
Technique for plume
velocity determination using

image correlation

LRAP-173

Karin Amnehagen
Goran Sandberg

Introduction

Abstract
The possibility to use the smoke plume from a factory smoke stack as
an anemometer was investigated. A method using a CCD video camera
to monitor the smoke plume and a PC equipped with a video frame
grabber to calculate the wind velocity by correlating subsequent images
was developed.

2

Introduction

Table of Contents
Introduction 5

The need for remote wind velocity determination 5
Selecting a remote wind velocity measurement method. 6
Implementing the wind velocity measurement program 7
About this report 7

Theory
Fourier transform method

Theory
Selecting ~t, k and N

The Correlation method
Theory

Implementation
The CCD camera
The computer system
The video monitor
The distance measurement system

Measuring the wind velocity

Evaluation

Setting up the camera
Capturing images
Subtracting the background
Making corrections for plume angle
Finding the displacement of two consecutive images
Manual evaluation of the result

The Fourier method
The correlation method
Improvements and suggestions
Using a specially adopted CCD camera
An alternative method

Users Manual
Measuring wind velocity

Menu options
Set region ofintrest menu selection
'Set parameters' menu selection
'Measure wind velocity' menu selection
'Plot smoke profile' menu selection
'Input source' menu selection
'Method' menu selection
'Set debug options' menu selection
'Save smoke profile as text' menu option
'Calibrate camera' menu option
'End program' menu option

File locations

8
8
9

10
12
12

14
14
15
16
16
16
16
17
18
18
19
19

20
20
21
25
25
25

26
26
27
27
28
29
29
30
30
30
31
31
32
32

3

Introduction

The frame grabber 33
The DT2851 frame grabber 33
The Turbo-Pascal interface for the frame grabber. 34
Controlling the operation of the frame grabber 35
Manipulating look-up tables 36
Controlling the cursor 36
Accessing the frame grabber image data 37
General housekeeping functions 38

The Wind program 39
Data structures 39

The Wind program units 40
Wind 41
Global unit 41
User unit 41
Debug unit 42
Corr unit 42
Four unit 43

Program listings 43
~~ «
Global unit 53
User unit 55
Debug unit 65
Four unit 72
Corr unit 77
DT_2 unit 83
GetPut 95

References 98

4

LIDAR
measurements

Introduction
The need for remote wind velocity determination
The LIDAR system developed at the department of Atomic Physics at
Lund University has made it possible to make accurate remote meas­
urements of the concentration of a given substance in the atmos­
phere[l]. This system can, for example, be employed to monitor the
concentration of pollutants emitted from an industrial process.

A

In the LIDAR system a powerful pulsed and frequency tuned dye laser
beam is directed at the area of the atmosphere where the measurement
is to be made. By using a telescope to observe the back scattered light
from the laser beam when it excites its target substance, the concentra­
tion of the substance can be determined along beam. The laser beam
can be made to sweep a given area of the atmosphere, giving a cross­
section of the substance distribution.

This method can be used to determine the amount of pollutants in the
smoke from a factory smoke stack. By letting the laser dissect the
smoke plume the concentration, c, can be found. If the velocity, u, at
which the smoke transverses the cross-section is also known, the actual
emission of pollutants can be found using:

emmission[kg Is]= u [m! s]· J c [kg I m 3] dxdy
A

where A is the area of the cross section of the plume.

5

Introduction

This calls for a reliable method to measure the wind velocity at the top
of the smoke stack. The obvious solution would be to use an anemom­
eter. This is, however, not a good solution if the measurement is going
to be made without the knowledge of the operator of the factory. It is
also not a very practical solution, if the smoke stack is tall. Thus a
remote measurement method has to be devised.

Selecting a remote wind velocity measurement method.
The basis for this work is the suggestion to use the smoke plume itself
as the wind velocity detector. By somehow observing the motion of the
smoke plume, which is assumed to move with the wind, the wind veloc­
ity can be measured.

The methods suggested to us were to use the LIDAR laser to track the
edges of the smoke plume, an indirect method using the laser to track a
balloon, and to use a video camera and image processing equipment to
detect the motion of the smoke plume.

We also launched a large scale information search for articles concern­
ing wind velocity measurements. Unfortunately very little material was
to be found on this subject. The closest reference was a Japanese article
concerning the use of a video camera to measure the movement of
clouds. A French paper actually described the smoke plume velocity
measurement, but the method suggested was to superimpose a stop­
watch on a video image of the smoke plume. The user then manually
had to watch the timer and the smoke plume to determine the speed. A
fascinating method was to shine a Helium-Neon laser through the air
and observing the speckle pattern using a CCD camera. By connecting
the camera to a neural network, the speckle pattern could be used to
determine the wind speed. With the proper equipment, it might also be
possible to construct a laser-doppler anemometer.

After having looked through the material we decided first to try using a
video camera and image processing software. The smoke plume edge
tracking method had already been tried by Eva Wallinder and we felt a
bit discouraged by the complexity of the LIDAR system. Besides, the
LIDAR system will be busy making the atmospheric measurements,
and it might be desired to measure the wind velocity during those
measurements. Before making the decision we had the opportunity to
test a brand new frame grabber that had been installed in a computer
to which we had easy access. Experiments with false colour video dis­
play and a dark and cloudy sky clearly showed that the camera and
frame grabber could separate levels of grey that the human eye could
not distinguish. This reassured us that a method using a video camera
should be able to work even on a cloudy day.

6

Introduction

Implementing the wind velocity measurement program
Having decided to use a video camera, we had to find a way to calculate
the wind velocity from the image data. Luckily we soon found a promis­
ing method in the book Digital Image Processing by Gonzalez and
Wintz[2]. To find the velocity, a series of images were to be Fourier
transformed, added together and transformed again. The method was
supposed to be good at measuring the velocities of small objects against
noisy backgrounds. This, we thought, would be handy to single out the
moving smoke plume against a clouded sky.

Unfortunately the implementation of the above method was crippled by
the limitations imposed by the speed of the computer system and frame
grabbing hardware. The rate at which images could be captured was to
low for the method to function properly, and unpredictable results were
produced.

This called for a new method. During the experiments with the method
above, we had found that the image data from the frame grabber was
very good, and that it would not be any problem to see the smoke
plume, not even against a rainy sky. This encouraged us to use straight­
forward correlation between two consecutive images. This method was
implemented using a fast Fourier transform correlation algorithm. This
time the results were highly accurate.

During the implementation we also faced practical problems such as
how to interface the frame grabber to our program and how to handle
smoke plumes that are not parallel to the camera image plane. These
time consuming tasks are described in detail in the appropriate sec­
tions.

About this report
This report is divided in three sections describing different aspects of
the project. Related information can be found in the appendices.

• Theory. Theoretical description of the methods employed to calculate
the wind velocity

• Implementation. Technical description of the actual system imple-
mentation

• Evaluation of the methods

Appendices

• Users manual for the wind velocity measurement program

• The Frame grabber

• Program listings

7

Theory
When using a video camera and a frame grabber to measure the wind
velocity, a method is needed to find the displacement of the smoke
plume between two consecutive images.

In the search of such a method we had to consider several factors:

• The method should be able to distinguish the smoke plume from a
clouded and noisy background.

The initial experimentation with the frame grabber had shown that
it would be possible to detect very small variations in light intensity
across the image. With a suitable method we imagined that it would
be possible to measure wind velocity even under the most difficult
conditions of a cloudy and rainy sky.

• The method should work under widely varying wind velocities.

When a video camera is used to capture the image of a smoke plume
many factors influence the speed at which the plume traverses the
image. Different distances, camera focal lengths and wind velocities
require a wide range.

• The frame grabber could only store two images at a time.

This suggested that the method had to use only two images to calcu­
late the velocity. A way around this would be to copy each image, or
part of it, to the computer RAM.

• Memory limits imposed by Turbo Pascal made it impractical to store
more than one complete image in the computer RAM.

This required much of the processing to be done directly on the
image stored in the frame grabber.

With this in mind, we searched for a suitable method. After an exten­
sive literature search a promising method was found in Digital Image
Processing. The method is based on Fourier transforms of the images. It
was implemented, but unfortunately it proved to be unsuitable, so
another method had to be found. We then chose to make a cross correla­
tion between two consecutive images. The methods are described in
detail below.

Fourier transform method
The method suggested by [2] appeared to fill the above criteria well.
According to experimental data from the book, the ability to measure

8

The smoke plume
projection for

Theory

measure the velocity of an obscure object against a complex background
was very good.

In the method, the pixel values are summed for each column of the
image. This projection of the image data on the horizontal axis is then
stored in the computer, requiring much less space than a complete
image. Thus a number of images can be captured and stored in the
computer RAM.

To measure the wind velocity, the following steps are carried out:

• N =2n images are captured

• The column sums are calculated to project the image on the horizon­
tal axis.

• The projection of each image is Fourier transformed to form a peri­
odic function whose period reflects the displacement between two
captured images.

• This periodic function is then Fourier transformed to obtain the
displacement in pixels per second.

Theory
The smoke plume is assumed to be perfectly rigid and moving at a
constant velocity, v. At the sample intervals, t=t0 ,t1,t2 ••• tN_ 1, the image
projection is Fourier transformed giving:

f(x)

different times, t t = t0 ~ !J({(x)) = f(k)

f(x-vtv

~

f(x-vt,J

~

.2nk
L- vt1 A

!J({(x- vt1)) = e N f(k)

.2nk
~- vtn""

!J({(x-vtn))=e N f(k)

where

tn = n · 11t

9

It is not possible
to find the correct

frequency with
less than two

samples per
period.

Theory

N '2 u, for k = 1

The speed at which the plume transverses the image can be varied
using the zoom lens to be below 32 pixels per sample. The user must
adjust the lens manually until he estimates that a proper velocity is
obtained. This allows us to select k using the condition from the
Nyquist sampling theorem

k-::;, N
u

In order to get maximum velocity resolution it is desired to select k as
large as possible. According to the statement above, k=l must be chosen
if the maximum expected velocity is 32 pixels/second. On the other
hand, if the velocity is not expected to exceed 16 pixels/second, k=2 can
be selected, and so on. See also the examples below.

The velocity, u, is 2 pixels per second. M = 0,5s, N=8 samples.

k=l

k=2

k=3
8

vmax =3

k=5
8

Umax =S<2

11

Without zero
padding the

correlation is
polluted by wrap­

around effects

With zero padding
the wrap-around

effects are
eliminated

I I ; -'

-~
I I " '1. ... ' .. ,, / '. ,· ·,

,/ __ , : ',_ : ,' \\ __ :/ '-

' ' '
' '

' ' '

I I ; "'-' ~
·: ':

,., -~ •/' .. ,',' ' ... _ .. " : ' ... __ i,'' \\ ,'/ ',_
I I I ', ,'

I I , 1
I I ... -

... -- ..

' '
' '

Correlated with irrelevant data

' zero,
padlling

No contribution to correlation

Theory

13

Implementation

Inside the CCD camera a special integrated circuit, the CCD chip, is
placed in the image plane. The image is projected on the surface of the
chip, which is sensitive to light and the image pattern is encoded to a
video signal. CCD chips come in different sizes, and it is important to
know the size in order to be able to calculate the actual size of an object
in the image from the image data. The standard sizes are 1" and 1/2",
measured across the diagonal. The ratio between the short and long
edge is usually 9:13. The CCD size is used by the Wind16 program to
calculate the wind velocity.

During the development it was found that it is not obvious how to use
the CCD size to calculate the actual object size.

• It is difficult to find the exact CCD size and ratio for a given CCD
camera.

• It is not safe to assume that the entire chip surface is used to pro­
duce the image.

• The frame grabber may not use all of the image data from the cam­
era.

To allow for these factors, a camera calibration procedure was added to
the Wind program. Any camera can be calibrated using an object of
known size at a known distance. The CCD size is then only used to give
a rough estimate of the calibration factor. This also makes it possible to
use any video camera as the image source (although it would probably
be hard to find a camera that doesn't use a CCD chip today).

We used system a JVC model TK-S300EG CCD camera having an 8-
48mm zoom lens during the system development. We also used a port­
able camera with a built in video recorder to make field measurements.

The computer system
An ordinary IBM-PC compatible computer was used for the image
processing. The images from the CCD camera are captured by a digital
frame grabber card inside the computer (see appendix). For the Fourier
transformation method described in the theory section above, it is
important for it to be as fast as possible, since the method requires a
relatively small displacement of the smoke plume between two images.
The system used, a 25MHz 80386 with numeric coprocessor, proved to
be too slow for the method to give predictable results. For the correla­
tion method, on the other hand, it was adequate.

The software was developed in Turbo-Pascal to make it easier to inte­
grate with the existing software for the LIDAR system. Special soft­
ware routines had to be developed to make it possible to access the

15

Implementation

frame grabber card from Turbo-Pascal. See appendix for complete
program listings.

The software allows the evaluation of the two different methods ac­
counted for in the theory section. It also allows the user to make a
single shot measurement of the wind velocity and to manually evaluate
and adjust the calculated velocity if necessary.

The video monitor
The output of the frame grabber is connected to a separate colour video
monitor. This allows the image from the CCD camera to be viewed at
all times. The monitor is also used to select the smoke plume area of
the image and to calibrate the video camera.

The distance measurement system
In order to calculate the actual wind velocity it is necessary to know the
exact distance to the smoke plume. To do this the existing LIDAR
system is used. A laser pulse is fired at the plume and the return time
for the reflection of the pulse from the plume is measured. This gives an
accurate distance to the plume. By measuring the distance at two
different angles, the angle between the plume and the camera image
plane can be determined.

Measuring the wind velocity

Setting up the camera
After the camera has been calibrated as described in the Wind Users
manual, it must be properly positioned in relation to the smoke plume.
The wind velocity measurement program makes corrections for differ­
ent angles between the plume and the camera image plane, so there is
no need for the image plane and plume to be parallel as long as the
angle is known. The angle should preferably not be too great, since the
plume is heavily distorted when projected on the image plane.

Because the program only measures the velocity along the horizontal
axis of the image, the camera should be adjusted so that the plume
transverses the image plane horizontally.

The focal length of the camera is then adjusted to make the plume pass
the image field at an appropriate speed for the selected method. For the
Fourier method the plume should transverse the image field slow
enough for the measurement to be completed while some part of the

16

Software
overvrew

Implementation

original plume is still visible. For the correlation method the plume
should move significantly between the exposures.

After the camera has been set up, the Wind program allows the user to
select a subpart of the image to be used for the measurement. This
makes it possible to edit out other moving objects in the image field.
For Fast Fourier Transform methods the number of pixels across the
active area of the image is limited to powers of two. During the setup,
the frame grabber operates in pass-thru mode, allowing the adjust­
ments to be viewed on the video monitor connected to the frame grab­
ber.

32 images are sampled The data is transformed
to compensate for the
angle between the

+ ~Jc~~~:::;:~~~-~~~---1 1 ~Z--p-~~=~~=7
- I Mean value

The column sums The mean value is
of the image pixel subtracted from every
values are calculated column sum.

Capturing images

The displacement of the
images is calculated

1~1
I~
I~
I~

During the measurement phase the frame grabber captures a
predefined number of images with a known time interval. Since the
frame grabber can store only two images, it is not possible to capture all
the required images at once and each image must be processed before
the next is acquired.

Both the measurement methods require the sums of the image pixel
values to be calculated for every pixel column in the image. This calcu­
lation is made by an assembly language routine as soon as the frame
grabber has finished capturing the image. Only the area previously
selected is used for the calculation. This process takes about 0.5 seconds
for a full image. The column sum array is stored in a linked list and the
captured image data is overwritten by the new image. This is repeated
for all the images to be captured.

The time it takes to calculate the column sum is dependent of the size
of the area to be processed. Unfortunately the speed of the system does

17

--- Implementation

not allow more than two imag es to be capt ure d_
a severe limitation on the us e fulness qf the F<J~ e:e:ry second. This puts
needs short intervals. . Der method, which

Another limiting factor is t h e amount of a v ai_J.&b l
Turbo-Pascal implementati on can only make Q e memory. Since our
megabyte of IBM PC memo ry, storage is scarce s~~ th: s_tandard one
of image projections stored in arrays that can_ b. Is hmits the number

· e held s· 1 memory to about 64. This also decreases the a Imu taneously in
c c uracy ofth F . method. e ouner

Subtracting the background
When all the images have been captured the 1. k

. , In ed 1· ·
jections is passed to a procedure whiCh c alcui t Ist of1mage pro-

. l . b a es the me I for every column. This va ue I S su tracted fr an co umn sum
. . 0 lll each of th · order to allow the dynamic data coming frotn th . e Images in

to be seen over the strong static backgrou nd. e movmg smoke plume

Making corrections for plume angle
If the camera image plane and the smok e plu
image projections have to be transformed to c: are not paraiiei, the
deviation. Otherwise the plume velocit y Would pensate for the angular
tal axis, see the figure below. vary along the horizon-

XV== COS¢

cos(8+¢) x

camera lens

1

Implementation

The transformation is done by projecting the image data on a plane
parallel to the smoke plume.

Finding the displacement of two consecutive images
When all image data has had the background subtracted and the angles
corrected it is passed to either of the two methods described in the
theory section. Fourier method uses all the captured images, while the
cross correlation method gives a result for every pair of images. 'lb get a
final result for the later method, the median result of all the images is
used. The output from the methods is the displacement between two
images given in pixels. The real wind velocity is then calculated using
the following factors:

• Camera focal length

• Distance

• Angle

• CCD-size

• Camera calibration factor

Manual evaluation of the result
Mter the automatic velocity measurement, the image data can be
viewed on the computer monitor to validate the result. The image
projections for all the images are plotted below each other displaced
using the calculated velocity. The users brain can then be used to per­
form image correlation, a task which it is very well suited for. The
diagram can be adjusted until the user is satisfied that the correct
correlation, and thus wind velocity, is found.

19

Evaluation
The Fourier method
After having implemented the Fourier transform method, the time had
come to verify that it could be used in practice. We borrowed an ordi­
nary video camera and went plume hunting in an industrial area on a
rather windy day. Several plumes where filmed with different shapes
and backgrounds, and from different distance and angle. We made a
special effort to film the same plume from different angles and dis­
tances, and of course different focal lengths, to make sure that this did
not effect the result.

The evaluation of our film made us rather disappointed. Some results
seemed to be very close to reality, but others were out in the blue. What
made the results so unpredictable?

As described in the theory chapter, the maximum wind speed that can
be measured with the Fourier transform method is 32 pixels/second,
that is if the number of pictures taken is 32 and the sample interval is
0,5s. From a distance of 500 meters and with a focal length of 50mm,
this translates into roughly 4.5 meters/second, a not very impressive
value. Even so, this speed would cause the plume to transverse the
screen so fast that the last picture would not include any part of the
plume from the first picture. Our approximations would thus become
seriously questionable. With a focal length of 20mm, it would be possi­
ble to measure wind velocities up to around 11 meters/second, but the
same reasoning applies for the validity of our approximations.

To make our approximations more correct, it is necessary to make sure
that a great part of the plume present in the first picture is also present
in the last. Since the computer does not allow us to take the pictures
with a shorter time interval, the only way to accomplish this is to take
fewer pictures. According to the requirements of the FFT algorithm the
number of pictures must be of a power of two, so we half the number to
16. This value assures that 3/4 of the original plume are still present in
the last picture, but the maximum wind speed that can be measured is
reduced further to around 2.25 meters/second with a focal length of
50mm and 5.5 meters/second with a focal length of 20mm. When we
made our film the wind speed was around 15 meters/second which
explains our lousy results.

The Fourier method could probably be very useful with a faster compu­
ter that would allow pictures to be taken at a much higher frequency,
but why bother - we found the one and only correlation method.

20

Four consecutive
smoke plume

samples.

Evaluation

The correlation method
The correlation method does not impose any restrictions on what wind
velocities are possible to measure or the number of pictures to take. It
is, of course necessary that some part of the plume is present in both
the pictures to correlate, but this is easily achieved since only two
pictures are needed and for that the time limit set by the computer is
not important.

We were immediately encouraged by the results from using the correla­
tion method on our video tape. As is shown below, the structure of the
smoke plume is very evident in the consecutive samples from the video
tape. The diagram below shows four samples where the displacement is
clearly visible. The diagram was created by calculating the sum of the
pixel values for each image pixel column. The data for each sample was
then mirrored across the x-axis to create an illusion of a smoke plume.

The results from the correlation of the images are shown on the top of
next page. The correlations show very clear peaks, indicating that the
plume structure is rigid enough in the time interval between two sam­
ples.

To evaluate the variation of the wind velocity given by the correlation
method the correlation of 16 samples was calculated. The standard
deviation of the samples was also calculated. See the table below:

21

The result of the
correlation of the

four samples in the
diagram on the
previous page.

The wind velocity
obtained from the

above data

Evaluation

xl07

14,---------~----------,----------.----------,---------~~

12

10

4

A

frl
1/ \

11 I
1/ ~
If \\

If 1\
1/ 1\
If 1\
if 1\
11 \[

11 1\
11/ 1\ I \

1'/ ~ '- A
1'/ 1 I Y '\
l'f \ I' f\ '\
1'/ l I' I \ \ \

(t 1'/ \\ I' I \'I /-\
! I(\\' fl I I\ I I I \ \ \ / \

1'1 I\' fl/ 1 - I I \\I ______./ \
('I I\' I' I l' I I \'I / \

/~\ /\ ('/ I v I l' I I ~ I I \ ~ \
I \ I \- 1 I I I \ I '\ \I '\

1 \ r 1 ' /11 1 1 1 1 , , /"' // " " ' '\
of' '>,.!J A--- 1 \ I \/ '1/ I'-../ \ ~;,

\ \ I/~ I \ I I I v \ I " /
\ 'I' \ / \ J \ I \/

'-._/ v v
-2 o':----------::2:-:-oo----------400::::----------600-:-'-:-------------:c'soo.,----------_jtooo_j

Focallength=20 mm, Distance=560 m, Sample interval=0,5s

Time (s) Displacement (pixels) Wind velocity (m/s)
0 19 6,4
0,5 37 12,5
1 37 12,5
1,5 36 12,1
2 38 12,8
2,5 41 13,8
3 39 13,1
3,5 35 11,8
4 36 12,1
4,5 33 11,1
5 32 10,8
5,5 36 12,1
6 37 12,5
6,5 32 10,8
7 22 7,4

Median 36 12,1
St. dev. 6,0 2,0

If the first and last values are disregarded the following result is ob­
tained:

St. dev. 2,6 0,89

22

A plot of the wind
velocity measured

over a period of
150s.

Focallength=24 mm, Distance=560 m, Sample interval=1s

Time (s)
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

Median
St. dev.

Displacement (pixels)
11
11
12
10
11
11
12
11
11
11
12
11
11
11
11
10

11
0,57

Wind velocity (m/s)
3,1
3,1
3,4
2,8
3,1
3,1
3,4
3,1
3,1
3,1
3,4
3,1
3,1
3,1
3,1
2,8

3,1
0,17

Evaluation

4,5 ·.----------------------------.

4
I 2s sample interval

3,5 . - __ _

\Is sample interval

2,5

2.

1,5 .

1 .

0,5 .

0·~-4-~-~-~~-~-~-._-~~-~-4--~~-~
0 0

0 - 0
N -

What is evident from the above measurements is that the method gives
consistent values for the wind velocity under similar conditions. Thus it
is only a matter of correct calibration of the measurement system to
find a credible wind velocity using the correlation method.

24

Evaluation

Improvements and suggestions
From the discussion above is clear that the method needs to be thor­
oughly tested and calibrated. It would also be necessary to incorporate
the wind velocity measurement system in the new LIDAR system which
is presently being developed.

In its present state, our method is most suited for stand-alone use to
make single shot wind velocity measurements. It would, however, be
fairly easy to adopt it to continuous measurements. The scheme of
making 32 samples and take the median value as the result presented
could be abandoned. It would then be possible to make, lets say, two
samples every minute and using them to find the wind velocity. The
drawback of this is that the measurement could be disturbed by, for
instance, a bird that flies across the image field.

Using a specially adopted CCD camera
The most computationally intense part of our velocity measurement
method is the summing of the columns of the captured image data.
Considering the nature of the CCD chip inside the camera, it would
probably be easier to make this calculation inside the camera and only
send the concentrated data to the computer. This could perhaps be done
by rotating the CCD-chip 90 degrees and having special hardware to
sum the pixel values as each line is read from the chip.

An alternative method
From the experimentation with the above methods it was obvious that
a manual correlation of the image data would be a very powerful way to
find the wind velocity. This manual method might actually be the fast­
est and most convenient wind velocity measurement method. Given the
support of computerised scaling and velocity calculation, an experi­
enced user would be able to easily find the correct velocity.

25

Users Manual
The wind velocity measurement program is started either by typing
"windl6" at the prompt, or by loading it into 'furbo Pascal and running
it by selecting the "run" menu option. The program is entirely menu
driven and when started the main menu appears:

**
***** WINDSPEED MEASUREMENT MENU *****
**

[Fl] :
[F2] :

[F3] :

[F4] :

Set region of interest
Set parameters
Measure wind velocity
Plot smoke profile

[F5]: Input source:
[F6] : Method:

[F7]: Set debug options

camera
correlation

[F8]: Save smoke profile as text
[F9]: Calibrate camera

[FlO]: End program.

Enter function key, please ...

A detailed description of the menu options is found in the chapter Menu
options below.

Measuring wind velocity
Before any measurement can be carried out, the camera to be used
must be calibrated, if this has not already been done. The Wind16
program can store the calibration for up to five different cameras. For
instructions on how to calibrate the camera, see main menu option F9.

Mter the camera has been properly set up and adjusted the wind veloc­
ity can be measured as follows:

1. Use [F2] to set the following measurement parameters:

• The camera focal length

• The distance to the smoke plume

• The angle between the camera image plane and the smoke plume.

26

Appendix Users Manual

• 'F9' Angle. The angle, given in degrees, beween the image plane of
the camera and the smoke plume. For smoke parallell to the image
plane, the angle is 0.

• 'FlO' returns to the main menu.

If the program has been set up to test the fourier measurement method
one more menu option is available:

• 'F2' Number of samples. This selects the number of images to be
captured for the measurement. The number of images must be a
power of two. The more images, the better velocity resolution. The
amount of free memory ofthe computer limits the number of sam­
ples to 64. When using the correlation method, the number of sam­
ples is always 32.

'Measure wind velocity' menu selection
Pressing 'F3' starts the wind velocity measurement. If no debug options
hav been selected using menu option 'F7' the screen blanks until the
measurement is completed. This process may take several minutes.
When the measurement is finished the wind velocity is displayed on the
screen. Press 'Enter' to continue.

If the debug option 'Save images' has been selected you will be
prompted for a filename under which the data will be saved before the
measurement starts. Also, if the debug option 'Screen output' is selected
you will be asked to enter a comment. The screen will display debuging
information showing the progress of the measurement.

Once 'Enter' has been pressed the main menu is redisplayed. In order
to view the result again, 'F4' has to be pressed to plot smoke profile.
The wind velocity can then be read in the top right corner of the dis­
play.

'Plot smoke profile' menu selection
By pressing 'F4' a graphical representation of the image data is pre­
sented. The image data for each image is ploted with a displacement
depending on the maesured velocity. If all is well, the characteristics of
the data for the consecutive images should be well aligned. The
calcualted wind velocity is also displayed in the top right corner.

This option also gives the user the oportunity to manually determine
the wind velocity from the sampled image data. By using the right and
left cursor control keys on the computer keyboard, the display can be
adjusted so that the features of the inage data aligns properly. The
displayed wind velocity is changed accordingly.

29

Appendix Users Manual

To leave the graphics display, press 'FlO'. Please note that any manual
adjustments to the wind velocity are lost.

'Input source' menu selection
This allows the user to use a file previously stored to disk using the
debug option 'Save images' to replace the data from the camera. When
'F5' is pressed, the menu changes to show that the input source is 'disk'.
Press 'F5' again to select the camera as the input source.

When the input source is 'disk', the program will prompt for a file name
when wind velocity measurement is started by pressing 'F3'. Please
note that smoke profiles stored as text using 'F8' cannot be used as disk
input.

'Method' menu selection
Pressing 'F6' toggles between the 'fourier' and the 'correlation' method.
The fourier method is provided for evaluation purposes only, and should
not be used during normal wind velocity measurement.

'Set debug options' menu selection
Pressing 'F7' displays the debug options submenu. This menu allows
the user to display data on the screen showing the progress of the
program and to save various information to the disk:

**
***** Debug options *****
**

Current value

[Fl] : Save images Off

[F3] : Save fourier data Off
[F4] : Screen output Off
[F5] : Save file Off

[FlO]: Leave this menu.

Enter function key, please ...

• 'Fl' Save images. This option allows the user to save the image data
to disk, so that it can be used to replace the camera as input source.
When the measurement is started, the user is prompted for a file
name.

30

Appendix Users Manual

• 'F3' Save fourier data. When using the experimental fourier method,
this option allows the results from the fourier transforms to be writ­
ten to text files.

• 'F4' Screen output. This option displays various internal values
during wind velocity measurement.

• 'F5' Save file. When selected this option prompts the user for a file
name under which all the screen debuging output is to be written.
This useful feature allows the operation of the program to be carfully
studied.

• 'FlO' returns to the main menu.

'Save smoke profile as text' menu option
Pressing 'F8' after a measurement has been completed saves the image
data as a text file. This is useful if the data is needed for a charting
application, such as Microsoft Excel.

'Calibrate camera' menu option
In an ideal world it would be sufficient to know the focal length of the
camera and the sizo ofthe CCD chip inside of it in order to calculate the
correct wind velocity. Unfortunately the active size of the CCD may
vary. This calls for an option to calibrate the camera.

The camera is calibrated by filming an object of known size at a known
distance using a lens with a known focal length. It is therfore important
to set the distance and focal length parameter in the 'Set parameters'
menu option by pressing 'F2' prior to selecting 'F9'. The camera number
to be calibrated must also be selected in the 'Set parameters' menu
option. Once this is done follow these steps to calibrate the camera:

1. Press 'F9'. This starts video pass-thru mode. The camera image is
shown on the video monitor.

2. Use the cursor control keys on the computer keyboard to position the
cross-hair cursor at the left side ofthe object of known size.

3. Press 'Enter'. Red lines mark the left edge of the object.

4. Use the cursor control keys on the computer keyboard to position the
cross-hair cursor at the right side of the object.

5. Press 'Enter'. A red line is drawn to the right ofthe object. On the
computer screen you are prompted for the size of object.

6. Enter the size of the object and press 'Enter'. Ifyou want to leave the
calibration unchanged enter '0' for the size. The main menu is dis­
played.

31

Appendix Users Manual

If you want to change the calibration, simply press 'F9' again. To see
the calibration factor, select 'F2' in the main menu and look at the
'Select camera no' line.

'End program' menu option
Selecting 'FlO' ends the program. The settings offocallength, distance,
angle, camera number, and camera calibrations are saved and reloaded
the next time the program is started.

File locations
The Wind16 program uses two subdirectorys to store its data. The
'PREF' directory stores the WINDPREF file that stores the parameters
when the program is quit. The 'DATA' directory holds the output of the
various debug files.

These directorys have to be subdirectorys of the main Wind16 directory,
or the program will crash.

32

The frame grabber
The DT28 51 frame grabber
To capture the video images the computer was equipped with a Data
Translation DT2851 frame-grabber card. This card has an input for
video signals and an output for a video monitor. The operation of the
card is entirely controlled by the host computer. A block diagram of the
card is shown below:

,..
Image

r---+ buffer 1
~

Video signal
Analog Input

to digital r------- look-up 1- f--+
converter tables

'------
Image

buffer 2 r--

'--+

PC data bus
,~

Red
look-up 1-
tables

Green
look-up r-----
tables

Blue
look-up 1-------+
tables

Digital
to analog
converter

Digital
to analog
converter

Digital
to analog
converter

Red v ideo
l signa

f---------

Green video
l signa

r------

Blue video
l signa

f---------

The input video signal is passed through an analog to digital converter,
where the signal brightness level is converted to an eight bit digital
value (0-255). This value is used to index the input lookup table. This
table maps every incoming digital value to a new, arbitrary eight bit
digital value. The input lookup table makes it possible to adjust the
brightness and contrast of the image, or to make special effects, such as
inverting the image before it is stored. In order to store the image as is,
the table is loaded with a linear series form 0 to 255, so that every
input value is mapped to a similar output value. There are eight differ­
ent input look-up tables that can be individually set up. It is then easy
to direct the input through any of the tables.

The output from the input look-up table is then stored in one of the two
frame buffers. The buffers each store 512 by 512 pixels of 8 bit (256
levels) greyscale image data. There are also facilities to protect selected
bit levels so that only 7, 6 or 4 bit data is stored. This makes it possible
to superimpose a previously stored image onto the image being sam­
pled.

33

Appendix The frame grabber

The contents of the frame buffers can be displayed on a colour video
monitor. The image data is put through three different output look-up
tables, one for each of the red, green and blue colours. It is then put
through three digital to analog converters and fed to the RGB monitor
outputs. This makes it possible to false-colour the greyscale image e.g.
to enhance the visibility or to colour code the information. By making
the three output look-up tables similar, the original greyscale image is
displayed. The use of the output look-up tables has the advantage of
making it possible to manipulate the image without changing the origi­
nal data.

The DT2851 also contains advanced functions to allow the sampled
images to be added, subtracted and otherwise transformed, but none of
these functions were needed for our project.

The Turbo-Pascal interface for the frame grabber.
The frame grabber was delivered with a hands-on demonstration pro­
gram, and a library of precompiled Fortran interface subroutines.
Unfortunately none of the source code was available. At that time, the
project was intended to be included in the present LIDAR software and
for compatibility reasons it had to be carried through using Turbo­
Pascal. Since Pascal uses a different subroutine calling convention from
Fortran, the existing DT2851 interface subroutines could not be used.

The solution, unwillingly undertaken, was to write a new library of
interface subroutines using Turbo-Pascal. Fortunately, the DT2851
documentation was of great help. We decided to mimic the supplied
Fortran subroutines, but to limit ourselves to the routines we thought
we could use in our project. We thought we could use functions to take
care of the following tasks:

• Controlling the operations of the frame grabber

• Manipulating look-up tables

• Controlling the cursor

• General housekeeping functions

We also realized that we needed subroutines to access the data in the
image buffers. These were not available among the Fortran routines,
for reasons that would be apparent to us later on.

34

Appendix The frame grabber

Controlling the operation of the frame grabber
The following procedures were needed to control the operation of the
frame grabber:

• dt_wait

Waits until the frame grabber has completed the current sample.
This is used to synchronize calls to the different frame grabber
functions.

• dt_display

Turns the video display on and off.

• dt_passthru

Starts video passthru mode. The video image being sampled is si­
multaneously output to the video monitor.

• dt_freeze_frame

Stops the passthru mode and freezes the image in the frame buffer.

• dt_acquire

Samples one video frame and stores it in the frame buffer.

• dt_select_input_frame

Selects which of the two frame buffers should be used to store the
sampled image.

• dt_select_output_frame

Selects which frame buffer to display on the video monitor

• dt_set_sync_source

Controls ifvideo synchronization should be taken from the input
video signal or generated on board.

• dt_load_mask

Loads a mask to protect certain bits in the frame buffer, making it
possible to superimpose images.

35

Appendix The frame grabber

Manipulating look-up tables
We decided to implement most of the functions concerning the look-up
tables. It was thought that there was a need to make us of contrast
enhancement to be able to single out the smoke from a clouded, grey
background. Practical experience has, however, shown that there is no
need for such elaborate measures. The use of the look-up tables is
therefore limited to the display of a red rectangle, showing the image
area selected for processing. The implemented look-up table functions
are:

• dt_fill_ilut

Fills the specified part of a input look-up table with a given value.

• dt_load_ilut

Fills a input look-up table with the values from a 256 element vector.

• dt_fill_olut

Fills the specified part of the output look-up tables with given values
for red, green and blue.

• dt_load_olut

Fills the output look-up tables with the values from three 256 ele­
ment vectors, one for each of the colours red, green and blue.

• dt_select_ilut

Selects the input look-up table to be used.

• dt_select_olut

Selects the output look-up tables to be used.

Controlling the cursor
'I\vo simple functions control the built-in cursor of the DT2851 frame
grabber. The cursor is used to designate the image area to be processed,
and to calibrate the video camera against objects of known size.

• dt_cursor

Turns the cursor display on and off.

• dt_set_cursor_position

Places the cursor at a given position.

36

Appendix The frame grabber

Accessing the frame grabber image data
In order to be able to process the captured images we had to be able to
read the data from the frame buffer. The Fortran subroutine package
did only provide a very rudimentary facility to save image data to the
disk. This would be much too slow for our needs, and would quickly fill
the disk, considering that every image occupies 256 kilobytes. Besides,
we had no way of using the Fortran subroutines.

Due to the constraints imposed on memory access by the design of the
IBM PC the direct access to the frame grabber image data proved to be
a daunting task. An original IBM PC can only access 1 Mbyte of RAM­
memory. By using various "standardized" constructions such as the
Lotus-Intel-Microsoft Extended Memory System, LIM-EMS, modern
computers can access more memory. The 512 kilobytes of frame grabber
memory was addressed well beyond the limits of the standard PC. This
made it impossible for us to read the contents of this memory from
Turbo-Pascal.

Our first plan was to find out more about the workings of the LIM-EMS
to see if it could help us to read the memory cells. To our great despair,
the pages describing the subject was missing from the only book we
could find on the subject. We did, however, eventually find out that it
would take a monumental programming effort to solve the problem this
way. A work-around had to be devised.

The solution was to do some dirty 80386 assembly language program­
ming. The task was reluctantly undertaken, since neither one of us
were familiar with 80386 assembly programming, or, for that matter,
assembly programming at all. By using 32 bit addressing available in
the 80386 processor, the computer could be tricked into reading the
frame grabber memory. This is not the proper way to do it, though, and
the computer can crash if it is not appropriately set up. Practical expe­
rience has shown that the program HIMEM.SYS and the disc cache
SMARTDRV has to be loaded in order for this work-around to function
properly.

The assembly language code can be found in Appendix X. The code was
assembled once and for all using the Turbo Assembler, and the object
file is linked to the Turbo Pascal wind velocity measurement program
when it is complied. The following routines are added as external calls:

• get386mem

Returns the value of the byte stored at a given memory location.

• put386mem

Stores a byte at a given memory location.

37

Appendix The frame grabber

• copy386roi

Copys part of the image stored in the frame buffer to an other loca­
tion.

• sumx386roi

Calculates the column sums ofimage pixel values and stores them in
a vector.

These procedures are called from pascal procedures:

• dt_copy _roi

Calls copy386roi to copy image data.

• dt_sum_columns

Calls sumx386roi to calculate column sums.

• dt_draw _line

Uses put386mem to draw lines in the frame buffer. This is used to
put a red rectangle on the video monitor, showing the selected area.

General housekeeping functions
To properly initialize the frame grabber and to load the various look-up
tables with default values giving a greyscale image, we added the
procedure:

• dt_initialize

To set up the region of interest, which designates the image area to be
processed, a final procedure was added:

• dt_define_roi

38

The Wind program
All image processing and velocity calculation is performed by the Wind
program. This section describes the data structures and functions used.

Data structures
The image data from the frame grabber is stored in a linked list of
longint arrays:

picture_pointer = Apicture_frame;
picture_frame = record

picture:array[O .. 512] of longint.
next

end;
:picture_pointer;

When the images are captured a region of interest can be defined. This
limits the area of the processed part of the image.

The region of interest parameters are stored in the structure:

Roi = record
buffer :longint;
xpos,xsize:word;
ypos,ysize:word;

end;

When the column sums are calculated for a given region of interest, the
data is shifted so that the first column sum becomes the first element of
the picture array.

Some variables needed by many parts of the program are globally
defined. Examples of important globals are given below:

region :Roi; {The region presently defined}

picture_list :picture_pointer;{Pointer to the first
element of list of
stored image data}

focal_length :real; {Camera and measurement parameters}
CCD_size
CCD_xsize

:real;
:real;

39

Appendix The Wind program

distance
angle

:real;
:real;

magnification:real; {The image magnification calculated
from the above parameters}

scale :real; {The angle scale factor}

The Wind program units
As new functions have been added the Wind program has grown to a
rather inconvenient size. In order to make an overview easier, it has
been divided into functional blocks using 'furbo Pascal Units. The units
are described below, with the exception of the frame grabber interface
unit, dt_turbo, which is described in section?. The units are:

• Wind. This is the main program providing initialization procedures,
general calculations, frame grabber access, and the main menu
selections loop. It also provides the wind velocity measurement
procedure which calls the other modules.

• Global unit. This unit contains all global variables and a procedure
to set them up to their default values.

• User unit. This unit provides the user interface with menus and
cursor control. It is used to set up the image area to be processed and
to make the camera calibration.

• Debug unit. Contains procedures to put debug information on
screen or disk.

• Corr unit. All the procedures to measure the wind velocity using the
correlation method.

• Four unit. All the procedures to measure the wind velocity using
the Fourier method.

• Dt_2. 'furbo-Pascal interface for the Data Translation DT2851 frame
grabber.

• Getput. This is the assembly language interface for the DT2851
frame grabber.

In addition to the above units some general input units were reused
from the present LIDAR software. These units are: Initial, Input_u and
Readdir_u. They are documented in the LIDAR software documenta­
tion.

40

Appendix The Wind program

Wind
This unit contains the following procedures and functions:

• initialize_frame_grabber. Initializes the frame grabber card and
selects appropriate input and output look-up tables. It then starts
pass-thru mode, displaying the image on the video monitor.

• CreatePictureList. Reserves memory for the image data.

• DisposePictureList. Frees the memory allocated for image data.

• Acquire_Pictures. Acquires a series of images with a given inter­
val. For each image the column sums of pixel values are calculated
and stored in the memory set aside by CreatePictureList.

• Velocity. Calculates the real wind velocity from a given image dis­
placement using information about the distance, angle, focal length,
CCD size and camera calibration.

• Angle_correction. Transforms the image data from the camera to a
plane parallel to the smoke plume.

• Transform. Used by Angle_correction to transform data.

• Subtract_Mean. Subtracts the mean value of the sample images
from every image to reduce the static image background.

• measure_ wind_ velocity. This procedure calls the appropriate
procedures to measure wind velocity using the selected method. It
also presents the result of the measurement.

The main program initializes the frame grabber and then displays the
main menu. Depending on the user selections calls are made to the
different units.

Global unit
The global unit defines all the global variables shared between the
units. It also defines one procedure:

• Set_Globals. This procedure sets the default values of some global
variables. If the preferences file 'Windpref' can be found, the dis­
tance, angle, focal length, camera number and camera calibrations
are read from this file. Otherwise they are set to default values.

User unit
This unit contains all user interface procedures:

• Windspeed_Menu. Displays the main menu.

• Redefine_globals. Displays the parameters menu. When the pa­
rameters have been changed the distance, angle, focal length, cam­
era number and camera calibrations are written to the 'Windpref'
file.

41

Appendix The Wind program

• Set_debug_mode. Displays the debug options menu.

• Set_region_of_interest. Allows the user to define the image area to
be used for the measurement.

• Camera_calibration. Allows the user to calibrate the camera using
the cursor controls.

Debug unit
Debugging procedures:

• Save_smoke_profile. Saves the sampled image data in a format
that can be used as input to the program.

• Save_smoke_text. Saves the sampled image data in text format
that can be used to export data to other programs.

• Save_fourier and Save_fourier2. Saves Fourier transform data as
text.

• Load_smoke_profile. Reads the data saved by Save_smoke_profile.

• Debug and Debugln. Writes debug data to the screen or file if the
options have been set in the debug options menu.

• Plot_smoke_profile. Plots the smoke profile and lets the user
adjust the displacement.

• Plot_fourier_data. Plots Fourier transform input and output data.

Corr unit
This unit contains the procedures for the correlation velocity measure­
ment method:

• Corr_measure_wind_velocity. The function returning the dis­
placement between the images measured in pixels.

• InitiateData and InitiateData2. Clears the workspace needed by
the calculation procedures.

• Fourier. TwoFFT, Performs fast Fourier transform of the input
data. These procedures are adapted from Fortran procedures from
'Numerical Recipes'.

• PeakSearch. Locates the maximum value in a vector. This proce­
dure is used to find the displacement for which the correlation has a
maximum.

• Correlate. Uses the above procedures to perform cross correlation of
the image data.

• Median. Calculates the median value of the image displacements.
This is the result returned from Corr_measure_ wind_ velocity.

42

Appendix The Wind program

• Directcorrelation. This procedure calculates the cross correlation
without using Fourier transforms. It is not used.

• Fourcorrelation. This procedure calculates the cross correlation
using Fourier transforms. This is faster than the directcorrelation
procedure and is the method used in the wind program.

Four unit
This unit contains the code for the experimental Fourier correlation
method.

• Fft_measure_ wind_ velocity. The function returning the displace­
ment between the images measured in pixels.

• InitiateData. Clears the workspace needed by the calculation proce­
dures.

• DisposelmageList. Frees memory allocated by the calculation
procedures.

• Fourier. Performs fast Fourier transform of the input data. This
procedure is adapted from a Fortran procedure from 'Numerical
Recipes'.

• PeakSearch. Locates the maximum value in a vector. This proce­
dure is used to find the displacement for which the correlation has a
maximum.

• PrepareDatal, PrepareData2 and PrepareData3. Performs a spe­
cial Fourier transform of the input image data. These are alternate
experimental methods.

• Make Vector. Prepares the input data for the calculation procedures.

Program listings
On the following pages the program listings of the Wind program can be
found.

43

Appendix The Wind program

Wind
This is the main program, providing initialization procedures, general calcualtions,
frame grabber access, and the main menu selections loop. It also provides the wind
velocity measurement procedure which calls the other modules.
}

{$R+}
{$B+}
{$S+}
{$I+}

{$N+}

{Range checking on
{Boolean complete evaluation on}
{Stack checking on }
{I/O checking on }
{Numeric coprocessor }

PROGRAM Wind;

USES
Global_u,
Dt_2,
User_u,
Debug_u,
Four_u,
Corr_u,
Dos,
Input_u,
Crt;

All program globals
Interface routines for framegrabber
User interfaces, menues, set-ups
Writes debug information to screen or disk
The fourier method procedures
The correlation method procedures
TURBO-pascal Dos unit
General input procedures from existing LIDAR system

The constants and variables defined in unit Global_u and dt_2 ----------

CONST

TYPE

BufO
Buf1
pixels

frame buffer 0 from dt_2
frame buffer 1 from dt_2
number of pixels across from dt_2

max_no_of_pictures
power of two
default_sample_interval
default_no_of_pictures
default_CCD_size
default_focal_length
save_file_path
preferences_file
pixels2

Sum

128; number of pictures must be an integer

50; sec/100 Interval between samples
32;
7. 40;
54;
'C:\tp\plym\data\';
'C:\tp\plym\prefs\windpref.prf';
2*pixels;

array[O to pixels] of longint from dt_2
Roi

RECORD Region of interest selected in picture
buffer :longint;
xpos,xsize:word;
ypos,ysize:word;

END; from dt 2

44

Appendix The Wind program

image_source_type (disk , camera) ;
methods (fourier, correlation);
picture_pointer Apicture_frame; The pixels of each column are added
picture_frame together, representing the picture

RECORD in an array with one element for each
picture:Sum; column
next :picture_pointer;

END;

transformfunction
array [1 .. pixels2] of real;

fft_pointer Afft_frame;
fft_frame The fourier transformed pictures

RECORD
data:transformfunction;
next:fft_pointer;

END;

transformfunction2= array [1 .. 2*pixels2] of real;

VAR
region
picture_list
select
sample_interval
no_of_pictures
focal_length
CCD_size,CCD_xsize
magnification
distance
angle
image_source
method
save_file_name
ut
debug_mode
debug_image
pixel velocity
scale
camera_cal
cal_no

:Roi; Region of interest in picture
:picture_pointer;
:char;
:word;
:word;
:real;
:real;
:real;
:real;

interval between pictures (sec/100)

:real;
:image_source_type;
:methods; correlation or fourier
:string[40];
:text;
:set of (im, four, screen, dsk, result);
:integer;
:integer;
:real;
:array [1 .. 5] of real;
:real;

Initialization and setup procedures

PROCEDURE initialize_frame_grabber;
{

Initializes the frame grabber card and selects appropriate input
and output lookup tables. It then starts passthru mode, displaying
the image on the video monitor.
The procedures can be found in Dt_2.
}

BEGIN
dt_initialize;
dt_selec·t_ilut (0) ;
dt_select_olut(O);

{Set up frame grabber card.
{Select specified input table.
{Select specified output table.

45

Appendix The Wind program

dt_select_input_frame(O);
dt_select_output_frame(O);
dt_set_sync_source(l);
dt_display (1) ;

{Read frames into and out from
{selected frame buffers.
{External sync is choosen.
{Display is turned on.

END;
{

{initialize_frame_grabber}

PROCEDURE CreatePictureList(VAR picture_list:picture_pointer;
no_of_pictures:word);

Reserves memory for the image data in the form of a linked list with
"no_of_pictures" elements each containing an array of type "sum".
At least two images must be stored.
}

VAR
current_picture:picture_pointer;
X :word;

BEGIN
current_picture :=new(picture_pointer);
picture_list :=current_picture;

FOR x:=2 TO no_of_pictures DO BEGIN
current_pictureA.next :=new(picture_pointer);
current_picture :=current_pictureA.next;

END;

current_pictureA.next:=nil;
END; {create_picture_list}

PROCEDURE DisposePictureList(VAR picture_list:picture_pointer);
{

Frees the memory allocated for image data by the linked list.

VAR
next_picture:picture_pointer;

BEGIN
WHILE picture_list<>nil DO BEGIN

next_picture :=picture_listA.next;
dispose(picture_list);
picture_list :=next_picture;

END;
END; {Dispose_picture_list}

Framegrabber interface procedures
}

PROCEDURE Acquire_Two_Pictures(region :Roi;
interval :word;
picture_list:picture_pointer);

46

Appendix The Wind program

Samples two images to the two frame grabber image buffers. The
procedures can be found in Dt_2.
}

BEGIN
dt_select_olut(O);
dt_select_ilut(O);
dt_freeze_frame;
dt_acquire_two(interval div 4);
dt_sum_columns(region,picture_listA.picture);
dt_sum_columns(region,picture_listA.nextA.picture);
dt_passthru;

END; {Acquire_Two_Pictures}

PROCEDURE Acquire_Pictures(region :Roi;
interval :word;
picture_list:picture_pointer);

For every element in "picture_list" an image is acquired from the camera
with a time interval defined by "interval". The pixel values for each
column within the image region defined by "Region" are summed and stored in
the array "picture_listA.picture".
}

VAR
clock :longint;
hour,min,sec,hundreds:word;

BEGIN
dt_select_olut(O);
dt_select_ilut(O);

{Select appropriate lookup tables

GetTime(hour,min,sec,hundreds);

REPEAT {for all (no_of_pictures) images}

dt_acquire; {Sample a videoframe and store it in buffer}

clock:=(min*6000+sec*100+hundreds+interval) mod 360000; {calculate end of
time interval }

dt_wait;

dt_sum_columns(region,picture_listA.picture); {Add the pixels of each column}

picture_list:=picture_listA.next;

REPEAT {until time interval is over}
GetTime(hour,min,sec,hundreds);

UNTIL (min*6000+sec*l00+hundreds)>=clock;

UNTIL picture_list=nil;

dt_passthru;
END; {acquire_pictures}

47

Appendix The Wind program

General calculation procedures

FUNCTION Velocity(v,scale :real) :real;
{

The velocity is translated to m/s from pixels/frame

v: measured pixel velocity (pixels per image)
scale: scale factor for angular correction (1)
magnification: optical magnification of the camera (1)
pixel_size: size of a pixel (mm)
sample_interval: time interval between pictures (sec/100)
}

VAR
pixel_size:real; The physical size in the camera of a

framegrabber pixel (mm)

BEGIN
pixel_size:= CCD_xsize/pixels;
Velocity .- v * (pixel_size/1000) * magnification/(sample_interval/100) *

scale* camera_cal[Trunc(cal_no)];
END; { velocity

PROCEDURE Angle_correction(VAR page :picture_pointer;
region:Roi;

VAR scale :real);

Project smoke plume on a plane parallel to the camera image plane.

Move the coordinates so that zero is in the center of the image,
calculate the length of the projected plume and a scale factor so
that it fits in the old vector. Use geometry to find the corresponding
displacements and linear extrapolation to calculate the values for
discrete steps.

VAR
result,last,step :picture_pointer;
phi,lastphi :real; {angles at the end points of the region of interest}
offset :real; {displacement from origo to end point of the projection}
width :real; {region.xsize of the projection }
meter_per_pixel :real;

PROCEDURE Transform(step, result :picture_pointer;
shift :real);

Calculates the projection for a given displacement and uses linear
extrapolation to calculate the values for discrete steps.
}

VAR
ii,a,index :integer;
xposition :real; {holds the displacement in pixels from origo to

{the image point,ii

48

Appendix The Wind program

x1,x2

phi

:real;

:real;

{x1 is the displacement in pixels from origo to
{the image point,ii - 1, projected on a plane
{parallel to the camera.
{the angle at the camera, between the point
{representing origo of the picture and the point
{to be transformed

BEGIN
x1 : = 0. 0;
resultA.picture[O) := stepA.picture[O);

FOR ii := 1 TO (region.xsize-1) DO BEGIN {For all columns}
xposition:=region.xpos-256.0+ii;
phi .- arctan(xposition*meter_per_pixel/distance);
x2 := (xposition*cos(phi)/cos(phi+angle)-shift)/scale;

IF (trunc(x2) - trunc(x1)) > 0 THEN BEGIN
{the elements of the array must contain data from every column of}
{pixels. If the displacement x1 to x2 is more than one pixel, }
{linear interpolation is used to approximate the data to store in}
{the array. }

FOR a := (trunc(x1) + 1) TO trunc(x2) DO BEGIN {discrete steps between
calculated displacements}

resultA.picture[a]
stepA.picture[ii-1] +
round((stepA.picture[ii] - stepA.picture[ii-1])/(x2-x1) *
(a-x1)) ;

{new value .-
{ known value +
{ slope *
{ displacement from known value, x1 <-> ii-1}

END; {FOR}
END; {IF}

x1 : = x2;

END; {FOR}
END;{Transform}

BEGIN
meter_per_pixel := (magnification* CCD_xsize*1E-3)/pixels;
phi .- arctan((region.xpos- 256.0) * meter_per_pixel/distance);
offset .- (region.xpos-256.0) * cos(phi)/cos(phi+angle);
lastphi .- arctan((region.xpos + (region.xsize -1) - 256.0)

width

scale

* meter_per_pixel/distance);
.- (region.xpos + (region.xsize - 1) - 256.0)

* cos(lastphi}/cos(lastphi +angle) -offset+ 1;
.- width/region.xsize;

debug('Angle_Correction phi=',phi);
debug('width=' ,width);
debugln ('scale=' , scale) ;

last := nil;
step := page;
WHILE step <> nil DO

BEGIN
{for all pictures}

new(result);
transform(step,result,offset);

49

Appendix The Wind program

result~.next := step~.next;

dispose(step);
step := result~.next;

IF last <> nil THEN
BEGIN

lastA.next := result;
last .- result;

END
ELSE

BEGIN
last .- result;

END;

page
END;

step := nil;
last := nil;
result := nil;

END; { Angle_correction}

result; { Save a pointer to first element }

PROCEDURE Subtract_Mean(region :Roi;
picture_list:picture_pointer);

Subtracts the mean value of the sample images from every image,
to reduce the static image background.

VAR
pict :picture_pointer;
column :word;
temp :Sum;

BEGIN
pict := picture_list;

FOR column:= 0 to region.xsize-1 DO BEGIN
temp[column] .- 0;

END; {FOR}

WHILE pict <> nil DO
{add all pictures and divide by number of pictures for each column}

BEGIN
FOR column:=O TO region.xsize-1 DO BEGIN

temp[column] .- temp[column] + (pict~.picture[column] div
no_of_pictures);

END; {FOR}
pict .- pict~.next;

END;

pict := picture_list;

WHILE pict <> nil DO
{subtract above calculated mean value from every picture and column}

BEGIN
FOR column:=O TO region.xsize-1 DO BEGIN

pict~.picture[column] .- pict~.picture[column] - temp[column];

50

Appendix The Wind program

END; {FOR}
pict := pictA.next;

END;
END; {subtract~mean}

Windspeed measurement procedures
}

PROCEDURE measure~wind~velocity(VAR region :Roi;
VAR picture~list:picture_pointer);

This procedure calls the appropriate procedures to measure wind velocity
using the selected method. It also presents the result of the measurement.

VAR
windspeed :real;
comment :string[255]; {used in debug mode}

BEGIN

IF (screen in debug~mode) or (dsk in debug~mode) THEN BEGIN
ClrScr;
comment:=Input~string(l,l, 'comment: ',9);

debugln ('comment', 0);

debugln(comment,O);
debug('Distance: ',distance);
debug ('Angle: ',angle);
debug('Focal: ',focal~length);

END;

IF image~source=camera THEN BEGIN

{--set up the frame grabber - found in Dt 2-------------------------}
dt~freeze~frame;

dt~wait;

dt~load~mask(O); {erase potential red lines on the screen}

{--acquire a series of images and store ----------------------------}
{--in a practical format - found in this unit-----------------------}

Acquire~Pictures(region,sample~interval,picture~list);

{--Reduce the static image background - found in this unit----------}
Subtract~Mean(region,picture~list);

IF im in debug~mode THEN BEGIN
save~smoke_profile(region,picture~list);

END; {IF}

{--Transform the image data to a plane parallel---------------------}
{--to the smoke plume - found in this unit--------------------------}

Angle~correction(picture~list,region,scale);

END

ELSE BEGIN {image~source disk}

51

Appendix The Wind program

{--load image file - found in debug_u-------------------------------}
load_smoke_profile(region,picture_list);

{--Transform the image data to a plane------------------------------}
{--parallel to the smoke plume - found in this unit-----------------}

Angle_correction(picture_list,region,scale);
END; {IF}

debugln('Scale: ',scale);
debug_image:=O;

{--calculate the velocity - found in four_u and corr_u-------------}
CASE method OF

fourier: windspeed :=fft_measure_wind_velocity(region,picture_list);
correlation: pixelvelocity:=Round(corr_measure_wind_velocity(region,picture_list));

END; {CASE}

ClrScr;
GotoXY(l4,10) ;writeln('The windspeed is: ',velocity(pixelvelocity,scale) :2:2,' m/s');
GotoXY(l4,12) ;Write('Press ''Enter'' to continue');
readln;

END;{measure_wind_velocity}

Main program

BEGIN
{--set up equipment and initialize data--}

initialize_frame_grabber;
dt_define_Roi(region,BufO,O,O,pixels,pixels); {Start with full screen
set_globals; {found in global_u
CreatePictureList(picture_list,no_of_pictures) ;{found in this unit

REPEAT

region}
}

}

Windspeed_Menu(select); {found in user_u}
CASE select OF

Fl :set_region_of_interest(region,BufO); {found in user_u}
F2 :redefine_globals; {found in user_u}
F3 :measure_wind_velocity(region,picture_list); {found in this u}
F4 :plot_smoke_profile(region,picture_list,pixelvelocity);
FS :IF image_source=camera THEN

image_source:=disk
ELSE

image_source:=camera;
F6 :IF method=fourier THEN

method:=correlation
ELSE

method:=fourier;
F7 :set_debug_mode;
F8 :save_smoke_text(region,picture_list);
F9 :camera_calibration(region,BufO);

END; {CASE}
UNTIL select = FlO;
DisposePictureList(picture_list);

END. {Wind}

{found in user_u}

52

Appendix The Wind program

Global unit
This unit contains all global variables and a procedure to set them up to their
default values.
}

{$R+}
{$B+}
{$S+}
{$I+}
{$N+}

{Range checking off
{Boolean complete evaluation on}
{Stack checking on }
{I/O checking on }
{Numeric coprocessor }

UNIT Global_u;

INTERFACE

USES Dt_2;

CONST
{

TYPE

BufO
Buf1
pixels

frame buffer 0 from dt_2
frame buffer 1 from dt_2
number of pixels across from dt_2

max_no_of_pictures 128; {number of pictures must be an integer
} power of two

default_sample_interval
default_no_of_pictures
default_CCD_size
default_focal_length
save_file_path
preferences_file
pixels2

50; {sec/100 Interval between samples
32;
7.40;
54;
'C:\tp\plym\data\';
'C:\tp\plym\prefs\windpref.prf';
2*pixels;

Sum
array[O to pixels] of longint from dt_2

Roi
RECORD {Region of interest selected in picture}

buffer :longint;
xpos,xsize:word;
ypos,ysize:word;

END; from dt_2

image_source_type (disk , camera);
methods (fourier, correlation);
picture_pointer Apicture_frame; {The pixels of each column are added
picture_frame {together, representing the picture

RECORD {in an array with one element for each }
picture:Sum; {column
next :picture_pointer;

END;

transformfunction
array [1 .. pixels2] of real;

fft_pointer = Afft_frame;

53

Appendix The Wind program

fft frame {The fourier transformed pictures
RECORD

data:transformfunction;
next:fft_pointer;

END;

transformfunction2= array [1 .. 2*pixels2) of real;

VAR
region
picture_list
select
sample_interval
no_of_pictures
focal_length
CCD_size,CCD_xsize
magnification
distance
angle
image_source
method
save_file_name
ut
debug_mode
debug_image
pixel velocity
scale
camera cal
cal_no

PROCEDURE set_globals;
{

:Roi; {Region of interest in picture
:picture_pointer;
:char;
:word;
:word;
:real;
:real;
:real;
:real;
:real;

{interval between pictures (sec/100)

:image_source_type;
:methods; {correlation or fourier
:string[40);
:text;
:set of (im, four, screen, dsk, result);
:integer;
:integer;
:real;
:array [1 .. 5) of real;
:real;

This procedure sets the default values of some global variables. If the preferences
file 'Windpref' can be found, the distance, angle, focal length, camera number and
camera clibrations are read from this file, otherwise they are set to default values.

IMPLEMENTATION{

PROCEDURE set_globals;
{

Set initial values of global variables

VAR indata:file of real;
i :integer;

BEGIN
sample_interval .- default_sample_interval; { sec/100 Interval between pictures}
no_of_pictures
CCD_size
CCD_xsize
pixel velocity
method

.- default_no_of_pictures;

.- default_CCD_size;

.- sqrt(9/13) * CCD_size;

.- 0;

.- correlation;

54

Appendix

Assign(indata,preferences_file);
{$I-} {No fault should occur if no file is

available, so IO-check is turned off
Reset (indata);
{$I+}

IF IOresult=O THEN {File available
BEGIN

Read(indata,focal_length,distance,angle,cal_no);
FOR i:=l TO 5 DO

END

Read(indata,camera_cal[i]);
close(indata);

ELSE {File not available
BEGIN

focal_length
distance
angle
cal_no

.- default_focal_length;

.- 0;

.- 0;

. - 1. 0;

FOR i:=l TO 5 DO
camera_cal[i] :=1;

END;
magnification :=distance/(focal_length*lE-3);
image_source .- camera;
debug_mode .- [];

END; {set_globals}

END.

User unit
This unit contains all user interface procedures.
}

{$R+}
{$B+}
{$S+}
{$I+}
{$N+}

{Range checking off}
{Boolean complete evaluation on}
{Stack checking on}
{I/O checking on}
{Numeric coprocessor}

UNIT User_u;

INTERFACE

USES
global_u, {All program globals
dt_2,
Crt,
INPUT_U;

PROCEDURE Windspeed_Menu(VAR func_key: CHAR);
{

Displays the main menu.
}

The Wind program

55

Appendix The Wind program

PROCEDURE redefine_globals;
{

Displays the parameters menu. When the parameters have been changed,
the distance, angle, focal length, camera number and camera calibrations
are written into the 'Windpref' file.

PROCEDURE set_debug_mode;
{

Displays the debug options menu.
}

PROCEDURE place_cursor(xmin,ymin:word;power_of_two :boolean;VAR x,y:word);
{

Allows the user to place the cursor in order to define the image area to
be used. If a fourier method is used that requires the width of the area
to be an integer power of two, this is accounted for.

PROCEDURE set_region_of_interest(VAR region:Roi;buffer:longint);
{

Allows the user to define the image area to be used for measurement.

PROCEDURE camera_calibration(VAR region:Roi;buffer:longint);
{

Allows the user to calibrate the camera using the cursor controls.

IMPLEMENTATION

PROCEDURE Windspeed_Menu(VAR func_key: CHAR);
{

Displays the main menu.
}

CONST Xpos 14;
Ypos 3;

BEGIN

Write(•**•);

Write('***** WINDSPEED MEASUREMENT MENU *****');

ClrScr;
GotoXY(Xpos,Ypos);
GotoXY(Xpos,Ypos+l);
GotoXY(Xpos,Ypos+2);
LowVideo;
GotoXY(Xpos,Ypos+4);
GotoXY(Xpos,Ypos+5);
GotoXY(Xpos,Ypos+6);
GotoXY(Xpos,Ypos+7);
GotoXY(Xpos,Ypos+9);
IF image_source=camera

Write(•**•);

write('camera')
ELSE

Write(' [Fl]:
Write(' [F2]:
Write(' [F3]:
Write (' [F4]:
Write(' [FS]:

THEN

Set region of interest');
Set parameters');
Measure wind velocity');
Plot smoke profile');
Input source: ');

write('disk ');
GotoXY(Xpos,Ypos+lO);
IF method=fourier THEN

Write(' [F6]: Method: ');

write('fourier ')
ELSE

write('correlation');

56

Appendix The Wind program

GotoXY(Xpos,Ypos+12);
GotoXY(Xpos,Ypos+l3);
GotoXY(Xpos,Ypos+l4);

Write(' [F7]: Set debug options');
Write(' [FB]: Save smoke profile as text');
Write(' [F9]: Calibrate camera');

GotoXY(Xpos-l,Ypos+l6); Write(' [FlO]: End program.');
NormVideo;
func_key:= Input_Function_Key(Xpos,Ypos+lB,

'Enter function key, please ... ');
END; {Windspeed menu}

PROCEDURE redefine_globals;
{

Displays the parameters menu. When the parameters have been changed,
the distance, angle, focal length, camera number and camera calibrations
are written into the 'Windpref' file.

CONST

VAR

Xpos 14;
Ypos 3;

func_key:char;
utdata:file of real;

BEGIN
REPEAT

ClrScr;
GotoXY(Xpos,Ypos);
GotoXY(Xpos,Ypos+l);
GotoXY(Xpos,Ypos+2);
LowVideo;
GotoXY(Xpos,Ypos+4);

Write('**');

Write('***** Wind Velocity Parameters *****');
Write('**');

IF method=fourier THEN
write('Fourier method')

ELSE
write('Correlation method');

GotoXY(Xpos+40,Ypos+4); Write('Current value:');
GotoXY(Xpos,Ypos+6); Write(' [Fl]: Reset to default');
GotoXY(Xpos,Ypos+7); Write(' [F2]: Number of samples ('

,default_no_of_pictures, ') ');
GotoXY(Xpos+40,Ypos+7); Write(no_of_pictures:4,' samples');
GotoXY(Xpos,Ypos+B); Write(' [F3]: Interval between samples ('

,default_sample_interval, ') ');
GotoXY(Xpos+40,Ypos+8); Write(sample_interval:4,' sec/100');
GotoXY(Xpos,Ypos+ll); Write(' [F5]: Select camera no.');
GotoXY(Xpos+40,Ypos+ll); Write(cal_no:4:0,'

,camera_cal[Trunc(cal_no)] :3:2);
GotoXY(Xpos,Ypos+12); Write(' [F6]: Camera focal length ('

,default_focal_length, ') ');
GotoXY(Xpos+40,Ypos+l2); Write(focal_length:4:0,' mm');
GotoXY(Xpos,Ypos+l3); Write(' [F7]: CCD size (',default_CCD_size:4:1, ') ');
GotoXY(Xpos+40,Ypos+13); Write(CCD_size:4:1,' mm');
GotoXY(Xpos,Ypos+l4); Write(' [FB]: distance (0) m');
GotoXY(Xpos+40,Ypos+l4); Write(distance:4:1,' m');
GotoXY(Xpos,Ypos+l5); Write(' [F9]: angle (0) ');

57

Appendix The Wind program

GotoXY(Xpos+40,Ypos+l5); Write(angle*180/pi:4:1);
GotoXY(Xpos-l,Ypos+l7) ;Write(' [FlO]: Leave this menu.');

func_key:=Input_Function_Key(Xpos,Ypos+19, 'Enter function key, please ... ');
CASE func_key OF

Fl :set_globals;
F2 :no_of_pictures:=

Input_Integer(Xpos,Ypos+20, 'Enter new number of samples',4,128);
F3 :sample_interval:=

Input_Integer(Xpos,Ypos+20, 'Enter new interval in sec/100',1,6000);
FS :cal_no:=

Input_Real(cal_no,Xpos,Ypos+20,
'Enter new calibration no to be used',l,S);

F6 :BEGIN
focal_length:=

Input_real(focal_length,Xpos,Ypos+20,
'Enter new focal length',l,lOO);

magnification:=distance/(focal_length*lE-3);
END;

F7 :BEGIN
CCD_size:=

Input_real(CCD_size,Xpos,Ypos+20, 'Enter new CCD-size',0,25.4);
CCD_xsize .- sqrt(9/13) * CCD_size;

END;
FB :BEGIN

distance:=
Input_real(distance,Xpos,Ypos+20, 'Enter distance',0,3000);

magnification:=distance/(focal_length*lE-3);
END;

F9 :BEGIN

END;

angle:=
Input_real(angle,Xpos,Ypos+20, 'Enter angle',-90,90);

angle:=angle*pi/180;
END;

UNTIL func_key=FlO;

Assign(utdata,preferences_file);
{$I-} {No fault should occur if no file is

available, so IO-check is turned off }
Rewrite (utdata);
{$I+}

IF IOresult=O THEN BEGIN {File was available
write(utdata,focal_length,distance,angle,cal_no);
write(utdata,camera_cal[l],camera_cal[2],camera_cal[3],camera_cal[4] ,camera_cal[S]);

close (utdata) ;
END;

END;{redefine_globals}

PROCEDURE set_debug_mode;
{

Displays the debug options menu.
}

58

Appendix The Wind program

CONST

VAR

Xpos 14;
Ypos 3;

func_key:char;
utdata:file of real;

BEGIN
REPEAT

ClrScr;
GotoXY(Xpos,Ypos); Write('**');
GotoXY(Xpos,Ypos+l); Write('***** Debug options *****');
GotoXY(Xpos,Ypos+2); Write('**');
LowVideo;
GotoXY(Xpos,Ypos+4);
GotoXY(Xpos+40,Ypos+4); Write('Current value:');
GotoXY(Xpos,Ypos+6); Write(' [Fl]: Save images');
IF im in debug_mode THEN
BEGIN

GotoXY(Xpos+40,Ypos+6);Write('On ');
END

ELSE
BEGIN

GotoXY(Xpos+40,Ypos+6);Write('Off');
END;

GotoXY(Xpos,Ypos+8); Write(' [F3]: Save fourier data');
IF four in debug_mode THEN
BEGIN

GotoXY(Xpos+40,Ypos+8);Write('On ');
END

ELSE
BEGIN

GotoXY(Xpos+40,Ypos+8);Write('Off');
END;

GotoXY(Xpos,Ypos+9); Write(' [F4]: Screen output');
IF screen in debug_mode THEN

BEGIN
GotoXY(Xpos+40,Ypos+9);Write('On ');

END
ELSE

BEGIN
GotoXY(Xpos+40,Ypos+9);Write('Off');

END;

GotoXY(Xpos,Ypos+lO); Write(' [FS]: Save file');
IF dsk in debug_mode THEN

BEGIN
GotoXY(Xpos+40,Ypos+lO);Write(save_file_name);

END
ELSE

BEGIN
GotoXY(Xpos+40,Ypos+l0) ;Write('Off');

END;

GotoXY(Xpos-l,Ypos+l7); Write(' [FlO]: Leave this menu.');
func_key:=Input_Function_Key(Xpos,Ypos+19, 'Enter function key, please ... ');
CASE func_key OF

59

Appendix The Wind program

Fl :IF im in debug_mode THEN
debug_mode:=debug_mode-[im]

ELSE
debug_mode:=debug_mode+[im];

F3 :IF four in debug_mode THEN
debug_mode:=debug_mode-[four]

ELSE
debug_mode:=debug_mode+[four];

F4 :IF screen in debug_mode THEN
debug_mode:=debug_mode-[screen]

ELSE
debug_mode:=debug_mode+[screen];

F5 :IF dsk in debug_mode THEN

END;

BEGIN
debug_mode:=debug_mode-[dsk];
close(ut);

END
ELSE

BEGIN
debug_mode:=debug_mode+[dsk];
save_file_name:=

Input_string(Xpos,Ypos+20, 'Enter name for save file: 9);

Assign(ut,save_file_path+save_file_name+' .txt');
Rewrite (ut);

END;

UNTIL func_key=FlO;
Assign(utdata,preferences_file);
{$1-} {No fault should occur if no file is

available, so IO-check is turned off
Rewrite(utdata);
{$I+}
IF IOresult=O THEN

BEGIN
write(utdata,focal_length,distance,angle);
close (utdata);

END;
END;{Set_debug_mode}

PROCEDURE place_cursor(xmin,ymin:word;power_of_two :boolean;VAR x,y:word);
{

Allows the user to place the cursor in order to define the image area to
be used. If a fourier method is used that requires the width of the area
to be an integer power of two, this is accounted for.

VAR
step,count,t,i,imax:word;
ch,prev_ch :byte;

BEGIN
IF power_of_two THEN

BEGIN
i:=4;
WHILE i+xmin <= 512 DO

60

Appendix

i:=i*2;
i:=i div 2;
x:=i+x:min;
imax:=i;

END;
dt_set_cursor_position(x,y);
dt_cursor(l);
ch:=O;
prev_ch:=l;
while ch<>l3 DO

BEGIN
t:=O;

WHILE (not KeyPressed) and (t<5000) DO
t:=t+l;

IF t=SOOO THEN
BEGIN

t:=O;
count:=O;
step:=2;

END;
ch:=ord(ReadKey);
IF ch=O THEN

BEGIN
ch:=ord(ReadKey);
IF ch<>prev_ch THEN

BEGIN
step:=2;
count:=O;

END;
prev_ch:=ch;
case ch of

71 :BEGIN
x:=O;
y:=O;

END;
72 :IF y>ymin+step THEN

y:=y-step
else

y:=ymin;
75 :IF power_of_two THEN

BEGIN

END
ELSE

IF i>=4 THEN
begin

i:=i div 2;
x:=xmin+i;

end;

IF X>xrnin+step THEN
x:=x-step

else
x:=xmin;

77 :IF power_of_two THEN
BEGIN

IF i<imax THEN
BEGIN

i:=i*2;
x: =xmin+i;

The Wind program

61

Appendix The Wind program

END;
END

ELSE
x:=x+step;

79 :BEGIN
IF power_of_two THEN

x:=imax+xmin
ELSE

x:=512;
y:=512;

END;
80 :y:=y+step;

END;
IF x>512 THEN

x:=512;
IF y>512 THEN

y:=512;
dt_set_cursor_position(x,y);
count:=count+1;
CASE count OF

END;
END;

10 :step:=4;
15 : step : = 6 ;
20 :step:=8;
25 :step:=10;
30 :step:=12;
35 :step:=14;

END;
dt_cursor(O);

END; {place_cursor}

PROCEDURE set_region_of_interest(VAR region:Roi;buffer:longint);
{

Allows the user to define the image area to be used for measurement.
}

VAR
x1,x2,y1,y2:word;

BEGIN
ClrScr;
dt_freeze_frame;
dt_load_mask(O);

{Stops the passthru mode
{Removes the write protection

dt_passthru; {Overwrite red remainders from
previous measurements

dt_freeze_frame;
dt_select_ilut(5);

red.
dt_select_olut{7);

region.
dt_passthru;

x1:=0;
y1:=0;

{Tables that will display the colour
}

{Red is used to show the selected

write('Use the cursor-keys, (' ,chr(24) ,chr(25) ,chr(26) ,chr(27), '), ');
writeln('to place cursor at the upper left');

62

Appendix The Wind program

writeln('corner of the interesting area and press ''Enter''');
place_cursor(O,O,false,xl,yl);
dt_freeze_frame;
dt_load_mask(O);
dt_draw_line(buffer,xl,yl,Sll,yl,l);
screen

dt_draw_line(buffer,xl,yl,xl,Sll,l);
screen

{Draw a horizontal red line across the

{Draw a vertical red line across the

dt_load_mask(l);
dt__passthru;
writeln;

{Write protect the colour red

x2:=511;
y2:=511;
write('Use the cursor-keys, (' ,chr(24) ,chr(25) ,chr(26) ,chr(27), '), ');
writeln('to place cursor at the lower right');
writeln('corner of the interesting area and press ''Enter''');
IF method=fourier THEN

place_cursor(x1+4,y1+4,true,x2,y2)
integer power of two
ELSE

place_cursor(xl+4,y1+4,false,x2,y2);
dt_freeze_frame;

{width of selected are must be an

dt_load_mask(O); {Remove write protection of colour red}
dt_draw_line(buffer,xl,y2,x2,y2,1); {Draw a vertical and a horizontal line
to complete the chosen square }
dt_draw_line(buffer,x2,yl,x2,y2,1);
dt_draw_line(buffer,xl,y2+l,xl,511,0); {Remove the red lines that reaches out
from the square to the edge of the
screen
dt_draw_line(buffer,x2+l,yl,Sll,yl,O);
dt_load_mask(l); {Write protect the colour red

END;

dt__passthru;
dt_define_roi(region,buffer,xl,yl,x2-xl+l,y2-yl+l);
{set_region_of_interest}

PROCEDURE camera_calibration(VAR region:Roi;buffer:longint);
{

Allows the user to calibrate the camera using the cursor controls.

VAR
xl,x2,yl,y2:word;
realdist:real;
utdata:file of real;

BEGIN
ClrScr;
dt_freeze_frame; {Stops the passthru mode
dt_load_mask(O); {Removes the write protection
dt__passthru; {Overwrite red remainders from

previous measurements
dt_freeze_frame;
dt_select_ilut(S);

red.
dt_select_olut(7);

region.

{Tables that will dispaly the colour
}

{Red is used to show the selected

63

Appendix The Wind program

dt_passthru;
xl:=O;
yl:=O;
writeln('Calibration of camera no: ',cal_no:l:O,

Current factor: ',camera_cal[Trunc(cal_no)] :3:2);
writeln;
writeln('Distance

writeln;

',distance:4:1,' m, Focal lenght = '
,focal_length:3:0,' mm');

write ('Use the cursor-keys, (', chr(24), chr (25), chr (26), chr (27), '), ');
writeln('to place cursor at the left');
writeln('side of an object of known size and press ''Enter''');

place_cursor(O,O,false,xl,yl);
dt_freeze_frame;
dt_load_mask(O); {Remove write protection of colour red}
dt_draw_line(buffer,xl,yl,x1,511,1); {Draw vertical line through xl
dt_load_mask(l); {Write protect the colour red
dt_passthru;

writeln;
x2:=511;
y2:=511;
write('Use the cursor-keys, (' ,chr(24) ,chr(25) ,chr(26) ,chr(27), '), ');
writeln('to place cursor at the right');
writeln('side of the object and press ''Enter''');

place_cursor(xl+4,yl+4,false,x2,y2);
dt_freeze_frame;
dt_load_mask(O); {Remove write protection of colour red}
dt_draw_line(buffer,x2,yl,x2,y2,1); {Draw vertical line through x2
dt_load_mask(l); {Write protect the colour red }
dt_passthru;

writeln;
write('Under the given circumstances the object should be ');
writeln((magnification*(x2-xl)*CCD_xsize/pixels)/1000:4:1, ' meters');
write('Enter the real size (0 to leave unchanged) ');
readln(realdist);

IF realdist>0.5 THEN
camera_cal[Trunc(cal_no)] :=

realdist/((magnification*(x2-xl)*CCD_xsize/pixels)/1000);

Assign(utdata,preferences_file);
{$I-} {No fault should occur if no file is
available, so IO-check is turned off }
Rewrite(utdata);
{$I+}
IF IOresult=O THEN
BEGIN

write(utdata,focal_length,distance,angle,cal_no);
write(utdata,camera_cal[l],camera_cal[2] ,camera_cal[3],

camera_cal[4],camera_cal[5]);
close (utdata);

END;
END; {camera_calibration}

END.

64

Appendix The Wind program

Debug unit
{$R+}
{$B+}
{$S+}
{$I+}
{$N+}

{Range checking off}
{Boolean complete evaluation on}
{Stack checking on}
{I/0 checking on}
{Numeric coprocessor}

UNIT Debug_u;

INTERFACE

USES
global_u,
dt_2,
graph,
crt,
INPUT_U;

{ All program globals }

PROCEDURE save_smoke_profile(region:Roi;picture_list:picture_pointer);

PROCEDURE save_smoke_text(region:Roi;picture_list:picture_pointer);

PROCEDURE save_fourier(data:transformfunction;nn:integer;question:string);

PROCEDURE save_fourier2(data:transformfunction2;nn:integer;question:string);

PROCEDURE load_smoke_profile(var region:Roi; picture_list:picture_pointer);

PROCEDURE debug(text:string;data:real);

PROCEDURE debugln(text:string;data:real);

PROCEDURE plot_smoke_profile(region:Roi;picture_list:picture_pointer;var
pixelvelocity:integer);

PROCEDURE Plot_fourier_data(data:transformfunction;mode:integer);

IMPLEMENTATION

PROCEDURE save_smoke_profile(region:Roi;picture_list:picture_pointer);

VAR
utdata
image,x
xpos,xsize,number
save_image_name

:file of longint;
:integer;
:longint;
:string[12];

BEGIN
ClrScr;
xpos:=region.xpos;
xsize:=region.xsize;
number:=no_of_pictures;
save_image_name:=Input_string(l,l, 'Ange filnamn for utdata' ,9);
Assign(utdata,save_file_path+save_image_name+' .im');
Rewrite(utdata);
Write(utdata,xpos,xsize,number);
FOR image:=l to no_of_pictures do

BEGIN

65

Appendix The Wind program

FOR x:=O TO region.xsize-1 DO
Write(utdata,picture_listA.picture[x]);

picture_list:=picture_listA.next;
END;

close (utdata);
END;

PROCEDURE save_smoke_text(region:Roi;picture_list:picture_pointer);

VAR
utext
image

:text;
:picture_pointer;

x :integer;
xpos,xsize,number :longint;
save_image_name :string[12];

BEGIN
ClrScr;
xpos:=region.xpos;
xsize:=region.xsize;
number:=no_of_pictures;
save_image_name:=Input_string(1,1, 'Ange filnamn for utdata: ',9);
Assign(utext,save_file_path+save_image_name+' .txt');
Rewrite (utext);
Writeln(utext,xpos,' ',xsize,' ',number);
FOR x:=O TO region.xsize-1 DO

BEGIN
image:=picture_list;
WHILE image<>nil DO

BEGIN
write(utext,imageA.picture[x],' ');
image:=imageA.next;

END;
writeln (utext);

END;
close(utext);

END;

PROCEDURE save_fourier(data:transformfunction;nn:integer;question:string);

VAR
utext
X

save file_name

BEGIN
ClrScr;
writeln(question);

:text;
:integer;

:strng;

save_file_name:=Input_string(1,2, 'Ange filnamn for fourierdata: ',9);
IF save_file_name <>' ' THEN

END;

BEGIN
Assign(utext,save_file_path+save_file_name+' .fou');
Rewrite(utext);
FOR x:=1 TO nn div 2 DO

writeln(utext,data[x*2-1],'
close(utext);

END;

',data[x*2]);

66

Appendix The Wind program

PROCEDURE save_fourier2(data:transformfunction2;nn:integer;question:string);

VAR
utext
X

save file_name

BEGIN
ClrScr;
writeln(question);

:text;
:integer;

:strng;

save_file_name:=Input_string(1,2, 'Ange filnamn for fourierdata: ',9);
IF save_file_name <>' ' THEN

BEGIN
Assign(utext,save_file_path+save_file_name+' .fo2');
Rewrite(utext);
FOR x:=1 TO nn div 2 DO

writeln(utext,sqrt(sqr(data[x*2-1])+sqr(data[x*2])));
close (utext);

END;
END;

PROCEDURE load_smoke_profile(var region:Roi; picture_list:picture_pointer);

VAR
indata
save_image_name
image,x
xpos,xsize,number

:file of longint;
:string[255];
:integer;
:longint;

BEGIN
ClrScr;
Writeln('Ange filnamn for indata');
save_image_name:=Input_string(1,1, 'Ange filnamn: ',9);
Assign(indata,save_file_path+save_image_name+' .im');
Reset (indata);
Read(indata,xpos,xsize,number);
dt_define_Roi(region,BufO,xpos,O,xsize,512);
IF number>no_of_pictures THEN

number:=no_of_pictures;
FOR image := 1 to number do

BEGIN
FOR x:=O TO region.xsize-1 DO

Read(indata,picture_listA.picture[x]);
picture_list .- picture_listA.next;
END;

close (indata);
END;

PROCEDURE debug(text:string;data:real);

BEGIN
IF screen in debug_mode THEN

write (text,' ',data,' ');
IF dsk in debug_mode THEN

write (ut, text, ' ',data:6:2,'
END;

');

PROCEDURE debugln(text:string;data:real);

67

Appendix

BEGIN
IF screen in debug_mode THEN

writeln(text,' ',data,' ');
IF dsk in debug_mode THEN

writeln(ut,text,' ' , data : 6 : 2 , '
END;

FUNCTION Velocity(v,scale :real) :real;

');

{ The velocity is translated to m/s from pixels/frame }

VAR
pixel_size:real; The physical size in the camera of a

framegrabber pixel (mm)}

BEGIN
pixel_size:=CCD_xsize/pixels;

The Wind program

Velocity .- v*scale*magnification*{pixel_size/1000)/(sample_interval/100);
{ v: measured pixel velocity (pixels per image)

scale: scale factor for angular correction (1)
magnification: optical magnification of the camera (1)
pixel_size: size of a pixel (mm)
sample_interval: time interval between pictures (sec/100)

END; { velocity }

PROCEDURE Draw_Screen_Boxes;

VAR Out_text:string;

BEGIN
SetBKColor(blue);
SetColor(LightBlue);
Rectangle(0,0,639,46);
Rectangle(480,2,637,44);
Rectangle(0,48,639,452);
SetColor (White) ;
OutTextXY(485,19, 'Windspeed: ');
Str(Velocity(pixelvelocity,scale) :6:1,0ut_text);
OutTextXY(555,19,0ut_text);
OutTextXY(610,19, 'm/s');

END;

PROCEDURE plot_smoke_profile(region :Roi;

VAR
gd,gm
y,x,start
max,y_scale
Stop_pict

:integer;
:integer;
:integer;
:integer;

Start_pict :integer;

picture_list :picture_pointer;
var pixelvelocity:integer);

current_picture:picture_pointer;
x_scale
ch
Out text
exit

:real;
:char;
:string;
:boolean;

68

Appendix The Wind program

BEGIN
gd:=Detect;
InitGraph(gd,gm, 'c:\bp\bgi');
stop_pict:=no_of_pictures;
start_pict:=1;
if stop_pict > 12 then

stop_pict:=12;
max: =0;
current_picture:=picture_list;
WHILE current_picture <> nil DO
BEGIN

FOR x := 0 to region.xsize-1 DO
IF abs(picture_listA.picture[x])>max THEN

max := abs(picture_listA.picture[x]);
current_picture := current_pictureA.next;

END;
y_scale:=max div 20;
setBkcolor(blue);
ClearDevice;
Draw_Screen_Boxes;
SetFillStyle(SolidFill,blue);
REPEAT

SetCo1or(White);
Str(Velocity(pixelvelocity,scale) :6:1,0ut_text);
Bar(555,19,609,26);
OutTextXY(555,19,0ut_text);
Current_picture := picture_list;
Bar(4,50,634,450);
setcolor(4);
FOR x:=O to 63 DO
BEGIN

MoveTo(x*10+4,50);
LineTo(x*10+4,450);

END;
MoveTo (4, 50);
LineTo(634,50);
MoveTo (4, 450);
LineTo(634,450);
x_scale := 630.0/((stop_pict-1)*pixelvelocity+region.xsize);
IF x_sca1e>1 THEN

x_sca1e := 1;
IF pixelvelocity < 0 THEN

start:=O
ELSE

start:=631-Round(region.xsize*x_scale);
y:=1;
WHILE Start_pict>y DO
BEGIN

y: =y+1;
Current_picture:=current_pictureA.next;

END;
FOR y:=1 TO stop_pict DO
BEGIN

IF y mod 2 = 0 THEN
setco1or(15)

ELSE
setcolor(7);

moveto(start+4, ((current_pictureA.picture[O] div y_scale))+y*30+55);
FOR x:=O TO region.xsize-1 DO

69

Appendix The Wind program

BEGIN
LineTo(Round(x*x_scale)+start+4, ((current_pictureA.picture[x] div

y_scale))+y*30+55);

LineTo(Round(x*x_scale)+start+4, (y*30-(current_pictureA.picture(x] div
y_scale)+55));

END;
start:=start-Round(pixelvelocity*x_scale);
current_picture:=current_pictureA.next;

END;

exit:=false;
REPEAT

ch := ReadKey;
IF ch = #0 THEN
BEGIN

ch : = ReadKey;
exit:=true;
CASE ch OF
#77 pixelvelocity:=pixelvelocity-1;
#75 pixelvelocity:=pixelvelocity+1;
#72 IF start_pict>1 THEN

Start_pict:=Start_pict-1
ELSE

exit:=false;
#80 IF start_pict+stop_pict<no_of_pictures THEN

start_pict:=start_pict+1
ELSE

exit:=false;
#71 start_pict:=1;
#79 start_pict:=no_of_pictures-stop_pict;
#68 . '
ELSE
exit:=false;
END;

END;
UNTIL exit;

UNTIL ch = #68;
Closegraph;

END;

PROCEDURE Plot_fourier_data(data:transformfunction;mode:integer);

VAR
number :real; { magnitude of fourietransform at frequency u }
u,i,x,y:integer;
maximum:real; { greatest number so far }
temp :real;
gm,gd,pl:integer;

BEGIN
DetectGraph(gd,gm);
InitGraph(gd,gm, 'c:\bp\bgi');

x:=4;
y:=250;
maximum : = 0 ;
for u:=O to (no_of_pictures-1) do
BEGIN

i:=2*u+1;
IF mode=1 THEN

70

Appendix The Wind program

temp .- Round(sqrt(sqr(data[i]}+sqr(data[i+1]}}}
ELSE

temp .- abs(Round(data[i]});
if temp > maximum THEN

maximum : = temp;
END;
FOR u:=O to (no_of_pictures-1} do

BEGIN
Moveto (x, y} ;
i:=2*u+1;
IF mode=1 THEN

temp .- Round(sqrt(sqr(data[i]}+sqr(data[i+1]}))
ELSE

temp .- Round(data[i]};
pl:=Round(temp*(200/maximum}};
x:=i*4;
y:=250-pl;
LineTo (x, y};
Moveto(x,250};
IF (u mod 5} = 0 THEN

LineTo(x,270}
ELSE

Lineto(x,260};
END;

readln;
closegraph;

END;

PROCEDURE TestArray(testlist:picture_pointer};

VAR
t,a:integer;

BEGIN
writeln('Testarray'};
write(' Forsjutning mellan bilder (-for vind at vanster}: '};
readln(a};
FOR t:= 1 to no_of_pictures DO

BEGIN
IF a>O THEN

testlistA.picture[abs(t*a mod pixels+1}] :=10
ELSE

testlistA.picture[512-abs(t*a mod pixels+1}] :=10;
testlist:=testlistA.next;

END;
END; {Testarray }

END.

71

Appendix The Wind program

Four unit

This unit contains the code for the experimental Fourier correlation method.

{$R+}
{$B+}
{$S+}
{$I+}
{$N+}

{Range checking off
{Boolean complete evaluation on}
{Stack checking on }
{I/0 checking on }
{Numeric coprocessor }

UNIT Four_u;

INTERFACE

USES
Global_u,
Dt_2,
Debug_u;

CONST
isign =l; {+l:Fourietransform,

-l:Inverse fourietransform
k =1; {k-value described in the theory chapter

With a shorter sampling interval, this
value should be increased or maybe
changed into a variable

FUNCTION fft_measure_wind_velocity(VAR region :Roi;
:picture__pointer VAR picture_list

) :real;

This function measures the displacement between the images in pixels.

IMPLEMENTATION{

FUNCTION fft_measure_wind_velocity(VAR region :Roi;
:picture__pointer VAR picture_list

) :real;

This function measures the displacement between the images in pixels.

VAR
image :transformfunction; {storagearray for the
{prepared pictures
image_list :fft__pointer;
peak :integer; {frequency of greatest peak
{of fourietransform
pixelvelocity :real;
umax
frequency
scale
comment

:real;
:real;

{displacement in pixels per frame
{maximum frequency allowed}

:real;
:string[255]; {used in debug mode

72

Appendix The Wind program

PROCEDURE DisposeimageList(VAR image_list:fft_pointer);
{

Frees the memory occupied by the linked list image_list

VAR
next_picture:fft_pointer;

BEGIN
REPEAT

next_picture:=image_listA.next;
dispose(image_list);
image_list:=next_picture;

UNTIL image_list=nil;
END; {Dispose_image_list}

PROCEDURE fourier(VAR data transformfunction;
nn,isign: integer);

Performs Fast Fourier Transform of the input data. This procedure is adapted
from a Fortran procedure from 'Numerical Recipies'.

VAR
ii,jj,n,mmax,m,j,istep,i : integer;
wtemp,wr,wpr,wpi,wi,theta: real;
tempr,tempi,pi2 real;

BEGIN
pi2:=2*pi;
n := 2*nn;
j := l;
FOR ii := 1 TO nn DO BEGIN

i := 2*ii-1;
IF (j > i) THEN BEGIN

tempr := data[j];
tempi := data[j+l];
data [j] : = data [i] ;
data[j+ll := data[i+l];
data[i] := tempr;
data[i+l] .- tempi

END;
m : = n DIV 2;
WHILE ((m >= 2) AND (j > m)) DO BEGIN

j . - j -m;

m := m DIV 2
END;
j . - j +m

END;
mmax .- 2;
WHILE (n > mmax) DO BEGIN

istep .- 2*mmax;
theta pi2/(isign*mmax);

73

Appendix The Wind program

wpr := -2.0*sqr(sin(0.5*theta));
wpi := sin(theta);
wr := 1.0;
wi := 0.0;
FOR ii := 1 TO (mmax DIV 2) DO BEGIN

m := 2*ii-1;
FOR jj := 0 TO ((n-m) DIV istep) DO BEGIN

i := m + jj*istep;
j := i+mmax;
tempr := wr*data[j]-wi*data[j+1];
tempi := wr*data[j+1]+wi*data[j];
data[j] := data[i]-tempr;
data[j+1] := data[i+1]-tempi;
data[i] := data[i]+tempr;
data[i+1] .- data[i+1]+tempi

END;
wtemp : = wr;
wr .- wr*wpr-wi*wpi+wr;
wi := wi*wpr+wtemp*wpi+wi

END;
mmax := istep

END
END; {fourier}

FUNCTION PeakSearch (VAR data :transformfunction;
range :integer) :integer;

Finds the greatest peak of the fourietransformed function DATA and
places the result in FREQUENCY.
}

VAR

number :real; {magnitude of fouriertransform at
frequency u

u,i,peak :integer;
maximum :real; {greatest number so far

BEGIN
maximum: =0;
peak :=0;
FOR u:= 1 to (range-1) DO

BEGIN
i:=2*u+1; {i=O corresponds to velocity 0
number:=sqr(data[i])+sqr(data[i+1]);
IF number>maximum THEN

END;

BEGIN
maximum:=number;
peak .- u;

END;

Debugln ('peak=' , peak) ;

IF peak > (range div 2) THEN
wind direction }

PeakSearch := range - peak

{same frequencies, but opposite

74

Appendix The Wind program

ELSE
PeakSearch .-peak;

END;{ Peaksearch

PROCEDURE PrepareData(VAR picture_list:picture_pointer;
VAR image_list:fft_pointer};

Moves the data in picture_list to a complex array in image_list with the
imaginary elements set to zero. FFT is performed on each picture in the list.
}

VAR
ii,a
choosepicture, done
temp, latest

:integer;
:picture_pointer;
:fft_pointer;

BEGIN
choosepicture:=picture_list;
latest := nil;
debugln('PrepareData no_of_pics',no_of_pictures};
debug('region.xpos: ',region.xpos};
debug('region.xsize: ',region.xsize};
debug('region.ypos: ',region.ypos};
debugln('region.ysize: ',region.ysize};

FOR a := 1 to no_of_pictures DO
BEGIN

new(temp};
FOR ii:= 1 TO region.xsize DO {For every column do ...

BEGIN
temp".data[ii*2-1] .- choosepicture".picture[ii-1];
temp".data[ii*2] .- 0.0;

END; {FOR}
done := choosepicture;
choosepicture := choosepicture".next;
dispose(done};

Fourier(temp".data,region.xsize,isign);

IF latest <> nil THEN
BEGIN

END

latest".next := temp;
latest .- temp;

ELSE

END;

BEGIN
latest := temp;
image_list := temp;
picture_list .- nil;

END;

temp".next :=nil;
END;{ PrepareData}

75

Appendix The Wind program

--

PROCEDURE MakeVector(image_list :fft_pointer;
VAR image :transformfunction);

Places the data representing a specific k-value in each picture into an array.
This array represents all pictures for this specific k-value.

VAR
ii :integer;
choosepicture :fft_pointer;

BEGIN
choosepicture := image_list;

FOR ii := l TO (no_of_pictures) DO
BEGIN

image[ii*2-1] := choosepicture".data[k*2+1];
image[ii*2] := choosepicture".data[k*2+2];
choosepicture .- choosepicture".next;

END; {FOR}
END;{MakeVektor}

BEGIN{fft_measure_wind_velocity}

urnax:=l/(2*(sample_interval/100));

PrepareData(picture_list,image_list);

{Max frequency according to Nyquist

{FFT each picture
MakeVector(image_list,image); {Make one array from choosen k-value }
Fourier(image,no_of_pictures,isign);
peak .- Peaksearch(image,no_of_pictures);
frequency .-peak* (umax I (no_of_pictures div 2));
pixelvelocity:= (no_of_pictures*frequency/k)*sample_interval/100; {pixels/frame}

debug (' k= ' , k) ;
debug ('peak=' , peak) ;
debug('freq=' ,frequency);
debug('pixel v=' ,pixelvelocity);

fft_measure_wind_velocity := pixelvelocity;
DisposeimageList(image_list);

debugln('**',O);

END; {fft_measure_wind_velocity}

END.

76

Appendix The Wind program

Corr unit
This unit contains the procedures for the correlation velocity measurement method.

{Range checking off} {$R+}
{$B+}
{$S+}
{$I+}
{$N+}

{Boolean complete evaluation on}
{Stack checking on}
{I/0 checking on}
{Numeric coprocessor}

UNIT Corr_u;

INTERFACE

USES
Global_u,
Dt_2,
Debug_u;

FUNCTION corr_measure_wind_velocity(VAR region:Roi;
VAR picture_list:picture_pointer) :real;

This function returns the displacement between images measured in pixels.

IMPLEMENTATION
{

Windspeed measurement procedures

FUNCTION corr_measure_wind_velocity(VAR region :Roi;
VAR picture_list :picture_pointer) :real;

This function returns the displacement between images measured in pixels.

VAR

pixelvelocity: real;
peak :integer;
umax :real;
frequency :real;
speed :real;

frequency of greatest peak of fourietransform }

PROCEDURE fourier(VAR data :transformfunction2;
nn,isign :integer);

Performs Fast Fourier Transform of the input data. Stolen with pride.

VAR
ii,jj,n,mmax,m,j,istep,i : integer;
wtemp,wr,wpr,wpi,wi,theta: real;

77

Appendix The Wind program

tempr, tempi, pi2 real;

BEGIN
pi2:=2*pi;
n := 2*nn;
j : = l;

FOR ii := l TO nn DO BEGIN
i := 2*ii-l;
IF (j > i) THEN BEGIN

tempr := data[j];
tempi := data[j+l];
data [j] : = data [i] ;
data[j+1] := data[i+1];
data[i] := tempr;
data[i+1] .- tempi

END;
m : = n DIV 2;
WHILE ((m >= 2) AND (j > m)) DO BEGIN

j .- j-m;
m : = m DIV 2

END;
j j+m

END;
mmax 2;
WHILE (n > mmax) DO BEGIN

istep := 2*mmax;

END

theta := pi2/(isign*mmax);
wpr := -2.0*sqr(sin(0.5*theta));
wpi := sin(theta);
wr := 1.0;
wi := 0.0;
FOR ii := 1 TO (mmax DIV 2) DO BEGIN

m := 2*ii-1;
FOR jj := 0 TO ((n-m) DIV istep) DO BEGIN

i := m + jj*istep;
j := i+mmax;
tempr := wr*data[j]-wi*data[j+1];
tempi := wr*data[j+1]+wi*data[j];
data[j] := data[i]-tempr;
data[j+1] := data[i+1]-tempi;
data[i] := data[i]+tempr;
data[i+1] .- data[i+1]+tempi

END;
wtemp := wr;
wr .- wr*wpr-wi*wpi+wr;
wi := wi*wpr+wtemp*wpi+wi

END;
mmax := istep

END; {fourier}

FUNCTION PeakSearch (VAR data :transformfunction2;
range :integer) :integer;

Locates the maximum value in a vector. This procedure is used to
find the displacement for which the correlation has a maximum. The

78

Appendix The Wind program

displacement zero lS never considered since that would indicate
no wind at all.

VAR
number :real;
u,i,peak :integer;
maximum :real;

BEGIN
maximum: =0;
peak :=0;

FOR u:= 1 to (range-1) DO BEGIN {for all possible correlations}
i:=2*u+l; {data is a complex array
number:=sqr(data[i])+sqr(data[i+l]);

IF number>maximum THEN BEGIN
maximum :=number;
peak u;

END; {IF}

END; {FOR}

Debugln ('Peak: ' , peak) ;
IF peak > (range div 2) THEN

PeakSearch
ELSE

range - peak

PeakSearch .- 0 - peak;
END;{ Peaksearch

{the correlation was found by shifting the
first picture to the left }

{the correlation was found by shifting the
first picture to the right }

PROCEDURE Twofft(var datal,data2:transformfunction;
var fftl,fft2:transformfunction2; n:integer);

This procedure calculates the Fast Fourier Transform of the
real input functions datal and data2. The two functions,
datal and data2, are packed into the array fftl in such a way
that their individual transforms can be separated from the
result. This can be done considering the symmetry of the
transform of a purely real function FN-n = (Fn)*, and the
symmetry of the transform of a purely complex function
GN-n = -(Gn)*. datal and data2 are packed as the real and
imaginary parts respectively of the complex input array fftl
of procedure Fourier. The resulting transform array can be
unpacked with the aid of the two symmetries.
}

VAR
i 1 j f u

Hlr,Hli,H2r,H2i
:integer;
:real;

BEGIN
FOR j := 1 TOn DO

BEGIN
i := 2 * j - 1;

{The functions are packed

79

Appendix

fftl[i) := datal[j);
fftl[i+l) := data2[j);

END;
Fourier(fftl,n,l);
fft2[1) .- fft1[2);
fft2[2) := 0.0;
fftl[2) := 0.0;

The Wind program

FOR j := 2 TOn div 2 + 1 DO {The transformed functions are unpacked}
BEGIN

i := 2 * j - 1;
u : = (n + 2 - j) * 2;
Hlr .- 0.5 * (fftl[i) + fftl[u-1));
Hli .- 0.5 * (fftl[i+ll- fftl[u));
H2r .- 0.5 * (fftl[i+l) + fftl[u));
H2i .- -0.5 * (fftl[i]- fftl[u-1));
fftl[i) := Hlr;
fftl[i+l) := Hli;
fftl [u-1] : = Hlr;
fftl [u) : = -Hli;
fft2 [i) := H2r;
fft2 [i+l) := H2i;
fft2[u-l) := H2r;
fft2 [u) -H2i;

END;
END; (* Twofft *)

PROCEDURE Correlate(picture_list :picture_pointer;
VAR pixelvelocity :real);

TYPE
corr_pointer=Atransformfunction;
shiftarray = array [1 .. 63) of integer;

VAR
picturel,picture2,temp
period,ii
shift,image
choosepicture
ans
shifts

:corr_pointer;
:integer;
:integer;
:picture_pointer;
:transformfunction2;
:shiftarray;

FUNCTION Median(var shifts:shiftarray;
nn

VAR x,y,temp:integer;

BEGIN
FOR x:= 2 to nn DO

FOR y:=x to nn DO

:integer) :integer;

IF shifts[y)<shifts[y-1) THEN
BEGIN

temp := Shifts[y-1);
Shifts [y-1) : = Shifts [y);

80

Appendix The Wind program

Shifts[y] := temp;
END;

Median:=Shifts[nn div 2];
END; {Median}

PROCEDURE Fourcorrelation(VAR datal,data2 :transformfunction;
n :integer;

VAR ans :transformfunction2);

Computes the correlation of of two real data sets, datal and
data2, each of length n. n must be an integer number of two.
The answer is returned as the first n points in ans stored in
wraparound order, i.e. correlations at increasingly negative lags
are in ans(n) on down to ans(n/2+1), while correlations at
increasingly positive lags are in ans(l) (zero lag) on up to
ans(n/2). ans must be at lenght at least 2*n, since it is also
used as working space. Sign convention of this routine: if datal
lags data2, i.e. is shifted to the right of it, then ans will show
a peak at positive lags.
The theory behind this algorithm is that the correlation can be
calculated by FFT the two data sets, multiply one resulting transform
by the complex conjugate of the other, and inverse transform the
product. The result will be a complex vector of length n.
}

VAR
i,u,p
temp
fft

:integer;
:real;
:transformfunction2;

BEGIN
Twofft(datal,data2,fft,ans,n); {FFT the two data sets}

Multiply one resulting transform by the complex conjugate of the other.
}

temp
ans[2]
ans[l]

. -

. -

. -

(fft[l] * ans[l] + fft[2] * ans[2])/(n div 2);
(fft[2] * ans[l]- fft[l] * ans[2])/(n div 2);
temp;

FOR i .- 2 TO n div 2 + 1 DO
BEGIN

u := 2*i - 1;
p : = (n + 2 - i) * 2;
temp := (fft[u] * ans[u] + fft[u+l] * ans[u+l])/(n div 2);
ans[u+ll := (fft[u+ll * ans[u]- fft[u] * ans[u+l])/(n div 2);
ans[u] :=temp;
ans[p-1] := ans[u];
ans[p] .- -ans[u+ll;

END;

Fourier(ans,n,-1);
END; (*Fourcorrelation *)

BEGIN {Correlate}

{inverse transform the product}

81

Appendix The Wind program

choosepicture := picture_list;
image : = l;
new (picturel} ;

{To get around the problem of not having a periodic function, zero
padding is used. For this purpose we move our data to an array with
more elements, and add zeros at the end.}

FOR ii := 0 TO region.xsize -1 DO BEGIN
picture1~[ii+1] .- choosepicture~.picture[ii];

END; {FOR}

new (picture2} ;
period := pixels * 2;
FOR ii := region.xsize+1 TO period DO

BEGIN
picture1~[ii] .- 0.0;
picture2~[ii] .- 0.0;

END;
WHILE (choosepicture~.next <> nil} DO BEGIN

choosepicture := choosepicture~.next;

{must be integer power of two}

FOR ii := 0 TO region.xsize - 1 DO BEGIN
picture2~[ii+1] := choosepicture~.picture[ii];

END; {FOR}

Fourcorrelation(picture1~,picture2~,period,ans};

shift := Peaksearch(ans,period};
shifts[image] :=shift;
image:= image+1;
temp := picture1;
picture1 .- picture2;
picture2 .- temp;

END; {WHILE}

IF image > 2 THEN
pixelvelocity .- Median(shifts,image-1}

ELSE
pixelvelocity .- shifts[1];

dispose(picture1};
dispose(picture2};

END;{Correlate}

BEGIN
Correlate(picture_list,pixelvelocity};
debug ('pixel v=' ,pixel velocity};
corr_measure_wind_velocity := pixelvelocity;
debugln('**',O};

END; {corr_measure_wind_velocity}

END.

82

Appendix The Wind program

DT 2 unit
This unit is the Turbo Pascal interface for the Data Translation DT2851 frame
grabber.
}

{$R+}
{$B+}
{$S+}
{$I+}
{$N+}

{Range checking off}
{Boolean complete evaluation on}
{Stack checking on}
{I/0 checking on}
{Numeric coprocessor}

UNIT Dt_2;

INTERFACE

CONST
Base
BufO
Bufl
pixels

TYPE
Lut
Sum
Roi

=$390;
=$AOOOOO;
=$A40000;
=512;

=array[O .. 255] of word;
=array[O .. pixels] of longint;
=RECORD

buffer :longint;
xpos,ypos :word;
xsize,ysize:word;

END;

PROCEDURE dt_wait;

Returns true if the frame-grabber is busy

FUNCTION get386mem(adress:longint) :byte;

Returns the value of the byte at adress

PROCEDURE put386mem(adress:longint;value:byte);

Puts the value at memory location given by adress

PROCEDURE copy386roi(source,dest:longint;columns,rows:word);

Copys data from adress pointed to by source to adress pointed to
by dest. Copies 4*columns * rows of data in the frame-grabber
memory. The source and destination regions must not overlap.

83

Appendix The Wind program

PROCEDURE sumx386roi(VAR result:Sum;source:longint;columns,rows:word);

Returns the sum of pixel-values from the columns of the region of
interest in the array result.

PROCEDURE dt_load_mask(mask_value:word);

Loads the write-protection mask.
Bit 0' value 1, protects data bit 0
Bit 1, value 2' protects data bit 1
Bit 2' value 4' protects data bits 2 & 3
Bit 3' value 8, protects data bits 4,5,6 & 7

PROCEDURE dt_draw_line(buffer:longint;x1,y1,x2,y2,draw:word);

Draws a line in buffer from x1,y1 to x2,y2

PROCEDURE dt_define_roi(VAR region:Roi;buf:longint;xpos,ypos,xsize,ysize:word);

Returns a region defined by xpos,ypos,xsize,ysize in the record
region. This region is used as data to the PROCEDURE dt_copy_roi

PROCEDURE dt_fill_ilut(table,start,stop,val:word);

Fills the input lookup table specified by table from start
to stop with val.

PROCEDURE dt_load_ilut(table:word;VAR ilut:lut);

Loads the input lookup table specified by table with the
contents of ilut.

PROCEDURE dt_load_olut(table:word;VAR red,green,blue:lut);

Loads the output lookup table specified by table with the contents
of the red, green and blue arrays.

PROCEDURE dt_fill_olut(table,start,stop,red,green,blue:word);

Fills the output lookup table specified by table from start to
stop with the values of red, green and blue. If a value greater
than 255 is given, the lookuptable for that colour will remain
unchanged.

84

Appendix

PROCEDURE dt_select_ilut(table:word);

Selects the specified input lookup table

PROCEDURE dt_select_olut(table:word);

Selects the specified output lookup table

PROCEDURE dt_set_sync_source(source:word);

Selects the internal sync if source=O, otherwise external sync
is selected.

PROCEDURE dt_display(display:word);

Turns on the display if display=l

PROCEDURE dt_select_input_frame(frame:word);

Selects the frame buffer into which the frame is read

PROCEDURE dt_select_output_frame(frame:word);

Selects the frame buffer from which the frame is displayed

PROCEDURE dt_passthru;

Places the frame-grabber in passthru mode

PROCEDURE dt_acquire;

Acquires one frame to the selected input frame

PROCEDURE dt_acquire_two(interval:word);

Acquires two frames to the input buffers. Interval sets the
time interval between samples (1/25)s

PROCEDURE dt_freeze_frame;

Stops the passthru mode

The Wind program

85

Appendix

PROCEDURE dt_copy_roi(source,dest:Roi);

Copys data in the frame-grabber from source to destination
Note that the regions must not overlap. Source and dest are
convieniently difined by the PROCEDURE dt_define_roi.

PROCEDURE dt_sum_columns(source:Roi;VAR result:Sum);

Calls sum386roi to calculate column sums

PROCEDURE dt_cursor(cursor_state:word);

Turns the cursor display on and off

PROCEDURE dt_set_cursor_position(x,y:word);

Places the cursor at a given position

PROCEDURE dt_initialize;

Initialize the frame grabber and load the various look up
tables with default values, giving a greyscale image

The Wind program

{===}

IMPLEMENTATION

{$L getput}

PROCEDURE dt_wait;

Returns true if the frame-grabber is busy

BEGIN
WHILE ((portW[base] and 128)>0) DO;

END; {dt_wait}

{$F+}
FUNCTION get386mem(adress:longint) :byte;
{ Returns the value of the byte at adress
external;

PROCEDURE put386mem(adress:longint;value:byte);
{ Puts the value at memory location given by adress
external;

86

Appendix The Wind program

PROCEDURE copy386roi(source,dest:longint;columns,rows:word);
{ Copys data from adress pointed to by source to adress pointed to

by dest. Copies 4*columns * rows of data in the frame-grabber
memory. The source and destination regions must not overlap.

external;

PROCEDURE sumx386roi(VAR result:Sum;source:longint;columns,rows:word);
{ Returns the sum of pixel-values from the columns of the region of

interest in the array result.
external;
{$F-}

PROCEDURE dt_load_mask(mask_value:word);

Loads the write-protection mask.
Bit 0'
Bit 1,
Bit 2'
Bit 3'

BEGIN
dt_wait;

value
value
value
value

1, protects data bit

2' protects data bit
4, protects data bits
8, protects data bits

0
1
2 & 3
4' 5, 6 & 7

portW[base+2] :=(portW[base+2] and 240) or (mask_value and 15);
END; {dt_load_mask}

PROCEDURE dt_draw_line(buffer:longint;x1,y1,x2,y2,draw:word);

VAR

Draws a line in buffer from x1,y1 to x2,y2

x, y :word;
adress:longint;

BEGIN
x:=x1;
y:=y1;
if (x2-x1)>(y2-y1) then

FOR x:=xl TO x2 DO
BEGIN

END
else

if x2<>x1 then
y:=y1+(y2-y1)*(x-x1) div (x2-x1);

adress:=y;
adress:=adress*pixels+buffer+x;
IF draw=1 THEN

put386mem(adress,get386mem(adress) or 1)
ELSE

put386mem(adress,get386mem(adress) and 254);

FOR y:=y1 TO y2 DO
BEGIN

87

Appendix The Wind program

if y2<>yl then
x:=xl+(x2-xl)*(y-yl) div (y2-yl);

adress:=y;
adress:=adress*pixels+buffer+x;
IF draw=l THEN

put386mem(adress,get386mem(adress) or 1)
ELSE

put386mem(adress,get386mem(adress) and 254);

END;
END;

{dt_draw_line}

PROCEDURE dt_define_roi(VAR region:Roi;buf:longint;xpos,ypos,xsize,ysize:word);
{ Returns a region defined by xpos,ypos,xsize,ysize in the record

region. This region is used as data to the PROCEDURE dt_copy_roi }

BEGIN
region.buffer:=buf;
region.xpos:=xpos;
region.ypos:=ypos;
region.xsize:=xsize;
region.ysize:=ysize;

END; {dt_define_roi}

PROCEDURE dt_fill_ilut(table,start,stop,val:word);

VAR

Fills the input lookup table specified by table from start
to stop with val.

lut index :word;
inscrl,inscr2:word;

BEGIN
dt_wait; { Wait for vertical sync }
inscrl:=portW[base];
inscr2:=portW[base+2];
portW[base+2] :=64;
portW[base] :=(table and 7) or 8;
FOR lut_index:=start TO stop DO

BEGIN
portW[base+8] :=lut_index;
portW[base+lO] :=val;

END;
portW[base] :=inscrl;
portW[base+2] :=inscr2;

END; { dt_fill ilut }

Set load lut mode
Select lut

88

Appendix The Wind program

PROCEDURE dt_load_ilut(table:word;VAR ilut:lut);

Loads the input lookup table specified by table with the
contents of ilut.

VAR
lut_index :word;
inscrl,inscr2:word;

BEGIN
dt_wait; { Wait for vertical sync }
inscrl:=portW[base];
inscr2:=portW[base+2];
portW[base+2] :=64;
portW[base] :=(table and 7) or 8;
FOR lut_index:=O TO 255 DO

BEGIN

Set load lut mode
Select lut

portW[base+Bl :=lut_index;
portW[base+lO] :=ilut[lut_index];

END;
portW[base] :=inscrl;
portW[base+2] :=inscr2;

END; { dt_load_ilut }

PROCEDURE dt_load_olut(table:word;VAR red,green,blue:lut);

VAR

Loads the output lookup table specified by table with the contents
of the red, green and blue arrays.

lut~index :word;
inscrl,inscr2:word;

BEGIN
dt_wait; { Wait for vertical sync }
inscrl:=portW[base+2];
inscr2:=portW[base+4];
portW[base+2] :=64;
portW[base+4] :=(table and 7);
FOR lut_index:=O TO 255 DO

BEGIN
portW[base+B] :=lut_index;

Set load lut mode
Select lut

portW[base+l2] :=red[lut_index]+green[lut_index]*256;
portW[base+l4] :=blue[lut_index];

END;
portW[base+2] :=inscrl;
portW[base+4] :=inscr2;

END; { dt_load_olut }

89

Appendix

PROCEDURE dt_fill_olut{table,start,stop,red,green,blue:word);

Fills the output lookup table specified by table from start to
stop with the values of red, green and blue. If a value greater
than 255 is given, the lookuptable for that colour will remain
unchanged.

VAR

BEGIN

lut_index,rg :word;
inscrl,inscr2:word;

dt_wait; { Wait for vertical sync }
inscrl:=portW[base+2];
inscr2:=portW[base+4];
portW[base+2] :=64; Set load lut mode
portW[base+4] :={table and 7); Select lut
FOR lut_index:=start TO stop DO

BEGIN
portW[base+B] :=lut_index;
if green<256 then

rg:=green*256
else

rg:=O;
if red<256 then

rg:=rg+red;
if {red<256) or {green<256) then

portW[base+12] :=rg;
if blue<256 then

portW[base+l4] :=blue;
END;

portW[base+2] :=inscrl;
~ortW[base+4]:=inscr2;

END; { dt_fill_olut }

PROCEDURE dt_select_ilut{table:word);

Selects the specified input lookup table

BEGIN
portW[base] :={{portW[base] and 248) or {table and 7));

END; {dt_select_ilut}

PROCEDURE dt_select_olut{table:word);

Selects the specified output lookup table

BEGIN
portW[base+4] :={{portW[base+4] and 240) or {table and 7));

END; {dt_select_olut}

The Wind program

90

Appendix

PROCEDURE dt_set_sync_source(source:word);

Selects the internal sync if source=O, otherwise external sync
is selected.

BEGIN
if source=O then

portW[base+4] :=(portW[base+4] and (not 32))
else

portW[base+4] :=(portw[base+4] or 32);
END; {dt_set_sync_source}

PROCEDURE dt_display(display:word);

Turns on the display if display=1

BEGIN
if display=O then

portW[base+4] :=(portW[base+4] and (not 128))
else

portW[base+4] :=(portw[base+4] or 128);
END; {dt_display}

PROCEDURE dt_select_input_frame(frame:word);

Selects the frame buffer into which the frame is read

BEGIN
if frame=O then

portW[base+2] :=(portW[base+2] and (not 128))
else

portW[base+2] :=(portw[base+2] or 128);
END; {dt_select_input_frame}

PROCEDURE dt_select_output_frame(frame:word);

Selects the frame buffer from which the frame is displayed

BEGIN
if frame=O then

portW[base+4] :=(portW[base+4] and (not 16))
else

portW[base+4] :=(portw[base+4] or 16);
END; {dt_select_output_frame}

The Wind program

91

Appendix

PROCEDURE dt_passthru;

Places the frame-grabber in passthru mode

BEGIN
dt_wait;
portW[base+2] :=((portW[base+2] and 143) or 16);
portW[base] :=(portW[base] and 135);
portW[base] :=(portW[base] or 128);

END; {dt_passthru}

PROCEDURE dt_acquire;

Acquires one frame to the selected input buffer

BEGIN
dt_wait;
portW[base+2] :=((portW[base+2] and 143) or 16);
portW[base] :=(portW[base] and 135);
portW[base] :=(portW[base] or 136)

END; {dt_acquire}

PROCEDURE dt_acquire_two(interval:word);

Acquires two frames to the input buffers. Interval sets the
time interval between samples (1/25)s

BEGIN
dt_wait;
portW[base+4] :=(portW[base+4] and (not 128));
portW[base+2] :=((portW[base+2] and 143) or 16);
portW[base] :=(portW[base] and 135);
portW[base] :=(portW[base] or 136);
REPEAT

interval:=interval-1;
dt_wait;

UNTIL interval<l;
portW[base+2] :=(portw[base+2] or 128);
portW[base+2] :=((portW[base+2] and 143) or 16);
portW[base] :=(portW[base] and 135);
portW[base] :=(portW[base] or 136);
portW[base+4] :=(portW[base+4] and (not 128))

END; {dt_acquire_two}

The Wind program

92

Appendix

PROCEDURE dt_freeze_frame;

Stops the passthru mode

BEGIN
portW(base] :=portW(base] or 8;

END; {dt_freeze_frame}

PROCEDURE dt_copy_roi(source,dest:Roi);
{ Copys data in the frame-grabber from source to destination

Note that the regions must not overlap. Source and dest are
convieniently difined by the PROCEDURE dt define roi.

VAR
sadr,dadr:longint;

BEGIN
sadr:=pixels*source.ypos+source.buffer+source.xpos;
dadr:=dest.ypos;
dadr:=pixels*dadr+dest.buffer+dest.xpos;
copy386roi(sadr,dadr,dest.xsize, (dest.ysize div 4));
dt_freeze_frarne;

END; {dt_copy_roi}

PROCEDURE dt_sum_columns(source:Roi;VAR result:Surn);
{ Calls surn386roi to calculate column sums

VAR
sadr :longint;

BEGIN
sadr:=pixels*source.ypos+source.buffer+source.xpos;
dt_wait;
Surnx386roi(result,sadr,source.xsize,source.ysize);
dt_freeze_frarne;

END; {dt_surn_columns}

PROCEDURE dt_cursor(cursor_state:word);
{ Turns the cursor display on and off

BEGIN
if cursor_state=1 then

portW(base+4] :=portW(base+4] or 64
else

portW(base+4] :=portW[base+4] and 191;
END; {dt_cursor}

The Wind program

93

Appendix

PROCEDURE dt_set_cursor_position(x,y:word);
{ Places the cursor at a given position

BEGIN
portW[base+6] :=y*l28+(x div 2);

END; {dt_set_cursor_position}

PROCEDURE dt_initialize;
{ Initialize the frame grabber and load the various look up

tables with default values, giving a greyscale image

VAR

ilut :lut;
lut index:word;

BEGIN

{ Stop all card operations and turn display off }

portW[base+4] :=0;
portW[Base] :=8;
portW[Base] :=8;

{ Clear frame buffers

dt_fill_ilut(7,0,255,0);
dt_wait; {wait until ready
portW[base+4] :=0;
portW[base+2] :=0;
portW[base] :=143;
dt_wait;
portW[base+2] :=128;
portW[base] :=143;

{ Create and load input lut #0 }

FOR lut index:=O TO 255 DO
ilut[lut_index] :=lut_index;

dt load_ilut(O,ilut);

{ Load output lut #0 for red,green and blue }

dt_load_olut(O,ilut,ilut,ilut);

dt_wait;

{ Create and load input lut #5 }

FOR lut_index:=O TO 127 DO
BEGIN

ilut[2*lut_index] :=2*lut_index;
ilut[2*lut_index+1] :=2*lut_index;

The Wind program

94

Appendix

END;
dt_load_ilut(S,ilut);

{ Load output lut #7 };

dt_load_olut(7,ilut,ilut,ilut);
FOR lut_index:=O TO 127 DO

dt_fill_olut(7,lut_index*2+l,lut_index*2+1,255,0,0);

END; {dt_initialize}

End.

GetPut

.MODEL

.CODE
PUBLIC

Get386mem

.386
movzx
shl
movzx
add
xchg
push
mov
mov
mov
pop
.8086

ret
ENDP

Put386mem

.386
movzx
shl
movzx
add
xchg
mov
push
mov
mov
mov
pop

TPASCAL

Get386mem,Put386mem,Copy386roi,Sumx386roi

PROC FAR hi:WORD,lo:WORD

ebx, [hi]
ebx,l6
eax, [lo]
eax,ebx
eax,ebx
ds
ax, 0
ds,ax
al, [ebx]
ds

PROC FAR hi:WORD,lo:WORD,val:BYTE

ebx, [hi]
ebx,l6
eax, [lo]
eax,ebx
eax,ebx
cl, [val]
ds
ax,O
ds,ax
[ebx] ,cl
ds

The Wind program

95

Appendix The Wind program

.8086

ret
ENDP

Copy386roi

.386
movzx
shl
movzx
add
movzx
shl
movzx
add
movzx
movzx
push
mov
mov
mov

OuterLoop:
xchg
mov

InnerLoop:
mov
mov
loop
add
add
xchg
loop
pop
.8086

ret
ENDP

Sumx386roi

.386
movzx
shl
movzx
add
mov
mov
movzx
movzx
mov
mov
mov
push
mov
mov

OutLoop:

PROC FAR hil:WORD,lol:WORD,hi2:WORD,lo2:WORD,col:WORD,row:WORD

esi, [hill
esi,l6
eax, [loll
esi, eax
edi, [hi2]
edi,l6
eax, [lo2]
edi,eax
ecx, [row]
edx, [col]
ds
ax, 0
ds,ax
es,ax

bx,cx
cx,dx

eax, [esi+ecx*4]
[edi+ecx*4],eax
Inner Loop
esi,512
edi,512
ebx,ecx
OuterLoop
ds

PROC FAR o:WORD,s:WORD,hi3:WORD,lo3:WORD,col2:WORD,row2:WORD

esi, [hi3]
esi,l6
eax,[lo3]
esi,eax
ax, [o]

es,ax
edi, [s]
ecx, [col2]
ax, [row2]
fs,ax
ebp,esi
ds
ax,O
ds,ax

mov ebx,ecx
mov cx,fs
mov esi, ebp

96

Appendix

InLoop:
mov

movzx
add
add
loop
mov
mov
loop

eax,O

edx,BYTE PTR [esi+ebx]
eax,edx
esi,512
InLoop
es: [edi+ebx*4] ,eax
cx,bx
OutLoop

mov eax, edi;
mov dx,es
pop ds
.8086

ret
ENDP

END

The Wind program

97

References
1 H. Edner, K. Fredriksson, A Sunesson, S. Svanberg, L. Uneus and

W. Wendt, "Mobile remote sensing system for atmospheric monitor­
ing", Appl. Opt. 26, 4330-4338 (1987).

2 Gonzales, Wintz, "Digital Image Processing", Addison Wesly, (1987)

3 W. Press, B. Flannery, S. Teukolsky, W Vetterling, "Numerical Reci­
pes: the art of scientific computing", Cambridge university press,
(1986)

4 R. Ramirez, "The FFT: fundamentals and concepts", Prentice Hall
(1985)

98

