Comparative Studies Of Electrical Properties

And Temperature Behaviour
Of Inductive And Capacitive Sparks

For Ignition Systems

Diploma paper
by
Tomas L Starczewski
LRAP-73 (1987)
Department of Physics, Lund Institute of Technology
P.O. Box 725, S-220 07 LUND
together with:
Mecel AB of SAAB-Scania Combitech
Box 32, S-662 00 AMAL

1. INTRODUCTION
2. ELECTRICAL MEASUREMENTS
2.1 Introduction
2.2 Experimental details2.3 Results and discussion
3. OPTICAL MEASUREMENTS
3.1 Introduction
3.2 Experimental details
3.3 Results and discussion
4. REFERENCES
5. ACKNOWLEDGEMENTS
6. APPENDIX
c

The performance levels required of petrol engines have been rising with each year. Recently, attention has been focused on the factors improving engine driveability, in addition to exhaust emission purification and better fuel consumption economy.

In engine combustion, the first important stage of the combustion process is ignition. In many investigations attempts have been made to improve combustion by enhancing ignition performance. One particular way of obtaining this goal has been the design of new ignition systems.

Conventional ignition systems are based on the inductive priciple. Recently however designers have turned their attention towards another principle employing capacitive discharge circuits.

Capacitive ignition systems are said to have a considerable number of advantages. A few of them are:

- due to the inherent properties of capacitive systems the scattering in the time delay between the voltage pulse and the spark is strongly reduced,
- due to the shorter spark duration time lifetimes of sparking plugs are much longer,
- much better lean mixture operating conditions,
- in some capacitive systems [1] the flame kernel expands more rapidly than in conventional (inductive) systems.

The basic purpose of this diploma work was to examine the electrical properties and the temperature behaviour of inductive and capacitive sparks.

The systems investigated in this diploma work were a commercially available inductive system and a capacitive system. Comparison with yet another capacitive system - one generating ultra-short high-current sparks - was also made. Throughout this paper I will be referring to these three as the inductive, the ordinary capacitive and the ultra-fast capacitive system respectively.

The electrical properties measured were the voltage and the current of the sparks. The power and the dissipated energy were computed numerically.

The temperature behaviour of the sparks was determined by means of one-wavelength optical interferometry.

2.1. INTRODUCTION

All the electrical measurements were carried out under exactly the same conditions. The parameters held constant were:

- the air pressure $\cong 760 \mathrm{~mm} \mathrm{Hg}$ (atmospheric)
- the air temperature $=22^{\circ} \mathrm{C}$
- the power supply voltage $\cong 12 \mathrm{~V} \mathrm{DC}$ A commercial car-battery was used
- the outer electrical properties such as cable capacitances and inductances

Two different sparking plugs were used:

1. commercial sparking plug with flat electrodes,
2. specially designed sparking plug with sharply edged electrodes of stainless steel.

In both cases the constant parameter was:

- the electrode separation $=0.90 \pm 0.05 \mathrm{~mm}$

The ultra-fast capacitive system used electrodes whose shapes were half spheres with a radius of 1.5 mm , and they were separated by approximately 2 mm . All electrode arrangements are shown in Fig. 2:1.

2. 2 EXPERIMENTAL DETAILS

The properties directly measured were the current and the voltage of the spark. In order to obtain the time spectra of the these parameters a fast oscilloscope with a Polaroid camera were used for the registration. The spark frequency was set to be approximately 1 Hz .

In the inductive system the symmetric square-wave trig pulse was sent to the ignition circuit generating an electrical pulse to the ignition coil, generating in turn the high voltage needed for the break-down. The diode was placed only for the protection of the transistor and had no effect on the pulse shape. The coaxial 50Ω coaxial cable was used for the high-voltage connections.

Fig. 2:2. Electrical arrangement for the inductive system.

Fig. 2:3. Electrical arrangement for the ordinary capacitive system.

Fig. 2:4. Electrical arrangement for the ultra-fast capacitive system.

The current and the voltage measurements were conducted on different sparks. Reproductivity of the current and the voltage shapes were good for the systems with conventional sparking plugs as seen from the oscilloscope screen.

The spark current was measured by a resistor made of a special alloy. Special care was taken to avoid contact resistances in resistance measuring. The resistance had to be kept low for the inductive system in order not to change the system's behaviour.

The spark voltage was measured with a conventional high-voltage probe. The probe was carefully calibrated and the attenuance ratio was 1095 times.

The temporal behaviour of the power was obtained by manual multiplication of the current and the voltage pulses.

The dissipated energy in the sparks was calculated using $\int p \cdot d t=\int(u \cdot i) d t$.

2.3 RESULTS AND DISCUSSION

Examples of the shapes of the current and the voltage pulses together with the power and the energy of the different sparks are shown in figures 2:5 - 2:7. Comparative diagrams of the spark energies are shown in figures $2: 8$ and 2:9. Exact plots of the power can be found in appendices A:1-A:4.

There is an inevitable variation in the obtained data due to the fact that the current and the voltage measurements were performed at different times and consequently on different sparks.

The different natures of the measured systems show clearly in their different electrical properties.

The inductive system's power quickly rises (in about $0.5 \mu s$) to approximately 800 W only to decrease rapidly. The time domain of that decrease is 3 ms . The energy is therefore dissipated mainly during the first 2 ms . The total energy is approximately 8 $\mathrm{mJ})$. The behaviour of the inductive system can be seen in figure 2:5.

The quicker commercial capacitive system's current and voltage are of oscillatory nature. The power is therefore also a series of short energy-rich pulses. The first two pulses are highest measuring 990 W and 920 W and occuring at $5 \mu \mathrm{~s}$ and $20 \mu \mathrm{~s}$ respectively. The remaining pulses are smaller and contribute less to the total energy dissipation of approximately 35 mJ . The main portion of energy is pumped during the first $100 \mu \mathrm{~s}$. The behaviour of the commercial capacitive system can be seen in figure 2:6.

The ultra-fast capacitive system's power is a single pulse with a maximum of 3 MW at 15 ns . Almost all energy (75 mJ) is transferred in 40 ns . The behaviour of the ultra-fast capacitive system can be seen in figure 2:7.

The immense time difference in the energy behaviour of the systems is shown in figures 2:8 and 2:9. In figure 2:8 we can see the difference in rapidness between the inductive and commercial capacitive systems. The difference is even greater when the commercial and the ultra-fast capacitive systems are compared in figure 2:9.

The slight differences between the standard plug and the sharp-edge electrode plug measurements can only be explained by somewhat different electrical properties of the two arrangemnets. The measuring of their inductances and capacitances has however not been able to prove that such differences exist.
ENERGY
$[\mathrm{mJ}]$
ultra-fast capacitive system

Fig.5. The voltage, the current, the power and the energy of the inductive system. (STANDARD OLUG)

Fig.6. The voltage, the current, the power and the energy of the commercial capacitive system. (STANDARD PLUb)

3.1 INTRODUCTION

A number of different optical devices and methods were employed to determine the temporal temperature distribution and the electron densities in the sparks.

All the experiments were carried out under similar circumstances. The parameters held constant were:

- the battery voltage - approximately 12 volts DC,
- the spark environment - nitrogen gas,
- the temperature - 22 degrees Centigrade.

The atmospheric pressure was read off continuously during the experiments.

Below follows a description of the devices used in the experiments. Also a short summary of the theory is given.

Optical interference is a basic concept of the subject of optics. According to the wave theory, light can be interpreted as an electromagnetical wave having in every point in space and in every moment in time a well-defined value of the electric-field density E and the magnetic-field density B. According to the same theory the resulting electric-field density, at a point in space where two or more light waves overlap, is equal to the vector sum of the individual contituent disturbances obeying the important principle of superposition. Briefly, optical interference may be termed as an interaction of two or more light waves yielding a resultant irradiance which deviates from the sum of the component irradiances. Optical systems taking advantage of the phenomenon of interference are called intereferometers. Monochromatic laser light is often used in interferometers.

The Mach-Zehnder interferometer is an amplitude-splitting device, that is where the incoming primary light wave is devided into two segments which travel different paths before recombining and interfering. As shown in Fig.3.1 the Mach-Zehnder interferometer consists of two beam splitters and two totally reflecting mirrors. The two waves within the apparatus travel along separate paths. A difference between the optical paths can be introduced by a slight tilt of one of the beam splitters. Since the two paths are
separated, the interferometer is relatively difficult to align. For the very same reason, however, it finds a large number of applications. The pattern on the interferograms is a series of parallell and mutually interchanging dark and light fringes.

Fig. 3.1. The Mach-Zehnder interferometer

Introducing an object with varying index of refraction, such as a hot spark plasma, in one beam alters the optical path-length difference, thereby changing the fringe pattern. The example of a fringe pattern obtained is shown in Fig. 3.2.

Fig.3.2. The fringe patterns of the hot plasma.

The dye-laser is a laser in which the active medium consists of solution of certain organic dye compounds in liquids. The laser wavelength can be tuned continuously within a large range. The dye laser used was the Lambda Physik FL 2002 and operated in the pulse mode. The pulse energy was in the milijoule region. The duration of the pulses was 15 ns and the wavelength was 633 nm . This wavelenth was chosen for the best fringe pattern visibility.

The excimer laser Lambda Physik EMG 102 was employed as a pump laser for the dye laser. Excimer lasers use excimers as the active medium. An excimer is a molecule that only exists in the excited state. It has accordingly no stable ground state. The excimer used was XeCl that produced intensive 15 ns long light pulses of 308 nm wavelength.

The camera used for the registration of the interferograms was a standard 35 mm Nikkormat camera equipped with a 300 mm lens. The magnification factor was approximately 0.8.

The Abel inversion method.

PRELIMINARY CONSIDERATIONS

When an electromagnetic wave travels through a medium with a refractive index μ, the change of the optical pathlength $\Delta \mathrm{L}$ is giv by:

$$
\begin{equation*}
\Delta L=\int \Delta \mu(1) d l \tag{3:1}
\end{equation*}
$$

where $\Delta \mu$ is the variation of the refractive index along the path and L is the geometrical length of the medium. The components of the medium, in the general case the spark plasma consisting of molecules, atoms, ions and electrons, contribute to the refractive index, and the individual contributions are calculated from the specific refractivities K_{i}, and the number densities n_{i}, as:

$$
\begin{equation*}
\mu-1=\sum \mathrm{K}_{\mathrm{i}} \mathrm{n}_{\mathrm{i}} \tag{3:2}
\end{equation*}
$$

In the case of a single species' plasma this can be written as:

$$
\begin{equation*}
\mu-1=K_{e} n_{e}+K_{m} n_{m}+K_{a} n_{a}+K_{1} n_{1}+K_{2} n_{2}+\ldots \tag{3:3}
\end{equation*}
$$

where the subscript e stands for electrons,
m for molecules,
a for atoms,
1 for ions with charge -1,
2 for ions with charge -2.
In the interferometric measurement the refractive index is measured with the gas at room temperature and atmospheric pressure as a reference (i.e. no molecular dissociation or ionization present). Then the variation of the refractive index becomes:

$$
\begin{equation*}
\Delta \mu=K_{e} n_{e}+K_{m}\left(n_{m}-n_{o}\right)+K_{a} n_{a}+K_{1} n_{1}+K_{2} n_{2}+\ldots \tag{3:4}
\end{equation*}
$$

where the undisturbed molecular density n_{0}, is calculated from the ideal gas law:
as

$$
\begin{align*}
& \mathrm{pV}=\mathrm{NRT} \\
& \mathrm{n}_{\circ}\left[\mathrm{cm}^{-3}\right]=9.6570 \cdot 10^{18} \cdot \frac{\mathrm{p}[\text { torr }]}{T[\text { Kelvin }]} \tag{3:5}
\end{align*}
$$

The measured quantity of the interferometric images is the number of fringe shifts due to the density variations along the path of integration which equals:

$$
\begin{equation*}
\Delta \mathrm{N} \cdot \frac{\Delta \mathrm{~L}}{\lambda}=\frac{1}{\lambda} \int \Delta \mu \cdot \mathrm{dl} \tag{3:6}
\end{equation*}
$$

The spark is assumed to be cylindrically symmetric. Then the number densities in equation 3:3 are functions of a radial coordinate r, with $r=a$ at the center of the spark. Consequently, the variation of the refractive index is also a function of r. The integration path in equation $3: 6$ should therefore be transformed to radial coordinates as follows:

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \\
x^{2}+y^{2} & =R^{2}
\end{aligned}
$$

Fig. 3.3. Geometrical relations between variables.

From figure 3.3 we see that equation $3: 6$ in this case should be written

$$
\begin{equation*}
\Delta N(y)=\frac{1}{\lambda} \cdot \int \Delta \mu(r) \cdot d x \tag{3:7}
\end{equation*}
$$

The integration is performed along a strip of constant y, and a variable transformation from the Cartesian coordinates to the radial coordinates is done according to:

$$
d x=\frac{r}{\left(r^{2}-y^{2}\right)^{1 / 2}} \cdot d r
$$

and

$$
X=\left(R^{2}-y^{2}\right)^{1 / 2}
$$

That gives:

$$
\begin{equation*}
\Delta N(y)=\frac{2}{\lambda} \cdot \int \frac{\Delta \mu(r) \cdot r \cdot d r}{\left(r^{2}-y^{2}\right)^{1 / 2}} \tag{3:8}
\end{equation*}
$$

where the symmetry about the y-axis has been taken advantage of. The equation $3: 8$ is one form of the Abel integral equation. If $\Delta \mu(r)$ is assumed to be zero for $r>R$, it is possible to invert $3: 8$ analytically into:

$$
\begin{equation*}
\Delta \mu(r)=-\frac{\lambda}{\pi} \cdot \int \frac{\frac{d(\Delta N(y))}{d y}}{\left(y^{2}-r^{2}\right)^{1 / 2}} \cdot d y \tag{3:9}
\end{equation*}
$$

or, equivalently, if the $\Delta N(y)$ function is well-behaved:

$$
\begin{equation*}
\Delta \mu(r)=-\frac{\lambda}{\pi r} \cdot \frac{d}{d r} \cdot \int \frac{\Delta N(y) \cdot y}{\left(y^{2}-r^{2}\right)^{1 / 2}} \cdot d y \tag{3:10}
\end{equation*}
$$

These two last equations are the Abel inversion formulas and they follow from equation $3: 8$ in the case of cylindrical symmetry.

The Abel inversion method is very well suited for numerical treatment on computers.

The fringe shift values are obtained as a set of discrete numerical values from the measurements of the interferometric images. If a numerical inversion method is employed (based on equation 3:9) such as Bockasten's method [ref.8] for instance, serious complications may arise. When the numerical derivative in equation 3:9 is evaluated, the noise of the data is drastically amplified. These methods should therefore only be used when the random errors in the fringe shift values are negligible. In the second inversion formula of equation 3:10, the order of integration and differentiation is reversed and this reduces the noise amplification. An example of a method based on that relation is the method proposed by Barr [ref.9] which will now be discribed.

The formula 3:10 can be divided into two parts:

$$
\begin{equation*}
F(r)=2 \cdot \int \frac{\Delta N(y) \cdot y}{\left(y^{2}-r^{2}\right)^{1 / 2}} \cdot d y \tag{3:11}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \mu(r)=\frac{\lambda}{2 \pi r} \cdot \frac{d F(r)}{d r} \tag{3:12}
\end{equation*}
$$

If we now require that the fringe shift values should be measured at equidistant points, i.e. the coordinates:

$$
\begin{equation*}
y_{n}=n \cdot \Delta \tag{3:13}
\end{equation*}
$$

where n are integers in the range

$$
\begin{equation*}
0 \leq \mathrm{n} \leq \mathrm{N} \tag{3:14}
\end{equation*}
$$

and $\quad R=N \cdot \Delta$
Consequently, the Abel inverted fringe shift values per unit length will be calculated at the points:

$$
\begin{equation*}
r_{n}=n \cdot \Delta \tag{3:16}
\end{equation*}
$$

From the measured fringe shift values ΔN_{n}, a fringe shift function $\Delta N(y)$ is now constructed by assuming that that function must consist of second-order polynomials between the measured points:

$$
\begin{equation*}
\Delta N(y)=a_{n}+b_{n} \cdot y^{2}, \quad Y_{n} \leq y \leq y_{n+1} \tag{3:17}
\end{equation*}
$$

where the coefficients are determined by requiring that the measured values and the constructed curve's values should be the same:

$$
\begin{align*}
& \Delta N\left(y_{n}\right)=\Delta N_{n} \tag{3:18}\\
& \Delta N\left(y_{n+1}\right)=\Delta N_{n+1} \tag{3:19}
\end{align*}
$$

This form was chosen because it has the necessary zero-slope at $y=0$ for the convergence condition and it has an accuracy at least as good as the accuracy in the ΔN_{n} values. The integration of equation 3:17 can now be performed analytically to give the $F(r)$ function as a set of discrete values F_{k} dependent on the measured fringe shifts:

$$
F_{k}=F\left(r_{k}\right)=\Delta \sum_{n=k}^{N} \alpha_{k n} \Delta N_{n}
$$

The expression for the coefficients $\alpha_{k n}$ can be found in Barr's article. Here it is enough to note that they are slowly varying functions of n and k, and that the F_{k}-values are relatively insensitive to small random errors in the $\Delta \mathrm{N}_{\mathrm{n}}$-values.

A least-squares method is then applied to fit a polynomial $F(k)$ into each section of the F_{k} versus k-curve. This is sufficient since the errors in the F_{k}-values are small. The F_{k}-values are represented at each point by a polynomial $F(k)$ of the form:

$$
\begin{equation*}
F(k)=\left(A_{k}+B_{k} k^{2}+C_{k} k^{4}\right) \cdot \Delta \tag{3:21}
\end{equation*}
$$

where the coefficients A_{k}, B_{k} and C_{k} are determined in terms of $\alpha_{k n}$ and ΔN_{n} by requiring that the sum of the differences between F_{k} (equation 3:20) and $F(k)$ (equation $3: 21$) over the five points from $k-2$ to $k+2$ should be as small as possible. The form of the polynomial 3:21 has been chosen because it gives the best fit to a Gaussian profile. For the two points $k=0$ and $k=1$, the points $k=0,1,2,3,4$ were used for the fit.

When the expression $3: 21$ is substituted into the equation 3:12 we obtain:

$$
\begin{equation*}
\Delta \mu\left(r_{k}\right)=\frac{\lambda}{2 \pi \Delta^{2} k} \cdot \frac{d F(k)}{d k}=-\frac{\lambda}{\pi \Delta} \cdot\left(B_{k}+2 C_{k} k^{2}\right) \tag{3:22}
\end{equation*}
$$

The combination of two coefficients is then of the form:

$$
B_{k}+2 C_{k} k^{2}= \begin{cases}-\sum_{n \times k-2}^{N} \beta_{k n} \Delta N_{n} & , k \geq 2 \tag{3:23}\\ -\sum_{n=0}^{N} \beta_{k n} \Delta N_{n} & , k<2\end{cases}
$$

where the $\beta_{k n}$ are functions of k and n only, and not dependent on N.

Combining the formulas 3:22 and 3:23 produces the final result the Abel inversion formula:

$$
\Delta \mu_{\mathrm{k}}=\Delta \mu\left(\mathrm{r}_{\mathrm{k}}\right)= \begin{cases}\frac{\lambda}{\pi \Delta} \cdot \sum \beta_{\mathrm{kn}} \Delta \mathrm{~N}_{\mathrm{n}} & , \mathrm{k} \geq 2 \tag{3:24}\\ \frac{\lambda}{\pi \Delta} \cdot \sum \beta_{\mathrm{kn}} \Delta \mathrm{~N}_{\mathrm{n}} & , \mathrm{k}<2\end{cases}
$$

In the coefficients $\beta_{k n}$ the entire process of integration, least-square fitting and final differentiation is incorporated. The values of the β_{kn}-coefficients (multiplied by a facor -10^{4}) are given in the program listing [Appendix]. Barr recommends that this method should be used when the noise of the input data is of the order of magnitude of one percent.

Finally it must be mentioned that because the β_{kn}-coefficients are obtained by the fitting of the $\mathrm{F}(\mathrm{k})$-polynomials (equation 3:21) into a Gaussian profile, the final values of the inversion for small k-values are smaller than the real values and slightly higher than the real values for high k-values.

REFRACTIVITY OF THE PLASMA COMPONENTS

In the preceding section the procedure of how to calculate the variation of the refractive index as a function of the radial coordinate from the measured fringe-shift patterns, was outlined. Using equation $3: 4$ it is then possible to calculate the number densities of some plasma components if the refractivities are known and some additional assumptions about the state of the plasma are made.

Both classical and quantum mechanics agree on the formula for the index of refraction:

$$
\begin{equation*}
\mu-1=\frac{2 \cdot \mathrm{e}^{2}}{m} \sum \mathrm{n}_{\mathrm{l}} \sum \frac{\mathrm{f}_{1 \mathrm{k}}}{\omega_{1 \mathrm{k}}-\omega^{2}} \quad, \omega \neq \omega_{1 \mathrm{k}} \tag{3:25}
\end{equation*}
$$

where n_{1} is the particle density in quantum state l,
m is the electronic mass,
$f_{1 k}$ is the oscillator strength for transitions between states l and k,
$\omega_{1 k}$ is the angular frequency of the line corresponding to the transition from l to k,
and ω is the frequency of the electromagnetic wave passing through the medium.

There are, however, some difficulties when using the formula. The oscillator strengths of many levels must be known, and the transitions from discrete to continuum states must be included. Moreover, expression $3: 25$ is strictly true only if the wavelength of
the impinging radiation is far away from any resonance wavelengths. Otherwise, imaginary damping constants have to be included in the denominator.

If the used wavelengths are far from the resonance wavelengths and only a restricted range of frequencies are allowed, it is possible to expand the formula $3: 25$ into a power series of λ^{-2}. In that way we arrive at the Cauchy formula:

$$
\begin{equation*}
\mu-1=A+\frac{B}{\lambda^{2}}=K_{r} n_{r}=\left(A_{r}+\frac{B_{r}}{\lambda^{2}}\right) \cdot n_{r} \tag{3:26}
\end{equation*}
$$

which is a good approximation for a given species' ground state in the desired range. For nitrogen molecules the numerical values of the constants at room temperature, a pressure of 1 atmosphere and in the range of the visible electromagnetic radiation gives the following formula for the refractivity:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{m}}\left[\mathrm{~cm}^{3}\right]=1.08 \cdot 10^{-23}+\underline{7.6 \cdot 10^{-34}} \tag{3:27}
\end{equation*}
$$

The same relation is valid for nitrogen atoms and ions (with different values of the constants A and B, but since these expressions will not be needed in the subsequent treatment, they are not given here). The refractivity is also dependent on the temperature especially when the temperature is high. The contribution from excited states becomes also more dominant.

Finally, it should be mentioned that the normally dominating contribution to the plasmatic refractivity comes from the free electrons. If the incoming radiation's angular frequency is much greater than the electron plasma frequency:

$$
\omega_{\mathrm{p}}\left[\mathrm{~s}^{-1}\right]=\left(\frac{4 \eta \mathrm{n}_{\mathrm{e}} \mathrm{e}^{2}}{m}\right)^{1 / 2}=5.64 \cdot 10^{4} \cdot\left(\mathrm{n}_{\mathrm{e}}\left[\mathrm{~cm}^{-3}\right]\right)^{1 / 2}
$$

the free electron refractive index is:

$$
\mu_{e}-1=K_{e} n_{e}=-\frac{2 \eta e^{2} 1}{m \quad \omega^{2}} n_{e}=-4.46 \cdot 10^{-14} \cdot n_{e}\left[\mathrm{~cm}^{-3}\right] \cdot(\lambda[\mathrm{cm}])^{2}
$$

The frequency dependence of the electronic, atomic and ionic refractivity is given in the figure 3.4. The ratio between the two last refractivities is:

$$
\begin{equation*}
\frac{K_{i}}{K_{n}} \approx 0.63 \tag{3:30}
\end{equation*}
$$

Fig.3.4. K values as function of wavelength

CALCULATION OF THE DISSOCIATION EQUILIBRIUM

In order to calculate the composition of the spark plasma, a way to calculate the extent of the dissociation of nitrogen molecules has to be devised.

In the general case of a gas-phase chemical reaction:

$$
\begin{equation*}
\sum a_{i} A_{i} \Leftrightarrow \sum b_{i} B_{i} \tag{3:31}
\end{equation*}
$$

where A_{i} are the reactants, B_{i} are the products and a_{i}, b_{i} are their respective stochiometric coefficients, two related equilibrium constants can be defined. The one is the pressure equilibrium constant K_{p}, defined in terms of the partial pressures:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{p}}=\frac{\Pi \mathrm{p}^{\mathrm{b}_{i\left(\mathrm{~B}_{\mathrm{i}}\right)}}}{\prod \mathrm{p}^{\left.\mathrm{a}_{i\left(A_{i}\right)}\right)}} \tag{3:32}
\end{equation*}
$$

where K_{p} depends on the partition functions of the products and reactants, through:

$$
\begin{equation*}
\ln K_{p}=-\infty+\sum \mathrm{E}_{\mathrm{o}} \cdot \ln Q_{\mathrm{p}}\left(\mathrm{~B}_{\mathrm{i}}\right)-\sum \mathrm{a}_{\mathrm{i}} \cdot \ln Q_{\mathrm{p}}\left(\mathrm{~A}_{\mathrm{i}}\right) \tag{3:33}
\end{equation*}
$$

RT
where ΔE_{0} is the zero-point energy difference between the products and the reactants in their reference standard states:

$$
\begin{equation*}
\Delta E_{o}=\sum b_{i} \cdot E_{o}\left(B_{i}\right)-\sum a_{i} \cdot E_{o}\left(A_{i}\right) \tag{3:34}
\end{equation*}
$$

Q_{p} in formula $3: 33$ is the partition function of the standard state of unit pressure, and it is related to the total partition function Q by:

$$
\begin{equation*}
Q_{p}=p \cdot Q \tag{3:35}
\end{equation*}
$$

and the total partition function can be split into a translational, vibrational, rotational and electronical part:

$$
Q=Q_{t} Q_{v} Q_{r} Q_{e}
$$

if the different degrees of freedom are assumed to be uncoupled.
The other equilibrium constant, the concentration equilibrium constant K_{c}, is defined by:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{c}}=\frac{\prod^{\mathrm{n}^{\mathrm{b}_{i\left(\mathrm{~B}_{i}\right)}}}}{\Pi \mathrm{n}^{\mathrm{a}_{i}\left(\mathrm{~A}_{\mathrm{i}}\right)}} \tag{3:37}
\end{equation*}
$$

where $n\left(A_{i}\right)$ and $n\left(B_{i}\right)$ are the concentrations of reactants and products. For K_{c} there is a formula similar to equation $3: 33$, except for the fact that the partition of the standard state of unit pressure is replaced by the partition of the standard state of unit concentration Q_{c}, which is related to the total partition function by:

$$
\begin{equation*}
Q_{c}=\frac{p}{R \cdot T} \cdot Q \tag{3:38}
\end{equation*}
$$

From formulas $3: 35,3: 38$ and $3: 33$ the relation between the two equilibrium constants is derived:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{c}}=\mathrm{K}_{\mathrm{p}} \cdot(\mathrm{RT}) \sum \mathrm{a}_{\mathrm{i}}-\sum \mathrm{b}_{\mathrm{i}} \tag{3:39}
\end{equation*}
$$

In the report of Hansen [ref. 10] expressions are given that are valid for nitrogen below temperatures of 15000 K . The pressure equilibrium constant is given by:

$$
\ln K_{p}\left(N_{2} \Leftrightarrow 2 N\right)=-\frac{113200}{T}+2 \cdot \ln Q_{p}(N)-\ln Q_{p}\left(N_{2}\right)
$$

and the total partition functions are given as:

$$
\begin{equation*}
\ln Q(N)=\frac{5}{2} \cdot \ln T+0.30+\ln \left(4+10 \cdot \exp \left\{-\frac{27700}{T}\right\}+6 \cdot \exp \left\{-\frac{41500}{T}\right\}\right)-\ln p \tag{3:41}
\end{equation*}
$$

and

$$
\ln Q\left(N_{2}\right)=\frac{7}{2} \cdot \ln T-0.42-\ln \left(1-\exp \left\{-\frac{3390}{T}\right\}\right)-\ln p
$$

To calculate the equilibrium composition when the presuure and the temperature of the hot gas are known, the quantity ε, describing the fraction of the molecules being dissociated into atoms, is
needed. Using ε, the expressions of the partial pressures of atoms and molecules can be written as:

$$
\begin{align*}
& p\left(N_{2}\right)=x\left(N_{2}\right) \cdot p=\frac{1-\varepsilon}{1+\varepsilon} \cdot p \\
& p(N)=x(N) \cdot p=\frac{2 \varepsilon}{1+\varepsilon} \cdot p
\end{align*}
$$

where $x(A)$ is the mole fraction of the component A. Combining formula 3:32 in the case of nitrogen together with formulas 3:43 and 3:44 yields:

$$
\begin{equation*}
K_{p}=\frac{(p(N))^{2}}{p\left(N_{2}\right)}=\frac{4 \varepsilon^{2} p}{1-\varepsilon^{2}} \tag{3:45}
\end{equation*}
$$

and resolving ε gives:

$$
\begin{equation*}
\varepsilon=\left(1+\frac{4 \cdot p}{K_{p}}\right)^{-1 / 2} \tag{3:46}
\end{equation*}
$$

The relation between ε and the number densities of molecules and atoms is, by the definition of ε, found to be:

$$
\frac{\mathrm{n}_{\mathrm{m}}^{0}-\mathrm{n}_{\mathrm{m}}}{\mathrm{n}_{\mathrm{m}}}=\varepsilon
$$

where n_{m}° is the number density of molecules before dissociation, and the obvious relation is:

$$
\begin{equation*}
\mathrm{n}_{\mathrm{m}}^{0}=\mathrm{n}_{\mathrm{m}}+\frac{\mathrm{n}_{\mathrm{a}}}{2} \tag{3:48}
\end{equation*}
$$

Eliminating n_{m} from the two relations above yields:

$$
\begin{equation*}
\mathrm{n}_{\mathrm{a}}=\frac{2 \varepsilon}{1-\varepsilon} \cdot \mathrm{n}_{\mathrm{m}} \tag{3:49}
\end{equation*}
$$

which is valid when $\varepsilon \neq 1$.

Now, having all the necessary formulas, the calculation of the number densities and the temperature of the nitrogen spark plasma can be performed. Starting with the formula:

$$
\Delta \mu_{\mathrm{k}}=\Delta \mu\left(r_{\mathrm{k}}\right)= \begin{cases}\frac{\lambda}{\pi \Delta} \cdot \sum \beta_{\mathrm{kn}} \Delta \mathrm{~N}_{\mathrm{n}} & , \mathrm{k} \geq 2 \tag{3:24}\\ \frac{\lambda}{\pi \Delta} \cdot \sum \beta_{\mathrm{kn}} \Delta \mathrm{~N}_{\mathrm{n}} & , \mathrm{k}<2\end{cases}
$$

the Abel-inverted fringe shifts or the radial variation of the refractive index is calculated from the observed fringe shifts $\Delta \mathrm{N}_{\mathrm{n}}$. This quantity is on the left hand side of relation 3:4 and becomes, under the assumption of low temperatures (no ionization, $\mathrm{T}<10000 \mathrm{~K}$):

$$
\begin{equation*}
\Delta \mu_{k}=K_{m}\left(n_{m, k}-n_{o}\right)+K_{a} n_{a, k} \tag{3:50}
\end{equation*}
$$

The undisturbed molecular density n_{\circ} is calculated from:

$$
\begin{equation*}
n_{o}\left[\mathrm{~cm}^{-3}\right]=9.6570 \cdot 10^{18} \cdot \frac{p[\text { torr }]}{T[\text { Kelvin }]} \tag{3:5}
\end{equation*}
$$

Rearranging equation 3:49 gives:

$$
\frac{\Delta \mu_{\mathrm{k}}}{\mathrm{~K}_{\mathrm{m}}}+\mathrm{n}_{\mathrm{o}}=\mathrm{n}_{\mathrm{m}, \mathrm{k}}+\mathrm{R} \cdot \mathrm{n}_{\mathrm{a}, \mathrm{k}}
$$

where R is the ratio between the atomic and molecular refractivities of nitrogen:

$$
\begin{equation*}
\mathrm{R}=\frac{\mathrm{K}_{\mathrm{a}}}{\mathrm{~K}_{\mathrm{m}}} \approx 0.63 \tag{3:30}
\end{equation*}
$$

and K_{m} is approximated by A_{r} in formula $3: 26$ since the contribution of the second term is negligible. The left-hand side of formula 3:50 is known, and under certain assumptions about the condition of the spark, the two number densities can be calculated.

The assumptions mentioned above is that the spark pressure is the same as the surrounding's pressure (isobaric condition) and the plasma being in thermodynamic equilibrium with the surrounding air (self-relaxation and energy relaxation times of the order of nanoseconds, 10^{-9} s) [ref.11,12].

Setting the atomic number density n_{a} in equation $3: 50$ to zero, the molecular number density can now be calculated. From the ideal gas law, with known atmospheric pressure, the actual temperature is calculated. Knowing the temperature, the extent of the dissociation can be calculated from equation 3:46.

Combining relations $3: 51$ and $3: 39$ and eliminating the atomic number density yields:

$$
\begin{equation*}
n_{m, k}=\frac{1-\varepsilon}{1+\varepsilon(2 R-1)} \cdot\left(\frac{\Delta \mu_{k}}{\mathrm{~K}_{\mathrm{m}}}+\mathrm{n}_{\mathrm{o}}\right) \tag{3:52}
\end{equation*}
$$

then the atomic number density n_{m} is readily calculated from equation 3:49.

This iterative procedure is continued by calculating a new temperature from the ideal gas law and that in turn gives a new value of the extent of dissociation, whereupon the procedure is repeated. The whole process is terminated when the difference between two consecutive iteration values is smaller than a desired value.

The iteration process is depicted in figure 3.5.

Fig. 3.5. The iteration model.

3.2 EXPERIMENTAL DETAILS

The experimental set-up is shown in Fig. 3.6. The prism behind the dye-laser deflected the thin laser beam to be expanded in the beam expander. Upon leaving the beam expander the beam was parallell and approximately 20 mm in diameter.

Fig. 3.6. Optical arrangement for time resolved one-wavelength interferometry

The spark plasma was centered in one beam of the interferometer causing a disturbance in the resulting fringe pattern of the interferograms due to its varying index of refraction. The interferograms were finally recorded photographically.

In order to perform measurements at different times after the spark breakthrough the laser pulse was electronically delayed compared to the triggering pulse of the ignition system. The exact delay time between the start of the spark and the laser pulse was measured by comparing the current form of the spark and a vaccum diode signal of the laser pulse on a fast oscilloscope. For the inductive system there were time fluctuations for a certain adjustment of the delay unit. In order to obtain a correct delay time continuous reading of the values had to be done for each laser shot.

3.3 RESULTS AND DISCUSSION

The fringe shifts of the interferograms were carefully measured in several points using an Abbe comparator.

The direct information obtained from these measurements was the mean temperature distribution in time according to Alphert-White law. This can be seen in figures 3.7 - 3.11. The inductive system's mean temperature has a sharp maximum of 5800 K (for the standard plug arrangement) at $1-1.5 \mu \mathrm{~s}$ which coincides roughly with the power maximum. The room temperature is reached after approximately 3 ms which also is the time spectrum of the power curve. The commercial capacitive system has a sharp maximum too. It occurs at 6 $\mu \mathrm{s}$ that is slightly later than the inductive system's maximum. It is also lower - approximately 3000 K . Even here there are similarities with the time behaviour of the power - the room temperature is reached after some $100 \mu \mathrm{~s}$ and the power maxima tend to overlap the mean temperature maxima at least for the shorter times. This tendency is kept even for the ultra-fast capacitive system which leads to the conclusion that there is a strong correlation between the mean temperature and the power spectra.

The radial expansion of the sparks is illustraded in figures 3:12-3:13.

The above mentioned fluctuations in the delay time were registered and the frequency function is seen in figure 3:14. The standard deviation was found to be approximately $4 \mu \mathrm{~s}$ according to simple statistical analysis done.

Fig. $3 .:$ Mean temperature as a function of time.

I would like to thank all the people that helped me to complete this paper. In the first place I owe a great debt to Göran S. Holmstedt, Dept. of Physics, Lund Institute of Technology and Hasse Johansson, SAAB-Scania Combitech AB without whose help and patience I couldn't have managed. Among others that deserve a note of gratitude are: Lars Martinsson, Åke Bergqvist and Thure Högberg.

[1] O.Svelto "Principles Of Lasers", Plenum Press, New York \& London, 1982
[2] S.Borgström "Kompendium I Laserfysik", Avd. för Atomfysik, LTH, 1985
[3] E.Hecht, A.Zajac "Optics", Addison-Wesley Publishing Company, 1974
[4] M.Alden, P.Grafström, H.M.Hertz, G.S.Holmstedt, T.Högberg, G.Russberg, S.Svanverg "Characterization Of Ultra-Short High Current Sparks For Ignition Systems", Avd. för Atomfysik, LTH, Avd. för Teoretisk Fysik, Chalmers TH, 1985
[5] M.Deutsch, I.Beniaminy "Inversion of Abel's Integral Equation for Experimental Data", J.Appl.Phys. 54 (1983) 137
[6] W.L.Howes, D.R.Buchele "Optical Interferometry of Inhomogeneous Gases", Journal of the Optical Society of America, Volume 56, Number 11, November 1966
[7] R.A.Alpher, D.R.White "Optical Refractivity of High-Temperature Gases", The Physics of Fluids, Volume 2, Number 2, March - April 1959
[8] K.Bockasten "Transformation of Observed Radiances into Radial Distribution of the Emission of a Plasma", J.Opt.Soc.Am. 51 (1961) 943
[9] W.L.Barr "Method for Computing the Radial Distribution of Emitters in a Cylindrical Source", J.Opt.Soc.Am 52 (1962) 885
[10] C.F.Hansen "Approximations for the Thermodynamic and Transport Properties of High-Temperature Air", NASA Tech. Rep. R-50, 1959
[11] P.W.Atkins "Physical Chemistry", Oxford University Press, 1984
K.Muraoka, M.Hamamoto, M.Akazaki "Studies of an Impulse Spark Using Two-Wavelength Interferometry", Jpn.J.Appl.Phys., 19 (1980) L293

$\begin{array}{ll}\text { A:1 } & \text { Power as a function of time. } \\ & \text { Inductive system. } \\ & \text { Standard sparking plug. }\end{array}$
(
A:2 Power as a function of time.
Inductive system.
Sharp edge electrode sparking plug.
A:3 Power as a function of time.
Commercial capacitive system.
Standard sparking plug.
A:4 Power as a function of time.
Commercial capacitive system. Sharp edge electrode sparking plug.

A:5 Listing of the data processing program.
l*
2*
3*

PROGRAM LMABELINV
*** i fil lm-abel-sparkinv ***

* MAIN PROGRAM *
* MAIN PROGRAM
* Input to the program is a set of experimental values from a one-
* wavelength interferometry experiment. First a linear missalignement *
* is subtracted from the y-values and then the data are fitted to a *
* polynomial which is used in a spline-interpolation to yield smoothed *
* y-values for equidistant x-values. The y-values are then input to the*
* Abel-inversion routine which gives spatially resolved density- and *
* temperature-values for a nitrogen gas.
\star *
* CALLING SEQUENCE : CURVEFIT
* ABELINVERSION
*

OUTPUTWRITE
(A-COMB) LM-ABEL-"fileid":IN
The string "fileid" is supplied by the user. *
It is assumed that an input-file by that name *
exists where the necessary data is written. *
The program creates an output-file (:UT) with *
the same name. *
*
*

* Program written by Lars Martinsson, January 1987
* Program last modified by

CHARACTER*5 FILEID
CHARACTER*30 INNAME
! variable part of filename
! complete filename input-file
CHARACTER*30 OUTNAME
! complete filename output-file
CHARACTER*28 TEXT
CHARACTER*10 INFORM(1:4) ! experimental information
! dummy-var to reach input data
REAL
REAL
REAL
REAL
INTEGER NIN
INTEGER NINMAX
PARAMETER (NINMAX = 81)
PRESSURE ! pressure in gas , Torr
LABTEMP ! temperature in gas ,Kelvin
FRDIBA ! fringe distance background mm
MAGNIF ! magnification factor
NIN ! number of input values ODD $N: R$
! maximum number of input values
PARAMETER(NINMAX = 81) ! NOTE NINMAX MUST BE ODD
REAL
XIN(1:NINMAX)
! x-values, read from input-file
REAL
YIN(l:NINMAX) ! y-values, read from input-file
INTEGER NOUT ! number of output values
INTEGER NOUTMAX ! max length of output vector
PARAMETER(NOUTMAX = 21) ! MAXIMUM ALLOWED 21

```
52*
53*
54*
55*
56*
57*
58*
59*
60*
61*
62*
63*
64* *** read file-name where input to program is stored
65*
66*
67*
68*
69*
70*
71*
72*
73*
74*
75*
76*
77*
78*
79*
80*
81*
82*
83*
84*
85*
86*
87*
88*
89*
90*
91*
92*
93*
94*
95*
96*
97*
98*
99*
100*
101* WRITE(*,*)'YOU WANT TOO MANY, MAXIMUM 2l ALLOWED. TRY AGAIN!'
102*
READ(*,*)FILEID
INNAME = '(A-COMB)LM-ABEL-' // FILEID // ':IN'
OUTNAME = '(A-COMB)LM-ABEL-' // FILEID // ':UT'
*** read data from input-file
            OPEN( 3 , FILE = INNAME , STATUS = 'OLD' , ACCESS = 'READ' )
            DO 10 K = 1 , 4
                    READ(3,200)TEXT,INFORM(K)
    10 CONTINUE
            READ (3,300)TEXT,PRESSURE
            READ (3,300)TEXT, LABTEMP
            READ (3,300)TEXT, FRDIBA
            READ (3,300)TEXT,MAGNIF
            READ(3,400)TEXT,NIN
            IF( NIN . GT . NINMAX )THEN
                WRITE(*,*)' TOO MANY VALUES ON INPUTFILE!!'
                CLOSE(3)
                GOTO 9999
            ENDIF
            DO 20 I = 1, NIN
                READ(3,*) XIN(I),YIN(I)
            CONTINUE
            CLOSE(3)
            *** specify number of output values and call curvefit subroutine
            30 WRITE(*,100)'MHOW MANY OUTPUT VALUES DO YOU WANT? :'
            READ(*,*)NOUT
            IF( NOUT . GT . NOUTMAX )THEN
                GOTO 30
```

```
103* ENDIF
104*
105* CALL CURVEFIT( NIN,XIN,YIN,NOUT,YSYM,LUNIT )
106*
107* *** call abel-inversion program
108*
109*
110*
111*
112*
113*
114*
115*
116*
117*
118*
119*
120*
121*
122*
123* 9999 STOP
124*
125*
126*
127*
128*
129*
```

```
        *** LUNIT MUST BE DIVIDED BY lo TO BE IN CM !!!!
        LUNIT = LUNIT / 10.0
        CALL ABELINVERSION( NOUT,YSYM,PRESSURE,LABTEMP,LUNIT,FRDIBA,
        & MAGNIF,AVN2CO,AVNCO,AVTEMP,N2CO,NCO,
        &
        TEMP)
    *** call output writing subroutine
        CALL OUTPUTWRITE( INFORM,PRESSURE,LABTEMP,LUNIT,AVN2CO,
        & AVNCO,AVTEMP,NOUT,N2CO,NCO,TEMP,
        & OUTNAME)
        100 FORMAT (//,A)
        200 FORMAT(2A)
        300 FORMAT(A,F11.5)
        400 FORMAT(A,I5,//)
    END
```

130*
131*
132*
133*
134*
135*
136* * DESCRIPTION:

139* *

144* *

147*
148*
149*
150*
151*
152*
153*
154*
155*
156*
157*
158*
159*
160*
161*
162*
163*
164*
165*
166*
167*
168*
169*
170*
171*
172*
173*
174*
175*
176*
177*
178*
179* RETURN
180* END

137* * This subroutine controls the subroutines that fit a smoothed poly-
138* * nomial with equidistant x-values to the experimental readings.
140* * CALLING SEQUENCE: LINSUBT
141* * SPLINEFIT
142* * POLYFIT
143* * SYMMETRIZE
145* * Program written by Lars Martinsson, March 1987
146* * Program last modified by
SUBROUTINE CURVEFIT(N, X, Y, NOUT, YSYM, STEP $)$

* SUBROUTINE CURVEFIT
*
*
*

181*
182*
183*
184*
185*
186*
187*
188*
189*
190*
191*
192*
193*
194*
195*
196*
197*
198*
199*
200*
201*
202*
203*
204*
205*
206*
207*
208*
209*
210*
211*
212*
213*

> SUBROUTINE LINBSUBT(N,X,Y)

```
* SUBROUTINE LINBSUBT
* DESCRIPTION:
* This subroutine subtracts a linear background ( y=kx+b ) from the*
* input y-vector and stores the result in the y-vector. The resulting
* vectors are written to a file and a plotting routine is called.
*
* FILES USED: (A-COMB)LM-ABEL-OUTO:DATA OUTPUT
* SUBPROGRAMS CALLED: PLOT plot program
* EXTERNAL SUBROUTINES: none
* COMMON BLOCKS USED: none
* Program written by Lars Martinsson November 1986
* Program last modified by Lars Martinsson March }198
```

INTEGER N ! number of inputvalues ARG
REAL $X(1: N)$! x-values input ARG
REAL $\quad Y(l: N) \quad$! y-values input/output ARG
REAL $X I, X N$! value of $X(I)$
REAL Yl,YN ! value of Y(I)
REAL SLOPE ! slope of linear background
INTEGER I ! DO-loop variable
CHARACTER*16 TEXT ! text in plot question
$\mathrm{XI}=\mathrm{X}(\mathrm{l})$
$X N=X(N)$
$Y 1=Y(1)$
$\mathrm{YN}=\mathrm{Y}(\mathrm{N})$
SLOPE = (YN - Yl) / (XN - XI)
DO $10 \mathrm{I}=1, \mathrm{~N}$
$Y(I)=$ SLOPE * $(X I-X(I))+Y(I)-Y I$
10 CONTINUE
*** call plot of input data and write to a file
TEXT ='INPUT DATA'
CALL PLOT(N,X,Y,TEXT)
OPEN (3, FILE=' (A-COMB)LM-ABEL-OUT0:DATA',STATUS='UNKNOWN',
\& ACCESS='WRITE')
WRITE(3,100)' INPUT DATA'

```
232* WRITE(3,200)'X-KOORDINAT','Y-KOORDINAT'
233*
234*
235*
236*
237*
238*
239*
240*
241*
242*
DO 20 I = l , N
        WRITE(3,300) X(I) , Y(I)
    CONTINUE
    CLOSE(3)
RETURN
100 FORMAT(A)
200 FORMAT(T5,A,TR5,A,//)
300 FORMAT(T7,F8.4,TR8,F8.4)
    END
```

243*

251*

SUBROUTINE SPLINEFIT(N, X, Y, NOUT')

* DESCRIPTION:
* Input to the subroutine is a set of (x, y) values which are used for
* interpolation to yield the y-values for NOUT equidistant x-values *
* by using cubic spline-functions. The method is described in Dahlquist*
* Bjorck: Numerical Methods, Prentice-Hall 1974, pp.l3l-134 and pp.l66-*
* 167. Note : The method assumes that the second derivates at the end- *
* points are equal to zero, and the x-values must be written in in- *
* creasing order.
* This version uses the input vectors as output vectors!
*
* FILES USED : (A-COMB)LM-ABEL-OUTl:DATA OUTPUT
*
* SUBPROGRAMD CALLED: PLOT plot program
*
* EXTERNAL SUBROUTINES: none
*
* COMMON BLOCKS USED: none
*
* Program written by Lars Martinsson, November 1986
* Program last modified by

INTEGER
REAL $\quad X(1: N) \quad$: x-values, read from input-file ARG

REAL $\quad Y(1: N)$
y-values, read from input-file ARG
! maximum size of internal vectors
PARAMETER(NMAX = 99) ! must be .GE. max of N
REAL
INTEGER

XSTEP (2 : NMAX)	$!$ dist between $X(I)$ and $X(I-1)$
YSTEP (2 : NMAX)	! dist between $Y(I)$ and $Y(I-1)$
X1, X2, X3	! value of $\mathrm{X}(\mathrm{I})$
H1, H2	! = XSTEP(I)
Y1, Y2, Y3	! value of $\mathrm{Y}(\mathrm{I})$
D1, D2	! = YSTEP(I)
ALFAV (2 : NMAX)	! variables in solv eq. syst
ALFA	! variables in solv eq. syst
BETA	! variables in solv eq. syst
CV(2: NMAX-1)	! variables in solv eq. syst
C	! variables in solv eq. syst
GV(2 : NMAX), G	! variables in solv eq. syst
KV(2:NMAX), K	! endpoint of equation solution
STEP	! dist between XSF(I) and XSF(I-1)
NOUT	! prescribed $n: r$ of output values

ND-500 ANSI 77 FORTRAN COMPILER - 203054 I SOURCE FILE: LM-ABEL-SPARKINV:SYMB

345* 346* 347* 348* 349* 350* 351* 352* 353* 354* 355* 356* 357* 358* 359* 360* 361* 362* 363* 364* 365* 366* 367* 368* 369* 370* 371* 372* 373* 374* 375* 376* 377* 378* 379* 380* 381*
382* 383* 384* 385* 386* 387* 388* 389* 390* 391* 392* 393* 394* 395*
$\operatorname{ALFAV}(I)=$ ALFA
$G V(I)=G$
$C V(I)=C$
$\operatorname{XSTEP}(I)=\mathrm{H} 2$
$\operatorname{YSTEP}(I)=\mathrm{D} 2$
$\mathrm{H} 1=\mathrm{H} 2$
$\mathrm{D} 1=\mathrm{D} 2$
$\mathrm{X} 2=\mathrm{X} 3$
$Y 2=Y 3$
10 CONTINUE
$X 3=X(N)$
$Y 3=Y(N)$
$\mathrm{H} 2=\mathrm{X} 3-\mathrm{X} 2$
$\mathrm{D} 2=(\mathrm{Y} 3-\mathrm{Y} 2) / \mathrm{H} 2$
*** initiate and start backward substitution
$\mathrm{BETA}=1.0 / \mathrm{ALFA}$
$\operatorname{ALFAV}(N)=2.0-\operatorname{BETA} * C$
$\mathrm{GV}(\mathrm{N})=3.0$ * D2 - BETA * G
$\operatorname{XSTEP}(N)=H 2$
$\operatorname{YSTEP}(\mathrm{N})=\mathrm{D} 2$
$K=\operatorname{GV}(N) / \operatorname{ALFAV}(N)$
$K V(N)=K$
DO $20 \mathrm{I}=\mathrm{N}-1,2,-1$
$K=(G V(I)-C V(I) * K) / \operatorname{ALFAV}(I)$
$K V(I)=K$
20 CONTINUE
*** calculate the spline-fitted x, y values
$X 1=X(1)$
STEP $=(X(N)-X I) /(N O U T-1)$
$\mathrm{XSF}(1)=\mathrm{XI}$
DO 30 I = 2 , NOUT - 1
$\mathrm{XSF}(\mathrm{I})=(\mathrm{I}-\mathrm{l} .0)$ * $\mathrm{STEP}+\mathrm{Xl}$
30 CONTINUE
$\operatorname{XSF}($ NOUT $)=X(N)$
$\mathrm{L}=2$
$Y S F(1)=Y(1)$
YSF (NOUT) $=Y(N)$
DO 40 I $=2$, NOUT - 1
IF (XSF(I) . GT • X(L))THEN
$\mathrm{L}=\mathrm{L}+1$
GOTO 50
ENDIF
$T=(X S F(I)-X(L-1)) / X S T E P(L)$

```
ND-500 ANSI 77 FORTRAN COMPILER - 203054I 16:30 3 JUL 1987 PAGE 10
```

SOURCE FILE: LM-ABEL-SPARKINV:SYMB

```
396*
397*
398*
399*
400*
401*
402*
403*
404*
405*
406*
407*
408*
409*
410*
411*
412*
413*
414*
415*
416*
417*
418*
419*
420*
421*
422*
423*
424*
425*
426* 100 FORMAT(A)
427*
428*
429*
```

```
                YSF(I) = T * Y(L) + (1.0 - T) * Y(L-l) + XSTEP(L) *
```

 YSF(I) = T * Y(L) + (1.0 - T) * Y(L-l) + XSTEP(L) *
 & T * (1.0 - T) * ((KV(L-1) - YSTEP(L)) *
 & T * (1.0 - T) * ((KV(L-1) - YSTEP(L)) *
 & (1.0 - T) - (KV(L) - YSTEP(L)) * T)
 & (1.0 - T) - (KV(L) - YSTEP(L)) * T)
 40 CONTINUE
 40 CONTINUE
 *** call plot of spline-fitted data, write the values to a file
 *** call plot of spline-fitted data, write the values to a file
 TEXT = 'SPLINE-FITTED'
 TEXT = 'SPLINE-FITTED'
 CALL PLOT(NOUT,XSF,YSF,TEXT)
 CALL PLOT(NOUT,XSF,YSF,TEXT)
 OPEN(4,FILE='(A-COMB)LM-ABEL-OUTl:DATA',STATUS='UNKNOWN',
 OPEN(4,FILE='(A-COMB)LM-ABEL-OUTl:DATA',STATUS='UNKNOWN',
 & ACCESS='WRITE')
 & ACCESS='WRITE')
 WRITE(4,100)' SPLINE-FITTED DATA'
 WRITE(4,100)' SPLINE-FITTED DATA'
 WRITE(4,200)'X-KOORDINAT','Y-KOORDINAT'
 WRITE(4,200)'X-KOORDINAT','Y-KOORDINAT'
 DO 60 I = l , NOUT
 DO 60 I = l , NOUT
 WRITE(4,300) XSF(I) , YSF(I)
 WRITE(4,300) XSF(I) , YSF(I)
 6 0 ~ C O N T I N U E ~
 6 0 ~ C O N T I N U E ~
 CLOSE(4)
 CLOSE(4)
 *** output from program is stored in input vectors
 *** output from program is stored in input vectors
 DO 70 I = I,N
 DO 70 I = I,N
 X(I) = XSF(I)
 X(I) = XSF(I)
 Y(I) = YSF(I)
 Y(I) = YSF(I)
 CONTINUE
 CONTINUE
 RETURN
 RETURN
 FORMAT(T5,A,TR5,A,//)
 FORMAT(T5,A,TR5,A,//)
 FORMAT(T7,F8.4,TR8,F8.4)
 FORMAT(T7,F8.4,TR8,F8.4)
 END
    ```
        END
```

 SUBROUTINE POLYFIT(NIN,X,Y,NOUT,XPF,YPF,STEP)
 $*$ SUBROUTINE POLYFIT
DESCRIPTION:

* The program fits a polynom to a set of (x, y) values, input and output*
$441 *$
* series expansion of (orthonomal) Chebyshev polynomials up to order
442* * ORDER - l. The value of the polynomial is suplied by a subroutine
* CHEBPOL, and the polynomial-fitted values are calculated by a sub-
444*
445*
446*
447*
448*
449* *
450* *
451**
452* *
453*
454* *
455*
456*
457* *
458* *
459* *
460* *
461* * EXTERNAL SUBROUTINES: none
462* *
463* * COMMON BLOCKS USED: none
464* *
465* * Program written by Lars Martinsson April 1987
466* * Program last modified by
468*
469*
470*
471*
472*
473*
474*
475*
476*
477*
$\begin{array}{lll}478 * & \text { REAL } & \text { VAL (0:ORDER }) \\ 479 * & \text { VEAL } & \text { result of eval. of polynomials }\end{array}$
480* REAL NUM(0:ORDER) ! numerator in coeff


```
532*
533*
534* *** call plot of input data and write to a file
535*
536*
537*
538*
539*
540*
541*
542*
543*
544*
545*
546*
547*
548*
549*
550*
551*
552*
553*
```

```
    YPF(NOUT) = 0.0
```

 YPF(NOUT) = 0.0
 TEXT = 'POLYFIT DATA'
 TEXT = 'POLYFIT DATA'
 CALL PLOT(NOUT,XPF,YPF,TEXT)
 CALL PLOT(NOUT,XPF,YPF,TEXT)
 OPEN(3,FILE='(A-COMB)LM-ABEL-OUT2:DATA',STATUS='UNKNOWN',
 OPEN(3,FILE='(A-COMB)LM-ABEL-OUT2:DATA',STATUS='UNKNOWN',
 & ACCESS='WRITE')
 & ACCESS='WRITE')
 WRITE(3,100)' POLYFIT DATA'
 WRITE(3,100)' POLYFIT DATA'
 WRITE(3,200)'X-KOORDINAT','Y-KOORDINAT'
 WRITE(3,200)'X-KOORDINAT','Y-KOORDINAT'
 DO 50 K = l , NOUT
 DO 50 K = l , NOUT
 WRITE(3,300) XPF(K) , YPF(K)
 WRITE(3,300) XPF(K) , YPF(K)
 CONTINUE
 CONTINUE
 CLOSE(3)
 CLOSE(3)
 RETURN
 RETURN
 FORMAT(A)
 FORMAT(A)
 FORMAT(T5,A,TR5,A,//)
 FORMAT(T5,A,TR5,A,//)
 FORMAT(T7,F8.4,TR8,F8.4)
 FORMAT(T7,F8.4,TR8,F8.4)
 END
    ```
        END
```

```
554*
555*
556*
557*
558*
559*
560*
561*
562*
563*
564*
565*
566*
567*
568*
569*
575* * EXTERNAL SUBROUTINES: none
576* *
577* * COMMON BLOCKS USED: none
578**
579* * Program written by Lars Martinsson, April }198
580* * Program last modified by
601* *** iteration
602*
        DO l0 K = l , ORD - l
604* Y2 = ( ( 2.0 * K + 1.0 ) * ( N - 1.0 - 2.0 * X ) * Yl - K *
```

```
605* & ( N + K ) * Y0 ) / ( ( K + 1.0 ) * (N - K - l.0) )
606* Y( K + l ) = Y2
607* Y0 = Yl
608*
609*
610*
611*
612*
    RETURN
    END
```

ND-500 ANSI 77 FORTRAN COMPILER - 203054I $16: 30 \quad 3$ JUL 1987 PAGE 16

613* 614* 615* 616* 617* 618* 619* 620*
621*
622*
623*
624*
625*
626*
627*
628* * FILES USED: none
629*
630*
631*
632* * EXTERNAL SUBROUTINES: none
633* *
634* * COMMON BLOCKS USED: none
635* *
636* * Program written by Lars Martinsson, April 1987
637* * Program last modified by
661* \quad RES $=\mathrm{CO} * \mathrm{Y} 0+\mathrm{Cl} * \mathrm{Yl}$
662*
663* *** iteration

664*
665*
666*
667*
668*
669*
670*
671*
672*
673*
674*
675*

```
    DO 10 K = l , ORD - 1
                            Y2 = ( ( 2.0 * K + 1.0 ) * ( N - 1.0 - 2.0 * X ) * Yl - K *
                                (N + K ) * Y0 ) / ( ( K + 1.0 ) * (N - K - l.0 ) )
            CO = COEFF( K + l )
            RES = RES + CO * Y2
            Y0 = Yl
            Yl = Y2
            CONTINUE
        RETURN
                                END
```

```
676*
677*
678*
679*
680*
681* * SUBROUTINE SYMMETRIZE
682*
683* * DESCRIPTION :
684* * This program takes the average of symmetrical y-values and stores *
685* * this value in YSYM(I). Equidistant x-values are required as input *
686* * to the program.
687* *
688* * FILES USED : (A-COMB)LM-ABEL-OUT3:DATA output
689* *
690* * SUBPROGRAMS CALLED : PLOT plotprogram
691* *
692* * EXTERNAL SUBROUTINES: none
693* *
694* * COMMON BLOCKS USED: none
695**
696* * Program written by Lars Martinsson, November l986
697* * Program last modified by Lars Martinsson, April 1987
698*
699*
700*
701*
702*
703*
704*
705*
706*
707*
708*
709*
710*
711*
712*
713*
714*
715*
7l6* *** calculate mean-value of y-values placed symmetric about the middle
717* *** point
718*
719*
720*
721*
722*
723*
724*
725*
726* *** call plot of symmetrsized data
```

727*
728*
729*
730*
731*
732*
733*
734*
735*
736*
737*
738*
739*
740*
741*
742* 743*
74 *
745*
746*
747*
748*
TEXT = 'SYMMETRIC DATA'
CALL PLOT(NOUT,XSYM,YSYM,TEXT)
*** write output to a file
OPEN (5 , FILE =' $(A-C O M B) L M-A B E L-O U T 3: D A T A ', S T A T U S ~=~ ' U N K N O W N ' ~$
\&
, ACCESS = 'WRITE')
WRITE(5,100)' SYMMETRISERADE DATA'
WRITE $(5,200)$ 'X-KOORDINAT', 'Y-KOORDINAT'
DO $20 \mathrm{~K}=1$, NOUT
WRITE(5,300) XSYM(K) , YSYM(K)
CONTINUE
CLOSE(5)
RETURN
100 FORMAT (A)
200 FORMAT(T5,A,TR5,A,//)
300 FORMAT(T7,F8.4,TR8,F8.4)
END
\& AVN2CO,AVNCO, AVTEMP,N2CO,NCO,TEMP)
760* * This subroutine performs Abelinversion on a set of experimental one- *
761* * wavelength interferometry data with equidistant x-values. The inputs *
762* * are Y (mm) , PRES (torr), LABTEMP (K), LUNIT (cm), FRDIBA (mm), MAGNIF*
763* * (-) and NMAX. The inversion matrix and other necessary input data *
764* * are read from datafiles. The program calculates the molecular number *
765* * number density (cm-3) and the temperature (K) from the relative *
766* * fringe shifts in a cylindrically symmetric spark. The temperature is *
767* * calculated under the assumption of isobaric conditions in the spark. *
768* * The temperature and density are then used as input in a calculation
769* * of the densities of atoms and molecules and the associated tempera-
770* * ture if thermal equilibrium conditions prevails.
771* * *
772* * REFERENCE: Barr, Journal of the Optical Society of America, 52 *
773* * (1962), 8, 885 *
775* *
776* * FILES USED : (A-COMB) LM-ABEL-MATRIS:DATA inversion matrix
$\begin{array}{lll}777^{*} & * & \text { from ref Barr, except * } \\ 778^{*} & * & \text { opposite sign and a factor* } \\ 779^{*} & * & \text { loe4 times less } \\ 780^{*} & * & \\ 781^{*} & * & \text { (A-COMB) LM-ABEL-IN: DATA } \\ 782^{*} & * & \text { wavelength in micrometer, * } \\ 783^{*} & * & \text { molecular refractivity in * }\end{array}$
784* * *
785* * SUBPROGRAMS CALLED : EQTEMP equilib calc *
786* * *
787* * EXTERNAL SUBPROGRAMS : none *
788* * *
789* * ND-MONITOR CALLS USED: none *
790* *
791* * COMMON BLOCKS USED : none
792* *
793* * Program written by Peter Grafstrom
794* * Program last modified by Lars Martinsson, October 1986 *

796*
797*
798* INTEGER I number of output values
799* INTEGER I,K ! DO-loop variables

800*		REAL	AMATRIS (1:21,1:21)	! inversion matrix
801*		REAL	LAMBDA	! wavelength micometers
802*		REAL	REFRAC	! spec. refractivity cm**3
803*		REAL	RELREF	! rel refrac N to N 2
804*		REAL	AVDEN	! factor in calc average val
805*		REAL	FRDIBA	! fringe dist background
806*		REAL	LUNIT	! length unit r-direction cm
807*		REAL	MAGNIF	! magnification factor
808*				
809*		REAL	Y (1: NMAX)	! y-values, same unit as FRDIBA
810*		REAL	PI	! pi
811*				
812*		PARAMETER($\mathrm{PI}=3.1415926$)	
813*				
814*		REAL	CONSTI	! prop const abelinv - density
815*		REAL	CONST2	! prop const pressure-refdens
816*		REAL	CONST3	! prop const density-temp
817*				
818*		PARAMETER(CONST2 $=9.6570 \mathrm{El} 8$,
819*		\&	CONST3 $=9.6570 \mathrm{El} 8$)
820*				
821*		REAL	RELFS (1:21)	! relative fringe shifts
822*		REAL	SUM	! sumation variable
823*		REAL	AVRELFS	! average fringe shift
824*		REAL	PRES	! pressure in torr in gas
825*		REAL	LABTEMP	! temp in Kelvin in gas
826*		REAL	NUMDEN0	! ref number density cm-3
827*		REAL	ESAVNUDE	! est av number density cm-3
828*		REAL	ESAVTEMP	! estimate of temperature
829*		REAL	AVTEMP	! equilib. av. temp
830*		REAL	AVN2CO	! av.num.den. N2 cm-3
831*		REAL	AVNCO	! av.num.den. N cm-3
832*		INTEGER	ALTN	! alt start of sumation
833*		REAL	AINVFS(1:21)	! Abel inv fringe shifts
834*		REAL	ESNUDE	! est. of number density cm-3
835*		REAL	ESTEMP	! estimate of temperature
836*		REAL	TEMP (1:NMAX)	! equili. temperature
837*		REAL	N2CO(1:NMAX)	! equili. N2 numb. dens.
838*		REAL	NCO(1:NMAX)	! equili. N numb. dens.
839*				
840*				
841*				
842*	***	read inversio	ix	
843*				
844*		OPEN(6,FILE	OM-COMB) LM-ABEL-MATR	RIS: DATA', STATUS = OLD',
845*		\&	SS='READ')	
846*				
847*		DO $10 \mathrm{I}=$		
848*		READ (6	RR=999) (AMATRIS (I ,	, $)^{\prime}$, $\mathrm{K}=1,21$)
849*	10	CONTINUE		
850*				

851*
852* 853* 854* 855* 856* 857* 858* 859* 860* 861* 862* 863* 864* 865* 866* 867* 868* 869* 870* 871* 872*

```
            CLOSE(6)
250 FORMAT(F7.0,20F6.0)
*** read input-data to abelinversion
            OPEN(7,FILE='(ATOM-COMB)LM-ABEL-IN:DATA',STATUS='OLD',
            & ACCESS='READ')
            READ(7,*) LAMBDA , REFRAC , RELREF
            CLOSE(7)
*** calculate prop factor and relative fringe shifts
            LUNIT = LUNIT * MAGNIF
            CONSTl = - 1.OE-8 * LAMBDA / REFRAC / PI / LUNIT
            DO 20 I = I , NMAX
                    RELFS(I) = Y(I) / FRDIBA
                    20 CONTINUE
                    *** calculate reference number density
            NUMDENO = CONST2 * PRES / LABTEMP
            *** calculate estimate of mean number density of molecules and
            *** temperature
            SUM = 0.0
            DO 30 I = 2 , NMAX
            SUM = SUM + RELES(I)
            30 CONTINUE
            AVRELFS = RELFS(1) + 2.0 * SUM
            AVDEN = - 2.0E4 / ( NMAX * ( 2 * NMAX + l ) )
            ESAVNUDE = AVDEN * CONSTl * AVRELFS + NUMDENO
            ESAVTEMP = CONST3 * PRES / ESAVNUDE
                *** calculate equlibrium average-temperature and -composition
            IF( ESAVNUDE . GT . 0.0 )THEN
            CALL EQTEMP( ESAVNUDE,ESAVTEMP,RELREF,AVTEMP,AVN2CO,AVNCO )
            ENDIF
            *** calculate spatially resolved estimate of number density of atoms
            *** and estimate of temperature and equilibrium composition and eq.
            *** temperature
        DO 40 I = 1 , NMAX
            ALTN = I - 2
            IF( ALTN . LT . l )THEN
                ALTN = 1
            ENDIF
```

902*
903*
904*
905*
906*
907*
908*
909*
910*
911*
912*
913*
914*
915*
916*
917*
918* 919*
SUM $=0.0$
DO $50 \mathrm{~K}=\mathrm{ALTN}$, NMAX
SUM $=$ SUM + AMATRIS(K,I) * RELFS(K)
50
CONTINUE
AINVFS(I) = SUM
40 CONTINUE
DO $60 \mathrm{I}=1$, NMAX
ESNUDE $=$ CONST1 * AINVFS(I) + NUMDEN0
ESTEMP = CONST3 * PRES / ESNUDE
IF (ESNUDE . GT . 0.0 . AND . ESTEMP . LT . 40000.0)THEN
CALL EQTEMP (ESNUDE,ESTEMP,RELREF,TEMP(I),N2CO(I),NCO(I))
ENDIF
60 CONTINUE
RETURN
999 WRITE(*,*)' ERROR WHEN READING INVERSION MATRIX!!!!!!!!!!!!!!!!!'
END

920*
921*
922*
923*
924*
925*
926*
927*
928*
929*
930*
931*
932*
933*
934*
935*
936*
937*
938*
939*
940*
941*
942*
943*
944*
945*
946*
947*
948*
949*
950*
951*
952*
953*
954*
955*
956*
957*
958*
959*
960*
961*
962*
963*
964*
965*
966*
967*
968*
969*
970*

```
SUBROUTINE EQTEMP( N2CONC,TEMP,REFQ,OUTTEMP,N2NEW,NNEW )
```

```
    * SUBROUTINE EQTEMPQ
    * DESCRIPTION:
    * This subroutine calculates the molecule and atom concentrations
    * (cm-3) and temperature (Kelvin) from a first estimate of temperature *
    * and molecule concentration from an Abelinversion. The quantities are *
    * calculated under the assumption of thermal equlibrium. The subprogram*
    * EPS is specific for nitrogen!
    * REFERENCE: Hansen, NASA Technical Report R-50, 1959
    *
    * DATA-FILES USED: none
    * SUBPROGRAMS CALLED: EPS
    * EXTERNAL SUBPROGRAMS: none
    *
    * ND-MONITOR CALLS USED: none
    * COMMON BLOCKS USED: none
    *
    * Program written by Lars Martinsson, January }198
    * Program last modified by Lars Martinsson, April }198
```

 REAL TEMP ! temperature Kelvin INARG
 REAL EPSILON ! fraction of N2 dissoc. to N
 REAL EPS ! SUBFCN calculates EPSILON
 REAL ALFA ! conc \(\mathrm{N} 2 /\) conc \(N\)
 REAL ATEMP ! calc temp from eq. realations
 REAL N2CONC ! abel inv, conc of N2
 INARG
 REAL CONST ! prop. const between conc and temp
 PARAMETER (CONST \(=7.2432 \mathrm{E} 21\))
 REAL FACTOR ! temperature of pure N2
 REAL DELTATEMP ! diff between temperatures
 REAL NEWTEMP ! new approx temperature
 REAL OUTTEMP ! output temperature OUTARG
 REAL REFQ ! refractivity N / refr N2 INARG
 REAL TEMPACC ! accuracy in temp iteration
 PARAMETER(TEMPACC = 5.0)
    ```
```

971* REAL N2NEW I calculated N2 conc OUTARG

```
```

971* REAL N2NEW I calculated N2 conc OUTARG
971* REAL N2NEW R S I calculated N2 conc OUTARG
971* REAL N2NEW R S I calculated N2 conc OUTARG
973*
973*
974*
974*
975* FACTOR = CONST / N2CONC
975* FACTOR = CONST / N2CONC
976*
976*
977*
977*
978*
978*
979* 10 EPSILON = EPS(TEMP)
979* 10 EPSILON = EPS(TEMP)
980*
980*
981*
981*
982*
982*
983*
983*
984*
984*
985*
985*
986*
986*
987*
987*
988*
988*
989*
989*
990*
990*
991*
991*
992*
992*
993*
993*
994*
994*
995*
995*
996*
996*
997*
997*
998*

```
998*
```

```
    ALFA = 2.0 * EPSILON / ( 1.0 - EPSILON )
```

 ALFA = 2.0 * EPSILON / (1.0 - EPSILON)
 ATEMP = FACTOR * (l.0 + REFQ * ALFA) / (1 + ALFA)
 ATEMP = FACTOR * (l.0 + REFQ * ALFA) / (1 + ALFA)
 DELTATEMP = (ATEMP - TEMP) / 4.0
 DELTATEMP = (ATEMP - TEMP) / 4.0
 NEWTEMP = TEMP + DELTATEMP
 NEWTEMP = TEMP + DELTATEMP
 IF (ABS(DELTATEMP) . GT . TEMPACC) THEN
 IF (ABS(DELTATEMP) . GT . TEMPACC) THEN
 TEMP = NEWTEMP
 TEMP = NEWTEMP
 GOTO 10
 GOTO 10
 ENDIF
 ENDIF
 *** calculate outparameters
*** calculate outparameters
OUTTEMP = TEMP
OUTTEMP = TEMP
N2NEW = N2CONC / (1.0 + REFQ * ALFA)
N2NEW = N2CONC / (1.0 + REFQ * ALFA)
NNEW = ALFA * N2NEW
NNEW = ALFA * N2NEW
RETURN
RETURN
END

```
    END
```

999*
1000*
1001*
1002*
1003*
1004*
1005*
1006*
1007*
1008*
1009*
1010* * REFERENCE: Hansen, NASA Technical Report R-50, 1959
1011*
1012* * DATA-FILES USED: none
1013*
1014*
1015*
1016*
1017*
1018*
1019* * ND-MONITOR CALLS USED: none
1020*
1021*
1022*
1023* * Program written by Lars Martinsson, January 1987
1024* * Program last modified by
1025*
1026*
1027*
1028*
1029*
1030*
1031*
1032*
1033*
1034*
1035*
1036*
1037*
1038*
1039*
1040*
1041*
1042*
1043*
1044*
1045*
1046*
1047*
1048* RETURN
1049* END

LOGKP $=-113200 . /$ TEMP +2.0 * LOGQPN(TEMP) - LOGQPN2(TEMP)
$K P=\operatorname{EXP}($ LOGKP $)$
IF (KP . GT . 0.0) THEN
$\operatorname{EPS}=1.0 / \operatorname{SQRT}(1.0+4.0 * P / K P)$
ELSE
EPS $=0.0$
ENDIF
1059* * This function subroutine calculates the partition function for N for *
1060* * temperatures below 15000 K .
1061*
1062* * REFERENCE: Hansen, NASA Technical Report R-50, 1959
1063* *
1064* * DATA-FILES USED: none
1065*
1066* * SUBPROGRAMS CALLED: none
1067*
1068* * EXTERNAL SUBPROGRAMS: none
1069* *
1070* * ND-MONITOR CALLS USED: none
1071* *
1072* * COMMON BLOCKS USED: none
1073* *
1074* * Program written by Lars Martinsson, January 1987
1075* * Program last modified by
1076*
1077*
1078*
1079*
1080*
1081*
1082*
1083*
1084*
1085* END
REAL T ! temperature Kelvin ARG
LOGQPN $=2.5 * \operatorname{LOG}(T)+0.30+\operatorname{LOG}(4.0+10.0 * \operatorname{EXP}(-$
\& 27700. / T) + 6.0* EXP ($-41500 . / T$)
1084* RETURN

```
ND-500 ANSI 77 FORTRAN COMPILER - 203054I

1086*
1087* 1088* 1089* 1090*
1091*
1092*
1093* * DESCRIPTION:
1094* * This function subroutine calculates the partition function for N2 for* 1095* * temperatures below 15000 K .
1096*
1097* * REFERENCE: Hansen, NASA Technical Report R-50, 1959
1098*
1099* * DATA-FILES USED: none
1100*
1101* * SUBPROGRAMS CALLED: none
1102*
1103* * EXTERNAL SUBPROGRAMS: none
1104* *
1105* * ND-MONITOR CALLS USED: none
1106* *
ll07* * COMMON BLOCKS USED: none
1108*
ll09* * Program written by Lars Martinsson, January 1987
lll0* * Program last modified by
1111*
1112*
1113*
1114*
1115*
ll16*
1117*
1118* RETURN
1119* END
```

1120*
1121*
1122*
1123*
1124*
1125*
1126* **
1127* * SUBROUTINE OUTPUTWRITE
1128*
ll29* * DESCRIPTION:
1130* * The output data are written to the terminal and optionally to a file *
l13l* * with the same name as the data input file, except that the file type *
1132* * is changed to :UT . A plotting routine is also called. *
1133* *
1134* * REFERENCE: none
1135* *
1136* * DATA-FILES USED: (A-COMB)LM-ABEL-"fileid":UT
1137* *
1138* * SUBPROGRAMS CALLED: PLOT plotting program
1139* *
ll40* * EXTERNAL SUBPROGRAMS: none
1141* *
1142* * ND-MONITOR CALLS USED: CLOCK Get current time and date *
1143* * from operating system *
1144* * *
1145* * COMMON BLOCKS USED: none
1146* *
1147* * Program written by Lars Martinsson, May }198
1148* * Program last modified by *
1149* ***
1150*
1151*
1152
1153
1154
1155
1156*
1157*
1158
1159
1160*
1161
1162*
1163
1164
1165
1166*
1167*
1168*
1169
1170

| CHARACTER*10 | INFORM(1:4) | Experiment inform |
| :---: | :---: | :---: |
| REAL | PRES | ! pressure in torr in gas |
| REAL | LABTEMP | ! temp in Kelvin in gas |
| REAL | LUNIT | ! length unit r-direction cm |
| REAL | AVN2CO | ! av.num.den. $\mathrm{N} 2 \mathrm{~cm}-3$ |
| REAL | AVNCO | ! av.num.den. N cm-3 |
| REAL | AVTEMP | ! equilib. av. temp |
| INTEGER | NMAX | ! number of y-values on input |
| REAL | N2CO($1:$ NMAX) | ! equili. N2 numb. dens. |
| REAL | NCO(1: NMAX) | ! equili. N numb. dens. |
| REAL | TEMP (1 : NMAX) | equili. temperature |
| CHARACTER*30 | FILENAME | Total name output file |
| CHARACTER*9 | MONTH ($1: 12$) | name of months DATA |
| REAL | MINCONC | ! output minconc parameter |
| REAL | R(1:21) | ! r-vector |
| CHARACTER | ANSW | ! answer to Y / N question |
| CHARACTER*16 | TEXT | ! text in plot quoestion |
| INTEGER | PARAMS (1:7) | ! output from CLOCK, time date |
| INTEGER | I | DO-loop variable |

```
```

ND-500 ANSI 77 FORTRAN COMPILER - 203054I

1171*
1172*
1173*
1174*
1175*
1176*
1177*
1178*
1179*
1180*
1181*
1182*
1183*
1184*
1185*
1186*
1187*
1188*
1189*
1190*
DATA MONTH/' JANUARY',' FEBRUARY',' MARCH',' APRIL',
\& \quad MAY',' JUNE',' JULY',' AUGUST',
\& 'SEPTEMBER',' OCTOBER',' NOVEMBER',' DECEMBER'/
*** set small concentration values equal to zero
MINCONC = 1.E5
IF (AVN2CO . LT . MINCONC) AVN2CO $=0.0$
IF (AVNCO . LT . MINCONC) AVNCO $=0.0$
DO $10 \mathrm{I}=\mathrm{I}$, NMAX
IF (N2CO(I) . LT . MINCONC) N2CO(I) $=0.0$
IF($\mathrm{NCO}(I)$. LT . MINCONC) $\mathrm{NCO}(I)=0.0$
10 CONTINUE
*** write output to the terminal
WRITE(*,*)' IMAGE NUMBER :',INFORM(1)
WRITE(*,*)' SYSTEM :',INFORM(2),' SPARKPLUGG :',INFORM(3)
WRITE(*,*)' TIME :', INFORM(4),'MICROSECONDS'
WRITE(*,900)' PRESSURE :',PRES,' TORR','LABTEMP : ',LABTEMP,'K'
WRITE(*,200)' MEAN TEMPERATURE :',AVTEMP,' KELVIN'
WRITE(*,*)' MEAN NUMBER DENSITY IN CM-3'
WRITE(*,300)' MOLECULES : ', AVN2CO ,'ATOMS : ',AVNCO
WRITE(*,*)' SPATIALLY RESOLVED DATA '
WRITE(*,400)' RADIAL DIST','TEMPERATURE','MOLECULES','ATOMS'
WRITE(*,500)'CM','KELVIN',' CM-3',' CM-3'
DO $20 \mathrm{I}=1$, NMAX
$R(I)=(I-1.0) *$ LUNIT
WRITE(*,600) R(I) , TEMP(I) , N2CO(I) , NCO(I)
IF (MOD (I, 3) . EQ. 0)THEN
WRITE(*,*)
ENDIF
20 CONTINUE
*** call plot of temperature
TEXT = 'TEMPERATURE'
CALL PLOT (NMAX,R,TEMP,TEXT)
*** write output-data to specified file
WRITE(*,100)'aDO YOU WANT TO STORE OUTPUT DATA? Y/N:'

1222*
1223*
1224*
1225*
1226*
1227*
1228*
1229*
1230*
1231*
1232*
1233*
1234*
1235*
1236*
1237*
1238*
1239*
1240*
1241*
1242*
1243*
1244*
1245*
1246*
1247*
1248*
1249*
1250*
1251*
1252*
1253*
1254*
1255*
1256*
1257*
1258*
1259*
1260*
1261*
1262*
1263*
1264*
1265*
1266*
1267*
1268*
1269*
1270*
1271*
1272*
$\operatorname{READ}(*, *)$ ANSW
IF (ANSW . EQ . 'Y' . OR . ANSW . EQ . 'Y')THEN
WRITE(*,800)' WRITING TO FILE ',FILENAME
CALL CLOCK (PARAMS)
I = PARAMS (6)
OPEN $(8$, FILE=FILENAME, STATUS = 'UNKNOWN', ACCESS $=$ 'WRITE' $)$
WRITE(8,700) 'WRITTEN : ', PARAMS(4), PARAMS(3), PARAMS(2), MONTH (I), PARAMS (5), PARAMS (7)
WRITE($8, *$)' IMAGE NUMBER :',INFORM(1)
$\operatorname{WRITE}(8, *)$ SYSTEM $: ', \operatorname{INFORM}(2), '$ SPARKPLUGG :', INFORM(3)
WRITE(8,*)' TIME :',INFORM(4),'MICROSECONDS'
WRITE(8,900)' PRESSURE :',PRES,' TORR','LABTEMP : '
, LABTEMP,'K'

WRITE(8,200)' MEAN TEMPERATURE :',AVTEMP,' KELVIN' WRITE(8,*)' MEAN NUMBER DENSITY IN CM-3' $\operatorname{WRITE}(8,300)$ ' MOLECULES : ', AVN2CO ,'ATOMS : ',AVNCO WRITE(8,*)' SPATIALLY RESOLVED DATA ' WRITE(8,400)' RADIAL DIST','TEMPERATURE','MOLECULES','ATOMS'

DO $30 \mathrm{I}=1$, NMAX
$R(I)=(I-1.0)$ * LUNIT
WRITE(8,600) R(I), TEMP(I), N2CO(I), NCO(I)
$\operatorname{IF}(\operatorname{MOD}(I, 3) \cdot E Q \cdot 0) T H E N$
WRITE(8,*)
ENDIF
CONTINUE
CLOSE (8)
ENDIF

RETURN
FORMAT (A)
FORMAT (A, F6.0,TR1, A/)
FORMAT (A, 1PE12.5,TR3,A,E12.5///)
FORMAT(T3,A,TR4, A,TR4, A, TR10, A)
FORMAT(T8,A,TR11,A,TR7,A,TR12,A/)
FORMAT(T3,1PE12.5,0P,TR5,F7.0,1P,2(TR5,E12.5))
FORMAT(' ', A,I2,'.',I2,'.',I2,' ', A9,' ', I2,' ', I4//)
FORMAT(T2,2A)
FORMAT (A, F5.1,TR1, A,TR3, A, F5.1, TR1, A//)
END
SUBROUTINE PLOT(N, X, Y, QUEST $)$
1290* * Program written by Lars Martinsson, February 1987
1291* * Program last modified by
$0.6331 .10 \mathrm{E}-230.63$

| Image number | | :28-25 |
| :---: | :---: | :---: |
| System | | : BOSCH |
| Sparkplugg | | :SPETSELEKTROD |
| Time (microseconds) | | :2000.0 |
| Pressure (Torr) | | :727.2 |
| Temperature (Kelvin) | | : 293.0 |
| Fringe dist background | | :0.1392 |
| Magnification factor | | : 1.5943 |
| Number of input-values | | : 19 |
| Input-values in mm!! | | |
| X Y | | |
| 10.76 | -59.912 | |
| 10.82 | -59.923 | |
| 10.875 | -59.931 | |
| 10.935 | -59.938 | |
| 10.995 | -59.942 | |
| 11.055 | -59.949 | |
| 11.11 | -59.953 | |
| 11.17 | -59.960 | |
| 11.23 | -59.961 | |
| 11.29 | -59.961 | |
| 11.345 | -59.964 | |
| 11.405 | -59.971 | |
| 11.465 | -59.971 | |
| 11.52 | -59.960 | |
| 11.58 | -59.945 | |
| 11.64 | -59.936 | |
| 11.70 | -59.929 | |
| 11.755 | -59.916 | |
| 11.815 | -59.909 | |

File (PACK-ONE-1:ATOM-LM)LM-ABEL-MATRIS:DATA; 1/13 October 1986 at 15:27
Page 1
$\begin{array}{llllll}-2029 .-1831 .-1239 . & 0 . & 0 . & 0 . & 0 . & 0 . \\ -4439 .-404 i .-2847 .-1324 . & 0 . & 0 . & 0 . & 0 . & 0 .\end{array}$
$-1791 .-1778 .-1740 .-1936 .-1172$.
5111. 4342. 2034. -928. -1523.-1036.
$\begin{array}{llll}\text { 5111. 4342. 2034. } & -928 .-1523 .-1036 . & 0 \\ 1298 . & 1299.1304 . & 964 .-722 .-1291 . & 0\end{array}$
1298. 1299. 1304. 964. -722.-1291. -930.
95. 204. 531. 569. 538. -635.-1140.-847. 0
237. 262. 338. 501. 810. 330. $-586 .-1032 .-781$
$193.203 .235 .292 . \quad 464 . \quad 714 . \quad 214 .-551 .-951 .-727$
$\begin{array}{lllllllll}152 . & 157 . & 173 . & 202 . & 260 . & 431 . & 646 . & 142 . & -524 . \\ 122 . & 125 . & 134 . & 150 . & 179 . & 236 . & 403 . & 595 . & 95\end{array}$
$\begin{array}{rlllllll}122 . & 125 . & 134 . & 150 . & 179 . & 236 . & 403 . & 595 . \\ 99 . & 101 . & 107 . & 117 . & 133 . & 162 . & 217 . & 380 . \\ 555\end{array}$
82. 84. 87. 94. 104. 120. 148. 202. $359 . \quad 522$.
$\begin{array}{lllllll}69 . & 70 . & 73 . & 77 . & 84 . & 94 . & 111 . \\ 59 . & 138 . & 189 .\end{array}$
59. 60. 61. 65. 69. 76. 87
$\begin{array}{lll}39 . & 39 . & 46 . \\ 35 . & 35 . & 35 .\end{array}$
$\begin{array}{lll}31 . & 35 . & 35 . \\ 31 . & 32\end{array}$
28. 28. 28.229

| 0. | 0. | 0. |
| ---: | ---: | ---: |
| 0. | 0. | 0. |
| 0. | 0. | 0. |
| 0. | 0. | 0. |
| 0. | 0. | 0. |
| 0. | 0. | 0. |
| 0. | 0. | 0. |
| -727. | 0. | 0. |
| -886. | -682. | 0. |
| $-50 .^{.}$ | -834. | -644. |
| 63. | -482. | -790. |
| 522. | 39. | -465. |
| 342. | 495. | 22. |
| 179. | 326. | 471. |
| 122. | 170. | 313. |
| 91. | 115. | 162. |
| 71. | 86. | 110. |
| 58. | 67. | 82. |
| 48. | 55. | 64. |
| 41. | 46. | 52. |
| 35. | 39. | 44. |

[^0]\[

$$
\begin{array}{r}
\\
\\
\\
-587 \\
-7 \\
-43 \\
43 \\
\\
\hline \\
29 \\
14 \\
10 \\
\hline
\end{array}
$$
\]

$$
\begin{array}{r}
0 . \\
0 . \\
0 . \\
0 . \\
0 . \\
0 . \\
0 . \\
0 . \\
0 . \\
0 . \\
0 . \\
0 . \\
0 . \\
0 . \\
-499 . \\
-623 . \\
-393 . \\
-24 . \\
377 . \\
256 .
\end{array}
$$

$$
\begin{array}{rrr}
0 . & 0 . & 0 \\
0 . & 0 . & 0 \\
0 . & 0 . & 0 \\
0 . & 0 . & 0 \\
0 . & 0 . & 0 \\
0 . & 0 . & 0 \\
0 . & 0 . & 0 \\
0 . & 0 . & 0 \\
0 . & 0 . & 0 \\
0 . & 0 . & 0 \\
0 . & 0 . & 0 \\
0 . & 0 . & 0 \\
0 . & 0 . & 0 \\
0 . & 0 . & 0 \\
0 . & 0 . & 0 \\
483 . & 0 . & 0 \\
604 . & -468 . & 0 \\
384 . & -587 . & -455 \\
28 . & -375 . & -571
\end{array}
$$

$$
\begin{array}{r}
0 . \\
-468 . \\
-587 .
\end{array}
$$

$$
\begin{aligned}
& -587 . \\
& -375 .
\end{aligned}
$$

$$
\begin{aligned}
& -455 . \\
& -571 .
\end{aligned}
$$

$$
\begin{aligned}
& -571 \\
& -367 .
\end{aligned}
$$

[^0]:

