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Abstract 

This Master's thesis explores some of the limitations of the rare-earth quantum 
computing (REQC) scheme by investigating how the design of the computing 
scheme and experimental errors will affect gate fidelity. The quantum bits that 
constitute a quantum logic gate were modeled and their interaction with the 
laser pulses that control the gate operation was simulated in MATLAB. Em­
phasis was put on exploring and finding pulse shapes and developing the gate 
implementation scheme to assure robust quantum operations. Expected sources 
of errors were introduced and modeled and their impact on the fidelity of the 
operation was studied. The results showed that it was possible to find pulse 
shapes that yielded high fidelity gate operations also in the presence of experi­
mental complications. 

Detta examensarbete utforskar nagra av begransningarna i en kvantdatormod­
ell baserad pa sallsynta jordartsjoner genom att undersoka hur designen av 
beriikningsschemat och experimentella fel paverkar tillfOrlitligheten hos de lo­
giska grindarna. Kvantbitarna, som kvantgrindarna utfcir operationer pa, mod­
ellerades och deras viixelverkan med laserpulserna som anviinds for att kon­
trollera de logiska operationerna simulerades i MATLAB. Arbetet fokuserades 
darefter pa att utforska och designa pulsformer samt pa att utveckla metoderna 
fcir implementation av kvantgrindar med avsikt att siikerstalla robusta kvan­
toperationer. Formodade felkiillor introducerades och modellerades och deras 
inverkan pa operationens fidelitet studerades. De erhallna resultaten visar att 
designen av laserpulserna har mycket stor inverkan pa fideliteten hos kvant­
grindsoperationerna men att det anda gar att hitta pulsformer som ger mycket 
god fidelitet. 
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Chapter 1 

Introduction 

The reason for developing quantum computers is not to replace the classical 
computers of today, though there is a physical limit for how small and fast they 
can be made, but rather because quantum computing offers new and exciting 
prospects. Just as a classical computer, a quantum computer is founded on bits, 
so called qubits, that are manipulated via logic gates. The main difference is 
that a qubit is not restricted to take either the value 0 or 1 as a classical bit 
is, but can take both values simultaneously. This property, together with some 
other quantum mechanical characteristics, enables quantum computers to solve 
problems and to simulate complex quantum mechanical systems that classical 
computers are uncapable of. 

ESQUIRE is a European Union project with the objective to experimentally 
realize a few quantum logic gates in a rare-earth-ion doped crystal in order to 
demonstrate the suitability of such crystals as hardware for quantum computers. 
The project is coordinated from the Lund Institute of Technology and comprise 
research groups in Lund (experimental demonstration of a two-bit quantum 
gate), France (crystal growth and techniques for adiabatic population transfer) 
and Denmark (theory). 

This diploma project was performed within the ESQUIRE project as a coopera­
tion between Lund and the theory group in Arhus, Denmark. The intention was 
to explore some of the limitations of the rare-earth quantum computing scheme 
(REQC) by investigating how the design of the computing scheme and exper­
imental errors will affect gate fidelity. Information on the accuracy required 
for the quantum operations to work satisfactorily will determine the require­
ments on the experimental methods and equipment. For example, the accuracy 
required for the laser pulses will determine how well the lasers need to be am­
plitude stabilized. The quantum bits that constitute a quantum logic gate were 
modeled and their interaction with the laser pulses that control the operation 
was simulated in MATLAB. Expected errors were introduced and modeled and 
their impact on the fidelity of the operation was studied. Since it turned out 
that the fidelity has a strong dependence on the temporal shape, and with that 
the frequency contents, of the laser pulses, much effort was put into exploring 
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and finding pulse shapes that result in adequate manipulation of the qubits. 

This thesis is organized as follows: Chapter 2 gives an introduction to quantum 
computing in general. Basic concepts of quantum computing are introduced 
and explained and some implementation of quantum computers are briefly de­
scribed. Chapter 3 contains the theoretical framework for describing coherent 
light-atom interaction that has been used throughout this thesis. Some concepts 
that are important for the complete understanding of this thesis, are defined and 
introduced in this chapter. In chapter 4, the rare-earth-ion quantum computer 
scheme, which is the quantum computer scheme of interest in the ESQUIRE 
project, is described and possible sources of error that may arise in gate oper­
ations are introduced. From chapter 5 and on, the work that has been done 
within this diploma project is presented. Chapter 5 explores the importance of 
the shape of the laser pulses used to perform quantum operations and describes 
the search for a pulse shape that gives the desired spectral excitation profile. An 
improved scheme, compared to the scheme [1] described in chapter 4, for qubit 
operations is presented in chapter 6. Finally, chapter 7 deals with the effects of 
the different errors that are expected to appear in the rare-earth-ion quantum 
computing scheme. 
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Chapter 2 

Quantum computing 

The breakthrough for quantum computing came in 1994 when P. W. Shor pre­
sented an algorithm for resolving large integers into prime factors. For suffi­
ciently large integers this is unfeasible on a classical computer since the num­
ber of computations scale super-polynomially with integer size. On a quantum 
computer, using Shor's algorithm, the number of computations would only scale 
cubically with integer size. The special interest of factoring large integers origi­
nate from cryptography where deciphering of secret messages can be achieved if 
able to factor the large integers that constitute the public cryptographic keys. 

Other interesting topics within the field of quantum information are quantum 
teleportation and quantum cryptography (which cannot be deciphered by fac­
toring large integers). A review of these topics can be found in reference [2], 
which offers a thorough description of quantum computing and information. 

2.1 Quantum bits 

The bit is a fundamental concept of classical computation and information. The 
quantum mechanical counterpart to the classical bit is the quantum bit, or qubit 
for short. Qubits have to be realized as actual physical systems, as described 
in section 2.3, but for quantum computational theory they can be described as 
mathematical objects with specific properties. Just as a classical bit has a state 
- either 0 or 1 - a qubit also has two states IO) and 11 ) which correspond to the 
classical states. The notation 'I ) ' is called Dirac notation and will be explained 
in section 3.1. The great difference between qubits and classical bits is that 
qubits are not restricted to either state 10) or state 11), it can be in both states 
at the same time. In fact, any linear combination, also called superposition, of 
the two basis states is possible. The state 'lj; of a qubit can thus be written 

'1/J=a!O)+,Bil), (2.1) 
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with complex coefficients o: and (3, often referred to as probability amplitudes. 
Consequently, the state of a qubit can be regarded as a vector in a two-dimensional 
complex vector space spanned by the orthonormal basis states 10) and 11 ). 

A classical bit can be examined to determine whether it is in state 0 or 1. 
However, the rules of quantum mechanics tell us that we cannot examine a 
qubit to determine its exact quantum state, that is, the values of o: and (3. A 
measurement will yield either IO) or 11), with the probabilities lo:l 2 and lfJI 2 , 

respectively1. Simultaneously, the superpositional state of the qubit transforms 
into exclusively the state that the measurement yielded, so that the post mea­
surement state 'lj;' is either IO) or 11) with a probability equal to one. This is 
often referred to as a collapse. The difference between the unobservable state 
of the qubit and the observations we can make lies at heart of quantum compu­
tation and quantum information. However, there is a correspondence between 
state and measurement outcomes since the qubit states can be manipulated in 
ways which lead to measurement outcomes that depend distinctly on the qubit 
state. 

2.1.1 Multiple qubits 

If we have two qubits with states I'I/J1) = o:1I0)1 + fJII1) 1 and l'l/J2) = o:2I0)2 + 
/32 11) 2 , then the state of the two-bit system can be written as the product of 
l'l/J1) and l'l/J2 ): 

1'1/J) (o:1I0)1 + fJII1)1)(o:210)2 + /3211)2) 

0:10:210)110)2 + 0:1/3210)1 11)2 + f31o:211)110)2 + f31f3211)111)2 
o:1o:2IOO) + o:1/32I01) + fJ1o:2I10) + fJ1/32Ill). (2.2) 

Accordingly, a two qubit system has four computational basis states. Important 
qubit states are the Bell states or EPR pairs, also called entangled states, of 
which an example is, 

IOO) +Ill) 

v'2 
(2.3) 

Upon measuring the first qubit, the state of the other qubit collapses simultane­
ously. For the above Bell state, measuring one of the qubits to be 10) leaves the 
post-measurement state 100 ). As a result, a measurement of the second qubit 
in this Bell state always gives the same result as the measurement of the first 
qubit. This leads to the famous EPR-paradox [3]. Besides quantum computing, 
quantum entanglement is the key ingredient in quantum teleportation [4]. 

Superposition and entanglement forms the foundations for quantum computing. 
Without them, the quantum computer would be nothing else than an ordinary 
classical computer. 

1 As the qubit has to be in some state, the probabilities must sum to one, which means 
that lo:l 2 + 1,61 2 = 1. 
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2.2 Quantum logic gates 

Qubits alone are not enough in order to create a quantum computer. For the sake 
of computational usefulness, we need to be able to do operations on them. This 
is where the logic gates come in, performing manipulations of the information 
contained in the qubits. Designing a classical logic gate, one has to specify the 
action of the gate on the states 0 and 1. Can an analogous quantum logic gate 
be defined when the number of possible superpositions of states 10) and II) 
of the qubit is infinite? Luckily, it is enough to specify what happens to the 
states IO) and 11) since a quantum gate acts linearly. A NOT gate, for example, 
is supposed to interchange 0 and 1. A quantum NOT gate will perform the 
following operation on an arbitrary state: 

a IO) + ,BII) ---->a II)+ ,BIO). 

If the quantum state a IO) + ,BII) is written in vector notation as 

(2.4) 

then the NOT gate can be represented by a matrix X as follows: 

(2.5) 

With this notation, the output from an arbitrary quantum gate is calculated by 
multiplying the input quantum state by the matrix U representing the gate. The 
requirement that probability must be conserved demands that U is a unitary 
matrix, i.e. utu = I. One of the most common quantum gates, that has no 
classical counterpart, is the Hadamard gate which is defined as 

(2.6) 

This gate can for example be used to create an even superposition of a single 
state qubit, starting from the initial state IO) or II). 

2.2.1 Multiple qubit gates 

One of the fundamental multi-qubit gates is the controlled-NOT or C-NOT gate. 
Together with single qubit gates, the C-NOT gate forms a universal set of gates. 
This means that they can be used to implement any unitary operation on the 
state space of n qubits. Thus, they are the only building blocks needed to 
construct a general quantum computer. The C-NOT gate has two input qubits, 
the control and the target qubit. If the control bit is IO), then the target bit is 
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left alone, whereas if the control bit is 11 ), then the target bit is flipped. The 
matrix representation of the gate is 

( 
1 0 0 0) 0 1 0 0 

Ua-NOT = 0 0 0 1 ' 

0 0 1 0 

(2.7) 

written with respect to the amplitudes for 100 ), 101 ), 110) and Ill), in that or­
der. The corresponding representation of the qubit state 1/J =coo IOO) +col 101) + 
c10 110) + cu Ill) is 

1/J=(:~)-ClQ 

en 

(2.8) 

Another interesting two-bit gate is the C-PHASE gate that adds a minus sign 
to state 11) ofthe target bit if the control bit is 11 ), that is Ill) ---+ -Ill). In 
matrix representation, it can be written as 

(
100 0) 
0 1 0 0 

Uc-PHASE = O O 1 O · 

0 0 0 -1 

(2.9) 

The C-PHASE gate also form a set of universal gates together with single qubit 
gates. For example, a C-NOT gate can be constructed in the following way: 

(2.10) 

where Ht is a Hadamard operation on the target bit which in the computational 
basis of a two qubit system can be represented as below. 

1 0 
-1 0 
0 1 
0 1 

: ) . 
-1 

(2.11) 

The correctness of equation (2.10) can easily be validated by performing the 
matrix multiplications. 
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2.3 Quantum computing implementation 

Experimental realization of quantum circuits has proved to be extremely chal­
lenging. Nevertheless, it has to be done, or the field of quantum computing will 
remain nothing but a mathematical curiosity. So what are the experimental 
requirements for building a quantum computer? The main constraints are in 
general opposing: a quantum computer has to be well isolated in order to retain 
its quantum properties (i.e. its qubits have to remember their states), but at 
the same time its qubits have to be accessible so that they can be manipulated 
to perform a computation and to read out the results. Further, the qubits must 
be coupled to each other in some way in order to make multiple qubit gates 
possible. 

The two experimental realizations of quantum computers where most work has 
been done are NMR (Nuclear Magnetic Resonance) and ion traps. I will briefly 
describe these two concepts here, while the rare-earth-ion-doped crystal concept, 
which this thesis is based upon, will be more thoroughly treated in chapter 4. 

2.3.1 NMR 

The NMR concept is based on the well known NMR-technique and the qubit 
levels are the different nuclear spin states of e.g. hydrogen atoms in a certain 
molecule. Direct manipulation and detection of nuclear spin states using radio 
frequency electromagnetic waves are well-developed and quantum algorithms 
with systems up to seven qubits have been demonstrated. As a drawback, it is 
impossible to prepare the system in a pure state2 which is required when the 
computation is initialized. 

2.3.2 Ion traps 

In an ion trap, a small number of ions are trapped by an electric field and 
are laser cooled to prevent thermal vibrations that would affect their quantum 
states [5]. The ions can be addressed individually by directing a laser beam 
at them and the ions interact by vibrations. However, both the ion trap and 
the NMR concepts have proved to be non-trivial to scale to larger numbers of 
qubits. 

2 All qubits in either IO) or all qubits in 11 ). 
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Chapter 3 

Coherent light-matter 
interaction 

In order to understand how a rare-earth-ion-doped crystal, in combination with 
laser pulses, is supposed to act as a quantum computer, we need a foundation 
of theory describing the quantum mechanics of the ions and how they interact 
with the laser field. I will start with a rapid survey of quantum mechanics, using 
Dirac notation and matrix representation, before I continue with the actual 
atom-field interaction. Finally, I will describe how the Bloch sphere can be used 
as an effective tool in to visualize the atom-field interaction. 

3.1 Quantum mechanics survey 

A quantum system is described uniquely by its quantum state \]!. In the Dirac 
notation, a scalar product between two states is written (w1!w2). If this product 
is separated we get a ket !w2) and a bra (w1!, where the names come from the 
separation of the word 'bracket'. The ket !w) is identified with the state\]! while 
the bras are their Hermitian conjugates. 

A quantum state can in general be expanded in a set of basis wave functions, 
{ ¢n}· These basis wave functions are generally chosen to be the eigenfunctions 
of an operator, for example the Hamiltonian, il, which is the energy operator. 
The basis functions are required to be orthonormal such that 

where 
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The state can be written in terms of spatial and temporal parts as: 

jw(t)) = L Cn(t) l¢n). (3.2) 
n 

The coefficients Cn are complex numbers called probability amplitudes. They 
obey 

(3.3) 
n 

where ICnl 2 is the probability of observing the system in eigenstate ¢n· The time 
evolution of the quantum system is described by the time-dependent Schrodinger 
equation 

0 i A 

jw(t}) = -"hH jw(t)). (3.4) 

Omitting the spatial part of the wave function, the quantum state can be ex­
pressed as 

jw) = ( 
C1(t) ) 
C2(t) 

Cn(t) 

(3.5) 

and an operator A is then represented by a matrix 

( 

Au 
A21 

Anl 

(3.6) 

where a matrix element A;j of A is given by 

(3.7) 

For a more thorough description of quantum mechanics, consult a quantum 
mechanics textbook, for example [6] and [7]. 
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lb> 

Figure 3.1: Two-level atom interacting with a field of frequency v. 

3.2 Atom-field interaction- semiclassical theory 

In this section, the coupling between a two-level atom (might just as well be an 
ion) and a single mode of an electromagnetic field will be described. The descrip­
tion will, with some exceptions, principally follow that of Scully and Zubairy 
in [8]. A two-level atom description is valid if the two atomic levels involved 
are resonant or nearly resonant with the driving field, while all other levels are 
highly detuned. In the semiclassical theory the atom is treated as a quantum 
mechanical two-level system and the field is treated classically. This approach 
is appropriate when the effect of the interaction on the field is negligible. 

A two-level atom is formally analogous to a spin-1/2 system with two possible 
states. In the dipole approximation, when the field wavelength is larger than 
the atomic size, the atom-field interaction problem is mathematically equivalent 
to a spin-1/2 particle interacting with a time-dependent magnetic field, e.g. a 
hydrogen nucleus interacting with a radio frequency wave. 

3.2.1 Probability amplitude method 

Consider the interaction of a radiation field of frequency v with a two-level atom 
as in Figure 3.1. Let Ia) and lb) represent the two energy eigenstates of the atom 
with eigenvalues 1iwa and 1iwb, respectively. The wave function of a two-level 
atom can be written in the form 

IW(t)) = Ca(t) Ia) + Cb(t) lb), (3.8) 
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where Ca(t) and Cb(t) are the probability amplitudes for finding the atom in 
states Ia) and lb ), respectively. The time-evolution of this wave function is 
given by the Schrodinger equation (3.4) with 

(3.9) 

where Ho is the unperturbed Hamiltonian and H1 represents the interaction 
between the atom and the electromagnetic field. In matrix form, they can be 
written as 

& 0 = ( 1iw0a ""wob ) d H. _ ( 0 -J.LbaE(t) ) 
n, n an 1 - -J.LabE(t) 0 

where J.Lab = Ji.ba = e (a If I b) is the matrix element of the electric dipole moment 
and E(t) is the field at the atom. The field can be expressed as 

E(t) = e(t) cos (vt + cp ), (3.10) 

where e(t) is the amplitude, 1/ is the frequency and cp is the phase of the field. 
The Schrodinger equation (3.4) can be used to write the equations of motion 
for the probability amplitudes: 

Ca -iwaCa + iOR(t) cos(vt + cp)Cb, 

Cb = -iwbCb + iOR(t) cos(vt + cp)Ca, 

where the Rabi frequency nR is defined as 

(3.11) 

(3.12) 

(3.13) 

Here, the dipole matrix element is supposed to be real. We define the energy 
of level b to be zero, i.e. 1iwb = 0. In the rotating frame of the laser, it is 
convenient to introduce the amplitudes Ca and Cb according to: 

Ca 

Then equations (3.11) and (3.12) can be written as 
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In equations (3.16-3.17), the rotating wave approximation [9] has been used, i.e. 
the counter-rotating terms proportional to e±i(wa+v)t have been ignored. 

If the amplitude and phase of the electric field are constant, then the Rabi 
frequency is also constant, QR(t) = QR, and the equations can be solved an­
alytically in the rotating wave approximation. The solutions can be written 
as 

ca(t) { ca(O) [cos (~t)- i~ sin (~t)] 

+ i ~R cb(O)e-icp sin ( ~t)} e-i6.t/2 , (3.18) 

cb(t) = { cb(O) [cos (~t) + i~ sin (~t)] 

+i~ca(O)ei'Psin (~t)} e-i6.t/2 , (3.19) 

where the detuning 6. is defined as the difference between the atomic transition 
frequency and the laser frequency 6. = Wa- v) and the generalized Rabi fre­
quency Q is defined as Q = Q R + /:). 2 • If the amplitude of the field, and hence 
the Rabi frequency, is a function of time, the equations (3.16) and (3.17) have 
to be solved numerically, except if 6. = 0. In that case, the analytic solutions 
are given by 

Ca(t) 
() . () 

= ca(O) cos 2 + icb(O)e-•'P sin 2' 

= ica(O)eicp sin~ + Cb(O) cos~, 

where () typically is called pulse area and is defined as 

e = jt n(t)dt. 

(3.20) 

(3.21) 

(3.22) 

Pulse area is an important concept when describing the coherent interaction of 
laser pulses with atoms, which will come clear in the next section. In matrix 
notation, equations (3.20-3.21) are written as 

( Ca(t) ) _ ( COS~ 
cb(t) - ie-icp sin~ 
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3.3 Bloch vector formalism 

A physical picture of the state of a two-level atom with ground state jg) and 
excited state je) can be provided by describing the atomic population and co­
herence as a vector, the Bloch vector [8]. The following real quantities are 
introduced: 

X 

y 

z 

(3.24) 

(3.25) 

(3.26) 

where c9 and Ce are the probability amplitudes for states jg) and je ), respec­
tively. The quantities x, y and z are components of the vector R, given by 

(3.27) 

The component in the z-direction describes the population inversion, ranging 
from -1 (all population in the ground state) to + 1 (all population in the excited 
state). The x- and y-components represent the coherence between the two 
states in phase and 90° out of phase with the electromagnetic field, respectively. 
This corresponds to an oscillating electric dipole which interacts with the field. 
Without relaxation, the length of the vector R is constant and equal to 1. The 
time-evolution of the system can be written in the following compact form 

R=Rxn, (3.28) 

where the effective field is given by 

(3.29) 

The vector R precesses clockwise about the effective field non the Bloch sphere, 
see Figure 3.2. Thus, when the system interacts with a laser pulse, the Bloch 
vector R will rotate an angle B about the vector n that describes the effective 
field. The angle of rotation B is equal to the pulse area of the incoming laser 
pulse. 

3.3.1 The 27r-, 1r- and 1r /2-pulse 

There are some pulses of special interest, the 271"-, 71"- and the 71" /2-pulse. A 
71"-pulse is a pulse with pulse area 71". This corresponds to a rotation of angle 71" 
(180°) on the Bloch sphere. If we start in the ground state (z = -1) and with 
the field tuned in resonance with the transition (~ = 0), the application of a 
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Figure 3.2: Precession of the Bloch vector R about the effective field 0 for 
.6. = 0 

7!'-pulse results in rotating the Bloch vector from the south pole to the north 
pole on the Bloch sphere, i.e. all atoms are transfered into their excited state. 
Similarly, a 7!' /2-pulse causes the Bloch vector to rotate through 90° degrees. If 
we again start in the ground state, we will end up on the equator of the Bloch 
sphere which is equivalent to an even superposition of the ground and excited 
states. Finally, the 271'-pulse results in a complete revolution, that is 360°, and 
the Bloch vector will end up in the same position as where it started. The only 
difference is a phase shift of 180° which is not visualized. 

3.3.2 The Bloch sphere for qubit representation 

The Bloch sphere can also be useful for geometric representation of a qubit as 
described in [2]. An arbitrary qubit state, as described by equation (2.1) can be 
rewritten as 

. ( () . () ) 'ljJ = e''Y cos 2 10) + e''P sin 211) , (3.30) 

where (), cp and"'( are real numbers. The factor eh represents the global phase, 
which for single qubit operations can be ignored since it has no observable 
effects. For that reason, the qubit state can effectively be written as 
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(3.31) 

The numbers e and <p define a point on the Bloch sphere, as shown in Figure 3.3. 
Many operations on single qubits can be neatly described within the Bloch 
sphere picture. However, this intuition is limited because there is no simple 
generalization of the Bloch sphere to multiple qubits. 

10> 

11 > 

Figure 3.3: Bloch sphere representation of a qubit. The tnorth pole', z = 1, 
and the t:south pole', z = -1, represent the two energy eigenstates IO) and 11 ). 
Positions elsewhere on the sphere represent superpositions of IO) and 11 ). 
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Chapter 4 

Rare-earth-ion quantum 
computers 

The ESQUIRE project aims at implementing controlled logic and quantum com­
putations in liquid helium cooled rare-earth-ion-doped inorganic crystals. In 
this chapter, the properties of the crystal, the quantum computing scheme, the 
technique for qubit construction and the proposed method for performing a 
C-NOT operation will be described. Moreover, I will introduce some possible 
error sources and limitations of the rare-earth-ion quantum computing (REQC) 
concept. 

4.1 Properties of the crystal 

A rare-earth-ion doped crystal possesses several attractive features that makes it 
favourable for quantum computation, as described in [1] and [10]. The rare-earth 
ions have a partially filled inner shell ( 4f) that is shielded from the environment 
by outer electrons which results in very narrow homogeneous line-widths of the 
optical transitions, typically around 1 kHz. When doped into a host crystal, 
the ions experience shifts of their optical absorption frequencies because of im­
perfections in the host lattice. The shift will vary from ion to ion because of 
their different position in the lattice, creating an inhomogeneous broadening of 
several GHz for the optical transition. This remarkable combination of narrow 
homogeneous line widths and large inhomogeneous broadening provides possibil­
ities of addressing more than 106 different frequency channels. At liquid helium 
temperatures, the relaxation between the different hyperfine levels is very slow 
and hyperfine state lifetimes can be up to several hours. Measurements of the 
dephasing time between hyperfine levels are still missing for many materials. 
A method for measuring the hyperfine coherence time has recently been devel­
oped [11] and the coherence time for Pr3+ : Y 2Si05 was in a first try determined 
to 540 J.lS. Placing the crystal in a magnetic field will increase the coherence 
times up to 7 ms or, under particularly favourable circumstances, even 82 ms, 
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as reported in reference [12]. 

4.1.1 Interaction of qubits 

Qubit interaction can be accomplished by using the fact that the rare-earth ions 
have different permanent electric dipole moments in the ground states and in the 
excited state, denoted J-tg and 1-'e· Because of the difference in dipole moments, 
the electric field from each ion will change when it is excited. This change 
in electric field affects neighbouring ions whose absorption frequencies will be 
shifted. The change in transition frequency, l:l.vii, for ion i due to interaction 
with ion j is given by 

(4.1) 

where l:l.J.L = 11-'e- J-1.9 1, his Planck's constant, co is the permittivity of vacuum 
and rii is the distance between the ions. P, and f are unit vectors along (J-te- J-1.9 ) 

and Tij· 

Thus, whether an ion is resonant with the incoming laser frequency or not 
depends on if its neighbour is in the ground or excited state. Consequently, 
there is a coupling between the ions and with that, between the qubits. 

4.1.2 Qubit bus architecture 

The initial REQC proposal suggests a fully interconnected cluster architecture. 
Wesenberg and M!lllmer [13] instead propose an architecture which involves a 
star topology with one central cubit coupled to the n - 1 remaining qubits. All 
multi-bit gate operations would then proceed via this central qubit, the bus. 
The most important feature of the bus would be good interaction properties, 
while for the ordinary qubits, long coherence times would be more valuable. 
Not requiring both qualities from the same ion will increase the possibilities of 
finding suitable elements and methods. 

4.2 Quantum computing scheme 

A qubit is chosen as one of the frequency channels in the inhomogeneously 
broadened profile, i.e. an ensemble of ions that have a specific absorption fre­
quency v0 . The states 10) and 11) of the qubit correspond to two hyperfine 
levels in the electronic ground state of the rare-earth ions. A third hyperfine 
level, iaux ), is used as a reservoir. Transitions between the qubit states are per­
formed by optical transitions via the excited state, so called Raman transitions. 
The different levels relevant for the quantum computing scheme are shown in 
Figure 4.1. It should be stressed that it is not the energy splitting between 
IO) and 11) that distinguishes the qubits, but instead the energy of the optical 
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transition to the excited state !e). In reality, the excited state also has several 
hyperfine levels, but for simplicity only one is used in the discussions. 

4.3 Qubit construction 

If the frequency channel selected for a qubit is broader in frequency than the 
homogeneous line width of the ions, it must be guaranteed that all ions in 
the qubit experience the same pulse area when a laser pulse is applied. This 
has been proposed to be accomplished by using shorter laser pulses that are 
spectrally broader. Ions absorbing at frequencies close to the qubit channel 
need to be removed by optical pumping to be prevented from being excited by 
the laser pulses. If they become excited, they might undesirably affect nearby 
ions belonging to a qubit. The resulting qubits have the shape of spectral peaks 
(e.g. 1 MHz) within wider (e.g. 10 MHz) spectral holes, also called wells. A 
qubit is conceptually illustrated in Figure 4.2. 

Since the ions in an arbitrarily chosen frequency channel are randomly posi­
tioned in the crystal, only some of the ions in two such intervals are located 
close enough to be able to control each other. It is therefore necessary to select 
only the strongly interacting ions to constitute the qubits of the two frequency 
intervals. The selection procedure is presented on next page and illustrated in 
Figure 4.3. 

1. All the ions in the two frequency channels i and j are prepared in one of 
their hyperfine levels, say 11) i and 11) r 

2. All the ions in frequency channel i are excited to !e); by a 1r-pulse on 
frequency v;. Some of the ions in frequency channel j will then shift out 
of resonance of their original absorption frequency Vj. 

3. The ions that do not shift sufficiently prove not to interact strongly enough 
and are excluded from qubit j by means of optical pumping at frequency 
vi to an auxiliary state, the third hyperfine level. · 

4. A new 1r-pulse transfers i-ions back to l1)i and shifted j-ions return to 
their ground state. 

5. The procedure is repeated, but now with channel j as the controlling 
qubit. The unshifted i-ions are removed to the auxiliary hyperfine level. 

6. The remaining ions now constitute two qubits that mutually interact. 
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Figure 4.1: Energy level diagram showing the states relevant for the quantum 
computing scheme. 
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Figure 4.2: A conceptual illustration of a qubit in its well. v denotes the central 
absorption frequency of the channel. 
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Figure 4.3: Upper left: The qubit j before the refining procedure starts (step 1). 
Upper right: When qubit i is excited, the ions in qubit j experience a frequency 
shift (step 2). Lower left: All ions with insufficient shift are transferred to the 
auxiliary state (step 3). Lower right: Qubit i is deexcited and the shifted ions 
of qubit j return to their original absorption frequency (step 4). 

4.4 The C-NOT operation 

The scheme proposed in [1] for performing a controlled-NOT operation, with 
qubit i as control bit and qubit j as target bit, comprise the following steps: 

1. 1r-pulse on jO)i- Je)i 

2. 1r-pulse on jO) j - Je) j 

3. 1r-pulse on j1)j -Je)j 

4. 1r-pulse on jO) j - Je) j 

5. 1r-pulse on jO)i -Je)i 

If the control bit is in its JO) state, it will be excited by step 1 and the target bit 
will be shifted out of resonance and is not affected by steps 2-4. In step 5, the 
control bit is returned to its original state. If, however, the control bit was in 
its jl ) state, it will not be excited and the target bit will thus remain unshifted. 
Steps 2-4 will then swap the state of the target bit. The operation is illustrated 
in Figure 4.4. 
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Figure 4.4: A C-NOT operation. The pulses are labeled in chronological order. 

4.5 Error sources 

The objective of this master's thesis was to theoretically investigate possible 
error sources and to gain understanding of the limitations of the REQC scheme. 
The topic is important since information on the accuracy required for the quan­
tum operations to work satisfactorily will determine the requirements on the 
experimental methods and equipment. The severeness of the errors has been 
assessed with regard to their influence on the fidelity (see section 4.5.1) of a 
C-NOT gate. The main possible sources of errors are believed to be: 

Background ions There might be a background of ions in the spectral well. 
These ions do not belong to the qubit but still remain in the well due to 
insufficient pumping. The laser pulses intended for the qubit will excite 
the background ions and there is a possibility that they will shift the qubit 
(or other qubits) out of resonance and thereby disturb the computations. 

U nshifted ions Some ions in the target qubit might not be coupled strongly 
enough to the control bit, i.e. they do not shift sufficiently when the 
control bit is excited but are still on resonance. These ions will perform 
operations irrespective of the state of the control bit which will affect the 
outcome of the computation. 

Pulse area The laser pulses that are used for the qubit manipulations might 
have an error in pulse area. This means that the ions of the control bit 
will not be fully excited after a 7!'-pulse and with that, the shift of the 
target bit is incomplete. Error in pulse area when swapping the states of 
the target bit will also contribute to a deteriorated C-NOT gate. 

Oscillator strength There may be a variation in oscillator strength among 
the ions within the qubit. The oscillator strength determines the coupling 
to the electromagnetic field and the ions will hence experience different 
pulse areas. 
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Off-resonance excitation Depending on the shapes of the excitation pulses, 
there will be more or less off-resonant excitation of the ions outside the 
spectral well that surround the qubit. Just as the background ions, these 
unintentionally excited ions might shift the qubit ions. Off-resonant exci­
tation has been considered a significant problem and the the main part of 
this diploma project has been devoted to finding pulse shapes that result in 
appropriate excitation profiles. Chapter 5 treats this problem exclusively. 

4.5.1 Fidelity 

The reliability, or correctness, of a quantum gate is stated in terms of its fidelity. 
In this thesis, the fidelity has been defined as the absolute square of the overlap 
of the quantum state obtained, '1/J, with the desired quantum state, 'l/Jideal: 

(4.2) 

If the ideal and the actual operations are represented by uideal and u, respec­
tively, then 'ljJ = U'l/Jin and '1/Jideal = Uideal'l/Jin· Consequently, the fidelity can be 
expressed in terms of the initial state '1/Jin according to 

The fidelity is thus dependent on the quantum state sent into the gate. The 
overall fidelity of a gate has been chosen to be represented by the worst-case 
fidelity, i.e. the fidelity for the '1/Jin that gives the lowest fidelity. This worst-case 
approach, which involves minimizing :F with respect to '1/Jin, might be considered 
a bit pessimistic but is nevertheless relevant since it excludes more negative 
scenarios. Another approach would be to average the fidelity over all possible 
'1/Jin· However, the averaging would be very difficult to perform and there would 
still always be a risk of obtaining worse gate operations than expected. 
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Chapter 5 

Pulse shape 

As has been pointed out earlier in this report, the temporal shape of the laser 
pulses is of great importance in order for all ions in a qubit to experience the 
same pulse area and simultaneously avoid excitation of ions not belonging to the 
qubit. This, in turn, is vital for correct quantum computations. In this work, 
it is assumed that there is a 1 MHz wide qubit, centered around the resonance 
frequency of the laser, in the middle of a 10 MHz well, see Figure 4.2. The goal 
has thus been to find pulses that result in the desired excitation for all detunings 
less than 0.5 MHz and no excitation at all for detunings greater than 5 MHz, 
as illustrated in Figure 5.1. The action of the pulses at detunings between 
0.5 and 5 MHz is insignificant since all ions in this region are supposed to be 
pumped away. Further restrictions are the maximum Rabi frequency and the 
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Figure 5.1: Desired excitation profile of a 1!'-pulse applied to a system initially in 
the ground state. In the region where the qubit is located (Ill.! < 0.5 MHz) we 
want full excitation and outside the qubit well (Ill.! > 5 MHz) we want nothing 
to happen. The dashed region represents the empty part of the qubit well where 
the excitation is of no significance and thus can take any shape. 
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pulse length. The transition dipole moments of the ions and the output power 
of the laser limits the attainable Rabi frequency.· With our current equipment 
and crystals we cannot count on Rabi frequencies higher than 1-2 MHz. The 
pulse length should preferably be as short as possible, partly because the laser 
has limited coherence time and partly because the excited states have a limited 
life time. For example, in the C-NOT operation, the control bit is in its excited 
state during the swapping of the target bit states. Keeping the pulses short will 
decrease the time needed for swapping the target bits and with that, the risk 
of relaxation of the control bit is decreased. Naturally, shorter pulses will also 
lead to faster gate operations and higher computational speeds. 

At first, the excitation by 11"-pulses of rectangular and Gaussian shapes was 
examined. When they proved not to fulfil our demands, we turned our atten­
tion to composite pulses, a type of pulse sequences that is widely used for spin 
manipulations in NMR. The composite pulses were investigated and modified, 
with varying success, to give high fidelity gate operations. Finally, a complex 
hyperbolic secant pulse, which is designed for selective spin inversion in NMR 
and coherent optics, was tested. 

5.1 Basic pulses 

Speaking of the area of a pulse may pose some ambiguities since ions at different 
detunings will experience different pulse areas. To avoid confusion, the area of 
a pulse will, in this work, always refer to the pulse area experienced by the ions 
resonant with the field. 

5.1.1 Rectangular pulses 

The obvious pulse shape to start with is the simplest one - the rectangular 
pulse. The rectangular pulse has constant amplitude and the analytical solutions 
(3.18-3.19) for a two-level system can then be used. In order to make the ions, 
initially in the ground state, at resonance (fl. = 0) fully excited, a pulse area 
of 71" is required. This is acquired by choosing the amplitude of the field and 
the duration of the pulse such that nR. t = 71". Here, nR is the Rabi frequency 
defined in equation (3.13) and tis the pulse length. 

The Fourier transform of a rectangular pulse in the time domain is a sine func­
tion in the frequency domain (see Figure 5.2), which reveals that the rectangu­
lar pulse does contain considerable frequency components far from resonance. 
Simulations of the effect of square 71"-pulses of different lengths on a two-level 
system initially in the ground state can be seen in Figure 5.3 where the popu­
lation transfered to the excited state le) has been plotted as a function of the 
detuning. The left graph definitely does not correspond to a 1 MHz flat, central 
interval and the right graph, where the peak is broader but still not flat, shows 
considerable excitation for detunings far outside the well. 
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Figure 5.2: A 1 f..LS long rectangular pulse and its Fourier transform (absolute 
value). 
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Figure 5.3: Excitation of a system initially in the ground state by a rectangular 
1r-pulses of duration 1 f..LS (left) and 0.25 f..LS (right). 
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Figure 5.4: Excitation of a system initially in the ground state by a Gaussian 
7!"-pulses of total duration 1 p,s (left) and 0.25 J..LS (right). 

5.1.2 Gaussian pulses 

The simplest solution to the problem of excitation far from resonance is to con­
sider a Gaussian pulse envelope since the Fourier transform of a Gaussian will 
also be Gaussian. Ideally, such a pulse must extend tot= ±oo, but after several 
standard deviations, the amplitude is so small that truncation causes negligible 
errors. The effect of Gaussian 7r-pulses was simulated by numerically solving the 
coupled differential equations (3.16-3.17) using MATLAB's differential equation 
solver ode45. The excitation profiles can be seen in Figure 5.4. The Gaus­
sian pulses were truncated when the amplitude had decreased to 0.2 % of its 
maximum. 

With a Gaussian we can thus meet one of the requirements - hardly any ions out­
side the well will be excited if we chose the pulse length correctly. Unfortunately, 
it does not fulfill the demand of a flat excitation profile for 1.6.1 < 0.5 MHz. 

5.1.3 Optimizing pulse shape by Fourier transformation 

Why then not try the opposite approach, that is to start with the desired exci­
tation profile in the frequency domain and transfer it to a temporal pulse shape 
using the Fourier transform? For example, the sine pulses are very tempting to 
consider since the Fourier transform of such a shape is rectangular. The method 
was tried but with a disheartening result. There was no excitation far from reso­
nance but still, the excitation profile was not at all rectangular as expected (see 
Figure 5.5). An explanation can be found in reference [14] where Warren points 
out that if a pulse is sufficiently weak, the induced polarization will be linearly 
proportional to the applied field amplitude and will be the Fourier transform of 
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Figure 5.5: A sine pulse of area 1r and its excitation profile. 

the pulse shape with a 90° phase shift. However, if the pulse is strong enough to 
noticeably affect the populations (as in our case), the response is no longer linear 
and will strongly deviate from the Fourier transform. For very large detunings 
most of the Fourier components of the pulse are very far from resonance, and 
the limiting case of linear response is recovered. From this we can learn that the 
Fourier transform of our pulses should not contain any frequency components 
far from resonance in order to avoid excitation of the ions surrounding the well 
of our qubit. But, when it comes to creating an excitation profile that is flat 
for small detunings, the answer must be searched somewhere else than in the 
Fourier transform. 

5.2 Composite pulses 

In this section, the method of composite pulses, also referred to as composite 
rotations, is discussed. Composite pulses, thoroughly described by Levitt in 
reference [15], are widely used in NMR to combat systematic errors arising from 
inevitable experimental imperfections. Instead of one pulse, a series of rectan­
gular pulses of different durations and phases is applied. Such sequences are 
usually designed to perform a transformation of the spin system equivalent to 
that of an ideal single pulse. Cummins et al. [16] have proposed composite rota­
tions to tackle off-resonance and pulse length errors within the context of NMR 
quantum computing but believe that their sequences should be applicable to 
any implementation of quantum computing. Jones describes how the composite 
rotation method can be used to develop quantum logic gates which are robust 
against systematic errors in reference [17]. 
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Figure 5.6: Tracks traced out on the Bloch sphere by a family of five vectors, all 
starting on the south pole, undergoing a single (180 + ai )90 rotation (left) and 
the sequence (90 + ai)9o(180 + ai)o(90 + ai )9o (right), where a varies between 
-18° a.nd 18°. The ideal rotation ends up exactly on the north pole. 

5.2.1 Theory of composite pulses 

The method of composite pulses are developed within NMR and are thus de­
signed for spin systems interacting with a magnetic field. However, in the 
dipole-approximation, t he atom-field interaction problem for a two-level sys­
tem is mathematically equivalent to a spin-1 / 2 particle interact ing with a. time­
dependent magnetic field as pointed out in section 3.2. The theory of composite 
pulses developed in NMR is therefore equally applicable to our two-level ions. 

In the Bloch picture, where unitary operations are visualized as rotations of the 
Bloch vector on a unit sphere, systematic errors are expressed as rotational im­
perfections. The underlying idea of composite pulses is to put several rotations 
toget her in carefully-chosen combinations to cancel out each other's deviations 
from ideality. In the following, pulses will be referred to as rotations on the 
Bloch sphere and the notation 

(5.1) 

will be used to denote a rotation through a.n angle e about an axis in the xy-pla.ne 
at an angle t.p from the x-axis. As a.n example, t he composite pulse sequence 
909018009090 is equivalent to the single rotation 18090 if all rotations are ideal. 
However, 909018009090 is much more insensit ive to small deviations in rotation 
angles and off-resonance effects than the single pulse as shown in Figure 5.6 and 
5.7 where the traces on the Bloch sphere by a family of vectors, start ing on the 
south pole, undergoing the rotations are plotted. 

The firs t approach used in designing composite pulses was by following the 
trajectory of magnetization vectors starting from some given initial condition 
and observing visually how the trajectories may be combined in such a way as 
to cause error compensation. The sequence 909018009090 was designed in this 
way. This geometrical approach has the advantage of providing a good picture 
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F igure 5.7: Tracks traced out on the Bloch sphere by a family of five vectors, 
all starting on the sout h pole, undergoing a single 1800 rotation (left) and the 
sequence 90gol80o90go (right), in presence of off-resonance effects up to !:::.f 0.n = 
0.1. The ideal rotation ends up exactly on the north pole. 

of how error compensation works . Its disadvantages are that it is limited by 
the number of consecut ive rotations that can be visualized and that it usually 
only works for one particular init ial state. A more recent way of constructing 
composite pulses is to concent rate on the compensation of the pulse sequence 
propagator Up which describes the effect of the pulse sequence on arbit rary 
init ial conditions. For further description, consult reference [15]. 

5.2.2 Classification and properties of composite pulses 

Composite pulses can be assigned to four classes called A, B l , B2 and B3. 
All composite pulses produce compensated rotations only for a limited range of 
imperfections. The characteristics of the classes are as follows: 

• Composite pulses of type A produce a fully compensated rotation of the 
system, such that 

(5.2) 

where U~ is the ideal propagator. This implies that an A pulse should 
work as an ideal pulse, within some approximation, for all initial states. 

• Type Bl pulses produce part ially compensated rotations where the com­
pensated propagator differs from the ideal propagator only by an overall 
phase shift , which may be dependent on the pulse imperfections and the 
initial state. 

• Pulses of type B2 enjoy compensated transformation of one part icular 
initial condit ion to one particular final condit ion. Transformation of other 
initial states may not even resemble the ideal ones. 
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Figure 5.8: Excitation by composite 180° pulse of class A. The pulse sequence 
is 336o2461so lOgo 7 4270 l0go2461so336o. 

• Composite pulses of type B3 gives compensated transformation of one 
particular initial state except for a phase shift. 

The classes are not mutually exclusive. A pulse of class A simultaneously also 
belongs to the B-classes. For composite 180° pulses (i.e 1r-pulses), classes Bl, 
B2 and B3 coalesce and pulses may be termed B-type without ambiguity. 

For our application, type A pulses would be preferable since they function in­
dependently of initial state. If the initial state is known, such as before the first 
1r-pulse in the C-NOT scheme in section 4.4, a composite pulse of type B would 
be adequate. Scrutinizing the scheme reveals that the initial state is known (the 
excited states are supposed to be empty when the operation starts) before all 
the 1r-pulses except before the third pulse when we may have population both 
in 11) and le ). Consequently, we cannot be satisfied with only composite pulses 
of class B but we also need an A composite pulse in order to compensate for 
the off-resonance errors in the C-NOT scheme. 

Levitt has tabulated a multitude of composite 90° and 180° pulses of all classes 
in [15]. Some of the listed composite pulses were simulated for a wide range 
detunings (i.e off-resonance errors) in order to examine their behavior both 
inside and outside our qubit well. The excitation by one composite 180° pulse 
of class A, designed especially for resonance offset compensation, is shown in 
Figure 5.8. As promised, the inversion is constant and equal to one for small 
detunings, in accordance with our desires. All ions in the qubit will be excited 
when this pulse sequence is applied. Unfortunately, this composite pulse will 
also cause considerable excitation outside the well which is not tolerable. The 
excitation at frequencies far from resonance is due to the fact that the composite 
pulses are composed of rectangular pulses, some of which are very short, that 
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Figure 5.9: Excitation by composite pulse 90gol801809090 realized with rectan­
gular (left) and Gaussian (right) pulses, respectively. 

cause excitation for large detunings as discussed in section 5.1.1. Consequently, 
all composite pulses built from rectangular pulses will bring excitation at large 
detunings. 

5.3 Composite Gaussian pulses 

So far, we have the composite pulse that gives complete and constant inversion 
for small detunings and the Gaussian pulse that does not cause excitation out­
side the well. Still, we lack and need a pulse with both these features. Why 
then not try to substitute the rectangular pulses in the composite pulse sequence 
with Gaussian pulses? Hopefully, this substitution will lead to the removal of 
far off-resonance excitation while still keeping the constant inversion for small 
detunings. After having simulated all composite pulses listed by Levitt, the 
optimism decreased. All composite pulses, except one, lost their error com­
pensating properties. Our substitution theory proved to be valid only for the 
9090 18009090 pulse, which is a 180° pulse of class B, as shown in Figure 5.9. A 
pulse length of at least 0.5 f.LS for the Gaussian pulses was found to be suitable 
for a 10 MHz wide well. 

As creating new composite Gaussian pulses from scratch was to complicated to 
be considered within this diploma work, effort was instead put into understand­
ing the differences between Gaussian and rectangular pulses. If able to figure 
out how the rectangular pulses can be replaced by Gaussians and still keep the 
error compensation, one could benefit from the knowledge acquired by the NMR 
researchers throughout decades. 
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Figure 5.10: goo rectangular {left) and Gaussian {right) pulse for different de­
tunings. 

5.3.1 Gaussian pulses on the Bloch sphere 

The action of Gaussian and rectangular pulses on a two-level system was sim­
ulated on the Bloch sphere to gather insight into their differences. The time 
evolution is much more complicated when the pulse shape is not rectangular 
since the magnitude and direction of the effective field n, defined in equa­
tion {3.2g), about which the Bloch vector R rotates, changes during the pulse 
if the amplitude is time-dependent. The time evolution of the Bloch vector for 
different detunings during a goo rectangular pulse and a goo Gaussian pulse is 
shown in Figure 5.10. The vectors at resonance follow exactly the same path 
in both cases, while the rotational drift around the z-axis is substantial already 
for small detunings in the case of a Gaussian pulse. The reason for this is that 
the amplitude is very small at the ends of the Gaussian pulse, and n is then 
dominated by its z component, -Llez. These non-negligible drifts around the 
z-axis make it impossible to easily transfer the composite rectangular pulses 
to Gaussian pulse sequences. The idea was thus put aside. The fact that the 
rectangular pulses in gOgol80o90go could be exchanged for Gaussians must be 
considered a coincidence. 

5.3.2 Optimizing the 909018009090 pulse 

Despite the defeat of not being able to transfer all composite pulses into com­
posite Gaussian pulses, the fortunate 90gol80ogOg0 Gaussian pulse could still be 
used when the initial state is known. A simulation of the sequence on the Bloch 
sphere is shown in Figure 5.11. The end points of the traces are quite close to 
the north pole, i.e close to complete inversion, but could be further improved. 
This was done by stochastic variation of the pulse areas and phases. If a pulse 
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Figure 5.11: Composite Gaussian pulse 90gol80o90go traced out on the Bloch 
sphere and viewed from two different angles. Ideally, all endpoints ( *) should 
be situated on the north pole. 

sequence is defined as a product of unitary pulse propagators1 

(5.3) 

then the propagator of pulse j can be unambiguously determined through 

U U-1 u-1 u-1uu-1 u-1 u-1 
j = j+1 · · · n-1 n 1 · · · j-2 j-1• (5.4) 

if all the other propagators are known. A small stochastic change in either pulse 
area or phase of a randomly chosen pulse i will alter Ui. A modified propagator 
Uj of another randomly chosen pulse j is calculated through equation (5.4) 
such that the operation still is correct for b. = 0. Pulse propagators can be 
determined analytically for b. = 0, independently of pulse shape. Thus, the 
modified pulse area and phase of the j :th pulse can be established analytically 
from Uj. The pulse propagators for some relevant detunings2 are then calculated 
numerically, using the modified pulse areas and phases. If the mean fidelity 
for the operation increases, compared to before the variations, the changes are 
kept. If the fidelity on the other hand decreases, the former areas and phases are 
retained. The procedure is repeated numerous times and hopefully converges. 

The method above was tried several times with 90go180o90go as starting point 
and the same result, 92.5096.9s192.006.8692.4296.23, was obtained time after time. 
This implies that we do have convergence and as can be seen in Figure 5.12, 
the inversion has significantly improved. A plot of the inversion as a function 
of detuning for the optimized pulse can be found in Figure 5.13. The same 

1The chronological order runs from right to left in pulse propagators, but from left to right 
in pulse sequences. 

2~ = -0.4, -0.3, -0.2, -0.1, -0.05, 0.05, 0.1, 0.2, 0.3, 0.4 MHz 
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Figure 5.12: Composite Gaussian pulse 92.5096.98192.006.8692.4296.23 traced out 
on the Bloch sphere and viewed from two different angles . 
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Figure 5.13: Excitation by the composite Gaussian pulse 
92.5096.98192.006.8692.4296.23. 
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Figure 5.14: Absolute (left) and real and imaginary parts (right) of a complex 
hyperbolic secant pulse with J.L = 3. 

approach was used trying to optimize goo composite Gaussian pulses, with the 
areas and phases from the sequences given in [15] as starting points. However, 
this did not render any success, either because of poor initial guesses or due to 
shortcomings in the optimization method. A third possibility is that a good goo 
composite Gaussian pulse does not exist. 

5.4 The complex hyperbolic secant pulse 

Silver et al. [18] present an analytical solution of the Bloch equations [g] using a 
complex hyperbolic secant pulse as a driving pulse, resulting in a Rabi frequency 
(see equation (3.13) for definition) with the following temporal shape: 

nR(t) =no (sech ((3 (t- to))]l+iJ.£, (5.5) 

where p, is a real constant, no is the maximum Rabi frequency and (3 is related 
to the (amplitude) FWHM3 of the pulse (FWHM = 2.6/(3). In this section, we 
will discuss the properties of this complex hyperbolic secant pulse. Its temporal 
shape is plotted in Figure 5.14. 

The use of a pulse of complex amplitude is equivalent to a real pulse with 
frequency modulation. The pulse in equation (5.5) can thus be realized with a 

3 Fu!l Width Half Maximum 

3g 



real sech pulse envelope in combination with a tanh frequency sweep according 
to 

OR(t) = Oosech ([J (t- to)), !::::..v = J.LfJ tanh ([J (t- to)) . (5.6) 

When J.L is nonzero, the instantaneous frequency of the pulse changes with time 
and the laser can induce what is called a adiabatic rapid passage [19] in a two­
level system. 

The Bloch equations is a more general description of two-level systems than the 
probability amplitude method described in section 3.2.1 and the solutions of the 
Bloch equations are thus also applicable to our problem. The solution by Silver 
et al. indicates, under the appropriate conditions, that the use of such a pulse 
creates a highly selective population inversion which, above a critical threshold, 
is independent of pulse amplitude. Once J.L ~ 2 and provided that Oo 2:: J.LfJ, 
the inversion is essentially independent of the amplitude of the field, and hence 
independent of the field homogeneity, which is an important practical point. 
The localized inversion will, for J.L 2:: 2 and Oo 2:: J.LfJ be of width 

(5.7) 

When J-1. increases, the selectivity of the inversion becomes sharper. However, 
increasing J.L, means that either the amplitude of the pulse or the pulse length 
(FWHM) has to be increased in order retain the condition 0 0 2:: J.LfJ. Thus, the 
parameters have to be carefully adjusted in order for the pulse to create the 
desired inversion but still not exceeding the limits of attainable Rabi frequency 
and maximum pulse duration. For our application, suitable values were found 
to be 

{ 
J-1. = 3 
Oo = 2MHz 
[J = 0.64 MHz 

(5.8) 

This gives a FWHM of 0.65 J-I.S and, if the pulse is truncated at 0.5% of its 
maximum, a total pulse length of 3 J-I.S. Here, J.LfJ = 1.91 MHz which means 
that 0 0 ;:::: J.LfJ with some margins, allowing some fluctuations in amplitude. The 
excitation by a pulse with these parameters is shown in Figure 5.15. If the 
pulse is implemented with a real amplitude, the corresponding frequency sweep 
required is 2 · J.LfJ = 3.82 MHz. 

5.5 Phases and compensating pulses 

The phase ei"~, introduced in equation (3.30), can be considered as global and 
can with that be disregarded, if and only if it appears in front of all qubit 
states. In a two-qubit system, a phase must thus appear in front of 100 ), 101 ), 
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Figure 5.15: Excitation by a complex hyperbolic secant pulse for different de­
tunings. The parameters are p, = 3, flo = 2 MHz and f3 = 0.64 MHz. 

110 ) and Ill ) if it should be justified to neglect it. As can be seen in the 
analytical expressions for the probability amplitudes of the states of a two-level 
system (3.18-3.19), there is a detuning and time dependent phase, e-i/::,.t/2 . This 
factor appears on both probability amplitudes and should therefore not propose 
any problems. However, the two states involved in our rotations are not 10) 
and 11 ), but instead IO) and le) or 11) and le ). In fortunate circumstances, 
the same phase is acquired by all qubit states already by the rotations/pulses 
prescribed by the gate operation. Else, one must arrange for it to be acquired 
by applying compensating pulses, which have no other effect than to introduce 
a phase shift. 

As an example, consider a one qubit phase operation with purpose to add a 
minus sign in front of 11 ). This is easily achieved by applying a 21r-pulse on 
ll) -le). However, now we will also have acquired a detuning dependent phase 
on 11). To compensate for this, we will apply a 1r-pulse followed by a ( -1r )-pulse 
on IO)- le). If the time required for these two pulses is equal to the duration 
of the 21r-pulse, then the phase accumulated by IO) will be equal to the phase 
previously obtained by 11 ). The detuning dependent phase can then be consid­
ered as global and thus disregarded. Alternatively, one can apply a 47r-pulse, 
equal in length to the 21r-pulse, on IO) - !e) to accumulate the same phase. This 
would however require a larger Rabi frequency which makes this alternative less 
convenient. 
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5.6 Conclusions concerning pulse shape 

The efforts of finding suitable pulses resulted in two good pulses, the optimized 
composite Gaussian pulse and the complex hyperbolic secant pulse. They are 
both 7r-pulses and are well-functioning only when the initial state is one of the 
eigenstates, i.e. we can perform good operations from pole to pole on the Bloch 
sphere. The advantage of the hyperbolic secant pulse is that it is independent 
of pulse amplitude and field inhomogeneity, if the amplitude is above a critical 
threshold. This pulse also has good margins to the edge of the well, which means 
that the well could be narrowed without jeopardizing computing fidelity. In 
turn, this enables more qubits in the crystal since they can be packed spectrally 
denser. On the other hand, the duration of the complex hyperbolic secant pulse 
is approximately double that of the composite Gaussian pulse which speaks for 
the composite Gaussian pulse. Both pulses have been designed to suit a 1 MHz 
wide qubit in a 10 MHz well. If increasing or decreasing the width of the qubit 
and the width of the well by the same factor, the pulses are easily adapted by 
adjusting the pulse length. 

Another approach for pulse optimization could be optimal control theory, as de­
scribed by Tesch et al. in reference [20], to design pulses with varying amplitude, 
phase and frequency in order to achieve the desired excitation. However, formu­
lating and solving the optimization problem would not be trivial and definitely 
would require a considerable amount of effort and time. 
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Chapter 6 

Improved scheme for qubit 
operations 

The efforts of finding suitable pulses resulted in two useful 1r-pulses for tran­
sitions from a ground state to the excited state or vice versa. It is a problem 
that we failed in designing satisfactory 1r-pulses for arbitrary initial states, since 
that kind of pulse is required in the C-NOT scheme (section 4.4). A solution 
to the problem is to invent a C-NOT scheme that only involves our successful 
pulses, i.e. 1r-pulses from pole to pole on the Bloch sphere. As described in 
section 2.2.1, a C-NOT operation can be realized through a C-PHASE operation 
surrounded by Hadamard operations on the target bit. A C-PHASE operation, 
with qubit i as control bit and qubit j as target bit, can be implemented by the 
following steps: 

1. 1r-pulse on IO)i - le)i 

2. 27r-pulse on l1)j -le)j 

3. 1r-pulse on IO)i - le)i 

The effect of the 27r-pulse is l1)j ---+ -l1)j" The 27r-pulse is equivalent to 
two 1r-pulses which means that the C-PHASE operation can be adequately im­
plemented with either the complex hyperbolic secant pulse or our composite 
Gaussian pulse, since it only involves transitions from a ground state to the 
excited state and back. Unfortunately, we do not have a good Hadamard gate 
at our disposal. The purpose of the Hadamard operation is to transfer 10) and 
11 ) into the following superpositions: 

1 
IO) ---+ y'2 (IO) + 11) ), 

1 
11) ---+ )2(10) -11)). (6.1) 

With this in mind, let us define a new, orthonormal computational base with 
basis states according to 
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and inversely 

{ !O) = jz(!O) + !1)) 
!I)= }z(!O) -!1)) ' 

{ !O)=jz(!O)+!I)) 
ll)=jz(!O)-!I)) · 

(6.2) 

(6.3) 

With these definitions, a PHASE operation in the base (!O), !I)) corresponds to a 
NOT operation in the base (!O), !1)) as we will now show. Consider an arbitrary 
quantum state '1/Jin: 

PHASE 
~ 

~(!O) +!I))+ ~(!O) -II)) 

a+ {3 !O) + a - {3 !I) 
V2 V2 

a+ f3 !O) - a- f3 II) 
V2 V2 

~(!O) -!I))+ ~(!O) +!I)) 

a !1) + fJ!O) = '1/Jout (6.4) 

Consequently, if we can find another way than a Hadamard operation to change 
base, then we can implement a C-NOT gate via the C-PHASE operation. 

6.1 Dark states 

New possibilities emerge if we consider the three-level system, consisting of !O ), 
11) and !e), instead of exclusively two levels at a time. Coherent superpostions 
of atomic states in three-level atoms have many interesting applications, for 
example coherent trapping [8]. Our model of the qubit correspond to a so-called 
A configuration in which two lower levels are coupled to a single upper level. 
Assume that the atom is interacting with two fields of frequencies vo and v1 as 
shown in Figure 6.1. The equations of motion for the probability amplitudes 
c0 (t), c1 (t) and ce(t) can be derived from the Schrodinger equation (3.4) to be 

co .ORo(t) i<po 
z-2-e Ce, 

.nRl(t) i'Pl 
z-2-e Ce, 

.,.. + .nRo(t) -i<po + .nRl(t) -i<p1 -zuc z--e co z--e c1 
e 2 2 ' 
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Figure 6.1: Three-level atom in the A configuration interacting with two fields 
of frequencies vo and !11. 

Here S1Roe-icpo and S1Rle-icp1 are the complex Rabi frequencies associated with 
the coupling of the fields of frequencies vo and 111 to the transitions \0) ---+ \e) 
and \1) ----t \e), respectively. If we chose \S1Ro\ = \flRI\ = flR, then equation (6.7) 
can be rewritten as 

(6.8) 

If e-icpoc0 + e-icp1 c1 = 0, there will be no coupling between the lower states and 
the excited states, even in presence of the fields. The population is then said 
to be trapped in the lower states. For \0), co = c1 = 1//2 and if the phases 
of the fields are adjusted so that <p1 - <po = ±1r, the requirements for trapping 
are fulfilled and there will be no coupling between \0) and \e). Under these 
circumstances, \0) can be referred to as a dark state and the field will couple 
only to \I). Similarly, if we assure that 'PI - <po = 0, then \I) will be a dark 
state and the field will only interact with \0). Consequently, by utilizing two 
laser fields simultaneously and choosing the phases carefully, we can address 
the states \0) and \I) directly. Through this procedure, Hadamard operations 
intended to change base become superfluous. 

6.2 Improved scheme 

By using the method described above, our composite Gaussian pulse or the 
complex hyperbolic secant pulse will be sufficient to realize a C-NOT gate, since 
it can be implemented through a C-PHASE operation. 
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6.2.1 Controlled-NOT operation 

A new scheme, making use of dark states and thus realizable with the pulses 
we possess, for performing a C-NOT operation, with qubit i as control bit and 
qubit j as target bit, comprise the following steps 

1. rr-pulse on JO); - Je); 

2. rr-pulse on JI)j -Je)j 

3. rr-pulse on JI)j -Je)j 

4. rr-pulse on JO) j - Je) j 

5. ( -rr )-pulse on JO) j - Je) j 

6. (-rr)-pulse on JO); -Je); 

If the control bit is in its JO) state, it will be excited by step 1 and the target bit 
will be shifted out of resonance and hence not affected by steps 2-5. In step 6, 
the control bit is returned to its original state. If, however, the control bit was in 
its 11 ) state, it will not be excited and the target bit will thus remain unshifted. 
The purpose of steps 2-3 is to induce a change of sign, i.e. a 180° phase shift, 
on JI) j and steps 4-5 are supposed to act as a compensating pulse on JO) j" 
The concept of compensating pulses is discussed in section 5.5. The transitions 
I I) j -I e) j and JO) j -Je) j are realized through the use of two simultaneous laser 
fields as described in the previous section. ( -rr)-pulses are achieved by adding 
180° to the phase. Simulations of C-NOT operations according to this scheme 
were performed by solving the equations of motion for the nine-level system 
including states JOO), J01), JOe), J10), Jll), J1e), JeO), Je1) and Jee). When 
addressing the transition JO) - Je) in the control bit, the system of coupled 
differential equations to be solved are 

coo 0 0 0 0 0 0 i !ln e-icp 0 0 coo 2 

co1 0 0 0 0 0 0 0 ·& -icp 0 co1 t 2 e 

Coe 0 0 0 0 0 0 0 0 0 Coe 

clO 0 0 0 0 0 0 0 0 0 ClQ 
en 0 0 0 0 0 0 0 0 0 en 
Cle 0 0 0 0 0 0 0 0 0 Cle 
Ceo i&eicp 0 0 0 0 0 -i6. 0 0 Ceo 2 
Cel 0 i&eicp 0 0 0 0 0 -i6. 0 Cel 2 
Cee 0 0 0 0 0 0 0 0 0 Cee 

(6.9) 

Similarly, when addressing the transitions JI) - Je) and JO) - Je) in the target 
bit, the matrix representing the equations of motion can be written as 
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0 0 ifllw.e-i'Po 0 0 0 0 0 0 2 
0 0 iD.m.e-i'Pl 0 0 0 0 0 0 

i Dno ei'Po i D.m. ei'Pl 
2 

2 2 -ill 0 0 0 0 0 0 
0 0 0 0 0 i fla.rJ. e- i<po 0 0 0 

2 
0 0 0 0 0 iflru.e-i'Pl 0 0 0 2 
0 0 0 i Dno ei'Po iflru.ei'Pl -ill 0 0 0 2 2 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

(6.10) 

The Rabi frequencies are all functions of time according to the pulse shape used. 
The coupled differential equations were solved numerically using MATLAB's 
ordinary differential equation solver ode45. Simulations of C-NOT operations 
according to the scheme above and using complex hyperbolic secant pulses and 
optimized composite Gaussian pulses is found in Figure 6.2 and 6.3, respectively. 

As can be seen, lcool 2 and lco1l 2 remain unchanged (in the frequency region 
where the qubit is located and outside the well- in between is unimportant) 
as they should since they are the probability amplitudes for states 100) and 
101 ), i.e. the control bit is in state 10 ). For 110) and 111 ), the control bit 
is 11 ) and consequently, their populations are supposed to be swapped by the 
operation. Just as they should, I c10 12 and lcnl 2 have changed places in the 
region where the qubit is located. Outside the well, they remain unchanged. 
What else is important is that the relative phase between the qubit states is 
constant throughout the qubit and that we do not leave any ions excited in the 
qubit or outside the well. A plot of the phase is shown in Figure 6.4 and a 
plot of the total population in the excited states can be found in Figure 6.5. 
Obviously, both requirements are fulfilled. 

6.2.2 Arbitrary operation 

The method can be extended to arbitrary rotations in the qubit state base 
(IO ),11) ). Assume that ORo= nRl but that the difference in phase between the 
two fields is arbitrary, ~.p 1 -t.po = ¢ or t.p 1 -t.po = ¢ + 1r depending on which state 
we want to address. The new base should then be defined according to 

and inversely 

{ 
IO) = ~ (IO)- e-i1> 11)) 

II) = ~ (IO) + e-i<l> 11)) ' 

{ 
IO) = ~ (IO) +II)) 
11) = ~ (-IO) +II)) 
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Figure 6.2: A qubit init ially in state 1/! = .jk IOO) +No 101) + Jfo 110) + Jk Ill) 
before (left) and after (right) a C-NOT operation performed with complex 
hyperbolic secant pulses. The dotted vertical lines represent the edges of the 
qubit and its well. 
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Figure 6.3: A qubit initially in state 'lj! = .jk IOO) +No 101) + Jfo 110) + Jk Ill) 
before (left) and after (right) a C-NOT operation performed with optimized 
composite Gaussian pulses (92.5096.98192.006.8692.4296 23) . The dot ted vertical 
lines represent the edges of the qubit and its well. 
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Figure 6.4: The relative phase between 110) and Ill) after a C-NOT operation 
realized with complex hyperbolic secant pulses (left) and optimized composite 
Gaussian pulses (right). The dotted vertical lines represent the edges of the 
qubit and its well. 
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Figure 6.5: Total population the excited states after a C-NOT operation realized 
with complex hyperbolic secant pulses (left) and optimized composite Gaussian 
pulses (right). The dotted vertical lines represent the edges of the qubit and its 
well. 
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Thus, with cpo- 'Pl = ¢, IO) will be a dark state and with cpo- cp1 = ¢ + 1r, II) 
will be a dark state. Further, phase operations do not necessarily involve phase 
changes of 180°, but can be implemented to induce any phase change 0, that is 

(6.13) 

In practice, this is done by driving the ion from the south pole up to the north 
pole on the Bloch sphere with a 1r-pulse and down again by a 1r-pulse with a 
phase that is shifted by 180° + B in comparison to the first. Exposure of an 
arbitrary quantum state 1/Jin =a IO) + f311) to the operation will result in 

1/Jin a IO) + f311) 

~ ei! { (a cos~+ ieiq)(3sin ~) IO) + (ie-iq)a sin~+ (3 cos~) 11)} 

1/Jout (6.14) 

The derivation of equation (6.14) is to be found in Appendix A. Using matrix 
representation, the operation can be written as 

i!!. ( cos~ ieiq) sin Q.2 ) 
Uarb = e 2 . ·-~. • o 9 . ze-'"' sm 2 cos 2 

(6.15) 

A NOT operation is achieved if B and ¢ are both set to 180°. The above matrix 
is very similar to the matrix in equation (3.23) that describes the interaction 
of a two-level system with a resonant field. The only difference is the phase 
factor ei! in equation (6.15). However, this phase can be considered as global 
since it appears on all states and if we are aware of its existence, it should not 
entail any difficulties. Consequently, all rotations on the Bloch sphere that can 
be achieved with one laser field, using pulses of different areas and phase, can 
also be attained, on a Bloch sphere representing the qubit (see section 3.3.2), by 
using two laser fields and only pulses of area 1r. As an example, a 90° rotation, 
turning an initial state 1/Jin = IO) into an equal superposition of IO) and 11), is 
shown in Figure 6.6. 
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Figure 6.6: A simulation of an operation with e = goo and cp = goo on an init ial 
state '1/Jin = IO). The scheme was implemented with complex hyperbolic secant 
pulses. The dotted vertical lines represent the edges of the qubit and its well. 
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Chapter 7 

Analysis of error sources 

In the beginning of the work, a number of error sources that could deteriorate 
the gate fidelity were identified. In this chapter, these different error sources are 
analysed one at a time, while all other conditions are assumed to be ideal. 

7.1 Background ions 

Background ions are non-qubit ions that remain in the qubit well due to in­
sufficient pumping. The laser pulses intended for the qubit might excite the 
background ions and there is a possibility that they will shift the qubit (or 
other qubits) out of resonance and thereby disturb the computations. 

Let us denote the number of qubit ions by No and the number of background ions 
by Nb. The background ions are harmless unless they are situated closely enough 
to a qubit ion to shift it out of resonance if excited. Denote the probability th,at 
a background ion shift a qubit ion out of resonance if excited by p. With the 
worst luck imaginable, all dangerous background ions get excited during the 
C-NOT operation. The ratio of unintentionally shifted and hence erroneously 
calculating qubit ions to well-functioning qubit ions will then be 

Nerr Nb 
No =No ·p. (7.1) 

If we suppose unlikely large values like ~ = 0.1 and p = 0.01 we will still end 
up with only 0.1% miscalculating qubit ions and hence a worst-case fidelity of 
0.999. Thus, background ions cannot be considered as a serious problem. 

7. 2 U nshifted Ions 

Unshifted ions are ions that are not coupled strongly enough to the control bit, 
Le. they do not shift sufficiently when the control bit is excited but are still 
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on resonance. These ions will perform operations irrespective of the state of 
the control bit. Qubit states 110) and Ill) will not be affected by this error 
since they are supposed to perform operations (the control bit is in state 11 ) ) , 
while unshifted ions in states 100) and 101) perform operations even though 
they should not (the control bit is in state I 0 ) . To find the worst initial state 
we should thus consider the initial qubit state Win = a IOO) + (3101) which, 
in the presence of Nu unshifted ions and N 0 well-behaving ions that do shift, 
correspond to 

Under an, in other respects ideal, C-NOT operation, W~n will transform into 

Thus, a measurement on the target bit will yield IO) and 11) with probabilities 

1 Nolal 2 + Nulf312 

Pio) = No +Nu and 1 Nolf31 2 + Nulal 2 

Pil) = No+Nu ' (7.4) 

respectively. Ideally, without unshifted ions, Win would not be affected by the C­
NOT operation which would yield Waut =Win= a IOO)+,BIOl). The probabilities 
for measuring the target bit as IO) or 11 ), under ideal conditions, would thus be 

and Pil) = lf312 · (7.5) 

If we have lal 2 = lf31 2 , then p1 = p and the unshifted ions would thus not do any 
harm. By comparing equations (7.4) and (7.5), we can conclude that the largest 
deviation in measurement probability will arise when lal 2 = 1 and lf31 2 = 0 or 
vice versa. The probability that the measurement outcome is correct, in the 
presence of unshifted ions, will then be 

1 No 
Plright) = No + Nu 

1 
(7.6) 

l+Nu/No. 

This probability is equivalent to the worst-case fidelity which is plotted as a 
function of Nu/ No in Figure 7.1. As can be seen, there is an almost linear 
dependence and fidelity decreases rapidly with an increasing proportion of un­
shifted ions. Already at Nu/No = 0.01, the fidelity is down to 0.99. 
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Figure 7.1: Worst-case fidelity of a C-NOT operation in the presence ofunshifted 
ions. Nu/No denotes the ratio of the number unshifted ions to the number of 
normal ions in the qubit. 

7. 3 Pulse area errors 

Errors in pulse area will not arise if utilizing the complex hyperbolic secant 
pulse since it, above a critical threshold, is independent of pulse amplitude. 
If, however, the composite Gaussian pulse is used, errors in pulse area must 
be taken into account. In this section, we will examine the influence of pulse 
area errors on the fidelity of a C-NOT operation performed according to the 
scheme in section 6.2.1 with the optimized composite Gaussian pulse sequence 
92.5096.9s192.006.s692.4296.23· Pulse area errors in pulses on the control bit and 
in pulses on the target bit will be investigated separately. 

7.3.1 Pulses on the control bit 

An error in pulse area, 5, was introduced in the composite pulses on the control 
bit so that a 1r-pulse was implemented with the sequence 

(92.50 + 5)96.98(192.00 + 5)6.86(92.42 + 5)96.23, (7.7) 

and a ( -1r)-pulse with 

(92.50 + 5)96.98+180(192.00 + 5)6.86+180(92.42 + 5)96.23+180· (7.8) 
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Figure 7.2: The populations in the different qubit states after a C-NOT operation 
performed according to the scheme in section 6.2.1 with optimized composite 
Gaussian pulses. Errors in pulse area were introduced in all pulses on the control 
bit. 

The equations of motion for the nine-level system, see equations (6.9-6.10), were 
solved numerically with 6. set to zero. A simulation with 

'l/Jin =fro IOO) +{I; 101) +ITo llO) +{fa Ill), 
for different pulse area errors on the control bit is exposed in Figure 7.2. As can 
be seen, the populations are affected very little by the pulse area errors, not until 
errors of 2: 20° can deviations be viewed in icool 2 and lc01l 2 • The deviations in 
the relative phase are less than 0.04° which should be negligible. The fidelity, 
as introduced in section 4.5.1, was calculated and numerically minimized with 
respect to the initial state 'l/Jin using the MATLAB function fminsearch in order 
to obtain the worst-case fidelity which is plotted as a function of pulse area error 
in Figure 7.3. The fidelity is very good up to errors of 10°. The composite pulse 
909018009090 , on which our optimized pulse sequence is founded, is designed to 
compensate both for deviations in rotating angles and for off-resonance effects. 
These compensating properties were obviously inherited by the optimized pulse, 
although it was optimized only with respect to off-resonance effects. 

7.3.2 Pulses on the target bit 

The procedure was identical to that in previous section, except that the pulse 
area errors now were introduced in the pulses on the target bit instead. A 
simulation with 

'l/Jin = fro IOO) + {I; IOl) + ITo 110) + {fa Ill) 
for different pulse area errors can be found in Figure 7.4 and a plot of the worst­
case fidelity in Figure 7.5. The deviations look exactly the same as those in 
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Figure 7.3: Worst-case fidelity of a C-NOT operation performed according to 
the scheme in section 6.2.1 with optimized composite Gaussian pulses. Errors 
in pulse area were introduced in all pulses on the control bit. The right graph 
is zoomed in at smaller errors. 
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Figure 7.4: The populations in the different qubit states after a C-NOT operation 
performed according to the scheme in section 6.2.1 with optimized composite 
Gaussian pulses. Errors in pulse area were introduced in all pulses on the target 
bit. 
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Figure 7.5: Worst-case fidelity of a C-NOT operation performed according to 
the scheme in section 6.2.1 with optimized composite Gaussian pulses. Errors 
in pulse area were introduced in all pulses on the target bit. The right graph is 
zoomed in at smaller errors. 

Figures 7.2-7.3 which can be explained by the fact that all states are exposed 
to the same number of pulses. Thus, errors in pulse area on the target bit have 
just as much/little influence on the C-NOT gate fidelity as errors in pulse area 
on the control bit. 

As can be seen in the fidelity plots, the curves are not symmetrical around 15 = 0, 
but rather shifted toward negative errors. Because of this shift, a little too small 
pulse area are thus to prefer before a little too large pulse area. 

7.4 Oscillator strength variations 

Oscillator strength variations among the ions lead to different ions experiencing 
different pulse areas. The analysis in the previous section can thus be applied 
also to this error source. 

7.5 Off-resonance excitation 

As we have succeeded in designing pulses that cause no or insignificant excitation 
outside the qubit well as described in chapter 5, this potential error source has 
already been taken care of and thus does not need to be considered. 
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Chapter 8 

Conclusions and outlook 

With the improved scheme, described in chapter 6, and the composite Gaussian 
pulse 92.5096.9s192.006.s692.4296.23 or the complex hyperbolic secant pulse with 
parameters J.L = 3, Oo = 2 MHz and (J = 0.64 MHz, we have succeeded in devel­
oping a robust method for implementation of quantum gates in the rare-earth 
quantum computing scheme. The advantage of the hyperbolic secant pulse is 
that it is independent of pulse amplitude and field inhomogeneity, if the ampli­
tude is above a critical threshold. This pulse also has good margins to the edge 
of the well, which means that the well could be narrowed without jeopardizing 
computing fidelity. In turn, this enables more qubits in the crystal since they 
can be packed spectrally denser and a decreased risk of background ions that 
might shift qubit ions. On the other hand, the duration of the complex hyper­
bolic secant pulse is approximately double that of the composite Gaussian pulse 
which speaks for the composite Gaussian pulse. The composite Gaussian pulse 
sequence also proved to handle systematic errors in pulse area very well. With 
an error of +0.0571' in each pulse, the fidelity is still 0.995. A future approach 
for pulse optimization could be to use optimal control theory for designing ap­
propriate pulses. This approach should basically make it possible to find the 
absolute best pulse sequences for any application. 

Background ions appeared to be a minor problem since, firstly, the probability 
that a background ion will shift a qubit ion is rather small and secondly, the 
shifted ion is only one of a multitude of ions that constitute the qubit. Unshifted 
ions in the qubit proved to convey more significant problems. For fractions of 
unshifted qubits « 1, the worst-case decrease in gate fidelity was equal to the 
fraction of unshifted ions. 

Although the impact of some possible errors sources have been explored in this 
work, there are additional error sources to consider. Firstly, only pulse area 
errors of the optimized composite Gaussian pulse have been examined while the 
phases have been assumed to be perfect. Thus, the impact of phase errors needs 
to be investigated. The life times of the excited states in the rare-earth ions are 
not infinite and the effects of relaxation should thus be taken into account. Qubit 
ions that spontaneously leave the excited state during a quantum operation will 
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naturally contribute to the introduction of errors. As mentioned in section 4.1, 
there is a dephasing between the hyperfine levels that constitute states 10) 
and 11 ) in the qubit. The fact that the coherence time, which describe the 
dephasing, is finite has not been taken into account in this work. The excited 
state is also split up into different hyperfine levels- a fact whose effect on the 
quantum computing scheme still remains unexplored. Further, we have assumed 
a perfectly stable laser while in reality, the laser has a certain line width which 
could affect the transfer of qubits between the different energy levels. 

The new scheme for qubit operations and the pulse shapes developed within this 
work proved to be a favourable combination in order to implement a method for 
qubit operations for our quantum hardware. I believe that the results achieved in 
this theoretical investigation bodes well for the coming experimental realization 
of robust quantum gates in rare-earth-ion doped crystals. 
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Appendix A 

Derivation of equation (6.14) 

Consider an arbitrary initial state 

'1/Jin =a \0) + ,6\1). 

Let us look at \0) and \1) separately. \0) and \l) are defined as in equation (6.11) 
and the phase operation as in equation (6.13). 

\0) ~ (\0) + \l)) 

-+ ~ (\0) + ei11 \l)) 

1 eill 
2 (\0) - e-i</> \1)) + 2 (\0) + e-i¢ \1)) 

i(} i(} 

~\O)+e-i¢~\1) 
2 2 

(A.1) 

\1) 
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= 
i8 i8 

ei<f>~ IO) + ~ ll) 
2 2 

= •8 { '</> (} (} } e~2 e~ isin 210) +cos 211) (A.2) 

Combining these results, we obtain 

1/Jin a JO) + /311) 

____. aei~ {cos~ JO) + e-i</>i sin~ Jl)} + (Jei~ { ei<f>i sin~ IO) +cos~ Jl)} 

ei~ { (a cos~+ iei<f>(Jsin ~) JO) + (ie-i<f>asin ~ + (Jcos ~) Jl)} 

= 1/Jout (A.3) 
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