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AbstratIn this work an algorithm for haraterization of ultrashort laser pulses in theXUV region has been developed. Measurement data are obtained by the methodof Frequeny Resolved Optial Gating (FROG), whih is based on spetrallyresolving the signal reeived from two pulses overlapping with eah other inan autoorrelation experiment. The experimental data � the FROG trae �is then used as the input in an algorithm based on the method of PrinipalComponent Generalized Projetions (PCGP); the output is both envelope andphase of the two pulses. The algorithm has been tested on both simulatedand real FROG traes. These traes have either been high-order harmonis offemtoseond duration or attoseond pulse trains. The results of these tests arepromising, showing that FROG tehniques ombined with the PCGP algorithmis a reliable method for haraterizing ultrashort laser pulses.
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Chapter 1IntrodutionOne of the major sienti� breakthroughs during the last entury was the in-vention of the laser in 1960. Ever sine, the laser has given rise to a number ofappliations whih have had a tremendous impat on both siene and soiety ingeneral. Lasers generate light with properties superior to that of other radiativesoures, be it in terms of oherene as well as intensity.A signi�ant part of the tehnologial development has been foused on thegeneration of shorter and shorter pulses of laser light. Today, the ahievementsin this area of physis have pushed the lower limit of duration to a few fem-toseonds (fs, 10−15 seonds) for pulses in the visible and near-infrared region.Using wavelengths in the extreme ultraviolet (XUV) to soft X-ray regime thefemtobarrier has reently been broken, allowing physiists to enter the attose-ond (as, 10−18 seonds) area of ultrashort laser tehnology. The struggle toahieve shorter and shorter pulses has mainly two reasons. First, these pulsesenable preise measurements of ultrafast phenomena. The development of thefemtoseond laser has for example provided hemists with a tool of inredibletemporal resolution, whih has given rise to a new sienti� branh known asfemtohemistry. In atoms, eletrons move around the atomi nuleus on theattoseond sale, and the newly generated and measured attoseond pulses willhopefully be used to probe the motion. Seond, with shorter pulses, higherpeak power an be ahieved. This enables high intensity physis at relativelylow pulse energies.When pushing the limits of pulse duration, it is also neessary to be able toharaterize the pulses one manages to produe. When entering the femtose-ond regime and below, pulse haraterization beomes somewhat problemati,whih is due to the fat that the response time of eletroni devies an bepushed down to the pioseond (ps, 10−12 seonds) regime, but no further.Other than that, the pulses produed in laboratories might be of frequenies inthe XUV regime or of shorter wavelengths. This introdues further di�ulties,sine suitable optial omponents are hard to �nd in that part of the spetrum.Intriate methods for pulse haraterization are therefore needed, and have been4



developed during the past years. This diploma projet has been foused on oneof these methods: Frequeny-Resolved Optial Gating (FROG) [1℄. Its primaryonern has been to onstrut an algorithm whih sueeds in reonstrutingultrashort pulses from measured FROG data, and espeially those obtained inthe XUV range orresponding to harmoni radiation of femtoseond and evenattoseond duration.This thesis will begin with a short summary of the behaviour of ultrashort laserpulses in general in haper 2, fousing on the generation and harateristisof harmoni XUV radiation. Chapter 3 will desribe the FROG tehnique indetail. The algorithm for pulse haraterization will be reviewed in Chapter 4,and �nally, results onneted to haraterization experiments will be presentedin Chapter 5.
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Chapter 2Desription and Generation ofShort Light PulsesBefore trying to develop a tehnique for measuring ultrashort laser pulses, oneobviously needs to know the basi theories of these pulses. Therefore this hap-ter will give a brief introdution on the mathematial desription of ultrashortlaser radiation, where important terms suh as 'hirp' and the time-bandwidthprodut will be explained. Further into the hapter, the theories of harmoniXUV radiation and the basi harateristis of suh pulses will be disussed.2.1 Desription of Short PulsesThis setion will onern the mathematial desription of short laser pulses.The omplex representation of the eletri �eld will be presented, as well asboth temporal and spetral aspets of the �eld. The importane of the phaseof the pulse and its temporal behaviour will also be disussed.2.1.1 Complex Representation of the Eletri FieldEven though the measured quantities whih originate from the eletri �eld
~E(~r, t) are real, it might often be onvenient to represent the �eld itself in aomplex form. Sine this projet mainly fouses on the temporal properties ofthe �eld, its spatial dependene will throughout this thesis be negleted; that is
~E(~r, t) = E(t).We now de�ne the omplex spetrum of E(t) as the Fourier transform of theeletri �eld [2℄:

Ẽ(ω) = F [E(t)] =

∫ +∞

−∞

E(t) · e−iωtdt = |Ẽ(ω)| · eiΦ(ω) (2.1)6



Here the tilde is used to denote the Fourier transform as a omplex parameter.
|Ẽ(ω)| is the spetral amplitude, and Φ(ω) is the phase of the spetrum. From
Ẽ(ω) we an reonstrut E(t) by applying the inverse Fourier transform:

E(t) = F−1
[

Ẽ(ω)
]

=
1

2π

∫ +∞

−∞

Ẽ(ω) · eiωtdω (2.2)The Fourier transform of the eletri �eld an be interpreted as a way of de-sribing the frequeny ontent of the �eld, or � orrespondingly � its energyontent. From equation 2.2 one an see that every eletri �eld E(t) an beonsidered as being a superposition of plane waves. Sine negative frequeniesin this ontext don't have any physial relevane, one would like a more suitableway of representing the �eld. This an be done with the introdution of theomplex eletri �eld:
Ẽ+(t) =

1

2π

∫ +∞

0

Ẽ(ω) · eiωtdω (2.3)Now the spetrum of this omplex �eld an be written as:
Ẽ+(ω) =

∫ +∞

−∞

Ẽ+(t) · e−iωtdt =

{

|Ẽ(ω)| · eiΦ(ω) ω ≥ 0
0 ω < 0

(2.4)The real eletri �eld an be expressed by the sum
E(t) = Ẽ+(t) + Ẽ−(t) (2.5)where Ẽ−(t) is for the negative frequenies what Ẽ+(t) is for the positive. Theomplex �eld an also be expressed as
Ẽ+(t) = A(t) · eiΓ(t) (2.6)where A(t) is an amplitude funtion, and eiΓ(t) is a phase term. From Poynt-ing's theorem [3℄ we an now dedue that the intensity of the eletri �eld I(t)is proportional to |Ẽ+(t)|2. The quantity whih is being measured with a spe-trometer S(ω) is alled the spetral intensity and is found to be proportional to

|Ẽ+(ω)|2.From now on, a more simple notation will be used: we drop the tilde and the plussign; E(t) represents the omplex eletri �eld and E(ω) refers to the omplexspetrum of E(t). Note that these two notations are refering to two di�erentfuntions, and not just a hange in variable denotation.2.1.2 The Phase FuntionA short laser pulse is often desribed by the form of equation 2.6. A(t) desribesthe temporal pro�le of the pulse � its envelope. In passively mode-loked lasersystems, the theoretial pulse shape is a seh funtion; in atively mode-lokedsystems the generated pulses are Gaussian. The shape may however in priniplebe of another more omplex form. 7



In most ases the spetrum of the �eld will be entered around a mean (angular)frequeny ω0, and the width of the spetrum will be small ompared to thisentral frequeny. Γ(t) will therefore be expanded as follows:
Γ(t) = ω0t + Φ(t) (2.7)

Φ(t) is alled the (temporal) phase and may or may not be time dependent. Tounderstand what is the in�uene of this phase on the eletri �eld, we expressthe instantaneous angular frequeny as [2℄:
ω(t) =

dΓ(t)

dt
= ω0 +

dΦ(t)

dt
(2.8)If Φ(t) is just an arbitrary onstant, the frequeny of the pulse will not bea�eted. If the phase is linearly dependent of t, a onstant frequeny shift willbe introdued to the spetrum and the expansion of Γ(t) will not be unique.With the introdution of a higher order dependene of Φ(t), the instantaneousfrequeny will be varied with time � the pulse is said to be 'hirped'. If d2φ(t)

d2t
< 0,the frequeny dereases with time and the pulse is said to be negatively hirped,and if the opposite applies, the frequeny inreases � the hirp is positive.

Figure 2.1: The eletri �eld of a positively hirped pulse, as a funtion of time.Note how the frequeny of the pulse inreases with time.2.1.3 Pulse Duration and BandwidthIn order to examine the orrespondane between the temporal and the spetraldomain, we will now study a pulse with a Gaussian envelope. The reason for thisis the fat that the Fourier transform of a Gaussian funtion also is Gaussian,and the problem beomes therefore relatively easy to handle. We an in generalwrite the eletri �eld of a Gaussian pulse as:
E(t) = e−at2 · ei(ω0t+ b

2 t2) (2.9)8



The eletri �eld of the pulse exhibits in this ase a quadrati phase behaviour,ontrolled by the parameter b/2. The frequeny will therefore vary linearlywith time as bt. The parameter a is used to de�ne the width of the pulse andis related to the full width at half maximum (FWHM) ∆τ by:
a =

2 ln 2

(∆τ)2
(2.10)Ignoring a saling onstant as well as a onstant phase term, the omplex spe-trum of the Gaussian pulse beomes [4℄:

E(ω) = e−
(ω−ω0)2

4(a−ib/2) = e
−

a(ω−ω0)2

4(a2+(b/2)2) · e−i
b(ω−ω0)2

8(a2+(b/2)2) (2.11)From this expression one an instantly make two onlusions: First, a quadratitemporal phase also gives rise to a quadrati dependeny of the spetral phase;seond, the width of the frequeny distribution is both dependent on the dura-tion of the pulse as well as on the hirp. The bandwidth ∆ω is de�ned as theFWHM of the spetral distribution:
∆ω =

√
8 ln 2

√

a(1 +
b2

4a2
) (2.12)From this expression it is seen that for a given pulse duration, the presene of alinear hirp requires a broader bandwidth. Correspondingly, for a given spetralwidth, a linear hirp auses the pulse to spread out more in time.By multiplying equation 2.10 with expression 2.12, one obtains the so alledtime-bandwidth produt:

∆ω∆τ = 2π · 0.441 ·
√

1 +
b2

4a2
≥ 2π · 0.441 (2.13)One an see that there is a minimum value for this produt. When equality inequation 2.13 holds, the pulse is the shortest possible, given the spetral band-width. This ours when the pulse exhibits no frequeny hirp, and it is thensaid to be Fourier limited.The properties of the time-bandwidth produt holds for all pulse shapes [2℄, andan be written in a more general form as:

∆ω∆τ ≥ 2πcB (2.14)The value of cB will be di�erent depending on whih pulse struture the produtrefers to. When omparing equation 2.14 with equation 2.13, one identi�es thevalue of cB as being 0.441 for a Gaussian pulse, while the orresponding valueis 0.315 when onsidering the hyperboli seant envelope [5℄.2.2 High-Order HarmonisHigh-order harmoni generation (HHG) is a nonlinear proess taking plae whena strong laser �eld interats with atoms, for instane rare gases. Sine the inten-sities needed for the proess to our are very high, only lasers whih are able9



Figure 2.2: Plateau of high-order harmonis, extending from the UV into thesoft X-ray regime. In the beginning of the spetrum are the low-order harmonis,and at the far end, the frequeny omb experienes a sudden ut-o�.to produe pulses with very short duration an be used to study this phenom-enon. Due to the tehnique of short pulse generation by mode-loking, HHGwas observed for the �rst time in 1987, and in the early 1990's, hirped pulseampli�ation made it possible to use table-top high-power lasers in order toroutinely study the phenomenon.The high harmoni radiation produed by an ultrashort, intense laser pulseonsists of a frequeny omb spanning a broad bandwidth [6℄, from the UVdown to the soft X-ray region, as an be seen in �gure 2.2. The �rst few peaksin the �gure represents the low-order harmonis. Eah tooth of the omb is anodd multiple of the frequeny of the generating laser pulse, and is separatedfrom its neighbours by twie this fundamental frequeny. On the one hand,every tooth orresponds to a short femtoseond pulse of XUV radiation. Onthe other hand, due to the large bandwidth, HHG o�ers an opportunity tosuperimpose all the harmonis, thereby generating XUV bursts of attoseondduration.2.2.1 Experimental Setup for High-Order Harmoni Gen-erationAn outline of the setup for HHG at the Atomi Physis Division in Lund isshown in �gure 2.3. An infrared (800 nm) beam of laser pulses enters the setupat a rate of 1 kHz. The pulses are foused into a gas, whih usually is argon10



Figure 2.3: Experimental setup for high-order harmoni and attoseond pulsetrain generation. After the generation stage there is a �nal stage for harater-ization of the signal generated.or neon, and is being pumped into the system in a tube with two small holesdrilled by the laser, inserted into a vauum hamber. When the intensity of theinfrared beam is of the order of 1014�1015 W/m2, high-order harmonis will begenerated [6℄.The next step in the setup is by spetally and spatially �ltering the harmonisusing these for attoseond pulse train generation. These pulses are thereafter inthe �nal stage, being measured by ross-orrelating with the initial beam of IRpulses. These stages will be more arefully explained further into this thesis.2.2.2 The Three-Step ModelThe rapid drop in amplitude of the �rst low-order harmonis (whih is seen in�gure 2.2) an be predited by perturbation theory. This is however not thease for the high-order harmonis, with approximately onstant amplitude overa large energy range. The intensity of the laser �eld is so strong that it no longeran be regarded as a small perturbation to the system. We an however givea simple piture of the underlying physis, based upon semi-lassial onsider-ations. This piture is the so alled three-step model (TSM) [7℄, whih is basedon the assumption that it is possible for the eletron wavepaket to tunnel outinto the ontinuum, when the Coulomb potential of the atom is highly deformedby the �eld. The three steps are shown in �gure 2.4, and are as follows:1. Through quantum mehanial tunneling, the eletron is moved into the11



Figure 2.4: Visualisation of TSM: (i) The eletron wavepaket tunnels throughthe deformed Coulomb potential of the atom, out into the ontinuum. (ii) Itis aelerated in the ontinuum by the laser �eld. (iii) It returns to the atom,sending out its exess energy in the form of a photon.ontinuum, with zero kineti energy.2. The eletron is now regarded as a lassial partile, and is aelerated bythe external laser �eld, gaining kineti energy.3. Depending on the phase of the laser �eld at the time of release in theontinuum, the eletron may ome bak to the atom. Doing so, the energygained in the ontinuum is released in the form of a high frequeny photon� a high harmoni.This high harmoni generation proess is periodi with a period of TL/2, where
TL is the period of the driving laser �eld. This leads to generation of harmoniswhose frequenies are only odd multiples of the driving �eld. The harmoniswill therefore, if the driving frequeny is ω0, be separated by a frequeny of2ω0. The energy of eah harmoni is dependent on the time the eletron wavepaket spends in the ontinuum, whih in its turn is deided by the phase of thelaser �eld at the time the eletron tunnels out of the atomi potential. If theeletron gets out before the �eld has reahed its maximum (ω0t = π

2 ), it willnever reombine with the atom. Eletrons whih tunnel through at a later stagewill however return to the atom, emitting high harmoni radiation. When theeletron is released into the ontinuum at approximatly ω0t = 1.19 · π
2 , it willgain the highest energy possible Wmax = 3.2Up, where Up is de�ned as:

Up =
e2E2

4mω2
0

(2.15)Here m is the mass of the eletron in rest, and Up, whih is alled the ponder-motive energy, is being interpreted as the average kineti energy the eletron12



aquires in the ontinuum. Hene, the ut-o� of the harmoni plateau oursat the energy
W = Ip + 3.2Up (2.16)where Ip is the ionisation energy of the atom.

Figure 2.5: Red: The eletri �eld of the fundamental laser �eld. Blue: Eletrontrajetories originating from tunnel ionisation due to the fundamental �eld.The eletron while aelererated by the laser �eld, an be regarded as moving inthe ontinuum along ertain trajetories, as depited in �gure 2.5. Eah traje-tory is haraterized by a ertain return time for the eletron. For every possibleharmoni energy there are several di�erent return times and trajetories, whihis shown in �gure 2.6. The �rst two are alled the 'short' respetively the 'long'trajetory. This is valid for every return energy, exept for the maximum energy,for whih there is only one.2.2.3 Time Dependent Shrödinger Equation Treatmentof High-Order Harmoni GenerationWhile the TSM gives a good qualitative piture of the harmoni generationproess, it is too approximative to give good quantitative preditions. A fullquantum mehanial formulation of the problem is therefore desired. This isdone by solving the time-dependent Shrödinger equation (TDSE) [7℄. Twoinitial assumptions are made:1. Only one eletron ontributes to the proess. Any interation terms be-tween the eletrons in the atom are therefore left out.2. The intensity of the external laser �eld is very strong, whih means that thephoton density is very high. Hene, we an use a semi-lassial approah,where the laser �eld is treated lassially as a ontinuous quantity.13



Figure 2.6: Return energy and exursion time for the returning eletron as afuntion of time of tunneling.The TDSE for this spei� problem is then, in atomi units (m = e = h̄ = 1):
i
∂

∂t
|Ψ(~r, t)〉 =

[

−1

2
∇2 + V (~r) + W (~r, t)

]

|Ψ(~r, t)〉 (2.17)Here V (~r) is the atomi potential, W (~r, t) is the term onneted to the laser �eldand Ψ(~r, t) is the wave funtion for the eletron. A number of approximationsonerning the laser �eld is now being made: It is regarded as being uniformaross the atom, i.e. the wavelength is muh larger than the width of the atom;ontributions from the magneti dipole and eletri quadrupoles are negleted;the laser �eld is linearly polarised in the x-direetion. One an now write thelaser �eld term as:
W (x, t) = −E0 cos(ω0t)x (2.18)From the solution of equation 2.17 one an alulate the indued dipole moment,whih is related to the separation of the harges in the atom:

D(~r, t) = 〈Ψ(~r, t)|x|Ψ(~r, t)〉 (2.19)2.2.4 Strong Field ApproximationIn order to perform the alulation of equation 2.19, one an apply the strong-�eld approximation [8℄. The result is in the end a deomposition of the dipolemoment, eah term Dq orresponding to one spei� harmoni frequeny, qω0,where q equals an odd integer:
Dq =

∑

j

Aq
j · eiΦq

j (2.20)14



The summation above is made over all di�erent eletron trajetories, labled j,orresponding to one given harmoni energy. In priniple the number of tra-jetories is in�nite, but in pratie one an redue the sum to just over the�rst few. Aq
j represents the strength of eah dipole omponent, and Φq

j eahomponent's phase.The radiation �eld Eq(t) orresponding to eah harmoni an now be alulated:
Eq(t) = Dqe

iqω0t =
∑

j

Aq
j · ei(qω0t+Φq

j
) (2.21)2.2.5 Harmoni ChirpWhen making harmoni pulses in the laboratory, one wants to make them asshort as possible. Having the disussion in setion 2.1.3 in mind, one thus hasto suppress the hirp of the harmonis, or else the pulse � given a spetralbandwidth � will be broadened. Before one an minimize the harmoni hirp,one must however know its origin and harateristis, whih is what will bedisussed in the following paragraphs.Given a spei� harmoni order q and a given trajetory j, the phase of eahharmoni omponent will be dependent on the intensity of the driving laser�eld [9℄. The intensity dependene of the dipole phase leads to a hirp of theharmoni pulse. The harmoni is generated with a laser pulse for whih theintensity varies in time, I(t). This means that the dipole phase, and hene thephase of the harmoni generated also depends on time:

Γ(t) = qω0t + αI(t) (2.22)The instantaneous frequeny is now written as:
ω(t) = qω0 + α

∂I(t)

∂t
(2.23)Comparing equation 2.23 with equation 2.8 one an identify α as α = ∂Φ/∂I.We now look at the linear hirp whih is indued by the intensity dependene.

Γ(t) is now written as Γ(t) = qω0t + blt
2/2. The linear hirp rate bl is thengiven by the seond derivative of Γ(t), whih redues to the seond derivativeof Φ(t). bl an therefore be written as:

bl =
∂2Φ

∂t2
=

∂

∂t

(

∂I

∂t
· ∂Φ

∂t

)

=
∂Φ

∂I

∂2I

∂t2
+

∂2Φ

∂I2

(

∂I

∂t

)2 (2.24)One now assumes a Gaussian pulse envelope with the top intensity I0 and theFWHM denoted as ∆τ . The �rst and seond time derivatives an then bealulated as:
∂I

dt
= − 8 ln 2

(∆τ)2
I0t · e−

4 ln 2

(∆τ)2
t2 (2.25)15



∂2I

dt2
=

[

− 8 ln 2

(∆τ)2
I0 +

(

8 ln 2

(∆τ)2

)2

I0t
2

]

· e−
4 ln 2
(∆τ)2

t2 (2.26)Assuming harmonis being generated at the top of the pulse, we an set t = 0and by ombining equation 2.24 with equations 2.26 and 2.25 we get:
bl ≈ −8 ln(2)

I0

(∆τ)2
∂Φ

∂I
(2.27)For harmonis it is found that this so alled harmoni hirp as good as alwaysis negative. The magnitude of the hirp will inrease with ∂Φ/∂I and the peaklaser intensity I0. It is inversely proportional to the square of the fundamentalpulse width ∆τ . Also, the harmoni hirp would be zero if the envelope of thefundamental was onstant.If the fundamental arries a hirp bfund, it will be propagated in the generatedharmonis as qbfund. The total harmoni hirp b then beomes:

b = qbfund + bl = qbfund − 8 ln(2)
I0

(∆τ)2
∂Φ

∂I
(2.28)This means that while the �rst term in equation 2.28 might either be posi-tive or negative, depending on the sign of the fundamental hirp, the seondterm almost always assumes negative values. Using this insight one ould inpriniple onstrut a harmoni pulse without a hirp, through induing a smallpositive hirp on the fundamental, ompensating the hirp due do the harmonigeneration proess itself.2.3 Attoseond Pulse GenerationThe bandwidth of the high harmoni plateau makes it in priniple possible toreate pulses down to a few tens of attoseonds [10℄. In order to suessfullyprodue short attoseond pulses, optimisation of the amplitude and phase of thegenerated harmonis must be ahieved. This setion will disuss experimentalaspets of attoseond pulse generation, as well as the phase behaviour neededfor obtaining short attoseond pulses.2.3.1 Experimental SetupThe basi setup for generation of attoseond pulse trains is shown in �gure 2.3.After HHG, the harmoni radiation is made to propagate through an 600 nm-thik aluminium �lter. The aluminium spetrally �lters out all the radiationwith frequenies lower than about the 13th harmoni order. By its group velo-ity dispersion, the �lter also mode loks the harmonis transmitted. Harmonisoriginating from several trajetories are now onstituting the radiation. Thisis not desireable, sine there (as one an understand from �gure 2.6) is a bigphase di�erene between di�erent trajetories. Fortunately, the radiation fromthe long trajetory is onsiderably more divergent than the radiation originat-ing from the short trajetoy. By spatially �ltering the light by making it to16



propagate through a small hole, one thereby obtains harmonis only from theshort trajetory, and the pulse duration is thereby redued further.2.3.2 Mathematial DesriptionSuperimposing the high-order harmonis in a frequeny omb, from the �rst qito the last qf , and making use of equation 2.21, results in the eletri �eld E(t):
E(t) =

qf
∑

q=qi

Eq(t) =

qf
∑

q=qi

Aq · ei(qω0t+Φq) (2.29)If Φq = 0 and qi = 13, qf = 19, the intensity distribution obtained will have

Figure 2.7: Attoseond pulse train arising from the superposition of harmonis13 to 19.the appearane of �gure 2.7 � a train of pulses of a few hundreds attoseondswidth, separated by half the fundamental laser period, and spanning over aninterval of a few tens of femtoseonds.2.3.3 Attoseond ChirpEven if one manages to eliminate the harmoni hirp, Φq may still be equal toa funtion whih is not equal to zero � the so alled 'atto hirp' [9℄. While theharmoni hirp is due to the intensity variation of the fundamental laser �eld,the atto hirp would be present even if the fundamental intensity was �xed. Thisis due to the fat that di�erent harmoni orders orrespond to di�erent ele-tron trajetories and thus di�erent emission times. While the harmoni hirpis an intrinsi hirp of eah harmoni, the atto hirp thus is the hirp betweenharmonis. The time sale of the two di�erent kinds of hirp are thus di�erent;17



the atto hirp takes plae within the time of one laser yle, whereas the femtohirp is indued over the whole laser envelope. This may be depited as is donein �gure 2.8. Like the harmoni hirp may broaden the harmoni pulse, theatto hirp broadens the pulses in the attoseond train. It is thus important tosurpress the atto hirp if intending to make as short pulses as possible.

Figure 2.8: Above: Harmoni pulse in the femtoseond regime, exhibiting aphase modulation proportional to t2, giving rise to a harmoni hirp. Below:Train of pulses in the attoseond regime, exhibiting a phase modulation propor-tional to q2, giving rise to an atto hirp.The disussion above an be expressed in a more mathematial way. Considera linear dependene of the phase with respet to q, Φq = cq. This will give riseto a pulse train on the form of:
E(t) =

qf
∑

q=qi

Aq · ei(qω0t+cq) =

qf
∑

q=qi

Aq · ei(qω0(t+te)) (2.30)The onstant  has been deomposed as c = ω0te, where te, when onsideringequation 2.30, an be interpreted as the so alled harmoni emission time [11℄.18



te may in general be expressed as:
tqe =

∂Φq

∂ω
=

1

ω0

∂Φq

∂q
(2.31)In the ase where Φq depends linearly on q, the emission time is onstant for allharmoni orders, and no atto hirp will be present. If however Φq ∝ q2, te willvary linearly with q, and eah pulse in the pulse train will arry a small hirp

batto, alulated as [9℄:
batto =

∂2Φq/∂q2

(∂Φq/∂q2)
2
+ 16 (ln 2)

2
/ (∆ω)

4 (2.32)
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Chapter 3
Measurement of Short Pulses
As laser pulses shrink in length, the ability to measure them beomes inreas-ingly important. There are a number of reasons for this. First, preise knowledgeof the pulse properties is neessary for verifying theoretial models for pulse re-ation. Seond, in order to make even shorter pulses, one must understand thedistortions whih limit the pulse duration. Third, when performing measure-ments using ultrashort pulses, their outome might depend heavily on the pulsestruture. In addition to this, it is always important knowing at least the pulseduration, in order to determine the time resolution of the experiment performed.As already stated in the introdution of this thesis, measuring ultrashort lightpulses introdues a not negligible amount of di�ulties. These originate fromthe duration of the pulse as well as its frequeny, if it is high enough. However,these are obstales whih more or less an be overome. A number of teh-niques for ultrashort pulse haraterization has been developed during the pastdeades, and this hapter will disuss some of these. Emphasis will be laid uponFROG [1℄, and its modi�ations XFROG [12℄ and FROG CRAB [13℄.

Figure 3.1: Basi outline of setup for FROG measurement.20



3.1 Frequeny-Resolved Optial GatingThe priniple of FROG was �rst presented by Kane and Trebino in 1993 [1℄.This is a tehnique whih operate, not in the time or frequeny domain, but inthe 'time-frequeny domain'. By introduing a nonlinear interation betweenthe pulse E one is interested in measuring, and a known or unknown 'gate' pulse
G, one is able to 'slie' the pulse in time in order to study its spetral ontent asa funtion of time [14℄. FROG an be regarded as a tehnique whih spetrallyresolves the signal pulse in any type of autoorrelation experiment performedin a nonlinear medium. From this time-frequeny signal, one an in the end,by a so alled FROG algorithm, yield the envelope and phase of the ultrashortpulses one intends to haraterize.3.1.1 Priniple of FROGThe priniple of an ordinary FROG setup is shown in �gure 3.1. An inidentlight pulse E(t) is split in two parts, whih are made to propagate along di�er-ent paths. Along the way, one of the beams is delayed in relation to the other.This delay, denoted as τ , is varied during the measurement proess simply bymoving the mirror whih the beam is re�eted by along the way of propagation.The struture of the two beams may also be manipulated in di�erent ways alongthe way, if desirable. In for instane Polarization-Gate (PG) FROG, one of thepulses is sent through rossed polarizers, and the other through a half-wave platein order to ahieve a ±45 deg linear polarization between the two pulses [14℄.After the delay and manipulation stages, the two pulses are reombined in anonlinear-optial medium (NOM) of some kind, for instane in a nonlinear rys-tal. The signal Esig originating from the nonlinear proess in the medium willbe in the form of:

Esig(t, τ) = E(t) · f [E(t − τ)] = E(t) · G(t − τ) (3.1)
f is a funtion whih is de�ned by the manipulation stage as well as the nonlin-ear proess in the medium of reombination. This funtion an be regarded asating on the delayed pulse, and the resulting eletri �eld is denoted as G(t−τ)whih is alled the gate. The gate is the parameter whih distinguishes all thedi�erent variations of the FROG tehnique.The �nal stage of the proedure is to measure the spetral intensity S(ω) of
Esig(t, τ) for eah delay time step. This so alled spetrogram is a two-variabledependent funtion, denoted IFROG(ω, τ), whih is generally refered to as theFROG trae and written as [14℄:

IFROG(ω, τ) = F [Esig(t, τ)] =

∣

∣

∣

∣

∫ +∞

−∞

E(t) · G(t − τ)e−iωtdt

∣

∣

∣

∣

2 (3.2)The appearane of IFROG will be di�erent depending on whih type of FROG(i.e. whih type of gate) is being used. An example of a PG FROG trae, whih21



orresponds to G(t − τ) = |E(t − τ)|2, an be seen in �gure 3.2.In a typial FROG measurement, the gate should preferably be shorter than thepulse one intends to measure. However, sine the pulses one produes in the labmay be the shortest ones obtainable, this is not always possible. Furthermore,the gate shouldn't be in�nitely short, sine this would only yield the temporalintensity of the pulse. Correspondingly, if the gate would be a ontinuous wave,this would just yield the spetral intensity.

Figure 3.2: IFROG(ω, τ) for PG FROG. The y-axis orresponds to the angularfrequeny ω of Esig(t, τ), and the x-axis to the delay τ .3.1.2 Phase RetrievalFrom IFROG, one's desire is to retrieve both the envelope and phase funtionof the unknown pulse. In the beginning of FROG, using the pulse to gate itselfin a spetrogram ompliated the problem somewhat, sine all the retrievalalgorithms required knowledge of the gate funtion. The solution is to rewritethe expression in equation 3.2 as a two-dimensional Fourier transform [14℄:
IFROG =

∣

∣

∣

∣

∫ +∞

−∞

Esig(t, τ)e−iωtdt

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∫ +∞

−∞

Êsig(t, Ω)e−iωt−iΩτ dtdΩ

∣

∣

∣

∣

2 (3.3)This expression an be veri�ed by simple doing the integration with respet to
Ω, whih then yields equation 3.2. Here, one an see that the measured quantityis the squared magnitude of the 2D Fourier transform of Êsig(t, Ω). One Êsig isretrieved, one an simply obain E(t), sine E(t) = Êsig(t, Ω = 0), if negleting22



a omplex multipliative onstant k, whih is of little interest:
Êsig(t, Ω) =

1

2π

∫ +∞

−∞

Esig(t, τ) · eiΩτdτ =
E(t)

2π

∫ +∞

−∞

G(t − τ) · eiΩτdτ

Êsig(t, Ω = 0) =
E(t)

2π

∫ +∞

−∞

G(t − τ)dτ = k · E(t) (3.4)The integral on the seond row is time independent, whih one easy realise byperforming a simple hange of variables (τ ′ → t − τ). Sine the spetrogrammeasurement only yields the magnitude of the 2D Fourier transform of the de-sired quantity, the problem is then to �nd the phase of the Fourier transform of
Êsig . This is known as the 2D phase-retrieval problem.Quite unintuitively, this is a solved problem when ertain additional informationregarding Êsig is available [14℄, suh as it has �nite support (that is, is zero out-side a �nite range of t and Ω). This is in ontrast to the 1D equivalent, in whihit is impossible to �nd one funtion of one variable whose Fourier transform-magnitude is known, despite additional information. Instead, the number ofpossible funtions will be in�nite. In ultrashort-pulse measurement, the re-quired additional information onsists of the knowledge of the mathematialform of the signal, given by the physis behind the manipulation stage and thenonlinear proess used. For instane, in PG FROG, Esig(t, τ) = E(t)|E(t−τ)|2.This information turns out to, together with the Fourier magnitude, be su�-ient for pulse reonstrution, and the problem is solved. Further, in hapter4, a detailed desription of the implementation of this solution into a workingalgorithm, will be disussed.

Figure 3.3: Photoeletron signal due to a high-order harmoni as well as stim-ulated absorption of an IR photon. 23



3.2 Cross-Correlation Frequeny-Resolved Opti-al GatingAlthough the time-frequeny haraterization of visible and infrared pulses byFROG is of no laborious task, it is nontrivial to extend it in to the XUV region.This is due to the di�ulty of induing nonlinear proesses in this region. Teh-niques for aquiring FROG traes other than using a nonlinear optial mediummust be used. The solution to this problem is to make use of the photoeletronsignal due to ross orrelation of harmonis and an infrared probe pulse in a gasmedium. When the two pulses overlap in time, sidebands appear in the photo-eletron spetrum [15℄, as seen in �gure 3.3. This orresponds to the absorptionof one harmoni photon together with aborption or emission of one or more IRphotons.The di�erene between XFROG and the 'ordinary' FROG method is the waythe gate is onstruted. In FROG G(t) = f [E(t)], while XFROG demands nosuh relation between G and E. G is instead given by:
G(t) = Λ(t)(eiωGt + e−iωGt) (3.5)

Λ(t) simply denotes the envelope of the gate, while ωG is the entral frequenyof the gate pulse. The +ωG term represents the sideband due to absorption,and −ωG is the emission term. ωG is the entral frequeny of the gate pulse.
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Figure 3.4: Setup for XFROG.An example of an XFROG setup is shown in �gure 3.4. The IR pulse in fousedinto a nozzle providing the noble gas used for HHG. When produed, the har-monis are made to propagate through an aluminium foil and a small aperture.This yields a spetrally as well as spatially �ltered signal. The �ltered harmonisand the IR probe are thereafter ross-orrelated, ionising a gas (usually argonor neon), and the photoeletron spetrum is registered by a Magneti BottleSpetrometer (MBES).An XFROG trae provides a good, intuitive piture of the pulse harateristis.From the length of the sideband, one an yield a resonably good understandingof the duration of the harmoni pulse. If the harmoni exhibits a hirp, this24



will a�et the sideband by tilting it somewhat. This is due to the fat thatthe energy variation due to the hirp of the harmoni, while the IR energy isuna�eted, leads to a variation in energy of the sideband signal, as depited in�gure 3.5.

Figure 3.5: Negative hirp leading to a tilt in the sideband signal
3.3 Reonstrution of Attoseond Beating by In-terferene of Two-photon TransitionsWhile using the tilt of XFROG traes in order to dedue the harmoni hirp,the atto hirp between the harmonis an't be measured by this line of a-tion. Instead, one an make use of sideband generation by ross-orrelatingthe harmonis with the weak fundamental IR pulse. This method is alled Re-onstrution of Attoseond Beating by Interferene of Two-photon Transitions(RABITT) [16℄, and is illustrated in �gure 3.6. Sine the distane betweenonseutive harmonis is 2ω0, and the frequeny of the IR pulse is ω0, one side-band originating from stimulated absorption, and one from emission will overlapeah other. This gives rise to interferene e�ets, like the ones one aquires inYoung's double slit experiment. Using seond order pertubation theory, thesideband intensity IS between harmonis q and q+2 is found to be proportionalto a osillating term as:

IS ∝ cos(∆Φq+1 − 2ωτ) (3.6)
∆Φq+1 is used to denote the phase di�erene between the neighbouring har-monis: Φq −Φq+2. The RABITT experiment onsists of studying the sidebandsignal as a funtion of the harmoni order q over a large range of harmoniorders. Thereby, one is able to determine the hange of ∆Φq+1 with q, whih infat is a disretisized form of the seond order spetral phase ∂2Φ/∂q2. Fromthis and equation 2.32 the atto hirp an �nally be alulated.25



Figure 3.6: Two sidebands originating from two onseutive harmonis interfer-ing with eah other, giving rise to a RABITT signal.3.4 Frequeny Resolved Optial Gating for Com-plete Reonstrution of Attoseond BurstsIt is worth pointing out that while in many aspets similar, RABITT is nota FROG method. The point of RABITT is to introdue an interation be-tween onseutive harmonis, while FROG relies on the interation between theharmonis and the gate pulse. It is however in priniple possible to apply aFROG pulse retrieval algorithm to RABITT data, in order to fully haraterizeattoseond pulse trains. In this ase, the san must however be omplete andover the whole sidebands, otherwise the FROG algorithm will not have enoughinformation for omplete pulse reonstrution. Also, there is no longer any re-strition on the strength of the IR pulse, sine we no longer are speaking aboutany perturbative method, like RABITT is. This method is alled FrequenyResolved Optial Gating for Complete Reonstrution of Attoseond Burst, orabbreviated: FROG CRAB [13℄, [17℄. An example of a omplete (simulated)FROG CRAB trae is shown in �gure 3.7.
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Figure 3.7: Simulated FROG CRAB trae, onsisting of odd harmonis 17-27.
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Chapter 4The FROG Pulse RetrievalAlgorithmEven though rough information on the hirp and the duration of harmonis andattoseond pulses may be obtained by using methods like XFROG and RABITT,a more omplete determination of the pulse envelope and phase behaviour isdesirable. This hapter will desribe the so alled FROG pulse retrieval algo-rithms, from whih FROG data is used to fully haraterize ultrashort pulsesby an iterative proedure. Emphasis will be laid on the Prinipal ComponentGeneralized Projetions Algorithm, PCGPA [18℄.

Figure 4.1: The ideal operation of a FROG inversion algorithm.4.1 General FROG Algorithm ShemeThe purpose of the FROG algorithm is to alulate the pulse (or pulses) whihgives rise to the FROG trae one has aquired in experiments, IFROG. As seen28



from equation 3.3, IFROG is a real quantity from whih no phase informa-tion an be extrated, and additional information is therefore needed. In thease of FROG, this omes from the form of Esig(t, τ), whih is expressed as
E(t) · G(t − τ).The ideal operation of a FROG inversion algorithm is shown in �gure 4.1. Onestarts with a suitable guess, whih for instane may be random noise or a sim-ple Gaussian. The �nal solution must satisfy two sets of onstraints: 1) Theintensity onstraint, whih orresponds to the set ontaining all funtions whihmay build up IFROG and, 2) The physial onstraint, whose set ontains allthe funtions whih an be deomposed as E · G. The aim is now to make thealgorithm to alternate between the two onstraints, onverging to the solution,whih � if there is one � is found at the point where the two sets interset [14℄. Itshould be noted that the piture in �gure 4.1 merely is a rough sketh of the realinterative proess. First, the sets are not two-dimensional, and the algorithmisheme takes instead plae in a multidimensional funtional spae. Seond, asan be seen in the piture, the sets are not neessarily onvex. This means thatunique onvergene annot be guaranteed. This may however in most praialases not be of any signi�ant problem, sine satisfying robustness of the algo-rithm an be ahieved anyway.The FROG error ǫFROG is de�ned as

ǫFROG =

√

√

√

√

1

N2

N
∑

i=1

N
∑

j=1

[

I
(k)
FROG(τi, ωj) − IFROG(τi, ωj)

]2 (4.1)where N is the size of the N × N matrix whih builds up the FROG trae and
(k) denotes the number of iterations made. ǫFROG thereby represents the rmserror per element of the spetrogram. It is obviously essential to design the twoonstraint steps so that the FROG error is dereased for eah iteration.

Figure 4.2: General sheme for a FROG inversion algorithm.A general algorithmi sheme for alternation between the two set of onstraintsis shown in �gure 4.2. One starts with an initial guess of the pulse (or pulses)29



and from this guess generates a 2D FROG signal, �rst in the 'time-time domain'as Esig(t, τ), and then by a 1D Fourier transformation in the time-frequenydomain as Esig(ω, τ). After this, the intensity onstraint is applied, whih isdone by simply replaing the magnitude of the FROG trae generated by theguess with the experimental FROG trae. Mathematially this is written as:
Enew

sig (ω, τ) =
√

IFROG(ω, τ) · Esig(ω, τ)

|Esig(ω, τ)| (4.2)The next step is to invert the new FROG trae bak to the time-time domain.Afterwards a new guess is generated and sent bak into the beginning of thenext iteration yle. This �nal step is meant to adjust the guess to the seond,physial, onstraint, and is basially what distinguishes all the di�erent nowexisting FROG algorithms from eah other.Before moving on to the desription of the PCGPA, a small disussion regardingthe earlier FROG pulse retrieval algorithms will follow.4.1.1 The Vanilla AlgorithmThe original FROG inversion algorithm was the so alled 'vanilla' or 'basi'algorithm [1℄. It follows � like all the other FROG algorithms � the generaloutline in �gure 4.2. Here the �nal step of eah iteration is an integration of
Esig(t, τ) with respet to τ :
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Esig(t, τ)dτ =
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E(t)G(t − τ)dτ = E(t) ·
∫ +∞

−∞

G(t − τ)dτ (4.3)By a simple hange of variables (τ ′ → t− τ) one an see that the integration re-dues to C ·E(t), where C is a t-independent onstant. Thus the next guess E(t)is easily obtained from Esig(t, τ). There are however signi�ant problems usingthis method. While fast, the algorithm stagnates easily, resulting in high FROGerror solutions. Also, the vanilla algorithm fails to invert omplex funtions likedouble pulses. In an attempt to overome these problems, this algorithm wasused to provide an initial guess to a brute fore minimization of the rms er-ror between the retrieved and the experimental FROG trae [19℄. While thismethod is robust and in most ases do onverge, it is however very slow.4.1.2 The Generalized Projetions AlgorithmWith the method of generalized projetions (GP), the FROG inversion algo-rithm made a big advane. The method originates from image analysis prob-lems, but was in 1994 found to also be appliable to the FROG problem [20℄.The solution is now found by making 'projetions,' with geometrial analoguesshown in �gure 4.1. When projeting eah guess onto the two sets, one ensuresthat the 'distane' between the guess and its projetion is the shortest possible.A geometrial analogue would be to draw a line from the point outside the set30



(representing the guess) to the border of the set so that the angle between lineand border is right. The problem is now to �nd out whih mathematial oper-ations do orrespond to projetions with this property.When dealing with the intensity onstraint, it is found that simply replaingthe magnitude of the FROG trae generated by the guess with the measuredmagnitude (as done in equation 4.2) is a generalized projetion. When it omesto the seond, physial, onstraint, the proedure gets somewhat more triky,though. The task is now shown to minimize the funtional distane Z, de�nedby
Z =

N
∑

i=1

N
∑

j=1

∣

∣

∣E
(k)
sig (ti, τj) − E

(k+1)
sig (ti, τj)

∣

∣

∣

2 (4.4)where E
(k)
sig is the FROG signal alulated in the earlier steps of iteration k,and E

(k+1)
sig is the guess for the next yle [20℄. Taking into aount the pos-sibility of deomposing the signal as a produt between pulse and gate gives

E
(k+1)
sig (ti, τj) = E(k+1)(ti) · f

[

E(k+1)(ti − τj)
]. In order to minimize Z onethus varies E(k+1)(ti) until a minimum is found. In order to perform this mini-mization one therefore omputes the diretion of steepest desent: the negativeof the gradient of Z with respet to the �eld E(k)(ti). In pratie, one mustompute the derivative of Z with respet to eah time-point in the omplex �eld.The advantages of the GPA with respet to the earlier algorithms are signif-iant. First, it basially guarantees that the error always dereases for eahiteration. Seond, it is very robust. Third, it is muh faster than the brutefore minimization tehnique. And fourth, it onverges very well in presene ofnoise [14℄. There are however, as we shall see in the next setion, algorithms ofeven better performane and properties.4.2 The Prinipal Components Generalized Pro-jetions AlgorithmWhile the introdution of GPA proved to be a big step for the FROG inversionalgorithm, an even larger step was made in 1997 with the introdution of thePrinipal Components Generalized Projetions Algorithm (PCGPA) [18℄. Themain advantages ompared to GPA are two: 1) The time-onsuming and some-what ompliated minimization step is replaed by a simple multipliation ofmatries, reduing the iteration time to a level whih in some ases enables realtime inversion of FROG traes, and 2) FROG traes onsisting of pulse andgate funtions independent of eah other may be suessfully inverted, whereboth pulse and gate is retrieved. Suh an algorithm is refered to as a blind-FROG inversion algorithm, sine it makes no a priori assumptions about therelationships between the pulse and the gate.31



4.2.1 The Outer Produt Form MatrixThe main element of PCGPA is the so alled Outer Produt Form Matrix (here-after abbreviated as the OP matrix). This matrix is easily onstruted by twovetors � one representing the unknown pulse and the other one the gate � andthe PCGPA is based on ertain properties spei� for this OP matrix.In order to make an OP matrix one �rst has to de�ne the pulse and the gatevetor. Suppose E(t) and G(t) being sampled at given values of t with a onstantspaing of ∆t. Then E(t) and G(t) an be thought of as vetors of length Nwhose elements sample E and G at disrete times:
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= [G1, . . . , GN ] (4.6)The OP matrix O is now de�ned as [18℄:
O =











E1G1 E1G2 . . . E1GN

E2G1 E2G2 . . . E2GN... ... . . . ...
ENG1 ENG2 . . . ENGN











(4.7)This matrix ontains all the points required to onstrut the time domain FROGtrae beause it ontains all the interations between the pulse and the gate foreah disrete time delays. (For instane, the main diagonal of O above aneasily be identi�ed as being the FROG signal at τ = 0.) The OP an thereforebe transformed into the FROG trae, and the trae an in the same manner betransformed bak to the OP matrix again.The rows and olumns of the OP matrix may be manipulated to generate anequivalent matrix that gives a time domain representation of the FROG trae.By leaving the �rst row unshifted, shifting the seond row one step to the left,the third two steps and so on, one obtains the following matrix:


















E1G1 E1G2 E1G3 . . . E1GN−2 E1GN−1 E1GN

E2G2 E2G3 E2G4 . . . E2GN−1 E2GN E2G1

E3G3 E3G4 E3G5 . . . E3GN E3G1 E3G2

E4G4 E4G5 E4G6 . . . E4G1 E4G2 E4G3... ... ... . . . ... ... ...
ENGN ENG1 ENG2 . . . ENGN−3 ENGN−2 ENGN−1



















τ = 0 τ = −1 τ = −2 . . . τ = +3 τ = +2 τ = +1 (4.8)Now one sees that all olumns of this new matrix ontains the FROG signal
Esig(t, τ) for all di�erent delay times, as indiated below the matrix. By simplyrearranging the olumns so that the most negative τ is to the left and the mostpositive is to the right, a disretized FROG signal in the time-time domain32



may be made. In order to get the signal in the time-frequeny domain onesimply Fourier transforms eah olumn. By �nally taking the magnitude of thisomplex result, the FROG trae one measures in experiments is produed. Thewhole proedure is illustrated in �gure 4.3.

Figure 4.3: The di�erent steps in manipulating the OP matrix into a time-frequeny FROG trae. Figure 1) plots the modulus of the OP matrix. In 2)the OP matrix after row manipulation is drawn. This orresponds to the matrixin equation 4.8. 3) represents the matrix after being manipulated olumnwiseand is therefore now the FROG signal in the time-time domain. And �nally, in4), eah olumn is Fourier transformed, giving rise to the FROG trae in thetime-frequeny domain.4.2.2 PCGPA inversionWe have now shown that the OP matrix may be used to form a matrix on-taining a disrete version of the FROG trae (and vie versa). We will noe useproperties spei� to the OP matrix in order to retrieve both E and G.While it is easy to imagine an in�nite number of omplex images that have thesame magnitude as the FROG trae we wish to invert, there is however onlyone image with the same magnitude whih an be formed by the outer produtof a single pair of nontrivial vetors [18℄. In order to �nd the proper vetor33



pair (that is, the pulse and the gate) the phase of the spetrogram must bedetermined using a 2D phase retrieval algorithm. When we have the phase, wean simply deompse the OP matrix in the pair of vetors whih is originallywas omposed of.

Figure 4.4: The general PCGPA sheme. Eah step is more thourougholy ex-plained in the text.The PCGPA works in the same way as all the other inversion algorithms, asdepited in �gure 4.2. As in all the earlier algorithms, the step that di�ers fromthe others is the last one, where the new guess is being generated. However,a more detailed insight in how the PCGPA works is shown in �gure 4.4. Theproedure is as follows:1. The initial guesses of pulse and gate are made, and an OP matrix is formedby these two guesses.2. By row and olumn manipulation, Esig(t, τ) is formed.3. By Fourier transformation one obtains Esig(τ, ω).4. The magnitude of Esig(τ, ω) is replaed by the magnitude of the FROGtrae.5. By the inverse Fourier transform followed by row and olumn manipulationthe matrix is onverted bak into its OP form again. A �nal singular valuedeomposition step (SVD) is applied in order to generate the new guess.The �nal step has to be explained more thourougholy. When onverted bakinto its OP form, the matrix no longer exhibits the features of a real OP, sineits magnitude has been replaed with another. One now has to �nd the bestreal-OP approximation of the matrix, in order to send it bak into the beginningof the iteration. 34



One important property of a real OP matrix is that it has one and only onenonzero eigenvalue; that is, its rank is equal to one. The eigenvetor of suh amatrix is E, the pulse. Correspondingly, the omplex onjugate of the eigen-vetor of the transpose of the OP matrix is the gate, G. If the matrix afterbeing molded by the intensity onstraint is the orret FROG trae it is thusa simple task to obtain both the pulse and the gate out from this matrix. Ifnot, one must �nd the best rank-one approximation of the new matrix, whih isjust a di�erent way of saying what was written in the previous paragraph. Theanswer to this problem is not a diret minimization step, but a ertain kind ofdeomposition � the SVD. SVD deomposes an arbitrary N ×N matrix A intothree new matries U , W and V :
A = U · W · V T (4.9)Both U and V are orthogonal square matries and W is a square diagonal ma-trix, with diagonal elements w1, w2, . . . , wN . The matrix A an thus be regardedas being deomposed into a superposition of OP matriesO1, O2, . . . , ON , weighedby the elements of W :

A = w1 · O1 + w2 · O2 + . . . + wN · ON (4.10)All of the possibleOi orrespond to OPmatries formed by possible pulse vetors(olumns of U) and gate vetors (rows of V T ). The best OP approximation of Awould thus be the OP matrix whih orresponds to the largest weighting fator
wl, and is omposed of the elements in the orresponding olumn of U and rowof V T . In fat, keeping this prinipal omponent for the next iteration of thealgorithm, is found to be a minimization of the error funtion
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2 (4.11)whih an be seen as an analogue to the minimization step of the GP algorithm.While the SVD method is quite intuitive, it ontains lots of unneessary alu-lations, sine there basially is only one vetor pair orresponding to the largestweighting fator whih is needed. This makes the alulations somewhat timeonsuming. Fortunately, the prinipal vetor pair whih builds up the domi-nant OP matrix may be found diretly with muh less omputation, reduingthe SVD step to simple matrix-vetor multipliations [21℄, [22℄.The SVD routine alulates the eigenvetors Ei of AAT , whih are the olumnsof U , and the eigenvetors Gi of AT A, whih are the olumns of V :
AAT Ei = λiEi (4.12)
AT AGi = λiGi (4.13)The sets Ei and Gi are both orthonormal, and the eigenvalues λi are found tobe related to the weighting fators by λi = w2
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λi, Ei and Gi are all provided by the SVD, but one only needs the vetor pairorresponding to the largest |λi|. Suppose there is an arbitrary nonzero 1 × Nvetor x. Sine the eigenvetors of AAT form an orthonormal set, this vetormay be expressed as a superposition of Ei.
x =

N
∑

i=1

κiEi (4.15)where κi is a set of onstants. If one multiplies x with AAT and takes equa-tion 4.12 into aount one gets:
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AAT an be thought of as an operator that maps x onto a superposition of eigen-vetors. Beause AAT κiλiEi = κiλ
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i Ei multiplying equation 4.16 by (AAT )p−1gives
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i Ei (4.17)As p beomes large, the largest eigenvalue λl (that is, the largest weighing fa-tor wl) dominates the sum so that (
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p
l El. This method is alledthe power method. By simply normalizing the result one gets when multiply-ing repetively, El is obtained. Sine this is the eigenvetor orresponding tothe largest eigenvalue, this approximately equals the next guess for the pulse,

E(k+1). Sine x is assumed to be an arbitrary vetor one may as well multiplythe previous guess E(k) with AAT in order to alulate E(k+1). While betterapproximations for the eigenvetor an be made by using this operation severaltimes per iteration, one per iteration (p = 1) is adequate in pratie. Corre-spondingly, sine Gi are the eigenvetors of AT A, the next guess for the gate ismade by multiplying the previous guess of the gate by AT A.
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Chapter 5
Implementation of thePCGPA
The main aim of this diploma projet has been to write a FROG pulse retrievalalgorithm based on the theories whih have been presented in previous hapters.The algorithm whih I have written is based on the PCGPA and is presented inappendix A.Before applying the algorithm on measured data, it is of extreme neessity to�rst test its performane on simulated, already haraterized, data. Wouldthe results of this test be too disappointing, one obviously annot rely on anyresults obtained using experiments. We will �rst examine how well the PCGPAbehaves when retrieving pulses from simulated XFROG traes, and thereafter,the algorithm will be tested on experimental XFROG data. In the end of thishapter, we will attempt to haraterize both simulated and real attoseondpulse trains.
5.1 XFROG ImplementationIn the following setions, important harateristis of the PCGPA will �rstbe examined using simulated XFROG traes. Sine we already know whatthe outome of these test runs should be, possible �aws of the algorithm anbe deteted and perhaps even solved, by adding improvements to the originalprogram. By hanging ertain parameters, suh as the rate of the data lowpass�ltering, we also an get some understanding of if and how the pulses retrievedare a�eted by these. All this knowledge will be of great importane when we,in the end of this setion, apply the PCGPA to experimental XFROG data.37



Figure 5.1: To the left: Femtoseond double pulse (blue) and the gate pulse.To the right: Their simulated XFROG trae.5.1.1 Implementation on Simulated DataTwo tests of the PCGPA on simulated data will now be performed: In the �rstwe will try to retrieve an unhirped double pulse, and in the seond test a moreomplex pulse, exhibiting a signi�ant amount of hirp.The Double Pulse TestTo illustrate the main properties of the algorithm, we start with a simple dou-ble pulse whih is shown in �gure 5.1. Its entral wavelength is 40 nm and itsFWHM is about 50 fs; it is also unhirped. Shown in the same �gure is the gatepulse, whih exhibits a wavelength of 800 nm, an FWHM of 12 fs and no hirp.The orresponding XFROG trae is made by using the OP matrix proedure asdesribed in the previous hapter.

Figure 5.2: To the left: Retrieved pulse (blue) and gate (red) without spetralonstraint. To the right: Retrieved pulse (blue) and gate (red) with spetralonstraint. 38



Figure 5.3: To the left: FROG error as a funtion of iteration number for thepulse in 5.1 without spetral onstraint. To the right: FROG error as a funtionof iteration number for the pulse in 5.1 with spetral onstraint.What happens if we run the simulated XFROG trae in our inversion algorithm?The result is shown to the left in �gure 5.2, and is not satisfying at all; the re-trieved pulse looks more like the real gate, and vie versa. However, even withthis in mind, the algorithm doesn't seem to at properly: The double pulse is alittle bit too thin and the single pulse is too broad. In �gure 5.3, to the left, onean see that the FROG error (de�ned by equation 4.1) stagnates somewhere inthe middle of 10−1 and 10−2. This is too high to be aeptable.In order to make the results of the algorithm more aurate, it is possible toapply some sort of additional onstraints to the iteration proess. One suhonstraint may be the spetrum of the pulse one wants to haraterize. Afterall, all one needs to measure the spetrum is a simple spetrometer and onedoesn't need to worry about the di�uulties with time resolution at all. Also,the implementation of this onstraint is simple: At some point in the algorithmone just replaes the spetrum of the guess with the spetrum of the real pulse.It should be noted that this additional onstraint is not a part of the theoryof projetions whih was gone through in the previous hapter; it is simply a'pratial' add-on onstraint whih empirially has been found to be useful.During this projet it has been found that one must be very areful with whereand how often one performs this replaement. Using this proedure one everyiteration auses the algorithm to go berzerk, leaving just nonsense data as result.The optimum proedure is to replae the spetrum only one somewhere in thebeginning of the algorithm, for instane in the 20th iteration step. Applyingthis to the double pulse test, the pulses retrieved look like what is shown to theright in �gure 5.2. Still, there is a mix-up (whose spei� origin is somewhatmysterious), but apart from that the pulses retrieved look pretty muh like thepulses we started from. To the left in �gure 5.3 we also see that imposing theadditional spetral onstraint at iteration number 20, fores the FROG errorto go down below 10−2. From now on, the PCGPA will always use a spetralonstraint, when a spetrum is available.39



Figure 5.4: Plot over the FROG error as a funtion of iteration number whenretrieving a double pulse using a fored gate.If one regards the gate pulse already being satisfyingly haraterized, there isno need for a blind-XFROG algorithm. Then one doesn't have to bother aboutguessing the gate anymore, and may just fore the gate by inserting the realone for eah iteration. Doing so in the double pulse ase, eliminates the mix-upproblem, and also redues the FROG error by several fators of ten, as seen in�gure 5.4.The Chirped Harmoni Sideband TestLet us now test the algorithm using more omplex, asymmetrial pulses. In �g-ure 5.5 a simulated sideband originating from a highly hirped 19th harmoni isrepresented, together with the gate pulse used in the previous example. The nu-merial simulation of the sideband has been designed to mimi the experimentalonditions in an XFROG experiment as losely as possible. When inserting theXFROG trae to the right in the �gure into our algorithm, we get a result whihis presented in �gure 5.6. This is, maybe somewhat unexpeted, an almost per-fet math with the pulses we started with. This is on�rmed by looking at theFROG error, whih is shown in �gure 5.7, where we an see that it after noteven 200 iterations stagnates on an error of the magnitude of 10−6! Also, whatis shown to the right in �gure 5.6 is a omparison of how the instantaneousfrequeny (that is, dΓ(t)/dt = ω(t) = ω0 + dΦ(t)/dt) varies with respet toboth the 'real' and the retrieved harmoni. The shapes of the graphs are moreinteresting than the atual values they represent sine we are not interested indeiding the value of ω0, but rather in getting a piture of the behaviour of
dΦ(t)/dt. (The reason why ω0 is di�erent in the two plots is beause the time40



Figure 5.5: To the left: Simulated 19th harmoni with a high negative fun-damental hirp (blue) an an unhirped gate pulse (red). To the Right: Theirsimulated XFROG trae.resolution we use in our simulations is not high enough to fully resolve the or-ret frequeny.) Thus, the agreement between the two plots is exellent.

Figure 5.6: To the left: Retrieved harmoni (blue) and gate (red). To the right:Frequeny variation of the real harmoni (blue) and of the retrieved (blak).One ould now ask oneself why we get better results when trying to retrievemore omplex pulses. The answer probably lies in the lak of symmetry ofthe pulses retrieved, as well as in possible similarities between the pulse andthe gate. When dealing with symmetri pulses whih also have a struture withhigh resemblene to the gate, dangerous pitfalls suddenly appear: The hane ofmixing up pulse and gate is highly inreased, and weird 'mean value pulses' giverise to FROG traes whih almost annot be distinguished from the real FROGtrae at all. Asymmetri pulses with little resemblene to the gate however seemto eliminate many of these 'false' solutions.41



Figure 5.7: FROG error for the harmoni presented in �gure 5.5.5.1.2 Implementation on Experimental DataWe now turn to the 'real' world, to examine if the PCGPA also is able to re-trieve pulses from experimental XFROG traes. Measurements of harmonis bythe XFROG method have earlier been performed at the Lund Institute of Teh-nology, by Mauritsson et al. in 2004 [23℄, using the setup shown in �gure 3.4.Harmonis were generated by 815 nm IR pulses with durations between 35 and90 fs. Sans were done under �ve di�erent experimental onditions, labeled(a)-(e): Harmoni generation with a negative hirp on the fundamental � ase(a) and (b) � generation with no fundamental hirp � ase () � and �nally apositive fundamental hirp in (d) and (e). Sine the fundamental is transferedto the harmonis as desribed by equation 2.28, the harmonis will exhibit eahdi�erent hirp rate b.An example of what suh an experimental XFROG san looks like is given in�gure 5.8. It is of importane to realise that eah visible sideband is a mixtureof two sidebands, sine the distane between onseutive harmonis is 2ω0 andthe frequeny of the gate pulse is ω0. This means that the sideband originatingfrom absorption of an IR photon in harmoni n − 1, will be mixed with thesideband due to emission in harmoni n + 1. Thus, proessing a sideband nin an XFROG san like the one shown in �gure 5.8 will only give the meanduration and hirp of harmonis n− 1 and n+1. For example, the sideband la-beled 18 originates both from harmoni 17 and 19. The sidebands shown in the�gure are sidebands 14-22 (with sideband 24 very faintly hinted far to the right).By simply measuring the sideband length and tilt, Mauritsson et al. have al-ulated both the duration of the harmonis, as well as their hirp. In table 5.1the determined duration and hirp are indiated for sideband 18 in the �veases. The harmoni duration ∆τ is obtained from the duration of the sideband
∆τsb aording to ∆τ =

√

(∆τsb)2 − (∆τIR)2 − (∆τgeo)2, where ∆τIR is theinfrared gate pulse duration, and ∆τgeo is a geometrial fator whih is meantto ompensate the fat that the two beams, as an be seen in �gure 3.4, arenot ollinear, but interset eah other by a small angle. This fator is estimated42



∆τ/fs b/1027 · s−2(a) 41 -14(b) 31 -11() 23 -10(d) 28 10(e) 36 13Table 5.1: Values of harmoni duration and hirp for �ve di�erent ases (a)-(e)of harmoni 18, measured by Mauritsson et al..to be about 18 fs. Further, the hirp rate an be alulated from the sidebandhirp bsb by b = bsb

[

1 +
(

(∆τIR)2 + (∆τgeo)
2
)

/(∆τ)2
].

Figure 5.8: Example of an XFROG san.We applied the PCGPA to the experimental data. The intention was, by us-ing the blind-FROG algorithm presented in appendix A, to determine both thepulse and the gate from the same measurement. This proved however to bea nearly impossible task, sine severe problems soon ame up. Sine the gatepulse already had been fairly haraterized by other tehniques as a Fourierlimited 12 fs long pulse, the outome of the test ould partially be predited.In a few ases, running the blind-FROG algorithm gave the expeted gate asa result, but in an equal number of test runs, it did not. Like in the previousdouble pulse-test, pulse and gate seemed to be mixed with eah other � in someases they even looked idential (when expeted not to be). In addition to that,the algorithm never seemed to onverge properly, at best stagnating on FROGerrors in the region of about 5%. 43



Some of these ambiguities might have been eliminated if a spetral onstrainthad been added. However, when performing the ross-orrelation experiment,the spetrum of the harmonis was never measured, making this solution un-available. However, one possibility remained: By regarding the gate as fullyharaterized as a Gaussian Fourier limited pulse with an FWHM of 12 fs and awavelength of 815 nm, it would be possible to 'fore' the gate in eah iteration,thereby � if the gate had been haraterized orretly � making the algorithmto properly onverge. This atually proved to be a seemingly better solution,sine the PCGPA now in every ase onverged at FROG errors between 0.6 and2%.Figure 5.9 shows the retrieved envelope and phase information alulated fromsideband 18(b). In the �gure, the phase information is given by plotting dΓ/dt =
ω0 + bt. In order to determine the value of b, one �ts a polynomial of the �rstdegree to the data points in the neighbourhood of the pulse. The value of theslope of this polynomial then diretly gives b. Figure 5.10 shows sideband 18for ases (a)-(e), together with the alulated values of b. This indiates that atleast the results of the algorithm are qualitatively good, sine a sideband tiltingin one diretion gives rise to a b with opposite sign as the sideband whih tiltsin the other diretion.

Figure 5.9: Left: Sideband 18(b). Center: Retrieved pulse with an FWHM of33 fs. Right: Retrieved frequeny shift (blue), with a �rst-degree polynomial�tted to the values of relevane (red). b = −3.17 ·1027s−2 and ǫFROG = 0.0077.Even though we get good qualitative results when alulating b by PCGPA, thisis of ourse not enough. In order to get some idea of the quality of the algorithmas a quantitatively good method we must ompare our values with trustworthy44



Figure 5.10: Sideband 18 (a)-(e). Below are the PCGPA alulated harmonihirp rates b for eah sideband written, given in 1027s−2.
∆τ/fs b/1027 · s−2 ǫFROG(a) 42 -5.24 0.0090(b) 33 -3.17 0.0077() 28 -3.49 0.0082(d) 31 2.34 0.0083(e) 41 2.36 0.0100Table 5.2: Values of harmoni duration and hirp rate for harmoni 18(a)-(e),alulated by the use of the PCGPA. Also, in the third olumn, the FROG errorfor eah alulation is shown.results obtained by using a di�erent method. One again, we look at Maurits-son et al. [23℄. Table 5.2 shows PCGPA-alulated FWHM:s and hirp rates forsideband 18(a)-(e). These an be ompared with what was previously found intable 5.1. While the duration of the pulses seem to agree fairly well with theprevious results, the values of b however do not. The ratios between the hirprates seem to be pretty muh the same when omparing the �rst measurementto the other; however, their absolute values do not agree at all.This fat beomes even more lear when making a seond omparison, where bfor ases (a)-(e) is plotted as a funtion of the harmoni order q. Figure 5.11 is aplot over the PCGPA alulations, and �gure 5.12 is a plot over the values foundin Mauritsson et al. Both plots do have a striking resemblane in shape, but,however, not in absolute values. The reason for this remains a mystery, thoughit should be noted that the values measured by Mauritsson et al. probably arethe most orret ones, sine they are very similar to what has been alulatedin simulations.A number of possible errors may be due to the model of the eletri �eld that thealgorithm is based on, whih totally neglets the spatial dependene of the �eld.First, the nonollinearity of the beam geometry might give rise to errors. Whenrunning the algorithm, this is taken into aount for by in the inversion replaing45



the duration of the gate pulse ∆τIR with a duration of √

(∆τIR)2 + (∆τgeo)2,whih approximately is equal to 22 fs. This might however not be enough tofully ompensate the lak of ollinearity in the geometry, and a expanded ver-sion of the PCGPA whih treats this problem more rigorously might be needed.In order to get an idea of how big the error might beome if negleting the beamgeometry, the alulations whih was done in Mauritsson et al. was made oneagain, but this time with the geometrial fator set to zero. This redued thehirp rates with in general 20%, whih is not enough to fully explain the resultsobtained in this thesis, but may be worth having in mind.Also, when only looking at the temporal aspets of the pulse and the gate, oneonsiders the two �elds as being in the form of plane waves. This is however notentirely true, and a model based on spherial �elds might give better results.There has however during this projet unfortunately not been time to developthis idea into more than just an idea.

Figure 5.11: Harmoni hirp rate alulated by PCGPA plotted as a funtionof harmoni order. Red olour � ase (a); green � (b); blak � (); (d) � purple;(e) � blue.The treatment of the FROG trae before sending it into the algorithm is anotherpossible soure of errors. While the algorithm in priniple is relatively stableagainst noise, the data must yet undergo some threshold and lowpass �ltering.The biggest problem in this aspet is the in�uene of the adjaent harmonis,whih in some ases is so large that parts of the sideband are overshadowedand take on a distorted appearane in the eyes of the algorithm. In order tomake the PCGPA to onverge at all, one must �lter out a ertain amount ofthis distorting bakground. By doing so it is however very likely that parts ofthe information on the sideband itself are lost. Simulations whih have been46



Figure 5.12: Harmoni hirp rate alulated by Mauritsson et al. plotted as afuntion of harmoni order. Red olour � ase (a); green � (b); blak � (); (d)� purple; (e) � blue.made in this projet, using FROG traes from simple linearly hirped Gaussianpulses, show that the absolute value of b may be redued by as muh as 25%when threshold �ltering. This is not enough to explain the whole redution ofthe hirp rates, but it is large enough to be taken into aount. Also, �lteringhigh spatial frequenies in the XFROG trae too muh has been found thodistort the retrieved phase, although in exatly what way the alulation of b isa�eted is hard to predit.5.2 FROG CRAB ImplementationAs stated in earlier hapters, not only single harmoni pulses may be hara-terized using PCGPA; it is also designed to make it possible to haraterizeattoseond pulses or even attoseond pulse trains, using FROG CRAB data.No modi�ations of the ode is neessary � in the eyes of PCGPA all pulsesare equal, as long as they ome with a FROG trae. This setion will fous onpulse retrieval using simulated FROG CRAB data, ending with a brief disus-sion regarding the di�ulties and possibilities of pulse haraterization usingexperimental data.5.2.1 Implementation on Simulated DataA simple way of designing a FROG trae with sidebands and sideband in-terferene like those present in a RABITT san, is by using an arti�ial and47



Figure 5.13: The the left: Attoseond pulse train made by harmonis 9-15. Upto the right: Tilt of sideband due to the harmoni hirp. Down to the right:Construtive respetively destrutive interferene hanging from sideband tosideband, due to the atto hirp.rather unphysial gate with the form of 1 + Λ(t) · (eiω0t + e−iω0t), where Λ(t)isan amplitude fator. The two exponentials lead to sidebands due to stimu-lated absorption and emission of one IR photon with the frequeny ω0. Thistrik makes the harmonis themselves appear in the FROG trae, sine now
E(t) · G(t) = E(t) + E(t)Λ(t) · (eiω0t + e−iω0t).In �gure 5.13, to the left, we show a simulated FROG CRAB san using harmon-is 9-15, exhibiting both harmoni and atto hirp. The 800 nm-gate pulse has anFWHM of 12 fs and is Fourier limited. In �gure 5.14 the train itself is plotted, to-gether with the temporal phase variation due to the harmoni hirp (∂2Φ/∂t2·t2)and the spetral phase variation due to the atto hirp (∂2Φ/∂ω2 · ω2).We start with trying to retrieve both pulse and gate from the FROG CRABtrae, using the PCGPA as a blind-FROG. The retrieved train is shown to theleft in �gure 5.15, and to the right, the FROG error as a funtion of the iterationnumber is plotted. Here one an see that the algorithm onverges to a relativelylow FROG error, but while the rough features of the train is retrieved, the traindoes not look like its original on a more detailed level. Also, it is found that theretrieved phases do not math the original at all. However, the initial guessesseem to a�et the �nal blind-FROG result to a ertain degree, whih opensthe possibility of improving the results by starting out with partiulary goodguesses. Suh an optimisation has however not been arried out in this projet.When assuming the gate to be well-haraterized, the result, shown in �g-ure 5.16, is improved. The error is found to steady go down below 10−15 in800 iterations, and one is able to both retrieve the envelope of the �eld, as wellas the temporal and spetral hirps. 48



Figure 5.14: To the left: Attoseond pulse train onstituted by harmonis 9-15.Up to the right: ∂2Φ/∂t2 · t2. Down to the right: ∂2Φ/∂q2 · ω2

Figure 5.15: To the left: Retrieved attoseond pulse train using the blind-FROGalgorithm. To the right: The FROG error for the blind-FROG iteration.
The FROG CRAB simulations have up until now been based on harmoniseah arrying the same harmoni hirp. However this may not always be thease, whih for instane an be seen in the graph in �gure 5.11. Figure 5.17depits a pulse train and its orresponding FROG CRAB trae, with a harmonihirp whih is linearly dependent on q. The hange of the hirp manifests itselfquite intuitively in the FROG signal by a hange of the tilt of the sidebands.This q-dependene will in the temporal domain give rise to a hange of spaingbetween onseutive attoseond pulses in the train, as indiated in the �gure.The pulse train, inluding the varying pulse to pulse spaing, is well retrievedusing a fored gate as drawn in �gure 5.18. The FROG error is onverging toan error below 10−6 in 800 iterations. 49



Figure 5.16: To the left: Retrieved pulse train from the FROG trae given in�gure 5.13. To the right: At the top, retrieved temporal phase variation; at thebottom, retrieved spetral phase variation.

Figure 5.17: To the left: Pulse train with a q-dependene of the harmonihirp, b = b(q). The pulse separation is indiated in the �gure. To the right:The FROG trae of the train.5.2.2 Implementation on Experimental DataWhile proposed [13℄ [17℄, implementing FROG CRAB on experimental data hasto this date never been performed. From a omputational point of view, thereare at least two possible ompliations whih an ome up when attemptingto retrieve a pulse train in the laboratory: First, the two outer sidebands in aFROG CRAB san are often missing in experimental sans. This will introduean error in the PCGPA alulations. Seond, the resolution of the MBES devieis worsened when the energy of the eletrons is inreased. This will lead to afrequeny broadening of the high-order sidebands whih may make the algorithmnot to onverge properly. A possible solution of this problem would be to do thewhole san segment-wise. When going higher up in energy, one would then applya voltage in order slow the eletrons down, and by this inrease the resolutionone again [24℄. 50



Figure 5.18: Attempting to haraterize a pulse train where b = b(q), using afored gate. To the left: Retrieved pulse train. To the right: The FROG error.
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Chapter 6Summary and ConludingRemarksThe goal of this projet was to write an algorithm based on the method of PCGPand to implement it on FROG data. Results from simultated FROG data hasshown that the algorithm works suessfully, even when used as a blind-FROG.However, if the pulse and the gate both are symmetri and quite similar inshape, there is a risk of a mix-up or 'average-value' pulses as a result of theretrieval proedure. The introdution of an additional onstraint in the form ofthe spetrum of the unknown pulse has been found to inrease the onvergenerate � if orretly applied. If the gate pulse an be regarded as already beingproperly haraterized, it is possible to 'fore' this known gate in eah iteration,whih makes the algorithm more likely to onverge.When using experimental XFROG data, with sidebands as input, in order toharaterize femtoseond high-order harmonis in the XUV domain, the blind-FROG does however not seem to work equally good. This problem an partiallybe overome by haraterizing the gate using some other method, and then as-suming the gate to be known when performing the iterations. The alulationsof the harmoni hirp rate has shown to give values whih are about one thirdof what is to be expeted, as well of what has been alulated using other pro-edures. The reason for this is still unknown. The treatment of the data beforesending it into the algorithm, in order to �lter it from noise, et, may give asmall error of the phase. Also, the spatial dependene of the pulses is om-pletely negleted in the model whih the algorithm is based on, whih may giverise to errors of signi�ant magnitude. Modifying the algorithm with respet tothis might give better values; this has however not been done, onsidering thelimited time range of this projet.Simulated attoseond pulse trains have also been retrieved using arti�ial FROGCRAB data. Both spetral and temporal seond-order phase terms have beenreprodued, using a fored gate funtion in the iteration. Even if the blind-FROG algorithm in this projet did not fully sueed in retrieving both pulse52



and gate at the same time, it has however been done, see for instane Mairesse etal. [13℄. In order to improve and assure onvergene one might for instane im-prove the initial guesses of the program, or �nd a more suitable way of applyingthe additional spetral onstraint.Up until this date, using the PCGPA for haraterizing pulse trains experimen-tally has not been done. The good results from the simulations made in thisprojet shows however that it is very likely that this an be done, given goodexperimental onditions. Today, in order to haraterize an attoseond pulsetrain, one must ombine several di�erent measurement methods; for instaneby XFROG one measures the harmoni hirp, and by RABITT one obtains theatto hirp. In the near future, however, one might just be able to extrat all thisinformation from a single san, for instane in the form of a FROG CRAB trae.

53



Chapter 7AknowledgementsFirst I would like to thank my supervisor Anne L'Huillier for introduing meto the the �eld of ultrashort laser physis and giving me the opportunity to domy diploma projet within the high-order harmoni generation researh group.Her help has been vital for this projet, and has manifested itself in a number ofways � by answering all of my questions and oming with valuable suggestions,as well as funtioning as a soure of general enouragement.I would also like to thank the rest of the researh group for all the help theyhave given me through this projet: Per Johnsson, Katalin Varjú and ErikGustafsson. Espeially I would like to thank Thomas Remetter for the ount-less number of times he has taken his time to answer all of the questions I haveharassed him with. Also, fellow diploma worker Nils Adie has been a refreshingompanion during the time I have had the pleasure of sharing my o�e with him.I also visited Le Centre CEA de Salay for one day, whereYann Mairesse showedme around and disussed FROG CRAB with me; for this I am thankful.In the end, I would like to thank my family, espeially my mother, my fatherand my sister, who always have given me unlimited support during the years.After all, if it were not for the �rst two, I would not even be sitting here today,typing. And you just got to give them some red for that, right?

54



Bibliography
[1℄ D.J. Kane, R. Trebino, IEEE J. Quantum Eletron., 29, 571, 1993[2℄ J.C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena � Fundamen-tals, Tehniques and Appliations on a Femtoseond Time Sale, AademiPress, 1996[3℄ M.N.O. Sadiku, Elements of Eletromagnetis, Oxford University Press,2001[4℄ P. Johnsson, Adaptive Laser Pulse Shaping using an Aousto-Opti Pro-grammable Dispersive Filter and a Geneti Algorithm, Master's Thesis,Lund Reports on Atomi Physis, LRAP-291, 2002[5℄ O. Svelto, Priniples of Lasers, Plenum Press, 1998[6℄ J. Mauritsson, Temporal Aspets of High-Intensity Laser-Matter Intera-tions, Dotoral Thesis, Lund Reports on Atomi Physis, LRAP-312, 2003[7℄ L. Roos, Optimisation and Appliation of Intense High-Order HarmoniPulses, Dotoral Thesis, Lund Reports on Atomi Physis, LRAP-276, 2001[8℄ S. Häÿler, M. Swoboda, Optimisation and Appliation of High-Order Har-monis of an Ultrashort Terrawatt Laser, Report, Lund Reports on AtomiPhysis, LRAP-324, 2004[9℄ K. Varjú, Y. Mairesse, B. Carré, M.B. Gaarde, P. Johnsson, S. Kazamias,R. López-Martens, J. Mauritsson, K.J. Shafer, P. Balou, A. L'Huillier, P.Salières, J. Mod. Opt. 52, 379, 2005[10℄ R. López-Martens, K. Varjú, P. Johnsson, J. Mauritsson, Y. Mairesse,P. Salières, M.B. Gaarde, K.J. Shafer, A. Persson, S. Svanberg, C.-G.Wahlström, A. L'Huillier, Phys. Rev. Lett. 94, 033001, 2005[11℄ Y. Mairesse, A. de Bohan, L.J. Frasinski, H. Merdji, C. Dinu, P.Monhiourt, P. Berger, M. Kova£ev, R. Taïeb, B. Carré, H.G. Muller,P. Agostini, P. Salières, Siene 302, 1540, 2003[12℄ S. Linden, H. Giessen, J. Kuhl, Phys. Stat. Sol. B 206, 119, 1998[13℄ Y. Mairesse, F. Quéré, Phys. Rev. A 71, 011401, 2005[14℄ R. Trebino, K.W. DeLond, D.N. Fittingho�, J.N. Sweetser, M.A. Krum-bügel, B.A. Rihman, D.J. Kane, Rev. Si. Instrum. 68, 3277, 199755



[15℄ J. Norin, J. Mauritsson, A. Johansson, M.K. Raarup, S. Buil, A. Pers-son, O Dühr, M.B. Gaarde, K.J. Shafer, U. Keller, C.-G. Wahlström, A.L'Huillier, Phys. Rev. Lett. 19, 193901, 2002[16℄ K. Varjú, P. Johnsson, R. López-Martens, T. Remetter, E. Gustafsson, AL'Huillier, J. Mauritsson, M.B. Gaarde, K.J. Shafer, C. Erny, I. Sola, A.Zaïr, E. Constant, E. Cormier, E. Mével, ???[17℄ F. Quéré, Y. Mairesse, J. Itatani, J. Mod. Opt. 52, 339, 2005[18℄ D.J. Kane, G. Rodriquez, A.J. Taylor, T. Sharp Clement, J. Opt. So. Am.B 14, 935, 1997[19℄ K.W. DeLong, R. Trebino, J. Opt. So. Am. 11, 2429, 1994[20℄ K.W. DeLong, D.N. Fittingho�, R. Trebino, B. Kohler, K. Wilson, Opt.Lett. 19, 2152, 1994[21℄ D.J. Kane, IEEE J. Selet. Topis Quantum Eletron. 4, 278, 1998[22℄ D.J. Kane, IEEE J. Quantum Eletron. 35, 421, 1999[23℄ J. Mauritsson et al., Phys. Rev. A 70, 193901, 2004[24℄ Disussions with Y. Mairesse.

56



Appendix AThe PCGP Algorithm
funtion [EGate,EPulse,e℄ = pulseRetrieval(IFrog,EGate,EPulse,ESpe,NbrIter)% pulseRetrieval inverts the FROG trae using the power method.% The input is the trae - IFrog - the initial two guesses -% EGate and EPulse - a possible spetrum of the pulse - ESpe -% and finally the number of iterations - NbrIter.% The output are the two retrieved pulses, together with the FROG error% funtion e.% Defining the speed of light = 299792458;% e = the FROG errore = zeros(1,NbrIter);% N = the number of elements of EPulseN = length(EPulse);% Esig = the FROG signalEsig = zeros(N,N);% The iteration loop startsfor k = 1:NbrIter%The additional spetral onstraint is appliedif k == 20EPulseSpe = fft(EPulse);EPulseSpe = sqrt(ESpe).*EPulseSpe/(max(abs(EPulseSpe)));EPulse = ifft(EPulseSpe);end% The outer produt form matrix is reated57



OP = EPulse.'*EGate;% Row manipulation of OPfor n = 2:NOP(n,:) = irshift(OP(n,:),[0,n-1℄);end% Column manipulation of OP; Esig in the time-time domain is reatedOP = fftshift(OP,2);Esig = fliplr(OP);% Fourier transforming Esig olumnwise; Esig is now i the time-frequeny% domainEsig = fft(Esig);% Calulating the FROG error funtion eIFrogTemp = Esig.*onj(Esig);IFrogTemp = IFrogTemp/(max(max(abs(IFrogTemp))));IDiff = (IFrogExp-IFrog/(max(max(abs(IFrog))))).^2;e(k) = sqrt((sum(sum(IDiff)))/(N^2));% Replaing the magnitude of Esig with experimental dataZero = abs(Esig) == 0;Esig = Esig + Zero;Esig = sqrt(IFrog).*(Esig./(abs(Esig)));% Inverse Fourier transforming Esig bak to the time-time domainEsig = ifft(Esig);% Row and olumn manipulation Esig into its OP formEsig = fliplr(Esig);OP = fftshift(Esig,2);for n = 2: length(EInit)OP(n,:) = irshift(OP(n,:),[0,-(n-1)℄);end% Matrix-vetor multipliation in order to obtain the next guessesEPulse = (OP*(OP')*EPulse.').';EPulse = EPulse/(max(abs(EPulse)));EGate = ((OP')*OP*EGate.').';EGate = EGate/(max(abs(EGate)));end
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Appendix BThe Chirp Rate CalulationProgramfuntion [b℄ = hirpCal(t,EPulse,start,stop)% The funtion hirpCal alulates the linear hirp rate of a pulse, b.% The input is the time vetor t, the pulse EPulse, and the area within one% wants to polyfit the phase - start and stop.N = length(t);dt = t(2)-t(1);% Calulates the argument of EPulse, and its derivativearg = unwrap(angle(EPulse));d_arg = unwrap(diff(arg));d_arg = [d_arg(1) d_arg℄;% Sets the limits in whih the polyfit ommand should workstart = N/2+round(start/dt);stop = N/2+round(stop/dt);% Fits the data of the derivative of the argument as a first-degree% polynomial, then extrats bpolyChirp = polyfit(t2(start:stop),d_arg(start:stop),1);b = polyChirp(1)/dt
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