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Abstra
tIn this work an algorithm for 
hara
terization of ultrashort laser pulses in theXUV region has been developed. Measurement data are obtained by the methodof Frequen
y Resolved Opti
al Gating (FROG), whi
h is based on spe
trallyresolving the signal re
eived from two pulses overlapping with ea
h other inan auto
orrelation experiment. The experimental data � the FROG tra
e �is then used as the input in an algorithm based on the method of Prin
ipalComponent Generalized Proje
tions (PCGP); the output is both envelope andphase of the two pulses. The algorithm has been tested on both simulatedand real FROG tra
es. These tra
es have either been high-order harmoni
s offemtose
ond duration or attose
ond pulse trains. The results of these tests arepromising, showing that FROG te
hniques 
ombined with the PCGP algorithmis a reliable method for 
hara
terizing ultrashort laser pulses.
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Chapter 1Introdu
tionOne of the major s
ienti�
 breakthroughs during the last 
entury was the in-vention of the laser in 1960. Ever sin
e, the laser has given rise to a number ofappli
ations whi
h have had a tremendous impa
t on both s
ien
e and so
iety ingeneral. Lasers generate light with properties superior to that of other radiativesour
es, be it in terms of 
oheren
e as well as intensity.A signi�
ant part of the te
hnologi
al development has been fo
used on thegeneration of shorter and shorter pulses of laser light. Today, the a
hievementsin this area of physi
s have pushed the lower limit of duration to a few fem-tose
onds (fs, 10−15 se
onds) for pulses in the visible and near-infrared region.Using wavelengths in the extreme ultraviolet (XUV) to soft X-ray regime thefemtobarrier has re
ently been broken, allowing physi
ists to enter the attose
-ond (as, 10−18 se
onds) area of ultrashort laser te
hnology. The struggle toa
hieve shorter and shorter pulses has mainly two reasons. First, these pulsesenable pre
ise measurements of ultrafast phenomena. The development of thefemtose
ond laser has for example provided 
hemists with a tool of in
redibletemporal resolution, whi
h has given rise to a new s
ienti�
 bran
h known asfemto
hemistry. In atoms, ele
trons move around the atomi
 nu
leus on theattose
ond s
ale, and the newly generated and measured attose
ond pulses willhopefully be used to probe the motion. Se
ond, with shorter pulses, higherpeak power 
an be a
hieved. This enables high intensity physi
s at relativelylow pulse energies.When pushing the limits of pulse duration, it is also ne
essary to be able to
hara
terize the pulses one manages to produ
e. When entering the femtose
-ond regime and below, pulse 
hara
terization be
omes somewhat problemati
,whi
h is due to the fa
t that the response time of ele
troni
 devi
es 
an bepushed down to the pi
ose
ond (ps, 10−12 se
onds) regime, but no further.Other than that, the pulses produ
ed in laboratories might be of frequen
ies inthe XUV regime or of shorter wavelengths. This introdu
es further di�
ulties,sin
e suitable opti
al 
omponents are hard to �nd in that part of the spe
trum.Intri
ate methods for pulse 
hara
terization are therefore needed, and have been4



developed during the past years. This diploma proje
t has been fo
used on oneof these methods: Frequen
y-Resolved Opti
al Gating (FROG) [1℄. Its primary
on
ern has been to 
onstru
t an algorithm whi
h su

eeds in re
onstru
tingultrashort pulses from measured FROG data, and espe
ially those obtained inthe XUV range 
orresponding to harmoni
 radiation of femtose
ond and evenattose
ond duration.This thesis will begin with a short summary of the behaviour of ultrashort laserpulses in general in 
haper 2, fo
using on the generation and 
hara
teristi
sof harmoni
 XUV radiation. Chapter 3 will des
ribe the FROG te
hnique indetail. The algorithm for pulse 
hara
terization will be reviewed in Chapter 4,and �nally, results 
onne
ted to 
hara
terization experiments will be presentedin Chapter 5.

5



Chapter 2Des
ription and Generation ofShort Light PulsesBefore trying to develop a te
hnique for measuring ultrashort laser pulses, oneobviously needs to know the basi
 theories of these pulses. Therefore this 
hap-ter will give a brief introdu
tion on the mathemati
al des
ription of ultrashortlaser radiation, where important terms su
h as '
hirp' and the time-bandwidthprodu
t will be explained. Further into the 
hapter, the theories of harmoni
XUV radiation and the basi
 
hara
teristi
s of su
h pulses will be dis
ussed.2.1 Des
ription of Short PulsesThis se
tion will 
on
ern the mathemati
al des
ription of short laser pulses.The 
omplex representation of the ele
tri
 �eld will be presented, as well asboth temporal and spe
tral aspe
ts of the �eld. The importan
e of the phaseof the pulse and its temporal behaviour will also be dis
ussed.2.1.1 Complex Representation of the Ele
tri
 FieldEven though the measured quantities whi
h originate from the ele
tri
 �eld
~E(~r, t) are real, it might often be 
onvenient to represent the �eld itself in a
omplex form. Sin
e this proje
t mainly fo
uses on the temporal properties ofthe �eld, its spatial dependen
e will throughout this thesis be negle
ted; that is
~E(~r, t) = E(t).We now de�ne the 
omplex spe
trum of E(t) as the Fourier transform of theele
tri
 �eld [2℄:

Ẽ(ω) = F [E(t)] =

∫ +∞

−∞

E(t) · e−iωtdt = |Ẽ(ω)| · eiΦ(ω) (2.1)6



Here the tilde is used to denote the Fourier transform as a 
omplex parameter.
|Ẽ(ω)| is the spe
tral amplitude, and Φ(ω) is the phase of the spe
trum. From
Ẽ(ω) we 
an re
onstru
t E(t) by applying the inverse Fourier transform:

E(t) = F−1
[

Ẽ(ω)
]

=
1

2π

∫ +∞

−∞

Ẽ(ω) · eiωtdω (2.2)The Fourier transform of the ele
tri
 �eld 
an be interpreted as a way of de-s
ribing the frequen
y 
ontent of the �eld, or � 
orrespondingly � its energy
ontent. From equation 2.2 one 
an see that every ele
tri
 �eld E(t) 
an be
onsidered as being a superposition of plane waves. Sin
e negative frequen
iesin this 
ontext don't have any physi
al relevan
e, one would like a more suitableway of representing the �eld. This 
an be done with the introdu
tion of the
omplex ele
tri
 �eld:
Ẽ+(t) =

1

2π

∫ +∞

0

Ẽ(ω) · eiωtdω (2.3)Now the spe
trum of this 
omplex �eld 
an be written as:
Ẽ+(ω) =

∫ +∞

−∞

Ẽ+(t) · e−iωtdt =

{

|Ẽ(ω)| · eiΦ(ω) ω ≥ 0
0 ω < 0

(2.4)The real ele
tri
 �eld 
an be expressed by the sum
E(t) = Ẽ+(t) + Ẽ−(t) (2.5)where Ẽ−(t) is for the negative frequen
ies what Ẽ+(t) is for the positive. The
omplex �eld 
an also be expressed as
Ẽ+(t) = A(t) · eiΓ(t) (2.6)where A(t) is an amplitude fun
tion, and eiΓ(t) is a phase term. From Poynt-ing's theorem [3℄ we 
an now dedu
e that the intensity of the ele
tri
 �eld I(t)is proportional to |Ẽ+(t)|2. The quantity whi
h is being measured with a spe
-trometer S(ω) is 
alled the spe
tral intensity and is found to be proportional to

|Ẽ+(ω)|2.From now on, a more simple notation will be used: we drop the tilde and the plussign; E(t) represents the 
omplex ele
tri
 �eld and E(ω) refers to the 
omplexspe
trum of E(t). Note that these two notations are refering to two di�erentfun
tions, and not just a 
hange in variable denotation.2.1.2 The Phase Fun
tionA short laser pulse is often des
ribed by the form of equation 2.6. A(t) des
ribesthe temporal pro�le of the pulse � its envelope. In passively mode-lo
ked lasersystems, the theoreti
al pulse shape is a se
h fun
tion; in a
tively mode-lo
kedsystems the generated pulses are Gaussian. The shape may however in prin
iplebe of another more 
omplex form. 7



In most 
ases the spe
trum of the �eld will be 
entered around a mean (angular)frequen
y ω0, and the width of the spe
trum will be small 
ompared to this
entral frequen
y. Γ(t) will therefore be expanded as follows:
Γ(t) = ω0t + Φ(t) (2.7)

Φ(t) is 
alled the (temporal) phase and may or may not be time dependent. Tounderstand what is the in�uen
e of this phase on the ele
tri
 �eld, we expressthe instantaneous angular frequen
y as [2℄:
ω(t) =

dΓ(t)

dt
= ω0 +

dΦ(t)

dt
(2.8)If Φ(t) is just an arbitrary 
onstant, the frequen
y of the pulse will not bea�e
ted. If the phase is linearly dependent of t, a 
onstant frequen
y shift willbe introdu
ed to the spe
trum and the expansion of Γ(t) will not be unique.With the introdu
tion of a higher order dependen
e of Φ(t), the instantaneousfrequen
y will be varied with time � the pulse is said to be '
hirped'. If d2φ(t)

d2t
< 0,the frequen
y de
reases with time and the pulse is said to be negatively 
hirped,and if the opposite applies, the frequen
y in
reases � the 
hirp is positive.

Figure 2.1: The ele
tri
 �eld of a positively 
hirped pulse, as a fun
tion of time.Note how the frequen
y of the pulse in
reases with time.2.1.3 Pulse Duration and BandwidthIn order to examine the 
orrespondan
e between the temporal and the spe
traldomain, we will now study a pulse with a Gaussian envelope. The reason for thisis the fa
t that the Fourier transform of a Gaussian fun
tion also is Gaussian,and the problem be
omes therefore relatively easy to handle. We 
an in generalwrite the ele
tri
 �eld of a Gaussian pulse as:
E(t) = e−at2 · ei(ω0t+ b

2 t2) (2.9)8



The ele
tri
 �eld of the pulse exhibits in this 
ase a quadrati
 phase behaviour,
ontrolled by the parameter b/2. The frequen
y will therefore vary linearlywith time as bt. The parameter a is used to de�ne the width of the pulse andis related to the full width at half maximum (FWHM) ∆τ by:
a =

2 ln 2

(∆τ)2
(2.10)Ignoring a s
aling 
onstant as well as a 
onstant phase term, the 
omplex spe
-trum of the Gaussian pulse be
omes [4℄:

E(ω) = e−
(ω−ω0)2

4(a−ib/2) = e
−

a(ω−ω0)2

4(a2+(b/2)2) · e−i
b(ω−ω0)2

8(a2+(b/2)2) (2.11)From this expression one 
an instantly make two 
on
lusions: First, a quadrati
temporal phase also gives rise to a quadrati
 dependen
y of the spe
tral phase;se
ond, the width of the frequen
y distribution is both dependent on the dura-tion of the pulse as well as on the 
hirp. The bandwidth ∆ω is de�ned as theFWHM of the spe
tral distribution:
∆ω =

√
8 ln 2

√

a(1 +
b2

4a2
) (2.12)From this expression it is seen that for a given pulse duration, the presen
e of alinear 
hirp requires a broader bandwidth. Correspondingly, for a given spe
tralwidth, a linear 
hirp 
auses the pulse to spread out more in time.By multiplying equation 2.10 with expression 2.12, one obtains the so 
alledtime-bandwidth produ
t:

∆ω∆τ = 2π · 0.441 ·
√

1 +
b2

4a2
≥ 2π · 0.441 (2.13)One 
an see that there is a minimum value for this produ
t. When equality inequation 2.13 holds, the pulse is the shortest possible, given the spe
tral band-width. This o

urs when the pulse exhibits no frequen
y 
hirp, and it is thensaid to be Fourier limited.The properties of the time-bandwidth produ
t holds for all pulse shapes [2℄, and
an be written in a more general form as:

∆ω∆τ ≥ 2πcB (2.14)The value of cB will be di�erent depending on whi
h pulse stru
ture the produ
trefers to. When 
omparing equation 2.14 with equation 2.13, one identi�es thevalue of cB as being 0.441 for a Gaussian pulse, while the 
orresponding valueis 0.315 when 
onsidering the hyperboli
 se
ant envelope [5℄.2.2 High-Order Harmoni
sHigh-order harmoni
 generation (HHG) is a nonlinear pro
ess taking pla
e whena strong laser �eld intera
ts with atoms, for instan
e rare gases. Sin
e the inten-sities needed for the pro
ess to o

ur are very high, only lasers whi
h are able9



Figure 2.2: Plateau of high-order harmoni
s, extending from the UV into thesoft X-ray regime. In the beginning of the spe
trum are the low-order harmoni
s,and at the far end, the frequen
y 
omb experien
es a sudden 
ut-o�.to produ
e pulses with very short duration 
an be used to study this phenom-enon. Due to the te
hnique of short pulse generation by mode-lo
king, HHGwas observed for the �rst time in 1987, and in the early 1990's, 
hirped pulseampli�
ation made it possible to use table-top high-power lasers in order toroutinely study the phenomenon.The high harmoni
 radiation produ
ed by an ultrashort, intense laser pulse
onsists of a frequen
y 
omb spanning a broad bandwidth [6℄, from the UVdown to the soft X-ray region, as 
an be seen in �gure 2.2. The �rst few peaksin the �gure represents the low-order harmoni
s. Ea
h tooth of the 
omb is anodd multiple of the frequen
y of the generating laser pulse, and is separatedfrom its neighbours by twi
e this fundamental frequen
y. On the one hand,every tooth 
orresponds to a short femtose
ond pulse of XUV radiation. Onthe other hand, due to the large bandwidth, HHG o�ers an opportunity tosuperimpose all the harmoni
s, thereby generating XUV bursts of attose
ondduration.2.2.1 Experimental Setup for High-Order Harmoni
 Gen-erationAn outline of the setup for HHG at the Atomi
 Physi
s Division in Lund isshown in �gure 2.3. An infrared (800 nm) beam of laser pulses enters the setupat a rate of 1 kHz. The pulses are fo
used into a gas, whi
h usually is argon10



Figure 2.3: Experimental setup for high-order harmoni
 and attose
ond pulsetrain generation. After the generation stage there is a �nal stage for 
hara
ter-ization of the signal generated.or neon, and is being pumped into the system in a tube with two small holesdrilled by the laser, inserted into a va
uum 
hamber. When the intensity of theinfrared beam is of the order of 1014�1015 W/
m2, high-order harmoni
s will begenerated [6℄.The next step in the setup is by spe
tally and spatially �ltering the harmoni
susing these for attose
ond pulse train generation. These pulses are thereafter inthe �nal stage, being measured by 
ross-
orrelating with the initial beam of IRpulses. These stages will be more 
arefully explained further into this thesis.2.2.2 The Three-Step ModelThe rapid drop in amplitude of the �rst low-order harmoni
s (whi
h is seen in�gure 2.2) 
an be predi
ted by perturbation theory. This is however not the
ase for the high-order harmoni
s, with approximately 
onstant amplitude overa large energy range. The intensity of the laser �eld is so strong that it no longer
an be regarded as a small perturbation to the system. We 
an however givea simple pi
ture of the underlying physi
s, based upon semi-
lassi
al 
onsider-ations. This pi
ture is the so 
alled three-step model (TSM) [7℄, whi
h is basedon the assumption that it is possible for the ele
tron wavepa
ket to tunnel outinto the 
ontinuum, when the Coulomb potential of the atom is highly deformedby the �eld. The three steps are shown in �gure 2.4, and are as follows:1. Through quantum me
hani
al tunneling, the ele
tron is moved into the11



Figure 2.4: Visualisation of TSM: (i) The ele
tron wavepa
ket tunnels throughthe deformed Coulomb potential of the atom, out into the 
ontinuum. (ii) Itis a

elerated in the 
ontinuum by the laser �eld. (iii) It returns to the atom,sending out its ex
ess energy in the form of a photon.
ontinuum, with zero kineti
 energy.2. The ele
tron is now regarded as a 
lassi
al parti
le, and is a

elerated bythe external laser �eld, gaining kineti
 energy.3. Depending on the phase of the laser �eld at the time of release in the
ontinuum, the ele
tron may 
ome ba
k to the atom. Doing so, the energygained in the 
ontinuum is released in the form of a high frequen
y photon� a high harmoni
.This high harmoni
 generation pro
ess is periodi
 with a period of TL/2, where
TL is the period of the driving laser �eld. This leads to generation of harmoni
swhose frequen
ies are only odd multiples of the driving �eld. The harmoni
swill therefore, if the driving frequen
y is ω0, be separated by a frequen
y of2ω0. The energy of ea
h harmoni
 is dependent on the time the ele
tron wavepa
ket spends in the 
ontinuum, whi
h in its turn is de
ided by the phase of thelaser �eld at the time the ele
tron tunnels out of the atomi
 potential. If theele
tron gets out before the �eld has rea
hed its maximum (ω0t = π

2 ), it willnever re
ombine with the atom. Ele
trons whi
h tunnel through at a later stagewill however return to the atom, emitting high harmoni
 radiation. When theele
tron is released into the 
ontinuum at approximatly ω0t = 1.19 · π
2 , it willgain the highest energy possible Wmax = 3.2Up, where Up is de�ned as:

Up =
e2E2

4mω2
0

(2.15)Here m is the mass of the ele
tron in rest, and Up, whi
h is 
alled the ponder-motive energy, is being interpreted as the average kineti
 energy the ele
tron12



a
quires in the 
ontinuum. Hen
e, the 
ut-o� of the harmoni
 plateau o

ursat the energy
W = Ip + 3.2Up (2.16)where Ip is the ionisation energy of the atom.

Figure 2.5: Red: The ele
tri
 �eld of the fundamental laser �eld. Blue: Ele
trontraje
tories originating from tunnel ionisation due to the fundamental �eld.The ele
tron while a

elererated by the laser �eld, 
an be regarded as moving inthe 
ontinuum along 
ertain traje
tories, as depi
ted in �gure 2.5. Ea
h traje
-tory is 
hara
terized by a 
ertain return time for the ele
tron. For every possibleharmoni
 energy there are several di�erent return times and traje
tories, whi
his shown in �gure 2.6. The �rst two are 
alled the 'short' respe
tively the 'long'traje
tory. This is valid for every return energy, ex
ept for the maximum energy,for whi
h there is only one.2.2.3 Time Dependent S
hrödinger Equation Treatmentof High-Order Harmoni
 GenerationWhile the TSM gives a good qualitative pi
ture of the harmoni
 generationpro
ess, it is too approximative to give good quantitative predi
tions. A fullquantum me
hani
al formulation of the problem is therefore desired. This isdone by solving the time-dependent S
hrödinger equation (TDSE) [7℄. Twoinitial assumptions are made:1. Only one ele
tron 
ontributes to the pro
ess. Any intera
tion terms be-tween the ele
trons in the atom are therefore left out.2. The intensity of the external laser �eld is very strong, whi
h means that thephoton density is very high. Hen
e, we 
an use a semi-
lassi
al approa
h,where the laser �eld is treated 
lassi
ally as a 
ontinuous quantity.13



Figure 2.6: Return energy and ex
ursion time for the returning ele
tron as afun
tion of time of tunneling.The TDSE for this spe
i�
 problem is then, in atomi
 units (m = e = h̄ = 1):
i
∂

∂t
|Ψ(~r, t)〉 =

[

−1

2
∇2 + V (~r) + W (~r, t)

]

|Ψ(~r, t)〉 (2.17)Here V (~r) is the atomi
 potential, W (~r, t) is the term 
onne
ted to the laser �eldand Ψ(~r, t) is the wave fun
tion for the ele
tron. A number of approximations
on
erning the laser �eld is now being made: It is regarded as being uniforma
ross the atom, i.e. the wavelength is mu
h larger than the width of the atom;
ontributions from the magneti
 dipole and ele
tri
 quadrupoles are negle
ted;the laser �eld is linearly polarised in the x-dire
etion. One 
an now write thelaser �eld term as:
W (x, t) = −E0 cos(ω0t)x (2.18)From the solution of equation 2.17 one 
an 
al
ulate the indu
ed dipole moment,whi
h is related to the separation of the 
harges in the atom:

D(~r, t) = 〈Ψ(~r, t)|x|Ψ(~r, t)〉 (2.19)2.2.4 Strong Field ApproximationIn order to perform the 
al
ulation of equation 2.19, one 
an apply the strong-�eld approximation [8℄. The result is in the end a de
omposition of the dipolemoment, ea
h term Dq 
orresponding to one spe
i�
 harmoni
 frequen
y, qω0,where q equals an odd integer:
Dq =

∑

j

Aq
j · eiΦq

j (2.20)14



The summation above is made over all di�erent ele
tron traje
tories, labled j,
orresponding to one given harmoni
 energy. In prin
iple the number of tra-je
tories is in�nite, but in pra
ti
e one 
an redu
e the sum to just 
over the�rst few. Aq
j represents the strength of ea
h dipole 
omponent, and Φq

j ea
h
omponent's phase.The radiation �eld Eq(t) 
orresponding to ea
h harmoni
 
an now be 
al
ulated:
Eq(t) = Dqe

iqω0t =
∑

j

Aq
j · ei(qω0t+Φq

j
) (2.21)2.2.5 Harmoni
 ChirpWhen making harmoni
 pulses in the laboratory, one wants to make them asshort as possible. Having the dis
ussion in se
tion 2.1.3 in mind, one thus hasto suppress the 
hirp of the harmoni
s, or else the pulse � given a spe
tralbandwidth � will be broadened. Before one 
an minimize the harmoni
 
hirp,one must however know its origin and 
hara
teristi
s, whi
h is what will bedis
ussed in the following paragraphs.Given a spe
i�
 harmoni
 order q and a given traje
tory j, the phase of ea
hharmoni
 
omponent will be dependent on the intensity of the driving laser�eld [9℄. The intensity dependen
e of the dipole phase leads to a 
hirp of theharmoni
 pulse. The harmoni
 is generated with a laser pulse for whi
h theintensity varies in time, I(t). This means that the dipole phase, and hen
e thephase of the harmoni
 generated also depends on time:

Γ(t) = qω0t + αI(t) (2.22)The instantaneous frequen
y is now written as:
ω(t) = qω0 + α

∂I(t)

∂t
(2.23)Comparing equation 2.23 with equation 2.8 one 
an identify α as α = ∂Φ/∂I.We now look at the linear 
hirp whi
h is indu
ed by the intensity dependen
e.

Γ(t) is now written as Γ(t) = qω0t + blt
2/2. The linear 
hirp rate bl is thengiven by the se
ond derivative of Γ(t), whi
h redu
es to the se
ond derivativeof Φ(t). bl 
an therefore be written as:

bl =
∂2Φ

∂t2
=

∂

∂t

(

∂I

∂t
· ∂Φ

∂t

)

=
∂Φ

∂I

∂2I

∂t2
+

∂2Φ

∂I2

(

∂I

∂t

)2 (2.24)One now assumes a Gaussian pulse envelope with the top intensity I0 and theFWHM denoted as ∆τ . The �rst and se
ond time derivatives 
an then be
al
ulated as:
∂I

dt
= − 8 ln 2

(∆τ)2
I0t · e−

4 ln 2

(∆τ)2
t2 (2.25)15



∂2I

dt2
=

[

− 8 ln 2

(∆τ)2
I0 +

(

8 ln 2

(∆τ)2

)2

I0t
2

]

· e−
4 ln 2
(∆τ)2

t2 (2.26)Assuming harmoni
s being generated at the top of the pulse, we 
an set t = 0and by 
ombining equation 2.24 with equations 2.26 and 2.25 we get:
bl ≈ −8 ln(2)

I0

(∆τ)2
∂Φ

∂I
(2.27)For harmoni
s it is found that this so 
alled harmoni
 
hirp as good as alwaysis negative. The magnitude of the 
hirp will in
rease with ∂Φ/∂I and the peaklaser intensity I0. It is inversely proportional to the square of the fundamentalpulse width ∆τ . Also, the harmoni
 
hirp would be zero if the envelope of thefundamental was 
onstant.If the fundamental 
arries a 
hirp bfund, it will be propagated in the generatedharmoni
s as qbfund. The total harmoni
 
hirp b then be
omes:

b = qbfund + bl = qbfund − 8 ln(2)
I0

(∆τ)2
∂Φ

∂I
(2.28)This means that while the �rst term in equation 2.28 might either be posi-tive or negative, depending on the sign of the fundamental 
hirp, the se
ondterm almost always assumes negative values. Using this insight one 
ould inprin
iple 
onstru
t a harmoni
 pulse without a 
hirp, through indu
ing a smallpositive 
hirp on the fundamental, 
ompensating the 
hirp due do the harmoni
generation pro
ess itself.2.3 Attose
ond Pulse GenerationThe bandwidth of the high harmoni
 plateau makes it in prin
iple possible to
reate pulses down to a few tens of attose
onds [10℄. In order to su

essfullyprodu
e short attose
ond pulses, optimisation of the amplitude and phase of thegenerated harmoni
s must be a
hieved. This se
tion will dis
uss experimentalaspe
ts of attose
ond pulse generation, as well as the phase behaviour neededfor obtaining short attose
ond pulses.2.3.1 Experimental SetupThe basi
 setup for generation of attose
ond pulse trains is shown in �gure 2.3.After HHG, the harmoni
 radiation is made to propagate through an 600 nm-thi
k aluminium �lter. The aluminium spe
trally �lters out all the radiationwith frequen
ies lower than about the 13th harmoni
 order. By its group velo
-ity dispersion, the �lter also mode lo
ks the harmoni
s transmitted. Harmoni
soriginating from several traje
tories are now 
onstituting the radiation. Thisis not desireable, sin
e there (as one 
an understand from �gure 2.6) is a bigphase di�eren
e between di�erent traje
tories. Fortunately, the radiation fromthe long traje
tory is 
onsiderably more divergent than the radiation originat-ing from the short traje
toy. By spatially �ltering the light by making it to16



propagate through a small hole, one thereby obtains harmoni
s only from theshort traje
tory, and the pulse duration is thereby redu
ed further.2.3.2 Mathemati
al Des
riptionSuperimposing the high-order harmoni
s in a frequen
y 
omb, from the �rst qito the last qf , and making use of equation 2.21, results in the ele
tri
 �eld E(t):
E(t) =

qf
∑

q=qi

Eq(t) =

qf
∑

q=qi

Aq · ei(qω0t+Φq) (2.29)If Φq = 0 and qi = 13, qf = 19, the intensity distribution obtained will have

Figure 2.7: Attose
ond pulse train arising from the superposition of harmoni
s13 to 19.the appearan
e of �gure 2.7 � a train of pulses of a few hundreds attose
ondswidth, separated by half the fundamental laser period, and spanning over aninterval of a few tens of femtose
onds.2.3.3 Attose
ond ChirpEven if one manages to eliminate the harmoni
 
hirp, Φq may still be equal toa fun
tion whi
h is not equal to zero � the so 
alled 'atto 
hirp' [9℄. While theharmoni
 
hirp is due to the intensity variation of the fundamental laser �eld,the atto 
hirp would be present even if the fundamental intensity was �xed. Thisis due to the fa
t that di�erent harmoni
 orders 
orrespond to di�erent ele
-tron traje
tories and thus di�erent emission times. While the harmoni
 
hirpis an intrinsi
 
hirp of ea
h harmoni
, the atto 
hirp thus is the 
hirp betweenharmoni
s. The time s
ale of the two di�erent kinds of 
hirp are thus di�erent;17



the atto 
hirp takes pla
e within the time of one laser 
y
le, whereas the femto
hirp is indu
ed over the whole laser envelope. This may be depi
ted as is donein �gure 2.8. Like the harmoni
 
hirp may broaden the harmoni
 pulse, theatto 
hirp broadens the pulses in the attose
ond train. It is thus important tosurpress the atto 
hirp if intending to make as short pulses as possible.

Figure 2.8: Above: Harmoni
 pulse in the femtose
ond regime, exhibiting aphase modulation proportional to t2, giving rise to a harmoni
 
hirp. Below:Train of pulses in the attose
ond regime, exhibiting a phase modulation propor-tional to q2, giving rise to an atto 
hirp.The dis
ussion above 
an be expressed in a more mathemati
al way. Considera linear dependen
e of the phase with respe
t to q, Φq = cq. This will give riseto a pulse train on the form of:
E(t) =

qf
∑

q=qi

Aq · ei(qω0t+cq) =

qf
∑

q=qi

Aq · ei(qω0(t+te)) (2.30)The 
onstant 
 has been de
omposed as c = ω0te, where te, when 
onsideringequation 2.30, 
an be interpreted as the so 
alled harmoni
 emission time [11℄.18



te may in general be expressed as:
tqe =

∂Φq

∂ω
=

1

ω0

∂Φq

∂q
(2.31)In the 
ase where Φq depends linearly on q, the emission time is 
onstant for allharmoni
 orders, and no atto 
hirp will be present. If however Φq ∝ q2, te willvary linearly with q, and ea
h pulse in the pulse train will 
arry a small 
hirp

batto, 
al
ulated as [9℄:
batto =

∂2Φq/∂q2

(∂Φq/∂q2)
2
+ 16 (ln 2)

2
/ (∆ω)

4 (2.32)
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Chapter 3
Measurement of Short Pulses
As laser pulses shrink in length, the ability to measure them be
omes in
reas-ingly important. There are a number of reasons for this. First, pre
ise knowledgeof the pulse properties is ne
essary for verifying theoreti
al models for pulse 
re-ation. Se
ond, in order to make even shorter pulses, one must understand thedistortions whi
h limit the pulse duration. Third, when performing measure-ments using ultrashort pulses, their out
ome might depend heavily on the pulsestru
ture. In addition to this, it is always important knowing at least the pulseduration, in order to determine the time resolution of the experiment performed.As already stated in the introdu
tion of this thesis, measuring ultrashort lightpulses introdu
es a not negligible amount of di�
ulties. These originate fromthe duration of the pulse as well as its frequen
y, if it is high enough. However,these are obsta
les whi
h more or less 
an be over
ome. A number of te
h-niques for ultrashort pulse 
hara
terization has been developed during the pastde
ades, and this 
hapter will dis
uss some of these. Emphasis will be laid uponFROG [1℄, and its modi�
ations XFROG [12℄ and FROG CRAB [13℄.

Figure 3.1: Basi
 outline of setup for FROG measurement.20



3.1 Frequen
y-Resolved Opti
al GatingThe prin
iple of FROG was �rst presented by Kane and Trebino in 1993 [1℄.This is a te
hnique whi
h operate, not in the time or frequen
y domain, but inthe 'time-frequen
y domain'. By introdu
ing a nonlinear intera
tion betweenthe pulse E one is interested in measuring, and a known or unknown 'gate' pulse
G, one is able to 'sli
e' the pulse in time in order to study its spe
tral 
ontent asa fun
tion of time [14℄. FROG 
an be regarded as a te
hnique whi
h spe
trallyresolves the signal pulse in any type of auto
orrelation experiment performedin a nonlinear medium. From this time-frequen
y signal, one 
an in the end,by a so 
alled FROG algorithm, yield the envelope and phase of the ultrashortpulses one intends to 
hara
terize.3.1.1 Prin
iple of FROGThe prin
iple of an ordinary FROG setup is shown in �gure 3.1. An in
identlight pulse E(t) is split in two parts, whi
h are made to propagate along di�er-ent paths. Along the way, one of the beams is delayed in relation to the other.This delay, denoted as τ , is varied during the measurement pro
ess simply bymoving the mirror whi
h the beam is re�e
ted by along the way of propagation.The stru
ture of the two beams may also be manipulated in di�erent ways alongthe way, if desirable. In for instan
e Polarization-Gate (PG) FROG, one of thepulses is sent through 
rossed polarizers, and the other through a half-wave platein order to a
hieve a ±45 deg linear polarization between the two pulses [14℄.After the delay and manipulation stages, the two pulses are re
ombined in anonlinear-opti
al medium (NOM) of some kind, for instan
e in a nonlinear 
rys-tal. The signal Esig originating from the nonlinear pro
ess in the medium willbe in the form of:

Esig(t, τ) = E(t) · f [E(t − τ)] = E(t) · G(t − τ) (3.1)
f is a fun
tion whi
h is de�ned by the manipulation stage as well as the nonlin-ear pro
ess in the medium of re
ombination. This fun
tion 
an be regarded asa
ting on the delayed pulse, and the resulting ele
tri
 �eld is denoted as G(t−τ)whi
h is 
alled the gate. The gate is the parameter whi
h distinguishes all thedi�erent variations of the FROG te
hnique.The �nal stage of the pro
edure is to measure the spe
tral intensity S(ω) of
Esig(t, τ) for ea
h delay time step. This so 
alled spe
trogram is a two-variabledependent fun
tion, denoted IFROG(ω, τ), whi
h is generally refered to as theFROG tra
e and written as [14℄:

IFROG(ω, τ) = F [Esig(t, τ)] =

∣

∣

∣

∣

∫ +∞

−∞

E(t) · G(t − τ)e−iωtdt

∣

∣

∣

∣

2 (3.2)The appearan
e of IFROG will be di�erent depending on whi
h type of FROG(i.e. whi
h type of gate) is being used. An example of a PG FROG tra
e, whi
h21




orresponds to G(t − τ) = |E(t − τ)|2, 
an be seen in �gure 3.2.In a typi
al FROG measurement, the gate should preferably be shorter than thepulse one intends to measure. However, sin
e the pulses one produ
es in the labmay be the shortest ones obtainable, this is not always possible. Furthermore,the gate shouldn't be in�nitely short, sin
e this would only yield the temporalintensity of the pulse. Correspondingly, if the gate would be a 
ontinuous wave,this would just yield the spe
tral intensity.

Figure 3.2: IFROG(ω, τ) for PG FROG. The y-axis 
orresponds to the angularfrequen
y ω of Esig(t, τ), and the x-axis to the delay τ .3.1.2 Phase RetrievalFrom IFROG, one's desire is to retrieve both the envelope and phase fun
tionof the unknown pulse. In the beginning of FROG, using the pulse to gate itselfin a spe
trogram 
ompli
ated the problem somewhat, sin
e all the retrievalalgorithms required knowledge of the gate fun
tion. The solution is to rewritethe expression in equation 3.2 as a two-dimensional Fourier transform [14℄:
IFROG =

∣

∣

∣

∣

∫ +∞

−∞

Esig(t, τ)e−iωtdt

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∫ +∞

−∞

Êsig(t, Ω)e−iωt−iΩτ dtdΩ

∣

∣

∣

∣

2 (3.3)This expression 
an be veri�ed by simple doing the integration with respe
t to
Ω, whi
h then yields equation 3.2. Here, one 
an see that the measured quantityis the squared magnitude of the 2D Fourier transform of Êsig(t, Ω). On
e Êsig isretrieved, one 
an simply obain E(t), sin
e E(t) = Êsig(t, Ω = 0), if negle
ting22



a 
omplex multipli
ative 
onstant k, whi
h is of little interest:
Êsig(t, Ω) =

1

2π

∫ +∞

−∞

Esig(t, τ) · eiΩτdτ =
E(t)

2π

∫ +∞

−∞

G(t − τ) · eiΩτdτ

Êsig(t, Ω = 0) =
E(t)

2π

∫ +∞

−∞

G(t − τ)dτ = k · E(t) (3.4)The integral on the se
ond row is time independent, whi
h one easy realise byperforming a simple 
hange of variables (τ ′ → t − τ). Sin
e the spe
trogrammeasurement only yields the magnitude of the 2D Fourier transform of the de-sired quantity, the problem is then to �nd the phase of the Fourier transform of
Êsig . This is known as the 2D phase-retrieval problem.Quite unintuitively, this is a solved problem when 
ertain additional informationregarding Êsig is available [14℄, su
h as it has �nite support (that is, is zero out-side a �nite range of t and Ω). This is in 
ontrast to the 1D equivalent, in whi
hit is impossible to �nd one fun
tion of one variable whose Fourier transform-magnitude is known, despite additional information. Instead, the number ofpossible fun
tions will be in�nite. In ultrashort-pulse measurement, the re-quired additional information 
onsists of the knowledge of the mathemati
alform of the signal, given by the physi
s behind the manipulation stage and thenonlinear pro
ess used. For instan
e, in PG FROG, Esig(t, τ) = E(t)|E(t−τ)|2.This information turns out to, together with the Fourier magnitude, be su�-
ient for pulse re
onstru
tion, and the problem is solved. Further, in 
hapter4, a detailed des
ription of the implementation of this solution into a workingalgorithm, will be dis
ussed.

Figure 3.3: Photoele
tron signal due to a high-order harmoni
 as well as stim-ulated absorption of an IR photon. 23



3.2 Cross-Correlation Frequen
y-Resolved Opti-
al GatingAlthough the time-frequen
y 
hara
terization of visible and infrared pulses byFROG is of no laborious task, it is nontrivial to extend it in to the XUV region.This is due to the di�
ulty of indu
ing nonlinear pro
esses in this region. Te
h-niques for a
quiring FROG tra
es other than using a nonlinear opti
al mediummust be used. The solution to this problem is to make use of the photoele
tronsignal due to 
ross 
orrelation of harmoni
s and an infrared probe pulse in a gasmedium. When the two pulses overlap in time, sidebands appear in the photo-ele
tron spe
trum [15℄, as seen in �gure 3.3. This 
orresponds to the absorptionof one harmoni
 photon together with aborption or emission of one or more IRphotons.The di�eren
e between XFROG and the 'ordinary' FROG method is the waythe gate is 
onstru
ted. In FROG G(t) = f [E(t)], while XFROG demands nosu
h relation between G and E. G is instead given by:
G(t) = Λ(t)(eiωGt + e−iωGt) (3.5)

Λ(t) simply denotes the envelope of the gate, while ωG is the 
entral frequen
yof the gate pulse. The +ωG term represents the sideband due to absorption,and −ωG is the emission term. ωG is the 
entral frequen
y of the gate pulse.
M B E S

A p e r t u r e

A l  f i l t e r
H H G

P r o b e

Figure 3.4: Setup for XFROG.An example of an XFROG setup is shown in �gure 3.4. The IR pulse in fo
usedinto a nozzle providing the noble gas used for HHG. When produ
ed, the har-moni
s are made to propagate through an aluminium foil and a small aperture.This yields a spe
trally as well as spatially �ltered signal. The �ltered harmoni
sand the IR probe are thereafter 
ross-
orrelated, ionising a gas (usually argonor neon), and the photoele
tron spe
trum is registered by a Magneti
 BottleSpe
trometer (MBES).An XFROG tra
e provides a good, intuitive pi
ture of the pulse 
hara
teristi
s.From the length of the sideband, one 
an yield a resonably good understandingof the duration of the harmoni
 pulse. If the harmoni
 exhibits a 
hirp, this24



will a�e
t the sideband by tilting it somewhat. This is due to the fa
t thatthe energy variation due to the 
hirp of the harmoni
, while the IR energy isuna�e
ted, leads to a variation in energy of the sideband signal, as depi
ted in�gure 3.5.

Figure 3.5: Negative 
hirp leading to a tilt in the sideband signal
3.3 Re
onstru
tion of Attose
ond Beating by In-terferen
e of Two-photon TransitionsWhile using the tilt of XFROG tra
es in order to dedu
e the harmoni
 
hirp,the atto 
hirp between the harmoni
s 
an't be measured by this line of a
-tion. Instead, one 
an make use of sideband generation by 
ross-
orrelatingthe harmoni
s with the weak fundamental IR pulse. This method is 
alled Re-
onstru
tion of Attose
ond Beating by Interferen
e of Two-photon Transitions(RABITT) [16℄, and is illustrated in �gure 3.6. Sin
e the distan
e between
onse
utive harmoni
s is 2ω0, and the frequen
y of the IR pulse is ω0, one side-band originating from stimulated absorption, and one from emission will overlapea
h other. This gives rise to interferen
e e�e
ts, like the ones one a
quires inYoung's double slit experiment. Using se
ond order pertubation theory, thesideband intensity IS between harmoni
s q and q+2 is found to be proportionalto a os
illating term as:

IS ∝ cos(∆Φq+1 − 2ωτ) (3.6)
∆Φq+1 is used to denote the phase di�eren
e between the neighbouring har-moni
s: Φq −Φq+2. The RABITT experiment 
onsists of studying the sidebandsignal as a fun
tion of the harmoni
 order q over a large range of harmoni
orders. Thereby, one is able to determine the 
hange of ∆Φq+1 with q, whi
h infa
t is a dis
retisized form of the se
ond order spe
tral phase ∂2Φ/∂q2. Fromthis and equation 2.32 the atto 
hirp 
an �nally be 
al
ulated.25



Figure 3.6: Two sidebands originating from two 
onse
utive harmoni
s interfer-ing with ea
h other, giving rise to a RABITT signal.3.4 Frequen
y Resolved Opti
al Gating for Com-plete Re
onstru
tion of Attose
ond BurstsIt is worth pointing out that while in many aspe
ts similar, RABITT is nota FROG method. The point of RABITT is to introdu
e an intera
tion be-tween 
onse
utive harmoni
s, while FROG relies on the intera
tion between theharmoni
s and the gate pulse. It is however in prin
iple possible to apply aFROG pulse retrieval algorithm to RABITT data, in order to fully 
hara
terizeattose
ond pulse trains. In this 
ase, the s
an must however be 
omplete and
over the whole sidebands, otherwise the FROG algorithm will not have enoughinformation for 
omplete pulse re
onstru
tion. Also, there is no longer any re-stri
tion on the strength of the IR pulse, sin
e we no longer are speaking aboutany perturbative method, like RABITT is. This method is 
alled Frequen
yResolved Opti
al Gating for Complete Re
onstru
tion of Attose
ond Burst, orabbreviated: FROG CRAB [13℄, [17℄. An example of a 
omplete (simulated)FROG CRAB tra
e is shown in �gure 3.7.

26



Figure 3.7: Simulated FROG CRAB tra
e, 
onsisting of odd harmoni
s 17-27.
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Chapter 4The FROG Pulse RetrievalAlgorithmEven though rough information on the 
hirp and the duration of harmoni
s andattose
ond pulses may be obtained by using methods like XFROG and RABITT,a more 
omplete determination of the pulse envelope and phase behaviour isdesirable. This 
hapter will des
ribe the so 
alled FROG pulse retrieval algo-rithms, from whi
h FROG data is used to fully 
hara
terize ultrashort pulsesby an iterative pro
edure. Emphasis will be laid on the Prin
ipal ComponentGeneralized Proje
tions Algorithm, PCGPA [18℄.

Figure 4.1: The ideal operation of a FROG inversion algorithm.4.1 General FROG Algorithm S
hemeThe purpose of the FROG algorithm is to 
al
ulate the pulse (or pulses) whi
hgives rise to the FROG tra
e one has aquired in experiments, IFROG. As seen28



from equation 3.3, IFROG is a real quantity from whi
h no phase informa-tion 
an be extra
ted, and additional information is therefore needed. In the
ase of FROG, this 
omes from the form of Esig(t, τ), whi
h is expressed as
E(t) · G(t − τ).The ideal operation of a FROG inversion algorithm is shown in �gure 4.1. Onestarts with a suitable guess, whi
h for instan
e may be random noise or a sim-ple Gaussian. The �nal solution must satisfy two sets of 
onstraints: 1) Theintensity 
onstraint, whi
h 
orresponds to the set 
ontaining all fun
tions whi
hmay build up IFROG and, 2) The physi
al 
onstraint, whose set 
ontains allthe fun
tions whi
h 
an be de
omposed as E · G. The aim is now to make thealgorithm to alternate between the two 
onstraints, 
onverging to the solution,whi
h � if there is one � is found at the point where the two sets interse
t [14℄. Itshould be noted that the pi
ture in �gure 4.1 merely is a rough sket
h of the realinterative pro
ess. First, the sets are not two-dimensional, and the algorithmi
s
heme takes instead pla
e in a multidimensional fun
tional spa
e. Se
ond, as
an be seen in the pi
ture, the sets are not ne
essarily 
onvex. This means thatunique 
onvergen
e 
annot be guaranteed. This may however in most pra
i
al
ases not be of any signi�
ant problem, sin
e satisfying robustness of the algo-rithm 
an be a
hieved anyway.The FROG error ǫFROG is de�ned as

ǫFROG =

√

√

√

√

1

N2

N
∑

i=1

N
∑

j=1

[

I
(k)
FROG(τi, ωj) − IFROG(τi, ωj)

]2 (4.1)where N is the size of the N × N matrix whi
h builds up the FROG tra
e and
(k) denotes the number of iterations made. ǫFROG thereby represents the rmserror per element of the spe
trogram. It is obviously essential to design the two
onstraint steps so that the FROG error is de
reased for ea
h iteration.

Figure 4.2: General s
heme for a FROG inversion algorithm.A general algorithmi
 s
heme for alternation between the two set of 
onstraintsis shown in �gure 4.2. One starts with an initial guess of the pulse (or pulses)29



and from this guess generates a 2D FROG signal, �rst in the 'time-time domain'as Esig(t, τ), and then by a 1D Fourier transformation in the time-frequen
ydomain as Esig(ω, τ). After this, the intensity 
onstraint is applied, whi
h isdone by simply repla
ing the magnitude of the FROG tra
e generated by theguess with the experimental FROG tra
e. Mathemati
ally this is written as:
Enew

sig (ω, τ) =
√

IFROG(ω, τ) · Esig(ω, τ)

|Esig(ω, τ)| (4.2)The next step is to invert the new FROG tra
e ba
k to the time-time domain.Afterwards a new guess is generated and sent ba
k into the beginning of thenext iteration 
y
le. This �nal step is meant to adjust the guess to the se
ond,physi
al, 
onstraint, and is basi
ally what distinguishes all the di�erent nowexisting FROG algorithms from ea
h other.Before moving on to the des
ription of the PCGPA, a small dis
ussion regardingthe earlier FROG pulse retrieval algorithms will follow.4.1.1 The Vanilla AlgorithmThe original FROG inversion algorithm was the so 
alled 'vanilla' or 'basi
'algorithm [1℄. It follows � like all the other FROG algorithms � the generaloutline in �gure 4.2. Here the �nal step of ea
h iteration is an integration of
Esig(t, τ) with respe
t to τ :

∫ +∞

−∞

Esig(t, τ)dτ =

∫ +∞

−∞

E(t)G(t − τ)dτ = E(t) ·
∫ +∞

−∞

G(t − τ)dτ (4.3)By a simple 
hange of variables (τ ′ → t− τ) one 
an see that the integration re-du
es to C ·E(t), where C is a t-independent 
onstant. Thus the next guess E(t)is easily obtained from Esig(t, τ). There are however signi�
ant problems usingthis method. While fast, the algorithm stagnates easily, resulting in high FROGerror solutions. Also, the vanilla algorithm fails to invert 
omplex fun
tions likedouble pulses. In an attempt to over
ome these problems, this algorithm wasused to provide an initial guess to a brute for
e minimization of the rms er-ror between the retrieved and the experimental FROG tra
e [19℄. While thismethod is robust and in most 
ases do 
onverge, it is however very slow.4.1.2 The Generalized Proje
tions AlgorithmWith the method of generalized proje
tions (GP), the FROG inversion algo-rithm made a big advan
e. The method originates from image analysis prob-lems, but was in 1994 found to also be appliable to the FROG problem [20℄.The solution is now found by making 'proje
tions,' with geometri
al analoguesshown in �gure 4.1. When proje
ting ea
h guess onto the two sets, one ensuresthat the 'distan
e' between the guess and its proje
tion is the shortest possible.A geometri
al analogue would be to draw a line from the point outside the set30



(representing the guess) to the border of the set so that the angle between lineand border is right. The problem is now to �nd out whi
h mathemati
al oper-ations do 
orrespond to proje
tions with this property.When dealing with the intensity 
onstraint, it is found that simply repla
ingthe magnitude of the FROG tra
e generated by the guess with the measuredmagnitude (as done in equation 4.2) is a generalized proje
tion. When it 
omesto the se
ond, physi
al, 
onstraint, the pro
edure gets somewhat more tri
ky,though. The task is now shown to minimize the fun
tional distan
e Z, de�nedby
Z =

N
∑

i=1

N
∑

j=1

∣

∣

∣E
(k)
sig (ti, τj) − E

(k+1)
sig (ti, τj)

∣

∣

∣

2 (4.4)where E
(k)
sig is the FROG signal 
al
ulated in the earlier steps of iteration k,and E

(k+1)
sig is the guess for the next 
y
le [20℄. Taking into a

ount the pos-sibility of de
omposing the signal as a produ
t between pulse and gate gives

E
(k+1)
sig (ti, τj) = E(k+1)(ti) · f

[

E(k+1)(ti − τj)
]. In order to minimize Z onethus varies E(k+1)(ti) until a minimum is found. In order to perform this mini-mization one therefore 
omputes the dire
tion of steepest des
ent: the negativeof the gradient of Z with respe
t to the �eld E(k)(ti). In pra
ti
e, one must
ompute the derivative of Z with respe
t to ea
h time-point in the 
omplex �eld.The advantages of the GPA with respe
t to the earlier algorithms are signif-i
ant. First, it basi
ally guarantees that the error always de
reases for ea
hiteration. Se
ond, it is very robust. Third, it is mu
h faster than the brutefor
e minimization te
hnique. And fourth, it 
onverges very well in presen
e ofnoise [14℄. There are however, as we shall see in the next se
tion, algorithms ofeven better performan
e and properties.4.2 The Prin
ipal Components Generalized Pro-je
tions AlgorithmWhile the introdu
tion of GPA proved to be a big step for the FROG inversionalgorithm, an even larger step was made in 1997 with the introdu
tion of thePrin
ipal Components Generalized Proje
tions Algorithm (PCGPA) [18℄. Themain advantages 
ompared to GPA are two: 1) The time-
onsuming and some-what 
ompli
ated minimization step is repla
ed by a simple multipli
ation ofmatri
es, redu
ing the iteration time to a level whi
h in some 
ases enables realtime inversion of FROG tra
es, and 2) FROG tra
es 
onsisting of pulse andgate fun
tions independent of ea
h other may be su
essfully inverted, whereboth pulse and gate is retrieved. Su
h an algorithm is refered to as a blind-FROG inversion algorithm, sin
e it makes no a priori assumptions about therelationships between the pulse and the gate.31



4.2.1 The Outer Produ
t Form MatrixThe main element of PCGPA is the so 
alled Outer Produ
t Form Matrix (here-after abbreviated as the OP matrix). This matrix is easily 
onstru
ted by twove
tors � one representing the unknown pulse and the other one the gate � andthe PCGPA is based on 
ertain properties spe
i�
 for this OP matrix.In order to make an OP matrix one �rst has to de�ne the pulse and the gateve
tor. Suppose E(t) and G(t) being sampled at given values of t with a 
onstantspa
ing of ∆t. Then E(t) and G(t) 
an be thought of as ve
tors of length Nwhose elements sample E and G at dis
rete times:
E =

[

E

(

−N

2
∆t

)

, . . . , E

((

N

2
− 1

)

∆t

)]

= [E1, . . . , EN ] (4.5)
G =

[

G

(

−N

2
∆t

)

, . . . , G

((

N

2
− 1

)

∆t

)]

= [G1, . . . , GN ] (4.6)The OP matrix O is now de�ned as [18℄:
O =











E1G1 E1G2 . . . E1GN

E2G1 E2G2 . . . E2GN... ... . . . ...
ENG1 ENG2 . . . ENGN











(4.7)This matrix 
ontains all the points required to 
onstru
t the time domain FROGtra
e be
ause it 
ontains all the intera
tions between the pulse and the gate forea
h dis
rete time delays. (For instan
e, the main diagonal of O above 
aneasily be identi�ed as being the FROG signal at τ = 0.) The OP 
an thereforebe transformed into the FROG tra
e, and the tra
e 
an in the same manner betransformed ba
k to the OP matrix again.The rows and 
olumns of the OP matrix may be manipulated to generate anequivalent matrix that gives a time domain representation of the FROG tra
e.By leaving the �rst row unshifted, shifting the se
ond row one step to the left,the third two steps and so on, one obtains the following matrix:


















E1G1 E1G2 E1G3 . . . E1GN−2 E1GN−1 E1GN

E2G2 E2G3 E2G4 . . . E2GN−1 E2GN E2G1

E3G3 E3G4 E3G5 . . . E3GN E3G1 E3G2

E4G4 E4G5 E4G6 . . . E4G1 E4G2 E4G3... ... ... . . . ... ... ...
ENGN ENG1 ENG2 . . . ENGN−3 ENGN−2 ENGN−1



















τ = 0 τ = −1 τ = −2 . . . τ = +3 τ = +2 τ = +1 (4.8)Now one sees that all 
olumns of this new matrix 
ontains the FROG signal
Esig(t, τ) for all di�erent delay times, as indi
ated below the matrix. By simplyrearranging the 
olumns so that the most negative τ is to the left and the mostpositive is to the right, a dis
retized FROG signal in the time-time domain32



may be made. In order to get the signal in the time-frequen
y domain onesimply Fourier transforms ea
h 
olumn. By �nally taking the magnitude of this
omplex result, the FROG tra
e one measures in experiments is produ
ed. Thewhole pro
edure is illustrated in �gure 4.3.

Figure 4.3: The di�erent steps in manipulating the OP matrix into a time-frequen
y FROG tra
e. Figure 1) plots the modulus of the OP matrix. In 2)the OP matrix after row manipulation is drawn. This 
orresponds to the matrixin equation 4.8. 3) represents the matrix after being manipulated 
olumnwiseand is therefore now the FROG signal in the time-time domain. And �nally, in4), ea
h 
olumn is Fourier transformed, giving rise to the FROG tra
e in thetime-frequen
y domain.4.2.2 PCGPA inversionWe have now shown that the OP matrix may be used to form a matrix 
on-taining a dis
rete version of the FROG tra
e (and vi
e versa). We will noe useproperties spe
i�
 to the OP matrix in order to retrieve both E and G.While it is easy to imagine an in�nite number of 
omplex images that have thesame magnitude as the FROG tra
e we wish to invert, there is however onlyone image with the same magnitude whi
h 
an be formed by the outer produ
tof a single pair of nontrivial ve
tors [18℄. In order to �nd the proper ve
tor33



pair (that is, the pulse and the gate) the phase of the spe
trogram must bedetermined using a 2D phase retrieval algorithm. When we have the phase, we
an simply de
ompse the OP matrix in the pair of ve
tors whi
h is originallywas 
omposed of.

Figure 4.4: The general PCGPA s
heme. Ea
h step is more thourougholy ex-plained in the text.The PCGPA works in the same way as all the other inversion algorithms, asdepi
ted in �gure 4.2. As in all the earlier algorithms, the step that di�ers fromthe others is the last one, where the new guess is being generated. However,a more detailed insight in how the PCGPA works is shown in �gure 4.4. Thepro
edure is as follows:1. The initial guesses of pulse and gate are made, and an OP matrix is formedby these two guesses.2. By row and 
olumn manipulation, Esig(t, τ) is formed.3. By Fourier transformation one obtains Esig(τ, ω).4. The magnitude of Esig(τ, ω) is repla
ed by the magnitude of the FROGtra
e.5. By the inverse Fourier transform followed by row and 
olumn manipulationthe matrix is 
onverted ba
k into its OP form again. A �nal singular valuede
omposition step (SVD) is applied in order to generate the new guess.The �nal step has to be explained more thourougholy. When 
onverted ba
kinto its OP form, the matrix no longer exhibits the features of a real OP, sin
eits magnitude has been repla
ed with another. One now has to �nd the bestreal-OP approximation of the matrix, in order to send it ba
k into the beginningof the iteration. 34



One important property of a real OP matrix is that it has one and only onenonzero eigenvalue; that is, its rank is equal to one. The eigenve
tor of su
h amatrix is E, the pulse. Correspondingly, the 
omplex 
onjugate of the eigen-ve
tor of the transpose of the OP matrix is the gate, G. If the matrix afterbeing molded by the intensity 
onstraint is the 
orre
t FROG tra
e it is thusa simple task to obtain both the pulse and the gate out from this matrix. Ifnot, one must �nd the best rank-one approximation of the new matrix, whi
h isjust a di�erent way of saying what was written in the previous paragraph. Theanswer to this problem is not a dire
t minimization step, but a 
ertain kind ofde
omposition � the SVD. SVD de
omposes an arbitrary N ×N matrix A intothree new matri
es U , W and V :
A = U · W · V T (4.9)Both U and V are orthogonal square matri
es and W is a square diagonal ma-trix, with diagonal elements w1, w2, . . . , wN . The matrix A 
an thus be regardedas being de
omposed into a superposition of OP matri
esO1, O2, . . . , ON , weighedby the elements of W :

A = w1 · O1 + w2 · O2 + . . . + wN · ON (4.10)All of the possibleOi 
orrespond to OPmatri
es formed by possible pulse ve
tors(
olumns of U) and gate ve
tors (rows of V T ). The best OP approximation of Awould thus be the OP matrix whi
h 
orresponds to the largest weighting fa
tor
wl, and is 
omposed of the elements in the 
orresponding 
olumn of U and rowof V T . In fa
t, keeping this prin
ipal 
omponent for the next iteration of thealgorithm, is found to be a minimization of the error fun
tion

ǫ2 =

N
∑

i=1

N
∑

j=1

∣

∣Ai,j − EiGj
∣

∣

2 (4.11)whi
h 
an be seen as an analogue to the minimization step of the GP algorithm.While the SVD method is quite intuitive, it 
ontains lots of unne
essary 
al
u-lations, sin
e there basi
ally is only one ve
tor pair 
orresponding to the largestweighting fa
tor whi
h is needed. This makes the 
alulations somewhat time
onsuming. Fortunately, the prin
ipal ve
tor pair whi
h builds up the domi-nant OP matrix may be found dire
tly with mu
h less 
omputation, redu
ingthe SVD step to simple matrix-ve
tor multipli
ations [21℄, [22℄.The SVD routine 
al
ulates the eigenve
tors Ei of AAT , whi
h are the 
olumnsof U , and the eigenve
tors Gi of AT A, whi
h are the 
olumns of V :
AAT Ei = λiEi (4.12)
AT AGi = λiGi (4.13)The sets Ei and Gi are both orthonormal, and the eigenvalues λi are found tobe related to the weighting fa
tors by λi = w2

i . Equation 4.10 
an be expressedas:
A =

N
∑

i=1

√

λiEiG
T
i (4.14)35



λi, Ei and Gi are all provided by the SVD, but one only needs the ve
tor pair
orresponding to the largest |λi|. Suppose there is an arbitrary nonzero 1 × Nve
tor x. Sin
e the eigenve
tors of AAT form an orthonormal set, this ve
tormay be expressed as a superposition of Ei.
x =

N
∑

i=1

κiEi (4.15)where κi is a set of 
onstants. If one multiplies x with AAT and takes equa-tion 4.12 into a

ount one gets:
AAT x =

N
∑

i=1

AAT κiEi =

N
∑

i=1

κiλiEi (4.16)
AAT 
an be thought of as an operator that maps x onto a superposition of eigen-ve
tors. Be
ause AAT κiλiEi = κiλ

2
i Ei multiplying equation 4.16 by (AAT )p−1gives

(

AAT
)p

x =

N
∑

i=1

κiλ
p
i Ei (4.17)As p be
omes large, the largest eigenvalue λl (that is, the largest weighing fa
-tor wl) dominates the sum so that (

AAT
)p

x ≈ κlλ
p
l El. This method is 
alledthe power method. By simply normalizing the result one gets when multiply-ing repetively, El is obtained. Sin
e this is the eigenve
tor 
orresponding tothe largest eigenvalue, this approximately equals the next guess for the pulse,

E(k+1). Sin
e x is assumed to be an arbitrary ve
tor one may as well multiplythe previous guess E(k) with AAT in order to 
al
ulate E(k+1). While betterapproximations for the eigenve
tor 
an be made by using this operation severaltimes per iteration, on
e per iteration (p = 1) is adequate in pra
ti
e. Corre-spondingly, sin
e Gi are the eigenve
tors of AT A, the next guess for the gate ismade by multiplying the previous guess of the gate by AT A.

36



Chapter 5
Implementation of thePCGPA
The main aim of this diploma proje
t has been to write a FROG pulse retrievalalgorithm based on the theories whi
h have been presented in previous 
hapters.The algorithm whi
h I have written is based on the PCGPA and is presented inappendix A.Before applying the algorithm on measured data, it is of extreme ne
essity to�rst test its performan
e on simulated, already 
hara
terized, data. Wouldthe results of this test be too disappointing, one obviously 
annot rely on anyresults obtained using experiments. We will �rst examine how well the PCGPAbehaves when retrieving pulses from simulated XFROG tra
es, and thereafter,the algorithm will be tested on experimental XFROG data. In the end of this
hapter, we will attempt to 
hara
terize both simulated and real attose
ondpulse trains.
5.1 XFROG ImplementationIn the following se
tions, important 
hara
teristi
s of the PCGPA will �rstbe examined using simulated XFROG tra
es. Sin
e we already know whatthe out
ome of these test runs should be, possible �aws of the algorithm 
anbe dete
ted and perhaps even solved, by adding improvements to the originalprogram. By 
hanging 
ertain parameters, su
h as the rate of the data lowpass�ltering, we also 
an get some understanding of if and how the pulses retrievedare a�e
ted by these. All this knowledge will be of great importan
e when we,in the end of this se
tion, apply the PCGPA to experimental XFROG data.37



Figure 5.1: To the left: Femtose
ond double pulse (blue) and the gate pulse.To the right: Their simulated XFROG tra
e.5.1.1 Implementation on Simulated DataTwo tests of the PCGPA on simulated data will now be performed: In the �rstwe will try to retrieve an un
hirped double pulse, and in the se
ond test a more
omplex pulse, exhibiting a signi�
ant amount of 
hirp.The Double Pulse TestTo illustrate the main properties of the algorithm, we start with a simple dou-ble pulse whi
h is shown in �gure 5.1. Its 
entral wavelength is 40 nm and itsFWHM is about 50 fs; it is also un
hirped. Shown in the same �gure is the gatepulse, whi
h exhibits a wavelength of 800 nm, an FWHM of 12 fs and no 
hirp.The 
orresponding XFROG tra
e is made by using the OP matrix pro
edure asdes
ribed in the previous 
hapter.

Figure 5.2: To the left: Retrieved pulse (blue) and gate (red) without spe
tral
onstraint. To the right: Retrieved pulse (blue) and gate (red) with spe
tral
onstraint. 38



Figure 5.3: To the left: FROG error as a fun
tion of iteration number for thepulse in 5.1 without spe
tral 
onstraint. To the right: FROG error as a fun
tionof iteration number for the pulse in 5.1 with spe
tral 
onstraint.What happens if we run the simulated XFROG tra
e in our inversion algorithm?The result is shown to the left in �gure 5.2, and is not satisfying at all; the re-trieved pulse looks more like the real gate, and vi
e versa. However, even withthis in mind, the algorithm doesn't seem to a
t properly: The double pulse is alittle bit too thin and the single pulse is too broad. In �gure 5.3, to the left, one
an see that the FROG error (de�ned by equation 4.1) stagnates somewhere inthe middle of 10−1 and 10−2. This is too high to be a

eptable.In order to make the results of the algorithm more a

urate, it is possible toapply some sort of additional 
onstraints to the iteration pro
ess. One su
h
onstraint may be the spe
trum of the pulse one wants to 
hara
terize. Afterall, all one needs to measure the spe
trum is a simple spe
trometer and onedoesn't need to worry about the di�u
ulties with time resolution at all. Also,the implementation of this 
onstraint is simple: At some point in the algorithmone just repla
es the spe
trum of the guess with the spe
trum of the real pulse.It should be noted that this additional 
onstraint is not a part of the theoryof proje
tions whi
h was gone through in the previous 
hapter; it is simply a'pra
ti
al' add-on 
onstraint whi
h empiri
ally has been found to be useful.During this proje
t it has been found that one must be very 
areful with whereand how often one performs this repla
ement. Using this pro
edure on
e everyiteration 
auses the algorithm to go berzerk, leaving just nonsense data as result.The optimum pro
edure is to repla
e the spe
trum only on
e somewhere in thebeginning of the algorithm, for instan
e in the 20th iteration step. Applyingthis to the double pulse test, the pulses retrieved look like what is shown to theright in �gure 5.2. Still, there is a mix-up (whose spe
i�
 origin is somewhatmysterious), but apart from that the pulses retrieved look pretty mu
h like thepulses we started from. To the left in �gure 5.3 we also see that imposing theadditional spe
tral 
onstraint at iteration number 20, for
es the FROG errorto go down below 10−2. From now on, the PCGPA will always use a spe
tral
onstraint, when a spe
trum is available.39



Figure 5.4: Plot over the FROG error as a fun
tion of iteration number whenretrieving a double pulse using a for
ed gate.If one regards the gate pulse already being satisfyingly 
hara
terized, there isno need for a blind-XFROG algorithm. Then one doesn't have to bother aboutguessing the gate anymore, and may just for
e the gate by inserting the realone for ea
h iteration. Doing so in the double pulse 
ase, eliminates the mix-upproblem, and also redu
es the FROG error by several fa
tors of ten, as seen in�gure 5.4.The Chirped Harmoni
 Sideband TestLet us now test the algorithm using more 
omplex, asymmetri
al pulses. In �g-ure 5.5 a simulated sideband originating from a highly 
hirped 19th harmoni
 isrepresented, together with the gate pulse used in the previous example. The nu-meri
al simulation of the sideband has been designed to mimi
 the experimental
onditions in an XFROG experiment as 
losely as possible. When inserting theXFROG tra
e to the right in the �gure into our algorithm, we get a result whi
his presented in �gure 5.6. This is, maybe somewhat unexpe
ted, an almost per-fe
t mat
h with the pulses we started with. This is 
on�rmed by looking at theFROG error, whi
h is shown in �gure 5.7, where we 
an see that it after noteven 200 iterations stagnates on an error of the magnitude of 10−6! Also, whatis shown to the right in �gure 5.6 is a 
omparison of how the instantaneousfrequen
y (that is, dΓ(t)/dt = ω(t) = ω0 + dΦ(t)/dt) varies with respe
t toboth the 'real' and the retrieved harmoni
. The shapes of the graphs are moreinteresting than the a
tual values they represent sin
e we are not interested inde
iding the value of ω0, but rather in getting a pi
ture of the behaviour of
dΦ(t)/dt. (The reason why ω0 is di�erent in the two plots is be
ause the time40



Figure 5.5: To the left: Simulated 19th harmoni
 with a high negative fun-damental 
hirp (blue) an an un
hirped gate pulse (red). To the Right: Theirsimulated XFROG tra
e.resolution we use in our simulations is not high enough to fully resolve the 
or-re
t frequen
y.) Thus, the agreement between the two plots is ex
ellent.

Figure 5.6: To the left: Retrieved harmoni
 (blue) and gate (red). To the right:Frequen
y variation of the real harmoni
 (blue) and of the retrieved (bla
k).One 
ould now ask oneself why we get better results when trying to retrievemore 
omplex pulses. The answer probably lies in the la
k of symmetry ofthe pulses retrieved, as well as in possible similarities between the pulse andthe gate. When dealing with symmetri
 pulses whi
h also have a stru
ture withhigh resemblen
e to the gate, dangerous pitfalls suddenly appear: The 
han
e ofmixing up pulse and gate is highly in
reased, and weird 'mean value pulses' giverise to FROG tra
es whi
h almost 
annot be distinguished from the real FROGtra
e at all. Asymmetri
 pulses with little resemblen
e to the gate however seemto eliminate many of these 'false' solutions.41



Figure 5.7: FROG error for the harmoni
 presented in �gure 5.5.5.1.2 Implementation on Experimental DataWe now turn to the 'real' world, to examine if the PCGPA also is able to re-trieve pulses from experimental XFROG tra
es. Measurements of harmoni
s bythe XFROG method have earlier been performed at the Lund Institute of Te
h-nology, by Mauritsson et al. in 2004 [23℄, using the setup shown in �gure 3.4.Harmoni
s were generated by 815 nm IR pulses with durations between 35 and90 fs. S
ans were done under �ve di�erent experimental 
onditions, labeled(a)-(e): Harmoni
 generation with a negative 
hirp on the fundamental � 
ase(a) and (b) � generation with no fundamental 
hirp � 
ase (
) � and �nally apositive fundamental 
hirp in (d) and (e). Sin
e the fundamental is transferedto the harmoni
s as des
ribed by equation 2.28, the harmoni
s will exhibit ea
hdi�erent 
hirp rate b.An example of what su
h an experimental XFROG s
an looks like is given in�gure 5.8. It is of importan
e to realise that ea
h visible sideband is a mixtureof two sidebands, sin
e the distan
e between 
onse
utive harmoni
s is 2ω0 andthe frequen
y of the gate pulse is ω0. This means that the sideband originatingfrom absorption of an IR photon in harmoni
 n − 1, will be mixed with thesideband due to emission in harmoni
 n + 1. Thus, pro
essing a sideband nin an XFROG s
an like the one shown in �gure 5.8 will only give the meanduration and 
hirp of harmoni
s n− 1 and n+1. For example, the sideband la-beled 18 originates both from harmoni
 17 and 19. The sidebands shown in the�gure are sidebands 14-22 (with sideband 24 very faintly hinted far to the right).By simply measuring the sideband length and tilt, Mauritsson et al. have 
al-
ulated both the duration of the harmoni
s, as well as their 
hirp. In table 5.1the determined duration and 
hirp are indi
ated for sideband 18 in the �ve
ases. The harmoni
 duration ∆τ is obtained from the duration of the sideband
∆τsb a

ording to ∆τ =

√

(∆τsb)2 − (∆τIR)2 − (∆τgeo)2, where ∆τIR is theinfrared gate pulse duration, and ∆τgeo is a geometri
al fa
tor whi
h is meantto 
ompensate the fa
t that the two beams, as 
an be seen in �gure 3.4, arenot 
ollinear, but interse
t ea
h other by a small angle. This fa
tor is estimated42



∆τ/fs b/1027 · s−2(a) 41 -14(b) 31 -11(
) 23 -10(d) 28 10(e) 36 13Table 5.1: Values of harmoni
 duration and 
hirp for �ve di�erent 
ases (a)-(e)of harmoni
 18, measured by Mauritsson et al..to be about 18 fs. Further, the 
hirp rate 
an be 
al
ulated from the sideband
hirp bsb by b = bsb

[

1 +
(

(∆τIR)2 + (∆τgeo)
2
)

/(∆τ)2
].

Figure 5.8: Example of an XFROG s
an.We applied the PCGPA to the experimental data. The intention was, by us-ing the blind-FROG algorithm presented in appendix A, to determine both thepulse and the gate from the same measurement. This proved however to bea nearly impossible task, sin
e severe problems soon 
ame up. Sin
e the gatepulse already had been fairly 
hara
terized by other te
hniques as a Fourierlimited 12 fs long pulse, the out
ome of the test 
ould partially be predi
ted.In a few 
ases, running the blind-FROG algorithm gave the expe
ted gate asa result, but in an equal number of test runs, it did not. Like in the previousdouble pulse-test, pulse and gate seemed to be mixed with ea
h other � in some
ases they even looked identi
al (when expe
ted not to be). In addition to that,the algorithm never seemed to 
onverge properly, at best stagnating on FROGerrors in the region of about 5%. 43



Some of these ambiguities might have been eliminated if a spe
tral 
onstrainthad been added. However, when performing the 
ross-
orrelation experiment,the spe
trum of the harmoni
s was never measured, making this solution un-available. However, one possibility remained: By regarding the gate as fully
hara
terized as a Gaussian Fourier limited pulse with an FWHM of 12 fs and awavelength of 815 nm, it would be possible to 'for
e' the gate in ea
h iteration,thereby � if the gate had been 
hara
terized 
orre
tly � making the algorithmto properly 
onverge. This a
tually proved to be a seemingly better solution,sin
e the PCGPA now in every 
ase 
onverged at FROG errors between 0.6 and2%.Figure 5.9 shows the retrieved envelope and phase information 
al
ulated fromsideband 18(b). In the �gure, the phase information is given by plotting dΓ/dt =
ω0 + bt. In order to determine the value of b, one �ts a polynomial of the �rstdegree to the data points in the neighbourhood of the pulse. The value of theslope of this polynomial then dire
tly gives b. Figure 5.10 shows sideband 18for 
ases (a)-(e), together with the 
al
ulated values of b. This indi
ates that atleast the results of the algorithm are qualitatively good, sin
e a sideband tiltingin one dire
tion gives rise to a b with opposite sign as the sideband whi
h tiltsin the other dire
tion.

Figure 5.9: Left: Sideband 18(b). Center: Retrieved pulse with an FWHM of33 fs. Right: Retrieved frequen
y shift (blue), with a �rst-degree polynomial�tted to the values of relevan
e (red). b = −3.17 ·1027s−2 and ǫFROG = 0.0077.Even though we get good qualitative results when 
al
ulating b by PCGPA, thisis of 
ourse not enough. In order to get some idea of the quality of the algorithmas a quantitatively good method we must 
ompare our values with trustworthy44



Figure 5.10: Sideband 18 (a)-(e). Below are the PCGPA 
al
ulated harmoni

hirp rates b for ea
h sideband written, given in 1027s−2.
∆τ/fs b/1027 · s−2 ǫFROG(a) 42 -5.24 0.0090(b) 33 -3.17 0.0077(
) 28 -3.49 0.0082(d) 31 2.34 0.0083(e) 41 2.36 0.0100Table 5.2: Values of harmoni
 duration and 
hirp rate for harmoni
 18(a)-(e),
al
ulated by the use of the PCGPA. Also, in the third 
olumn, the FROG errorfor ea
h 
al
ulation is shown.results obtained by using a di�erent method. On
e again, we look at Maurits-son et al. [23℄. Table 5.2 shows PCGPA-
al
ulated FWHM:s and 
hirp rates forsideband 18(a)-(e). These 
an be 
ompared with what was previously found intable 5.1. While the duration of the pulses seem to agree fairly well with theprevious results, the values of b however do not. The ratios between the 
hirprates seem to be pretty mu
h the same when 
omparing the �rst measurementto the other; however, their absolute values do not agree at all.This fa
t be
omes even more 
lear when making a se
ond 
omparison, where bfor 
ases (a)-(e) is plotted as a fun
tion of the harmoni
 order q. Figure 5.11 is aplot over the PCGPA 
al
ulations, and �gure 5.12 is a plot over the values foundin Mauritsson et al. Both plots do have a striking resemblan
e in shape, but,however, not in absolute values. The reason for this remains a mystery, thoughit should be noted that the values measured by Mauritsson et al. probably arethe most 
orre
t ones, sin
e they are very similar to what has been 
al
ulatedin simulations.A number of possible errors may be due to the model of the ele
tri
 �eld that thealgorithm is based on, whi
h totally negle
ts the spatial dependen
e of the �eld.First, the non
ollinearity of the beam geometry might give rise to errors. Whenrunning the algorithm, this is taken into a

ount for by in the inversion repla
ing45



the duration of the gate pulse ∆τIR with a duration of √

(∆τIR)2 + (∆τgeo)2,whi
h approximately is equal to 22 fs. This might however not be enough tofully 
ompensate the la
k of 
ollinearity in the geometry, and a expanded ver-sion of the PCGPA whi
h treats this problem more rigorously might be needed.In order to get an idea of how big the error might be
ome if negle
ting the beamgeometry, the 
al
ulations whi
h was done in Mauritsson et al. was made on
eagain, but this time with the geometri
al fa
tor set to zero. This redu
ed the
hirp rates with in general 20%, whi
h is not enough to fully explain the resultsobtained in this thesis, but may be worth having in mind.Also, when only looking at the temporal aspe
ts of the pulse and the gate, one
onsiders the two �elds as being in the form of plane waves. This is however notentirely true, and a model based on spheri
al �elds might give better results.There has however during this proje
t unfortunately not been time to developthis idea into more than just an idea.

Figure 5.11: Harmoni
 
hirp rate 
al
ulated by PCGPA plotted as a fun
tionof harmoni
 order. Red 
olour � 
ase (a); green � (b); bla
k � (
); (d) � purple;(e) � blue.The treatment of the FROG tra
e before sending it into the algorithm is anotherpossible sour
e of errors. While the algorithm in prin
iple is relatively stableagainst noise, the data must yet undergo some threshold and lowpass �ltering.The biggest problem in this aspe
t is the in�uen
e of the adja
ent harmoni
s,whi
h in some 
ases is so large that parts of the sideband are overshadowedand take on a distorted appearan
e in the eyes of the algorithm. In order tomake the PCGPA to 
onverge at all, one must �lter out a 
ertain amount ofthis distorting ba
kground. By doing so it is however very likely that parts ofthe information on the sideband itself are lost. Simulations whi
h have been46



Figure 5.12: Harmoni
 
hirp rate 
al
ulated by Mauritsson et al. plotted as afun
tion of harmoni
 order. Red 
olour � 
ase (a); green � (b); bla
k � (
); (d)� purple; (e) � blue.made in this proje
t, using FROG tra
es from simple linearly 
hirped Gaussianpulses, show that the absolute value of b may be redu
ed by as mu
h as 25%when threshold �ltering. This is not enough to explain the whole redu
tion ofthe 
hirp rates, but it is large enough to be taken into a

ount. Also, �lteringhigh spatial frequen
ies in the XFROG tra
e too mu
h has been found thodistort the retrieved phase, although in exa
tly what way the 
al
ulation of b isa�e
ted is hard to predi
t.5.2 FROG CRAB ImplementationAs stated in earlier 
hapters, not only single harmoni
 pulses may be 
hara
-terized using PCGPA; it is also designed to make it possible to 
hara
terizeattose
ond pulses or even attose
ond pulse trains, using FROG CRAB data.No modi�
ations of the 
ode is ne
essary � in the eyes of PCGPA all pulsesare equal, as long as they 
ome with a FROG tra
e. This se
tion will fo
us onpulse retrieval using simulated FROG CRAB data, ending with a brief dis
us-sion regarding the di�
ulties and possibilities of pulse 
hara
terization usingexperimental data.5.2.1 Implementation on Simulated DataA simple way of designing a FROG tra
e with sidebands and sideband in-terferen
e like those present in a RABITT s
an, is by using an arti�
ial and47



Figure 5.13: The the left: Attose
ond pulse train made by harmoni
s 9-15. Upto the right: Tilt of sideband due to the harmoni
 
hirp. Down to the right:Constru
tive respe
tively destru
tive interferen
e 
hanging from sideband tosideband, due to the atto 
hirp.rather unphysi
al gate with the form of 1 + Λ(t) · (eiω0t + e−iω0t), where Λ(t)isan amplitude fa
tor. The two exponentials lead to sidebands due to stimu-lated absorption and emission of one IR photon with the frequen
y ω0. Thistri
k makes the harmoni
s themselves appear in the FROG tra
e, sin
e now
E(t) · G(t) = E(t) + E(t)Λ(t) · (eiω0t + e−iω0t).In �gure 5.13, to the left, we show a simulated FROG CRAB s
an using harmon-i
s 9-15, exhibiting both harmoni
 and atto 
hirp. The 800 nm-gate pulse has anFWHM of 12 fs and is Fourier limited. In �gure 5.14 the train itself is plotted, to-gether with the temporal phase variation due to the harmoni
 
hirp (∂2Φ/∂t2·t2)and the spe
tral phase variation due to the atto 
hirp (∂2Φ/∂ω2 · ω2).We start with trying to retrieve both pulse and gate from the FROG CRABtra
e, using the PCGPA as a blind-FROG. The retrieved train is shown to theleft in �gure 5.15, and to the right, the FROG error as a fun
tion of the iterationnumber is plotted. Here one 
an see that the algorithm 
onverges to a relativelylow FROG error, but while the rough features of the train is retrieved, the traindoes not look like its original on a more detailed level. Also, it is found that theretrieved phases do not mat
h the original at all. However, the initial guessesseem to a�e
t the �nal blind-FROG result to a 
ertain degree, whi
h opensthe possibility of improving the results by starting out with parti
ulary goodguesses. Su
h an optimisation has however not been 
arried out in this proje
t.When assuming the gate to be well-
hara
terized, the result, shown in �g-ure 5.16, is improved. The error is found to steady go down below 10−15 in800 iterations, and one is able to both retrieve the envelope of the �eld, as wellas the temporal and spe
tral 
hirps. 48



Figure 5.14: To the left: Attose
ond pulse train 
onstituted by harmoni
s 9-15.Up to the right: ∂2Φ/∂t2 · t2. Down to the right: ∂2Φ/∂q2 · ω2

Figure 5.15: To the left: Retrieved attose
ond pulse train using the blind-FROGalgorithm. To the right: The FROG error for the blind-FROG iteration.
The FROG CRAB simulations have up until now been based on harmoni
sea
h 
arrying the same harmoni
 
hirp. However this may not always be the
ase, whi
h for instan
e 
an be seen in the graph in �gure 5.11. Figure 5.17depi
ts a pulse train and its 
orresponding FROG CRAB tra
e, with a harmoni

hirp whi
h is linearly dependent on q. The 
hange of the 
hirp manifests itselfquite intuitively in the FROG signal by a 
hange of the tilt of the sidebands.This q-dependen
e will in the temporal domain give rise to a 
hange of spa
ingbetween 
onse
utive attose
ond pulses in the train, as indi
ated in the �gure.The pulse train, in
luding the varying pulse to pulse spa
ing, is well retrievedusing a for
ed gate as drawn in �gure 5.18. The FROG error is 
onverging toan error below 10−6 in 800 iterations. 49



Figure 5.16: To the left: Retrieved pulse train from the FROG tra
e given in�gure 5.13. To the right: At the top, retrieved temporal phase variation; at thebottom, retrieved spe
tral phase variation.

Figure 5.17: To the left: Pulse train with a q-dependen
e of the harmoni

hirp, b = b(q). The pulse separation is indi
ated in the �gure. To the right:The FROG tra
e of the train.5.2.2 Implementation on Experimental DataWhile proposed [13℄ [17℄, implementing FROG CRAB on experimental data hasto this date never been performed. From a 
omputational point of view, thereare at least two possible 
ompli
ations whi
h 
an 
ome up when attemptingto retrieve a pulse train in the laboratory: First, the two outer sidebands in aFROG CRAB s
an are often missing in experimental s
ans. This will introdu
ean error in the PCGPA 
al
ulations. Se
ond, the resolution of the MBES devi
eis worsened when the energy of the ele
trons is in
reased. This will lead to afrequen
y broadening of the high-order sidebands whi
h may make the algorithmnot to 
onverge properly. A possible solution of this problem would be to do thewhole s
an segment-wise. When going higher up in energy, one would then applya voltage in order slow the ele
trons down, and by this in
rease the resolutionon
e again [24℄. 50



Figure 5.18: Attempting to 
hara
terize a pulse train where b = b(q), using afor
ed gate. To the left: Retrieved pulse train. To the right: The FROG error.
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Chapter 6Summary and Con
ludingRemarksThe goal of this proje
t was to write an algorithm based on the method of PCGPand to implement it on FROG data. Results from simultated FROG data hasshown that the algorithm works su
essfully, even when used as a blind-FROG.However, if the pulse and the gate both are symmetri
 and quite similar inshape, there is a risk of a mix-up or 'average-value' pulses as a result of theretrieval pro
edure. The introdu
tion of an additional 
onstraint in the form ofthe spe
trum of the unknown pulse has been found to in
rease the 
onvergen
erate � if 
orre
tly applied. If the gate pulse 
an be regarded as already beingproperly 
hara
terized, it is possible to 'for
e' this known gate in ea
h iteration,whi
h makes the algorithm more likely to 
onverge.When using experimental XFROG data, with sidebands as input, in order to
hara
terize femtose
ond high-order harmoni
s in the XUV domain, the blind-FROG does however not seem to work equally good. This problem 
an partiallybe over
ome by 
hara
terizing the gate using some other method, and then as-suming the gate to be known when performing the iterations. The 
al
ulationsof the harmoni
 
hirp rate has shown to give values whi
h are about one thirdof what is to be expe
ted, as well of what has been 
al
ulated using other pro-
edures. The reason for this is still unknown. The treatment of the data beforesending it into the algorithm, in order to �lter it from noise, et
, may give asmall error of the phase. Also, the spatial dependen
e of the pulses is 
om-pletely negle
ted in the model whi
h the algorithm is based on, whi
h may giverise to errors of signi�
ant magnitude. Modifying the algorithm with respe
t tothis might give better values; this has however not been done, 
onsidering thelimited time range of this proje
t.Simulated attose
ond pulse trains have also been retrieved using arti�
ial FROGCRAB data. Both spe
tral and temporal se
ond-order phase terms have beenreprodu
ed, using a for
ed gate fun
tion in the iteration. Even if the blind-FROG algorithm in this proje
t did not fully su

eed in retrieving both pulse52



and gate at the same time, it has however been done, see for instan
e Mairesse etal. [13℄. In order to improve and assure 
onvergen
e one might for instan
e im-prove the initial guesses of the program, or �nd a more suitable way of applyingthe additional spe
tral 
onstraint.Up until this date, using the PCGPA for 
hara
terizing pulse trains experimen-tally has not been done. The good results from the simulations made in thisproje
t shows however that it is very likely that this 
an be done, given goodexperimental 
onditions. Today, in order to 
hara
terize an attose
ond pulsetrain, one must 
ombine several di�erent measurement methods; for instan
eby XFROG one measures the harmoni
 
hirp, and by RABITT one obtains theatto 
hirp. In the near future, however, one might just be able to extra
t all thisinformation from a single s
an, for instan
e in the form of a FROG CRAB tra
e.
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Appendix AThe PCGP Algorithm
fun
tion [EGate,EPulse,e℄ = pulseRetrieval(IFrog,EGate,EPulse,ESpe
,NbrIter)% pulseRetrieval inverts the FROG tra
e using the power method.% The input is the tra
e - IFrog - the initial two guesses -% EGate and EPulse - a possible spe
trum of the pulse - ESpe
 -% and finally the number of iterations - NbrIter.% The output are the two retrieved pulses, together with the FROG error% fun
tion e.% Defining the speed of light
 = 299792458;% e = the FROG errore = zeros(1,NbrIter);% N = the number of elements of EPulseN = length(EPulse);% Esig = the FROG signalEsig = zeros(N,N);% The iteration loop startsfor k = 1:NbrIter%The additional spe
tral 
onstraint is appliedif k == 20EPulseSpe
 = fft(EPulse);EPulseSpe
 = sqrt(ESpe
).*EPulseSpe
/(max(abs(EPulseSpe
)));EPulse = ifft(EPulseSpe
);end% The outer produ
t form matrix is 
reated57



OP = EPulse.'*EGate;% Row manipulation of OPfor n = 2:NOP(n,:) = 
ir
shift(OP(n,:),[0,n-1℄);end% Column manipulation of OP; Esig in the time-time domain is 
reatedOP = fftshift(OP,2);Esig = fliplr(OP);% Fourier transforming Esig 
olumnwise; Esig is now i the time-frequen
y% domainEsig = fft(Esig);% Cal
ulating the FROG error fun
tion eIFrogTemp = Esig.*
onj(Esig);IFrogTemp = IFrogTemp/(max(max(abs(IFrogTemp))));IDiff = (IFrogExp-IFrog/(max(max(abs(IFrog))))).^2;e(k) = sqrt((sum(sum(IDiff)))/(N^2));% Repla
ing the magnitude of Esig with experimental dataZero = abs(Esig) == 0;Esig = Esig + Zero;Esig = sqrt(IFrog).*(Esig./(abs(Esig)));% Inverse Fourier transforming Esig ba
k to the time-time domainEsig = ifft(Esig);% Row and 
olumn manipulation Esig into its OP formEsig = fliplr(Esig);OP = fftshift(Esig,2);for n = 2: length(EInit)OP(n,:) = 
ir
shift(OP(n,:),[0,-(n-1)℄);end% Matrix-ve
tor multipli
ation in order to obtain the next guessesEPulse = (OP*(OP')*EPulse.').';EPulse = EPulse/(max(abs(EPulse)));EGate = ((OP')*OP*EGate.').';EGate = EGate/(max(abs(EGate)));end
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Appendix BThe Chirp Rate Cal
ulationProgramfun
tion [b℄ = 
hirpCal
(t,EPulse,start,stop)% The fun
tion 
hirpCal
 
al
ulates the linear 
hirp rate of a pulse, b.% The input is the time ve
tor t, the pulse EPulse, and the area within one% wants to polyfit the phase - start and stop.N = length(t);dt = t(2)-t(1);% Cal
ulates the argument of EPulse, and its derivativearg = unwrap(angle(EPulse));d_arg = unwrap(diff(arg));d_arg = [d_arg(1) d_arg℄;% Sets the limits in whi
h the polyfit 
ommand should workstart = N/2+round(start/dt);stop = N/2+round(stop/dt);% Fits the data of the derivative of the argument as a first-degree% polynomial, then extra
ts bpolyChirp = polyfit(t2(start:stop),d_arg(start:stop),1);b = polyChirp(1)/dt
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