
phase and the calculated pulse length after 600 evaluations turns out to be
29 fs or only 1.03 times the transform-limit. In figure 4.15 the calculated pulse
shape after 300 evaluations is shown together with the estimated pulse shape
after 600 evaluations. As can be seen, the continued evaluation leads to a much
better correction for the third order phase, making the pulse more symmetric.

This analysis suggests that it would be very interesting to perform a more
thorough investigation of the spectral phase resulting from an optimization run.
It also shows that it is very important to assure that the algorithm has fully
converged before making quantitative diagnostics.
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Chapter 5

Summary and outlook

In this study an Acousto-Optic Programmable Dispersive Filter has been used
to temporally shape femtosecond pulses from the oscillator of the T3-laser in
Lund. The actual shaping has been done through a feedback loop, controlled
by a genetic algorithm, in order to optimize the efficiency for second harmonic
generation, thus expecting to minimize the pulse length. The experimental
investigations have shown that the algorithm works, finding pulses with a pulse
length of a few percent above the transform-limit. During the work experience
has been gained on the pulse shaper as well as on the practical application of
a genetic algorithm in a feedback loop. Below some of the conclusions reached
are summarized.

5.1 Pulse shaper

An important issue when the Dazzler is used in an experimental setup is that
the second order phase may have to be externally compensated so that the
GDD that has to be introduced by the Dazzler lies within its dynamic range
of compensation. This range is determined by the required energy throughput
and the required spectral bandwidth. Since the shaped pulse is created by
diffraction due to acousto-optic interaction in the crystal, the actual length of
interaction between the acoustic and optical waves is crucial for the diffraction
efficiency, and hence determines the energy throughput. The interaction length
is dependent on the spread of the acoustic wave, which in turn is strongly
dependent on the applied GDD. Thus a larger (absolute value) of the applied
GDD will lead to a higher energy throughput. The spectral bandwidth limit is
due to the finite length of the crystal itself. If a too large GDD is applied, the
acoustic wave will spread so that it does not fit in the crystal, and is thus cut
off, resulting in some acoustic frequencies not being present in the crystal. The
optical frequency components that would otherwise be diffracted by the missing
acoustic frequencies will hence be missing in the diffracted pulse spectrum. This
was not a severe problem in the present work, but if the Dazzler is to be used
in a laser-system with an amplifier, attention has to be payed to this issue.
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This is due to the fact that an amplifier is sensitive to the bandwidth of the
pulses. If pulses with a too narrow bandwidth are used to seed an amplifier,
all gain will be concentrated into a smaller spectral range, with the risk of
reaching intensities damaging the gain medium or associated optics. The need
for external compensation in this work led to the addition of a compressor to the
setup, while in a complete laser system some sort of compressor is always present,
reducing the compensation necessary for the Dazzler to a simple adjustment.

In this work the Dazzler was operated in a system without a pulse picker. As
has been discussed in section 4.1.2 it implies that not only the expected pulses
are obtained, but also pulses diffracted at times when the acoustic wave is not
present in full in the crystal. In the performed experiments this introduced
some uncertainties to the optimization process and led to some experimental
difficulties for the diagnostics. In a real laser system, like the 1 kHz-laser in
Lund, this will however not cause any problems, since a pulse picker is present
in this system.

In conclusion it can be said that the Dazzler showed excellent performance in
shaping the laser pulses for the performed experiments. An advantage of the
Dazzler over other pulse shaping devices is its capability to apply a filter to
both the amplitude and the phase with a single operation. Often one thinks
of the optimization of SHG-efficiency as a matter of introducing a flat phase
only. In this work it was however seen that even an amplitude filter is useful to
symmetrize the amplitude spectrum and thus increasing the bandwidth. The
possibility to use an amplitude filter is especially important in a complete laser
system with an amplifier. In amplifiers an effect known as "gain-narrowing"
causes the bandwidth of the spectrum to decrease on amplification, leading to
longer pulses. By suppressing the amplitude of the central frequencies prior to
amplification, this effect can be minimized and thus shorter pulse lengths can be
reached. Finally the Dazzler is very "user-friendly" through its control software,
allowing it to be controlled in a "loop-mode" as described in section 2.4.3. It is
also easy to introduce the Dazzler into an existing setup, since there is no need
for a zero dispersion-line and since the shaped pulses are travelling in the same
direction as the input pulses.

5.2 Optimization algorithm

On the whole, the genetic algorithm worked well, achieving pulses down to a few
percent above the transform-limit. It was seen that the optimization process
was even able to find an amplitude filter with the effect of making the spectral
amplitude more symmetric and thus having a larger bandwidth. The brief spec-
tral phase analysis made with SPIDER indicated that the optimized waveforms
did indeed flatten the phase as required to obtain short pulses. The results did
however show deviation from the transform-limited case and a possible reason
for this might be the dependence of the SHG-efficiency on pulse energy. Two
approaches on solving this are presented here:

e Instead of using the SHG-efficiency directly one may use the ratio between
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the SHG-efficiency and the pulse energy in the fundamental. This would
compensate for the dependence of the feedback signal on the pulse energy,
at least under the non-depleted approximation (see section 2.2.3).

e In the Dazzler software there is a special function allowing to use a con-
stant gain for the acoustic wave. Normally the power of the acoustic wave
is set by a power value between 0 and 1, where a value of unity means that
the maximum amplitude of the acoustic wave will be normalized to the
maximum voltage allowed. If the constant gain function is activated, the
same scaling factor that is used for the current acoustic wave will be used
to scale all acoustic waves. This means that if for example a second order
phase is applied, leading to a spread of the acoustic wave, the maximum
amplitude of the acoustic wave decreases. In this way it will be possible
to keep the diffraction efficiency almost constant. Unfortunately, the use
of this function was beyond my knowledge when the present experimental
work started.

After this work was finished, I got the opportunity to make a visit to Fastlite,
the company that designed the Dazzler. It was during this visit that I got
explained to me the effect of using the constant gain function in the Dazzler
software as explained above. During this trip I also visited a laboratory at CEA
(Commissariat a ’Energie Atomique), where they have a laser system similar
to that in Lund. I was able to try my genetic algorithm on this system, op-
timizing on the SHG-efficiency of the pulse after amplification. The algorithm
converged but due to technical problems it was not possible to use the SPIDER,
to characterize the optimized pulses. However the results were compared with
the results of an optimization made at the same time using a simplex method
search, showing excellent agreement for the found phase coefficients. The sim-
plex method however showed much faster convergence, thus confirming what
has been discussed in the experimental section, that the problem posed here is
probably too simple to benefit from an evolutionary approach.

The implementation of the genetic algorithm used in this work was on purpose
made as abstract as possible. It is for example not dependent on the use of some
particular feedback, since the fitness is calculated by an external measurement
routine as described in section 3.2.2. It is also easy to run the algorithm with
different encodings of the waveform parameters due to the use of a function
template for the decoder routine as described in Appendix C. The operators
for selection, crossover and mutation have also been built on templates, making
it easy to change these as well. It now remains for the genetic algorithm to be
applied to a more difficult problem, where it can be more useful compared to
other optimization algorithms, for example in the high harmonic generation re-
search towards attosecond pulses, currently performed at the 1 kHz laser system
in Lund.
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Appendix A

Coupled-mode analysis of
second harmonic generation

When analyzing second harmonic generation, it is useful to confine to the scalar
case even if the crystal is anisotropic. This is possible if one instead of a tensor
relation for the electric polarization uses a scalar relationsship on the same form
as (2.20), but with an effective nonlinear coefficient dys

PNE = 2¢0d, ;1 E? (A.1)

where the scalars PV and E now refers to the field component along the
appropriate axis. In this case, the wave equation for the electric field may be

written as [8]

0’E 0’E 0?pNE

9.2 HEgE = Ho g (A.2)

where 2z denotes a coordinate along the propagation direction. Only considering
the components of frequencies w and 2w, the electric field and the polarization
field may be expressed as

1. . .
E(t,z) = 3 [Awel(“’t_sz) + Agwez@”t_kz”z)] +c.c (A.3)
1 . .
PNL (t7 Z) — 5 [PiVLel(Wt_sz) + P2]Z}Lez(2wt—k2wz)] + e (A4)

Using (A.3) for the electric field in relation (A.1), and carrying out the multi-
plication, the two amplitudes for the polarization components in (A.4) can be
identified as

pNL = 250deffAZ + Ao e AR 4 ce (A.5)

w

PNL = eodep A2 4 cc. (A.6)

where Ak = ko, — 2k,,. Since k = nw/c, it can be seen that by defining Ak in
this way, the phase-matching condition (2.24) becomes Ak = 0.
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The wave equation (A.2) defines a relationship between the two fields (A.3) and
(A.4). Inserting the field components of frequency w into (A.2), gives a second

order differential equation for the electric field amplitude A:

0/L, . 32/1w - 2deffw2
0z 022 2

ik, A Ag e AR (A7)
A similar equation can be obtained for A, by inserting the field components
of frequency 2w into (A.2). The two obtained differential equations couples the
component amplitudes causing energy transfer to occur between the two modes
during propagation through the crystal. On a wavelength scale, this energy
transfer is rather slow, and one can expect that the energy of a mode does not
change significantly over a propagation distance in the order of one wavelength,
or that:

oA

2ik, —=
! 0z

9?A,

> 952

(A.8)

Because of this one may neglect the second order derivatives of the field am-
plitudes, an approximation called the slowly varying amplitude approximation.
Doing this, the second order differential equations are replaced by two coupled
first order differential equations describing the evolution of the field amplitudes
for the two modes.

A, B deffW i 7 _inks
e = Al Ae (A.9)
Az _ _ideffwiliem’“ (A.10)
32 NnowC

Talking about energy transfer, and the efficiency of energy transfer, it is useful to
transfer the coupled equations to hold for intensity rather than field amplitude.
According to Poynting’s theorem [10], the intensity of an electromagnetic field
is proportional to the refractive index, which suggests the definition of two new
field variables, flfu = \/ﬁfiw and A’Qw = i\/ﬁfigw. With these new variables,
the equations (A.9) and (A.10) can be written as:

(914/ d ffw e T i
w - _ e AI*A/ iAkz A1l
B N, /—n2wc w 124, € ( )
Al
aAQw — deffw A(/EeiAkz (A12)

0z Nr/M20uC

Note that |A/|> and |A}_|? are directly proportional to the intensity of the
fields, with a proportionality constant independent of frequency. By introducing
a coupling constant x = nd‘ii with units [V™1], equations (A.11) and (A.12)

reduces to: Qw
A7
a;;” = —rAFA, e 1Ak (A.13)
Al
(9:;12w = mﬁifemk’z (A.14)
z
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By transposing (A.13) and multiplying both sides by fl{d, and multiplying both
sides of (A.14) with A%, one obtains a relationship known as the Manley-Rowe
relation, which simply says that energy is conserved in the conversion between
the two frequencies.

2

a‘fxgw a‘jxg,
9z 0z

‘ 2

(A.15)
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Appendix B

Frequency-domain
interferometry

Frequency-domain interferometry is a widely used method with many appli-
cations. This Appendix will focus on the ability to characterize laser pulses
using these techniques. As the name implies, frequency-domain interferometry
is an interferometric technique, based on the addition of electric fields, where
the measurements are done in the frequency-domain often using an ordinary
spectrometer. Figure B.1 depicts a setup where two pulses are added using a
semi-transparent mirror. The spectrum of the superposition of these two pulses
is then recorded using a spectrometer. The pulse Er(t — 7) is delayed a time 7
relative to the pulse E¢(t) to be characterized. To begin with we assume that
ER(t — 1) is a reference pulse with a known spectral phase ¢r(w) and with the
same carrier frequency wy, as Fc(t). The spectral envelopes of the two pulses
may then be written as

—~
—
~

Ac(w) = Acg(w)e#e®@)
Ap(w) = Ap(w)er®@) (B.2)

Ed(7 Spectrometer
S(@)

Figure B.1: In a setup for frequency-domain interferometry, two pulses are
superpositioned and the resulting spectra is recorded using a spectrometer. The
pulse Er(t—7) is delayed a time 7 relative to the pulse to be measured on, E¢(¢).
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and the time delay of the reference pulse will show up as an additional lin-
ear phase term in the spectral envelope (see section 2.1.2). The spectrometer
measures the spectral intensity of the superposition of the two pulses which is
proportional to

Sw) = |Acw)+ Ap@yeer| (B.3)
= Al + [Ac(@)? + 240 () Ap(w) cos [wr + Ap(w)]

where Ap(w) = po(w) — ¢r(w) is the phase difference between the two pulses
at the frequency w. The two first terms are a superposition of the individual
spectra of the two pulses, while the last term is an interference term, causing
fringes to appear on top of the spectrum. The average distance between the
fringes is 27 /7, depending on the time delay between the two pulses, while the
difference in spectral phase between the two pulses causes the fringe distance to
vary.

Assuming that the phase of the reference pulse is flat, which means that pg(w) is
constant, it can be seen from (B.3) that if for example the phase of the measured
pulse is quadratic, o (w) = Cw?, the fringe distance in the recorded spectrum

- 2 - . - .
will be 5=, increasing or decreasing with frequency.

B.1 Fourier-Transform Spectral Interferometry

As described above, the phase difference Ap(w) can be retrieved from the in-
terferogram by extracting the phase of the interference fringes. One way to do
this is to localize the maxima of the fringe pattern and calculate the varying
fringe distance. Another method which uses Fourier transforms to extract the
phase goes under the name Fourier-Transform Spectral Interferometry (FTSI).

Taking the inverse Fourier transform of the measured spectral intensity in equa-
tion (B.3) results in:

FUSY) = [T Ac(t) AL —t)dt + [T Ap(t) ARt — t)dt' +
fh+7)+ f*(—t+71) (B.4)

The two first terms in this equation is recognized as the field autocorrelations of
each pulse (compare with (2.41)) and as such they are symmetric and centered
around t = 0. The function

+oo
£ = [ Ac(t)Ax(e - it (B.5)
— 00
is the cross-correlation function between the two pulses, centered around —7 for
the third term and around 7 for the last term. With a large enough value of the
time delay 7, the correlation signal centered around 7 will not overlap with the
central autocorrelation signals, and can therefore be filtered out. Transforming
the filtered signal back to the frequency domain yields a complex function S (w):

Sf (w) = Ac(w)AR(w)eii(WT+A¢(°})) (BG)
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By using the argument of this complex function, the spectral phase difference
Ap(w) may be calculated, since the time delay 7 is known and the term w7 thus
may be subtracted.

B.2 Spectral shearing

From equation (B.6) it is seen that it is not only important to have a reference
pulse with a known spectral phase, but also that the bandwidth of the reference
pulse must be larger or equal to the bandwidth of the measured pulse in order
to be able to reconstruct the phase over the whole spectra. When working with
ultrashort laser pulses this is often not possible since a wider spectra corresponds
to a shorter pulse, and the shortest pulse available is almost always the pulse
to be characterized. To be able to characterize such short pulses, it is then
necessary to use the pulse itself as a reference, an approach that is made possible
using a technique called spectral shearing. In spectral shearing, the spectrum
of for example the reference pulse is displaced with a displacement ), making
it possible to write the spectral envelope of the reference pulse as

Ar(w) = Ag(w+ Q)eive@+D) (B.7)
giving for the filtered spectral signal
S(w) = Ac(w)Ac(w + Q)e @ HAva) (B.8)

where Apq(w) = po(w) — po(w + Q). From the argument of (B.8) it is thus
possible to obtain the phase difference between the component with frequency
w and the component with frequency w + 2. By setting the phase to zero for
some frequency (often the central frequency), the phase can then be calculated
for the whole spectrum with a resolution in frequency of €.
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Appendix C

LabVIEW building blocks for
the genetic algorithm

C.1 Templates

A template in LabVIEW is simply a specification of a subroutine by specifying
its inputs and outputs. In LabVIEW a subroutine call may be made dynamically
from a reference of a subroutine template. This means that the actual subroutine
called is not determined until it is actually called, and that the user may specify
the wanted subroutine at run-time by specifying its filename. Defining templates
for the functions and operators used by the genetic algorithm allows the user to
always use the same algorithm engine, choosing the wanted operators at each
run. The templates of the standard operators select, crossover and mutate are
shown in figure C.1.

The selection operator is defined as taking an array of real fitness values together
with the pre-calculated fitness statistics. The result of the selection should the
be given as the index of the chosen individual in the fitness array.

The crossover operator takes two individuals together with the crossover pa-
rameters. It returns the two offspring individuals together with the number of
mutations that has occured. It also returns a boolean indicating if crossover
took place or not.

The mutation operator is the simplest one, taking a gene and the probability
for mutation as input, and returning the possibly mutated gene together with
a boolean indicating if the gene was mutated.

In addition to the three standard operators, there is a need for two function
templates: decode and scale. These are shown in figure C.2.

The decoder function takes an individual as input, decodes it, and outputs the
wave parameters for the corresponding waveform. It also returns the number
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Select

Array of fitness values —»| o
- Index of selected individual
Fitness statistics —»

Crossover

Parent 1 —» : gﬁlﬁé

i
Parent 2 =¥, —» Number of mutations
Crossover parameters —», —» Crossover occured (TRUE/FALSE)
Mutate
Input gene —»| — Output gene
Mutation probability —p| —» Mutation occured (TRUE/FALSE)

Figure C.1: Templates for the three standard operators select, crossover and
mutate.

Decode
Individual —» —» Array of wave parameters
Request file path —» —» Number of genes
Scale

Array of raw fitness values —»;

—» Array of scaled fitness values
Fitness statistics —p|

Figure C.2: Templates for the two functions decode and scale.
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of genes it is designed to handle. To support arbitrary filters (see section 2.4.3)
the decoder also takes the path of the request file in order to be able to generate
arbitrary amplitude or phase files and put them in the correct location.

The scaling function is used prior to the selection operator, making it possible
to implement fitness scaling as described in section 3.1.4. It takes as inputs an
array of raw fitness values together with the pre-calculated fitness statistics, and
outputs the corresponding array of scaled fitness values.

C.2 Data types

A data type in LabView is simply a front panel without any block diagram, rep-
resenting compound data-carrying objects. The advantage of defining different
data types is that if one for example has defined a datatype representing the
whole population, whole populations may be passed as a single parameter in
the data-flow of the block diagram.

The basic datatype for the genetic algorithm is the individual, consisting of a
chromosome represented as an array of booleans together with the fitness value
of the individual.

The different parameters needed for a genetic algorithm run are grouped so that
related parameters are grouped together. The four parameter groups are:

1. Fitness parameters: Parameters needed for calculation of the fitness of an
individual.

e Decode reference: Used to obtain the wave parameters described by
an individual.

e Request file path: Needed to be able to make a request for a wave-
form.

e Flitness file path: Needed to obtain the fitness from the measurement
routine.

2. Reproduction parameters: Parameters needed to evolve the population to
obtain the next generation.
o Scale reference: Needed to scale the raw fitness prior to selection.
o Select reference: Used to select individuals for reproduction.
o (Crossover reference: Used to combine two individuals before they
are copied to the next generation.

3. Crossover parameters: Parameters passed to the crossover operator.

o Crossover probability: The probability that a crossover will occur.
o Mutation probability: The probability of a single gene being mutated.

e Mutate reference: Used to mutate the genes during the copy opera-
tion.

7



Population

Individuals Fitness parameters
HE el | I 3
+ + Fequest path |i| 2
0.00 | + 2
Fitness path m g

0.00 I IE' | Reproduction parameters
B -1
ooo] 3o ]
. Crossauer paramekers
.00 I +E| | Crassover prab.
W 1E| | Mutation prab.
lm IE”—l Fitness statistics

Crazzaver

Mlax fitness  |0,0000
ooo] 3o ] | Mlin fitness | 0.0000
Sum fitness | 0.0000
+|
.00 I +E| | Awg fitness | 0.0000
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Figure C.3: The front panel object of the population data type.

4. Fitness statistics: Some statistics over the fitnesses in a population. Used
by the selection operator and the scaling function during reproduction.
o Maximum fitness
o Minimum fitness

e Average fitness

Sum of all fitnesses

All of these datatypes are finally combined in a compound data type representing
a population. Figure C.3 shows the actual front panel object of the population
datatype.
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