Comparative Studies Of Electrical Properties And Temperature Behaviour Of Inductive And Capacitive Sparks For Ignition Systems

Diploma paper by Tomas L Starczewski

LRAP-73 (1987)

Department of Physics, Lund Institute of Technology P.O. Box 725, S-220 07 LUND together with: Mecel AB of SAAB-Scania Combitech Box 32, S-662 00 ÅMÅL

1. INTRODUCTION

Ċ

C,

C

•

2. ELECTRICAL MEASUREMENTS

- 2.1 Introduction
- 2.2 Experimental details
- 2.3 Results and discussion

3. OPTICAL MEASUREMENTS

- 3.1 Introduction
- 3.2 Experimental details
- 3.3 Results and discussion
- 4. REFERENCES
- 5. ACKNOWLEDGEMENTS
- 6. APPENDIX

The performance levels required of petrol engines have been rising with each year. Recently, attention has been focused on the factors improving engine driveability, in addition to exhaust emission purification and better fuel consumption economy.

(

()

(

In engine combustion, the first important stage of the combustion process is ignition. In many investigations attempts have been made to improve combustion by enhancing ignition performance. One particular way of obtaining this goal has been the design of new ignition systems.

Conventional ignition systems are based on the inductive priciple. Recently however designers have turned their attention towards another principle employing capacitive discharge circuits.

Capacitive ignition systems are said to have a considerable number of advantages. A few of them are:

- due to the inherent properties of capacitive systems the scattering in the time delay between the voltage pulse and the spark is strongly reduced,
- due to the shorter spark duration time lifetimes of sparking plugs are much longer,
- much better lean mixture operating conditions,
- in some capacitive systems [1] the flame kernel expands more rapidly than in conventional (inductive) systems.

The basic purpose of this diploma work was to examine the electrical properties and the temperature behaviour of inductive and capacitive sparks.

The systems investigated in this diploma work were a commercially available inductive system and a capacitive system. Comparison with yet another capacitive system - one generating ultra-short high-current sparks - was also made. Throughout this paper I will be referring to these three as the inductive, the ordinary capacitive and the ultra-fast capacitive system respectively.

The electrical properties measured were the voltage and the current of the sparks. The power and the dissipated energy were computed numerically.

The temperature behaviour of the sparks was determined by means of one-wavelength optical interferometry.

2.1. INTRODUCTION

All the electrical measurements were carried out under exactly the same conditions. The parameters held constant were:

• the air pressure

ł

- \cong 760 mm Hg (atmospheric)
- the air temperature = 22° C
- the power supply voltage ≅ 12 V DC A commercial car-battery was used
- the outer electrical properties such as cable capacitances and inductances

Two different sparking plugs were used:

- 1. commercial sparking plug with flat electrodes,
- 2. specially designed sparking plug with sharply edged electrodes of stainless steel.

In both cases the constant parameter was:

• the electrode separation = $0.90 \pm 0.05 \text{ mm}$

The ultra-fast capacitive system used electrodes whose shapes were half spheres with a radius of 1.5 mm, and they were separated by approximately 2 mm. All electrode arrangements are shown in Fig. 2:1.

2.2 EXPERIMENTAL DETAILS

The properties directly measured were the current and the voltage of the spark. In order to obtain the time spectra of the these parameters a fast oscilloscope with a Polaroid camera were used for the registration. The spark frequency was set to be approximately 1 Hz.

In the inductive system the symmetric square-wave trig pulse was sent to the ignition circuit generating an electrical pulse to the ignition coil, generating in turn the high voltage needed for the break-down. The diode was placed only for the protection of the transistor and had no effect on the pulse shape. The coaxial 50 Ω coaxial cable was used for the high-voltage connections.

(

(

(

Fig. 2:2. Electrical arrangement for the inductive system.

Fig. 2:3. Electrical arrangement for the ordinary capacitive system.

Fig. 2:4. Electrical arrangement for the ultra-fast capacitive system.

The current and the voltage measurements were conducted on different sparks. Reproductivity of the current and the voltage shapes were good for the systems with conventional sparking plugs as seen from the oscilloscope screen.

(

(

The spark current was measured by a resistor made of a special alloy. Special care was taken to avoid contact resistances in resistance measuring. The resistance had to be kept low for the inductive system in order not to change the system's behaviour.

The spark voltage was measured with a conventional high-voltage probe. The probe was carefully calibrated and the attenuance ratio was 1095 times.

The temporal behaviour of the power was obtained by manual multiplication of the current and the voltage pulses.

The dissipated energy in the sparks was calculated using $\int p \cdot dt = \int (u \cdot i) dt$.

2.3 RESULTS AND DISCUSSION

Examples of the shapes of the current and the voltage pulses together with the power and the energy of the different sparks are shown in figures 2:5 - 2:7. Comparative diagrams of the spark energies are shown in figures 2:8 and 2:9. Exact plots of the power can be found in appendices A:1 - A:4.

There is an inevitable variation in the obtained data due to the fact that the current and the voltage measurements were performed at different times and consequently on different sparks. The different natures of the measured systems show clearly in their different electrical properties.

The inductive system's power quickly rises (in about 0.5 μ s) to approximately 800 W only to decrease rapidly. The time domain of that decrease is 3 ms. The energy is therefore dissipated mainly during the first 2 ms. The total energy is approximately 8 mJ). The behaviour of the inductive system can be seen in figure 2:5.

The quicker commercial capacitive system's current and voltage are of oscillatory nature. The power is therefore also a series of short energy-rich pulses. The first two pulses are highest measuring 990 W and 920 W and occuring at 5 μ s and 20 μ s respectively. The remaining pulses are smaller and contribute less to the total energy dissipation of approximately 35 mJ. The main portion of energy is pumped during the first 100 μ s. The behaviour of the commercial capacitive system can be seen in figure 2:6.

The ultra-fast capacitive system's power is a single pulse with a maximum of 3 MW at 15 ns. Almost all energy (75 mJ) is transferred in 40 ns. The behaviour of the ultra-fast capacitive system can be seen in figure 2:7.

The immense time difference in the energy behaviour of the systems is shown in figures 2:8 and 2:9. In figure 2:8 we can see the difference in rapidness between the inductive and commercial capacitive systems. The difference is even greater when the commercial and the ultra-fast capacitive systems are compared in figure 2:9.

The slight differences between the standard plug and the sharp-edge electrode plug measurements can only be explained by somewhat different electrical properties of the two arrangemnets. The measuring of their inductances and capacitances has however not been able to prove that such differences exist.

Fig.5. The voltage, the current, the power and the energy of the inductive system. (STANDARD PLVG)

Fig.6. The voltage, the current, the power and the energy of the commercial capacitive system. (STANDARD PLUG)

3.1 INTRODUCTION

(

(

A number of different optical devices and methods were employed to determine the temporal temperature distribution and the electron densities in the sparks.

All the experiments were carried out under similar circumstances. The parameters held constant were:

- the battery voltage approximately 12 volts DC,
- the spark environment nitrogen gas,
- the temperature 22 degrees Centigrade.

The atmospheric pressure was read off continuously during the experiments.

Below follows a description of the devices used in the experiments. Also a short summary of the theory is given.

Optical interference is a basic concept of the subject of optics. According to the wave theory, light can be interpreted as an electromagnetical wave having in every point in space and in every moment in time a well-defined value of the electric-field density **E** and the magnetic-field density **B**. According to the same theory the resulting electric-field density, at a point in space where two or more light waves overlap, is equal to the vector sum of the individual contituent disturbances obeying the important principle of superposition. Briefly, optical interference may be termed as an interaction of two or more light waves yielding a resultant irradiance which deviates from the sum of the component irradiances. Optical systems taking advantage of the phenomenon of interference are called intereferometers. Monochromatic laser light is often used in interferometers.

The Mach-Zehnder interferometer is an amplitude-splitting device, that is where the incoming primary light wave is devided into two segments which travel different paths before recombining and interfering. As shown in Fig.3.1 the Mach-Zehnder interferometer consists of two beam splitters and two totally reflecting mirrors. The two waves within the apparatus travel along separate paths. A difference between the optical paths can be introduced by a slight tilt of one of the beam splitters. Since the two paths are separated, the interferometer is relatively difficult to align. For the very same reason, however, it finds a large number of applications. The pattern on the interferograms is a series of parallell and mutually interchanging dark and light fringes.

Fig. 3.1. The Mach-Zehnder interferometer

(

(

(

Introducing an object with varying index of refraction, such as a hot spark plasma, in one beam alters the optical path-length difference, thereby changing the fringe pattern. The example of a fringe pattern obtained is shown in Fig. 3.2.

Fig.3.2. The fringe patterns of the hot plasma.

The dye-laser is a laser in which the active medium consists of solution of certain organic dye compounds in liquids. The laser wavelength can be tuned continuously within a large range. The dye laser used was the Lambda Physik FL 2002 and operated in the pulse mode. The pulse energy was in the milijoule region. The duration of the pulses was 15 ns and the wavelength was 633 nm. This wavelenth was chosen for the best fringe pattern visibility.

The excimer laser Lambda Physik EMG 102 was employed as a pump laser for the dye laser. Excimer lasers use excimers as the active medium. An excimer is a molecule that only exists in the excited state. It has accordingly no stable ground state. The excimer used was XeCl that produced intensive 15 ns long light pulses of 308 nm wavelength. The camera used for the registration of the interferograms was a standard 35 mm Nikkormat camera equipped with a 300 mm lens. The magnification factor was approximately 0.8.

The Abel inversion method.

PRELIMINARY CONSIDERATIONS

When an electromagnetic wave travels through a medium with a refractive index $\mu,$ the change of the optical pathlength ΔL is giv by:

$$\Delta L = \int \Delta \mu (1) d1 \tag{3:1}$$

where $\Delta\mu$ is the variation of the refractive index along the path and L is the geometrical length of the medium. The components of the medium, in the general case the spark plasma consisting of molecules, atoms, ions and electrons, contribute to the refractive index, and the individual contributions are calculated from the specific refractivities K_i, and the number densities n_i, as:

$$\mu - 1 = \sum K_i n_i$$
 (3:2)

In the case of a single species' plasma this can be written as:

$$\mu - 1 = K_{e} n_{e} + K_{m} n_{m} + K_{a} n_{a} + K_{1} n_{1} + K_{2} n_{2} + \dots$$
(3:3)

where the subscript e stands for electrons,

m	for	molecules,			
a	for	atoms,			
1	for	ions	with	charge	-1,
2	for	ions	with	charge	-2.

In the interferometric measurement the refractive index is measured with the gas at room temperature and atmospheric pressure as a reference (i.e. no molecular dissociation or ionization present). Then the variation of the refractive index becomes:

$$\Delta \mu = K_{e} n_{e} + K_{m} (n_{m} - n_{o}) + K_{a} n_{a} + K_{1} n_{1} + K_{2} n_{2} + \dots$$
(3:4)

where the undisturbed molecular density ${\rm n}_{\rm o},$ is calculated from the ideal gas law:

pV = NRT

as

(

(

(

(

$$n_{o} [cm^{-3}] = 9.6570 \cdot 10^{18} \cdot \frac{p [torr]}{T [Kelvin]}$$
 (3:5)

The measured quantity of the interferometric images is the number of fringe shifts due to the density variations along the path of integration which equals:

$$\Delta N \cdot \frac{\Delta L}{\lambda} = -\frac{1}{\lambda} \int \Delta \mu \cdot dl \qquad (3:6)$$

The spark is assumed to be cylindrically symmetric. Then the number densities in equation 3:3 are functions of a radial coordinate r, with r=a at the center of the spark. Consequently, the variation of the refractive index is also a function of r. The integration path in equation 3:6 should therefore be transformed to radial coordinates as follows:

 $x^{2}+y^{2} = r^{2}$ $X^{2}+y^{2} = R^{2}$

Fig. 3.3. Geometrical relations between variables.

From figure 3.3 we see that equation 3:6 in this case should be written

$$\Delta N(y) = \frac{1}{\lambda} \cdot \int \Delta \mu(r) \cdot dx \qquad (3:7)$$

The integration is performed along a strip of constant y, and a variable transformation from the Cartesian coordinates to the radial coordinates is done according to:

$$dx = \frac{r}{(r^2 - y^2)^{1/2}} \cdot dr$$

and

(

(

(

(

$$X = (R^2 - y^2)^{1/2}$$

That gives:

$$\Delta N(y) = \frac{2}{\lambda} \cdot \int \frac{\Delta \mu(r) \cdot r \cdot dr}{(r^2 - y^2)^{1/2}}$$
(3:8)

where the symmetry about the y-axis has been taken advantage of. The equation 3:8 is one form of the Abel integral equation. If $\Delta\mu(r)$ is assumed to be zero for r>R, it is possible to invert 3:8 analytically into:

$$\Delta \mu(\mathbf{r}) = -\frac{\lambda}{\pi} \cdot \int \frac{\frac{d(\Delta N(\mathbf{y}))}{d\mathbf{y}}}{(\mathbf{y}^2 - \mathbf{r}^2)^{1/2}} \cdot d\mathbf{y}$$
(3:9)

or, equivalently, if the $\Delta N(y)$ function is well-behaved:

$$\Delta \mu(\mathbf{r}) = -\frac{\lambda}{\pi \mathbf{r}} \cdot \frac{\mathrm{d}}{\mathrm{d}\mathbf{r}} \cdot \int \frac{\Delta N(\mathbf{y}) \cdot \mathbf{y}}{(\mathbf{y}^2 - \mathbf{r}^2)^{1/2}} \cdot \mathrm{d}\mathbf{y}$$
(3:10)

These two last equations are the Abel inversion formulas and they follow from equation 3:8 in the case of cylindrical symmetry.

The Abel inversion method is very well suited for numerical treatment on computers.

The fringe shift values are obtained as a set of discrete numerical values from the measurements of the interferometric images. If a numerical inversion method is employed (based on equation 3:9) such as Bockasten's method [ref.8] for instance, serious complications may arise. When the numerical derivative in equation 3:9 is evaluated, the noise of the data is drastically amplified. These methods should therefore only be used when the random errors in the fringe shift values are negligible. In the second inversion formula of equation 3:10, the order of integration and differentiation is reversed and this reduces the noise amplification. An example of a method based on that relation is the method proposed by Barr [ref.9] which will now be discribed.

The formula 3:10 can be divided into two parts:

$$F(r) = 2 \cdot \int \frac{\Delta N(y) \cdot y}{(y^2 - r^2)^{1/2}} \cdot dy$$
 (3:11)

and

and

(

(

(

$$\Delta \mu(\mathbf{r}) = \frac{\lambda}{2\pi \mathbf{r}} \cdot \frac{dF(\mathbf{r})}{d\mathbf{r}}$$
(3:12)

If we now require that the fringe shift values should be measured at equidistant points, i.e. the coordinates:

$$y_n = n \cdot \Delta \tag{3:13}$$

where n are integers in the range

 $0 \le n \le N \tag{3:14}$

$$R = N \cdot \Delta \tag{3:15}$$

Consequently, the Abel inverted fringe shift values per unit length will be calculated at the points:

$$\mathbf{r}_{n} = \mathbf{n} \cdot \Delta \tag{3:16}$$

From the measured fringe shift values ΔN_n , a fringe shift function $\Delta N(y)$ is now constructed by assuming that that function must consist of second-order polynomials between the measured points:

$$\Delta N(y) = a_n + b_n \cdot y^2, \quad y_n \le y \le y_{n+1}$$
(3:17)

where the coefficients are determined by requiring that the measured values and the constructed curve's values should be the same:

$$\Delta N(y_n) = \Delta N_n$$
(3:18)
$$\Delta N(y_{n+1}) = \Delta N_{n+1}$$
(3:19)

This form was chosen because it has the necessary zero-slope at y=0 for the convergence condition and it has an accuracy at least as good as the accuracy in the ΔN_n values. The integration of equation 3:17 can now be performed analytically to give the F(r) function as a set of discrete values F_k dependent on the measured fringe shifts:

(

(

$$F_{k} = F(r_{k}) = \Delta \sum_{n=k}^{n} \alpha_{kn} \Delta N_{n}$$
(3:20)

The expression for the coefficients α_{kn} can be found in Barr's article. Here it is enough to note that they are slowly varying functions of n and k, and that the F_k -values are relatively insensitive to small random errors in the ΔN_n -values.

A least-squares method is then applied to fit a polynomial F(k) into each section of the F_k versus k-curve. This is sufficient since the errors in the F_k -values are small. The F_k -values are represented at each point by a polynomial F(k) of the form:

$$F(k) = (A_k + B_k k^2 + C_k k^4) \cdot \Delta$$
 (3:21)

where the coefficients A_k , B_k and C_k are determined in terms of α_{kn} and ΔN_n by requiring that the sum of the differences between F_k (equation 3:20) and F(k) (equation 3:21) over the five points from k-2 to k+2 should be as small as possible. The form of the polynomial 3:21 has been chosen because it gives the best fit to a Gaussian profile. For the two points k=0 and k=1, the points k=0,1,2,3,4 were used for the fit.

When the expression 3:21 is substituted into the equation 3:12 we obtain:

$$\Delta \mu(\mathbf{r}_{k}) = \frac{\lambda}{2\pi\Delta^{2}k} \cdot \frac{\mathrm{dF}(\mathbf{k})}{\mathrm{dk}} = -\frac{\lambda}{-\infty} \cdot (\mathbf{B}_{k} + 2\mathbf{C}_{k}k^{2}) \qquad (3:22)$$

The combination of two coefficients is then of the form:

$$B_{k} + 2C_{k}k^{2} = \begin{cases} -\sum_{n=k-2}^{n} \beta_{kn} \Delta N_{n} , k \ge 2 \\ -\sum_{n=0}^{N} \beta_{kn} \Delta N_{n} , k < 2 \end{cases}$$
(3:23)

where the β_{kn} are functions of k and n only, and not dependent on N.

Combining the formulas 3:22 and 3:23 produces the final result - the Abel inversion formula:

$$\Delta \mu_{k} = \Delta \mu(r_{k}) = \begin{cases} \frac{\lambda}{\pi \Delta} \sum \beta_{kn} \Delta N_{n} , k \ge 2 \\ \frac{\lambda}{\pi \Delta} \sum \beta_{kn} \Delta N_{n} , k < 2 \end{cases}$$
(3:24)

In the coefficients β_{kn} the entire process of integration, least-square fitting and final differentiation is incorporated. The values of the β_{kn} -coefficients (multiplied by a facor -10⁴) are given in the program listing [Appendix]. Barr recommends that this method should be used when the noise of the input data is of the order of magnitude of one percent.

Finally it must be mentioned that because the β_{kn} -coefficients are obtained by the fitting of the F(k)-polynomials (equation 3:21) into a Gaussian profile, the final values of the inversion for small k-values are smaller than the real values and slightly higher than the real values for high k-values.

REFRACTIVITY OF THE PLASMA COMPONENTS

In the preceding section the procedure of how to calculate the variation of the refractive index as a function of the radial coordinate from the measured fringe-shift patterns, was outlined. Using equation 3:4 it is then possible to calculate the number densities of some plasma components if the refractivities are known and some additional assumptions about the state of the plasma are made.

Both classical and quantum mechanics agree on the formula for the index of refraction:

$$\mu - 1 = \frac{2 \cdot e^2}{m} \sum_{k=1}^{\infty} n_1 \sum_{k=1}^{\infty} \mu_{1k} , \quad \omega \neq \omega_{1k}$$
(3:25)

where

(

(

- $re n_1$ is the particle density in quantum state 1,
 - m is the electronic mass,

 - $\boldsymbol{\omega}_{lk}$ is the angular frequency of the line corresponding to the transition from l to k,

and
$$\omega$$
 is the frequency of the electromagnetic wave passing through the medium.

There are, however, some difficulties when using the formula. The oscillator strengths of many levels must be known, and the transitions from discrete to continuum states must be included. Moreover, expression 3:25 is strictly true only if the wavelength of the impinging radiation is far away from any resonance wavelengths. Otherwise, imaginary damping constants have to be included in the denominator.

If the used wavelengths are far from the resonance wavelengths and only a restricted range of frequencies are allowed, it is possible to expand the formula 3:25 into a power series of λ^{-2} . In that way we arrive at the Cauchy formula:

$$\mu - 1 = A + \frac{B}{\lambda^2} = K_r n_r = (A_r + \frac{B_r}{\lambda^2}) \cdot n_r \qquad (3:26)$$

which is a good approximation for a given species' ground state in the desired range. For nitrogen molecules the numerical values of the constants at room temperature, a pressure of 1 atmosphere and in the range of the visible electromagnetic radiation gives the following formula for the refractivity:

$$K_{m} [cm^{3}] = 1.08 \cdot 10^{-23} + \frac{7.6 \cdot 10^{-34}}{(\lambda \ [cm])^{2}}$$
(3:27)

The same relation is valid for nitrogen atoms and ions (with different values of the constants A and B, but since these expressions will not be needed in the subsequent treatment, they are not given here). The refractivity is also dependent on the temperature especially when the temperature is high. The contribution from excited states becomes also more dominant.

Finally, it should be mentioned that the normally dominating contribution to the plasmatic refractivity comes from the free electrons. If the incoming radiation's angular frequency is much greater than the electron plasma frequency:

$$\omega_{\rm p} [s^{-1}] = (---)^{1/2} = 5.64 \cdot 10^4 \cdot (n_{\rm e} [\rm cm^{-3}])^{1/2}$$
(3:28)

the free electron refractive index is:

(

(

$$\mu_{e}-1 = K_{e}n_{e} = -\frac{2\eta e^{2}}{m} n_{e} = -4.46 \cdot 10^{-14} \cdot n_{e} [cm^{-3}] \cdot (\lambda [cm])^{2}$$
(3:29)

The frequency dependence of the electronic, atomic and ionic refractivity is given in the figure 3.4. The ratio between the two last refractivities is:

$$\frac{K_{i}}{K_{n}} \approx 0.63 \tag{3:30}$$

Fig.3.4. K values as function of wavelength

CALCULATION OF THE DISSOCIATION EQUILIBRIUM

(

In order to calculate the composition of the spark plasma, a way to calculate the extent of the dissociation of nitrogen molecules has to be devised.

In the general case of a gas-phase chemical reaction:

$$\sum_{a_i A_i} \Leftrightarrow \sum_{b_i B_i}$$
(3:31)

where A_i are the reactants, B_i are the products and a_i , b_i are their respective stochiometric coefficients, two related equilibrium constants can be defined. The one is the pressure equilibrium constant K_p , defined in terms of the partial pressures:

$$K_{p} = \frac{\prod p^{b_{i}(B_{i})}}{\prod p^{a_{i}}(A_{i})}$$
(3:32)

where K_p depends on the partition functions of the products and reactants, through:

$$\ln K_{p} = -\frac{\Delta E_{o}}{RT} + \sum b_{i} \cdot \ln Q_{p}(B_{i}) - \sum a_{i} \cdot \ln Q_{p}(A_{i}) \qquad (3:33)$$

where ΔE_{o} is the zero-point energy difference between the products and the reactants in their reference standard states:

$$\Delta E_{o} = \sum b_{i} \cdot E_{o}(B_{i}) - \sum a_{i} \cdot E_{o}(A_{i}) \qquad (3:34)$$

 $\rm Q_p$ in formula 3:33 is the partition function of the standard state of unit pressure, and it is related to the total partition function Q by:

$$Q_{p} = p \cdot Q \tag{3:35}$$

and the total partition function can be split into a translational, vibrational, rotational and electronical part:

 $Q = Q_t Q_v Q_r Q_e$

if the different degrees of freedom are assumed to be uncoupled.

The other equilibrium constant, the concentration equilibrium constant K_c , is defined by:

$$K_{c} = \frac{\prod n^{b_{i}(B_{i})}}{\prod n^{a_{i}}(A_{i})}$$
(3:37)

where $n(A_i)$ and $n(B_i)$ are the concentrations of reactants and products. For K_c there is a formula similar to equation 3:33, except for the fact that the partition of the standard state of unit pressure is replaced by the partition of the standard state of unit concentration Q_c , which is related to the total partition function by:

$$Q_{c} = \frac{p}{R \cdot T} \cdot Q \qquad (3:38)$$

From formulas 3:35, 3:38 and 3:33 the relation between the two equilibrium constants is derived:

$$K_{c} = K_{p} \cdot (RT) \sum a_{i} - \sum b_{i}$$
(3:39)

In the report of Hansen [ref.10] expressions are given that are valid for nitrogen below temperatures of 15000 K. The pressure equilibrium constant is given by:

$$\ln K_{p} (N_{2} \Leftrightarrow 2N) = -\frac{113200}{T} + 2 \cdot \ln Q_{p}(N) - \ln Q_{p}(N_{2})$$

$$(3:40)$$

and the total partition functions are given as:

$$\ln Q(N) = \frac{5}{2} \cdot \ln T + 0.30 + \ln (4 + 10 \cdot \exp\{-\frac{27700}{T}\} + 6 \cdot \exp\{-\frac{41500}{T}\}) - \ln p$$

and

(

(

(

(

$$\ln Q(N_2) = \frac{7}{2} \cdot \ln T - 0.42 - \ln (1 - \exp\{-\frac{3390}{T}\}) - \ln p \qquad (3:41)$$

To calculate the equilibrium composition when the presuure and the temperature of the hot gas are known, the quantity ε , describing the fraction of the molecules being dissociated into atoms, is

needed. Using $\epsilon_{\text{,}}$ the expressions of the partial pressures of atoms and molecules can be written as:

$$p(N_2) = x(N_2) \cdot p = \frac{1-\varepsilon}{1+\varepsilon} \cdot p \qquad (3:43)$$

$$p(N) = x(N) \cdot p = \frac{2\varepsilon}{1+\varepsilon} \cdot p \qquad (3:44)$$

where x(A) is the mole fraction of the component A. Combining formula 3:32 in the case of nitrogen together with formulas 3:43 and 3:44 yields:

$$K_{p} = \frac{(p(N))^{2}}{p(N_{2})} = \frac{4\epsilon^{2}p}{1-\epsilon^{2}}$$
(3:45)

and resolving ε gives:

(

(

(

$$\varepsilon = (1 + \frac{4 \cdot p}{K_p})^{-1/2}$$
(3:46)

The relation between ϵ and the number densities of molecules and atoms is, by the definition of ϵ , found to be:

$$\frac{n_{m}^{\circ}-n_{m}}{n_{m}} = \varepsilon$$
(3:47)

where n_{m}° is the number density of molecules before dissociation, and the obvious relation is:

$$n_{m}^{\bullet} = n_{m} + \frac{n_{a}}{2}$$
(3:48)

Eliminating n_m from the two relations above yields:

$$n_{a} = \frac{2\varepsilon}{1-\varepsilon} \cdot n_{m}$$
(3:49)

which is valid when $\varepsilon \neq 1$.

Now, having all the necessary formulas, the calculation of the number densities and the temperature of the nitrogen spark plasma can be performed. Starting with the formula:

$$\Delta \mu_{k} = \Delta \mu(r_{k}) = \begin{cases} \frac{\lambda}{\pi \Delta} \sum \beta_{kn} \Delta N_{n} , k \ge 2 \\ \frac{\lambda}{\pi \Delta} \sum \beta_{kn} \Delta N_{n} , k < 2 \end{cases}$$
(3:24)

the Abel-inverted fringe shifts or the radial variation of the refractive index is calculated from the observed fringe shifts ΔN_n . This quantity is on the left hand side of relation 3:4 and becomes, under the assumption of low temperatures (no ionization, T<10000 K):

$$\Delta \mu_{k} = K_{m}(n_{m,k} - n_{o}) + K_{a}n_{a,k}$$
(3:50)

The undisturbed molecular density n_o is calculated from:

$$n_{o} [cm^{-3}] = 9.6570 \cdot 10^{18} \cdot \frac{p [torr]}{T [Kelvin]}$$
 (3:5)

Rearranging equation 3:49 gives:

72

(

(

(

$$\frac{\Delta \mu_k}{M_m} + n_o = n_{m,k} + R \cdot n_{a,k}$$
(3:51)

where R is the ratio between the atomic and molecular refractivities of nitrogen:

$$R = \frac{K_a}{K_m} \approx 0.63 \tag{3:30}$$

and K_m is approximated by A_r in formula 3:26 since the contribution of the second term is negligible. The left-hand side of formula 3:50 is known, and under certain assumptions about the condition of the spark, the two number densities can be calculated.

The assumptions mentioned above is that the spark pressure is the same as the surrounding's pressure (isobaric condition) and the plasma being in thermodynamic equilibrium with the surrounding air (self-relaxation and energy relaxation times of the order of nanoseconds, 10^{-9} s) [ref.11,12].

Setting the atomic number density n_a in equation 3:50 to zero, the molecular number density can now be calculated. From the ideal gas law, with known atmospheric pressure, the actual temperature is calculated. Knowing the temperature, the extent of the dissociation can be calculated from equation 3:46. Combining relations 3:51 and 3:39 and eliminating the atomic number density yields:

$$n_{m,k} = \frac{1-\varepsilon}{1+\varepsilon(2R-1)} \cdot \left(\frac{\Delta\mu_k}{K_m} + n_o\right)$$
(3:52)

then the atomic number density n_m is readily calculated from equation 3:49.

This iterative procedure is continued by calculating a new temperature from the ideal gas law and that in turn gives a new value of the extent of dissociation, whereupon the procedure is repeated. The whole process is terminated when the difference between two consecutive iteration values is smaller than a desired value.

The iteration process is depicted in figure 3.5.

(

(

(

(

Fig. 3.5. The iteration model.

3.2 EXPERIMENTAL DETAILS

(

(

(

The experimental set-up is shown in Fig. 3.6. The prism behind the dye-laser deflected the thin laser beam to be expanded in the beam expander. Upon leaving the beam expander the beam was parallell and approximately 20 mm in diameter.

Fig. 3.6. Optical arrangement for time resolved one-wavelength interferometry

The spark plasma was centered in one beam of the interferometer causing a disturbance in the resulting fringe pattern of the interferograms due to its varying index of refraction. The interferograms were finally recorded photographically.

In order to perform measurements at different times after the spark breakthrough the laser pulse was electronically delayed compared to the triggering pulse of the ignition system. The exact delay time between the start of the spark and the laser pulse was measured by comparing the current form of the spark and a vaccum diode signal of the laser pulse on a fast oscilloscope. For the inductive system there were time fluctuations for a certain adjustment of the delay unit. In order to obtain a correct delay time continuous reading of the values had to be done for each laser shot.

3.3 RESULTS AND DISCUSSION

(

(

The fringe shifts of the interferograms were carefully measured in several points using an Abbe comparator.

The direct information obtained from these measurements was the mean temperature distribution in time according to Alphert-White law. This can be seen in figures 3.7 - 3.11. The inductive system's mean temperature has a sharp maximum of 5800 K (for the standard plug arrangement) at $1 - 1.5 \ \mu$ s which coincides roughly with the power maximum. The room temperature is reached after approximately 3 ms which also is the time spectrum of the power curve. The commercial capacitive system has a sharp maximum too. It occurs at 6 μ s that is slightly later than the inductive system's maximum. It is also lower - approximately 3000 K. Even here there are similarities with the time behaviour of the power maxima tend to overlap the mean temperature maxima at least for the shorter times. This tendency is kept even for the ultra-fast capacitive system which leads to the conclusion that there is a strong correlation between the mean temperature and the power spectra.

The radial expansion of the sparks is illustraded in figures 3:12 - 3:13.

The above mentioned fluctuations in the delay time were registered and the frequency function is seen in figure 3:14. The standard deviation was found to be approximately 4 μ s according to simple statistical analysis done.

)

7

I would like to thank all the people that helped me to complete this paper. In the first place I owe a great debt to Göran S. Holmstedt, Dept. of Physics, Lund Institute of Technology and Hasse Johansson, SAAB-Scania Combitech AB without whose help and patience I couldn't have managed. Among others that deserve a note of gratitude are: Lars Martinsson, Åke Bergqvist and Thure Högberg.

C

(

()

(

Ć

(

- [1] O.Svelto "Principles Of Lasers", Plenum Press, New York & London, 1982
- [2] S.Borgström "Kompendium I Laserfysik", Avd. för Atomfysik, LTH, 1985
- [3] E.Hecht, A.Zajac "Optics", Addison-Wesley Publishing Company, 1974
- [4] M.Alden, P.Grafström, H.M.Hertz, G.S.Holmstedt, T.Högberg, G.Russberg, S.Svanverg "Characterization Of Ultra-Short High Current Sparks For Ignition Systems", Avd. för Atomfysik, LTH, Avd. för Teoretisk Fysik, Chalmers TH, 1985
- [5] M.Deutsch, I.Beniaminy "Inversion of Abel's Integral Equation for Experimental Data", J.Appl.Phys. 54 (1983) 137
- [6] W.L.Howes, D.R.Buchele "Optical Interferometry of Inhomogeneous Gases", Journal of the Optical Society of America, Volume 56, Number 11, November 1966
- [7] R.A.Alpher, D.R.White "Optical Refractivity of High-Temperature Gases", The Physics of Fluids, Volume 2, Number 2, March - April 1959
- [8] K.Bockasten "Transformation of Observed Radiances into Radial Distribution of the Emission of a Plasma", J.Opt.Soc.Am. 51 (1961) 943
- J.Opt.Soc.Am. 51 (1961) 943 [9] W.L.Barr "Method for Computing the Radial Distribution of Emitters in a Cylindrical Source", J.Opt.Soc.Am 52 (1962) 885
- [10] C.F.Hansen "Approximations for the Thermodynamic and Transport Properties of High-Temperature Air", NASA Tech.Rep. R-50, 1959
- [11] P.W.Atkins "Physical Chemistry", Oxford University Press, 1984
- [12] K.Muraoka, M.Hamamoto, M.Akazaki "Studies of an Impulse Spark Using Two-Wavelength Interferometry", Jpn.J.Appl.Phys., 19 (1980) L293

A:1 Power as a function of time. Inductive system. Standard sparking plug.

(

(

(

- A:2 Power as a function of time. Inductive system. Sharp edge electrode sparking plug.
- A:3 Power as a function of time. Commercial capacitive system. Standard sparking plug.
- A:4 Power as a function of time. Commercial capacitive system. Sharp edge electrode sparking plug.
- A:5 Listing of the data processing program.

1*			
2*	PROGRAM LMABE	LINV	
3*	*** i fil lm-abel	-sparkinv ***	
4*	*****	*****	******
5*	* MAIN PROGRAM		*
6*	*		*
7*	* Input to the prog	ram is a set of e	xperimental values from a one- *
8*	* wavelength interf	erometry experime	nt. First a linear missalignement 🛛 *
9*	* is subtracted fro	om the y-values an	d then the data are fitted to a *
10*	<pre>* polynomial which</pre>	is used in a spli	ne-interpolation to yield smoothed *
11*	* y-values for equi	distant x-values.	The y-values are then input to the*
12*	* Abel-inversion ro	utine which gives	spatially resolved density- and *
13*	* temperature-value	s for a nitrogen	gas. *
14*	*		*
15*	* CALLING SEQUENCE	: CURVEFIT	*
16*	*	ABELINVERSION	*
17*	*	OUTPUTWRITE	*
18*	*		
19*	* FILES USED :	(A-COMB)LM-AB	EL-"fileid":IN
20*	^ ⊥	The string "	d that an input file by the user.
21*	*	It is assume	d that an input-file by that name *
22° 22 *	* *	The program	greated an output-file (.III) with *
23*	* *	the game nam	<pre>creates an output=file (:of) with " </pre>
24*	*	the same nam	с. *
25*	*		*
20 27*	* Program written h	v Lars Martinsson	. January 1987 *
28*	* Program last modi	fied by	*
29*	****	******	*****
30*			
31*	CHARACTER*5	FILEID	! variable part of filename
32*	CHARACTER*30	INNAME	! complete filename input-file
33*	CHARACTER*30	OUTNAME	! complete filename output-file
34*	CHARACTER*28	TEXT	! dummy-var to reach input data
35*	CHARACTER*10	<pre>INFORM(1:4)</pre>	! experimental information
36*	REAL	PRESSURE	! pressure in gas , Torr
37*	REAL	LABTEMP	! temperature in gas ,Kelvin
38*	REAL	FRDIBA	! fringe distance background mm
39*	REAL	MAGNIF	! magnification factor
40*	INTEGER	NIN	! number of input values ODD N:R
41*	INTEGER	NINMAX	! maximum number of input values
42*			
43*	PARAMETER (NINMAX = 81)	! NOTE NINMAX MUST BE ODD
44*			
45*	REAL	XIN(1:NINMAX)	! x-values, read from input-file
46*	REAL	YIN(1:NINMAX)	! y-values, read from input-file
47*			
48*	INTEGER	NOUT	! number of output values
49*		110	
	INTEGER	NOUTMAX	! max length of output vector
50*	INTEGER	NOUTMAX	! max length of output vector

ND-500 ANSI 77 FORTRAN COMPILER - 203054I 16:30 3 JUL 1987 PAGE 2 SOURCE FILE: LM-ABEL-SPARKINV:SYMB

52* 53* REAL YSYM(1:NOUTMAX) ! y-values from CURVEFIT 54* REAL ! dist between x-points LUNIT 55* REAL AVN2CO ! av. density N2 56* REAL AVNCO ! av. density N AVTEMP 57* REAL ! av. temp in spark 58* REAL N2CO(1:NOUTMAX) ! density N2 59* REAL ! density N NCO(1:NOUTMAX) 60* REAL TEMP(1:NOUTMAX) ! temperature in spark 61* INTEGER ! DO-loop variables Γ,K 62* 63* 64* *** read file-name where input to program is stored 65* 66* WRITE(*,100)'¤WHICH IMAGE DO YOU WANT TO PROCESS? :' 67* READ(*,*)FILEID INNAME = '(A-COMB)LM-ABEL-' // FILEID // ':IN' 68* OUTNAME = '(A-COMB)LM-ABEL-' // FILEID // ':UT' 69* 70* 71* *** read data from input-file 72* 73* OPEN(3 , FILE = INNAME , STATUS = 'OLD' , ACCESS = 'READ') 74* 75* DO 10 K = 1 , 4 76* READ(3,200)TEXT, INFORM(K) 77* 10 CONTINUE 78* READ(3,300)TEXT, PRESSURE 79* READ(3,300)TEXT,LABTEMP 80* READ(3,300)TEXT, FRDIBA 81* READ(3,300)TEXT, MAGNIF 82* READ(3,400)TEXT,NIN 83* 84* IF(NIN . GT . NINMAX) THEN WRITE(*,*)' TOO MANY VALUES ON INPUTFILE!!' 85* 86* CLOSE(3) 87* GOTO 9999 88* ENDIF 89* 90* DO 20 I = 1 , NIN 91* READ(3,*) XIN(I),YIN(I) 92* 20 CONTINUE 93* 94* CLOSE(3) 95* 96* *** specify number of output values and call curvefit subroutine 97* 98* WRITE(*,100)'¤HOW MANY OUTPUT VALUES DO YOU WANT? :' 30 99* READ(*,*)NOUT 100* IF(NOUT . GT . NOUTMAX) THEN 101* WRITE(*,*)'YOU WANT TOO MANY, MAXIMUM 21 ALLOWED. TRY AGAIN!' 102* GOTO 30

ND-500 ANSI 77 FORTRAN COMPILER - 2030541 16:30 3 JUL 1987 PAGE 3 SOURCE FILE: LM-ABEL-SPARKINV:SYMB

103*		ENDIF	
104*			
105*		CALL CURVEFIT(NIN	,XIN,YIN,NOUT,YSYM,LUNIT)
106*			
107*	*** Ca	all abel-inversion	program
108*	*** Ll	UNIT MUST BE DIVIDE	ED BY 10 TO BE IN CM !!!!
109*			
110*		LUNIT = LUNIT / 10	0.0
111*			
112*		CALL ABELINVERSION	(NOUT, YSYM, PRESSURE, LABTEMP, LUNIT, FRDIBA,
113*	ł	&	MAGNIF, AVN2CO, AVNCO, AVTEMP, N2CO, NCO,
114*	ł	&	TEMP)
115*			
116*	*** Cá	all output writing	subroutine
117*			
118*		CALL OUTPUTWRITE(INFORM, PRESSURE, LABTEMP, LUNIT, AVN2CO,
119*	ł	£	AVNCO, AVTEMP, NOUT, N2CO, NCO, TEMP,
120*	8	&	OUTNAME)
121*			
122*			
123*	9999	STOP	
124*	100	FORMAT(//,A)	
125*	200	FORMAT(2A)	
126*	300	FORMAT(A,F11.5)	
127*	400	FORMAT(A, I5,//)	
128*			
129*		END	

ND-500 SOURCE	ANSI 77 FILE:	FORTRAN CON LM-ABEL-SPA	MPILER - 2030 ARKINV:SYMB	541	16:30	3	JUL	1987	PAGE	4
130*										
131*										
132*		SUBROUT	NE CURVEFIT(N,X	,Y,NOUT,YSYM,S	TEP)			
133*	**:	* * * * * * * * * * * *	*******	***	*****	***	* * * *	*****	*****	******
134*	* 9	SUBROUTINE C	URVEFIT							*
135*	*									*
136*	*]	DESCRIPTION:								*
137*	* [Chis subrout	ine controls	th	e subroutines	tha	t fi	tas	moothed	poly- *
138*	* 1	nomial with	equidistant	x-v	alues to the e	xpe	rime	ental	reading	s. *
139*	*									*
140*	× (CALLING SEQU	JENCE: LIN	SUB	'l'					*
141*	*		SPL	LNE	E.T.T.					*
142*	*		PUL	X E. T.	T. DIAB					*
143~	*		SIM	MET.	RIZE					*
144"	* 1	Program writ	ton by Larg	Mar	tinggon March	19	87			*
146*	, t	Program last	modified by	hat	tinsson, March	170	07			*
147*	**:	*********	*********	***	*****	***:	* * * *	****	******	******
148*										
149*		INTEGER	N	!	number of inp	utva	alue	s ARG		
150*		REAL	X(1:N)	!	input x-value	s i	ARG			
151*		REAL	Y(1:N)	1	input y-value	s i	ARG			
152*		INTEGER	NOUT	!	number of out	put	valu	es AR	G	
153*		INTEGER	NINT	1	intermediate 1	NOU	r va	lue		
154*		INTEGER	NMAX	1	maximum val o	f NI	INT			
155*										
156*		PARAMETE	2R(NMAX = 41)						
157*										
158*		REAL	XPF(1:NMAX)	1	output from P	OLYI	FIT			
159*		REAL	YPF(l:NMAX)	1	output from P	OLYI	FIT			
160*		REAL	STEP	. !	dist. between	ad	jace	nt x-	points	
101*		REAL	YSYM(1:NOUT) !	output from S	X MM	ETRI	ZE A	RG	
162*										
161*										
165*		NTNT = 2	* NOUT - 1							
166*		$\mathbf{W}_{\mathbf{I}}\mathbf{W}_{\mathbf{I}} = \mathbf{Z}$	NOOT 1							
167*		IF(NINT	.GT. NMAX)	THE	N					
168*		WRIT	'E(*,*)' NOUT	TO	O LARGE IN CUR	VEFI	ІТ С	ALL.	ı	
169*		ENDIF	-~ , ,				_			
170*										
171*		CALL LIN	BSUBT(N,X,Y)							
172*										
173*		CALL SPL	INEFIT(N,X,Y	,N)						
174*										
175*		CALL POL	YFIT(N,X,Y,N	INT	,XPF,YPF,STEP)					
176*										
177*		CALL SYM	METRIZE(NINT	,XP	F, YPF, NOUT, YSYI	M)				
178*										
179*		RETURN								

180* END

181*	
182*	
183*	SUBROUTINE LINBSUBT(N,X,Y)
184*	***************************************
185*	* SUBROUTINE LINBSUBT *
186*	* *
187*	* DESCRIPTION: *
188*	* This subroutine subtracts a linear background (y=kx+b) from the *
189*	* input y-vector and stores the result in the y-vector. The resulting *
190*	* vectors are written to a file and a plotting routine is called. *
191*	* *
192*	* FILES USED: (A-COMB)LM-ABEL-OUT0:DATA OUTPUT *
193*	* *
194*	* SUBPROGRAMS CALLED: PLOT plot program *
195*	* *
196*	* EXTERNAL SUBROUTINES: none *
197*	* *
198*	* COMMON BLOCKS USED: none *
199*	* *
200*	* Program written by Lars Martinsson November 1986
201*	* Program last modified by Lars Martinsson March 1987 *
202*	***************************************
203*	
204*	INTEGER N ! number of inputvalues ARG
205*	REAL X(1:N) ! x-values input ARG
206*	REAL Y(1:N) ! y-values input/output ARG
207*	REAL XI.XN ! value of X(I)
208*	REAL YI, YN ! value of Y(I)
209*	REAL SLOPE ! slope of linear background
210*	INTEGER I ! DO-loop variable
211*	CHARACTER*16 TEXT ! text in plot question
212*	
213*	
214*	X1 = X(1)
215*	XN = X(N)
216*	Y1 = Y(1)
217*	YN = Y(N)
218*	SLOPE = $(YN - YI) / (XN - XI)$
219*	DO 10 T = 1, N
220*	Y(I) = SLOPE * (XI - X(I)) + Y(I) - YI
221*	10 CONTINUE
222*	
223*	*** call plot of input data and write to a file
224*	call plot of input auta and write to a file
225*	ΨΕΧΨ = 'ΤΝΡΙΨ ΒΑΨΑ'
226*	
220	
228*	
229*	OPEN(3, FILE='(A-COMB)LM-ABEL-OUTO:DATA', STATUS='UNKNOWN'
230*	$\& \qquad ACCESS = 'WRITE')$
231*	WRTTE(3.100)' INPUT DATA'
	here and a second secon

ND-500 ANSI 77 FORTRAN COMPILER - 203054I 16:30 3 JUL 1987 PAGE 6 SOURCE FILE: LM-ABEL-SPARKINV:SYMB

232*		WRITE(3,200)'X-KOORDINAT','Y-KOORDINAT'
233*		DO 20 I = 1 , N
234*		WRITE(3,300) X(1) , Y(1)
235*	20	CONTINUE
236*		CLOSE(3)
237*		
238*		RETURN
239*	100	FORMAT(A)
240*	200	FORMAT(T5,A,TR5,A,//)
241*	300	FORMAT(T7,F8.4,TR8,F8.4)
242*		END

ND-500 SOURCE	ANSI 77 FILE:	FORTRAN COMPILER - LM-ABEL-SPARKINV:S	2030541 YMB	16:30	3 JUL	1987	PAGE	7	
243*									
244*									
245*									
246*		SUBROUTINE SPLI	NEFIT(N,X,Y,NOU	TT)					
247*	***	* * * * * * * * * * * * * * * * * * * *	*****	******	*****	*****	*******	*****	*
248*	* 9	SUBROUTINE SPLINEFI	т					;	*
249*	*								*

.

2/0*	*			+
249"	* DECORTON			^ +
250*	* Transt to the au	hrouting is a s	. .	of (www) welves which are used for +
201°	* internelation to	proutine is a se	ес - 1	or (x,y) values which are used for ~
202*	* interpolation to	o yleid the y-va	aru ~	The method is described in Deblaviat
200*	* Dioroha Numeria	sprine-functions	5. 	The method is described in Daniquist.
204*	* BJOICK: NUMERIC	al Methods, Prei	1111 111	ce-hall 1974, pp.131-134 and pp.166-*
2001	* 167. Note : The	method assumes	τn - b o	at the second derivates at the end- *
250"	* points are equa	i to zero, and	une	• x-values must be written in in-
20/*	* This wassies wa			••••••••••••••••••••••••••••••••••••••
200"	* Inis Version us	es the input ve	300	sis as output vectors!
259*	* FILES NOFD .	$(\lambda - COMP)$	vi	
200*	* *		M-H	ABEL-OUTI:DATA OUTPUT *
201"	* CUDDDOCDAMD CALL		DŤ	Office plate program t
202*	* SUBPROGRAMD CALL	LED:	PL	or proc program *
203*				·· · · · · · · · · · · · · · · · · · ·
204*	*	IINES: I	1011	e " +
205*	* COMMON BLOCKS II	CED. none		*
200*	* COMMON BLOCKS 0;	SED: NONE		
207*	* Drogram written	hu Tara Martin		n November 1096
200*	* Program last mo	by Dais Malting	550	m, November 1986
209*	**************************************	**************************************	***	
270*				
271*	TNUFCED	N	,	number of input values APC
272	DEAL	$\mathbf{X}(1 \cdot \mathbf{N})$	•	x-values road from input-file APC
273	REAL BEAL	$X(1 \cdot N)$ $V(1 \cdot N)$	•	v-values, read from input-file APC
275*	INTEGER	NMAX	•	maximum size of internal vectors
276*			•	maximum bize of internal vectors
277*	PARAMETER (NMAX = 99	1	must be GE, may of N
278*		main 55 y	•	must be .oli. mux of h
279*	BEAL	XSTEP(2:NMAX)	+	dist between $X(T)$ and $X(T-1)$
280*	REAL	YSTEP(2:NMAX)		dist between $Y(T)$ and $Y(T-1)$
281*	BEAL	x1.x2.x3	•	value of $X(I)$
282*	REAL	H1,H2		= $XSTEP(I)$
283*	REAL	Y1,Y2,Y3	1	value of $Y(I)$
284*	REAL	D1,D2	1	= YSTEP(1)
285*	REAL	ALFAV(2:NMAX)	1	variables in solv eq. syst
286*	REAL	ALFA	1	variables in solv eq. syst
287*	REAL	BETA	!	variables in solv eq. syst
288*	REAL	CV(2:NMAX-1)	!	variables in solv eq. syst
289*	REAL	c	!	variables in solv eq. syst
290*	REAL	GV(2:NMAX),G	1	variables in solv eq. syst
291*	REAL	KV(2:NMAX),K	!	endpoint of equation solution
292*	REAL	STEP	!	dist between XSF(I) and XSF(I-1)
293*	INTEGER	NOUT	!	prescribed n:r of output values ARG
				-

ND-500 ANSI 77 FORTRAN COMPILER - 2030541 16:30 3 JUL 1987 PAGE 8 SOURCE FILE: LM-ABEL-SPARKINV:SYMB 294* INTEGER NSFM ! max of output values from SF 295* 296* PARAMETER(NSFM = 99)297* 298* REAL XSF(l:NSFM) ! equidistant x-values to splin-f 299* REAL ! spline-fitted y-values YSF(1:NSFM) 300* INTEGER I,L ! DO-loop variables 301* REAL Т ! var used in calc of new values 302* CHARACTER*16 TEXT ! text in plot question 303* 304* 305* *** calculation of spline-fitted curve in two steps: *** 1. calculate coefficients to a tridiagonal equation system 306* 307* *** which is solved by forward-backward substitution 308* *** 2. the solution to the equation-syst is used as coefficients 309* *** in a polynomial by which the new y-values are calculated *** 310* the variable names used are the same as in the ref. 311* *** initiation and calculation of elements in the tridiagonal system 312* 313* *** concurrent with forward substitution 314* 315* 316* IF(N . GT . NMAX)THEN 317* WRITE(*,*)' TOO MANY INPUT VALUES TO SPLINEFIT. ' 318* ENDIF 319* 320* 321* X1 = X(1)322* X2 = X(2)323* Y1 = Y(1)324* Y2 = Y(2)325* H1 **∓** X2-X1 326* XSTEP(2) = H1327* D1 = (Y2 - Y1) / H1328* YSTEP(2) = D1329* ALFA = 2.0330* ALFAV(2) = ALFA331* C = 1.0332* CV(2) = C333* G = 3.0 * D1334* GV(2) = G335* 336* DO 10 I = 3 , N - 1337* X3 = X(I)338* Y3 = Y(I)339* H2 = X3 - X2340* D2 = (Y3 - Y2) / H2341* BETA = H2 / ALFA342* ALFA = 2.0 * (H1 + H2) - BETA * C343* G = 3.0 * (H1 * D2 + H2 *D1) - BETA * G344* C = H1

ND-500 ANSI 77 FORTRAN COMPILER - 2030541 16:30 SOURCE FILE: LM-ABEL-SPARKINV:SYMB

```
345*
                     ALFAV(I) = ALFA
346*
                     GV(I) = G
347*
                     CV(I) = C
348*
                    XSTEP(I) = H2
349*
                    YSTEP(I) = D2
350*
                    H1 = H2
351*
                    D1 = D2
                     x_2 = x_3
352*
353*
                     Y2 = Y3
354*
          10
                CONTINUE
355*
356*
                X3 = X(N)
357*
                Y3 = Y(N)
358*
                H2 = X3 - X2
359*
                D2 = (Y3 - Y2) / H2
360*
361*
          *** initiate and start backward substitution
362*
363*
                BETA = 1.0 / ALFA
364*
                ALFAV(N) = 2.0 - BETA * C
365*
                GV(N) = 3.0 * D2 - BETA * G
                XSTEP(N) = H2
366*
367*
                YSTEP(N) = D2
368*
369*
                K = GV(N) / ALFAV(N)
370*
                KV(N) = K
371*
                DO 20 I = N - 1 , 2 , -1
372*
                     K = (GV(I) - CV(I) * K) / ALFAV(I)
373*
                    KV(I) = K
374*
          20
                CONTINUE
375*
376*
          *** calculate the spline-fitted x,y values
377*
378*
                X1 = X(1)
379*
                STEP = (X(N) - X1) / (NOUT - 1)
380*
381*
                XSF(1) = X1
                DO 30 I = 2 , NOUT - 1
382*
383*
                    XSF(I) = (I-1.0) * STEP + X1
384*
          30
                CONTINUE
385*
                XSF(NOUT) = X(N)
386*
387*
                L = 2
                YSF(1) = Y(1)
388*
389*
                YSF(NOUT) = Y(N)
390*
                DO 40 I = 2 , NOUT - 1
391*
          50
                    IF( XSF(I) . GT . X(L) )THEN
392*
                         L = L + 1
393*
                         GOTO 50
394*
                    ENDIF
395*
                    T = (XSF(I) - X(L-1)) / XSTEP(L)
```

396*		YSF(I) = T * Y(L) + (1.0 - T) * Y(L-1) + XSTEP(L) *
397*		& T * $(1.0 - T)$ * ((KV(L-1) - YSTEP(L)) *
398*		& (1.0 - T) - (KV(L) - YSTEP(L)) * T)
399*	40	CONTINUE
400*		
401*		
402*	*** (call plot of spline-fitted data, write the values to a file
403*		
404*		
405*		TEXT = 'SPLINE-FITTED'
406*		
407*		CALL PLOT(NOUT, XSF, YSF, TEXT)
408*		
409*		OPEN(4,FILE='(A-COMB)LM-ABEL-OUT1:DATA',STATUS='UNKNOWN',
410*		& ACCESS='WRITE')
411*		WRITE(4,100)' SPLINE-FITTED DATA'
412*		WRITE(4,200)'X-KOORDINAT','Y-KOORDINAT'
413*		DO $60 I = 1$, NOUT
414*		WRITE(4,300) XSF(I) , YSF(I)
415*	60	CONTINUE
416*		CLOSE(4)
417*		
418*	*** (output from program is stored in input vectors
419*		
420*		DO 70 I = 1, N
421*		X(I) = XSF(I)
422*		Y(I) = YSF(I)
423*	70	CONTINUE
424*		
425*		RETURN
426*	100	FORMAT(A)
427*	200	FORMAT(T5,A,TR5,A,//)
428*	300	FORMAT(T7,F8.4,TR8,F8.4)
429*		END

11

```
430*
431*
432*
433*
434*
               SUBROUTINE POLYFIT(NIN, X, Y, NOUT, XPF, YPF, STEP)
435*
          436*
          * SUBROUTINE POLYFIT
                                                                               *
437*
          +
438*
          * DESCRIPTION:
439*
          * The program fits a polynom to a set of (x,y) values, input and output*
          * both have equidistant x-values. The polynom are calculated by a
440*
          * series expansion of ( orthonomal ) Chebyshev polynomials up to order *
441*
442*
          * ORDER - 1. The value of the polynomial is suplied by a subroutine
                                                                               *
443*
          * CHEBPOL, and the polynomial-fitted values are calculated by a sub-
444*
          * routine CHEBEXP. NOUT values are generated and the distance between
                                                                               *
445*
          * them is STEP. The endpoint y-values are set to zero in the program.
                                                                               *
446*
          * The method is described in for example:
                                                                               *
447*
          *
                                  Handbook of Mathematical Functions,
                                                                               *
448*
          *
                                   Abramowitz & Stegun, Dover p 791
449*
                                  Statistics and Experimental Design , vol I,
                                                                               *
450*
          *
                                                                               *
                                   Johnson & Leone, Wiley pp 423-436
451*
                                                                               *
                                                                               *
452*
453*
          * FILES USED:
                              (A-COMB)LM-ABEL-OUT2:DATA
                                                                               *
                                                         output
                                                                               *
454*
455*
          * SUBROUTINES CALLED :
                                     PLOT
                                              plotprogram
456*
                                     CHEBPOL
                                              the subroutine calculates the
                                                                               *
457*
          *
                                              value of Chebyshev polynomials
                                                                               *
458*
          *
                                     CHEBEXP
                                              the subroutine calculates the
459*
                                              value of n-term exp in Cheb. pol.
                                                                               *
460*
          *
                                                                               *
          * EXTERNAL SUBROUTINES:
                                                                               *
461*
                                   none
462*
                                                                               *
                                                                               *
463*
         * COMMON BLOCKS USED:
                                  none
464*
                                                                               *
465*
         * Program written by Lars Martinsson April 1987
                                                                               *
466*
          * Program last modified by
          467*
468*
                                          ! number of input values ARG
469*
               INTEGER
                          NTN
470*
                                          ! x-values input ARG
               REAL
                          X(1:NIN)
471*
               REAL
                          Y(1:NIN)
                                          ! y-values input
                                                           ARG
472*
               INTEGER
                          NOUT
                                          ! number of output values
                                                                    ARG
473*
                          ARG
                                          ! arg x-value transformed
               REAL
474*
               INTEGER
                          ORDER
                                          ! order or polynom to be fitted
475*
476*
               PARAMETER ( ORDER = 8 )
477*
478*
                          VAL(0:ORDER)
                                          ! result of eval. of polynomials
               REAL
479*
               REAL
                          VALL
                                          ! spec. value of VAL(L)
480*
               REAL
                          NUM(0:ORDER)
                                          ! numerator in coeff
```

ND-500 ANSI 77 FORTRAN COMPILER - 2030541 16:30 3 JUL 1987 PAGE 12 SOURCE FILE: LM-ABEL-SPARKINV:SYMB

481* REAL DEN(0:ORDER) ! denominator in coeff 482* INTEGER K,L ! DO-loop variables 483* REAL X1 ! = X(1)DIST 484* REAL ! dist between ARG in exp. calc. 485* REAL STEP ! equidistance between x-values OUTARG 486* REAL COEFF(0:ORDER) ! coefficient vector ! x-vector polyfit output 487* REAL XPF(1:NOUT) 488* REAL YPF(1:NOUT) ! y-vector polyfit output 489* CHARACTER*16 TEXT ! text in plot question 490* 491* *** write warning if there are too few points to perform a fit 492* IF(NIN . LT . ORDER + 3)THEN 493* WRITE(*,*)' WARNING ! YOU HAVE TOO FEW INPUT VALUES TO GET A', 494* ' GOOD SMOOTHING. ' 495* & 496* ENDIF 497* 498* *** calculate expansion coefficients 499* 500* DO 10 K = 1 , NIN ARG = K - 1.0501* 502* CALL CHEBPOL(NIN , ORDER , ARG , VAL) 503* DO 20 L = 0 , ORDER VALL = VAL(L)504* 505* NUM(L) = NUM(L) + VALL * Y(K)506* VALL = VALL * VALL 507* DEN(L) = DEN(L) + VALL20 CONTINUE 508* 509* 10 CONTINUE 510* 511* DO 30 K = 0 , ORDER COEFF(K) = NUM(K) / DEN(K)512* 513* 30 CONTINUE 514* 515* *** calculate fitted polynomial 516* X1 = X(1)517* 518* DIST = (NIN - 1.0) / (NOUT - 1.0)519* 520* STEP = (X(NIN) - X1) / (NOUT - 1.0)521* 522* 523* DO 40 K = 1 , NOUT 524* ARG = (K - 1.0) * DIST525* XPF(K) = X1 + (K - 1.0) * STEP526* CALL CHEBEXP(NIN, ORDER, ARG, COEFF, YPF(K)) 527* 40 CONTINUE 528* 529* *** set y-values at end-points to zero 530* 531* YPF(1) = 0.0

ND-500 ANSI 77 FORTRAN COMPILER - 2030541 16:30 3 JUL 1987 PAGE 13 SOURCE FILE: LM-ABEL-SPARKINV:SYMB

532*		YPF(NOUT) = 0.0
533*		
534*	*** (call plot of input data and write to a file
535*		
536*		TEXT = 'POLYFIT DATA'
537*		
538*		CALL PLOT(NOUT, XPF, YPF, TEXT)
539*		
540*		OPEN(3,FILE='(A-COMB)LM-ABEL-OUT2:DATA',STATUS='UNKNOWN',
541*		& ACCESS='WRITE')
542*		WRITE(3,100)' POLYFIT DATA'
543*		WRITE(3,200)'X-KOORDINAT','Y-KOORDINAT'
544*		DO 50 K = 1 , NOUT
545*		WRITE(3,300) XPF(K) , YPF(K)
546*	50	CONTINUE
547*		CLOSE(3)
548*		
549*		RETURN
550*	100	FORMAT(A)
551*	200	FORMAT(T5,A,TR5,A,//)
552*	300	FORMAT(T7,F8.4,TR8,F8.4)
553*		END

```
554*
555*
556*
               SUBROUTINE CHEBPOL( N, ORD, X, Y)
557*
         558*
         * SUBROUTINE CHEBPOL
                                                                             *
                                                                             *
559*
                                                                             *
560*
         * DESCRIPTION:
                                                                             *
561*
         * This subroutine calculates the values of Chebyshev polynomials for
         * an argument value ARG and orders 0 up to ORD. The polynomials are
                                                                             *
562*
                                                                             *
563*
         * orthogonal for discrete integer values. Evaluation is based on a re-
         * currence relation for Chebyshev polynomials ( on p. 791 in ref.).
                                                                             *
564*
565*
         * Starting values are
                                    Cheb(0, ARG) = 1.0
566*
                          and
                                    Cheb(1, ARG) = 1.0 - 2.0 * ARG / (N - 1)
                                                                             *
         * where N is the number of points to be fitted. The output is stored in*
567*
568*
         * a vector Y(0:ORD).
                                                                             *
         * Reference: Handbook of Mathematical Functions, Abramowitz & Stegun
569*
                                                                             *
570*
571*
         * FILES USED:
                        none
                                                                             *
         *
                                                                             *
572*
                                                                             *
         * SUBROUTINES CALLED:
573*
                               none
                                                                             *
574*
         *
                                                                             *
575*
         * EXTERNAL SUBROUTINES: none
                                                                             *
576*
                                                                             *
577*
         * COMMON BLOCKS USED: none
                                                                             *
578*
                                                                             *
         * Program written by Lars Martinsson, April 1987
579*
                                                                             *
580*
         * Program last modified by
         581*
582*
583*
584*
               INTEGER
                         Ν
                                  ! number of points to be fitted ARG
585*
               INTEGER
                         ORD
                                  ! highest order of polynomial
                                                                ARG
586*
                                  ! argument to Cheb. pol.
                                                                ARG
               REAL
                         х
587*
               REAL
                         Y(0:ORD) ! result
                                            OUTPUT
588*
               REAL
                         Y0,Y1,Y2 ! spec val. of Y
589*
               INTEGER
                         Κ
                                  ! DO-loop var.
590*
591*
               IF( ORD . LT . 1 ) RETURN
592*
593*
         *** initiation
594*
595*
596*
               Y0 = 1.0
597*
               Y1 = 1.0 - (2.0 * X) / (N - 1.0)
598*
               Y(0) = Y0
599*
               Y(1) = Y1
600*
         *** iteration
601*
602*
603*
               DO 10 K = 1 , ORD -1
604*
                   Y2 = ((2.0 * K + 1.0) * (N - 1.0 - 2.0 * X) * Y1 - K *
```

ND-500 ANSI 77 FORTRAN COMPILER - 2030541 16:30 3 JUL 1987 PAGE 15 SOURCE FILE: LM-ABEL-SPARKINV:SYMB

605*		&			(Ν	+	Κ)	*	ΥO)	1	((Κ	+	1.0)	*	(Ν	-	Κ	-	1.0))
606*		Y	. (K	+	1)	=	Y	2																			
607*		Y	:0 =	Y	L																							
608*		У	1 =	Y	2																							
609*	10	CONTI	NUE																									
610*																												
611*		RETUR	RN																									
612*		END																										

```
ND-500 ANSI 77 FORTRAN COMPILER - 2030541
                                             16:30
                                                     3 JUL 1987 PAGE
                                                                       16
SOURCE FILE:
              LM-ABEL-SPARKINV:SYMB
 613*
 614*
 615*
 616*
                 SUBROUTINE CHEBEXP( N, ORD, X, COEFF, RES)
 617*
           * SUBROUTINE CHEBEXP
 618*
                                                                               *
 619*
           *
                                                                               *
 620*
           * DESCRIPTION:
           * This subroutine computes the value of an ORD-term expansion in Cheb- *
 621*
 622*
           * yshev polynomials with coefficient vector COEFF(0:ORD) and argument
                                                                               *
 623*
           * ARG. The output Y = SUM COEFF(I)*Cheb(I,ARG), summation over I from
 624*
           * 0 to ORD. The Chebyshev polynomials, orthogonal for discrete integer *
 625*
           * arguments, are calculated by a recurrence equation , p. 791 in Hand-
                                                                               *
 626*
           * book of Mathematical Functions, Ed. by Abramowitz and Stegun.
                                                                               *
 627*
           * FILES USED:
 628*
                         none
 629*
                                                                               *
 630*
           * SUBROUTINES CALLED: none
                                                                               *
                                                                               *
 631*
           * EXTERNAL SUBROUTINES: none
                                                                               *
 632*
           *
                                                                               *
 633*
 634*
           * COMMON BLOCKS USED: none
                                                                               *
 635*
 636*
           * Program written by Lars Martinsson, April 1987
                                                                               *
 637*
           * Program last modified by
           638*
 639*
 640*
 641*
                 INTEGER
                                        ! number of points to be fitted
 642*
                           Ν
                                                                       ARG
 643*
                 INTEGER
                           ORD
                                        ! highest order of polynomial
                                                                       ARG
 644*
                 REAL
                           Х
                                        ! argument to pol.
                                                                       ARG
 645*
                 REAL
                           COEFF(0:ORD) ! coeff in exp. in Cheb. pol
                                                                       ARG
 646*
                 REAL
                           RES
                                        ! result of calc.
                                                              OUTPUT
                                                                       ARG
 647*
                           C0,C1
                                        ! spec. val. of coeff.
                REAL
 648*
                REAL
                           Y0,Y1,Y2
                                        ! val. of Cheb. pol.
 649*
                 INTEGER
                           Κ
                                        ! DO-loop var.
 650*
 651*
                 IF( ORD . LT . 1 ) RETURN
 652*
 653*
           *** initiation
 654*
 655*
 656*
                 Y0 = 1.0
                 Y1 = 1.0 - (2.0 * X) / (N - 1.0)
 657*
 658*
                C0 = COEFF(0)
 659*
                Cl = COEFF(1)
 660*
 661*
                RES = CO * YO + C1 * Y1
 662*
 663*
           *** iteration
```

ND-500 ANSI 77 FORTRAN COMPILER - 2030541 16:30 3 JUL 1987 PAGE 17 SOURCE FILE: LM-ABEL-SPARKINV:SYMB

664*		
665*		DO 10 K = 1 , ORD - 1
666*		Y2 = ((2.0 * K + 1.0) * (N - 1.0 - 2.0 * X) * Y1 - K *
667*		& $(N + K) * YO) / ((K + 1.0) * (N - K - 1.0))$
668*		C0 = COEFF(K + 1)
669*		RES = RES + C0 * Y2
670*		YO = YI
671*		Y1 = Y2
672*	10	CONTINUE
673*		
674*		RETURN
675*		END

ND-500 ANSI 77 FORTRAN COMPILER - 2030541 16:30 3 JUL 1987 PAGE 18 LM-ABEL-SPARKINV:SYMB SOURCE FILE: 676* 677* 678* 679* SUBROUTINE SYMMETRIZE(NIN, XIN, YIN, NOUT, YSYM) 680* 681* * SUBROUTINE SYMMETRIZE * * * 682* 683* * DESCRIPTION : * * 684* * This program takes the average of symmetrical y-values and stores * 685* * this value in YSYM(I). Equidistant x-values are required as input * 686* * to the program. * 687* * FILES USED : (A-COMB)LM-ABEL-OUT3:DATA output * 688* * 689* * SUBPROGRAMS CALLED : * 690* PLOTplotprogram * 691* * 692* * EXTERNAL SUBROUTINES: none 693* * * * COMMON BLOCKS USED: none 694* * 695* * * 696* * Program written by Lars Martinsson, November 1986 697* * Program last modified by Lars Martinsson, April 1987 * 698* 699* 700* 701* INTEGER NIN ! number of input values INPUT 702* REAL ! y-values INPUT YIN(1:NIN) 703* REAL XIN(1:NIN) ! r-values INPUT 704* INTEGER NOUT ! number of values to output-file ARG 705* INTEGER NOUTMAX ! max. val of NOUT 706* 707* PARAMETER (NOUTMAX = 21) 708* 709* REAL XSYM(1:NOUTMAX) ! symmetrized r-values 710* REAL YSYM(1:NOUT) ! symmetrized y-values OUTPUT 711* INTEGER K ! DO-loop variable CHARACTER*16 TEXT 712* ! text in plot question 713* 714* 715* 716* *** calculate mean-value of y-values placed symmetric about the middle 717* *** point 718* YSYM(1) = YIN(NOUT)719* XSYM(1) = XIN(NOUT)720* 721* DO 10 K = 2 , NOUT 722* XSYM(K) = XIN(NOUT - 1 + K)723* YSYM(K) = (YIN(NOUT - 1 + K) + YIN(NOUT + 1 - K)) / 2.0724* 10 CONTINUE 725* 726* *** call plot of symmetrsized data

ND-500 ANSI 77 FORTRAN COMPILER - 2030541 16:30 3 JUL 1987 PAGE 19 SOURCE FILE: LM-ABEL-SPARKINV:SYMB

727*		
728*		TEXT = 'SYMMETRIC DATA'
729*		
730*		CALL PLOT(NOUT,XSYM,YSYM,TEXT)
731*		
732*	***	write output to a file
733*		
734*		OPEN(5 , FILE = '(A-COMB)LM-ABEL-OUT3:DATA', STATUS = 'UNKNOWN'
735*		& , ACCESS = 'WRITE')
736*		
737*		WRITE(5,100)' SYMMETRISERADE DATA'
738*		WRITE(5,200)'X-KOORDINAT','Y-KOORDINAT'
739*		DO 20 K = 1 , NOUT
740*		WRITE(5,300) XSYM(K) , YSYM(K)
741*	20	CONTINUE
742*		CLOSE(5)
743*		
744*		RETURN
745*	100	FORMAT(A)
746*	200	FORMAT(T5,A,TR5,A,//)
747*	300	FORMAT(T7,F8.4,TR8,F8.4)
748*		END

ND-500 SOURCE	ANSI 77 FORTRAN COMPILER - 203 FILE: LM-ABEL-SPARKINV:SYMB	3054I 16:30	3 JUL 19	87 PAGE	20
7 49* 750*					
751*					
752*					
752*					
751*		DCTON/NMAV V DDF	יר ד א מיזידאים ד	דרומים יוידואוו	DA MACNTE
755*	s		CO AUTEMP N	2CO NCO T	FMD \
756*	************************	*****	*********	******	****
757*		N			*
758*	* SOBROOTINE ABELINVERSIC	714			*
750*					*
759*	* This subrouting perform	Abelinversion	on a cot of	ovporimo	ntal ono- *
700*	* wavelongth interferomet	ry data with ogu	idictant v-	usluc Ther	he inpute *
762*	* are V (mm) DDFG (torr)	TARMEMD (R) T		FDDIBA (m	NACNIE*
763*	\star (-) and NMAX The inver	gion matrix and	other neces	ereinnu sarvinnu	Hata *
764*	* are read from datafiles	The program ca	lculates th	e molecul:	ar number *
765*	* number density (cm-3) a	nd the temperatu	re (K) from	the relat	tivo *
765*	* fringe shifts in a cyli	ndrically symmet	ric spark.	The tempe	rature is *
767*	* calculated under the as	sumption of isob	aric condit	ions in th	ne spark. *
768*	* The temperature and den	sity are then us	ed as input	in a cale	sulation *
769*	* of the densities of atc	ms and molecules	and the as	sociated	tempera- *
770*	* ture if thermal equilib	rium conditions	nrevails.	Sociacca	*
771*	*		prevairs.		*
772*	* REFERENCE: Barr. Journa	l of the Optical	Society of	America	52 *
773*	*	it of the optioni	(1962	1. 8. 885	*
774*	*		(2002	// 0/ 000	*
775*	*				*
776*	* FILES USED : (A-COMB)L	M-ABEL-MATRIS:DA	TA inversi	on matrix	*
777*	*		from re	f Barr, e	xcept *
778*	*		opposit	e sign and	a factor*
779*	*		10E4 ti	mes less	*
780*	*				*
781*	* (A-COMB)L	M-ABEL-IN:DATA	wavelen	gth in mid	crometer, *
782*	*		molecul	ar refract	tivity in *
783*	*		cm3 and	(refrN2)	/ refrN) *
784*	*			, , ,	*
785*	* SUBPROGRAMS CALLED : E	QTEMP	equilib c	alc	*
786*	*		-		*
787*	* EXTERNAL SUBPROGRAMS :	none			*
788*	*				*
789*	* ND-MONITOR CALLS USED:	none			*
790*	*				*
791*	* COMMON BLOCKS USED :	none			*
792*	*				*
793*	* Program written by Pete	r Grafstrom			*
794*	* Program last modified b	y Lars Martinsso	n, October	1986	*
795*	******	* * * * * * * * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * * *
796*					
797*					

191			
798*	INTEGER	NMAX	! number of output values
799*	INTEGER	I,K	! DO-loop variables

ND-500	ANSI 77	FORTRAN	COMPILER	- 2030541			
SOURCE	SOURCE FILE:		LM-ABEL-SPARKINV:SYMB				

800*	REAL	AMATRIS(1:21,1:21)	!	inversion matrix
801*	REAL	LAMBDA	!	wavelength micometers
802*	REAL	REFRAC	!	spec. refractivity cm**3
803*	REAL	RELREF	!	rel refrac N to N2
804*	REAL	AVDEN	!	factor in calc average val
805*	REAL	FRDIBA	!	fringe dist background
806*	REAL	LUNIT	l	length unit r-direction cm
807*	REAL	MAGNIF	!	magnification factor
808*				5
809*	REAL	Y(l:NMAX)	!	y-values, same unit as FRDIBA
810*	REAL	PI	1	pi
811*				L
812*	PARAMETER (PI = 3.1415926)		
813*		,		
814*	REAL	CONST1	1	prop const abeliny - density
815*	REAL	CONST2	1	prop const pressure-refdens
816*	REAL	CONST3	1	prop const density-temp
817*		0011020	•	prop compt demotor comp
818*	PARAMETER	CONST2 = 9.6570E18		
819*	٤.	CONST3 = 9.6570E18	Ń	
820*	ŭ		'	
821*	REAL	$\mathbf{RELFS}(1,21)$	ı	relative fringe shifts
822*	REAL	SUM	;	sumation variable
823*	REAL	AVRELES	•	average fringe shift
824*	REAL	PRES	;	pressure in torr in das
825*	DEAL		•	temp in Kelvin in gas
826*	REAL REAL	NUMDENO	•	ref number density cm-3
020	DENI	FGAUNIDE	•	ost av number density cm 3
02/*	DEVI		•	est av number density cm 5
020*			•	estimate of temperature
029"		AVIEMP AVN2CO	4 1	equilib. av. temp
030"		AVNZCO	•	av.num.den. Nz cm=3
031°			+	av.num.den. N Cm-5
0321	INTEGER	ALTN		All Start Of Sumation
833^	REAL	AINVES(1:21)	1	Aber inv rringe shirts
834^	REAL	ESNODE	1	est. Of number density cm-3
835*			1	estimate of temperature
836*	REAL	TEMP(1:NMAX)	1	equili. temperature
83/*	REAL	N2CO(1:NMAX)	1	equili. N2 numb. dens.
838*	REAL	NCO(1:NMAX)	1	equili. N numb. dens.
839*				
840*				
841*				
842*	*** read inversion m	atrix		
843*			.	
844*	OPEN(6,FILE='(ATOM-COMB)LM-ABEL-MATH	RTE	S:DATA', STATUS='OLD',
845*	& A	CCESS='READ')		
846*				
847*	DO $10 I = 1$,	21		
848*	READ(6,250	,ERR=999) (AMATRIS(I	,K)	, K = 1 , 21)
849*	10 CONTINUE			
850*				

ND-500 ANSI 77 FORTRAN COMPILER - 2030541 16:30 3 JUL 1987 PAGE 22 SOURCE FILE: LM-ABEL-SPARKINV:SYMB

```
851*
                CLOSE(6)
852*
          250
                FORMAT(F7.0,20F6.0)
853*
854*
          *** read input-data to abelinversion
855*
856*
                OPEN(7,FILE='(ATOM-COMB)LM-ABEL-IN:DATA',STATUS='OLD',
857*
                              ACCESS='READ')
               &
858*
                READ(7,*) LAMBDA , REFRAC , RELREF
859*
                CLOSE(7)
860*
861*
          *** calculate prop factor and relative fringe shifts
862*
863*
                LUNIT = LUNIT * MAGNIF
864*
865*
                CONST1 = - 1.0E-8 * LAMBDA / REFRAC / PI / LUNIT
866*
                DO 20 I = 1 , NMAX
867*
868*
                    RELFS(I) = Y(I) / FRDIBA
869*
          20
                CONTINUE
870*
871*
          *** calculate reference number density
872*
                NUMDENO = CONST2 * PRES / LABTEMP
873*
874*
875*
          *** calculate estimate of mean number density of molecules and
          *** temperature
876*
877*
878*
                SUM = 0.0
879*
                DO 30 I = 2 , NMAX
                    SUM = SUM + RELFS(I)
*088
          30
881*
                CONTINUE
882*
                AVRELFS = RELFS(1) + 2.0 * SUM
883*
                AVDEN = -2.0E4 / (NMAX * (2 * NMAX + 1))
884*
                ESAVNUDE = AVDEN * CONST1 * AVRELFS + NUMDENO
885*
                ESAVTEMP = CONST3 * PRES / ESAVNUDE
886*
887*
          *** calculate equlibrium average-temperature and -composition
*888
889*
                IF( ESAVNUDE . GT . 0.0 ) THEN
890*
                    CALL EQTEMP( ESAVNUDE, ESAVTEMP, RELREF, AVTEMP, AVN2CO, AVNCO )
891*
                ENDIF
892*
893*
          *** calculate spatially resolved estimate of number density of atoms
894*
          *** and estimate of temperature and equilibrium composition and eq.
895*
          *** temperature
896*
897*
                DO 40 I = 1 , NMAX
898*
                    ALTN = I - 2
899*
                    IF( ALTN . LT . 1 )THEN
900*
                        ALTN = 1
901*
                    ENDIF
```

ND-500 ANSI 77 FORTRAN COMPILER - 2030541 16:30 3 JUL 1987 PAGE 23 SOURCE FILE: LM-ABEL-SPARKINV:SYMB

902*		SUM = 0.0
903*		DO 50 K = ALTN , NMAX
904*		SUM = SUM + AMATRIS(K,I) * RELFS(K)
905*	50	CONTINUE
906*		AINVFS(I) = SUM
907*	40	CONTINUE
908*		DO 60 I = 1 , NMAX
909*		ESNUDE = CONST1 * AINVFS(I) + NUMDEN0
910*		ESTEMP = CONST3 * PRES / ESNUDE
911*		IF(ESNUDE . GT . 0.0 . AND . ESTEMP . LT . 40000.0)THEN
912*		CALL EQTEMP(ESNUDE, ESTEMP, RELREF, TEMP(I), N2CO(I), NCO(I))
913*		ENDIF
914*	60	CONTINUE
915*		
916*		RETURN
917*		
918*	999	WRITE(*,*)' ERROR WHEN READING INVERSION MATRIX!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
919*		END

ND-500 SOURCE	ANSI 77 FILE:	FORTRAN COMP LM-ABEL-SPAR	ILER - 20 KINV:SYMB	30541	16 : 30	3 JUL	1987	PAGE	24
920*									
921*									
922*									
923*									
924*		CUDDOUULIN		NOCONG INT	ND DEEO O		NO NITE	NTNT771.7	
925*	**	SUBROUTIN	E EQTEMP(*******	NZCONC, TE	MP,KErų,U *******	*******	NZNEW	,NNEW) ******	****
927*	*	SUBROUTINE EO	ͲΈΜΡΟ						*
928*	*		THUL &						*
929*	*	DESCRIPTION:							*
930*	*	This subrouti	ne calcul	ates the m	olecule a	nd atom	a conc	entrati	.ons *
931*	*	(cm-3) and te	mperature	(Kelvin)	from a fi	rst est	imate	of tem	perature *
932*	* ,	and molecule	concentra	tion from	an Abelin	versior	n. The	quanti	ties are *
933*	*	calculated un	der the a	ssumption	of therma	l equli	brium	. The s	ubprogram*
934*	*	EPS is specif	ic for ni	trogen!					*
935*	*						0.5.0		*
936*	* .	REFERENCE: Ha	nsen, NAS	A Technica	1 Report	R-50, I	.959		*
93/*	*	DATA-FILES US	ED. none						*
939*	*	DAIN FILLD 00	LD. Hone						*
940*	*	SUBPROGRAMS C	ALLED: E	PS					*
941*	*								*
942*	*	EXTERNAL SUBP	ROGRAMS:	none					*
943*	*								*
944*	*]	ND-MONITOR CA	LLS USED:	none					*
945*	*								*
946*	* (COMMON BLOCKS	USED: no	ne					*
947*	*		has Tak	- Mauliner	T	1005	,		*
948*	*	Program Writt Drogram lagt	en by Lar modified	s Martinss by Larc Ma	on, Janua rtinggon	ry 1987	1007		*
949"	**	***********************	********	99 DALS MA	********	******	1307	* * * * * * *	********
951*									
952*		REAL TEMP		! temper	ature Kel	vin		INAF	G
953*		REAL EPSI	LON	! fracti	on of N2	dissoc.	to N		
954*		REAL EPS		! SUBFCN	calculat	es EPSI	LON		
955*		REAL ALFA		! conc N	2 / conc	N			
956*		REAL ATEM	Р	! calc t	emp from	eq. rea	latio	ns	
957*		REAL N2CO	NC	! abel i	nv, conc	of N2		_	INARG
958*		REAL CONS	Т	! prop.	const bet	ween co	onc and	d temp	
959*			CONCE -	7 2422521	`				
960*		PARAMETER	(CONST -	/.2432621)				
962*		REAL FACT	OB	l temper	ature of	nure N2	,		
963*		REAL DELT	ATEMP	! diff b	etween te	mperatu	ires		
964*		REAL NEWT	EMP	! new ap	prox temp	erature) }		
965*		REAL OUTT	EMP	! output	temperat	ure		OUTA	RG
966*		REAL REFQ		! refrac	tivity N	/ refr	N2	INAF	G
967*		REAL TEMP	ACC	! accura	cy in tem	p itera	ition		
968*									
969*		PARAMETER	(TEMPACC	= 5.0)					

970*

ND-500 ANSI 77 FORTRAN COMPILER - 2030541 16:30 3 JUL 1987 PAGE 25 SOURCE FILE: LM-ABEL-SPARKINV:SYMB

REAL N2NEW 971* ! calculated N2 conc OUTARG 972* REAL NNEW ! calculated N conc OUTARG 973* 974* 975* FACTOR = CONST / N2CONC 976* *** temperature iteration 977* 978* 979* 10 EPSILON = EPS(TEMP)980* ALFA = 2.0 * EPSILON / (1.0 - EPSILON)981* ATEMP = FACTOR * (1.0 + REFQ * ALFA) / (1 + ALFA) DELTATEMP = (ATEMP - TEMP) / 4.0982* NEWTEMP = TEMP + DELTATEMP 983* 984* 985* IF (ABS(DELTATEMP) . GT . TEMPACC) THEN 986* TEMP = NEWTEMP987* GOTO 10 988* ENDIF 989* 990* *** calculate outparameters 991* 992* OUTTEMP = TEMP 993* N2NEW = N2CONC / (1.0 + REFQ * ALFA) 994* NNEW = ALFA * N2NEW 995* 996* 997* RETURN 998* END

ND-500 ANSI 77 FORTRAN COMPILER - 203054I 16:30 3 JUL 1987 PAGE 26 SOURCE FILE: LM-ABEL-SPARKINV:SYMB

000+										
999" 1000+										
1000*										
1001*	REAL FUNCTION EFS(IEMF)									
1002*										
1003*	* SUBROUTINE REAL FUNCTION EPS									
1004*										
1005*	* DESCRIPTION:									
1000*	* The program carculates the equilibrium coefficient for NZ-2N reaction.									
1007*	* as a function of temperature and pressure. From this EPS, the									
1000*	* Fraction of N2 which dissociates to N, is calculated.									
1010*	* DEFERENCE: Hangen NACA Meghanigal Depart D_50 1050 *									
1010*	* *									
1011*										
1012*	* DAIR-FILLS OSED: HONE *									
1013*	* CURDEDCEDAME CALLED. DEAL FUNCTION LOCODN log of partition for N *									
1014"	* SUBPROGRAMS CALLED: REAL FUNCTION LOGOPN TO OF partition for N2 *									
1015*	* REAL FUNCTION LOGOPHZ TOG OF PARTICION ICH NZ *									
1017*										
1012*	* *									
1010*	* ND-MONTTOP CALLS USED, none *									
1020*	* ND-MONITOR CREES USED. HORE									
1020*	* COMMON BLOCKS USED. none									
1021*	* COMMON BLOCKS USED. HOHe									
1022*	* Drogram writton by Larg Martinggon January 1987 *									
1023*	* Program last modified by									
1025*	**************************************									
1026*										
1027*	REAL P I pressure in atm									
1028*										
1029*	PARAMETER(P = 1, 0)									
1030*										
1031*	REAL TEMP ! temperature in Kelvin									
1032*	REAL LOGKP ! log of eg. const									
1033*	REAL KP ! eg. const									
1034*	REAL LOGOPN ! log of parti for N FUNCSUB									
1035*	REAL LOGOPN2 ! log of parti fcn N2 FUNCSUB									
1036*										
1037*										
1038*										
1039*	LOGKP = -113200, / TEMP + 2.0 * $LOGOPN(TEMP) - LOGOPN2(TEMP)$									
1040*	KP = EXP(LOGKP)									
1041*										
1042*	IF(KP . GT . 0.0) THEN									
1043*	EPS = 1.0 / SQRT(1.0 + 4.0 * P / KP)									
1044*	ELSE									
1045*	EPS = 0.0									
1046*	ENDIF									
1047*										
1048*	RETURN									
1049*	END									
ND-500	ANSI 77	FORTRAN	COMPILER -	2030541	16:30	3 J	ΠΩ	1987	PAGE	27
--------	---------	----------	-------------	---------	-------	-----	----	------	------	----
SOURCE	FILE:	LM-ABEL-	-SPARKINV:S	YMB						

1050*	
1051*	
1052*	
1053*	
1054*	REAL FUNCTION LOGQPN(T)
1055*	***************************************
1056*	* SUBROUTINE REAL FUNCTION LOGQPN *
1057*	* *
1058*	* DESCRIPTION: *
1059*	* This function subroutine calculates the partition function for N for *
1060*	* temperatures below 15000 K. *
1061*	* *
1062*	* REFERENCE: Hansen, NASA Technical Report R-50, 1959 *
1063*	* *
1064*	* DATA-FILES USED: none *
1065*	* *
1066*	* SUBPROGRAMS CALLED: none *
1067*	* *
1068*	* EXTERNAL SUBPROGRAMS: none *
1069*	* *
1070*	* ND-MONITOR CALLS USED: none *
1071*	* *
1072*	* COMMON BLOCKS USED: none *
1073*	* *
1074*	* Program written by Lars Martinsson, January 1987 *
1075*	* Program last modified by *
1076*	***************************************
1077*	
1078*	
1079*	REAL T ! temperature Kelvin ARG
1080*	
1081*	LOGQPN = 2.5 * LOG(T) + 0.30 + LOG(4.0 + 10.0 * EXP(-
1082*	& $27700. / T) + 6.0 * EXP(- 41500. / T))$
1083*	
1084*	RETURN
1085*	END

ND-500 ANSI 77 FORTRAN COMPILER - 203054I 16:30 3 JUL 1987 PAGE 28 SOURCE FILE: LM-ABEL-SPARKINV:SYMB

1086*		
1087*		
1088*		
1089*	REAL FUNCTION LOGQPN2(T)	
1090*	***************************************	: * *
1091*	* SUBROUTINE REAL FUNCTION LOGQPN2	*
1092*	*	*
1093*	* DESCRIPTION:	*
1094*	* This function subroutine calculates the partition function for N2 for)r*
1095*	* temperatures below 15000 K.	*
1096*	*	*
1097*	* REFERENCE: Hansen, NASA Technical Report R-50, 1959	*
1098*	*	*
1099*	* DATA-FILES USED: none	*
1100*	*	*
1101*	* SUBPROGRAMS CALLED: none	*
1102*	*	*
1103*	* EXTERNAL SUBPROGRAMS: none	*
1104*	*	*
1105*	* ND-MONITOR CALLS USED: none	*
1106*	*	*
1107*	* COMMON BLOCKS USED: none	*
1108*	*	*
1109*	* Program written by Lars Martinsson, January 1987	*
1110*	* Program last modified by	*
1111*	***************************************	* *
1112*		
1113*	REAL T ! temperature Kelvin ARG	
1114*		
1115*	LOGQPN2 = 3.5 * LOG(T) - 0.42 - LOG(1.0 - EXP(-3390)	
1116*	& / T))	
1117*		
1118*	RETURN	
1119*	END	

ND-500 SOURCE	ANSI 77 FILE:	FORTRAN COMPILER LM-ABEL-SPARKINV	- 2030541 SYMB	16:30	3 JUL 1987	PAGE 29	
1120*							
1121*							
1122*							
1123*		SUBROUTINE OU	PUTWRITE(INFO	M. PRES. L	ABTEMP, LUNIT	AVN2CO	
1124*		&	AVNCO AVTEMI	$P_{\rm NMAX}$ N20	CO.NCO.TEMP	FILENAME)	
1125*		~	,	,,,	,	,	
1126*	**	* * * * * * * * * * * * * * * * * * * *	*****	*******	* * * * * * * * * * * *	*****	*****
1127*	*	SUBROUTINE OUTPUT	VR T T T T				*
1128*	*	50510011111 0011011					*
1129*	*	DESCRIPTION :					*
1130*	*	The output data a	re written to th	ne termin	al and optic	nally to a fi	ile *
1131*	*	with the same name	e as the data in	ne termin nut file	. excent the	at the file to	vne *
1132*	*	is changed to ·IIT	A plotting r	utine is	also called		· PC *
1133*	*	is changed to .or	• If proceeding it	Jucine 15	uiso cuiice	4 •	*
113/*	*	PEFERENCE. DODO					*
1135*	*	REFERENCE. HOHE					*
1126*	*			-"filoid"	• T I'T		*
1127*	*	DAIA-LIDE2 02ED: 1		Tileiu	•01		*
1120+	*			tting nr	oaram		*
1120*	*	SUBPROGRAMS CALLEI	p: PLOI pic	buing pro	Jyraii		*
1140+			MC. nono				*
1140^	- +	EXTERNAL SUBPROGRA	MP2: HOUE				- +
1141^	, +			C	of gurroot 4	ima and data	- -
1142*	^ ب	ND-MONITOR CALLS	JSED: CLOCK	G	et current t	time and date	÷
	х х			Ľ.	rom operatin	ig system	÷
	т ×						<u>.</u>
1145*		COMMON BLOCKS USEI	J: none				Ĵ
1146*	т х		- T March 1		0.07		т ,
114/*	*	Program written by	Z Lars Martinsso	on, May 1	987		- -
1148*	*	Program last modil	1ea by		<u>د. بد بد بد بد بد بد به مد مد مد به م</u>		*
1149*	**	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *		* * * * * * * * * * * * *	*****	
1150*							
1151*					-		
1152*		CHARACTER*10	INFORM(1:4)	!	Experiment	inform	
1153*		REAL	PRES	!	pressure in	i torr in gas	
1154*		REAL	LABTEMP	!	temp in Kel	vin in gas	
1155*		REAL	LUNIT	!	length unit	r-direction	CM
1156*		REAL	AVN2CO	1	av.num.den.	N2 Cm-3	
1157*		REAL	AVNCO	!	av.num.den.	N cm-3	
1158*			AVTEMP	!	equilib. av	v. temp	
1159*		INTEGER	NMAX	!	number of y	v-values on ir	iput
1160*		REAL	N2CO(1:NMAX)) 1	equili. N2	numb. dens.	
1161*		REAL	NCO(1:NMAX)	!	equili. N r	numb. dens.	
1162*		REAL	TEMP(1:NMAX)) !	equili. tem	nperature	
1163*		CHARACTER*30	FILENAME	!	Total name	output file	
1164*		CHARACTER*9	MONTH(1:12)	!	name of mor	ths DATA	
1165*		REAL	MINCONC	!	output minc	conc parameter	E
1166*		REAL	R(1:21)	!	r-vector		
1167*		CHARACTER	ANSW	!	answer to Y	/N question	
1168*		CHARACTER*16	TEXT	!	text in plo	ot quoestion	
1169*		INTEGER	PARAMS(1:7)	1	output from	n CLOCK,time o	late
1170*		INTEGER	I	1	DO-loop var	iable	

ND-500 ANSI 77 FORTRAN COMPILER - 2030541 16:30 3 JUL 1987 PAGE 30 SOURCE FILE: LM-ABEL-SPARKINV:SYMB 1171* 1172* 1173* DATA MONTH/' JANUARY',' FEBRUARY',' MARCH',' APRIL', . MAY',' JUNE',' AUGUST', 1174* JULY',' & 'SEPTEMBER',' OCTOBER',' NOVEMBER',' DECEMBER'/ 1175* & 1176* 1177* *** set small concentration values equal to zero 1178* 1179* MINCONC = 1.E51180* 1181* IF(AVN2CO . LT . MINCONC) AVN2CO = 0.0 1182* IF(AVNCO . LT . MINCONC) AVNCO = 0.01183* 1184* DO 10 I = 1 , NMAX 1185* IF(N2CO(I) . LT . MINCONC) N2CO(I) = 0.01186* IF(NCO(I) . LT . MINCONC) NCO(I) = 0.010 1187* CONTINUE 1188* 1189* 1190* *** write output to the terminal 1191* WRITE(*,*)' IMAGE NUMBER :', INFORM(1) 1192* 1193* WRITE(*,*)' SYSTEM :', INFORM(2), ' SPARKPLUGG :', INFORM(3) WRITE(*,*)' TIME :', INFORM(4), 'MICROSECONDS' 1194* 1195* WRITE(*,900)' PRESSURE :', PRES, ' TORR', 'LABTEMP : ', LABTEMP, 'K' 1196* WRITE(*,200)' MEAN TEMPERATURE :', AVTEMP, ' KELVIN' 1197* 1198* WRITE(*,*)' MEAN NUMBER DENSITY IN CM-3' WRITE(*,300)' MOLECULES : ', AVN2CO ,'ATOMS : ',AVNCO 1199* 1200* WRITE(*,*)' SPATIALLY RESOLVED DATA ' WRITE(*,400)' RADIAL DIST', 'TEMPERATURE', 'MOLECULES', 'ATOMS' 1201* WRITE(*,500)'CM','KELVIN',' CM-3',' CM-3' 1202* 1203* DO 20 I = 1 , NMAX R(I) = (I - 1.0) * LUNIT1204* 1205* WRITE(*,600) R(I) , TEMP(I) , N2CO(I) , NCO(I) 1206* 1207* IF(MOD(I,3) . EQ. 0)THEN WRITE(*,*) 1208* 1209* ENDIF 1210* 1211* 20 CONTINUE 1212* *** call plot of temperature 1213*1214* TEXT = 'TEMPERATURE' 1215* 1216* CALL PLOT(NMAX, R, TEMP, TEXT) 1217* 1218* 1219* *** write output-data to specified file 1220* WRITE(*,100) ' DO YOU WANT TO STORE OUTPUT DATA? Y/N:' 1221*

ND-500	ANSI 7	7 FORTRAN	COMPILER -	· 203054I	16:30	3 JUL	1987	PAGE	31
SOURCE	FILE:	LM-ABEL-	-SPARKINV:S	YMB					

1222*		READ(*,*)ANSW
1223*		IF(ANSW . EQ . 'Y' . OR . ANSW . EQ . 'y')THEN
1224*		
1225*		WRITE(*,800)' WRITING TO FILE ',FILENAME
1226*		
1227*		CALL CLOCK (PARAMS)
1228*		I = PARAMS(6)
1229*		
1230*		OPEN(8,FILE=FILENAME,STATUS='UNKNOWN',ACCESS='WRITE')
1231*		
1232*		WRITE(8,700) 'WRITTEN : ',PARAMS(4),PARAMS(3),PARAMS(2),
1233*		& MONTH(I), PARAMS(5), PARAMS(7)
1234*		WRITE(8,*)' IMAGE NUMBER :', INFORM(1)
1235*		WRITE(8,*)' SYSTEM :', INFORM(2), ' SPARKPLUGG :',
1236*		& INFORM(3)
1237*		WRITE(8,*)' TIME :', INFORM(4), 'MICROSECONDS'
1238*		WRITE(8,900)' PRESSURE :', PRES, ' TORR', 'LABTEMP : '
1239*		& LABTEMP, 'K'
1240*		· · · · · · · · · · · · · · · · · · ·
1241*		
1242*		WRITE(8,200)' MEAN TEMPERATURE :',AVTEMP,' KELVIN'
1243*		WRITE(8,*)' MEAN NUMBER DENSITY IN CM-3'
1244*		WRITE(8,300)' MOLECULES : ', AVN2CO ,'ATOMS : ',AVNCO
1245*		WRITE(8,*)' SPATIALLY RESOLVED DATA '
1246*		WRITE(8,400)' RADIAL DIST', 'TEMPERATURE', 'MOLECULES', 'ATOMS'
1247*		WRITE(8,500)'CM', 'KELVIN', 'CM-3', 'CM-3'
1248*		$DO_{30} T = 1$, NMAX
1249*		R(I) = (I - 1.0) * LUNIT
1250*		WRITE $(8,600)$ R(I), TEMP(I), N2CO(I), NCO(I)
1251*		
1252*		IF(MOD(I,3), EO, 0) THEN
1253*		WRITE(8,*)
1254*		ENDIF
1255*		
1256*	30	CONTINUE
1257*		
1258*		CLOSE(8)
1259*		
1260*		ENDIF
1261*		
1262*		RETURN
1263*	100	FORMAT (A)
1264*	200	FORMAT(A, F6.0, TR1, A/)
1265*	300	FORMAT(A, 1PE12.5, TR3, A, E12.5///)
1266*	400	FORMAT(T3,A,TR4,A,TR4,A,TR10,A)
1267*	500	FORMAT(T8,A,TR11,A,TR7,A,TR12,A/)
1268*	600	FORMAT(T3,1PE12.5,0P,TR5,F7.0,1P,2(TR5,E12.5))
1269*	700	FORMAT(' ',A,I2,'.',I2,'.',I2,' ',A9,' ',I2,' ',I4//)
1270*	800	FORMAT(T2,2A)
1271*	900	FORMAT(A, F5.1, TR1, A, TR3, A, F5.1, TR1, A//)
1272*		END

```
1273*
1274*
1275*
1276*
               SUBROUTINE PLOT(N,X,Y,QUEST)
1277*
1278*
          1279*
          * This program calls the plot subroutine AUTOPLOT ( written by Lars
                                                                           *
                                                                           *
1280*
          * Gramstad ) which runs on the ND-computer Bertil at Dep. of Physics
                                                                           *
1281*
          * in Lund. The subroutine NOTGRAPH must be used when the PC-PERFECT
1282*
          * emulator is used.
                                                                           *
                                                                           *
1283*
          *
                                                                           *
          *
                   External subroutines:
1284*
1285*
          *
                               (A-LG)AUTOPLOT
                                               plotprogram
                                                                           *
1286*
          *
                                               Tectronix subroutines
                                                                           *
                               (UTILITY)TCS
          *
                                                                           *
1287*
                               (A-LM)LM-NOTGRAPH clears screen for PC-PERFECT
          *
                                                                           *
1288*
                                               emulator
          +
                                                                           *
1289*
          * Program written by Lars Martinsson, February 1987
                                                                           *
1290*
                                                                           *
1291*
          * Program last modified by
          1292*
1293*
1294*
               INTEGER
                            N
                                     ! number of points to plot
1295*
               REAL
                            X(1:N)
                                     ! x-value in plot
1296*
               REAL
                            Y(1:N)
                                     ! y-value in plot
                                     ! text in question
1297*
               CHARACTER*16
                            QUEST
1298*
               CHARACTER
                            ANSW
                                     ! answer to Y/N question
1299*
1300*
               WRITE(*,100) '¤DO YOU WANT TO PLOT '// QUEST //'? Y/N: '
1301*
1302*
               READ(*,*)ANSW
               IF( ANSW . EQ . 'Y' . OR . ANSW . EQ . 'y' )THEN
1303*
                   CALL AUTOPLOT(X,Y,N,0,0,0,0,0)
1304*
                   CALL NOTGRAPH
1305*
1306*
               ENDIF
1307*
               RETURN
1308*
1309*
          100
               FORMAT(A)
               END
1310*
```

0.633 1.10E-23 0.63

Image number		:28-25
System		: BOSCH
Sparkplugg		:SPETSELEKTROD
Time (microse	econds)	:2000.0
Pressure (To	cr)	:727.2
Temperature ((Kelvin)	:293.0
Fringe dist ł	background (mm):0.1392
Magnification	n factor	:1.5943
Number of ing	put-values	:19
Input-val	Lues in mm!!	
х	Y	
10.76	-59.912	
10.82	-59.923	
10.875	-59.931	
10.935	-59.938	
10.995	-59.942	
11.055	-59.949	
11.11	-59.953	
11.17	-59.960	
11.23	-59.961	
11.29	-59.961	
11.345	-59.964	
11.405	-59.971	
11.465	-59.971	
11.52	-59.960	
11.58	-59.945	
11.64	-59.936	
11.70	-59.929	
11.755	-59.916	
11.815	-59.909	

```
Image number
                        :
                        :
System
Sparkplugg
                        :
Time (microseconds)
                        :
Pressure (Torr)
                       :
Temperature (Kelvin)
                       :
Fringe dist background (mm):
Magnification factor
                       :
Number of input-values :
   Input-values in mm!!
     Х
          Y
```

File (PACK-ONE-1:ATOM-LM)LM-ABEL-MATRIS:DATA;1 / 13 October 1986 at 15:27

-2029.	-1831.	-1239.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.
-4439.	-4041.	-2847.	-1324.	Ο.	Ο.	Ο.	ο.	Ο.	Ο.	Ο.	ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	ο.	Ο.	Ο.
-1791.	-1778.	-1740.	-1936.	-1172.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	ο.	Ο.	Ο.
5111.	4342.	2034.	-928.	-1523.	-1036.	Ο.	Ο.	Ο.	Ο.	ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	ο.	Ο.	Ο.
1298.	1299.	1304.	964.	-722	-1291.	-930.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.
95.	204.	531.	969.	538.	-635.	-1140.	-847.	Ο.												
237.	262.	338.	501.	810.	330.	-586.	-1032.	-781.	Ο.											
193.	203.	235.	292.	464.	714.	214.	-551.	-951.	-727.	Ο.										
152.	157.	173.	202.	260.	431.	646.	142.	-524.	-886.	-682.	Ο.									
122.	125.	134.	150.	179.	236.	403.	595.	95.	-501.	-834.	-644.	Ο.								
99.	101.	107.	117.	133.	162.	217.	380.	555.	63.	-482.	-790.	-612.	Ο.							
82.	84.	87.	94.	104.	120.	148.	202.	359.	522.	39.	-465.	-752.	-583.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.	0.
69.	70.	73.	77.	84.	94.	111.	138.	189.	342.	495.	22.	-450.	-720.	-558.	Ο.	Ο.	Ο.	Ο.	Ο.	Ο.
59.	60.	61.	65.	69.	76.	87.	103.	129.	179.	326.	471.	9.	-437.	-691.	-536.	Ο.	Ο.	Ο.	Ο.	Ο.
51.	51.	53.	55.	58.	63.	70.	81.	96.	122.	170.	313.	450.	-1.	-424.	-666.	-517.	Ο.	Ο.	Ο.	Ο.
44.	45.	46.	47.	50.	53.	58.	65.	75.	91.	115.	162.	301.	432.	-9.	-413.	-643.	-499.	0.	0.	Ο.
39.	39.	40.	41.	43.	46.	49.	54.	61.	71.	86.	110.	155.	290.	416.	-15.	-402.	-623.	-483.	Ο.	Ο.
35.	35.	35.	36.	38.	40.	43.	46.	51.	58.	67.	82.	105.	149.	280.	402.	-20.	-393.	-604.	-468.	Ο.
31.	31.	32.	32.	33.	35.	37.	40.	43.	48.	55.	64.	78.	101.	144.	271.	389.	-24.	-384.	-587.	-455.
28.	28.	28.	29.	30.	31.	33.	35.	37.	41.	46.	52.	61.	75.	97.	139.	263.	377.	-28.	-375.	-571.
25.	25.	25.	26.	27.	28.	29.	31.	33.	35.	39.	44.	50.	59.	72.	94.	135.	256.	367.	-30.	-367.

Page 1

.1