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Abstract

This master's thesis explores the possibility to use a plasmonic antenna to scale a quantum com-
puter based on rare-earth-ion-doped crystals to a large number of qubits.

To obtain a fully scalable rare-earth-ion quantum computer it is necessary to create entanglement
between spatially remote qubits. This can be done using a photon pair with entangled polarization
states. One single photon must act as a pi-pulse for an ion in a crystal. To enhance the interaction
between the photon and the ion a toroidal microresonator in combination with an optical antenna
is proposed. The microresonator can enhance the interaction time between the photon and the ion
and the optical antenna can focus the evanescent �eld down to a sub-wavelength spot.

This report gives basic theory of quantum computing and plasmonics. The idea of how to entangle
remote ions using a plasmonic antenna is presented. An optical bowtie antenna is designed and
simulated using COMSOL Multiphysics R©. The method is evaluated by comparison to a theoretical
model for a simple case.

Simulations show that the designed antenna can enhance an evanescent �eld more than 1000 times
at the surface of a crystal. The enhancement is enough to make a single photon act as a pi-pulse for
an ion sitting at the surface. Di�culties with this approach to a scalable rare-earth-ion quantum
computer are discussed and further investigations are suggested.

Sammanfattning

Detta examensarbete utforskar möjligheten att använda en plasmonisk antenn för att skala upp en
kvantdator baserad på kristaller dopade med joner av sällsynta jordartsmetaller till ett stort antal
kvantbitar.

För att skapa en fullt skalbar kvantdator baserad på jordartsjoner är det nödvändigt att samman-
�äta kvanttillstånden hos rumsligt separerade kvantbitar. Detta är möjligt genom att använda ett
fotonpar med samman�ätade polarisationstillstånd. En enda foton måste motsvara en pi-puls for
en jon som sitter i en kristall. Enligt förslaget som presenteras i rapporten kan en toroid-formad
mikroresonator i kombination med en optisk antenn användas för att förstärka interaktionen mellan
en foton och en jon. Mikroresonatorn kan förlänga interaktionstiden mellan fotonen och jonen och
den optiska antennen kan fokusera det evanescenta fältet till en punkt mindre än ljusets våglängd.

I rapporten ges grundläggande teori för kvantdatorer och plasmonik. Idén för att samman�äta
separerade joner presenteras. En optisk antenn utformas och simuleras i COMSOL Multiphysics R©.
Metoden utvärderas genom en jämförelse med en teoretisk beräkning för ett enkelt fall.

Simuleringarna visar att den utformade antennen kan förstärka ett evanescent fält mer än 1000
gånger på ytan av en kristall. Förstärkningen är tillräcklig för att skapa en pi-puls från en enda
foton för en jon som sitter på ytan av kristallen. Svårigheter med det beskrivna angreppssättet för
att skala en kvantdator baserad på jordartsjoner diskuteras och ytterligare undersökningar föreslås.
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Chapter 1

Introduction

The �rst electronic computers were developed in the 1930s. From the beginning they were huge
machines with less capabilities than the pocket calculators of today. Since the invention of the
transistor in the 1940s the development of smaller and faster computers has been amazingly rapid.
Today it's hard to imagine a world without computers, they shape our society and lives in a way
no one could have expected.

The rapid development of the computer is only one example of how modern technology is getting
smaller and faster. Eventually single molecules or particles will act as electronic components. It
will be necessary to be able to manipulate and control quantum systems if we want to make our
circuits and electronic components smaller.

At the same time as computers get smaller we also have an increasing demand on e�ciency and
speed. The fastest possible way to communicate is by using light. Today optical �bers are used to
send information over large distances. Photonics is a growing �eld of science, not the least shown
by the Nobel prizes in physics of 2009.

A quantum computer could o�er new ways to solve problems, sometimes with an exponential
speed up compared to classical computers. To take advantage of the sometimes weird properties
of quantum systems is a natural step in the development of the computer systems of tomorrow.

As electronics is replaced by optics the demand for small components to control and manipulate
light is growing. Plasmonics is a very exciting �eld in the overlap between electronics and pho-
tonics. Plasmonics might make it possible to design optical circuits, antennas or even transistors
comparable with the electronic versions of today.

Within the scope of this thesis I have the privilege to work with all the above mentioned �elds
of physics. Quantum mechanics, photonics and plasmonics are all �elds with great potentials to
shape the future of technology.

The aim for this diploma project is to improve the scalability of a rare-earth-ion quantum computer
system by making it possible to entangle remote ions. This is done by the design of an optical
antenna to enhance the �eld from a single photon.

1.1 Outline

This thesis is structured as follows.

Chapter 2,3 and 4 give the background and purpose of my work. Chapter 2 and 3 contain the
theory of quantum computing necessary to understand the aim of my work. Chapter 4 focuses on
how to make a quantum computer scalable to a large number of qubits and motivates the use of
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an optical antenna.

Chapter 5, 6 and 7 introduce the theory of surface plasmons and optical antennas. The aim is to
give a theoretical framework and background to my simulations.

Chapter 8 describes the method used for designing and evaluating an optical antenna. The nu-
merical method, geometry and modeling parameters are given.

Chapter 9 gives a comparison between theory and simulations for a simple case. This is used
to identify weaknesses and error sources of the method and to evaluate if the chosen method is
suitable for this kind of simulations.

Chapter 10 and 11 present the design and properties of an optical bowtie antenna based on simu-
lations.

Chapter 12 deals brie�y with some practical considerations as well as remaining questions not
investigated within the scope of this thesis.

Finally, chapter 13 gives the conclusion and a brief outlook based on this work.
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Chapter 2

Quantum computing

What is a quantum computer? How does it work and why do we need it?

In this chapter I will give a brief introduction to the �eld of quantum computing. I intend to
answer the questions above in a way that should be accessible to someone who has never heard of
quantum computers before.

A quantum computer works in a way very similar to a regular computer. The big di�erence lies in
the smallest pieces of information that is stored and processed in the computer. The quantum-bit,
or qubit, makes use of quantum mechanics to store superpositions of 1s and 0s rather than just a
1 or a 0 as in a regular bit. This rather simple di�erence makes it possible to run entirely di�erent
algorithms on the quantum computer.

2.1 A very brief review of computer language

Most people know that a regular computer, like the one I'm using right now, works by manipulating
1s and 0s. All information is stored and processed as binary digits. One such piece of information
that can be either a 1 or a 0 is called a bit. If you put eight bits together you will get a so called
byte of information. For example my hard drive can store 300 gigabytes, which is 2.4 · 1012 bits.

The processor in a computer performs operations on bits. These operations are executed in so
called gates. For example a NOT-gate will switch a 0 to a 1, and a 1 to a 0. This can be written:

NOT 1→ 0

NOT 0→ 1

More complicated gates can have two inputs, so called two-bit gates. One example of a two-bit
gate is the controlled NOT gate, or C-NOT gate for short. It performs a NOT operation on bit
two on the condition that bit one is a 1. If bit one is a 0, nothing happens. Bit one is called the
control bit while bit two is the target bit

C-NOT 1102 → 1112

C-NOT 0102 → 0102

2.2 Quantum bits

A quantum computer works in a way very similar to a regular computer by manipulating 1s and
0s. But this time we use a special feature of quantum mechanical systems: they can not only be in
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state 1 or in state 0 as a regular bit, but also in a linear combination of 1 and 0. This special kind
of bit is called a quantum-bit, or qubit. A linear combination, or superposition, between di�erent
states means that the qubit can be for example 30% in state 0 and 70% in state 1. This can be
written with Dirac notation in the following way:

|ψqubit〉 = α |0〉+ β |1〉

|α|2 + |β|2 = 1

α and β are the complex amplitudes of the superposition.

When we measure which state a qubit is in, the wave function of the qubit, |Ψqubit〉, will collapse
to one of the states |0〉 or |1〉. We will not be able to measure the superposition state. However,
|α|2 is the probability to �nd the qubit in state |0〉 and |β|2 is the probability to �nd the qubit
in state |1〉, so if we can create the same superposition many times, or in many qubits, repeated
measurements can give us an idea of what state the qubit was in before the measurement.

When two qubits are in superpositions of |0〉 and |1〉, the state of the two-qubit-system can be
written:

|ψ1〉 ⊗ |ψ2〉 = (α1 |0〉+ β1 |1〉)1 ⊗ (α2 |0〉+ β2 |1〉)2 (2.1)

= α1α2 |0〉1 |0〉2 + α1β2 |0〉1 |1〉2 + β1α2 |1〉1 |0〉2 + β1β2 |1〉1 |1〉2 (2.2)

The basis states are the four di�erent combinations |0〉1 |0〉2, |0〉1 |1〉2, |1〉1 |0〉2 and |1〉1 |1〉2. To
make the notation a bit less messy the states can be written within a single ket as |00〉, |01〉, |10〉
and |11〉. Here it is assumed that the �rst number within each ket referrers to qubit one and the
second number to qubit two. I will however not use this convention in the following chapter, to
emphasize that we have two separate qubits.

2.3 Quantum gates

A quantum computer is a collection of qubits, just like a normal computer is a collection of bits.
A quantum computer performs operations on qubits just like a regular processor manipulate bits.
Quantum gates are used to change the states of qubits in a desirable way. Mathematically gates
are operators that operate on the wave function of the qubits involved. For example a NOT-gate
in a quantum computer acts in the following way:

NOT |0〉 → |1〉

NOT |1〉 → |0〉

A NOT-gate will take a qubit that was initially 30% in state 0 and 70% in state 1 to 70% in state
0 and 30% in state 1. More generally:

NOT (α |0〉+ β |1〉)→ α |1〉+ β |0〉

Two-qubit gates are slightly more complicated than their classical counterparts, because both input
qubits can be in superpositions of the two states |1〉 and |0〉. A C-NOT-gate can be viewed as an
operator that acts on the basis states in a way very similar to the classical gate:

C-NOT |1〉1 |0〉2 → |1〉1 |1〉2

C-NOT |0〉1 |0〉2 → |0〉1 |0〉2

If two qubits are in superpositions of the states |1〉 and |0〉 a two-qubit-gate entangles the qubits.
This means that we can no longer separate the qubits as two quantum systems, but has to take
both into account. For example a C-NOT-gate will entangle qubit one and two in the following
way:

C-NOT (|ψ1〉 ⊗ |ψ2〉) = C-NOT (α1 |0〉+ β1 |1〉)1 ⊗ (α2 |0〉+ β2 |1〉)2
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= C-NOT (α1α2 |0〉1 |0〉2 + α1β2 |0〉1 |1〉2 + β1α2 |1〉1 |0〉2 + β1β2 |1〉1 |1〉2)

→ α1α2 |0〉1 |0〉2 + α1β2 |0〉1 |1〉2 + β1α2 |1〉1 |1〉2 + β1β2 |1〉1 |0〉2
The result of the operation makes the superposition in qubit one depend on the superposition in
qubit two in such a way that the expression above can no longer be factorized into a product of
one wave function for qubit one and another for qubit two. The qubits are entangled.

2.4 Quantum algorithms

A quantum computer is a collection of qubits that we can perform operations on. A qubit is a
quantum mechanical system that can be in any superposition of the states |0〉 and |1〉. The states
can be for example energy levels in an atom, spin states of an electron or polarization states of a
photon.

After many gate operations a large number of qubits in a quantum computer will be entangled.
The quantum computer can be viewed as one single quantum system rather than many small
qubits. This huge quantum system is in a superposition between 2N di�erent states, where N is
the number of entangled qubits.

A regular computer can also be in 2N di�erent states, where N is the number of bits stored in
the processor. So what have we gained by making things more complicated? Each moment a
regular computer is in one single state, while the quantum computer is in a superposition of all
possible states. This makes it possible to run what would on a regular computer be many di�erent
calculations in parallel.

An algorithm is a set of operations used to solve a speci�c problem. A quantum computer could
run any algorithm designed for a regular computer. There is also a special class of algorithms,
quantum algorithms, designed for quantum computers. A quantum algorithm makes use of the
special properties of the qubits, to solve a problem using less operations than would be possible
on a regular computer.

The most well-known quantum algorithm is Shor's algorithm for factorizing large integers, dis-
covered in 1994 by Peter Shor [1]. It runs at least exponentially faster than any known classical
algorithm that do the same thing. Shor's algorithm is interesting because it could be used to break
the cryptography scheme RSA, widely used for protecting web pages, email etc. RSA uses the fact
that factorizing very large integers is impossible in practice, it simply takes too much time. With
a quantum computer using Shor's algorithm it would be a lot faster and the RSA scheme would
not be safe. A new type of cryptography would be needed, for example quantum cryptography [2].

Shor's algorithm takes advantage of the fact that a collection of qubits can be in a superposition
of many di�erent states. This can be used to do many things in parallel, for example evaluate a
function f(x) for many di�erent values of x at the same time.

There are several other quantum algorithms that could o�er more than polynomial speed up
compared to the algorithms used today, for example simulations of quantum systems in physics or
chemistry.

2.5 Quantum computer hardware

So far, a qubit is a theoretical entity that we can operate on by using equally theoretical gates. To
make a real quantum computer however, we need to construct hardware to support our qubits and
gates. This can be done in many di�erent ways, but is not an easy task. In 2000 David DiVincenzo
at IBM listed �ve requirements for implementing a quantum computer, [3]:

A scalable system of qubits A qubit can be any quantum mechanical two-level system that
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can be manipulated and controlled with required precision. The system needs to be scalable
to a large number of qubits to be able to make use of the di�erent algorithms available.

Ability to initialize qubits to a known value Before starting a sequence of operations we
need to know what state the qubits are in.

A long coherence time (compared to the gate operation time) The quantum mechanical
system used as a qubit must be coherent during the time it is used. A much simpli�ed
description of what it means for a qubit to be coherent is that the superposition between
the two possible states is well-de�ned. Without coherence, the quantum computer will be
reduced to a regular computer.

A set of gates To run algorithms on a quantum computer we need to be able to control the
qubits and perform operations on them. It can be shown that all possible gates can be built
from the C-NOT gate together with a set of one-qubit gates.

Qubit speci�c read-out To get a result from our computations we need to be able to measure
the states of our qubits one by one.

Work has been done to implement quantum computer schemes in many di�erent physical systems.
Qubits can for example be represented by nuclear spin states using NMR, polarization states in
photons controlled with linear optics, electron spins in quantum dots or energy levels of trapped
ions. So far no experimental system has all the desired properties to function as a large scale
quantum computer.

Few qubit operations have been demonstrated in a number of systems including the NMR-technique
[4] [5], Ion traps [6] [7] and optical systems [8]. Shor's algorithm was demonstrated for the �rst time
in 2001 by factorizing 15 using the NMR-technique [9] and again in 2007 using photon polarization
states [10]. Small scale qubit interaction have recently been shown in solid state systems using
superconducting circuits which are promising for future larger scale quantum-circuits [11].

In this thesis I will only consider quantum computing using rare-earth-ion-doped crystals which
will be described in more detail in the following chapter. Investigations concerning enhanced light-
matter interaction can however be useful in a number of di�erent implementations and also within
other research �elds than quantum computing.
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Chapter 3

Quantum computing using

rare-earth-ion-doped crystals

As was seen in the previous chapter there are several potential systems for implementing a quantum
computer. In this chapter I will describe how quantum computing can be done using rare-earth-
ion-doped crystals. The scheme was �rst proposed by Ohlsson et al. in 2001, [12].

The hardware for a rare-earth-ion quantum computer is a crystal doped with rare-earth-ions, for
example Pr3+:Y2SiO5. Two hyper�ne levels in the ions are used as the states |0〉 and |1〉, as in
�gure 3.1. The qubits can be manipulated using an intermediate optical transition to a higher
energy state |e〉.

Figure 3.1: Two hyper�ne levels in a rare-earth ion can be used as the two states of a qubit. The
�gure is not to scale.

3.1 Principles of rare-earth-ion quantum computing

One of the big advantages of using rare-earth-ions doped into a host crystal is the long coherence
times of the ions. The partly �lled electron shells used to perform qubit operations are shielded
from the environment by outer lying �lled shells. The electronic state coherence time in Pr3+-ions
is about 100 µs and the hyper�ne states used as qubits have coherence times of about 500 µs.
There are techniques to extend the coherence times further, for example by using magnetic �elds.
The long lifetime of the ions makes the homogeneous absorption pro�le narrow, about 3 kHz for
Pr3+-ions, [13].

When rare-earth-ions are doped into a host crystal they randomly replace host ions in the crystal
lattice. Doing so they alter the local electric �eld of the crystal lattice where they sit. The random
change of the electric �eld causes the ions to shift their energy levels in a random manner, forming
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a wide inhomogeneous absorption pro�le. For the Pr3+:Y2SiO5 the inhomogeneous line width is
about 5 GHz, [13].

The narrow homogeneous line width in combination with the wide inhomogeneous line width makes
it possible to address di�erent subgroups of ions by tuning the laser to a speci�c frequency within
the inhomogeneous pro�le. Each such ensemble of ions can act as a qubit, as marked with colours
in the �gure 3.2.

(a) (b)

Figure 3.2: Subgroups of ions within the inhomogeneous absorption pro�le can be used as ensemble
qubits.

To create two-qubit gates the qubits need to interact with each other. Two ions sitting close to one
another can interact via their permanent dipole moments. When one qubit is in the excited state
the change in permanent dipole moment will shift the resonance frequencies of the surrounding
qubits. This can be used to create entanglement between close sitting qubits.

A more detailed description of rare-earth-ion-doped crystals used for quantum computing can be
found in [14].

3.2 Initialization of ensemble qubits

To be able to coherently control each qubit with the laser we want to de�ne narrow frequency
regions to represent each qubit. When setting the laser to a speci�c frequency we want to interact
with ions in one qubit but not with other ions lying close to that qubit in frequency. In this sense
we want to isolate a narrow frequency range within the inhomogeneous pro�le for each qubit.

By �rst burning a spectral pit in the absorption pro�le we can remove all ions that we don't want
to interact with from a certain frequency interval. This can be done by simply scanning the laser
back and forth over a limited frequency range. To make the pit as wide as possible and to move
close lying ions as far away from the pit as possible an optimized sequence of laser pulses is used.
The maximum width of the pit is limited by the splitting between the hyper�ne levels in the ground
state and in the excited state. A sequence of burnback pulses are then used to transfer ions back
into the pit in well-de�ned narrow peaks. Each peak represents one qubit as shown in �gure 3.3
and can be addressed independently with the laser as long as the separation between the peaks is
large enough, [15].

After the burnback sequence each peak still has a certain inhomogeneous width. This small di�er-
ence in resonance frequency between the di�erent ions in a qubit makes it di�cult to coherently
transfer all ions to the same quantum state. A chirped pulse, for example a so called sechyp pulse,
can be used to overcome this problem, [16].

All ions within one ensemble qubit must interact with the other qubits to be useful. For two ions to
interact they need to sit su�ciently close to each other in the crystal. Ions that are not interacting
with the other qubits can be found and transferred to a third hyper�ne level called the auxiliary
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Figure 3.3: By burning a spectral pit and moving ions back into the pit in a controlled way we can
create narrow separated peaks acting as qubits.

state. When placed in this state the ion will not be addressed by the laser and will not take part
in quantum computations, [17].

3.3 Scalability of the ensemble qubit quantum computer

For an ensemble qubit it is necessary for all ions within the ensemble to interact with at least one
ion from each of the other qubits. The ions that do not interact with the other qubits are put in
the auxiliary state and are not used.

If the probability for an ion to interact with an ion from another qubit is p, then the probability to
interact with at least one ion from each of the other qubits scales as pn−1 where n is the number
of qubits in the quantum computer. This probability is very small for a large number of qubits.
With p ≈ 1% in a �ve-qubit computer only 1 out of 108 ions in each qubit are useful, [13].

There are ways to improve the scalability by for example working with a very high dopant concen-
tration or by using a so called bus-ion to mediate between qubits, [18]. Even then the ensemble
qubit approach is not practical for a large number of qubits. To be able to make a larger quantum
computer single-ion qubits might be the best choice.

3.4 Single-ion qubits

One way to improve the scalability of the rare-earth quantum computer is to use single ions as
qubits. One single ion could interact with several other ions sitting close to each other in the
crystal. The surrounding ions can in turn interact with other ions and we can use branched chains
of clustered ions that can interact and mediate information.

The problem with this approach is to read out the state of single qubits. It must also be possible
to identify and address the ions used as qubits independently. There are proposed ways to do this.

To be able to read out the state of a single ion qubit a special readout ion can be used. The readout
ion can be an ion with a short excited state lifetime where it is possible to cycle a transition many
times and get a stronger signal. The qubit ions interact with the readout ion through their
permanent dipole moments. The readout ion can be shifted in or out of resonance depending on
the state of a nearby qubit.

Ce3+ seems to be a good choice for a readout ion. The excitation wavelength of 371 nm is well
separated from the qubit transitions so that the state of the qubits will not be a�ected by the
readout signal. The Ce-transition has a narrow line width which makes it possible for a Ce-ion to
be shifted out of resonance when interacting with a qubit, [18].

A �nd and search scheme can be applied to �nd the resonance frequencies of ions that sit close to
a readout ion and then further extend the number of qubits in branched chains from the readout
ion.
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When scaling the quantum computer to more and more qubits, there will eventually be an ion
with the same resonance frequency as an already existing qubit ion. This limits the number of
qubits in the quantum computer. There are ways to shift the resonance frequencies and extend
the scalability further by for example putting small and closely spaced electrodes on the surface of
the crystal, [18].

Eventually, when scaling the quantum computer to a very large number of qubits, it's necessary to
entangle spatially remote qubits, [13]. An e�ective way to entangle two ions at di�erent locations
would be a big step forward to a scalable rare-earth-ion quantum computer. This will be discussed
more in the next chapter.

3.5 Experimental realization of a rare-earth quantum com-

puter

Experiments have been done to investigate the possibilities to use rare-earth-ion-doped crystals as
hardware for quantum computing. Especially Pr3+:Y2SiO5 and Eu3+:Y2SiO5 have been studied.
The crystal is cooled to temperatures below 4 K to avoid thermal disturbance and achieve a long
coherence time for the ions. This can be done by placing the crystal in liquid helium inside a
cryostat. The laser needs to have a very narrow line width in order to manipulate individual
qubits and also need to be very stable.

Ensemble qubits have been prepared and characterized using quantum state tomography, [19], [20].
Single qubit operations have been demonstrated with a �delity of about 90% and the dipole-dipole
interaction between qubits have been measured, [19], [17].
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Chapter 4

Scalability to a large number of

qubits

As was explained in the previous chapter one of the problems with a rare-earth-ion quantum
computer is the di�culty to scale the computer to a large number of qubits. A single-ion qubit
approach o�ers a better scalability but to achieve a large scale quantum computer we need to
entangle remote clusters of qubits. There has been a couple of di�erent ideas of how to do this
during the process of my work and what I will present in this chapter is the most resent idea.

The idea of using small registers of a few qubits and remotely entangle many such registers is not
only interesting for rare-earth quantum computing, but also for other implementations, [21].

4.1 A quick review of light-matter interaction

Coherent interaction between light and matter can be described using the Bloch equations and con-
veniently visualized in the Bloch sphere. The Bloch equations is a system of di�erential equations
describing the evolution of three coordinates u, v and w.

u̇ = δv − Γ

2
u

v̇ = −δu+ Ωw − Γ

2
v

ẇ = −Ωv − Γ(w − 1)

A superposition between two quantum mechanical states can be described with one amplitude
relationship determining the probability to �nd the system in one level or the other and one phase
relationship between the two superpositioned wave functions of the levels. In the Bloch equations
w describes the amplitude relationship with w = −1 meaning that the system is in the ground
state and w = 1 meaning the system is in the excited state. The coordinates u and v determines
the phase relationship between the states.

The detuning, δ, is the di�erence between the frequency of the applied �eld and the energy splitting
between the two states |1〉 and |2〉. Γ is the damping rate of the system.

Ω is the so called Rabi frequency of the system. The Rabi frequency describes the coupling between
two levels, |1〉 and |2〉, in the presence of an electromagnetic �eld with amplitude E0.

Ω =
〈1| er ·E0 |2〉

~
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Figure 4.1: The state of a quantum system can be visualized on the Bloch sphere.

If the amplitude E0 changes slowly and is approximately constant over the volume of the system
we can move it out of the braket and write:

Ω =
E0

~
e 〈1| r |2〉 =

E0µ

~

where µ = e 〈1| r |2〉 is the dipole moment of the transition.

The vector (u, v, w) is called the Bloch vector. For a system without losses the magnitude of the
Bloch vector is always equal to one and as the system evolves with time the Bloch vector will move
on a unit sphere as in �gure 4.1. This unit sphere is called the Bloch sphere.

In a system with no detuning or losses the wave function of the system will oscillate between
the ground state and the excited state with the Rabi (angular) frequency. This phenomenon is
called Rabi �opping. The pulse area of a light pulse, Ωt, is in the case with no detuning the angle
traversed by the Bloch vector in the Bloch sphere during the pulse. For a so called pi-pulse Ωt = π
the system has then moved 180 degrees in the Bloch sphere, for example from the ground state to
the excited state as in �gure 4.2.

A more detailed description of the Bloch formalism can be found in [22].

4.2 Remote ion entanglement

The rare-earth-ions doped into a crystal are sitting in two di�erent sites in the crystal structure.
The dipole moments of the ions are lined up in two di�erent directions. By orienting the crystal
in the right way with light incident in the plane spanned by the dipole moments of the ions, it
is possible to get a high absorption for horizontally polarized light, say, and no absorption for
vertically polarized light.

By sending a photon pair with opposite entangled polarization states to two di�erent crystals
oriented in the same way we know that one photon can be absorbed and one will pass through the
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Figure 4.2: A pi-pulse moves a quantum system an angle pi from the ground state to the excited
state.

Figure 4.3: Ions sitting in di�erent crystals get entangled by absorbing one of the polarization
components of an entangled photon pair.

crystal una�ected. When crossing the two photon paths in a 50/50 beam splitter any information
on which path the photon took and hence which crystal absorbed a photon is lost. This allows two
ions in the di�erent crystals to be entangled. The principal set-up can be seen in �gure 4.3.

If we detect two photons after the beam splitter we know that none of the photons were absorbed
and we can re-do the procedure. Even if we only detect one photon there can still be losses and
errors in the process. Using e�cient error correction schemes we can allow the error probability to
be as high as a few percent if the error probability within each cluster is small, [21].

To coherently excite an ion we need to apply a pi-pulse. The photon should be absorbed by an
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ion in the crystal with a probability close to 100%. To achieve a single photon pi-pulse we need to
enhance the interaction between the photon and the ion.

The so called communicator ion used to create entanglement between two crystals do not need to
be the same kind of ion that is used for performing quantum computation. One way of achieving
a strong interaction is by choosing an ion with a large transition dipole moment. The lifetime of
the communicator ion is not as important as for the qubit ions, but we need the coherence time
to be long enough to create entanglement and interact with a qubit ion before information is lost.

4.3 Enhancing light-matter interaction

To be able to entangle remote ions using the idea presented above one single photon should act
as a pi-pulse for an ion. For this to be possible we must increase the pulse area of the photon-ion
interaction. This can be done by increasing the interaction time t and by increasing the Rabi
frequency Ω.

4.3.1 Using a toroidal microresonator to increase the interaction time

The interaction time can be increased by using a resonator of some kind. A toroidal microres-
onator can have a very high Q-value and a small mode volume which allows for strong coupling to
atoms or ions. It is also relatively easy to fabricate and has very promising properties for further
improvements.

Figure 4.4: A toroidal microresonator can have a very high Q-value and a small mode volume.

A photon can be coupled into a small resonator with a very high e�ciency (>99.9%) using a
tapered waveguide, [23]. Q-values of 108 have been demonstrated for 852 nm, and values as high
as 1010 might be possible, [24]. The lifetime of the cavity at 600 nm with a Q-value of 108 is:

τ =
Q

ω0
=
λQ

2πc
≈ 30ns

For a Q-value of 1010 the lifetime would be about 3 µs.

If the crystal is placed close to the surface of the microtoroid the ions will interact with the
evanescent �eld from the resonator. In ref [25] experiments with cesium atoms interacting with
toroidal microresonators gave a Rabi frequency of 100 MHz 45 nm away from the toroidal surface.
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In ref [24] the best possible scenario when a cesium atom is placed at the point of highest �eld
strength outside the microresonator is considered. A Rabi frequency of 1 GHz is stated as possible
with currently available microresonators and even higher Rabi frequencies can be obtained by
optimizing the shape and size of the resonator. The coupling strength between the atom and the
resonator is higher for a smaller resonator with a smaller mode volume, but a smaller resonator
can at the same time give a lower Q-value. For a toroidal microresonator with a Q-value of 108 a
Rabi frequency as high as 5.7 GHz is stated as achievable by optimizing the shape of the toroid.

All the above mentioned Rabi frequencies are for the D2-transition (62S1/2 - 6 2 P3/2) in cesium
atoms at 852 nm. This transition has a dipole moment of µcs = 3.8 · 10−29 C m, [26]. The dipole
moment of the strongest 3H4 - 1D2 transition in Pr3+:Y2SiO5 is three orders of magnitude lower;
µpr = 3.7 · 10−32 C m, [15]. This also implies that the Rabi frequency will be three orders of
magnitude lower.

Achievable Rabi frequencies

Cesium Pr3+

100 MHz 100 kHz
1 GHz 1 MHz
5.7 GHz 5.7 MHz

100 kHz should be possible to achieve by placing the crystal very close to the microresonator
surface. The value is calculated for an ion sitting 45 nm away from the surface. We then need
to place the crystal less than 45 nm from the resonator, how close depends on how deep into the
crystal the communicator ion is sitting.

1 MHz might be possible if we can put the crystal even closer to the toroid, probably within a few
nm from the surface. We would need to use an ion sitting very close to the crystal surface.

5.7 MHz is dependent on the fabrication of a smaller optimized microresonator with the properties
predicted in [24]. It also depends on the possibility of putting the crystal extremely close to the
surface of the resonator and using a communicator ion close to the crystal surface.

Using the lifetimes and Rabi frequencies mentioned above we can get an idea of the achievable
single-photon pulse areas.

Pulse area Ωτ :

Ω ↓ τ → 30 ns 3 µs
100 kHz 0.003 0.3
1 MHz 0.03 3
5.7 MHz 0.171 17.1

The case of a 5.7 MHz Rabi frequency and a lifetime of 3µs is not realistic since the such an
optimized resonator with a very small mode volume would not have a Q-value of 1010.

The case of a 1 MHz Rabi frequency together with a long resonator lifetime is not entirely out
of question but is dependent on the fact that we need to use ions very close to the surface of the
crystal. In this case we are very close to achieving a pi-pulse.

For all other cases we need to enhance the evanescent �eld from the resonator where the ion is
sitting to achieve a pi-pulse. The realistic case of 100 kHz Rabi frequency and a lifetime of 30 ns
would require that we could focus the �eld enough to obtain a �eld enhancement of 103 where the
ion is sitting. With a higher Q-value an enhancement of 10 times might be enough.

4.3.2 Increasing the Rabi frequency by focusing light to a sub-wavelength

spot

Antennas have been used to transmit and receive electromagnetic waves since the end of the 19th
century. Many di�erent types of antennas has been designed for more or less specialized purposes.
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Receiving antennas in the radio frequency regime can easily focus radiation down to spots much
smaller than the wavelength.

With an increasing ability to manufacture very small metal structures antennas operating at optical
wavelengths have received much attention. Small antenna structures can focus light down to spots
much smaller than the wavelength with very high �eld strengths as a result.

This work aims to design an optical antenna suitable for scaling a rare earth quantum computer,
and investigate if such an antenna can be used to enhance the electric �eld at a crystal surface
enough to achieve a single photon pi-pulse. The requirements for such an antenna are listed below.

High �eld enhancement An enhancement of the evanescent �eld from the resonator between
10 and 1000 times is needed to achieve a single photon pi-pulse.

Low loss We can tolerate losses and errors of a few percent in the entanglement process. This is
not very much so an antenna with as low loss as possible is desirable.

Polarization dependence We only want to absorb one of the linear polarization components of
light. The antenna should not absorb, scatter or modify the other polarization component.

Field penetration into the crystal Ions sitting inside the crystal are well shielded from the
environment with long coherence times as a result. Ions close to the surface might not have
the coherence time needed to perform gate operations. The �eld should be enhanced where
the communicator ions is sitting, below the crystal surface.

Coherence of the ions The antenna should not destroy the coherence properties of ions close
by. This might be a tricky demand to satisfy, since an increased absorption often also implies
increased emission.

In the following chapters I will present the theory needed to understand and design an optical
antenna.
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Chapter 5

Optical properties of metals

Metals are widely used for guiding and manipulating electromagnetic waves. A metal wire can
transport power in the form of currents and voltages and a metal antenna can transmit or receive
radio waves. But we don't use metals as much when it comes to optical frequencies. You never see
a pair of glasses with metal lenses to focus light or a metal wire to transport the sunlight to your
favorite spot in the sofa.

Metals are often used as jewelry or decoration because of the shiny beautiful surfaces. The high
re�ectivity implies that light does not travel through metals. Can metals still be used to transport
and focus light?

In this chapter I will investigate how a metal behaves at optical wavelengths. I will deduce the
simple Drude model and show that light can indeed travel through and along the surface of the
metal under certain circumstances.

5.1 Sign convention

When describing propagating electromagnetic waves there are two di�erent sign conventions in
use. A time harmonic electric �eld E can be written as the real part of a complex �eld:

E(r, t) = E(r)cos(ωt) = Re(Ec(r)ei(ωt−kxx))

or equivalently
E(r, t) = E(r)cos(ωt) = Re(Ec(r)e−i(ωt−kxx))

The di�erence in sign convention may seem unimportant but will be carried on to many di�erent
formulas and variables. For example the dielectric constant of a lossy material will have a positive
or negative imaginary part depending on the sign convention used. This is important to keep in
mind when looking up material properties in literature.

I have chosen to follow the sign convention used by Maier [27], as well as many textbooks in optics.
I write the complex electric �eld:

E = E0e
i(kr−ωt)

This implies that a lossy material will have a positive imaginary part of the permittivity.

Unfortunately the simulation software used in this thesis, Comsol Multiphysics R©, uses the opposite
convention which might cause some confusion.
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5.2 The Drude Model

A simple way of modeling the interaction between an electric �eld E and the charges inside a
material is by considering the equation of motion of the electrons. The local electric �eld causes
a force on the electrons. Ignoring the di�erence between the local �eld and the applied �eld, the
force can be written F = −eE. We assume that the electrons are bound by a nucleus that acts
like a restoring force proportional to the displacement x with spring constant κ. We also assume
a frictional force proportional to the velocity ẋ of the electrons and the collusion frequency γ.

mẍ = −eE− κx−mγẋ

By assuming a harmonic time dependence of the complex �eld E(t) = E0e
−iωt, where E0 is the

complex amplitude of the �eld, we can easily get a solution for x [30]:

x(t) =
e
m

ω2 + iωγ − ω2
0

E(t)

We de�ne ω0 =
√

κ
m as the resonance frequency of the electron-nucleus spring. For a metal we can

choose to only take the free conducting electrons that are not bound to a nucleus into account and
put ω0 to zero. The polarization P of the metal can be written [30]:

P = Np = −Nex = −
Ne2

m

ω2 + iωγ
E

where N is the electron density of the metal. The electric �ux density D is [30]:

D(ω) = ε0E + P(ω) = εm(ω)E

where ε0 ≈ 8, 854 · 10−12 F/m is the permittivity of free space. From the expressions above the
permittivity of the metal, εm(ω), can be derived.

εm(ω) = ε0 −
Ne2

m

ω2 + iωγ
= ε0

(
1−

ω2
p

ω2 + iωγ

)

We use the plasma frequency of the metal de�ned as ωp =
√

Ne2

ε0m
. The relative permittivity, also

called the dielectric function, can then also be expressed as a function of frequency:

εmrel(ω) =
εm(ω)

ε0
= 1−

ω2
p

ω2 + iωγ
(5.1)

This way of modeling a metal is referred to as the Drude model [31].

In the following formulas and derivations I will use the relative permittivity εrel rather than the
absolute permittivity ε. For simplicity I will from now on drop the index and write only ε when I
refer to the relative permittivity.

In the Drude model we choose to disregard the e�ects of any bound charges in the metal. In
most cases this is a very good approximation. When comparing to experimental data for the
permittivity of metals the Drude model is reasonably accurate above 400 nm for silver, above 650
nm for gold and all the way up to ultraviolet for alkali metals [27]. For higher energies bound
electrons in silver and gold will get excited and the Drude model is not a good approximation. The
derivation of the dielectric constant for a Lorentz material and the Drude model can be found in
most electromagnetic wave propagation textbooks, including [32], [30] and [27].

5.3 Electromagnetic wave propagation in metals

Using the Drude model de�ned in equation 5.1 we can write the propagation constant of an EM-
wave in a metal as [27]:

km =
√
εm(ω)

ω

c0
=

√
1−

ω2
p

ω2 + iωγ

ω

c0
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To get a qualitative feeling for how propagation in the metal depends on frequency we can simplify
the expression above by ignoring losses caused by collisions and setting γ = 0. We then treat the
metal as a lossless electron plasma and the wave vector has the simple form:

km ≈
1

c0

√
ω2 − ω2

p

We can see that k is imaginary for ω < ωp, and no EM-waves below the plasma frequency can
propagate in the metal. At the plasma frequency the free electrons inside the metal oscillate
collectively, creating longitudal electromagnetic waves called bulk plasmons. Above the plasma
frequency the plasma is transparent for EM-waves. In practice visible wavelengths will be absorbed
very quickly in the metal, and interband transitions in the noble metals cause the Drude model to
fail for high frequencies, [27].

5.4 Surface waves on a dielectric-metal interface

Although no EM-waves below the plasma frequency can propagate inside a metal, there can be
surface waves propagating along the metal surface. An electromagnetic wave con�ned to the surface
of a metal is called a surface plasmon polariton, or SPP for short. The wave is sustained by surface
plasmons, oscillations in the conducting electrons on the metal surface, [27].

In appendix 1 it is shown that a surface plasmon polariton, or SPP for short, is a TM-polarized
electromagnetic wave con�ned to an interface. It is also shown that an SPP-mode is only supported
if the real part of the permittivity has di�erent signs on opposite sides of the interface:

Reε1 > 0

Reε2 < 0

where 1 and 2 refers to the di�erent materials at each side of the interface. This typically applies
to an interface between a metal an a dielectric.

The electromagnetic �elds of an SPP decay exponentially perpendicular to the interface with a
rate determined by material parameters. The wavelength of a surface plasmon polariton can be
considerably shorter than the wavelength in vacuum for the same frequency. This leads to a high
con�nement of the electric �eld, and very high �eld strengths can be obtained.

Unfortunately surface plasmon polaritons su�er from high attenuation coe�cients and can't propa-
gate more than some tens of micrometers before they are absorbed in the metal. There are ways to
reduce the dissipation and increase the propagation length, but there is always a trade o� between
high �eld con�nement and low attenuation.

Surface plasmon polaritons is the basic physical mechanism behind optical antennas and metallic
structures for manipulation of light. They will be investigated in more detail in the following
chapter.
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Chapter 6

Surface plasmon polaritons on a

semi-in�nite �at surface

In this chapter we will consider the simplest case of a surface plasmon polariton propagating along
a semi-in�nite �at interface between a metal and a dielectric of some kind. Coupling mechanisms
between an SPP and a photon will be investigated as well as the wavelength and lifetime of the
SPP.

Figure 6.1: Geometry used in this chapter: An SPP propagating along the x-axis.

We choose to place an interface between two materials at z = 0 in a Cartesian coordinate system
and assume that all light propagates in the x-z-plane. The SPP propagates along the interface in
the x-direction, as shown in �gure 6.1. The z-components of the SPP-wave vector is imaginary in
both materials so that the �elds decay exponentially away from the surface.

6.1 Dispersion relation

Following the geometry outlined above we have a surface plasmon polariton propagating in the
x-direction along an interface between a metal and a dielectric at z = 0. The wavenumber of the
SPP in each material, ki with i = 1 for the metal or i = 2 for the dielectric, can be written in
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terms of the wave number in vacuum, k0, or in terms of it's x- and z-components:

k2i = εik
2
0 = k2xi + k2zi

If we require the �elds parallel to the surface to be continuous across the surface we get the following
condition, (see appendix A for details):

kz2
kz1

= −ε2
ε1

The wave vectors pointing along the surface are also continuous across the surface, kx1 = kx2. This
yields a dispersion relation for a surface plasmon polariton [30], [27]:

ksp = kx1 = kx2 = k0

√
ε1ε2
ε1 + ε2

(6.1)

This relation can be seen in �gure 6.2 where a Drude model has been used. In the same �gure the
light line in the dielectric medium is shown, kd = 2πωn2

c0
, where n2 =

√
ε2 is the refractive index

in the dielectric and c0 is the speed of light in vacuum. kd is real and hence the component along
the surface can never be greater than kd itself;

kxd ≤ kd
It can be seen in the �gure that for each frequency ω 6= 0 kd < ksp and hence also kxd < ksp. The
wave vector along the x-axis of the dielectric mode can never be matched to the wave vector of the
surface plasmon polariton.

ksp > kd is equivalent with saying that the SPP always has a shorter wavelength than light
propagating in the dielectric, λsp < λd. At the surface plasmon resonance ωsp =

ωp√
2
the SPP

wavelength will go to zero, as can be seen in �gure 6.2(b). This together with the rapid decay
perpendicular to the interface gives the SPP a very localized �eld distribution with very high �eld
strengths as a result.

6.2 Coupling to a surface plasmon polariton mode

As can be seen in �gure 6.2 in the previous section it is not possible to couple an incoming EM-wave
directly to a surface plasmon polariton mode, since ksp > kd ≥ kxd. This can be easily realized by
considering an incoming plane wave from the dielectric as in �gure 6.3. Depending on the angle of
incidence the e�ective wavelength along the surface can be equal to or larger than the wavelength
of the plane wave, but it is not possible to match a surface wave with a shorter wavelength.

One way to achieve phase matching between an incoming wave and an SPP is to use frustrated
total internal re�ection from a denser material, as in �gure 6.4. By for example letting the light
be incident from a prism on one side of a metal �lm a surface plasmon polariton can be excited on
the other side of the �lm. This will cause total internal re�ection at the prism-metal interface, but
as long as the metal �lm is thin enough the evanescent �eld from the prism can tunnel through
the barrier and excite an SPP on the opposite metal-dielectric interface [30].

Another way of achieving phase matching between an incident �eld and an SPP on a �at surface
is by using a grating. The grating can provide the incoming �eld with additional momentum and
increase the wavenumber. A rough surface can in some sense be viewed as a randomized grating.
An incoming wave can excite an SPP along a rough surface directly, but the SPP will also be
scattered by sharp edges along the surface.

6.3 Decay rate of a surface plasmon polariton

The decay rate of an SPP mode depends on the material parameters of the surrounding media as
well as the shape of the surface. The imaginary part of the wave number ksp = kx determines the
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(a)

(b)

Figure 6.2: Plasmon dispersion relation in terms of (a) wavenumber and (b) wavelength.

Figure 6.3: A plane wave reaching a surface. The e�ective wavelength along the surface is always
bigger than on equal to the wavelength of the plane wave.

decay rate of the mode.
E ∝ eikspx = eiRekspxe−Imkspx
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Figure 6.4: The evanescent �eld from a denser material on one side of a metal �lm can excite an
SPP on the other side.

For a semi-in�nite metal �lm the dispersion relation was found in 6.1, repeated here for clarity:

ksp = k0

√
ε1ε2
ε1 + ε2

As an example we look at an interface between silver and air using the experimental value εm ≈
−16 + 0.5i for silver at 600 nm [27].

ksp ≈ 11 + 0.011i /µm

The e�ective propagation length is:

δ =
1

Im(ksp
) ≈ 91µm

A surface plasmon polariton will propagate less than 100 µm along a �at surface if no other losses
than absorption are taken into account. A real surface is never completely smooth and there will
be scattering in addition to absorption.

Writing εm = Reεm + iImεm and expanding ksp to �rst order in Imεm we can write [30]:

Im(ksp) ≈ −k0
(

εdRe(εm)

Re(εm)− εd

)3/2
Im(εm)

2Re(εm)2

We can see that Im(ksp) is proportional to k0 and hence the propagations length δ ∝ 1
k0

to �rst
order. The propagation length decreases for higher frequencies. It is however important to keep
in mind that the Drude model is not valid for wavelengths shorter than 400 nm in silver.
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Chapter 7

Localized surface plasmons

Propagating surface plasmon polaritons were investigated in the previous chapter. We assumed a
semi-in�nite interface between a metal and an insulator and saw that the surface plasmon polariton
is a TM-polarized EM-mode that can not be excited directly by an incident plane wave.

In this chapter another type of surface plasmon excitation will be investigated, namely localized
surface plasmons. The free electrons on the surface of a small metallic structure will oscillate in
a time-harmonic electric �eld. The curvature of the surface will a�ect the restoring force on the
electrons. At resonance there is a large �eld enhancement close to the metal structure due to the
oscillating charges. A localized surface plasmon is a non-propagating excitation that can couple
directly to incident light.

The interaction between light and structures much smaller than the wavelength can be treated
using quasi-static theory. The special case of a metal sphere will be treated in depth since it is
analytically solvable and provides a good example.

7.1 A small sphere in an electric �eld

7.1.1 Quasi-static approximation

We consider a small sphere with radius much smaller than the wavelength of the incident light,
a << λ, in a static electric �eld.

E0 = E0ẑ

The sphere has a complex relative permittivity εm(ω) that can be explicitly stated using the Drude
model as in equation 5.1 in chapter 5.1. The surrounding medium is assumed to be non-absorbing
with permittivity εd. Applying suitable boundary conditions for the sphere the problem can be
solved and the resulting electric �elds inside and outside the sphere respectively are [33] [27]:

Ein(r) =
3εd

εm(ω) + 2εd
E0 (7.1)

Eout(r) = E0 +
3n(n · p)− p

4πε0εdr3
(7.2)

where n = r
|r| is a unit vector in the direction of the point of interest and p is the dipole moment

of the sphere:

p = 4πε0εda
3 εm(ω)− εd
εm(ω) + 2εd

E0 = ε0εdαE0
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Here we de�ne the polarizability of the sphere, α = 4πa3 εm(ω)−εd
εm(ω)+2εd

. The �eld outside the metal

sphere is in this approximation a superposition of the incoming �eld and the �eld from a point
dipole.

A resonance occurs when the polarizability has a maximum, hence when εm(ω) + 2εd is close to
zero. Assuming Im(εm) is small, the resonance condition is:

Re(εm(ω)) = −2εd (7.3)

This is called the Fröhlich condition. Note that in this approximation the size of the sphere does
not in�uence the resonance frequency.

When applying an oscillating electric �eld to the metal sphere the dipole moment of the sphere
will also oscillate and make the sphere radiate. The incoming wave is scattered by the sphere. The
radiated �elds from a dipole are H(t) = He−iωt and E(t) = Ee−iωt, where E and H are [33]:

H =
ck2

4π
(n× p)

eikr

r

(
1− 1

ikr

)
E =

eikr

4πε0εd

(
k2

r
(n× p)× n + (3n(n · p)− p)

(
1

r3
− ik

r2

))
k is here the wave number in the surrounding medium. Close to the dipole we can assume kr << 1
and we only need to take terms proportional to 1

r3 into account. Then the electric �eld is reduced
to:

Enear =
3n(n · p)− p

4πε0εdr3

which is exactly what we got above using the quasi-static approximation.

The imaginary part of the polarizability Im(α) accounts for absorption losses in the metal. The
absorption cross section is proportional to the volume of the sphere while the scattering cross
section scales as the volume squared [27].

Cabs ∝ a3

Cscat ∝ a6

For very small particles absorption will dominate over scattering. Both cross sections are resonantly
enhanced when the Fröhlich condition is satis�ed.

Assuming that the sphere is made out of silver with ωp ≈ 1.4 · 1016 rad/s [29] and surrounded by
air the Fröhlich condition 7.3 gives the resonance frequency:

ωres =
ωp√

3
≈ 8 · 1015rad/s

λ0 ≈ 233nm

λ0 is the resonant free space wavelength.

The relative permittivity of the surrounding medium will in�uence the resonance frequency of the
metal particle. Assuming an excitation wavelength of 600 nm (in vacuum) and using the relative
permittivity of silver at this wavelength εm = −16+0.5i [27], we get a resonance if the surrounding
medium has a relative permittivity of

εd = −Re(εm)

2
= 8

The quasi-static approximation used here is strictly valid only for a vanishing particle diameter
when the sphere acts as a perfect point dipole. It is however approximately valid for diameters
smaller than the wavelength of the incident light. In this case it is assumed to be valid up to a
particle diameter of about 100 nm.

Some features of localized surface plasmons are not captured by this description, as for example
radiative damping and size-dependence of the resonance frequency.

28



7.1.2 Second order expansion

There are two regimes where the quasi-static approximation breaks down: for particles smaller
than the mean free path of the oscillating electrons and for particles big enough for retardation
e�ects to be important. I will only focus on the case of larger particles, since I won't consider any
structure smaller than 10 nm within this thesis.

Mie theory gives a rigorous treatment of scattering and absorption by a sphere using an electro-
dynamic approach. I will satisfy with a second order expansion of the polarizability α, [27]:

α = V
1− 0.1(εm + εd)x

2 +O(x4)

(1/3 + εd
εm−εd )− 1/30(εm + 10εd)x2 − i

4π2ε
3/2
d

3
V
λ3
0

+O(x4)
(7.4)

x =
πa

λ0

x is a size-parameter, depending on the radius a and the free space wavelength λ0, and V is the
volume of the sphere.

The terms quadratic in x accounts for retardation e�ects in the �eld outside and inside the sphere.
For a Drude-metal they lead to a red shift of the resonance frequency for increasing particle size.

The imaginary term in the denominator is due to radiation damping. A localized plasmon mode
can decay directly into a photon and this will lead to a weakening of the resonance as well as
broadening. The term is proportional to the volume of the sphere and thus increases rapidly with
particle size.

To get a better feeling for how the second order expansion will a�ect the polarizability we can
compare with the polarizability given by the quasi static approximation, αqs, for a wavelength of
600 nm and a silver sphere of diameter 50 nm surrounded by air.

αqs ≈ (2.38 + 0.015i) · 10−22C/m

α ≈ (2.41 + 0.05i) · 10−22C/m

The di�erence is not very big, especially the real part of the polarizability is almost the same in
the two cases. The imaginary part is bigger for the second order expansion since we now take
radiation damping into account.

7.2 Lifetime of a localized surface plasmon

A localized surface plasmon has a limited lifetime due to the damping processes mentioned above.
The plasmon can be modeled in a simpli�ed way as a two-level system in a thermal reservoir.
Taking all dephasing processes into account and assuming a Lorentzian line shape we can de�ne
a total dephasing time, T , in terms of the plasmon resonance linewidth in frequency, ∆ν, and
angular frequency, ∆ω, [28]:

T =
1

π∆ν
=

2

∆ω

There are two contributions to the dephasing time T , a lifetime due to damping, T1, and a pure
dephasing time limited by elastic collisions, T2. In normal circumstances the absorption and
radiation probabilities are much higher than the collision frequency, so that T1 << T2 and T ≈ T1.

For small gold and silver spheres experiments show that T is in the order of a few femtoseconds,
[27]. The dephasing time depends on the shape and size of the particle as well as the surrounding
media. Smaller particles will in general have longer lifetimes, and a prolate shape will increase
the lifetime compared to a spherical shape as was shown by Sönnichsen et al, [34]. In the same
study the longest obtained lifetime for gold nano rods was 18 fs. The lifetime can be increased by
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choosing silver instead of gold because of the lower absorption, but still the dephasing time will
probably be limited to tens of femtoseconds.

7.3 Plasmonic antennas

Optical antennas are used in a variety of applications, mainly for enhanced emission and sensing.
The localized plasmon resonance of a small metal structure depends on the properties of the
surrounding medium. This can be used to detect small changes of refractive index for example
within biosensing, [35]. Plasmonic antennas have received a lot of attention in the context of surface
enhanced Raman spectroscopy, SERS. SERS enhancement factors as high as 1014 are obtained and
with clever designs even higher factors are possible, [36]. The enhancement is partly due to an
enhanced �eld strength at hot spots close to metallic particles.

The high �eld enhancement close to a plasmonic antenna is due to two e�ects. Firstly, the localized
surface plasmon resonance will give rise to strong near �elds and hot spots in small gaps between
particles. Secondly, there is a well known phenomenon from antenna theory called the lightning
rod e�ect. It means that the electric �eld is high at sharp edges due to a crowding of the �eld lines.
The lightning rod e�ect is a pure geometrical e�ect taken advantage of when designing antennas
for high �eld enhancement.

The Bowtie antenna is a variant of a dipole antenna, built out of two triangular antenna elements
facing each other tip to tip, as shown in �gure 7.1. It is a widely used antenna, for example to
receive high frequency radio waves. The sharp edges in the center of the bowtie antenna creates a
small focus and high �eld strength in the gap between the antenna elements.

Figure 7.1: A bowtie antenna.

In 1997 Grober et al. [37] showed that microwaves can be focused down below the di�raction limit
with high �eld strengths as a result using a bowtie antenna. In the same article they propose to
scale down the antenna to optical wavelengths. Since then the bowtie antenna has been a popular
choice at optical wavelengths and studied theoretically and in experiments, [38] [39].

7.4 A note on non-locality

When considering light-matter interaction a semi classical theory is often used. Light is treated as a
classical EM-wave while atoms are treated using quantum mechanics. In macroscopic systems, like
big chunks of matter, we assign certain properties to each material. We assume that an incident
electric �eld induces a response in the material determined by material parameters like for example
the permittivity. The response is assumed to be local so that the electric �eld at each point induces
a polarization in this point only. In this way we only consider averaged quantities and don't have
to take each single atom into account. The interaction between di�erent regions are modeled with
suitable boundary conditions. This does not work well for smaller systems when the interaction
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between induced dipoles at di�erent locations becomes important. This non-local response can be
seen as a consequence of quantum mechanics. If the spatial wave function of a collection of atoms
is coherent, a force applied at one point must a�ect the wave function in all points.

A full treatment of this problem would require a quantization of both matter and the electric �eld.
It is possible to include a non-local optical response in a semi classical theory, but this is often not
done in basic electromagnetic wave propagation textbooks or in commercial computer software. In
most applications a local approximation works very well.

Examples of when a local approximation fails is for very small structures or gaps as well as for
very sharp edges. A typical plasmonic antenna has both sharp edges and a very small gap between
two antenna elements. When putting two small metal particles close to each other they strongly
in�uence one another. This will change the local �elds and also shift the plasmon resonances of
the metal structures, [40].

This e�ect is not taken into account in this work. By keeping a minimum distance of 2 nm between
the antenna elements and by rounding o� sharp edges to a minimum radius of curvature of 5 nm
the e�ects of non-local response are assumed to be negligible.
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Chapter 8

Modeling using COMSOL

Multiphysics R©

To simulate an antenna placed at the surface of a crystal I use COMSOL Multiphysics R©, a com-
mercial �nite element simulator used within many di�erent �elds. Comsol was developed in the
early 90's under the name FEMLAB R©. Today Comsol Multiphysics is a big family of software
with several add-on modules specialized for applications like structural mechanics, heat transfer
and electromagnetic wave propagation. The multiphysics capability means that several di�erent
kinds of physical phenomena can be simulated and combined. As an example the result from an
electromagnetic wave propagation simulation can be used as input data for a heat transfer simula-
tion. I have used the RF-module of Comsol which suits well for applications within photonics and
electromagnetic wave propagation.

Using Comsol it is possible to de�ne arbitrary geometries and shapes with di�erent material pa-
rameters. It is also possible to import a geometry from a CAD-model. The program makes use of
the �nite element method to solve the given di�erential equations within the de�ned geometry.

8.1 The �nite element method

The �nite element method, FEM, is a numerical method of solving di�erential equations in one-,
two- or three-dimensional geometries. Instead of �nding an approximate solution in the entire
region of interest the region is split up into �nite elements and an approximate solution is found
for each element. The approximation made for each element can be rather simple, for example
that the variable of interest changes linearly within the element. Each element has a number of
nodal points, usually placed at the boundary. If the solution is known in the nodal points, the
approximate solution for the entire element is obtained simply by interpolating the nodal points.
The continuous problem is thus transformed to the discrete problem of �nding the solution to the
di�erential equation in the nodal points.

The number of unknowns is equal to the number of nodal points in the de�ned mesh of �nite
elements. A �ner mesh with a larger number of nodal points will give a more accurate solution. In
general the number of nodes is very large. Especially for three-dimensional problems the number
of elements grow fast with the size of the geometry. The �nite element method is dependent on
e�ective computers to store big matrices and solve big equation systems.

The �nite element method can be used to solve any di�erential equation in an arbitrary geometry.
It is one of the most powerful numerical methods available and used within all areas of engineering.
For a more complete description of FEM I recommend [42].
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8.2 Model

The RF-module of Comsol Multiphysics is suitable for modeling electromagnetic wave propagation.
The size of the geometry is in this case on the limit where a quasi-static model might be enough,
but in this case the electromagnetic wave propagation application mode will be used, which is
based on the full Maxwell equations. A quasi-static approximation will not describe some of the
properties of localized surface plasmons in a satisfactory way, as was mentioned in connection with
the theoretical treatment of a small metallic sphere in chapter 6.

A scattered harmonic propagation analyses is used. Harmonic propagation means that all waves
have a harmonic time dependence, which gives the possibility to use a complex �eld formulation.
Doing that it's not necessary to solve the equations for each time step.

A scattered �eld formulation means that the incoming �eld is pre-de�ned in the entire volume and
the scattered �eld is solved for. This is particularly good when using perfectly matched layers,
PMLs, which will be discussed in the next section. In this way the incident �eld is de�ned in the
entire volume outside the PML-regions and will not be a�ected by the absorbing PMLs at all.

Using a scattered harmonic propagation analyses the wave equation for the scattered electric �eld
is solved.

∇×
(

1

µ
∇×Esc

)
− εk20Esc = 0

E = Ein + Esc

The incident electric �eld is de�ned as:

Ein = êxe
−1.8ik0ye−1.5k0z

The �eld is propagating along the y-axis and is polarized along the length of the antenna in the
x-direction. The �eld decays exponentially in the z-direction towards the antenna and crystal
surface.

k0 = 2π
λ0

is the wave number in vacuum. 1.8k0 = ky is the y-component of the wave vector and
−i1.5k0 = kz is the z-component of the wave vector. The wave numbers have been chosen by
assuming a plane wave propagating in the y-direction in a glass of refractive index 1.8 just above
the modeled volume. The wave number in this glass is then: kyglass = 1.8k0. Since the component
of the wave vector parallel to the surface is continuous across the surface:

kyglass = ky = 1.8k0

and also
k20 = k2y + k2z → kz = −

√
(1− 1.82)k0 = −i1.5k0

The negative square root is chosen since the �eld is exponentially decaying.

The situation is shown in �gure 8.1, where the electric �eld is perpendicular to the plane of the
image. The glass is not part of the Comsol model, but the evanescent �eld is de�ned directly as
input data.

Normal silica glass has a refractive index of about 1.5. The reason for using a refractive index of
1.8 and not 1.5 is to avoid a propagating wave inside the crystal. If light was incident from a glass
with refractive index 1.5 the pre-de�ned �eld Ein would not be evanescent inside the crystal. This
will be discussed more in chapter 12.

The chosen �eld is not based on the situation with a toroidal microresonator but is a very simpli�ed
evanescent �eld with an amplitude equal to one at the surface of the geometry. The speci�c
amplitude of the �eld is not important since I will only consider the enhancement of the �eld
relative to a reference based on the same model.

The free space wavelength used is λ0 = 600 nm.
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Figure 8.1: An evanescent wave with an imaginary component kz is incident on the antenna.

8.3 Geometry

To solve the di�erential equations given above we need to de�ne a geometry with suitable material
parameters and boundary conditions. The convergence and error of a simulation depends very
much on the geometry so it might be worth taking some time to think about the situation we want
to solve.

The geometry consists of a block representing the crystal surface. On top of the block an antenna
structure is placed. The crystal and the antenna are contained in a second bigger block of air. This
block is the volume where the equations will be solved. The volume is surrounded by PML-regions
which will be discussed more in connection with boundary conditions. There is also a smaller block
surrounding the antenna. This block has no physical meaning, it has the same material parameters
as the surrounding material, but is there to make it possible to de�ne a di�erent mesh gradient
close to the antenna. This will be discussed more in connection with meshing.

The antenna has it's length along the x-axis. The z-axis is pointing in the direction from air to
the antenna and down into the crystal.

The geometry can be seen in �gure 8.2. The dimensions and material parameters for my model
are given below.

(a) (b)

Figure 8.2: Geometry seen (a) from the side in the x-z-plane and (b) from the top in the x-y-plane.

Volume with air:
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Length along x-axis 700 nm
Width along y-axis 700 nm
Height along z-axis 500 nm
Center point (0,0,0)

εair = 1

Crystal:

Length along x-axis 500 nm
Width along y-axis 500 nm
Height along z-axis 300 nm
Center point (0,0,0)

εcrystal =

 3.27 0 0
0 3.19 0
0 0 3.20


This data is for the Y2SiO5 host crystal, [41]. In this case the crystal is oriented with the optic
axis along the x-axis.

Metal structures:

Varying sizes and shapes.

εm = −16− 0.5i

The value is taken from experimental data, but is consistent with the Drude model, [27].

One important thing to note is that Comsol uses the opposite sign convention from what I have
done in this thesis, and hence the imaginary part of the permittivity of a metal has the opposite
sign from what I have used in previous chapters and from what is given in [27].

8.4 Boundary conditions

One of the biggest challenges when modeling wave propagation is to �nd suitable boundary condi-
tions. We want light to propagate out from our volume without being re�ected back. This might
seem like an easy thing to do, but when formulating this as a boundary condition for a di�erential
equation we need some information about the �eld at the boundaries. Comsol o�ers two di�erent
boundary conditions for this situation.

The scattering boundary condition will be completely transparent and non-re�ecting for plane
waves. This is suitable for an incident plane wave if the volume is big enough so that scattering
occurring inside the volume does not a�ect the �eld at the boundaries too much. If the wavefronts
are not planar at the boundary they will be at least partly re�ected.

The matched boundary condition is completely transparent and non-re�ecting for guided modes
with a pre-de�ned wave vector. This suits well for modeling of waveguides, but not so well for
scattered waves.

The scattering boundary condition caused a lot of re�ections in this model. Since lack of computer
memory was one of the major limitations for the model I didn't wan't to increase the volume too
much. There is a third option when both of the above mentioned boundary conditions fail; namely
to use perfectly matched layers, PML's. PML's are impedance matched absorbing layers placed at
the boundary of the volume. They will absorb outgoing radiation before it is re�ected back into the
volume. By combining PML's with a scattering boundary condition re�ections can be minimized
for arbitrary wavefronts and wave vectors. A PML is not simply a special material placed at the
boundary. No physical material can have both a perfectly matched impedance to the interior of the
volume and a high absorption compared to the interior. Mathematically a PML-region is modeled
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by a special coordinate transformation. The exact mathematical formulation of the PML-regions
is outside the scope of this thesis.

8.5 Mesh

To solve the wave equation in the geometry de�ned above we need to create an element mesh.
Linear triangular elements are the simplest possible elements in a 3D-geometry. They are �exible
and easy to �t into sharp edges and small structures.

Smaller elements give a smaller error in the approximation. Small details in the geometry need a
�ner mesh than big structures. The element size is limited by the accessible RAM memory of the
computer.

According to the Nyquist theorem we need at least two linear elements per wavelength to model
the �eld. The Comsol Multiphysics users guide recommends 10 elements per wavelength, and an
element size of about half the size of the smallest structure in the model.

A problem with this model is that the size of the entire block is rather large, about 700 nm in each
direction, compared to the smallest structures which for the antennas are just a few nanometers.
Because of lack of memory a �ne mesh can't be used in the entire geometry but we need a very
�ne mesh close to the antenna. The solution is to use di�erent mesh sizes in di�erent regions. It is
also possible to de�ne a gradient of the mesh size, so that the elements get gradually bigger away
from the antenna. In the outer parts of the volume the mesh can be rather coarse since we're not
interested in the �elds far away from the antenna.

A �ne mesh is de�ned in the metal structure. In most cases 2 nm long mesh elements are used
inside the antenna which is the smallest possible size with the accessible 6 GB of RAM memory.
In the small box surrounding the antenna, where we are interested in calculating the �elds, a small
gradient of the element size is used. A gradient of 1.1 means that each mesh element will be 1.1
times bigger than the previous one, starting from the antenna. In the rest of the volume a larger
gradient of 1.3 is de�ned. If an even larger gradient is used the solution does not converge. Part
of a two-dimensional version of the mesh can be seen in �gure 8.3.

Figure 8.3: Mesh surrounding a bowtie antenna.

To check how the mesh size will a�ect the result of a simulation a bowtie antenna is simulated
with several di�erent mesh sizes inside the antenna. In �gure 8.4 the �eld strength between the
antenna elements on the surface of the crystal is plotted as a function of mesh size.
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Figure 8.4: Electric �eld as a function of mesh size.

The result does not vary very much with mesh size, except for elements as big as 10 nm. For
elements bigger than 10 nm the solution does not converge. The distance between the antenna
elements are in this case 5 nm. For a maximum mesh size of 5 nm or bigger there is at least one
mesh element in the gap between the antenna elements. For a mesh size of 2.5 - 4 nm there will be
at least two elements across the gap and for a 1.7 - 2.5 nm mesh there will at least three elements.
The �eld decays rapidly away from the sharp tips of the bowtie and the number of elements in the
gap as well as the location of the nodes can have a big in�uence on the �eld in the gap. From 8.4
it seems like we need an elements size of 3.5 nm or below.

I used the GMRES iterative solver and allowed an error of 1 · 10−6 V/m.
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Chapter 9

Comparison between a simulation

and theory

To evaluate the model described in the previous chapter a small sphere is simulated using Comsol
Multiphysics. The result from the simulation is compared to a theoretical treatment using a second
order expansion of the polarizability as described in chapter 7. The theoretical equations are put
into a MatLab script to generate plots similar to those given by Comsol.

9.1 Models

For the numerical simulation the analysis mode, incident �eld and boundary conditions described
in the previous chapter are used. The geometry consists of a silver sphere surrounded by air,
positioned as in �gure 9.1. The small box around the sphere is only for meshing purposes and has
the same material parameters as the surroundings. The sphere has a diameter of 50 nm. The mesh
elements have a maximum size of 3 nm inside the sphere. The size of the mesh elements increase
with a gradient of 1.1 in the small box surrounding the sphere and with a gradient of 1.3 in the
rest of the volume.

Figure 9.1: Geometry used for simulation.

The theoretical calculation is done with the help of MatLab using the same incident �eld and
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material parameters as for the FEM simulation. The �elds inside and outside the metal sphere are
given by equations 7.1 and 7.2. The polarization of the sphere is:

p = ε0εdαE0

where the polarizability α is given by the second order expansion in equation 7.4.

9.2 Results

The norm of the electric �eld is shown in �gure 9.2. Figure 9.2(a), generated by using a theoretical
approximation, has a periodic background of an electric �eld propagating in the y-direction. Even
though the free space wavelength of the incident �eld is 600 nm the �eld has a wavelength of 333
nm in the y-direction, since it is an evanescent �eld. The wave vector, k0, then has an imaginary
component in the z-direction which will contribute to the total length, k20 = k2x + k2z .

The background looks di�erent for the Comsol simulation, 9.2(b). This is due to re�ections at the
boundaries which have a clearly visible e�ect even though PML's are used.

(a) (b)

Figure 9.2: The norm of the electric �eld calculated using (a) MatLab and (b) Comsol.

The re�ections at the edges are even more clear when not including the incident �eld and only
looking at the scattered �eld in �gure 9.3. In the theoretical case scattering will only occur at the
sphere. In the simulation there is also a lot of scattering happening at the boundaries.

(a) (b)

Figure 9.3: The scattered electric �eld calculated using (a) MatLab and (b) Comsol.

One way to handle the re�ections is to create a reference model without the sphere and only look
at the �elds relative to this reference. In �gure 9.4 the norm of the electric �eld is plotted along a
line cutting the sphere 10 nm from the center. The reference values obtained simply by removing
the sphere and re-doing the simulation and the calculation are also shown.
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Figure 9.4: Norm of the electric �eld 20 nm from the center of the sphere along the x-axis, and
for a reference model without the sphere. The red line marks simulated data and the blue line
theoretically calculated data.

By normalizing the values with respect to the reference model the simulation and the calculation
show much more similar results, as is shown in �gure 9.5. This is an easy way of removing some
of the unwanted e�ects from the boundaries. The result is better but there is still a discrepancy of
about 20 % in the peaks. The enhancement given by the simulations should be interpreted with
this in mind.

Figure 9.5: Enhancement of the electric �eld relative to the reference value at x=0. The red line
marks simulated data and the blue line theoretically calculated data.
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Chapter 10

Design of an optical bowtie antenna

The aim for this thesis is to design an optical antenna for the purpose of entangling remote ions.
There are a number of parameters that can be optimized to give the desired properties of the
antenna.

The material of the antenna should be chosen to get a low loss. Silver and gold are most widely
used for optical antennas since they are easy to manipulate on small scales and have their plasmon
resonances within the visible spectrum. Both silver and gold follow the Drude model down to
rather short wavelengths. Interband transitions that would increase the absorption drastically
does not occur for wavelengths above 650 nm for gold and 400 nm for silver. Silver has the lower
absorption and is for that reason chosen as the material for this antenna.

The shape and size of the antenna should be optimized to get a localized surface plasmon resonance
for a free space wavelength of 600 nm and as high �eld strength and large penetration depth as
possible. A bowtie antenna has been proven to be a good choice for focusing an electromagnetic
�eld down to a sub wavelength spot. The edges of the bowtie are rounded o� to a radius of about
5 nm to eliminate non-local optical response and to give a more realistic shape.

Figure 10.1: The shape and size of the bowtie is determined by it's length (L), width (w), thickness
(t) and distance between the antenna elements (d).

The design is done by simulating an antenna for di�erent lengths, widths, thicknesses and gap
sizes.

10.1 Length

A bowtie antenna was simulated in Comsol to �nd the resonant antenna lengths at a free space
wavelength of λ0 = 600 nm. Other parameters were kept constant:

w = 20 nm
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t = 10 nm

d = 10 nm

The result of the simulations is shown in �gure 10.2.

Figure 10.2: Field enhancement at the crystal surface for di�erent lengths of the antenna elements.

There are three resonances showing. The �rst and largest resonance occurs for a length of 30 nm.
This is a good choice for high �eld enhancement.

10.2 Gap size

Since the RAM memory of the computer limits the mesh size to about 2 nm at the antenna it's
not possible to obtain a trustworthy result from simulations for distances smaller than about 4 nm.
In �gure 10.3 the result is shown for a gap size down to 5 nm. The following constant parameters
were used:

L = 30 nm

w = 30 nm

t = 10 nm

By plotting the same data with logarithmic scale on both axis we obtain an approximately linear
curve and can con�rm that the �eld enhancement increases exponentially as the gap size decreases.
This can be seen in �gure 10.4.

By �tting an exponential curve to data it is possible to extrapolate and �nd the �eld enhancement
for smaller gap sizes. This can be seen in �gure 10.5.

Non local optical response is not taken into account in these simulations. When the gap size is
very small the electric �eld will not follow the same pattern as shown above. Electrons will start
tunneling over the gap between the antenna elements and destroy the �eld. At a distance of about
2 nm the e�ects of non local optical response will be small. I have chosen not to consider distances
smaller than 2 nm.

In the following simulations I will use a gap size of 5 nm. When analyzing the antenna in chapter
11 I will estimate the �eld enhancement for a 2 nm gap size by using an exponential �t in the same
way as is done here.
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Figure 10.3: Field enhancement at the crystal surface for di�erent gap sizes.

Figure 10.4: Logarithm of the �eld enhancement versus the logarithm of the gap size.

10.3 Width

Figure 10.6 shows the �eld enhancement as a function of the width of the antenna. The following
constant parameters are used:

L = 30 nm

d = 5 nm

t = 10 nm

Two e�ects contribute to the �eld enhancement. First of all a wider antenna will provide more
electrons that will oscillate and be squeezed into the sharp edges in the middle. This will give a
stronger electric �eld in the gap. Secondly a wider antenna makes the edge at the gap less sharp
which means a lower �eld enhancement. Instead the outer edges of the antenna will be sharper
and give rise to high �eld strengths.

When changing the width of the antenna the mode structure of the localized surface plasmon will
change a lot. In �gure 10.7 it can be clearly seen how di�erent shapes of the antenna will give
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Figure 10.5: Field enhancement as a function of gap size. An exponential curve is �tted to data.

Figure 10.6: Field enhancement at the crystal surface as a function of the width of the antenna.

di�erent �eld distributions along the antenna. We want a mode structure that gives a high �eld
at the center of the antenna. This will be the case for a width between 30 nm and 55 nm.

I chose to work with a width of 45 nm.

(a) (b) (c)

Figure 10.7: The norm of the electric �eld 5 nm into the crystal for an antenna width of (a) 15 nm
(b) 45 nm and (c) 68 nm.
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10.4 Thickness

The thickness of the antenna is varied and the �eld enhancement is shown in �gure 10.8. The
constant parameters were set to:

L = 30 nm

d = 5 nm

w = 30 nm

Figure 10.8: Field enhancement at the crystal surface as a function of the thickness of the antenna.

There thickness of the antenna will a�ect the �eld enhancement in several di�erent ways. A thicker
antenna will change the mode structure of the plasmon wave. As can be seen in �gure 10.9, a thicker
antenna will give a more focused �eld.

(a) (b) (c)

Figure 10.9: The norm of the electric �eld 5 nm into the crystal for an antenna thickness of (a) 10
nm (b) 27 nm and (c) 37 nm.

At the same time a thick antenna will shield the crystal surface from the electric �eld. We want to
create a surface plasmon on the interface between the antenna and the crystal, but for a very thick
antenna the �eld will be too low at the crystal surface and there will not be a plasmon resonance.
There will then be a larger �eld enhancement at the top of the antenna, as can be seen in �gure
10.10. The contours of the antenna are marked with gray lines and the crystal surface is marked
with a red line in the �gure.

A thin antenna will focus the �eld more in the direction perpendicular to the surface of the crystal
while the �eld of a thicker antenna is more spread out along the edges of the antenna.

In �gure 10.11 the norm of the electric �eld is plotted as a function of depth into the crystal for
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(a) (b)

Figure 10.10: The norm of the electric �eld along a plane through the center of the antenna
perpendicular to the crystal surface for an antenna thickness of (a) 15 nm and (b) 42 nm. The
crystal surface is marked with a red line and the antenna with gray lines.

di�erent thicknesses of the antenna. The optimal thickness depends on where in the crystal the
entangler ion is sitting. For example at a depth of 15 nm into the crystal a thickness of 30 nm is
better than a thickness of 15 nm. The �eld is however very weak this far into the crystal, probably
too weak to work with. For that reason I have chosen the parameters that give the highest �eld
enhancement at the surface of the crystal.

Figure 10.11: Field strength as a function of depth in the crystal.

From simulations it seems like the optimal thickness is somewhere between 15 nm and 35 nm. I
have chosen to work with a 15 nm thick antenna.

10.5 Summary

The chosen design is based on a high �eld enhancement. The penetration depth can also vary with
the size and shape of the antenna but in general a higher �eld at the surface of the crystal will

46



also imply a higher �eld inside the crystal. When this is not the case the �eld is too weak to be
useful anyway.

The chosen design parameters are as follows.

Material: Silver
Length: 30 nm
Gap size: 2 nm
Width: 45 nm
Thickness: 15 nm

47



Chapter 11

Performance

I this chapter the result of my design will be evaluated. The �eld distribution in a plane along the
crystal surface as well as perpendicular to the crystal surface can be seen in �gure 11.1.

(a) (b)

Figure 11.1: The norm of the electric �eld 5 nm below the crystal surface (a) and along the normal
to the surface (b).

All �eld enhancements shown in the plots below are relative to a reference �eld simulated with the
same model but without the antenna.

11.1 Field enhancement

The �eld enhancement along the length of the antenna at the crystal surface is shown in �gure
11.2. This result was obtained by using a gap size of 2 nm and a mesh size of 2 nm. Such a coarse
mesh can not resolve the gap properly. For that reason the same antenna was simulated for a gap
size of 5, 6, 10 and 14 nm. An exponential curve was �tted to data and extrapolated to a gap size
of 2 nm. This is shown in �gure 11.3. The simulated result for a 2 nm gap with a 2 nm mesh is
shown as a black cross just above the marker.

This �tting is very sensitive to errors in the simulations. A small error in one of the simulated
values will grow in the extrapolated curve and become a big error for small gap sizes. Despite this,
the simulated value for a 2 nm gap matches surprisingly well to the extrapolated curve.

The �eld enhancement at the crystal surface in the center of the antenna elements is:

|E|
|Eref |

≈ 1100
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Figure 11.2: Field enhancement along the length of the antenna (the x-axis) at the crystal surface.

Figure 11.3: Field enhancement as a function of distance between the antenna elements.

According to �gure 11.2 the �eld is larger just below the sharp tips of the antenna. At these spots
the �eld enhancement can be as large as 2700 times the reference �eld.

11.2 Penetration depth

The �eld will decay very rapidly inside the crystal, as can be seen in �gure 11.4. To achieve an
enhancement of 1000 times we can only reach about 1 nm into the crystal. For a �eld enhancement
of 100 times we could reach ions sitting 5 nm into the crystal and if 10 times enhancement is enough
we can operate about 14 nm into the crystal.

11.3 Linewidth and lifetime

By modeling the antenna using a Drude model and varying the wavelength of the incident light
the linewidth of the resonance peak can be determined. The result is shown in �gure 11.5.
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(a)

(b)

Figure 11.4: The norm of the electric �eld as a function of depth into the crystal. Figure (b) is a
version of �gure (a) zoomed in at the interesting region.

The FWHM is about 40 nm in wavelength and about 35 THz in frequency. Assuming a Lorentzian
line shape this gives a lifetime of the antenna:

τ =
1

π∆ν
≈ 9.1fs

11.4 Polarization dependence

We want the antenna to be sensitive to the polarization of the incoming light. The antenna was
simulated for the opposite polarization compared to the optimal case presented above, with the
electric �eld along the thickness of the antenna in the z-direction (TM-polarized). The resulting
�eld enhancement at the surface of the crystal is shown in �gure 11.6.

The maximum �eld enhancement is less than 7 times the reference �eld. This is a lot less than for
TE-polarized light.

With a �eld enhancement this small it is very unlikely that an ion will absorb the incoming photon.
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Figure 11.5: Field enhancement as a function of wavelength.

Figure 11.6: Field enhancement at the crystal surface along the length of the antenna for TM-
polarized light.

There is still a risk that the photon will be absorbed in the metal of the antenna and that we will
not be able to detect it. Since the antenna is not resonant for this polarization the absorption and
scattering probability will be lower than for the TE-polarized case. Again it is very hard to say how
big the absorption probability will be, since it depends on the coupling between the microresonator
and the antenna.

11.5 Error sources

The model used for simulations is not perfect. The boundaries of the geometry cause re�ections
that will interfere with the incoming �eld and the �eld scattered by the antenna. The situation
can be improved by using a reference model without the antenna and relating all results to this
reference. There is still some uncertainty in the values given and they should be viewed as an
indication of what we can achieve using an optical antenna rather than the absolute truth.

The mesh is critical for resolving small details in the model. I have used a mesh about half the size
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of the smallest details in my model. A �ner mesh is desirable to obtain correct values. Considering
simulations made for di�erent sizes of the mesh compared to other sources of error I don't think
the size of the mesh is the limiting factor in this case. The location of the nodes can also in�uence
the solution, especially for a rather coarse mesh. If the point of interest is close to a nodal point
the error will be smaller than if we are far away from a nodal point. In this case we are often
interested in the �eld in the center of the antenna gap. With only two mesh elements to resolve
the gap the placement of the nodal point might be critical.

Very sharp edges can cause singularities and unrealistic high �elds in a simulation. I have tried to
avoid sharp edges by rounding o� the corners of the antenna. Since the antenna is �at there are
still sharp edges around the upper and lower surfaces of the antenna. From the look of the result
this doesn't seem to be a problem, but it's di�cult to know exactly what the e�ect is.
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Chapter 12

Discussion and further considerations

Some of the results given in the previous section will be discussed in this chapter.

There are plenty of questions not answered within the scope of this project. There are also a few
problems with this approach to scalability of a rare-earth quantum computer that are not solved
yet. I will brie�y discuss some of the problems and questions not investigated in detail within this
thesis.

12.1 Importance of design parameters

The length of the antenna is critical to obtain a localized plasmon polariton resonance. The length
of the antenna elements must be determined with an accuracy of at least 10 nm.

The size of the gap between the antenna elements is also critical to obtain a high �eld strength.
This is probably the most important parameter. The �eld strength increases exponentially with a
smaller gap size, until the gap size is so small that we have to take non local optical response into
account.

The thickness and width of the antenna are not so critical. This is illustrated by the fact that the
�eld enhancement using a width of 30 nm and a thickness of 10 nm in �gure 10.5 is practically the
same as the �eld enhancement for the optimized antenna in �gure 11.3. The thickness and width
will a�ect the mode structure of the antenna and this can also have an e�ect on the penetration
depth.

12.2 E�ect on the lifetime of the ions

The presence of a metal structure close to the ions will not only enhance the absorption but also
the emission of the ions. An increased emission implies a shorter lifetime.

By using an entangler ion with a resonance frequency di�erent from the resonance frequency of
the qubit ions we could design an antenna that is only resonant for the entangler ion frequency
but not for the qubits. In that way we could limit the in�uence of the antenna on the qubits. The
resonance wavelength of the entangler ion would have to be separated from the qubit wavelength
by more than 50 nm to keep the qubit ions outside the resonance peak. The antenna has more
than one resonance peak and would need to be designed such that the qubits are una�ected by all
peaks.

The antenna will increase the emission of the entangler ion and decrease it's lifetime. This is a
problem that is very di�cult to get around. This e�ect would have to be investigated in more
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detail.

12.3 Penetration depth

The penetration depth for the �eld into the crystal is very small. This is a problem if we want to
place an entangler ion inside the crystal, where it is shielded from the environment. Depending on
how big �eld enhancement we need we can operate from the surface of the crystal and down to a
maximum depth of about 14 nm. This is probably not enough.

The coherence properties of ions close to the surface of the crystal would need to be investigated
to see how far into the crystal we need to operate.

12.4 Losses

The antenna has an estimated lifetime of 9.1 fs based on the simulated linewidth. This is a very
short lifetime compared to the interaction time.

It is di�cult to say how the short lifetime of the antenna will a�ect the system as a whole. At each
time the incoming photon will be in a superposition between a photon in the cavity, a plasmon in
the antenna and absorbed by the ion. How much losses the antenna will introduce in the system
depends on how big part of the photon that is in the antenna at each time, or equivalently how
much time the photon spends in the antenna during the process. My guess is that the losses will
be rather big. This will also need to be investigated further.

12.5 Polarization dependence

We want the antenna to be very sensitive to polarization so that a TE-polarized photon will be
absorbed by an ion with a high probability and a TM-polarized photon will pass by una�ected and
be detected after passing a beam splitter. Simulations indicate that the antenna is indeed very
polarization sensitive and will not give a high �eld enhancement for TM-polarized light.

One of the things that need to be investigated further is how a toroidal microresonator will a�ect
the polarization state of a photon. We need the polarization to be preserved through the whole
setup.

There are other di�culties arising if we want to detect the remaining photon after the beam splitter
of the setup. Even if the �eld enhancement is not very big there might still be a risk that the
photon will be absorbed by the antenna. At this stage it is di�cult to say how big the absorption
probability is.

12.6 Refractive index mismatch

To achieve a strong �eld in the crystal we need to put it as close to the surface of the microresonator
as possible. There is one problem arising because of the high refractive index of the crystal. The
index of refraction is higher in the crystal than in a common silica microresonator, and this can
cause a leakage of the �eld from the resonator into the crystal. This can reduce the lifetime of the
resonator signi�cantly. The problem could be solved by making the toroidal microresonator from
a higher index material (n>1.8).
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12.7 Making a plasmonic antenna

Electron beam lithography is a powerful and versatile way to create small metal structures. It was
developed to manufacture integrated circuits but has proven to be very useful also within nano
technology. A surface is �rst covered by a so called resist. An electron beam is swept over the
parts of the surface where the metal should be placed. The resist is removed in this part in a
development process. A thin metal layer can then be evaporated onto the surface. After the rest
of the resist is removed only the metal in the parts swept by the electron beam remains, [43].

With electron beam lithography it seems possible to make an optical antenna on a crystal surface.
The metal need to be made as thin as 15 nm. The smallest details and sharpest edges possible
have in this thesis been assumed to be 5 nm. This is probably on the limit for what is possible
using electron beam lithography.

The biggest challenge when manufacturing the antenna designed in this work would probably be
the small gap between the antenna elements. When the resist is removed after evaporation there
is a risk that some metal will still remain in the gap between the antenna elements.

The gap size has a big in�uence on the �eld enhancement and metal in the gap will cause a short
circuit and destroy the �eld. Di�erent ways of removing the metal in a very thin gap between the
antenna elements could be investigated.
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Chapter 13

Conclusion and outlook

With an optical antenna it is possible to focus light down to sub-wavelength spots and the �eld
enhancement can be very large. The most critical design parameters are the length and gap size
of the antenna. With the design given in this thesis simulations gave a �eld enhancement of 1100
times in the center of the antenna at the surface of the crystal. The maximum �eld enhancement
at the surface of the crystal occurred just below the sharp tips of the antenna and was about 2700
times the reference.

The �eld enhancement is enough to create a single photon pi-pulse from the evanescent �eld of a
microresonator for an ion at the surface of a crystal. Depending on the microresonator it might
be possible to create a pi-pulse up to a depth of 14 nm into the crystal.

The plasmonic antenna designed in this thesis is only resonant for a TE-polarized �eld. A photon
of the opposite polarization will have a much higher probability to pass by una�ected. This is very
promising for the proposed idea to entangle remote ions by using entangled photon pairs.

There are several di�culties with using a plasmonic antenna to entangle ions in two di�erent
crystals. We can not enhance the �eld very far into the crystal and hence not use ions very far
into the crystal structure.

In a quantum computer good quantum control and coherence are very important features. The
presence of an antenna will disturb the system and make it hard to keep the coherence and control.

There are however several open questions remaining. If it would be possible to use ions sitting
very close to the surface of a crystal using a plasmonic antenna might still be a way to entangle
remote ions.

With an increasing ability to fabricate high-Q microresonators as well as nano-structures tailored
to manipulate light in di�erent ways it is in my opinion very probable that we in the future will be
able to entangle remote ions. This would be a big step towards a working rare-earth-ion quantum
computer.
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Appendix A

Conditions for propagating SPP's

con�ned to a metal surface

I want to investigate if a surface wave can propagate along a metal-dielectric interface. I will follow
[27] rather closely. The investigation will make use of Maxwells equations:

∇ ·D = ρext (A.1)

∇ ·B = 0 (A.2)

∇×E = −∂D
∂t

(A.3)

∇×H = Jext +
∂D

∂t
(A.4)

We choose to place the interface between a metal layer and an insulator at z=0 in a cartesian
coordinate system, and assume that the wave is propagating in the x-direction. We also assume
that the �elds are constant in the y-direction to get an easier 2-dimensional problem.

E(t, r) = E(t, z)eikxx

where E(t, z) = E(z)e−iωt. By assuming a similair form of the magnetic �eld and putting this into
Maxwell's equations A.3, A.4, we get the following system of equations [27]:(
∂Ez
∂y
− ∂Ey

∂z
,
∂Ex
∂z
− ∂Ez

∂x
,
∂Ey
∂x
− ∂Ex

∂y

)
=

(
−∂Ey
∂z

,
∂Ex
∂z
− ikxEz, ikxEy

)
= iωµ0 (Hx, Hy, Hz)

(A.5)(
∂Hz

∂y
− ∂Hy

∂z
,
∂Hx

∂z
− ∂Hz

∂x
,
∂Hy

∂x
− ∂Hx

∂y

)
=

(
−∂Hy

∂z
,
∂Hx

∂z
− ikxHz, ikxHy

)
= −iωε0ε (Ex, Ey, Ez)

(A.6)

There are two types of solutions to the system of equations above. The �rst case is a TM-polarized
wave (Hz = 0) with the magnetic �eld along the interface and the second case is a TE-polarized
wave (Ez = 0) with the electric �eld along the interface .

For the TE-case we get by using A.5 and Hy = 0:

Hx = i
1

ωµ0

∂Ey
∂z

Hz =
kx
ωµ0

Ey
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Combining this with A.6 and using k0 = ω
c0

= ω
√
ε0µ0:

∂2Ey
∂z2

+ (εk20 − k2x)Ey = 0

Ex = Ez = 0

De�ning k2z = εk20 − k2x (the z-component of the wavevector in each material), we get for z < 0:

Ey = A1e
−ikz1z

Hx =
kz1
ωµ0

A1e
−ikz1z

Hz =
kx
ωµ0

A1e
−ikz1z

Similarly for z > 0:
Ey = A2e

ikz2z

Hx = − kz2
ωµ0

A2e
ikz2z

Hz =
kx
ωµ0

A2e
ikz2z

Boundary conditions require that Ey and Hx are continuous across the boundary.

A1 = A2

kz1 = −kz2
If the wave decays exponetially on one side of the surface, z < 0 say, Imkz1 < 0. Then Imkz2 > 0
and the wave is not con�ned to the surface for z > 0. Thus, a TE-polarized surface wave is not
possible!

For the TM-case, with Ey = 0:

Ex = −i 1

ωε0ε

∂Hy

∂z

Ez = − kx
ωε0ε

Hy

∂2Hy

∂z2
+ (εk20 − k2x)Hy = 0

Hx = Hz = 0

The solution for z < 0 is:
Hy = B1e

−ikz1z

Ex = − kz1
ωε0ε1

B1e
−ikz1z

Hz = − kx
ωε0ε

B1e
−ikz1z

And for z > 0:
Hy = B2e

ikz2z

Ex =
kz2
ωε0ε2

B2e
ikz2z

Hz = − kx
ωε0ε

B2e
ikz2z
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Boundary conditions require that Hy and εEx are continuous across the boundary.

B1 = B2

kz1
ε1

= −kz2
ε2

Dividing this expression into a real and an imaginary part we get:

Re(kz1)Re(ε1) + Im(kz1)Im(ε1)

|ε1|2
= −Re(kz2)Re(ε2) + Im(kz2)Im(ε2)

|ε2|2

Im(kz1)Re(ε1)− Re(kz1)Im(ε1)

|ε1|2
= − Im(kz2)Re(ε2) + Re(kz2)Im(ε2)

|ε2|2

Assuming that Im(ε) << Re(ε) for both materials and demanding that Imkz1 < 0 and Imkz2 < 0
for a con�ned mode we see that Re(ε1) and Re(ε2) must have di�erent signs.

If for example ε1 > 0 and ε2 < 0 the interface between the two materials can support a propagating
surface plasmon polariton with a certain wavevector kx = kx1 = kx2.
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