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1. INTRODUCTION TO SPARKS AND PLASMAS 

This first chapter contains some introductory material which is 

necessary for the understanding of the subsequent chapters. In the 

first section the process of a spark discharge is described 

qualitatively. This is only a very rough outline intended to give a 

general feeling for which phase of the spark development the results 

presented in Chapter 4 belong. The essence of Sections 1.2 and 1.4 is 

that it is difficult to obtain a description of a plasma in general 

but it is very easy if the plasma is in thermodynamic equilibrium. It 

is also an introduction to the possible processes in a plasma, of 

which the radiative processes is described in Section 1.3. The 

considerations in these three sections are necessary as a background 

to the concept of local thermodynamic eqilibrium which is introduced 

in Section 3.1. 

1.1 Qualitative description of a spark discharge 

A spark can be defined as a very short-lived electrical breakdown, 

in which a highly ionized plasma is produced from a weakly ionized 

gas. Its usefulness lies in the fact that it transforms electrical 

potential energy to highly concentrated thermal energy. Many different 

physical processes are involved in a spark breakdown depending on the 

temperature, pressure and the energy input, and they interact with 

each other in several complicated ways, but at least a quantitative 

description can be made without going into too much detail. To this 
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external circuitry limits the current or when the spark channel 

expansion limits the current density. 

2. The hydrodynamic stage 

A hot, luminous and highly ionized plasma channel has now been 

formed. The resistive heating also increases the pressure and, 

consequently, the channel expands radially outwards. The rate of this 

expansion is of the order of that of the thermal velocity of the 

atoms, and since the temperature in the spark channel is very high, 

the channel expansion is greater than the speed of sound and thus 

produces a shock wave. The temperature is higher between the channel 

and the shock front than in the surrounding gas, and very much higher 

in the channel. The gas density is low in the conducting channel and 

the bulk of the gas mass is pushed radially outwards. The energy of 

the channel is also dissipated by diffusion of the charged and excited 

particles, by thermal conduction and by radiation losses. 

3. The cooling stage 

When the energy supply is cut off the spark temperature falls, and the 

gas is deionized if the surrounding gas is inert. But if the 

surrounding gas consists of a combustible mixture a combustion wave 

can be on its way out from the spark. How combustion starts is still 

not quite clear. 

This work is concerned with stage two above. Nothing will be said 

about the hydrodynamic properties of the plasma, only its atomic 

properties will be dealt with, although the interplay between these 

two domains is very important for an understanding of the behaviour of 

the spark. The atomic properties are amenable to experimental studies 

through the use of spectroscopic methods. Absorption and emission 

spectroscopy give quantitative knowledge of. the species forming the 

plasma, their distribution over different quantum states and different 

ionization stages. Line shape measurements give knowledge of the 

electron density, gas temperature and of the ion temperature. It is 

important that the method of observation does not disturb the spark. 
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between an ion, Sz' with charge Ze and an electron to form a new ion 

S 1 in a hydrogen plasma or in a hydrogenic plasma (reference [4]). z-

a) Collisional ionization 

The ion S 
1 

is in quantun state p, and the rate coefficient for the z-
reaction is K(p,c 1

), where c 1 is an energy level in the continuum of 

the free electrons, such that nenz_
1 

K(p,c 1
) is the number of 

collisional ionization events that occurs in a unit volume element per 

second. 

b) Three-body recombination 

S + e + e + S 
1
(p) + e 

z z-

which is the inverse of (a) and it has the rate coefficient K(c 1 ,p). 

c) Collisional excitation, with the rate coefficient K(q,p) 

d) Collisional de-excitation 

which is the inverse process to (c) and it has the rate coefficient 

K(p,q) 

e) Photoionization 

S 
1
(p) + hv + s + e z- z 
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Figure 2.1. Schematic energy level diagram for a non­

hydrogenic species of charge z-1 showing singly and 

doubly excited states, taken from reference [4]. 
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The processes which are caused by atom-atom, atom-ion and ion-ion 

collisions are not included in the listing above, since their rates 

are much smaller than those for collisions with electrons in a plasma 

which is more than a few percent ionized. 

The mechanisms above must be coupled to the radiation field in the 

plasma. The equations describing the field are quite complicated, but 

some solvable cases exist. In the next section introductory comments 

will be made about the radiation field. 
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There are three major types of radiation. 

1. Bound-bound radiation 

This type of radiation is emitted when an electron makes a 

transition between levels in an atom or an ion. The levels do not 

necessarily correspond exactly to those of an isolated atom, and the 

line profiles are also different. The emitted frequency v is given by 

hv = E(p) - E(q) ( 3 .1) 

where E(p) is the energy of quantum state p. 

2. Free-bound (or recombination) radiation 

This type of radiation is emitted when a free electron, i.e. an 

electron in the continuum, recombines with an ion. The electron may 

have any energy, and the radiation is therefore continuous; however, 

there is some structure due to the discrete nature of the bound states 

(absorption edges). If m is the electronic mass and v its velocity e 
the frequency of the emitted radiation is given by 

1 
hv = E{~) + 2 mv 2 

- E(p) (3.2) 

where E(~) is the ionization energy. 

3. Free-free radiation 

Electronic transitions between two free energy levels can also 

occur in a plasma. Classically this is because 

radiates when its velocity is changed. The two most 

a moving charge 

common types of 

this radiation are bremmstrahlung, caused by the acceleration of 

charged particles in the electric field of other charged particles, 

and cyclotron spectra which arise from charged particles gyrating in a 

magnetic field. The major part of the bremmsstrahlung comes from 

electron-ion collisions, and it has a continuous spectrum. The 

cyclotron spectrum, on the other hand, is discrete, for 
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The solution of equation (3.8) with the boundary condition that no 

radiation is incident at the boundary x = D, is 

't'(v,D) 
I(v,o) = I S(v,x) exp{- t'(v,x)} d't''(v,x) 

0 
(3.9) 

This is the radiation intensity that emerges at x = 0 from a plasma of 

depth D. This integration is quite complicated to perform. However, 

the result in some limiting cases may be stated explicitly. If the 

optical depth is small, that is 

't'(v,x) « 1 

then the intensity becomes 

't'(v,D) 
I(v,O) = I S dt 

0 

D 
= I J(v,x)dx 

0 

(3.10) 

(3.11) 

This is known as the optical thin approximation, which is valid 

when the plasma is optically thin. On the other hand, if the optical 

depth is very large, an integration by parts of equation (3.9) gives 

I(v,O) dS 
I 't'=O + 

d2S 
l't'=O+ 

= S(t=O) + d't' 
d't'2 

... (3.12) 

and comparing with 

S('t'=1) 
dS 

I 't'=O + 
1 d2S 

lt=O+ 
= S ('t'=O) + d 

2~ 
... \) t (3.13) 

obtained from MacLaurin's theorem, it is seen that the intensity is 

roughly equal to the source function at an opt-ical depth of t=1, if 

the higher order terms are small. In the last case the plasma is said 

to be optically thick. 
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emission and the probability per unit time that an atom emits a photon 

by this process is 

B(p,q) I(v) (3.14) 

where I(v) is the intensity of the radiation field 

The total emission probability is then equal to 

A(p,q) + B(p,q)I(v) (3.15) 

and the absorption probability per unit time is B(q,p)I(v). If 

equilibrium conditions prevail, the principle of detailed balance may 

be invoked, and using the definitions above yields 

n(q)B(q,p)I(v) = ( A(p,q) + B(p,q)I(v) ) n(p) (3.16) 

where n(q) is the number density in state p. 

But in thermodynamic equilibrium, the densities in different quantum 

states are governed by the Boltzmann distribution 

n(p) = g(p) exp { hvpq } I1TQT grqy - kT ( 3 . 17) 

and the radiation intensity is given by Planck's radiation law 

I(v) __ 2hv
3 { hv } _ 1 )-1 7( exp kT (3.18) 

Combining these relations leads immediately to 

B(p,q) = g(q) B(q p) 
grpT ' 

(3.19) 

and 
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absorbtion and emission coefficients will depend on the number 

densities in various quantum states and the atom or ion involved. 

The situation is quite the opposite if the plasma happens to be in 

thermodynamic equilibrium. For a hot gas or a plasma to be in 

thermodynamic equilibrium it needs to be enclosed in a cavity with 

constant wall temperature. Then its physical state can be expressed by 

a finite number of thermodynamic variables, for instance the 

temperature, the pressure and the concentrations of its constituents. 

The temperature then gives the distribution of energy of any 

particular kind according to the Boltzmann distribution law 

= 

where n is n 
gn is 

E n is 

k is 

g E -E 
n { n m exp - ~ } 

gm 

the number density in energy level n 

the statistical weight of level n 

the energy of level n 

Boltzmann's constant 

(4.3) 

In this case, for the number density in different energy states, the 

distribution over different ionization stages will be given by the 

Saha equation, the law of mass action for ionization (formula 

(3.3.20)). The velocity distribution for electrons, atoms and ions is 

then given by the Maxwell distribution 

where m is the mass of the particle. a 

(4.4) 

The temperature of all the distributions is the same. The principle of 

detailed balance implies that in thermodynamic equilibrium the rates 

of the inverse processes in Section 1.2 are the same. Also, a 

radiative equilibrium must prevail, and then the intensity of the 

radiation is given by Planck's formula for radiation in a black-body 

cavity 
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2. THE INTERPRETATION OF INTERFEROGRAMS 

One of the most useful experimental techniques to obtain 

information about the physical state of a spark is that of optical 

interferometry. To use electromagnetic radiation as a probe does not 

disturb the spark plasma, and the optical frequencies employed make it 

possible to observe the high electron concentrations that exist in the 

spark. The different diagnostic methods used in plasma physics are 

described in reference [7], and in particular the use of 

interferometry is described in references [19] and [20]. When two­

wavelength interferometry is employed, the different frequency 

dependence of the refractivity of the plasma components permits a 

simultaneous determination of the concentrations of "particles" 

(molecules, atoms and ions) and that of electrons. Many such 

experiments have been performed on sparks (e.g. references [21] and 

[22]). In particular, the results from the experiment carried out by 

Alden et al. (reference [1]), in which ultra-short, high-current 

sparks were produced in a nitrogen atmosphere, will be used in the 

numerical calculations in this report. The question of how to 

interpret the interferometric images recorded in this experiment, and 

how to calculate the electron and particle concentrations from them 

will be treated in this chapter. 

The outline of the chapter is as follows. Section 2,1 deals with 

the relation between the fringe shifts and the number densities of 

electrons and particles, and Section 2.2 describes how this integral 

equation is numerically inverted for a cylindrically symmetric spark. 

To use this expression the refractivities of the plasma components 

must be known, and this will be the topic of Section 2.3. Finally, in 



]l-1 = I: K.n. 
i 1 1 

where Ki is the specific refractivity of component i and 

n. is the number density of component i. 
1 
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( 1. 3) 

In the case of the atmosphere consisting of a single species diatomic 

gas, this can be written as 

]l-1 = K n + K n + Kano+ K1n1+ K2n2 + •.. ( 1. 4) e e m m 

where the subscript e denotes electrons 

m II molecules 

a,O II atoms 
II ions of charge -1 

2 II ions of charge -2 

If the interferometric measurement of the refractive index is made 

with the gas at room temperature 

reference there will be negligible 

ionization. The expression for the 

and atmospheric pressure as a 

molecular dissociation and 

reference refractive index will 

then be 

K n m u ( 1. 5) 

where the undisturbed molecular number denisty, nu, is calculated from 

the ideal gas law to be 

n = 9.657 x 10 18 p[torr] 
u T (K) 

( 1. 6) 

where p and T are the pressure and temperature, respectively, in the 

undisturbed atmosphere. 

Combining formulae (1.4) and (1.5) gives the expression for the 

difference in refractive index as 



and 

dx r dr = ( 2 2) 1/2 r -y 

X = (R2-y2) 1/2 

X 

Figure 2.1. Geometrical relationships between the 

variables in the text. 
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(2.2) 

(2.3) 

Inserting these into equation (2.1) and using the symmetry about the 

y-axis yields 

L\F(y) 
2 R L\)l(r) r 

= f dr I ( 2 2) 1/2 y r -y 
(2.4) 

Equation (2.4) is one of the forms of an Abel intergral equation. 

If )l(r) is assumed to be equal to zero for r>R, then it is possible 

to invert equation (2.4) analytically to give 
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described. 

Equation (2.6) can be divided into two parts 

R AF(y) y F(r) = 2 f dy 
( 2 2) 1/2 r y -r 

(2.7) 

and 

A)l(r) X dF(r) 
= - 2n r --err- (2.8) 

The method requires that the relative fringe shift values should be 

measured at equidistant intervals, i.e. at the points 

y = nil n 

where the different n are integers in the range 

and the upper bound given by 

R 
N = K 

(2.9) 

(2.10) 

(2.11) 

Consequently, the Abel-inverted fringe shift values will then be 

calculated at the points 

r = nA n 
(2. 12) 

From the measured relative fringe shift values, AFn' a fringe shift 

function, AF(y), is now constructed by assuming that this function can 

be approximated by second-order polynomials between the measured 

points 

AF(y) = a + 
n 

when (2.13) 
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Equation (2.17) is now substituted into equation (2.8) and the 

result is 

ll]l(rk) = 
A dF(k) 

- 2nll2k ~ = 

(2.18) 
A 

(Bk+ 2Ckk
2

) = - 7rll 

The combination of the two coefficients, Bk and Ck is of the form 

r ~ ak AF when k ;;. 2 n=k-2 n n 
Bk+ 2C k2 = N 

(2.19) k when k < 2 
- E SknAF n 

n=O 

where the akn coefficients are calculated numerically and depends on k 

and n through the akn coefficients, and they are independent of the 

value of N. 

Combining equations (2.18) and (2.19) gives the final formula, the 

Abel inversion formula 

A 
N 

7rll E SknllFn when k ) 2 
L'lllk=lq.t(rk) = n=k-2 (2.20) 

A 
N 

7rll E ak aF when k < 2 
n=O n n 

In the coefficients Skn lies the entire process of integration, least­

squares fitting and the final differentiation. The values of the Skn 

coefficients are presented in Table 2.1. 

The four-figure accuracy of the coefficients is sufficient because, 

as well as the result of the inversion being insensitive to small 

random errors in the L\F values, the result is also insensitive to 
n 

small rounding-off errors in the akn values. 
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Barr recomends that this method be used when the uncertainty in the 

input data is of the order of one percent. 

Finally it should be mentioned that because the Bkn coefficients 

are obtained by fitting the F(k) polynomial (equation (2.17)) to a 

gaussian curve, the final values of the inversion for small k are 

smaller than the real values and in the wing (high k) the resulting 

values are slightly higher than the real values. 

2.3 Refractivity of the plasma components 

In the 

variation of 

preceding section the 

the refractive index 

procedure for 

as a function 

calculating the 

of the radial 

coordinate from the measured fringe shift values was outlined. Using 

equation (1.3) it is then possible to calculate the number densities 

of some of the plasma components, if the refractivities are known and 

additional assumptions are made about the state of the plasma. The 

expressions for the required refractivities of nitrogen and free 

electrons will be presented in this section. The material is collected 

from references [19], [20], [26] and [27]. 

Both classical and quantum physics agree on the expression for the 

refractive index 

ll-1 = 

where n(l) 

m e 
flk 

wlk 

2 e 
3e 0me 

E n(l) E 
1 k 

if 

is number density of atoms in quantum state 1 

the electronic mass 

the oscillator strength for transitions between 

quantum states 1 and k 

the angular frequency of the line corresponding to 

the transition from 1 to k 

(3. 1) 
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The refractivity for nitrogen atoms and ions can be expressed in the 

same way, with other values of the constants A. and B., but since they 
1 1 

are not needed in the subsequent treatment, their values will not be 

given here. It is sufficient to know that the ratio of the atomic 

refractivity to the molecular refractivity is 

K a 
R = K ::: 0.63 

m 
(3.4) 

for nitrogen. R is assumed to be independent of the wavelength. 

The dominating contribution to the plasma refractivity comes from 

the free electrons. If the angular frequency of the impinging 

radiation is much greater than the electron plasma frequency 

w = p 
(3.5) 

then the refractive index of the free electrons is 

This 

ll - 1 e 

has 

e2 1 = K n = n e e - 2e: 0me --;? e 

2 = c n X e e 

= - 4 . 4 8 x 10- 1 
" n [em-3] ( X [em J ) 2 

e 

(3.6) 

the opposite sign to the atomic and moleculular 

refractivities and a much stronger wavelength dependence than they 

have. The refractivities for nitrogen molecules, atoms and free 

electrons are shown in Figure 3.1 
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(llFk)1 - j.lk 1 
' 

and k = 0' 1 '2' ... '20 

(llFk)2 - j.lk 2 
' 

where the numerical subscripts denote the wavelength. These can now be 

used to express the particle number densities according to equation 

( 1 • 7) , as 

(4.1a) 

(4.1b) 

Dividing these equations by K . (i=1 and 2, respectively), using m, 1 

relation (3.4) and assuming that the refractivities for atoms and ions 

are approximately the same, i.e. 

(4.2) 

give the equations 

Llj.lk 1 K n 
' = 

e, 1 e,k + n - n + R(no k+ n, k+ .... ) K m, 1 
K m, 1 m,k u ' ' 

(4.3a) 

Llj.lk 2 K n 
' = 

e,2 e,k + n - n + R(no k+ n, k+ .... ) K m,2 K m,2 m,k u ' ' 
(4.3b) 

Dropping the second subscript on the molecular refractivity, since its 

wavelength dependence is very weak, and using the notation 

llNk= n - n + R(n0 k+ n1 k+ .... ) m,k u , , (4.4) 

and solving for n and llNk yields the expression for the electron e,k 
number densitiy as 
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Figure 4.2. The particle number density versus radial 

distance for different times in sparks in nitrogen, 

taken from reference [1]. 
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In Figure 4.2 the vacuum value is indicated. The distressing fact that 

the values of ~N are below this level is explained by the fact that 

the expressions for the refractivities are not correct for the 

temperatures of the innermost regions of these sparks. 

Alternatively, the order of Abel inversion and the algebraic 

manipulation could be reversed. In equations (4.5) and (4.6) the 

difference in refractive index, ~~' should then be replaced by the 

relative fringe shift, ~F, and the expressions on the right-hand side 

should then be Abel-inverted. This might lead to different values of 

the concentrations due to numerical effects in the computations. 
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3.1 The concept or Local Thermodynamic EQuilibrium 

The most general way to obtain a description of the state of the 

spark plasma would be to set up the appropriate rate equations, 

exemplified in Section 1.4, and then to solve this system of 

equations. The solution could then be correlated with the experimental 

results to give the values of important physical parameters, such as 

the temperature or the number densities in different ionization 

stages. However, since most of the rate coefficients are not 

sufficiently well determined and the computational difficulties 

forbidding, especially the treatement of the radiative transfer, this 

approach would not yield any useful results for a nitrogen plasma. 

If the spark could be considered to be in thermodynamic equilibrium 

at each instant it would be possible to obtain expressions describing 

the state of the plasma. But all laboratory plasmas loose energy 

through radiation and heat conduction to their surroundings and, 

consequently, cannot be in complete thermodynamic equilibrium. 

However, if some conditions are fulfilled, which will be stated 

explicitly in Chapter 5, the state of the spark can be very near that 

of complete equilibrium. This state is called Local Thermodynamic 

Equilibrium, in the following abbreviated to L.T.E. This concept of 

L.T.E. comes from plasma spectroscopy which deals with the radiation 

that is emitted from plasmas. In the book by Griem (reference [4]) 
L.T.E. is described thus. "Whenever L.T.E prevails, the densities in 

specific quantum states are those pertaining to a system in complete 

thermodynamic equilibrium, which has the same total (mass) density, 

temperature, and chemical composition as the actual system." (p. 130). 

With this very useful concept it is possible to obtain information 

about the state of the plasma without having to resort to complicated 

computations, and if the conditions for L.T.E are found not to hold, 

the results could serve as a first approximation to the non­

equilibrium state that then exists. 
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of free electrons should be so high that collisions involving 

electrons will dominate over the radiative processes. The fulfilment 

of this condition is equivalent to the electrons having a maxwellian 

velocity distribution, equation (1.4.4) with the temperature, T, 

replaced by the the kinetic temperature of the electrons, T . This new e 
temperature is essentially a parameter in the velocity distribution of 

the electrons, and only has a formal connection with the meaning of 

temperature in real life. The requirement that the electrons should be 

in thermal equilibrium with each other imposes new conditions on the 

spark; conditions that are not only local. They are that the mean free 

paths for electronic collisions should be much smaller than the 

geometrical dimensions of the plasma, and that the time between 

collisions must be short compared with other characteristic times, 

e.g. the time for particle heating and containment. Usually, the 

electron-electron mean free path and collisional relaxation times 

follow these prescriptions. 

The atoms and ions may also have a maxwellian velocity 

distribution, but their kinetic temperatures need not be the same as 

the electronic kinetic temperature. For L.T.E. to hold, the kinetic 

temperatures should not be to different, say within 5% of each other. 

For plasmas which are not in L.T.E. especially the ions can have 

velocity distributions which are not thermal. Instead, the average 

kinetic energy W. of any particular ion i is then a function of its 
1 

charge Z and mass M, i.e. 

W. = f(Z,M) # kT 
1 e ( 1. 1) 

The function f can be determined experimentally from the Doppler 

widths of the spectral lines. The function reveals something about the 

power spectrum of the electric fields accelerating the ions, and this 

depends on the general dynamical behaviour and the 

processes in the plasma (reference [29]). 

relaxation 

The radiative effects are assumed to be negligible when the plasma 

is in a state of L.T.E. The populations of quantum states are 

completely determined by collisional effects alone and, in rate 

equation language, the equations of radiative transfer are uncoupled 
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For a low density, optically thin plasma the photoexcitation 

processes are not important, and the radiative decay rates dominate 

over collisional decay rates. The electron densities are too low for 

L.T.E. or partial L.T.E. to exist, but another kind of equilibrium or 

quasi-steady state may be set up. The population of the excited levels 

will now be governed by an approximate equilibrium between the 

collisional excitation and the spontaneous emission processes. These 

are the conditions which exist in the solar corona, hence the name for 

this state is coronal equilibrium. For this state the thermodynamic 

equilibrium relations are inapplicable. According to Wilson [29] the 

populations of the levels below the level p (the thermal limit) in the 

partial L.T.E. situation can be calculated using this approximation. 

161 

16 

r. ·64ooo ·K 1 

l 
~-:2000"K\ l 

\ I 

\~ I 

r. -16ooo :K l 
--- Saha equilibrium value (oc n;1

) 

----Coronal equilibrium value 
(mdependent of n.l 

Figure 1.1. Illustration of the relation between 

the L.T.E. domain and the coronal domain for an 

optically thin hydrogen plasma, from reference [30]. 

For non-thermal plasmas the concept of temperature becomes 

questionable, or even meaningless, since the energy is not distributed 

over the different excited states according to the Boltzmann 

distribution. Neither are the velocity distributions maxwellian, nor 

is each collision process any longer balanced by its inverse process. 
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physics see references [31] and [32] .) The quantities which can be 

considered as known from the beginning are the total number densities 

of the various elements, Ni' and the electron temperature, Te. The 

thermodynamic potential which has an extremum for an equilibrium 

system with fixed volume and mass, i.e. fixed density, is the free 

energy, F. The connection between the free energy and the atomic 

properties, which will be the starting relation for the derivation of 

Saha's equation, is 

F = - kT ln Q e 

where k is Boltzmann's constant 

Q is the total partition function for the system 

T is the electron temperature e 

(2. 1) 

The electron temperature should be used here because the equilibrium 

is maintained by collisions with electrons 

In the limit of no interaction between the plasma particles, except 

the necessary electron-ion collisions, equation (2.1) can be written 

(2.2) 

where the subscript "fr" and denotes no interactions. The total 

partition function Q fr is the product of the partition functions of 

the individual particles in the system, in this case an atom and the 

ions formed from the atom and the free electrons 

z 
0fr = Qe II Qi (2.3) 

i=O 

where Qe is the partition function for free electrons 

Qi is the partition function for ions in ionization 

stage i 

z is the maximum ionization of the atom 



The atomic and ionic partition function is 

N. 
(U.) 1 

1 

N.! 
1 

where Ui is the partition function of one single atom 

(or ion) with charge i 

N. is the total number of such atoms (or ions) 
1 
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(2.7) 

The Ui :s are 

part Bi; 

divided into a translational part, T., and an internal 
1 

U.= T.B. 
1 1 1 

where the internal part is given as 

(2.8) 

(2.9) 

a sum over all possible quantum levels 1, with energy E(l) and the 

statstical weight 

where J1 is the total angular momentum 

of the atom in quantum state 1 

(2.10) 

Collecting the expressions above into equation (2.2) yields a 

relation between the free energy of the plasma and the total number of 

electrons and the total number of atoms and ions. In order to be able 

to obtain a relation between the number densities in two succesive 

ionization stages, consider now the ionization equilibrium 

+ 
S. 

1 
+ S.+ e 

1- 1 
(2.11) 
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where the different single partition functions are related to the same 

ground level for the energy. 

Substitution of the expressions (2.4) and (2.8) for the different U:s 

into (2.16), and if the energy levels are referred to their respective 

ground states of the individual species, and also setting the 

translational part of the partition functions for S. and S. 1 equal to 
1 1-

each other, gives 

n.n 
1 e 

ni-1 

27Tm kT 
312 

8. (T ) E. 1 ( cc) 
= 2( e e ) 1 e { _ 1- } 

h2 Bi-1(Te) exp kTe 

where E. 
1

(cc) is the ionization energy of the 
1-

species S. 1 1-

(2.17) 

This equation is known as Saha's equation for a multicomponent system 

in thermodynamic equilibrium. 

It is also possible to replace the total number density of an 

ionization level with the number density in an excited state of a 

specific ionization level by using the Boltzmann distribution formulae 

n. (a) gi(a) E. (a)-E. (b) 
1 exp {-

1 1 } (2.18) 
~ = gi(b) kT 

1 e 

and 

ni(a) gi(a) E. (a) 
= B. (T ) exp {-~} (2.19) n. 

1 1 e e 

where ni(a) is the number density of atoms 

(ions) i times ionized in quantum 

level a 



Ez_, (ce>} ------------------ ---r-----------
6 Ez_1(ce>l 

-----Ground state Ez_1(1)-----

(a) (b) 

Figure 2.1. Representation of the potential around 

an atomic nucleus, (a) without and (b) with a constant 

external electric field, from reference [6]. 
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The additional complication, the introduction of this effect into the 

Saha equation, is alleviated by the fact that it is a remedy against 

the formally infinite value of the internal partition function. For a 

free atom or ion the internal part of the partition function is a 

divergent sum over an infinite number of quantum levels. This 

divergence is prevented as there will now be a finite highest quantum 

number before the atom is ionized. This is true if the energy levels 

of the atom are considered to be unperturbed by this plasma 

interaction. The calculation of this lowering of the ionization energy 

of the ions in a plasma is treated in the next section. 

3.3 The Saha eguation II Coulomb interactions and Debye theory 

Since a particle in a plasma is surrounded by charged neighbours 

the electrical correlations between the particles have to be included 

in the expression for the free energy to give a better description of 

the plasma. This is accomplished by introducing an additional factor 

into the expression for the partition function for the whole system. 



l'!E . 1 ( o:l) = - ( 
1-

aF caul 
aN e 

aF caul 
aN. 1 1-

+ 
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(3.6) 

Instead of using the expression (3.1) directly to calculate the 

Coulomb free energy with equation (3.3) another route will be 

followed. With the aid of the Debye approximation the average Coulomb 

interaction energy in the plasma can be calculated. From this it is 

possible to obtain the Coulomb free energy through the thermodynamic 

relation 

Fcoul = 0coul + 
aFcoul 

aT T ( if dV=O ) 

where U 
1 

is the inner energy of the Coulomb interaction. cou 

(3.7) 

The Debye theory describes the screening effects in a plasma caused 

by the mobility of the charged particles. Inside the plasma the 

average charge density should be, on a macroscopic scale, equal to 

zero, if macroscopic charge neutrality is assumed. However, there will 

always be fluctuations around this average value in a small volume 

around a given charge. In order to calculate the radius of the sphere 

in which the charge density is appreciably different from zero, we put 

a point charge q at the origin and calculate the time-averaged and 

smoothed electrical potential outside the charge that is caused by the 

charge itself and the adjacent particles in the plasma. Since the 

plasma is assumed to be in equilibrium, the radial number density 

distribution function for the charged particles should be a canonical 

distribution (reference [3] or [36]). If the Coulomb interaction 

energy is small compared with the thermal energy this will give 

where 

n. ( r) 
1 

= n.exp {-
1 

i e V (r) 
kT q } ::: 

e 
n. ( 1 -

1 

i e V (r) 
kTq ) 

e 

i = -1,0,1,2, ... ( -1 is for electrons 

e is the elementary charge 

V ( r) is the electrical potential q 

(3.8) 



55 

From equation (3.12) it can be seen that the electric field is split 

into two parts; for r < r 0 it is a Coulomb field and for r < 2r0 the 

electric field is essentially zero, i.e. two charges which are further 

away than this have a negligible effect on each other. 

The electrical interaction energy for the charge q then becomes 

E 4n f V (r) 2 
= Pq(r) r dr = el,q q 

2 4 
. 2 ) f exp{- 2r} dr q e (n + E (3.14) = 2 1 n. 

4ne: 0kTe e i 1 rD 

2 2 
= 

q e 
- 8TIE:OrD 

and, consequently the total internal energy contribution from the 

Coulomb interaction is 

u caul 

= 

= E N E 
q q el,q 

(3.15) 

e3 V 2 3/2 (n + E i n.) 
8ne:~/2(kT) 1/2 e i 1 

Substitution of this expression into (3.7) gives the Coulombic free 

energy as 

F caul (3.16) 

and, finaly, substitution into (3.6) gives the lowering of the 

ionization energy as 
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The uncertainty in the exponential term in the Saha equation can be 

estimated by considering the Debye theory as a power series expansion 

of the ionization energy in terms of the ratio of the reduction of the 

ionization energy to the thermal energy. This implies that an error of 

the magnitude 

should be expected even if the condition expressed by equation (3.18) 

is fulfilled. 

3.4 The Saba equation III calculation of the internal partition 

functions 

In the final expression for the Saha equation above, formula 

(3.20), one thing still remains to be accounted for, and that is how 

to calculate the internal partition functions. This will be treated in 

this section. 

The expression for the internal partition function was given earlier 

as (equation (2.9)) 

B. 
1

(T ) 
1- e ( 4. 1) 

where g. 1(1) is the statistical weight of the level represented by 
1-

the set of quantum numbers 1, usually (equation (2. 10)) 

and E. 1(1) is the energy of the level. 
1-

(4.2) 
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where EH is the ionization energy of a free hydrogen atom 

In principle, a direct summation up to the reduced ionization limit 

could now be performed with the aid of a table over atomic anergy 

levels, for instance Moore (reference [39]). But the list of energy 

levels almost always becomes incomplete before the maximum orbital 

quantum number is reached. Also, for most higher levels the data for 

high angular momentum quantum numbers are not included in the tables. 

Since these levels have high statistical weights, their omission leads 

to a serious error in the excited-state contribution to the partition 

function. To overcome this difficulty, the sumation is performed over 

the tabulated configurations for which all possible levels appear in 

the list. The remaining part of the sum is estimated by assuming a 

hydrogenic structure and accounting for the different multiplicity of 

these levels from the hydrogenic statistical weights. The maximum 

orbital quantum number is given in equation (4.5) and the statistical 

weight for hydrogenic levels is given by 

n-1 

ghyd(n) = 2 b (21+1) = 2n2 (4.6) 

1=0 

This leads to the expression for the internal partition function 

B. 
1 

( T ) :::: >: g. 
1 

( p) exp { -
1- e 1-p=1 

nmax 
+ (2S 1 +1)(2L 1 +1) >: 

p=n 1 +1 

} + 

(4.7) 

.2E 
1 H 

Ez-1(co) - -2-

2p 2 exp { - ---k"""'T::--_P,_____ 
e 

where n 1 is the maximum orbital quantum number found 

in the table 

} 
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3.5 The plasma pressure 

The independent variables chosen were the number densities and the 

electron temperature. They were selected because they do not have to 

be corrected when the density of the plasma is high. From the 

expressions for the free energy from Sections 3.3 and 3.4 it is 

possible to derive a formula relating the pressure to these variables. 

There will be a high-density correction to the pressure, and that is 

why it was not chosen to be an independent variable (reference [40]). 

The pressure, p, is directly related to the free energy through the 

thermodynamic relation 

a 
P = - av (FV) 

where the free energy consists of two parts (equation (3.4)) 

F = F0+ F l cou 

( 5. 1) 

(5.2) 

that is, the sum of the free energy of a system with negligible 

interactions and the free energy in the Coulomb interaction (Section 

3.4). The first of these will give the ordinary kinetic pressure or 

ideal gas pressure 

p0 = kT (n + E n. 
e e i 1 

(5.3) 

The coulombic part of the free energy will cause a slight decrease 

in the pressure, because of the attraction between charges of 

different signs. As said earlier, particles with charges of opposite 

sign tend to be closer together on the average than particles with 

charges of the same sign. This correction is given by 

aF caul 
av (5.4) 
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4. THE CALULATION OF THE COMPOSITION OF A NITROGEN SPARK 

The theory presented in Chapter 3 will now be used to compute some 

of the quantities of interest for a real nitrogen spark plasma. In the 

first section of this chapter the Saha equation is used together with 

the conditions of mass and charge conservation to derive the 

expressions for the number densities of atoms and up to triply ionized 

ions. These expressions are substituted back into the conservation of 

mass relation to arrive at an implicit expression for the electron 

temperature when the electron and the particle number densities are 

known, and from the electron temperature the composition of the spark 

can be calculated. But in order to do this, the way in which the 

internal partition functions in the Saha equation are calculated must 

be improved compared with the method presented in Section 3.4. Such an 

improved method is presented in Section 4.2. The amount of molecular 

nitrogen in the spark has so far been asumed to be negligible, But if 

the pressure is very high or the temperature low, there may be a 

significant fraction of nitrogen molecules present. The equilibrium 

relation for dissociating nitrogen is therefore presented in the third 

section. Finally, the material in the preceding sections is assembled 

into a procedure to calculate the electron temperature and plasma 

composition of a nitrogen spark, and this is applied to the 

measurements made by Alden et al. and the results of the computations 

are presented and discussed. 



n 
E 

s=1 
A + 1 s 
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where the additional unknown is the electron density. For each species 

the number of Saha equations is A -1 and together with a conservation 
s ' 

of mass relation for the species this will give 

n 
E 

s=1 
A s 

equations altogether. The condition of macroscopic neutrality gives 

the final relation necessary to determine all the unknown number 

densities. 

The general solution to the system yields the number densities in 

A 
s 

different ionization stages of n different chemical species. Since 

the calculations in this work are performed for 

only the expressions for a single species 

a spark 

will be 

in nitrogen, 

needed. The 

relations for the number densities for a single species ionized up to 

three times are 

4 n e 
no = 

K0S(T) 
( 1 • 4a) 

n 3 
e 

n1 = 
S(T) 

( 1 • 4b) 

K1ne 
2 

n2 = 
S(T) 

( 1 • 4c) 

K1K2ne 
n3 = 

S(T) 
( 1 . 4d) 

where 

S(T) 
2 

2K 1ne+ 3K 1K2 = ne + ( 1. 5) 
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The starting expression for the internal partition function for an 

atom or an ion is 

p 

Q = go+ E Qi 
i=1 

where Qi is the contribution to the partition function 

from the electron configuration belonging to the 

i:th parent ion excited state 

g0 is the statistical weight of the ground state 

( 2. 1) 

P is the number of different parent ion states considered 

The Qi terms are expressed as a sum over k states with statistical 

weight gj and excitation potential xj' and an asymptotic hydrogen-like 

tail 

where 

Qi 
k - x e - x e 
E gj10 j + 2gprQas(l,z) 10 ion (2.2) = 

J=1 

e is the inverse temperature, in electron volts, connected 

to the 

e so4o = -T-
e 

electron temperature through the relation 

gpr is the statistical weight of the parent ion: 

g = (2S+1)(2L+1) pr 

z is the effective nuclear charge; z=1 for neutral 

atoms etc. 

1 is an effective quantum number which is tabulated 

in Traving et al. [41] 

Xion is the ionization energy in eV 

(2.3) 

(2.4) 



f( e) = 
k 
E 

j=1 
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(2.9) 

is calculated by Traving et al. and then they make a fit to a sum of 

exponential terms (Chebyshev polynomial) by adjusting the parameters. 

In mathematical symbols 

f(e) ::: He) = 
m 
E 

\1=1 
(2.10) 

where the number of terms, m, is between 2 and 5. A considerable 

reduction in the number of terms in the summation is thus achieved. 

The parameters a\1 and y\1 are chosen so that the sum will be a good 

approximation to a direct summation of the values in the table of 

Moore (reference [39]). 

6,0. 

11 

9 

7 

5 

3 

N1 

N3 

9000 11000 13000 15000 17000 19000 

Figure 2.1. The internal partition functions versus 

temperature for nitrogen atoms and ions with charges 

from -1 to -3 calculated with the method described 

in this section. 

T/K 
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The values of the parameters appearing in the calculation of the 

internal partition function for nitrogen according to this method are 

presented in Table 2.1. 

According to Traving et al. the approximation in equation (2.10) is 

valid for temperatures obeying the condition 

where 

T ~ 6.3 · X· 
10n 

has the unit eV 

(2.11) 

in the sense that the maximum error is then less than 1 %. This 

condition holds for the temperatures of interest in this work. 

The values calculated with this method for nitrogen are presented 

in Figure 2.1. The value of the inner partition function in this 

figure depends weakly on the composition through the lowering of the 

ionization energy in formula (2.7). 

4.3 Calculation of the nitrogen dissociation equilibrium 

So far it has been assumed that the nitrogen molecules in the gas 

are initially dissociated into atoms. This is a reasonable assumption 

for the temperatures which are found in a spark. Nitrogen is 

completely dissociated into atoms for temperatures higher than 10000 

K, if the pressure is atmospheric. However, if the pressure is 

considerably higher than this (as will be shown to be the case) there 

will be an appreciable amount of molecules present in the spark. The 

calculation of this molecular number density· under the assumption of 

L.T.E. will be treated in this section. 
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where p is the total pressure 

The total partition function, Q, for a molecule can be decomposed 

into 4 factors; a translational, a vibrational, a rotational and an 

electronic part 

(3.6) 

The second equilibrium constant that can be of use in treating the 

chemical 

constant, 

equilibrium (3.1) is called the pressure equilibrium 

K , defined in terms of of the concentrations, n(X), of the c 
species involved in the reaction 

K = c 

bi 
lin (B.) 
. 1 
1 (3.7) 

For Kc a relation analogous to (3.3) holds, where the partition 

function for the standard state of unit pressure is replaced by the 

partition function for the standard state of unit concentration, Qc' 

which is related to the total partition function by 

Q = p Q 
c RT (3.8) 

From equations (3.3), (3.4) and (3.8) it can be seen that the relation 

between the two equilibrium constants is 

(3.9) 

In Hansen [42] the explicit expressions for the pressure 

equilibrium constant of the nitrogen dissociation reaction and also 

the partition functions of nitrogen molecules and atoms are given. The 

pressure equilibrium constant is 
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Figure 3.1. The partition functions for nitrogen 

molecules and atoms according to the formulae 

above (logarithmic scales) versus temperature. 
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Figure 3.2. The inner part contribution to the 

partition functions for molecular and atomic 

nitrogen in Figure 3. 1. 
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The quantity e is plotted in Figure 3.4 as a function of the 

temperature for various pressures. 

£ 
1D 

o.e 

0.6 

0.2 

T/K 
5000 9000 11000 13000 1~00 

Figure 3.4. The fraction of molecules which have 

dissociated into atoms versus temperature for 

different values of the pressure in atmospheres. 

It should be noted that at high pressure · the fraction of nitrogen 

molecules can be very high, as stated at the beginning of this 

section. 

The relation between e and the number densities of molecules and atoms 

is found by using the definition of e. 

0 n - n m m 
no = (3.17) 

m 

where n° is the number density of molecules before dissociation 
m 

and the obvious relation 

o no 
n = n +-m m 2 

Eliminating n° from the two relations above yields 
m 

(3. 18) 
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~N = nu + R ( n0 + n1 + ... ) ( 4. 1) 

the sum within the parantheses is equivalent to the particle density, 

NA, in equation (1.6): 

NA = 
n e 

S(T) 

n 3 
( ~ + n 2+K

1
n + K K ) 

e e 1 2 
Ko 

where, (equation (1.5)) 

S(T) 

(4.2) 

(4.3) 

Combining formulae (4.2) and (4.3) gives the implicit equation for 

the electron temperature 

NA = = 
n 3 
~ + n 2+K

1
n + K K ) e e 1 2 

Ko R S(T) 

where n is calculated from equation (2.1.6) 
u 

Ki is the right hand-side of the Saha equation, 

expression (3.3.20): 

2nm kT 
312 

B.(T ) 
e e 1 e { K. = 2 ( 2 ) 8 . ( T ) exp 1 h 1-1 e 

E. 
1 
{ ro) - ~E. 

1 
{ ro) 

1- kT 1- } 

e 

where the lowering of the ionization energy is given by 

equation (3.3.21) 

E .2 
i e3 

n + 1 n. 
e i 

1 
)3/2 ~E. 1 { ro) = 4 3/2 

( kT 1-
TI€:0 e 

(4.4) 

(4.5) 

( 4. 6) 
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Figure 4.1. The parts of the curves in Figure 2.4.1 

which were used in the calculations. 
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Figure 4.2. The parts of the curves in. Figure 2.4;2 

which were used in the calculations. 
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Figure 4.4. The number density (logarithmic scale) 

for atoms and singly and doubly ionized nitrogen 

versus radius for different times in nanoseconds. 
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Figure 4.6. The fraction of molecules which are 

dissociated versus radius for different times in 

nanoseconds. 
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The dissociation equilibrium should therefore be included in the 

computations. This is done in the following way. In the procedure 

above, the electron temperature and the pressure are determined. Then 

it is possible to determine the fraction of molecules that have 

dissociated into atoms, e, from equation (3. 16). The value of e is 

used in equation (3.19) 

NA = (4.8) 

to determine the relation between the number densities of atoms and 

molecules. The atom number density is now denoted by NA because it 

will subsequently be used in the computation of the ionization 

equilibrium. Substituting this expression into formula (2.4.4) 

t.N = n m 

gives the expression for the molecular number density as 

( 4. 9) 
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Figure 4.7. The electron temperature verus radius 

for different times in nanoseconds, calculated 

with the presence of molecules taken into account. 
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Figure 4.9. The number density for molecules and 

atoms versus radius for different times in nano­

seconds, from Figure 4.8. 
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Figure 4. 11. The fraction of molecules which are 

dissociated versus radius for different times in 

nanoseconds, calculated with the presence of 

molecules taken into account. 
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Figure 4. 12. The density (logarithmic ·scale) versus 

radius for different times in nanoseconds, calculated 

with the presence of molecules taken into account. 
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For comparison the number density and density curves calculated for 

a nitrogen plasma with a pressure of one atmosphere are shown in 

Figure 4 . 14. 
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Figure 4.14. The number density and density for a 

a nitrogen plasma with a pressure of one atmosphere, 

taken from reference [46]. 

The influence of the uncertainties in the experimental values on 

the results of the computations was estimated by adding the 

statistical error reported by Alden et al. of the electron density: 2 

x 10 17 to the electron density and subtracting 10 times this value 

from the particle density and then performing the calculation with 

these input-values, and then repeating the calculation with the signs 

of the changes reversed. The reason for this was that these should 

represent the warmer and colder boundary cases of the uncertainty. The 

effect of the changes on the pressure, the temperature and the density 

was typically below 5%, with some exceptions at the end of the curves 

up to 20%. The deviations in the figures these changes would cause 

would be less than the thickness of the curve for the majority of the 

evaluated points. 
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different and the expression for the diffusion length is stated in 

Section 5.5. In the last section some of these conditions are applied 

to the results presented in Section 4.4. 

5.1 General validity criteria for L.T.E. 

In this section some general criteria for L.T.E. will be considered. 

The first and most important is that the electron-electron relaxation 

time should be shorter than any other characteristic time of the 

plasma. Then the free electrons are in thermal equilibrium with each 

other, i.e. they have a maxwellian velocity distribution. The 

relaxation time for electron-electron collisions, t , is given by ee 
Spitzer (reference [12]) in a fully ionized hydrogen plasma as 

where 

The 

= 0.226 

T 3/2 
e 

n ln A 
e 

A is a slowly varying function of ne 
n "' 10 18 cm 3 and T "' 10" K ln A is e e 
equal to 5. 

value of the relaxation time is 

and T e' for 

roughly 

plotted in Figure 

( 1. 1) 

1. 1 as a 

function of the electron temperature when A is assumed to be constant. 

From the figure it can be seen that the relaxation time is very short, 

and, consequently, the free electrons do have a maxwellian velocity 

distribution in almost all laboratory plasmas. 



and the relaxation time between ions and electrons as 

t. :; (7.5 X 1e 

M 
) -1 . a 

n 1 
e me 

( 1. 3) 

where i=1 for singly charged ions, i=2 for doubly charged ions etc. 
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The order of magnitude of these two times suggests that the kinetic 

temperatures do not diviate from each other significantly, even in a 

transient plasma, if it is in L.T.E .. The time for equilibriation 

between heavy particles is less than the electron-particle relaxation 

time (reference [4]). 

Finally, the effect of the applied electric field on the 

equilibrium is examined. The condition that the electric field should 

not cause the electron temperature to be different from the particle 

temperature is that the energy gained by the electrons from the 

applied field should be small over their mean free path, and that it 

should also be smaller than the energy that can be transferred to 

heavier particles. If only single ionized atoms are assumed to be 

present, this requires that the external electric field obeys the 

condition 

taken from reference [4]. 

m e 
Ma 

( 1. 4) 

5.2 Criteria for the validity of partial L.T.E. in a homogeneous and 

time-independent plasma 

In a homogeneous and time-independent plasma with small optical 

depth the reabsorption of radiation can be neglected. To recapitulate, 

for the plasma to be in a state of L.T.E. the collisional population 

and depopulation rates have to be considerably greater than the rates 
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If the minimum electron density for at least one level below the 

reduced ionization limit is less than the actual electron density, it 

is implied that the free electrons have a thermal velocity 

distribution, if the time variations or the spatial variations of the 

electron temperature are not too great. 

5.3 Criteria for the validity of complete L.T.E. in a homogeneous and 

time-independent plasma 

In the preceding section a condition for an excited state to be in 

local equilibrium with all higher states was presented. This condition 

is not applicable, as it stands, for lower excited states, and 

especially for the ground state where the deviations from hydrogenic 

behaviour are more substantial. Griem states that it is only the 

equilibrium between the ground state and the upper level of the 

resonance line that then needs to be investigated to decide if 

complete L.T.E. exists. The relevant condition is that the radiative 

population rate of the ground state should be negligible compared with 

the collisional population rate of the same level. Near L.T.E., both 

of these rates is dominated by transitions from the upper level of the 

resonance line. Comparing the population rate by radiative transitions 

with the population rate by collisional transitions, and assuming that 

the population distribution over these two levels is thermal, he shows 

that complete L.T.E. in an optically thin plasma may be expected if 

the electron density fulfils the inequality 

E. 
1
(2)- E. 

1
(1) 

3 n ) 9 X 1017 ( 1- E 1- ) 

e H 
kTe ) 1/2 3 [em- ] ( 3. 1) 
EH 

The condition utilized in arriving at this formula is, as in the 

previous section, that the collisional rate should be ten times 

greater than the radiative rate. This expression is valid for hydrogen 

and hydrogenic ions, but it can also be used to estimate minimum 

electron densities for L.T.E. for other chemical species because of 

the cancellation of some specific hydrogen quantities in the 
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(3.3) 

Note that this expression contains the ionization energy instead of 

the energy difference of the first resonance line. This condition is 

more severe than equation (3. 1) and it should be used when low excited 

states exist. If, as before, the resonance radiation is absorbed the 

condition expressed in equation (3.3) may be relaxed an order of 

magnitude. 

5.4 Criteria for the validity of complete L.T.E. in a homogeneous and 

transient plasma 

Plasmas that have sufficiently high electron density to be in 

L.T.E. are rarely both homogeneous in time and space. In this section 

the validity criteria for a plasma which is transient but essentially 

homogeneous in space, for instance plasmas produced in shock-tubes, 

will be stated. 

The necessary condition for the plasma, in addition to the criteria 

in the preceding 

temperature should 

sections, 

be small 

is that 

over the 

the change in the electron 

time characterizing the 

establishment of excitation and ionization equilibrium. The mechanism 

for collisional ionization is through a succesion of excitations into 

intermediate states and not by direct ionization, if the plasma goes 

through a sequence of quasi-stationary near-L.T.E. states. Thus the 

relaxation time is determined by the slowest step in the chain, that 

is, by the inverse collisional-excitation rate of the gro~nd state per 

atom (or ion) multiplied by the number of atoms that is to be excited 

or ionized. The majority of the excitations is to the upper level of 

the resonance line, and assuming a maxwellian velocity distribution 

for the free electrons, the relaxation time is then estimated by 
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The electron densities for a transient plasma to be in L.T.E. are 

quite high. A reduction in the necessary concentration such as the one 

in Section 5.3 is not allowed in this case, because self-absorption of 

the resonance line does not lead to any reduction in the equilibrium 

time as it does not cause any net change in the excitation rate in an 

isolated, homogeneous plasma. On the other hand, the time required to 

establish partial L.T.E. is much shorter than the time required for 

complete L.T.E., so that the transient nature of a plasma only rarely 

causes deviations from partial L.T.E., if it had existed in a 

stationary, homogeneous plasma. The expression for the equilibrium 

time in this case is given by equation (6-67) in Griem (reference 

[4]). 

As pointed out before, the criterion (4.1) gives fairly long 

relaxation times, too long for complete L.T.E. to exist in most 

transient plasmas. However, this criterion is too pesimistic in the 

case of a decaying spark, since it accounts only for collisional 

ionization. The spark, where radiative excitation and ionization are 

important, will require another, less severe, criterion. In this case, 

the relevant recombination time is very short (reference [4]), that 

is, the relaxation from the initial non-equilibrium state to L.T.E. 

will be very rapid. So rapid that the decisive condition for a 

decaying plasma will be the same as the one for a time-independent and 

homogeneous plasma. When the plasma is in the build-up state, i.e. the 

period when the ionization is increasing, L.T.E. should rarely 

prevail. 

5.5 Criteria for the validity of complete L.T.E. in an inhomogeneous 

and time-independent plasma 

In the previous section it was established that it takes a certain 

time 1. 1(1) for the plasma to attain a state of local equilibrium. If 
1-

the plasma is inhomogeneous it is necessary that the spatial variation 

of the electron temperature be small over the distance that a given 

particle can diffuse in that time, in order not to disrupt the 

equilibrium. When the density of molecules is negligible, this 



where Aa is the atomic weight of species a. 

The criterion for L.T.E. in this case is 

T (r) - T (r+d) e e 
T (r) 

e 
= 0 << 1 
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(5.5) 

and, as in the preceding section, the difference between the 

excitation or ionization temperature and the free electron temperature 

may be estimated to be 

T - T = o T e ex e (5.6) 

If the value of o is in the ten percent range, then deviations from 

L.T.E. must be expected, but still the excitation and ionization 

equilibrium can be determined by some average value of the electron 

temperature over the diffusion distance d. 

In the outer, cold, zones of a plasma the value of d is larger than 

that calculated in equation (5.4), because ions and excited atoms 

diffuse from the hot inner zones, and thereby reduce the required rate 

of electron collision excitations from the ground state. But, as in 

the case of a transient plasma, rapid relaxation from a non­

equilibrium state takes place. Also, the intense resonance radiation 

from the inner zones might help to establish equilibrium in the outer 

zones. However, the trapping of resonance radiation in the inner zones 

does not increase the net rate of excitation. 

5.6 Application of the criteria to the sparks in nitrogen 

The expression presented in the preceding sections will now be 

applied to the sparks in a nitrogen atmosphere to ascertain whether 

the assumption of L.T.E. is valid for them. The results presented in 

Section 4.4 are used in the computations. 
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fulfilment of this condition is ensured for the sparks. 

Application of the condition in equation (4.1) to investigate the 

effect of the transient nature of the sparks gives very long 

relaxation times for the nitrogen atoms. These times are plotted in 

Figure 6.2 where the same resonance line as before has been used, and 

its oscillator strength value, f 21 =0.00242, is taken from reference 

[4]. 

35 58 80 490 ns 

r/mm 

0.5 10 

Figure 6.2. Relaxation times calculated with formula 

(4.1) for atoms (logarithmic scale) versus radius 

for different times. 

The discussion at the end of Section 5.4 about this estimate being too 

pesimistic for a decaying plasma may be applicable here, so the spark 

is probably in complete L.T.E., at least for the two longer times. The 

question of whether it is in L.T.E. or not due to transient effects 

will probably be answered when more experimental data have been 

evaluated. Note that it is the relaxation time for atoms which has 

been calculated. The rapid increase in the minimum electron 

concentration with increasing ionization in this transient case 



35 58 80 490 ns 

r/mm 

0.5 1.0 

Figure 6.4. The relative difference between the 

ionization temperature and the electron temperature 

calculated from equation (5.5) (logarithmic scale) 

versus radius for different times. 
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Finally, it should be emphasized that the expressions and 

discussions in this chapter have dealt solely with the case of a 

totally dissociated plasma. How the assumption of L.T.E. should be 

verified when there is a significant amount of molecules present in 

the plasma is outside the knowledge of the author. 
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