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1 Introduction 

In this Master's thesis we investigate a new statistical method which can 
be applied when estimating Raman spectra. Many research groups have 
done a great deal of work in this area and many articles have appeared that 
discuss different approaches to this problem, cf. Moiser-Boss et al. [9] and 
Mahadevan-Jansen et al. [7]. Compared to the earlier techniques this method 
gives us an estimate of the magnitude of the bias and variance of the resulting 
Raman spectrum. 

Modern laser technology might be useful in diagnosing patients without 
the need of taking biopsies. Raman spectroscopy is one method which ap­
plies the laser technique in order to generate spectra which can be used when 
diagnosing diseases. The suspected diseases can for instance be cardiovas­
cular diseases or cancer, one of the most serious diseases we have to deal 
with today. An early detection of cancer might be of much help, and the 
Raman spectroscopy technique may provide a simple diagnosing procedure. 
A review of the use of Raman spectroscopy when diagnosing patients is given 
by Mahadevan-Jansen et al. [8]. 

At Lund University Medical Laser Centre the researchers are developing 
spectroscopical methods to diagnose tissue, Raman spectroscopy being one of 
them. Though, using the best possible techniques, the spectra which are ob­
tained do not only contain Raman signals but also the stronger fluorescence 
signals. The fluorescence part can make it hard to evaluate the recorded 
spectrum. Therefore it is important to find statistical methods for fluores­
cence rejection. Techniques employing shifted-spectra, edge detection and 
FFT filtering are often used for this purpose. 

In this thesis, however, the use of non parametric kernel methods are pro­
posed. These are fairly recently developed and have become popular in many 
applications, cf. the books by Wand and Jones [16] or Fan and Gijbles [5]. 

The data which we have worked with in this thesis are provided by Lund 
University Medical Laser Centre. 

In Section 2, we give an introduction to the physical background and in 
Section 3 we describe the statistical model. The estimated Raman spectrum 
can be thought of as a subtraction of the fluorescence from the measured 
spectrum. The nonparametric kernel regression methods can be used not 
only to estimate the spectrum which is measured, but also to estimate the 
disturbing fluorescence. The selection of bandwidths in our method and its 
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impact on the estimates are discussed in Section 4. 
The estimators of the fluorescence spectrum and the summarised spec­

trum are discussed in Section 5. Having these estimates, we can estimate 

the Raman spectrum as the difference between the two previous. This is 

discussed in Section 6. 
In Section 7 we discuss how to localise the peaks and in Section 8 we make 

a short summary of the thesis. 

2 Physical background 

A Raman spectrum can be thought of as a plot where the location of the 

peaks, the Raman peaks, corresponds to the vibrational frequencies in the 

tissue. These vibrational frequencies tell us what kind of substance we are 
dealing with. To be able to explain why our spectra look like they do, and to 

understand what we are looking for, an introduction to the Raman theory is 
given in this section. In Section 2.1 we discuss some elementary physics, in 
Section 2.2 the fluorescence phenomena and finally in Section 2.3 the Raman 

theory is studied. 

A more thorough treatment of the physical background and the Raman 

theory is given by Svanberg [15]. 

2.1 Electronic states 

When talking about vibrational frequencies, or energy, it is natural to start 
the physical analysis with a study of the behaviour of the electrons. The 
electrons in a molecule can have different energies and this is illustrated by an 

energy diagram. In the diagram we call the lowest state the ground electronic 

state and a state above this an excited electronic state, as illustrated in 

Figure 1. An electron with a higher position in the diagram has a larger 
energy. According to the nature of the electron, it always wants to minimise 

its potential energy. Therefore all the electrons in the molecule will tend to 

be in the ground electronic state. 
This is a very schematic picture of the structure of the molecule and to 

be able to explain the Raman theory we are forced to use a slightly more 
complex picture. 

Grouping two atoms into a molecule results in a splitting of the electronic 
states into vibrational and rotational states. The vibrational states are due to 
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Figure 1: Every electronic state is divided into vibrational levels. 

a movement which can be thought of as a result of combining the two atoms 
with a spring which vibrates as an oscillator and does not change the centre 
of gravity. The rotational levels are obtained by splitting the vibrational 
levels, but this is really of no interest to us, and we will not deal with this 
here. 

The result is that we can regard the energy states in our molecule as a 
ladder where every step, the electronic states, can be divided into vibrational 
levels. 

2.2 Light scattering and fluorescence 

If we illuminate a tissue with a laser beam, the photons can interact with 
the tissue in a number of ways. The photons may be scattered one or several 
times inside the tissue leading to diffuse reflection and transmission or be 
absorbed by it; i.e. they will excite some of the electrons in the ground elec­
tronic state. If the outgoing light is of the same wavelength as the incoming 
we say that we have an elastic scattering process. When the scattered light 
has another wavelength than the incoming, we say that we have an inelastic 
scattering process and a larger wavelength implies that we have lost energy. 
This is according to the energy equation for a photon: E = h · c · ,\ -l, which 
relates the energy E of the photon to Planck's constant h, the speed of light 
c, and the wavelength ,\. A spectrum is a measure of the photon flux as a 
function of energy (or inverse wavelength). 

To be absorbed the molecule, the energy that the photon carry must 
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correspond to or be greater than the energy gap between the ground state 
and the first excited state. Then an electron can make a jump corresponding 
to the energy given by a photon. Hence it is for instance possible that an 
electron jumps to the fourth vibrational level in the first excited state. 

Maybe, the electron did not come to the lowest vibrational state in the 
excited electronic state. If this is the case, the electron falls down to it 
through internal conversion. The internal conversion is a very fast process 
(10-12 s) as a consequence of interaction between different molecules. Striving 
to be in the ground electronic state, an excited molecule return to its ground 
state after a while. This can happen in a number of ways, and the way which 
is of interest to us is when fluorescence light is emitted from the molecule. 
The fluorescence process is illustrated in Figure 2. 
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Figure 2: A photon excites a molecule. Due to internal conversion the molecule 
falls down to the lowest vibrational level in the first excited electron state. From 
there it falls down to the ground electronic state while emitting fluorescence light. 

As illustrated in Figure 2, it is not certain that the electron falls back to the 
lowest level in the ground electronic state following excitation. If it ends up 
upon one of the higher positioned vibrational levels the emitted light will be 
of another wavelength than the incoming. Having many different substances 
and many different vibrational levels the radiated fluorescence light will be 
broadened. 

All together, this implies that when we illuminate a tissue with a laser 
beam, it will emit both diffusely scattered light and fluorescence. Information 
about the tissue can be drawn from fluorescence spectra but a limitation of 
this method is that only a few substances are fluorescence active; i.e. they 
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are fluorescencing. Since there are many more substances that are Raman 
active it would be a great advantage if it was possible to study the Raman 
spectra which is discussed in the next section. 

2.3 Raman scattering 

Information on the subject can be obtained by studying its Raman spectrum. 
The big drawback with Raman spectroscopy is that the Raman process is 
much weaker (106-108 times) than the fluorescence process. A typical exam­
ple of a measured spectrum is given in Figure 3. The data has been provided 
by Lund University Medical Laser Centre and is a measured spectrum of a 
bone which comes from an amputated leg of a patient with diabetes. This 
will be our reference spectrum in this thesis. 

0.5 

0~200~~400~~-~~.~00--~1~000~~1~200~~1400~~1600~~1800 
Raman shift (1/cm) 

Figure 3: Example of a measured spectrum. (Integration time 100 s.) 

The slowly varying curve is the fluorescence curve and the narrow peaks 
on top of this are the Raman peaks which carry important information about 
the tissue. For instance it is possible to tell that the narrow peak at 958 cm-1 

comes from hydroxyapatite Ca10 (0H)2(P04 ) 6 , a member of the phosphate 
group. 
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1. We must calibrate the spectrograph so that the relation between wave­
lengths and pixels is known. This is done through illuminating the 
spectrograph with a neon lamp for which the emission lines are known. 

2. We must calibrate the Raman scale. We illuminate a substance called 
Indene for which the spectral characteristic is known. Perhaps we must 
adjust our scale so that the known peak positions are at the correct 
wave numbers relative to the laser wave number. To finally arrive at 
the scale of Raman shift we subtract this wavelength form the others. 

A more careful treatment of the practical aspects and how to optimise the 
set-up can be found in Palsson [10]. 
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3 Statistical treatment of Raman spectra 

After the survey of the physical background in Section 2 we now turn to the 
statistical model. By working in the near-infrared wavelength area we min­
imise the number of fluorescencing subjects. Still there is much fluorescence 
left, and in order to make use of the Raman theory we must remove the 
fluorescence signal which is left. This can be done with different statistical 
techniques. 

The general solution can be thought of as a subtraction of fluorescence 
from the received spectra and this can be done in a number of ways. Moiser­
Boss et al. [9] showed that rejection of the fluorescence can be done both 
using shifted-spectra techniques and through filtering in the Fourier do­
main. Mahadevan-Jansen et al. [7] used a technique where they fit a fifth 
degree polynomial to the data with the Raman peaks excluded. The Ra­
man spectrum is then taken as the difference between the polynomial fit and 
a smoothed version of the measured spectrum. However, these papers do 
not at all deal with estimates of bias and variance of the resulting Raman 
spectrum. 

Another method, which takes variance and bias into consideration, is the 
nonparametric kernel regression method which will be used in this thesis. 
This technique will be used to estimate both the summarised spectra and 
the fluorescence part. Nonparametric kernel regression, cf. the books by 
Wand and Jones [16] or Fan and Gijbels [5], is a familiar smoothing method. 
We have chosen to work with this method since it is new and there exist 
well working programs which we can use. The method and the computer 
programs are thoroughly described in papers by Ruppert et al. [14, 13] and 
[11]. Nonparametric kernel regression has earlier been applied in physics in 
Lund concerning analysis of LIDAR (Light Detection And Ranging) data, 
cf. Bjorklund [1] and Bratt [2]. 

3.1 The statistical model 

In this thesis we model the received intensity signal Y(xi) at Raman shift xi 
[c~] as 

(1) 

where a(xi) is the standard deviation of Y(xi), c(xi) is a sequence of inde­
pendent observations with expectation zero and variance one, and m(xi) is 
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the expectation of Y(xi). The intensity Y(xi) will from here on be denoted 
by }'i. Since our signal constitutes of both Raman and fluorescence signals 
we model m(xi) as 

(2) 

where mR(xi) is the Raman signal and mp(xi) the fluorescence signal at Ra­
man shift xi. The solution to our problem will be the best possible estimation 

mR(xi) of mR(xi)· We estimate mR(xi) as 

(3) 

where m(xi) is the estimation of the summarised spectrum (Raman + fluo­
rescence), and mp(xi) is the estimation of the fluorescence spectrum. 

Our problem can now be split into two parts: 

1. Estimating m(xi): This is done using nonparametric kernel regression 

with local bandwidths. 

2. Estimating mp(xi): Also this is done with nonparametric kernel re­
gression, but this time with a global and large bandwidth. 

We start with a closer look at the nonparametric kernel regression method. 

3.2 Nonparametric kernel regression 

Decreasing noise in a set of data can be done through fitting a polynomial 
to it. This is a familiar technique but it can sometimes be too rigid. Fitting 
local polynomials to each point where we want to estimate the function might 
be more successful. 

In a grid of points a polynomial 

(4) 

of degree p is fitted to the data (xi, Yi) through an optimisation of the 
weighted least squares criterion 

n 

L {Yi- f3o- fJ1(xi- x)- · · ·- (Jp(xi- x)P}2 Kh(xi- x) (5) 
i=l 

with respect to ((30 , ... , (Jp), where Kh(xi- x) is the kernel used (see below). 
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The procedure of minimising (5) is repeated over an arbitrary grid of x­

values, not necessarily the measuring points Xi· Regarding ( 4) as a version of 
Taylors theorem, the first term (30 will give us an estimate of the regression 
function and the second term /31 the derivative in point x. 

The weighting function is called a kernel and is denoted by K ( ·). The 
width h of the kernel affects the amount of data that will be considered when 
we estimate the function at point x. The kernel K is often chosen to be a 
unimodal density function. Two popular kernel choices are the Epanech­
nikov and the normal density functions, cf. Figure 6. They both satisfy 

0.7 
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Figure 6: The Epanechnikov kernel, K(x) = i(l- x2 ) , -1 ~ x ~ 1 (solid) and 
-x 2 (2 

the normal density kernel, K(x) = e y'2; , (dashdotted). 

f~oo K(u)du = 1 and f~oo uK(u)du = 0. In this thesis we use the Epanech­
nikov kernel. If K(x) is our kernel then Kh(x) = (1/h)K(x/h), where h > 0 
is the bandwidth. 

The solution of (5) using matrix notation is the normal equations 

(6) 

where Wx is a matrix containing the weights, Xp,x is the design matrix con­
taining the measuring points and Y is a vector with the observations. More 
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precisely Xp,x is the matrix 

Xp,• = [ i 
(xn- x) 

Y = (Y1, ... , Ynf and Wx = diag{Kh(x1 -x), ... , Kh(xn -x)} is a diagonal 
matrix of weights; cf. Fan and Gijbels [5]. 

If we multiply (6) with the vector e1, which is a (p + 1) x 1 vector having 
1 in the first entry and all other entries zero, we get our estimate of the 
regression curve at point x as 

(7) 

If we are interested in the derivative at point x we have to estimate /31 as 

(8) 

where e2 is a (p + 1) x 1 vector having 1 in the second entry and all other 
entries zero. 

Before proceeding further into the world of kernel regression we shall make 
A A 

two more statements about (30 and /31. Considering the estimation as a linear 
function of the observed data }i, we realise that the variance of {30 can be 
expressed as 

V(r3o) = ef(XJ,x WxXp,xt1 XJ.xWx Vy WxXp,x(XJ.x WxXp,xt 1e1, (9) 

where Vy = diag{ a 2 (x1), ... , a2(xn)} is a diagonal matrix which contains the 
variances of the measurements. In the case when we are estimating the first 
derivative the variance becomes 

The discussion above of how to estimate the function m(x) depends on 
the bandwidth h, so do the properties of the estimator m(x, h,p). But how 
shall we choose our bandwidth? How can we compare different estimators? 
These are very relevant questions which are treated in the next section. 
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4 Bandwidth selectors 

When searching for suitable bandwidths to be used as described in Sec­
tion 3.2, we must ask which features we are looking for. The question is: 

- Are we searching for details, or rough structures? 
The answer to this question will decide which of two possible approaches 

we should use. If we are searching for rough structures, then it is very 
important that we remove bumps from our function. For example, if we are 
looking for the fluorescence in a spectrum containing both Raman peaks and 
fluorescence, then we are essentially looking for the rough structures in the 
function. This can be achieved by using a large and global bandwidth; i.e. 
we use the same bandwidth over the whole data set. In Section 4.2 these 
ideas are discussed in more detail. 

On the other hand, when we want to estimate the fluorescence plus Raman 
peaks in our spectra, it is important that we do not oversmooth the Raman 
peaks which contain the important information about the tissue. This esti­
mate can be generated using local bandwidths. The method is developed by 
Ruppert [11, 12] and will be discussed in the next section. 

4.1 The local bandwidth method 

The local bandwidth selector employs a local bandwidth at each point of the 
x-grid, so that at each point the Mean Squared Error, 

MSE(m(x)) = E(m(x)- m(x)) 2 = V(m(x)) + (E(m(x))- m(x)) 2 , (11) 

is minimised with respect to h. As the above equation shows the Mean 
Squared Error can be expressed as a sum of the variance of the estimator, 
V(m(x)), and the squared bias, (E(m(x))- m(x))2, where E(m(x)) is the 
expected value of the estimator. 

Both these terms contain unknown factors which have to be estimated. 
The variance part which is given in (9) contains the unknown variance func­
tion a2 ( x) and the squared bias, for which we use an approximative ex­
pression, contains unknown polynomial coefficients. The estimation of the 
variance function will be dealt with in Section 4.1.1 and after that we discuss 
the estimation of the bias in Section 4.1.2. 
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4.1.1 Estimating the variance function 

In order to calculate the variance of the estimator we have to estimate the 
unknown variance function a2(xi)· We first observe that our model 

contains the standard deviation a(xi)· By a normalisation of the squared 
residuals we can estimate a2(xi)· This is a very intricate procedure and for 
a more careful description of the technical details, see Ruppert [11]. The 
squared residuals from our observations are formed as 

(12) 

where m(xi, hm,P) is the estimate of the regression function using bandwidth 
hm. This means that in order to calculate the squared residuals we have to 
use a pilot estimate of m which is calculated with a user supplied bandwidth 
hm. The only restriction on hm is that it is sufficiently small, or else it will 
render bias to the residuals. 

Then we re-estimate musing local bandwidths where we use the residuals 
to estimate a(xi)· This procedure gives us a second estimate of m and 
using this estimate we can calculate new residuals. These new residuals 
are smoothed and they are then taken as the final estimate of the variance 
function a2(xi)· The estimated variance function is then plugged into (9) 
and (10). This gives us an estimate of the variance of the estimator of the 
regression function and its derivative. 

4.1.2 Estimating the bias 

An asymptotic approximate expression for our estimate when estimating the 
k:th. derivative at point x using bandwidth h is equal to: 

A (k) ( h ) hp+l-k hp+t-k m X, ,p ~Co+ Cp+l-k + ... + Cp+t-k , (13) 

as h --+ 0 and t --+ oo where t is the number of terms in the Taylor expansion 
for the bias; see Ruppert [11]. When estimating the function itself k is equal 
to zero and when estimating the first derivative k is equal to one. 

The terms after the first one in (13) represent the bias, so 

IfiAB(x, h,p) ~ Cp+l-khp+l-k + ... + Cp+t-khp+t-k. (14) 
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The c's are estimated through ordinary polynomial regression with the data 
set {(x, y) = (ho,j, m(x, h0 ,1,p)) : j = 1, ... , J}. That is, in a neighbourhood 
of h0 , where we want to estimate the bias, we construct a sequence { ho,j : 
j = 1, ... , J} where J is chosen so that the number of terms is for example 
four or five. Then we evaluate m(x, h,p) with these bandwidths. We can 
now estimate our unknown bias coefficients { c0 , ... , cp+t-d and also the 
approximate bias at each point. A thorough treatment of this procedure can 
be found in [11]. 

Having the estimates of the variance function and the bias we can express 
the estimated MSE(x; h0 ) as 

where k is the order of the derivative at point x using bandwidth h0 and 
Vy = diag{ 8"2 ( xt), ... , 8"2 ( Xn)}. This is a rough function of x and therefore - -we smooth this first version of the MSE to get a SMSE; i.e. an estimation 
of the Smoothed MSE. The optimal bandwidth is then chosen as the one -which minimises SMSE. 

The result of this bandwidth selection is that we in some sense have got an 
adaptive bandwidth which adjusts itself from point to point in order to follow 
the unknown function as well as possible. Two real benefits with this method 
are that we have got an approximate estimate of the bias and estimates of 
the variances of the regression function and its derivatives. 

4.2 The SiZer approach 

SiZer (Significant Zero crossings of the derivative) is a method which contrary 
to the traditional regression approach does not focus on the true underlying 
curve. The main goal is now to study a wide range of global bandwidths 
and for each bandwidth ask the question "which features/peaks are really 
there?". The method and the MATLAB code is developed by Chaudhuri and 
Marron [3]. 

The SiZer approach departs from the classical approach in two ways. 
Firstly we avoid the need of choosing a particular optimal bandwidth. In­
stead we simultaneously study a wide range of bandwidths. And secondly, 
the bias problem is ignored through shifting focus from the true underlying 
curve to the curve studied at different bandwidths. 
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The idea is closely related to the· scale space ideas from image analysis 
since different bandwidths bring out different features in the curve. In com­
puter vision where we for instance apply the wavelet transform to a picture, 
different scale space levels enhance different features. In our case the different 
bandwidths reveal different features, so the two areas certainly coincide. 

4.2.1 The SiZer map 

Our main idea is to create a picture which reveals the properties of esti­
mators generated by different bandwidths, all at the same time and in the 
same picture; i.e. we want to know which bandwidth suppresses or enhances 
different peaks. To do this we have to continue the analysis and consider the 
zero crossings of the first derivative of the regression function. 

The peaks are characterised by the fact that the derivative is zero on top 
of the peak and significantly different from zero on both sides with opposite 
signs. This can be tested by constructing confidence intervals for the first 
derivative. By defining m(l) (x, h, p) to be EmPl(x, h, p) we have ignored the 
bias problem. At point x a confidence interval for m(l) (x, h, p) is constructed 
as 

Imct>(x,h,p) = mPl(x, h,p) ± q · d(m(1l(x, h,p)), (16) 

where d(·) is the estimated standard deviation of ffi( 1l(x, h,p) and q an ap­
proximate quantile which will be discussed later on. 

There are two differences in the estimation procedures between this method 
and the method discussed in Section 4.1. One minor difference is that the 
normal density kernel is used in the SiZer approach and the Epanechnikov 
kernel in the local bandwidth selector. When estimating the regression func­
tion itself the relation between optimal global bandwidths for the normal 
density kernel and the Epanechnikov kernel is 1.719 · hnormal = 0.776 · hEpan· 

The bandwidths in the SiZer maps in this thesis are rescaled to those of 
the Epanechnikov kernel. Secondly, both methods use local smoothing of 
squared residuals when estimating a2(x). The methods are slightly different 
though, for further details see [11] and [3]. 

If the interval Imctl(x,h,p) is above zero the derivative is significantly dif­
ferent from zero with a positive sign ( + ), vice versa for the opposite case 
when the interval lays below zero (-). The third case is when the interval 
contains zero, then the derivative is not significantly different from zero. The 
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Figure 7: Example of a measured spectrum. (Integration time 100 s.) 

three cases imply that the function is increasing (t), decreasing (t) or non­
determined (--+). Actually the SiZer method deals with a fourth case and 
that is when there is a lack of data in areas where the estimation takes place. 

The SiZer map marks these four cases with colours, see Table 1. Figure 8 
gives an example of a SiZer map when SiZer is applied on our reference data, 

shown in Figure 7. Note that there exists no area where there are too few 

measurements. 

colour dark light gray darker gray 

m(x, h,p) t t --+ too few data 
fh(1l(x, h,p) + - 0 

Table 1: Description of the colours in a SiZer map. 

The quantile q in (16) can be chosen according to four different approaches. 
The first one is based on pointwise Gaussian quantiles, the second one and 

the third one are two variants of a bootstrap method and the fourth, which 
is used in this thesis (and in practice) since it is faster to compute, is based 
on approximate simultaneous Gaussian quantiles. Though, according to [3], 
if there is any doubt about what really is there, the two bootstrap methods 
should be tested. 
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Figure 8: The SiZer method applied on measurements in Figure 7. The lines are 
log(hEpan) = 2.5 (solid), log(hEpan) = 1.65 (dashdotted) and log(hEpan) = 1.25 
(dashed). 

4.2.2 How to use the SiZer map 

The SiZer map is a powerful tool when we are searching for peaks; i.e. when 
we are bump hunting. When comparing Figure 8 to Figure 7 we realise 
that the large peak at 958 cm-1 is significant only for bandwidths up to 
about h = 102 = 100. For larger bandwidths the peak is smoothed away. 
When h is large enough lm<ll (x,h,p) lays below zero for all x which implies 
that our function is decreasing; i.e. using large bandwidths will remove all 
features and bring out only the slowly varying parts. This is illustrated in 
Figure 9 where we have plotted the regression curve for three different global 
bandwidths. As can be seen there are no peaks when using the bandwidth 
hEpan = 102·5 = 316, but as we decrease the bandwidth more and more peaks 
become apparent. 

The conclusion is that when we are using small bandwidths many details 
become visible but when increasing the bandwidth these details disappear 
and we will only see the slowly varying parts of the function. This fact will 
be used when we estimate the fluorescence curve in the next section. 
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Figure 9: The regression curves when using the global bandwidths: hEpan = 

102·5 = 316 (solid), hEpan = 101.65 = 44.67 (dashdotted) and hEpan = 101.25 = 
17.78 (dashed). 

5 Estimation of summarised and fluorescence 

spectra 

In Section 3.1 we concluded that in order to estimate the Raman spectrum 
we need estimates of both the summarised spectrum and the fluorescence 
spectrum, that is 

where m(xi) is the estimate of the summarised spectrum and mp(xi) is the 
estimate of the fluorescence spectrum. These estimators will be treated in this 
section. From here on all our estimates will be calculated in the observations 
points Xi only. 

In order to calculate a good estimate of the fluorescence spectrum we have 
to remove the Raman peaks, which otherwise will influence the fluorescence 
estimation. This can be done using robust statistical methods which point 
out areas where the spectrum is larger than expected and replace these ob­
servations with upper limits, cf. Lindstrom [6]. 

Here we have developed two other methods in order to remove the Raman 
peaks. They both require an estimate of the summarised spectrum m(x) 
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which is discussed in Section 5.1. When this is done we have two alternatives 
of how to select the fluorescence points and they are both discussed in Section 
5.2. Having these points, we can estimate the fluorescence spectrum and this 
is discussed in Section 5.3. 

5.1 Estimation of summarised spectra 

In order to remove the Raman peaks we need an estimate of the summarised 
spectrum m( x). This is calculated using the local bandwidth method de­
scribed in Section 4.1. We have chosen this method since the estimate m( x) 
will follow the original spectrum closely. 

According to (7) and (9) the estimator of the summarised spectrum and 
the variance of this estimator are 

m(x, h,p) = ef(XJ.xWxXp,x)-1XJ.xWxY, (17) 

V(m(x, h, p)) = ef (XJ.xWxXp,xt 1 XJ.xWx Vy WxXp,x(XJ.x WxXp,x)- 1et, 
(18) 

where p = 2. The kernel matrix Wx does not only depend on x but also 
on the local bandwidths. The local bandwidth method gives us an estimate 
of the variance function, a 2 (x), as well as an estimate of the bias, cf. (14). 
The variance function and the bias of our estimated reference spectrum are 
shown in Figure 10. 

We estimate a larger variance in the peak neighbourhoods. This is due to 
the fact that our estimators can not follow the curve closely enough at these 
points. This is also is revealed in the bias plot where the bias is large in the 
peak neighbourhoods. 

Figure 11 (a) shows the estimated regression function when applying 
the local bandwidth method on our reference spectrum. The estimated 
variance function a2(x) is directly used in (18) where Vy is replaced with 
Vy = diag{8'2 (x1 ), ... , 8'2(xn)}, and this equation gives us an estimate of the 
variance of our regression function, cf. Figure 11 (b). 

Figure 12 shows the sequence of bandwidths which were used when esti­
mating the summarised spectrum. Evidently the bandwidth decreases when 
we enter a neighbourhood of a peak. This is most obvious around the largest 
peak at 958 cm-1 . The decrease in bandwidth is explained by the fact that 
we aim at enhancing the peak. The use of a large bandwidth implies that we 
consider data points which are not in the immediate neighbourhood of the 
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Figure 10: (a) Estimated variance function o-2(x) and (b) estimated bias in our 
reference spectra. 

peak and these data points will contribute to the fading of the peak. 

5.2 Selection of fluorescence points 

We have developed two methods which will remove the Raman peaks and 
keep only those points where the fluorescence is undisturbed. The first 
method is the most obvious. We simply let the user herself decide which 
regions will be used when estimating the fluorescence spectrum. The idea 
behind this method is that the physicist often knows where the suspected 
Raman peaks are located, though she hardly can see them. The manual 
method is illustrated in Figure 13 (a). 

The second method is an automatic data analysis approach. It starts 
with a pilot estimation of the fluorescence curve mP,F(x) using a large global 
bandwidth and p = 1. The bandwidth might be decided from the SiZer map. 
As an alternative to this we can choose the largest bandwidth of the sequence 
of local bandwidths which were calculated when the summarised spectrum 
was estimated. In this thesis we make use of the latter choice. By choosing 
a large global bandwidth we will smooth away all Raman peaks as described 
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Figure 11: (a) The estimated reference spectrum, m(x, h,p), using the local band­
width method and (b) the estimated variance. 
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Figure 12: The local bandwidths which are used when estimating the summarised 
spectrum. 
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in Section 4.2. 
Having this pilot estimation ih P,F ( x) and the estimation of the summarised 

spectrum m( x) a pilot estimation of the Raman spectrum can be calculated 
as 

(19) 

where P denotes that this is a pilot estimation. We then check where the 
difference is less than some fraction (1/10 in Figure 13) of the greatest dif­
ference. The points where this is fulfilled is chosen to be our fluorescence 
points. This procedure, which is illustrated in Figure 13 (b), brings us to 
approximately the same state as the first method. 

400 600 800 1 000 1200 1400 1600 1800 
Raman shift [1/cm] 

(b) 

4 

400 600 800 1 000 1200 1400 1600 1800 
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Figure 13: Fluorescence points chosen accordingly to the two methods. (a) manual 
procedure, (b) automatic procedure. 

As Figure 13 shows, there is no big difference between the two procedures 
for this data set. Though, we have to remember that this may not be a 
typical spectrum, and in reality we have to decide from time to time which 
measuring points should be included. 
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5.3 Estimation of fluorescence spectra 

With the chosen fluorescence data points we estimate the fluorescence spec­
trum. This is done with the aid of the nonparametric kernel regression 
method described in Section 3.2. We estimate the fluorescence as 

(20) 

where p = 1 and h is a large global bandwidth. It is crucial that the band­
width is large enough so that we can bridge the gaps, or else the estimate at 
some of those points will be equal to zero. I is a diagonal matrix whose ele­
ments indicates which points should be included when doing the estimation. 
More precise I = diag{ i1 , i 2 , ... , in} where 

. { 0 if the l :th point is not a fluorescence point, 
Zz = 

1 if the l:th point is a fluorescence point. 

The estimated fluorescence curve is shown in Figure 14 (a). Though using 
p = 1 results in a somewhat piecewise linear estimate, we will use mp ( x, h, p) 
as our fluorescence estimate when we calculate the variance of the fluores­
cence. The variance of the fluorescence spectrum is calculated as 

V(mp(x, h,p)) = ef(XJ.JWxXp,x)-1 XJ.xiWx VyiWxXp,x(XJ.xiWxXp,x)- 1el, 

(21) 

where Xp,x' Wx and Vy are the same as in (9). The estimated variance is 
shown in Figure 14 (b). In this figure we have chosen the fluorescence points 
with the manual procedure. 

In this thesis we do not deal with an estimate of the bias for the fluores­
cence estimator. The fact that there are no peaks to be estimated suggests 
that the bias of the fluorescence estimate is approximately equal to zero and 
might be ignored. The reason for this is that the bias is approximately equal 
to 

when p = 1. Since the fluorescence curve is slowly varying the second deriva­
tive function, m ~) ( x), is almost zero. This implies that the bias of the 
fluorescence curve might be ignored. 
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Figure 14: (a) The estimated fluorescence spectrum mp(x, h,p) and (b) the esti­
mated variance of the fluorescence estimator, V(mp(x, h,p)). 

5.4 A simulated fluorescence spectrum 

If we ~ant to, we can adjust the spectrum in such a way that it does not 
look too linear. This is done by smoothing a simulated fluorescence spectrum. 
The simulation is done by adding a noisy signal to mp(x), that is: 

simulated fluorescence= mp(x) + 6-(x). c(x) 

where 6-( x) is the square root of the estimated variance function, which was 
calculated when we estimated the summarised spectrum, and c(x) is a se­
quence of Gaussian independent observations with expectation zero and vari­
ance one. 

Figure 15 shows us how a smoother fluorescence spectrum is developed by 
disturbing the piecewise linear fluorescence spectrum and then by smoothing 
this disturbed spectrum which is taken as our smoothed estimate of the 
fluorescence spectrum. 

The simulated fluorescence spectrum can be used to get a smoother result 
when we subtract the fluorescence from the summarised spectrum as in (3). 
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Figure 15: Example of how a smoother fluorescence curve comes up. (a) The 
piecewise linear fluorescence spectrum, (b) the simulated fluorescence spectrum 

and (c) the smoothed fluorescence spectrum. (The fluorescence points are chosen 

through the manual procedure.) 

In this example there is no significant difference between the two fluores­
cence curves, this depends of course on the spectrum at hand. 

6 Estimation of Raman spectra 

This section will discuss the estimation of the Raman spectrum, which has 
been our main goal. In Section 3.1 we stated that the Raman spectrum is 
the difference between the summarised spectrum and the fluorescence. This 
imposed the following model: 
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where m(x) is the estimated summarised spectrum and mF(x) is the esti­
mated fluorescence spectrum. The difference between these two will give us 

the estimated Raman spectrum mR(x). The estimated Raman spectrum in 
our reference spectrum is shown in Figure 16 (b). 
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Figure 16: (a) The estimated summarised spectrum (solid) and the estimated 
fluorescence spectrum (dashdotted) and (b) the estimated Raman spectrum. Note 
the difference in intensity. 

In the previous section we developed the tools needed to estimate the 

fluorescence spectrum. Having the estimators m(x) and mF(x) and their 

estimated bias and variance, we can continue with the estimation of the 

Raman spectrum. The major effort will be spent on how to compute the 
variance of the Raman spectrum, since this consists of both the variances of 

the summarised and the fluorescence spectrum and the covariance between 
these two. This will be dealt with below. 
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by this fact. For example there may be weak peaks for which the derivative is 
zero between two areas where the derivative is negative. The weak peak area 
is defined as an area where the derivative changes sign from zero to negative. 

According to these definitions the peak areas in Figure 21 are shown in Ta-
ble 2. The peak at 958 cm-1, which arises from hydroxyapatite Ca10 (0H)2(P04 )6, 

Strong peak areas 
419.8 - 440.6 
561.3 - 565.8 
581.6 - 595.0 
843.7- 847.9 
954.5 - 958.6 

1064.0 - 1070.0 
1272.4 - 1279.8 
1445.0 - 1450.2 
1640.1- 1652.6 
1771.2- 1782.7 

Weak peak areas 
284.3 - 286.7 
445.5 -447.5 
595.0 - 597.3 
721.0 - 723.4 
738.5- 740.6 
869.0- 871.1 

1849.8- 1851.1 

Table 2: The different peak areas in Raman shift [1/cm]. 

should be located at 960 cm-1 accordingly to the literature. In the original 
data sequence the largest observation is at 958.58 cm-1 and the proposed 
peak interval is 954.5 - 958.6 cm-1 , cf. Table 2. It seems as if the peak area 
is biased. However, note that the definition of peak areas is based on simple 
pointwise confidence intervals for strongly correlated estimates. The statis­
tical analysis might be improved using some form of simultaneous quantiles, 
cf. Marron [4]. 

34 



8 Conclusions 

This thesis indicates that the local polynomial regression method is useful 
when rejecting fluorescence in Raman spectroscopy and when estimating Ra­
man spectra. Contrary to previous techniques, cf. (7] and (9], this method 
gives us an estimate of how large the variance and the bias are. They were 
both found to be larger in the peak neighbourhoods. Entering a peak area 
implies a larger variation in our spectrum and here it is more difficult to 
estimate the function. 

Since we aimed at investigating the possibility of using nonparametri­
cal kernel regression methods when estimating Raman spectra, and not at 
searching for the optimal parameters to be used, the results shown here might 
be improved. There are several parameter choices which have to be consid­
ered. Two of them are the polynomial degrees used when estimating the 
summarised and fluorescence spectra. Also the amount of smoothing used in 
the different steps of the algorithms should be further considered. 

In this thesis we used p = 2 when estimating the summarised spectrum 
since there is a lot of curvature due to the Raman peaks. When we estimated 
the fluorescence we used p = 1 since this spectrum does not contain any peaks 
and is a slowly varying curve. Are these assumptions good, or do there exist 
even better choices? 

The SiZer map proved to be a helpful tool when estimating the fluorescence 
spectrum. It can also be used when localising Raman peaks. In this thesis we 
developed a similar method in order to estimate the peak areas. Note that we 
do not estimate the derivative by taking the derivative of the estimator of the 
spectrum, but with /31 , cf. (8), which is a better estimator of the derivative. 

Another way to improve the peak areas and the confidence intervals upon 
which the estimates are based, is to improve the statistical analysis using 
some form of simultaneous quantiles, cf. Marron (4]. 

A challenge for future research is to find appropriate confidence regions 
for simultaneous estimators of peak position and peak height. 
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