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Part I 

Abstract 
This thesis describes a number of theoretical investigations concerning optical quantum memories 
where the implementation is mainly intended for rare-earth-ion-doped crystals. Most of the 
theoretical models are based on the Maxwell-Bloch equations which is a semi-classical model for 
light-matter interactions. 

Quantum information science is a new and rapidly developing field that concerns information 
science based on quantum mechanics. Within quantum information science there are a number of 
subfields, such as: quantum computing, quantum cryptography and quantum communication. A 
quantum memory is an important component for all these subfields, especially in order to realize 
long-distance quantum communication. The basic requirements for a quantum memory is the 
ability to store qubits for a certain amount of time and release them on-demand. 

The development of quantum memories is constantly moving forward and it was former 
believed that high optical depth was neccessary to get a high efficient memory. A number of 
publications recently published have shown that this is not neccessary. The idea is to include 
a cavity to the protocols. With the cavity a moderate optical depth is needed in order to get 
effieienc:y dose to unity. 

In this thesis three optical quantum memory protocols are considered: transverse/longitudal 
CRIB and AFC. A theoretical investigation by simulations of the Maxwell-bloch equations com­
pares the different properties of these protocols. Moreover two different theoretical approaches 
to explain recent experimental results concerning a rare-earth-ion-doped crystal inside a cavity is 
derived and investigated. And finally a new scheme to improve the sharpness of the edges of a 
spectral hole is demonstrated. 
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Part II 

Popularvetenskaplig sammanfattning 
En vanlig dator ar uppbyggd av ett antal komponenter. En viktig komponent i en vanlig dator iir 
minnet. Informationen inuti en vanlig dator besta,r av bitar, som antingen kan ha vardena 0 eller 
1. Minnets uppgift ar att lagra bitar under en viss tid, samt skicka informationen vidare till en 
annan komponent nar det behovs. 
En kvantdator ar en ny typ av dator som potentiellt har formagan att fOr vissa problem vara 
mycket snabbare an en vanlig dator. Kvantdatorn behover ett minne, precis som en vanlig 
dator. Men for att en kvantdator ska kunna fungera behovs ett nytt typ av minne som kallas 
kvantminne. Kvantinfonnationen inuti en kvantdator bestar av kvantbitar. Kvantbitar kan inte 
bara ha vardena 0 eller 1, utan ocksa ett "kanske-tillstand". Det ar bland annat tack vare detta 
"kanske-tillstand" som en kvantdator kan bli battre an en klassisk dator. Kvantminnets uppgift 
iir mycket likt ett klassiskt minne. Uppgiften ar att lagra kvantbitar under en viss tid, samt skicka 
kvantinformationen vidare till en annan komponent niir det behovs. 

Pa Atomfysikavdelning inom Lunds universitet forsoker man utveckla ett optiskt kvantminne. 
Tanken med detta optiska kvantminne iir att spara ljus inuti en kristall under en viss tid och 
efter ett tag skieka nt ljuset igen. Det inkommande ljnset innehaller kvantinformation, och denna 
information far ej fOrstoras inuti kristallen. Kristallen som utgor kvantminnet bestar av bland 
annat joner ifran sallsynta jordartsmetaller. Dessa joner har speciella egenskaper som gor det 
mojligt att kvantinformationen inte fOrstors. Det ar viktigt att ett kvantminne har hOg effektivtet 
sa att den mesta kvantinformationen som sparas i minuet kan skickas ut igen. 

Denna uppsats handlar om att teoretiskt undersoka olika hog-effektiva optiska kvantminnen. 
Uppsatsen iir indelad i tre olika delar. I varje del sa tas formler fram som beskriver kristallens 
vaxelverkan med det ljus som ska sparas. Dessa formler ar i manga fall fOr komplicerade att losa 
for hand. Av derma anledningen sa simulerar man fonnlerna i en vanlig dator. Med hjalp av 
resultaten ifran datorn kan man forutsaga vad som kommer att ske i verkligheten. 
I forsta delen undersoks nagra olika typer av protokoll som finns till kvantminnen. Det finns 
i huvudsak tre olika protokoll av optiska kvantminnen for de kristaller som anvands. De olika 
protokollens for- samt nackdelar jamfors med hjiilp av de resultat som simuleringarna ger. 
I andra delen tas en modell fram med for att forklara nya experimentella resultat dar man har satt 
tva speglar runt en kristall. Speglarna ar inga vanliga speglar utan de ar halvt genomskinliga vilket 
skapar underliga effekter inuti kristallen. Dessa effekter kan forklaras med hjalp av den modell som 
tas fram och de simulerade resultaten matchas mot de experimentella viirdena. 
I tredje och sista delen sa tas ctt nytt konccpt frarn for att i frarntidcn forbattra kvaliten av 
kvantminnen baserade pa en viss typ av kristall. Detta konceptet forklaras i detalj, dessutom sa 
bevisas det att den fungerar i teorin. 
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Part III 

Introduction 
1. BACKGROUND 

Quantum information science is a new and rapidly developing field. Quantum cryptography 
is one application inside this field that uses quantum mechanics to theoretically guarantee secure 
communication [1]. A lot of exciting challenges remains in order to realize quantum cryptography 
to its full potential in practise. One problem is that long-distance quantum communication needs 
some sort of quantum repeater. With a quantum repeater it will be possible to send quantum 
information around the globe. A quantum repeater has three main requirements in order to be 
realized [2]: 

• Distribution of entanglement 

• Entanglement swapping 

• Quantum memory 

In this thesis the focus will be on the quantum memory. A quantum memory is very similar to a 
classical memory in the sense that it should be able to reliably store and on-demand release infor­
mation. The difference is that a quantum memory should be able to handle quantum information. 
A lot of theoretical proposals as well as experimental realizations for a quantum memory has been 
done. Controlled Reversible Inhomogeneous Broadening (CRIB) first proposed by Moiseev and 
Kroll in 2001 [3] is one example of a quantum memory scheme. A variation of the CRIB protocol 
was experimentally proven to obtain well over 60% efficiency by Hedges et. al. in 2010 [4]. Another 
interesting quantum memory scheme is the Atomic Frequency Comb (AFC), it was introduced by 
Afzelius et. al. in 2008 [5]. Experimental results of 35% efficiency was shown by Amari et. al. 
in the beginning of 2010 [6]. Recently in Lund at the Quantum information group, a quantum 
memory based on the AFC protocol together with a cavity has been realized experimentally [7]. 
The fusion between the AFC protocol together with a cavity has been shown theoretically to give 
efficiency close to unity given that the cavity is on resonance [8]. In this thesis a theoretical in­
vestigation of both the CRIB and the AFC scheme with and without a cavity is done as well as 
improvements and suggestions around this topic. 

2. PROBLEM STATEMENT AND PURPOSE 

This thesis is divided into three different problems: 

1. Understanding the advantages and disadvantages of the CRIB and the AFC quantum mem­
ory protocols is vital in order to create a high efficiency quantum memory in practise. The 
analytical treatment of the quantum memory protocols are often simplified with respect to 
the shape of the absorption profile in order to get an analytical solution. The problem is 
that the experimental setup isn't always as simple as the parameters used in the analytical 
treatment. One way to extend the analytical treatment is to use numerical simulations with 
more complex input parameters. 
The purpose of this part is to learn more about the differences of the CRIB and the AFC 
quantum memory protocols, compare their advantages and disadvantages and also see how 
the shape of the absorption profile effects the efficiency by numerical simulations. 

1 



2. New experimental result has been obtained at the Quantum information group in Lund 
considering a quantum memory realized with a rare-earth-ion-doped crystal inside a cavity 
[7]. The goal of the experiment was to get a high efficiency quantum memory. The theoretical 
motivation for this kind of experiment, with certain approximations, was made by Mikael 
Afzelius and Christoph Simon [8]. But the experimental results where not the expected and 
a model to understand the results is needed. For example some approximations made in the 
previous theoretical investigation might not hold for this type of experimental setup. 
The purpose of this part is to create a model that can explain the experimental results. 
Predictions and recommendations can then be made of how to change the experimental 
setup in order to get a high efficienct quantum memory. 

3. Creating a spectral hole in the inhomogenous profile is a key concept for many applications. 
Both the CRIB and the AFC scheme relies on the fact that there is one or several narrow 
peak( s) in the absorption profile. Near the pcak(s) (in the frequency-domain) there should 
be ideally no absorbing ions in order to get a high efficienct quantum memory. Thus there 
is a need to get as sharp structures as possible inside the inhomogenous profile. 
The purpose of this part is to investigate if improvements can be made to the current hole 
burning procedure in the inhomogenous profile in order to get more sharper structures. 

3. STRUCTURE OF THIS THESIS 

This thesis has seven difl:'erent parts. 

• The first and the second part is an introduction to quantum mechanics and the quantum 
repeater. 

• The third part is a theoretical derivation of the well-known Maxwell-Bloch equations (MB) 
for a 2-level system. This model is a semiclassical model that treats the atoms quantum 
mechanically and the light classically by Maxwell's wave equation. 

• The fourth part uses the MB equations in order to simulate the CRIB and AFC protocols, 
this part will investigate point 1 in "Problem statement and purpose". 

• The fifth and the sixth part of this thesis concerns point 2 in "Problem statement and 
purpose" where a rare-earth-ion-doped crystal inside a cavity is modelled in two difl:'erent 
ways. The first model is a simple model that sums all round-trips inside a cavity given a 
certain absorption profile. The second model is more advanced and it's basically an extension 
to the MB equations, whereas the quantum memory efficiency can be tested. 

• The last part concerns point 3 in "Problem statement and purpose" where a scheme that 
improves the sharpness of the edges of a spectral hole. A proof-of-concept is made with a 
simplified model containing the ME-equations. 
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Part IV 

Quantum mechanics 
4. THE DENSITY OPERATOR 

The density operator is a vital operator in order to describe an ensemble of atoms. This operator 
will be the ground-stone in the quantum mechanical postulate defined in Section 5. In the following 
the definition of the density operator will be stated. 

Definition 4.1. The density operator p can be defined from the spectral decomposition 

n 

p = LIJii1Pi)(<J!il (1) 
i=O 

with the conditions that '2..::~ 0 Pi = 1 and I <Pi) are normalized state vectors in some Hilbert space. 

Theorem 4.1. An operator p is the density operator associated to some ensemble, iff it satisfies 
the conditions: 
( 1) p has trace equal to one. 
{2) p is a Hermit'ian positive-semidefinite matrix. 

Pmof in {9}, page 101. D 

5. POSTULATES 

To understand quantum mechanics it is vital to understand the postulates of quantum 
mechanics. There are four postulates that are the building blocks of quantum mechanics and 
everything else in quantum mechanics are consequences of these statements. The postulates will 
be stated in this section and they will be explained a little. 

Postulate I 
A closed physical system is a projective Hilbert space H that is called the state space. The 
physical states of the system are represented as density operators on a state space. Given a state 
I<J!) E H the corresponding density operator is 

P := I<P)(<PI (2) 

Postulate II 
The evolution of the closed quantum system from time to to time ii is described by a unitary 
transformation. This means that there exists a unitary operator U that is unique up to a phase 
factor that connects a state p(to) to p(ti) by 

p(ti) = u p(to)ut (3) 

Postulate III 
Quantum measurements on H whose state are represented asp are specified by a Hermitian operator 
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0 = Lx xPx called an observable. The probability of observing an outcome x is 

Px(x) = Tr(Pxp) (4) 

given a certain outcome x the resulting density operator is 

(5) 

Postulate IV 
Compostion of two state spaces HA and Hs is isomorphic to HA !?¢ Hs. For two independent 
density operators PA from HA and PB from Hs the joint state becomes 

PAB = PA c>¢ PB (6) 

The first postulate sets up the world that the states live in. As can be seen the postulates describes 
a closed physical system. Now what system is closed? Probably the only system that is closed is 
the universe itself. When a model is built to explain some experiment, care has to be taken since 
the experiments are not closed systems. 
The second postulate says how the density operator changes between two times. The key here 
is unitary operators, hence unitary operators are very important (unitary operators preserves the 
normalization in order to interpret different outcomes a probability). This postulate is equilvalent 
to the Schrodinger equation, 

in di'¢) = HI'¢) 
dt 

(7) 

The time evolution of a state of a closed system is described by the Schrodinger equation where H 
is a Hermitian operator called the Hamiltonian. 
The third postulate tells us how to measure a state. Note that when a measurement has been 
performed the density operator is instantely changed. A useful expression for the expectation 
value of an observable can be calculated by 

(0) = L:xPx(x) = L:xTr(Pxp) = Tr(LxPxP) = Tr(Op) (8) 
X X X 

From this postulate the famous Heisenberg uncertainty principle can be derived. The uncertainty 
principle states that for example an arbitrary accuracy can't be obtained for the position and 
momentum of an electron simultaneously. 
The last postulate tells us how to composite two state spaces. The tensor product is important in 
order to build a quantum computer of more than one qubit ([9], p. 80-96; [10], p. 30-32). 

6. THE QUBIT 

A classical computer have bits to represent information. A bit is like a flash light, either it 
is turned on or off. This way a base 2 system is made up to store values. So what is different 
in qubits? The answer is that the qubit does not only hold on or off, it also holds a quantum 
superposition. The quantum superposition is used when multiple qubits are in use, for instance a 
pair of qubits can be in four states and three qubits in eight different states. The important thing 
is that the 2n states can be hold at the same time in a quantum computer but a classical computer 
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can only hold one of 2n states at one time. 
A single qubit is represented by the following notation 

1'1/J) =adO)+ /1II) (9) 

the corresponding density operator is 

(IO) 

The IO) and II) can for example be the two different states an electron can have (spin up and spin 
down). 
The state-vector can be seen as .a vector: 

(11) 

The state set {10), II)} can be seen as an orthonormal basis that spans a 2-dimensional vector 
space. The density operator in this representation will then be a 2x2 matrix (the density operator 
is called the density matrix due to this reason, in this thesis no difference is made between the 
density operator and the density matrix): 

(I2) 

a: and ;1 in Eq. (9) are complex numbers and the probability to measure the zero-state is la:l 2 and 
the probability to measure the one-state is l/11 2 . Note that these are the diagonal elements of the 
density matrix. This can be expressed as 

{ la:l 2 + 1111 2 = I {::} { a:= ehsin(f:_29 ) 

fJ = ehei'Pcos(~) 
(I3) 

Note that the convention of a: and ;1 is chosen differently compared to for example Wikipedia: [11]. 
Given Eq. (I3) we can write Eq. (9) as 

(I4) 

The eh-term in Eq. (I4) is taken away, the equation to represent the state is then as follows. 

(I5) 

The reason to remove the eh-term is because it won't return any physics. This can be understood 
by looking at the density operator of Eq. (I4), 

_ ( .sin(~) 2 e-icpcos(~)sin(~)) 
p- ei'Pcos(~)sin(~) cos(;) 2 

(I6) 

the term eh has been multiplied by its complex conjugate. Since the density matrix contains all 
physics that can be seen from an observer there is no loss in removing it. Eq. (I5) can be visualized 
as a point in the Bloch sphere of a single qubit (for the more general case see Theorem 8.2, there 
is also the possibility to be inside the sphere). To visualize quantum mechanics is always a good 
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idea since quantum mechanics is not always intuitive (classic mechanics is more understandable 
for humans since we live in the "big world"). But when studying atomic physics I learned to see 
the world though the eyes of a child. Figure 1 are visualizing the (} and :.p as degrees on Bloch 
sphere, the degrees are real numbers. The Bloch vector is the vector with initial point in origo and 
terminal point to a certain state in the Bloch sphere. In Figure 1 the Bloch vector has a length 
equal to one. 

11) z 

y 

lo) 

FIG. 1: The Bloch sphere. Image taken from [11]. The groundstate is now chosen to be at 
z = -1 instead of z = 1 as in [11]. 

7. MULTIPLE QUBITS 

In the following an example with two qubits are shown. When two classical bits are represented 
they have four possible states 00, 01, 10 and 11. The qubits has what is called four computational 
basis states /0) 0)0) := )00), )0) 0)1) := )01), )1) 0)0) := )10) and )1) 0)1) := )11). This will give 
the superposition the following equation 

(
aoo) am 

1'1/J) = ooo)OO) + o:m/01) + o:w/10) + o:n/11) = 
<Y.lQ 

an 

(17) 

The set {)00), )01), /10), )11)} can be seen as an orthonormal basis that spans a 4-dimensional vector 
space. The new basis vectors are obtained by calculating the tensor product between the basis 
vectors of two single qubits. Postulate IV states how to composite two state spaces in terms of the 
density operator. For Eq. (17) the corresponding density operator is (the density matrix will be 
of size 4x4, this matrix will not be stated) 

P = 11/J) (1/JI (18) 
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If there are two qubits in two different states we can calculate the tensor product between them to 
get the Eq. (17) like this. 

11/J) 
1¢) 

11/!) 0¢ 1¢) 

0'110) + /3111) 

0'210) + /3211) 

(a1IO) + f:i1l1)) 0¢ (a2IO) + f:i2l1)) 

cr1cr2IOO) + crl/32101) + /31cr2110) + /31/32111) 

In analogy with the single qubit, the sum of the absolute value square of the coefficients is equal 
to one. 

(19) 

This can be generalized to an arbitrary number of qubits. To understand how much better the 
quantum computer potentially can be is to set the number of qubit to for instance n = 500, then 2n 
would be a larger value than the estimated number of atoms in the observable universe. To store 
all these complex numbers is of course not possible by a classical computer. But as the quantum 
world is opening more and more for human, the possibilities are greater than we every can imagine 
([9], p. 16-17). 

8. PURE AND MIXED STATES 

A pure state is a state that can be represented by a state vector, it means that the state is 
known exactly. For a single qubit the quantum state can be expressed as in Eq. (9). When the 
state vector isn't enough to describe a quantum state the density operator is used. A pure state 
can also be represented by the density operator and hence the density operator is a generalization 
of the state vector. For a pure state the density operator looks like 

p = 11/!)(1/!1 (20) 

where 11/!) is exactly known. 
The denisty operator representation for a mixed state is a mixture of pure states. The mixed state 
can in particular represent an ensemble of atoms, this will be used later in this thesis when deriving 
the Bloch equations. When solving the Bloch equations numerically, space will be discretized. Every 
discretized point in space contains a lot of atoms in reality. If every discretized point would be 
represented by a state vector (a pure state) then the model assumes that there is only one atom 
in every discretized point. Using the density operator instead will be a better approximation to 
reality since now every discretized point can be described by an ensemble of atoms. 
The opposite of a pure state is a completely mixed state ([12], p. 111). The completely mixed 
state is represented by the density matrix as 

1 
p= -I 

n 

where n is the dimension of the state space and I is the identity matrix of dimension n x n. 

(21) 

For example when a single qubit is used the opposite of a pure state is p = ~I = ~ (10) (OI + 11) (1 I). 
Two useful theorems will be stated and proved. The second theorem is important in order to derive 
the Bloch equations. 
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Theorem 8.1. Let p be a density operator, then the following holds 

(22) 

where k ~ 2 is an integer, with equality iff p is in a pure state. 

Proof. In Theorem 4.1 the second condition is that p is Hermitian (this means that the density 
matrix is normal, which leads us to use Theorem 12.5 in [13]). It says that a matrix can be 
diagonalized by a unitary matrix with the eigenvalues on the diagonal iff the matrix is normal 
(that is p = U DUt for some unitary matrix U and diagonal matrix D). Lets look at the trace 
for one single density operator, and since it is Hermitian all eigenvalues are real (so the diagonal 
element of D are all real). 

Tr(p) = Tr(U DUt) = Tr(uut D) = Tr(ID) = Tr(D) = 1 (23) 

The trace is one according to the first condition in Theorem 4.1. This means that any element in 
D is less or equal to one. Now lets look at the density operator to the power k. 

(24) 

Since any element di in D is less or equal to one. 

n 

Tr(Dk) = Ldf ( 1 (25) 
i=l 

For a pure state the trace is 

Tr-(l) = Tr(l'l/J)('l/JI'l/J)('l/JI···I'l/J)('lj;l) = Tr(l'l/J)('lj;l) = Tr-(p) = 1 (26) 

Conversely suppose 

(27) 

for an arbitrary density matrix p, then according to Eq. (25) the diagonal elements di is less or 
equal to one. If there exists one element equal to one it implies that it comes from a pure state. 
And if di is less than one, then k must be equal to one to fulfil Eq. (27) and therefore p must be 
a pure state. D 

Theorem 8.2. An arbitrar-y density matrix for a mixed state of one qubit can be written as 

p= ~ ( 1- ~z rx+iry) 
2 rx - ~ry 1 + rz 

(28) 

where 7 = ( r x, T y, T z) is a real vector that is called the Bloch vector and 11711 ( 1, with equality 
iff p is a pure state. 

Proof. For a single qubit the density matrix is of size 2x2. 

p = (~ !) (29) 

Lets start with the conditions in Theorem 4.1 and see what that gives for conditions on the 
values of the matrix p. 
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Hermitian: 

(a b) (a* c*) 
p = pt = c d = b* d* 

So a and d must be real. And c and b are connected as: 

where hand g are real. 

b = g- ih 

c = g + ih 

Trace of p must be one which gives a+d = 1. 

(30) 

(31) 

(32) 

p must be positive semi-definite {::} >. ?: 0 ([13], p. 124). By calculating the characteristic 
polynomial and get the eigenvalues of p this condition can be used. 

det(p- AI) = I a - .>-h g - ih I = .>.2 - >. + x = 0 
g+z 1-a->. 

where x = a - a2 - g2 - h2 . 

This gives the eigenvalues 

And now applying the condition >. ?: 0 

~- J~- X> 0 {:=:::}X> 0 2 4 - -

The density matrix that is stated in the theorem will be set equal to Eq. (30) 

p = ~ ( 1 - ~z rx + iry) = (a b) 
2 rx- zry 1 + rz c d 

(33) 

(34) 

(35) 

(36) 

(37) 

This gives a= 1 ~ rz, g = rx/2 and h = -ry/2. Inserting this into Eq. (36) with x = a-a2 -g2 -h2 , 

the condition we wanted is obtained: 

(38) 

The first part of the proof is done. 

The density matrix for a single qubit pure state 

p lv') (1/!1 
(oojO) + ,BI1))(a*(OI + ,8*(11) 

rw*IO)(OI + a,B*I0/(11 + ,Ba*I1)(0I + ,8,8*11)(11 (39) 
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And in matrix form 

( aa* af3*) 
p = (Ja* f3 fJ* 

Which gives the following equation-system: 

{ 

aa* = ~(1- Tz) { aa* + (3(3* = ~(1- Tz + 1 + Tz) = 1 
(3(3* = f(l + Tz) aa*- (3(3* = 2(1- Tz- (1 + Tz)) = -T2 

a/3* = 2(rx + iry) ¢? a/3* + f3a* = rx 
(3cv* = ~(rx- iry) i(a/3*- f3a*) = i( -'iry) = Ty 

Lets look at the three last equations and use Eq. (16), 

{ 
aa* -- (3(3* = sin2 (~)- cos2 (~) = -cos(O) = -r2 

a(J* + (Ja* = e-i'Psin(0)/2 + ei'Psin(0)/2 = cos(rp)sin(O) = rx 
i(a/3*- f3a*) = i(ci'P.sin(0)/2- ei'P.sin(0)/2) = sin(rp)sin(O) = ry 

{ 
rx = cos(rp)sin(O) 
Ty = sin( i.p) .sin((}) 
Tz = cos(O) 

(40) 

The above equation is called spherical coordinates with the radius one ([14], p. 27), this gives 
11--:t II = 1 and hence a pure state has Bloch vector length equal to one. 
Conversely, suppose 11-:t11 = 1. Theorem 8.1 says that Tr(pk) = 1 iff pis in a pure state where 
k ? 2, and in particular this is true for k = 2. Using Tr(p2 ) for the density matrix that is stated 
in the theorem given that 11--:t II = 1 

( 41) 

Hence according to Theorem 8.1 the density matrix pis pure. 0 
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9. TIME EVOLUTION OF THE DENSITY OPERATOR 

For a state vector the time evolution is described by Eq. (7). In the following the time evolution 
for the density operator will be derived: 

d d n 

dtp( t) = dt L Pi 11/Ji ( t)) ('¢i( t) I 
i=O 

(42) 

n d d 
= L (Pi ( dt 11/Ji ( t))) ( 1/;i ( t) I + Pi 11/Ji ( t)) ( d~ ( V'i ( t) I)) 

i=O 
(43) 

n 1 1 
= L (Pi (,in Hl1/!i ( t))) (1/!i ( t) I + Pii1/Ji ( t)) (-in ( 1/Ji ( t) I H)) 

i=O 
(44) 

1 n 1 n 

in H L Pi 11/Ji ( t)) ( 1/Ji ( t) I - in L Pi 11/Ji ( t)) (1/'i( t) IH 
i=O i=O 

(45) 

1 
in [H, p(t)J (46) 

The equation above will be used in the derivation of the Bloch equations. 
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Part V 

The Quantum repeater 
10. SCALING ERRORS IN QUANTUM COMMUNICATION 

The most common way to send quantum information is to send photons through an optical fiber. 
The information can be encoded in the two-dimensional basis consisting of horizontal respective 
vertical polarization of single photons. In an ideal world it would be possible to send quantum 
information over very large distances. But in reality there are for example imperfections in the 
optical fibers and detector noise that creates errors. It turns out that the probability of absorption 
and depolarization of a photon in an optical fiber scales exponentially with the distance. This 
introduces three complications: 

1. The number of trials that is needed to transmit a photon grows exponentially with the length 
of the fiber. 

2. Imperfections in the detector can give dark counts (a dark count is when the detector registers 
that a photon is detected, but in reality nothing came in to the detector). This implies that 
the rate of the real photons reaching the detector must be higher than the dark count rate 
otherwise the signal-to-noise drops to zero [1]. 

3. Even if a photon is successfully transmitted, the fidelity between the inital quantum state 
and the received quantum state decreases exponentially with the length of the fiber (fidelity 
is a measure of how similar two quantum states are [9]). 

The mission of a quantum repeater is to improve the scaling of errors with respect to the length. 
This will enable long-distance quantum communication [15]. 

11. DEMONSTRATION OF HOW A QUANTUM REPEATER WORKS 

The goal of the quantum repeater is to create entanglement between two parties called Alice 
(A) and Bob (B) where A and B are spatially separated. Entanglement is a property of quantum 
states that has no analogue in classical mechanics. Since there is no classical analogue the phe­
nomena is very unintuitive. Even so it has been experimentally shown to be a property of nature. 
Entanglement is a key-stone in for example Quantum Key Distribution ( QKD) that enables secure 
communication between two parties. If any third party tries to measure the communication sent 
between the two parties the state will collapse. The third party can then be detected with some 
probability [9]. 
In Figure 2 an illustration of how a basic setup for QKD looks like. A source in the middle sends 
out two entangled photons through for example an optical fiber. One photon is sent to Alice and 
one to Bob. The distance between them is d. As mentioned before the number of trials scales 
exponentially with the distance, hence the distance d is limited. It's at this point the quantum 
repeater comes into play. 
In order to for example double the distance between Alice and Bob a quantum measurement device 
is put in the middle (can be seen in Figure 3). There are now two sources that sends out entangled 
particles. The source to the left sends out two entangled photons, one photon to Alice and one 
photon to the quantum measurement device. The source to the right sends out two entangled pho­
tons, one photon to Bob and one photon to the quantum measurement device. Inside the quantum 
measurement device entanglement swapping is peformed. This makes the two photons inside the 
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source of pairs of 
entangfed partides 

FIG . 2: Illustration of the setup for QKD. Image from [16]. 

A B 

FIG. 3: Illustration of the setup together with a quantum measurement device that performs 
entanglement swapping. Image from [16]. 

device to dis-entangle with their respectively photon and instead the photon that Alice has be­
comes entangled with Bobs photon [17] . At this point the quantum repeater scheme has created 
entanglement between Alice and Bob with a distance of 2d between the parties. This concept can 
now be generalized by building a chain of quantum repeaters shown in Figure 4. Notice that a 
quantum memory is also introduced in this figure. The purpose of having a quantum memory in 
this scheme is to get better performance [16]. 
Although the question remains: has the scaling problem been reduced? 

To be able to answer this question a small investigation of the QBER (Quantum Bit Error Rate) 
will be done. The QBER is defined as the ratio between the the wrong number of bits and the 
total number of bits received (QBER = Pdet/(Pdet + Praw), where Praw is the probability to get 
a correct bit and Pdet is the probability to get an error). The probability of getting a correct bit 
is calculated to be: Praw = tlink'r/n , where tlink is the transmission coefficient (the probability that 
a sent photon gets to the wanted detector given the total distance) , rJ is the detector efficiency 
and n is the number of sections of length d. The probability to get an error is calculated to be: 

Pdet = (tz/n:'rl + (1- tz/n:)Pdark)n - tlink'r/l /n, where Pdark is the probability to get a dark count . 

/ ummemory 

quantum repeater quantum repeater 

FIG. 4: Illustration how a quantum repeater enables to create entangled photon to an arbitrary 
distance. Image from [16]. 
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FIG. 5: Three different n is shown. The parameters are set to: 17 = 10%, Pdark = 10~4 and fiber 
attenuation o: = 0.25dBjkrn. Image from [1]. 

Finally the normalized net rate (the number of succesfully transmitted photons over a period of 
time) is Pnet = (Praw + Pdet) · jct(QBER), where the function jet denotes the fraction of bits 
remaining after error correction and privacy amplification. For a more detailed description see ([1], 
p.20-21). In Figure 5 an example of Pnet is plotted as a function of the distance. Three different n is 
shown. The parameters are set to: 1J = 10%, Pdark = 10~4 aud fiber attenuation a= 0.25dB/km. 
As can be seen when n = 1 the net rate drops to zero at 90krn, while for n = 2 the net rate drops 
to zero at 155km. The reason for a much lower net rate for several quantum repeaters is because 
the detector efficiency is set to a low value (17 = 10%). 
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Part VI 

The Maxwell-Bloch equations for a 2-level 
system 

The Maxwell-Bloch equations is a model that describes light-matter interaction. The model is 
simplified so that numerical simulations is possible with only three nested loops. The equations is 
called Maxwell-Bloch since the atoms are treated quantum mechanically by the Bloch equations 
while the light is treated by the Maxwell's wave equation. 

12. DERIVATION OF THE BLOCH EQUATIONS 

Starting of from Eq. ( 46) (the density matrix will always be time-dependent in this section 
therefore p := p( t)) the Hamiltonian needs to be defined in order to describe the physics. In this 
case there are only two energy-levels. The groundstate denoted as lg) with eigenvalue nw9 and the 
excited state denoted as le) with eigenvalue llwe The Hamiltonian has two parts 

H = Ho + HI(t) (47) 

where Ho is the Hamiltonian for an unperturbed atom and HI(t) is a time-dependent perturbation. 
The unperturbed Hamiltonian described as 

Ho = nwole)(el (48) 

where wo =We - w9 is the transition frequency for the atom. 
The time-dependent perturbation will be produced by a spatially !-dimensional oscillating electric 
field E( z, t). In the dipole approximation the perturbation can be described by 

HI(t) = - M E(z, t) = - (tL9cl9) (el + IL~e I e) (gi)E(z, t) ( 49) 

where JU is the dipole moment operator and /lge = -e(glzle) is the transition dipole moment 
between ground state and the excited state. The electric field is described as 

E(z, t) ~(z, t) cos(0JLt- kz + tp(t)) 

~(z, t) ( cos(wLt - kz) cos tp( t) - sin(wLf - kz) sin tp( t)) 

(50) 

(51) 

where ~(z, t) is the envelope of the field, k is the wavenumber, tp(t) is the phase and W£ is the laser 
frequency ([18]; [19], p. 8-14). 
The rotating wave approximation (RWA) is an approximation that assumes that the radiation 
frequency is close to the atomic resonance: 

1~1 = lwo- :.V'£1 « wo (52) 

where ~ is called detuning. 
This approximation will be used to simplify the equations. First of all we need to move from the 
Schrodinger picture into the interaction picture. This is done by the unitary operator 

U = e-iHot/n = [1 0 ] 
0 e-2(wot) 
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Thus the denisty matrix and Hamiltonian in this picture is p' = u-1 pU resp. H' = u-1 HU. Note 
that for a unitary matrix the following holds U* = u-1 . The time-evolution in this picture will 
now be derived. Lets start of by rewriting the time-evolution for the density matrix. 

·~ d 
7,n-p 

dt 
[H,p] 

Hp-pH 

uu-1 Huu-1puu-1 - uu-1puu-1 Huu-1 

u H' p'u-1 - up' H'u-1 

U(H' p'- p' H')U-1 

H'p'- p'H' 

[H',p'] 

The left hand side of Eq. (54) will be written in terms of p'. 

!!__ ( u (11 u -1) 
dt 

( :t U)p'u-1 + u( :t p')u-1 +up' ( :t u-1) 

Lets put the left hand side of Eq. (60) and Eq. (63) together 

And finally Eq. ( 65) is inserted into Eq. ( 61) and now the time-evolution becomes 

H'p'- p'H' 

¢? 

in !p' [H', p'] - in(u- 1 ( :/')p' + p' ( :t u-1 )U) 

Note that 

by introducing G := inU- 1 (-fltU) and Eq. (68) can now be written as 

in :tp' = [H'- G, p'] 
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(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 



H' will now be explicitly stated 

H' = n [ 0 . ~f.LgeE(z, t)e-iwot jn] 
( ~JLgeE(z, t)e-zwot jn)* wo 

(72) 

The off-diagonal terms will be further developed together with Eq. (51): 

~ f.Lge~( z, t) (cos( w Lt - kz) cos cp( t) ~ sin( w Lt - kz) sin :p( t) )e -iwot jr~73) 

_ JLge~(z, t) ((ei(-kz+(wL-wo)t) + e-i(-kz+(wL+wo)t)) cos cp(t) (74) 
2n 

+i(ei(-kz+(wL-wo)t) ~ e-i(-kz+(wL+wo)t)) sincp(t))) (75) 

The RWA Eq. (52) will be used and neglect the fast oscillating term ei(wo+wL)t. Moreover the real 
and imaginary Rabi frequencies will be introduced 

nr ·- nr(t) = f.L~e ~(z, t) coscp(t) 

ni ·- ni(t) = {L~e~(z,t)sincp(t) 

The electric field can then be written as 

E(z, t) = _!!:_(nrcos(wLt- kz)- nisin(wLt- kz)) 
2f.Lge 

-2 n (ei(wLt-kz)(nr + ini) + e-i(wLt-kz)(nr- ini)) 
JLge 

Now with the rotating wave approximation the Hamiltonian is denoted as Hkw A' 

Also the global Hamiltonian in the interaction picture becomes 

(76) 

(77) 

(78) 

(79) 

(80) 

(81) 

A transformation back to the Schrodinger picture by applying the inverse of the unitary operator 
in Eq. (53) given the RWA will be done. Starting of from Eq. (66), but with the RWA 

inU- 1(:tp)U 

inuu-1(:tp)uu- 1 

. d 
1.n( -1 p) 

ct 

Now the Hamiltonian in the Schrodinger picture with the RWA is 
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(82) 

(83) 

(84) 

(85) 



The last step is to change the rotating frame and use the frequency W£ as reference frame. This 
is done by applying the unitary transformation R in the same manner as above but without going 
back to the original picture, 

Starting of from Eq. (68), 

in! p" (t) = [H~w A' p'' (t)] - in(R-1 ( :t R)p" (t) + p" (t) (! R- 1 )R) 

where p"(t) = R-1pR and H~wA(t) = R-1HRwA(t)R. 
A similar expression is obtained for the additional terms on the right-hand side as above: 

The global Hamiltonian Hfinal is then (with G' = inR-1 (-itR)): 

(86) 

(87) 

(88) 

(89) 

(90) 

The Schrodinger equation can now be divided into 4 connected first order differential equations by 
looking at each term in the density matrix separately, 

This is the result 

dpgg 
dt 

dpge 
dt 

dp;e 
dt 

dPee 
dt 

PJ. 1 _ [Pgg Pge] 
ma - P;e Pee 

~W~r + ini)P;e- (nr- ini)Pge) 

i(~(Or + iOi)(Pee- Pgg) + Pge(wo- wL)) 

1 
i(2(0r- iOi)(Pgg- Pee)- P;e(wo- W£)) 

~((Or- iOi)Pge- (Or+ iOi)P;e) 

The Bloch equations will now be stated in terms of the Bloch vector from Theorem 8.2. 

{ 
2pgg = 1 - Tz { rx = 2Re(Pge) 
2pge: Tx + iTy ¢:> ~Y: 2Im(pge) 
2Pee - 1 + r z r z - Pee - Pgg 

18 

(91) 

(92) 

(93) 

(94) 

(95) 

(96) 
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In order to figure out how the equations will look with the Bloch vector, one intermediate calculation 
is done 

d 
dt (Pee- Pgg) = i((Or- i0i)(Re(p9e) + ifm(p9e))- (Or+ i0i)(Re(p9e)- 'ifm(p9e))) (98) 

d 1 
dt (Re(p9e) + ilm(p9e)) = i(2(!2r + ini)(Pee- p99 ) + (Re(p9e) + ilm(p9e))(wo- W£)) (99) 

and finally the Bloch equations are derived 

drx 
dt 

dry 
dt 

drz 
dt 

where~= wo-W£ is the detuning ([20]; [21], p. 123-127; [22], p. 32-33). 

13. DERIVATION OF THE MAXWELL WAVE EQUATION 

Starting of from the well known Maxwell's equations in SI units, 

dD 
'\lxH=j+­

dt 
dB 

'\1 X E = --
dt 

"V·D=( 

"V·B=O 

(100) 

(101) 

(102) 

(103) 

(104) 

(105) 

(106) 

where H is the magnetic field, E is the electric field, D is the dielectric flux, B is the magnetic 
flux, j is the current density of free carriers and ( is the free charge density. 
The following material equations will be used 

D = fE + Ptatal 

Ptotal = Phost + P 

Phost = XEE 

B=11B+77 

(107) 

(108) 

(109) 

(110) 

where Ptatal is the macroscopic electric dipole polarization, Phast is the host material which is 
linear, x is the electric susceptibility, P is the polarization for the material of interest that will be 
given from the Bloch vector. 7] is the magnetization, E is the dielectric permeability and 1-l is the 
magnetic permeability in the host medium. 
Taking the curl of Eq. (104) gives 
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\7 X (\7 X E) 

V'(\7 E) - b.E 

\7(\7 E)- b.E 

dB 
-V'x­

dt 
d 

-\7 X dt (J.LH + 7]) 

d 
- dt(J.L\7 X H + \7 X 'tJ) 

Inserting Eq. (103) and Eq. (107) into Eq. (113) 

\7 (V' E) - b.E 

V'(\7 E) - b.E 

(111) 

(112) 

(113) 

(114) 

(115) 

The following assumptions will be made: 7] = 0, _j = a E, ( = 0 and \7 E = 0 where a is the 
electrical conductivity introduced due to ohmic losses in the host material. Moreover for the host 
material n2 := (1 + x) is the constant refractive index squared. Eq. (115) turns into 

(116) 

where c = 1/ yfii is the speed of light in vaccum. Moreover assume that the ohmic losses is zeros 
(a= 0). This will give us the Maxwell wave equation in a medium, together with a host material 
([23], p. 21-23; [24] p. 97-103; [25] p. 266-267) 

(117) 

The electric field is now written as Eq. (79) and inserted into Eq. (117), moreover assuming that 
the space is one-dimensional: 

Note that 

d
2
2 (J(x)eif1x) = (J"(x) + 2if3f'(x)- (32 f(x))eif3x 

dx 
(119) 

where f(x) is an arbitrary continous function and f3 constant. The slowly varying envelope 
approximation (SVEA) will now be used. This approximation assumes that the f(x) is vary­
ing slowly in time compared to the laser frequency fJ. This gives the following inequalities 
f"(x) « f3f'(x) « (32 f(x), and hence 

d2 (J(x)eif3x) =SVEA (2if3f'(x)- /32 f(x))ei(Jx 
dx2 

(120) 

SVEA will be used for the Rabi frequencies Or and Oi, assuming that they are slowly variying 
compared to the laser frequency WL (0~/i « W£0~/i « wz0rji)· 
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Developing the left-hand side in Eq. (118) (the wavenumber k := w£n/c), 

(121) 

(122) 

(123) 

(124) 

The macroscopic polarization will be expressed in terms of the expectation value of the dipole 
moment integrated over all detunings: 

l +oo 
P(z, t) = N -oo g(6.)(llf)d6. (125) 

where N is the number of atoms, g(6.) is the inhomogeneous profile and (M) is the expectation 
value of the dipole moment. The inhomogenous profile satisfy the following condition ( [26], p. 
805): 

1 l+oo - g(6.)d6. = 1 
27T -oo 

(126) 

The expectation value of the dipole moment is calculated from quantum mechanics. This is how 
the Maxwell wave equation is connected to quantum mechanics and hence this is a semi-classical 
model. The atoms is treated quantum mechanicly while the light is treated classically. From Eq. 
(8) the expectation value of the observable M can be calculated 

(M) 

From Theorem 8.2: 

tr(pM) 

= tr(p(fLgelg)(el + M;ele)(gl)) 

PgeJL;e + P;e/Lge 

Pge/L;e + C.C. 

(127) 

(128) 

(129) 

(130) 

(131) 

Inserting Eq. (131) into Eq. (130) and also letting the density matrix elements oscillate as ei(wLt-kz) 

gives 

(132) 

Now Eq. (132) is inserted into Eq. (125) 

(133) 
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Developing the right-hand side of Eq. (117) (the wavenumber k := W£n/c). SVEA will be used for 
the Bloch vector components Tx and ry, assuming that they are slowly variying compared to the 

laser frequency (r~/y « W£</y « wzrx;y) 

(134) 

(135) 

(136) 

(137) 

Now the right-hand side is equal to the left-hand side, that is Eq. (124) equal to Eq. (137) 

(138) 

(139) 

Extract the real and the imaginary part as well as the term eiwL(t-zn/c) into two different equations 
gives 

dDr ndDr _ a j+oo (!\) di\ -+---- gury u 
dz c dt 21f -oo 

dDi n dDi _ a j+oo ( i\). di\ -+----- gurxu 
dz c dt 27r -oo 

where a= 1 1192~~~~N is called the absorption coefficient ([19], p. 14-16; [20]). 

14. THE COMPLETE EQUATIONS 

(140) 

(141) 

The postulates of quantum mechanics is only valid for a closed system. When performing an 
experiment the system 2-level atom model is not a closed system. A quick fix to solve this problem 
is to introduce two phenomenological decay constants T1 and T2. 1/Tl is the rate for an atom to 
relax toward equilibrium. 1/T2 is the rate at which the coherence will decrease through for example 
collisions. The complete Maxwell-Bloch (MB) equations is then Eq. (100)-(102) together with Eq. 
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(140) and Eq. (141). 

drx(z,t,6) __ A ( ")-"·() ( ")-rx(z,t,6) 
d - u r y z, t, u Ht z, t r z z, t, u 

t ~ 
(142) 

dry(z,t,6) _" ( ") n ( ) ( ") _ ry(z,t,6) 
d - urx z, t, u + Hr z, t rz z, t, u 

t T2 
(143) 

drz(z, t,6) _ "·( ) ( . ") _ n ( ) ( ") _ 1 + rz(z. t,6) dt - Ht z, t rx z, t, u Hr z, t ry z, t, u Tr (144) 

dOr(z, t) :3:_ dOr(z, t) = ~ l+oo (6 ) ( 6 )d6 
d + dt 2 g r Y z, t, 

Z C u 7r _ 00 

(145) 

dOi(z, t) :!_ dOi(z, t) = -~ l+oo (6 ). ( 6 )d6 
dz + c dt 2Jr _

00 
g rx z,t, (146) 

15. RETARDED TIME AND THE RUNGE-KUTTA METHOD 

A smart change in variables for the MB equations will be done in order to easily solve the 
equations. Lets introduce two new variables 

T(z, t) 

z' ( z, t) 

zn 
t-­

c 
z 

(147) 

(148) 

where T := T(z, t) is called retarded time and z' := z'(z, t) is introduced for our convinence. The 
chain rule will be applied [27]. 

d dT d dz' d 

dt 
--+--
dt dT dt clz' 

d dT d dz' d 

dz 
--+--
dz dT dz dz' 

An intermediate step in order to continue the calculations 

dT dz' 
- =1 -=0 
dt dt, 
dT n dz 

-=1 
dz c dz 

Inserting the above in Eq. (149) and Eq. (150) gives 

d d 

dt dT 
d n d d 

dz 
---+-

c clT dz' 
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(151) 

(152) 

(153) 



These result will now be substituted into the MB equations, 

drx(z1,T,6) =_A (I A)_"·( I ) (I A)_ rx(z1,T,6) 
dT w.ry z ,T,w. H, z ,T rz z ,T,w. Tz (154) 

dry(z1,T,6) _A (I A) n (I ) (I A)_ ry(z1,T,6) 
dT - w.rx z, T, w. + Hr z , T rz z , T, w. Tz (155) 

drz(Z1,T,6) -"·(I )·· (I A)-" (I )" (I A)_1+rz(Z1,T,6) dT - ~ G2 z , T r x z , T, w. ~ Gr z , T r y z , T, w. Tl (156) 

dfl,(z',T) = D'Q l+oo (A) (.! A)dA 
d 1 2 g W. Ty Z 1 T, w. w. 
z 7r -(X) 

(157) 

df2i(Z1,T) = _ O'Q l+oo (A) ( 1 A)dA 
d 1 2 g w. rx z, T, w. w. 

z 7r -00 

( 158) 

These equations can now be solved numerically. In the numerical model g(6) can't be defined from 
-oo to +oo, therefore a different a will be used called ao. ao := a(wo)/g(wo) where g(wo) =I 0 
([22], p. 37). The numerical program will contain three nested loops. Whereas the outermost loop 
runs over all z-slices, the middleloop runs over all detunings. The innermost loop contains the 
Bloch equations, these can easily be solved by the classical Runge-Kutta method for given z1 and 
6 [28]. When the two inner loops has finished, the integral (the macroscopic polarization) for the 
Maxwell part can be calculated. Note that the variable substitution is vital to get a efficient and 
fast numerical program. 
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Part VII 

Quantum memory protocols 
16. THEORY 

A. Homogenous- , inhomogenous linewidth and spectral hole burning 

The homogenous linewidth is the width in the frequency domain that an ion can absorb or emit 
electromagnetic radiation. The homogenous linewidth has a lorentzian shape and the linewidth is 
rh = l/(7!-T2), where T2 is the coherence time introduced in Section 14. 
The doped ions in a rare-earth-ion-doped crystal are embedded in a crystal lattice. Due to imperfec­
tions in the lattice, the transition frequencies between ions in the crystal varies. The inhomogenous 
profile is created by summing up all the ion's homogenous linewidths with their respectively tran­
sition frequencies. In the 2-level MB equations the ions transition frequencies is given by the 
detuning 6 and the inhomogenous profile is given by the function g(6). The inhomogenous profile 
has a gaussian shape. For example in the case of a Pr3+ : Y2Si05 the inhomogenous profile is in 
the order of 5 GHz wide while the homogenous profile is in order of kHz. 
A concept that is often refered to in this thesis is the absorption profile for an inhomogenous 
profile mainly in the context of a spectral hole (sometimes called spectral pit). The absorption 
profile refers to a three-dimensional picture where the x-axis represents a spatial one-dimensional 
position in the crystal, on the y-axis represents the detuning and the z-axis represent the amount 
of absorbers/ions (sometimes the spatial dimension is neglected). A spectral hole (stricty speaking 
the term is: persistent spectral hole) can be created in the inhomogenous profile. Suppose the 
atomic structure is limited to a 3-level system with two ground states and one excited state. An 
incoming laser pulse excites some population from one ground state to the excited state. With 
some probability the excited population will relax to one of the two ground states (given that 
this is possible). The lifetime between the ground states are much longer than the lifetime in the 
excited state. It's thereby possible to "burn away" population from one ground state to another. 
This is called optical pumping. The incoming pulses is usually called burn-pulses for this reason. 
Due to the broad inhomogenous profile, different ions with different transition frequencies can be 
addressed by choosing the incoming laser frequency. By scanning the laser in frequency it's possible 
to create a wide spectral hole. When a spectral hole has been created some ions can be burned 
back into the pit ([29], [22]). This burn-back procedure is important for all the quantum memory 
protocols described in this thesis. To be able to have an absorption profile with one or more narrow 
peaks inside a spectral hole is one key ingredient to get a high efficient quantum memory. In the 
results and discussion section, different shapes of the burned-back peaks will be compared against 
each other. 

B. What is a quantum memory? 

To get a feeling of what a quantum memory is, it's good first to look at a classical computer 
memory. A classical memory is a device that can store bits over time and on-demand release the 
information. The bits can be stored in many different ways. For a classical computer the bits are 
normally stored as charges or magnetization of memory cells. 
A quantum memory is a device that can store qubits. The qubits should be able to be stored for 
a certain amount of time and released on-demand. There are four things that are important when 
realizing a quantum memory [30]: 
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• The storage and recall efficiency: The efficiency is in most cases defined to be the ratio 
between the output and input quantum state amplitudes squared. 

• Fidelity: This is the overlap between the output and the input quantum state wave functions. 

• Storage time: The separation in time between the input and output quantum states. 

• Multi-mode: The number of optical modes that can be stored. 

In the following sections a number of quantum memory protocols are described. All these protocols 
have the same basic technique of exploiting the inhomogenous profile in for example a rare-earth­
ion-doped crystal. The advantage of using a rare-earth-ion-doped crystal is the long coherence 
times (T2) at cryogenic temperature. The information carriers will consist of single photons, these 
are coherently absorbed by an ensemble of atoms. The recall process of the photon is done by a 
certain technique or structure that makes the atoms rephase. When the ensemble of atoms rephase 
they generate a macroscopic polarization which affects the field according to Maxwell's equations. 
Optimally this process sends out a photon that contains the same quantum information as the 
incoming photon that was stored [22]. 

C. Definition of efficiency 

The efficiency of a quantum memory is defined as the ratio between the integral of the intensity 
of the outgoing stored pulse and the integral of the intensity of the incoming pulse: 

_ ft:3 IEecho(t)l 2dt 
17 - ft~1 IEinc(t)l 2dt 

(159) 

where 17 is the efficiency, IEecho(tW is proportional to the outgoing stored pulse intensity and 
IEinc(t)1 2 is proportional to the intensity of the incoming pulse. The span in the time-domain of 
the incoming pulse is between to and t1 and the span in the time-domain of the outgoing stored 
pulse is between t2 and t3. 

D. CRIB 

Controlled reversible inhomogeneous broadening (CRIB) first proposed by Moiseev and Kroll 
[3], exploits a hidden time-reversal symmetry. This symmetry forces the atomic ensemble to rephase 
and reproduce the stored photon. This concept will be explained by two different implementations 
called the transverse and the longitudal CRIB both relying on the DC Stark effect. The DC Stark 
effect will have different effect for different type of crystals. For one type of crystal the doped ions 
have two possible orientations of the permanent electric dipole with respect to a electric field. The 
effect has been measured experimentally and shown in Figure 6. In the other type of materials 
every ion has a permanent electric dipole moment in a random orientation with respect to a electric 
field. 

1. Transverse CRIB 

The transverse CRIB protocol was introduced by M.Nilsson and Kroll [31] and investigated 
analytically by Sangouard et. al. [32]. 
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FIG. 6: The DC Stark effect for Eu: Y Al03. The resonance frequency splits into two parts, this 
is due to the fact that there are two possible orientations of the permanent electric dipole 
moment of the doped ions with respect to the field. The stronger electric field the more 

separation between the levels. What can be seen is one initial spectral hole for zero voltage that 
splits in two parts for non-zero voltage ([22], p. 14). 

In this subsection an intuitive step-by-step description of how the scheme works will be done. The 
initial scheme was to include a third level in order to reverse the propagation direction of the 
outgoing stored pulse. The reason to reverse the propagation of the outgoing stored pulse is to 
exceed the maximum efficiency limit of 54% that occurs when the outgoing stored pulse propagates 
in forward direction [32]. In the intuitive step-by-step description the implication of the third level 
will be excluded. The ions in the crystal are assumed to have a permanent electric dipole moment 
iu a random orientation with respect to a electric field. 

1. Prepare a peak of absorbing ions inside a spectral hole. This is shown in Figure 7a. The 
peak will contain a large number of ions. 

2. A constant electric field is now turned on. This will shift all the ions transition frequency 
randomly since the ions are assumed to have a random orientation of their permanent electric 
dipole moment. The inital peak is then spread out more or less uniformly, shown in Figure 
7b. This inhomogenous profile in Figure 7b will now be defined as g(fl.) (Eq. (125)). 

3. A light pulse (for example a single photon) can now be sent in to the material. Suppose 
the light pulse entered at timet= to. The frequency-span of the incoming pulse should not 
be broader than the uniform structure inside the spectral hole. Given that there are high 
absorption (a lot of ions in in the initial peak) the pulse will be almost completely absorbed. 
The incoming pulse will excite the ions in the inhomogenous profile and since they are spread 
out over different frequencies they will start to dephase relative to each other. 

4. At time t = to + T the electric field is reversed, shown in Figure 7c. This will cause all ions 
to reverse their shift: g(fl.) --+ g( -fl.) given that fl. = 0 is the center position of the inital 
peak, this is shown in Figure 7a. It should be noted that the transformation g(fl.) --+ g( -fl.) 
is a simplification that assumes that the inital peak is a delta function. Since all ions have 
reversed their shift they will get in phase at time t = to + 2T and thereby release the stored 
pulse. 
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FIG. 7: Step 1,2 and 4 are visualized for the t ransverse CRIB protocol. Figures from [29] 

2. Longitudal CRIB/ GEM 

Longit udal CRIB , also called gradient echo memory (GEM) , first demonstrated experimentally 
by Sellars et. al. [33] and in year 2010 efficiency as high as 70% was obtained experimentally [4]. 
The protocol was investigated analytically by Longdell et. al. [34]. The protocol will be explained 
by a step-by-step description. GEM is easier to implement than t ransverse CRIB with respect 
to get high efficiency. The reason for this is that GEM doesn 't suft"cr from the maximum 54% 
efficiency limit in forward direction and hence GEM doesn't need any third level to reverse the 
propagation of t he outgoing stored pulse. Even though GEM is easier to implement it should be 
taken into consideration that a phase shift is applied for t he outgoing stored pulse. Suggestions 
to avoid the phase shift is to for example put two memories in row with opposite gradients and 
therefore cancel t he phase shift of t he photon [34] . 
The doped ions in the crystal are assumed to have one possible orientation of their permanent 
elect ric dipole moment with respect to the field (actually there are two orientations of t he doped 
ions but one of t he orientation is excluded) . 

1. Prepare a peak of absorbing ions inside a spectral hole. This is shown in Figure Sa, note that 
the z-dependency is included and the edges of the spectral hole are not shown compared to 
Figure 7a . The peak will contain a large number of ions. 

2. A linear electric field with respect to the z-position is t urned on . T his ean mathemat ically 
be represented as ry( z, t ) = TJo · (z - L/ 2) where ry (z , t) is t he electric field strength , TJo is 
the maximum field strength and L is the total length of t he crystal. All ions for a given 
electric fi eld strength will shift t he same amount since they have the same orientation of 
their permanent electric dipole moment with respect to t he field . The result can be seen in 
Figure Sb. 

3. A light pulse (for example a single photon) can now be sent in to the material. Suppose the 
light pulse entered at t ime t = to . The frequency of the incoming pulse should not be broader 
than the line broadening. Given that t here are high absorption (a lot of ions in in the init ial 
peak) the pulse will be almost completely absorbed. The incoming pulse will excite t he ions 
in the inhomogenous profile and since they are spread out over different frequencies they will 
start to dephase relative to each ot her. 

4. At time t = to+ T the electric field is reversed : ry (z , t > to+ T) = - TJo · (z - L/ 2), t his 
can be seen in F igure Sc. This will cause all ions within the same z-position to shift equally 
much for any given frequency. At timet= to+ 2T all ions have aquired the same phase and 
thereby release the stored pulse. 
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FIG. 8: Step 1,2 and 4 are visualized for t he longitudal CRIB protocol. 
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FIG. 9: Four AFC peaks inside a spectral hole. 

E. AFC 

T he atomic frequency comb (AFC) protocol was introduced and analytically investigated by 
Afzelius et . al. [5]. Experimental results of 35% efficiency was shown by Amari et . al. in the 
beginning of 2010 [6]. T he AFC protocol doesn 't rely on any DC Stark effect as t he transverse/ lon­
git udal CRIB protocols. In this scheme it's the equally spaced frequency comb in the absorption 
profile t hat creates t he rephasing. This protocol has been analytically proven to obtain a maximum 
efficiency of 54% when outgoing stored pulse propagates in forward direction (note that this is the 
same limit as for the transverse CRIB protocol) [5]. But by placing the crystal inside a cavity it 
has been shown theoretically that efficiency up to 92% (whereas higher efficiency is only limited 
by the finesse of the atomic frequency comb) given that the cavity is on resonance [8]. An example 
of how t he absorption profile should look like is shown in Figure 9 (the edges of the spectral hole 
have been discarded). The frequency-span of the incoming pulse should not be smaller t han the 
distance between the AFC peaks and the pulse should not be broader than the total frequency-span 
of t he peaks. T he distance between the AFC peaks is denoted as 6 and the FWHM of the peaks 
is denoted as f. Suppose a light pulse (for example a single photon) is sent in to t he material at 
t ime t = to . At t ime t = to+ k2Ir / 6 (given that 6 is in radians per second) where k is an positive 
integer the ions will get in phase and release some parts of the stored pulse. 
The finesse of the AFC is defined as: F := 6h. 

F . Difference b etween effective absorption and p eak a b sor p t ion 

Two different notions of absorpt ion will be used . T he term effective absorption refers to how 
much the absorption will be in average whereas t he term peak absorption refers to how much 
absorption the maximum value of a peak has. For example the AFC protocol in section 16 E the 
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absorption profile consists of multiple peaks. In between the peaks in frequency (see Figure 9) 
there arc no ions absorbing. Therefore in this case the effective absorption will basicly be the 
peak absorption divided by the finesse. For longitudal CRIB the peak absorption will be given 
when the electric field is turned off. But the effective absorption will be given when the electric 
field is turned 011. The reason for this definition of the peak absorption is because this is the 
value experimentalists are interested in when ordering a crystal (that is, the absorption when no 
structure or electric field has been created/applied). 

G. Simulation of outgoing stored pulse in backward direction 

In Section 15 an explanation of how to simulate the Maxwell-Bloch equations in the forward 
direction with three nested loops. 
To easily be able to simulate when the outgoing stored pulse propagates in backward direction one 
crucial simplification is done. Suppose the incoming pulse starts at retarded time T = to and ends 
at retarded time T = t1. Then the trick is to use the simulation in the forward direction up until 
retarded time T = h. After T = t1 the most outer loop over the z-slices is performed in reverse 
order. This will make the outgoing stored pulse propagate in backward direction since there is no 
defined direction in the Rabi frequency. In reality this process will not be possible without some 
kind process that reverses the direction of the rephasing of the ions. This normally leads to losses 
in the system. 

17. RESULTS AND DISCUSSION 

All results in this section has been obtained by numerically solve the MB equations with the 
Runge-Kutta method described in Section 15. The decay rates 1/Tl and 1/T2 are set to zero 
otherwise noted. 

A. Simulation of transverse CRIB 

In an ideal world the reversed electric field for the transverse CRIB protocol will cause all ions 
to reverse their shift: g(Ll)--+ g( -b.) (this occurs when the initial peak is infinitely narrow). This 
is the assumption taken in the simulations for the transverse CRIB protocol. The incoming light 
is made out of two gaussian pulses (blue curve in Figure 10), the first pulse has greater FWHM 
than the second one. The red cure in Figure 10 shows the outgoing pulse as a function of retarded 
time. As can be seen the efficiency is not very good when the outgoing pulse propagates in forward 
direction. This coincide with the maximum efficiency limit described in Subsection 16 D 1. 

In Figure llb the intensity inside the material can be seen as a function of retarded time and 
one spatial dimension, given that the outgoing stored pulse propagates in forward direction. The 
electric field is reversed after at tr = 0.8ps in retarded time and hence the outgoing stored pulse 
of the widest pulse comes at t = 1.6ps in retarded time. 
Note that the incoming pulse is reversed in time. The reversion of the pulse can be understood 
by the applied transformation g ( Ll) --+ g (- Ll). Lets only look at two different positions in time 
of the incoming pulse in Figure lla: t1 = Ops and t2 = 0.4p.s (this is the time when the wide 
respectively the narrow pulse has its center). At time t1 the first pulse enters the material and the 
ions are getting excited and thus start to dephase. At time t2 the second pulse enters the material 
and the ions are getting excited and thus start to dephase. So the ions that store the first pulse 
have dephased for a longer time relative to the second pulse. When the field is reversed at time 
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FIG. 10: Simulation of transverse CRIB. The last incoming pulse (the most narrow pulse) is sent 
out of the material first. Outgoing stored pulse propagates in forward z-direction. The intensity 

doesn't reach over 54% efficiency. 
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FIG. 11: Simulation of transverse CRIB with spatial dimension included. Outgoing stored pulse 
propagates in forward z-direction. The last incoming pulse (t he most narrow pulse) is sent out of 
the material first . Outgoing stored pulse propagates in forward z-direction. Maximum intensity 

at z = 2.1 can be seen, the intensity doesn 't reach over 54% efficiency. 

tr = 0.8J..Ls , the ions that store the first pulse will rephase at t ime t1 ,rephase = h + 2 · (tr- h ) = l.6J..LS . 
But the ions that store the second pulse will rephase at t ime t2 ,rephase = t2 + 2 · (tr - t2) = l. 2J..Ls 
and hence the second pulse will be sent out first. 
The maximum intensity occurs at z = 2.1 in Figure llb , this would be the optimal absorption of 
a crystal in order to obtain the highest efficiency for t he t ransverse CRIB in t he forward direction. 

In Figure 12 the intensity of the incoming pulse and outgoing stored pulse are shown as a function 
of retarded time, given that t he outgoing stored pulse propagates in backward direction. In Figure 
13b the intensity inside t he material is shown as a function of retarded time and one spatial 
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FIG. 12: Simulation of transverse CRIB. Outgoing stored pulse propagates in backward 
z-direction. The last incoming pulse (in the narrowest pulse) is sent out of the material first. 

Efficiency close to unity. 
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FIG. 13: Simulation of transverse CRIB with spatial dimension included. Outgoing stored pulse 
propagates in backward z-direction. The last incoming pulse (the most narrow pulse) is sent out 

of t he material first. 

dimension, given that the outgoing stored pulse propagates in the backward direction. This gives 
an efficiency of the outgoing stored pulse close to unity. 

B. Simulation of AFC 

In Subsection 16 E it was mentioned that t he AFC protocol releases an outgoing stored pulse 
at time t = to+ k27r j 6 given that the incoming pulse entered at t = to and given that the spacing 
between the peaks was 6 radians . In Figure 14a t he intensity inside the material can be seen, 
the incoming pulse is shown in Figure 13a . Figure 14a for the AFC protocol and Figure llb from 
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FIG. 14: Simulation of AFC with spatial dimension included. Outgoing stored pulse propagates 
in the forward z-direction. The last incoming pulse (the most narrow pulse) is sent out of the 

material last . 
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FIG. 15: Simulation of AFC. Outgoing stored pulse propagates in the forward z-direction. The 
last incoming pulse (the most narrow pulse) is sent out of the material last. 

the transverse CRIB protocol gives similar output up to the retarded time l.6J.Ls, that is both 
outgoing stored pulses are reabsorbed and releases a maximum of 54% of the incoming intensity. 
The difference compared to the AFC protocol is that t he reabsorbed pulse is yet again reemitted 
inside the material after an equal amount of t ime. The explanation for this is the the ions rephase 
periodicly as described in the theory section: t = to+ k27f / b.. , where k is a positive integer. Note 
that the second reemitted pulse has lower intensity. T he reason for t he decrease is t hat ions inside 
the AFC peaks within themself start to dephase relative to each other since they are not infinitely 
narrow in frequency. If t he crystal length would be cut at z = 11.9 the maximum intensity of t he 
outgoing pulse would be obtained, this can be seen in Figure 15. 
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FIG. 16: Efficiency for GEM given different absorption shapes of the initial peak. The outgoing 
stored pulse propagates in the forward direction. The FWHM is different for the different shapes 

in order to get the same effective absorption. 

C. Simulation of efficiency for GEM and AFC in forward direction 

Comparsion between the GEM and AFC protocol given that the echo propagtes in forward 
direction will be shown. In Figure 16a three different efficiency curves is shown as a function of 
peak absorption for GEM. The outgoing stored pulse propagates in the forward direction. The 
absorption curves in Figure 16a overlap, this is due to that the gauss, supergauss and lorentz 
function (shown in Figure 16b) are chosen such that they all contribute to the same effective 
absorption. 
The lorentz function is described as: 

(160) 

where 'YLor = 8\ MHz. 
The gauss function is described as: 

(161) 

where 'YGau = i MHz. 
The supergauss function is described as: 

(162) 

where 'YSGau = 515 MHz. 
The difference between effective absorption and peak absorption is described in Section 16 F . 
The efficiency is getting close to unity as the absorption gets higher and hence the GEM protocol 
can give high efficiency when the outgoing stored pulse propagates in the forward direction. 
In Figure 17a three different efficiency curves is shown as a function of peak absorption for AFC. 

The outgoing stored pulse propagates in forward direction. The absorption curves overlap, this is 
due to that the gauss, supergauss and lorentz function (shown in Figure 17b) is chosen such that 
they all contribute to the same effective absorption. 
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FIG. 17: Efficiency for AFC given different absorption shapes of initial peaks. Outgoing stored 
pulse propagating in forward direction. The FWHM is different for the different shapes in order 

to get the same effective absorption (hence the finesse is different). 

Note t hat t he efficiency never reaches above 54%. T he reason that the efficiency doesn't reach 
the 54% analytical limit is due to two main reasons. The first reason is that the peaks in the 
AFC structure have a finite finesse that leads to dephasing within the AFC peaks. The second 
reason is that the incoming pulse is not a perfect pulse but is actually cut-off due to the finite 
simulation time. Hence some frequency components of the pulse are outside of t he AFC structure 
and are not absorbed. As can be seen in both Figure 16a and 17a the shape of the peaks are very 
important to get high efficiency. The sharper slope on the peaks, the better. The Lorentz shape 
never reaches over 30% efficiency in any of t he cases. T he supergauss gives the best efficiency of 
these three different shapes. Note that the GEM protocol needs higher peak absorption than the 
AFC protocol in order to absorb the incoming pulse. 

D. Simulation of efficiency for GEM and AFC in backward direction 

In F igure 18a t hree different efficiency curves are shown as functions of peak absorption for GEM. 
The outgoing stored pulse propagates in backward direction. The absorpt ion curves coincide, this 
is due to that the gauss, supergauss and lorentz function (shown in Figure 18b) is chosen such that 
they all contribute to the same effective absorption. GEM seems to give fairly high efficiency in 
backward direction, but not as high as the forward direction given the same peak absorption (can 
be seen by comparing Figure 16a and 18a). 
In Figure 19a, three different efficiency curves are shown as function of peak absorption for AFC. 

The outgoing stored pulse propagates in the backward direction. The absorption curves coincide, 
this is due to t hat the gauss, supergauss and lorentz functions (shown in Figure 19b) are chosen 
such that they all contribute to the same effective absorption. The efficiency is now not limited by 
the 54% efficiency and hence efficiency close to unity can be reached. 
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FIG. 18: Efficiency for GEM given different absorption shapes of the initial peaks. Outgoing 
stored pulse is propagating in the backward direction. The FWHM is different for the different 

shapes in order to get the same effective absorption. 
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FIG . 19: Efficiency for AFC given different absorption shapes of the initial peaks. Outgoing 
stored pulse propagating in the backward direction . The FWHM is different for the different 

shapes in order to get the same effective absorpt ion (hence the finesse is different). 

18. CONCLUSIONS 

Three different quantum memory protcols has been introduced. A summary of t he advantages 
and the disadvantages for the different protocols will be listed given the theory and the results in 
this section: 

Transverse CRIB 
Advantages: 

• The electric field can be reversed at any given time. More freedom to decide when to release 
the outgoing stored pulse. 
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Dis ad vantages: 

• A constant electric field must be applied. 

• High peak absorption is needed for the inital peak. 

• High efficiency not possible when the outgoing stored pulse propagates in the forward direc­
tion. 

GEM 
Advantages: 

• High efficiency possible when the outgoing stored pulse propagates in the forward direction. 
Therefor easier to implement. 

• The electric field can be reversed at any given time. More freedom to decide when to release 
the outgoing stored pulse. 

Disadvantages: 

• A linear electric field gradient must be applied. 

• High peak absorption is needed for the inital peak. 

• The outgoing stored pulse aquires a phase shift. 

AFC 
Advantages: 

• The Stark shift isn't neccessary, this makes it easier to implement. 

• The peak aborption is basically the effective absorption multiplied by the finesse. The peak 
absorption doesn't have to be too high. 

Disadvantages: 

• High efficiency not possible when outgoing stored pulse propagates in the forward direction. 

• The emission of the outgoing stored pulse is given by the spacing between the AFC peaks, 
this can't be changed once the photon has entered the material. Less freedom when to release 
the outgoing stored pulse. 
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FIG. 20: Crystal inside a cavity, reflectivity and transmission shown in percent. 

Part VIII 

Cavity simulations by interference 
19. THEORY 

A quantum memory scheme has recently been realized experimentally in Lund at the Quantum 
information group [7] . The scheme has been suggested and analytically investigated by several 
theoretical papers, for example one paper by Mikael Afzelius and Christoph Simon [35] and one 
paper from Sergey A. Moiseev et. al. [36]. The paper from Mikael Afzelius and Christoph Simon 
suggest to use the AFC protocol for a crystal inside a cavity. The advantages of having a cavity 
for the AFC protocol is to enhance the absorption and extend the limit of 54% efficiency without 
using a third energy-level ([5], p. 2) . 
The idea of this section is to extend the paper by Mikael Afzelius and Christoph Simon and in 
addition understand the experimental results. 

A. D eriva tion of transmission a nd reflection spectrum 

Figure 20 illustrates the experimental setup. A 2mm crystal is placed between two partially 
transparent mirrors with different reflectivity. When a light pulse enters from t he left in Figure 
20 either constructive or destructive interference will occur inside the medium. Constructive in­
terference happens for certain frequencies , these are called resonance frequencies . Light will be 
transmitted out of t he crystal only for t he resonance frequencies given that the light is not totally 
absorbed. In the following the transmission and reflection spectrum will be theoretically calculated 
in the simplest possible way. When a pulse comes in on a certain frequency the phase will change 
depending on the refractive index. Lets assume that the incident complex wave can be described 
by the following equation: 

Eo(t) = Eoeiwt (163) 

where Eo is the init ial size of the amplitude, t is the t ime and w is the frequency. For every 
roundtrip inside the cavity a phase shift and some attuenuation 8(z,w) is introduced. The 8(z,w) 
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in this case is defined as: 

8(z,w) := -kz = w( -nr(w) + ini(w))zjc (164) 

where k is the wave-number, z is the distance, cis the speed of light in vaccum, nr(w) and ni(w) 
are the real respectively imaginary refractive index. The wave from Eq. (163) will now be extended 
with the phase shift 8(z, w), this results into: 

E(w, t, z) Eo(t)eifl(z,w) 

Eoeiwteiw( -nT·(w)+in;(w))z/c 

Eoeiwte-iwnr(w)z/ce-wn;(w)z/c 

(165) 

(166) 

(167) 

Note that the term e-wn;(w)z/c introduces a damping effect. The intensity of the wave is attenuated 
as the square whereas the absorption coefficient can be identified ([37], p. 170-173): 

ie-wn;(w)z/cl2 e-2wn;(w)z/c = e-a(w)z (168) 

~ (169) 

ni(w) 
c 

(170) a(w)-
2w 

When comparing with experimental data the convention is to measure absorption in terms of 
aL(w). This will introduce the following definition: a(w) := aL(w)j L, where Lis the length of the 
crystal. The absorption aL(w) is given from experimental data so the last unknown parameter is 
the real refractive index. It turns out that the real and the imaginary parts of the refractive index 
have a strong connection by the Kramer-Kronig relations ([38], p. 13): 

( ) 1p1+oo ni(wl)d I noo+- --w 
7r _ 00 w1 - w 

(171) 

ni(w) = -~Pl+oo nr(wl)- n(oo) dwl 
7r _ 00 w1 - w 

(172) 

where n( oo) = 1.8 is assumed so that the host material is taken into account and P is called the 
Cauchy principal value that removes the singularity 

P --dw1 := lim --dw1 + --dw1 l +oo 1 ( 1W-E 1 1+oo 1 ) 
_ 00 w1 - w E--tO+ _ 00 w1 - w w+c W 1 - w 

(173) 

Eq. ( 171) can easily be solved numerically together with a small trick that approximates the 
solution. Instead of using the Cauchy principal value the idea is to move the singularity to the 
imaginary plane. First lets reformulate the equation: 

( ) 1P1+oo ni(wl)d I noo+- --w 
1r _ 00 w1 - w 

(174) 

( ) ~p1+oo ni(w1)(w1 - w)d, 1 

n oo + ( 1 ) 2 w 
7r -00 w - w 

(175) 

( ) l . 1p1+00 ni(w1)(w1 -w)d 1 n oo + 1m- w 
E--t07r -0() (w1-w)2+~:2 

(176) 
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The roots of the denominator are w1 = w ± iE, so by not taking the limit and instead choose E small 
enough the singularity is removed from the real axis to the imaginary plane and hence, 

( ) ~ ( ) 1 pl+oo ni(w1)(w1 - w)d 1 
nr w ~ n oo + - ( 1 ) 2 2 w 

7r - 00 w - w + f (177) 

where E is small. 
The transmission/ reflection spectrum will be calculated by summing up all t he fields coming out 
from the front/ back of the cryst al. T he intensity is calculated by taking the absolute value squared 
of the field. The cavity t ransmit t ance is calculated by taking the ratio between the transmission 
intensity and the incoming intensity . The intensity coefficients are defined as R + T = 1 where 
R is t he reflection coefficient and T is the transmission coefficient. The amplit ude coefficients are 
defined as r = VR and t = VT ([39], p . 418) . The sum is illustrated in Figure 27 and the cavity 
is unfolded for convenience. The total sum is calculted below: 

E (w, t,O) 

) 

Et(w) 

Er(w) 

E (w, t ,L}t 1 E l .. . , t •JL.)t· •• ~ 1J..i 1 . , ~ • l r '2 

/ ) ) 

FIG. 21: Model for t he cavity. 

E(w, t , L)t1t2 + E (w , t , 3L)ht2rl r2 + E(w, t , SL)t1t2(r 1r2)2 + ... 
Eoeiwttlt2eikL 2)ei2kL(rlr2))j 

Eoeiwttl t2eikL 
1 - ei2kLrl r2 

j =O 

where Eq. (179) and Eq. (182) contains a geometric sum that is evaluated [40]. 

(178) 

(179) 

(180) 

(181) 

(182) 

(183) 

Finally the cavity transmittance and reflectivity is calculated by t aking t he ratio between the 
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outgoing intensity and initial intensity: 

(184) 

(185) 

The material constants L, ro, to, TI, t1, T2, and t2 is known from the crystal. 

B. Mode spacing 

Constructive interference inside a cavity will happen for certain frequencies. If the phase has 
changed by a multiple of 2n maximum constructive interference will be obtained (given that the 
frequency is given in radians/second). This is the round-trip phase condition: 

¢(w) := wnr(w)2Ljc = q2n (186) 

where ¢(w) is the phase, w is the angular frequency, 2L is the round-trip length, r; is the velocity of 
light in vaccum, n is the real refractive index and q is a positive integer. The resonance frequencies 
of the cavity can then be derived by rewriting Eq. (186): 

q2nc 
Wq = nr(w)2L 

where wq is the resonance frequency for mode q. 

(187) 

For a cold cavity with only the host material present where the refractive index nhost = nr ( w) will 
be assumed to be constant for all frequencies. The mode spacing can then be calculated as 

2nc 
t1wmode = Wq+l- Wq = -L--

2 nhost 
(188) 

But in general the refractive index is not constant and depends on the frequency, this makes the 
mode spacing calculation a little bit more complicated. By Taylor expanding to first order the real 
refractive index is approximately nr(wq+l)::::::: nr(wq) + n 1(wq)t1wmode, using this together with Eq. 
(187) an approximated expression for the mode spacing can be calculated, 

2nc 1 I 
t1wmode = Wq+l- Wq:::::::- d ( ) 

2L n (w) +w~. w r dw wq 

(189) 

The FWHM of a resonance peak can be approximated analytically as well, but this will not be 
done in this thesis. The only thing to note about the approximated FWHM is that it will be 
proportional to the mode spacing t1wmode ([25], p. 432-437). 

C. Group velocity 

The group velocity will be an important tool to understand the results in the next section. A 
small introduction about group velocity will be made. The definition of the group velocity given 
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Name Value 

to .vo.2 

h v-o.2 
t2 vo.oo3 
ro v!0.8 
r1 vo.8 
r2 vo.997 

TABLE 1: Constants for cavity simulations. 

that the second and higher order derivatives of the real refractive index is negligible: 

c I dnr(w) 
nr(w) + W(Ji;) we 

(190) 

where w is the angular frequency, We is the central angular frequency, k is the wavenumber, 
n9(we) := nr(we) +We dnt;'c) is the group refractive index and c is the velocity of light in vac­
cum ([38], p. 17-19). The group velocity exist due to interference between different frequencies 
and the envelope of a pulse travels at the group velocity due to constructive interference and de­
structive interference. Note that under three different circumstances the group velocity can be very 
different than the phase velocity. 

• If nr(w) ~ -wdn~w) the group refractive index will be close to zero and hence the group 
velocity will be larger than the speed of light in vaccum. Important to note is that this 
doesn't break the theory of special relativity since it's not the signal or information that 
travels faster than speed of light of vaccum [41]. A deeper discussion about fast light is out 
of the scope of this thesis. 

• If nr(w) « wdn~w) the group velocity will be much slower than the phase velocity, this is 
called slow light. At the Quantum information group in Lund very low group velocity has 
been measured experimentally, for example 2200 m/s ([42], p. 40). Slow light effects will be 
one key point in the next section. 

• The last case will be if nr(w) < -wdn~w) then the group velocity propagate in opposite 
direction relative to the phase velocity. 

20. RESULTS AND DISCUSSION 

For all simulations in this section some parameter will be constant, these are represented in 
Table I 

A. Cold cavity 

First of all lets assume that there is no inhomogenons profile. This will result in a constant 
real refractive index of 1.8 and a constant imaginary refractive index of 0 (the refractive index of 
the host material). The length of the crystal is set to L = 0.00200010 m, L = 0.00200016 m and 
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L = 0.00200019 m to the see the length dependence of the resonance frequencies. The result can 
be seen in Figure 22. Some longitudal modes can be seen and as the length changes the resonance 
frequencies changes, moreover the t ransmission peaks FWHM is in range of GHz. Comparsion 
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FIG. 22: Simulation of a cavity with no absorbing ions present , refractive index from host 
material set to 1.8. Zero detuning is at 5 · 1014 Hz. 

between the analytical expression in Eq. (188) and the numerical simulations will be done to see if 
they coincide (this is done in frequency (1/ s), therefore the factor 27T is removed from the analytical 
expression) , 

A analytical C u w - ~ 4l .63GH z 
mode - 2Ln host 

6.wnumerical ~ 41 66G H Z 
m ode · 

(191) 

(192) 

where 6.w~~deerical is measured in Figure 22 (distance between the red peaks), L ~ 0.002m and 
nhost = 1.8. The values coincide very well. 

B. Spectral hole as a supergaussian 

In the following a spectral hole from a supergauss function with a width of almost 20 MHz will 
be included inside the inhomogenous broadening. The result can be seen in Figure 23, note that 
the FWHM of the resonance frequency peak has decreased from being in the range of GHz to be 
in the range of MHz! T his effect can understood by looking at Eq. (189) and the fact t hat the 
F W H M of the resonance peak is approximately proportional to Eq. (189): 

27TC 1 I 27T 
F W H M <X Wq+ l - Wq ~ 2£ dnr(w) = 2£ Vg(wq) 

n r(w) + w--;r;; wq 
(193) 

so the FW H M and the mode spacing are proportional to the group velocity introduced in Subsec­
t ion 19 C. In Figure 24a the real refractive index is shown. As can be seen the difference between 
the maximum value and the minimum value of the refract ive index inside the spectral hole is not 
large, so dni w) is actually small. So at first glance it 's hard to believe that the group velocity can 
be three orders of magnitude smaller t han the phase velocity. But the wavelength of the incoming 
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FIG. 23: Simulation of a cavity with a spectral hole present inside the medium. T he spectral hole 
is represented as a supergaussian and the width is almost 20 MHz. The length of the crystal is 

chosen so that the transmission peaks is centered in the spectral hole: L = 0.00200013666m. The 
real refractive index and absorption profile has been scaled in order to fit into the plot. Peak 

absorption CY£ = 5 on the edge. Zero detuning is at 5 · 1014 Hz. 

light is around 606nm and hence the angular frequency w is in the order of 1015 rad/s and is mul­

tiplied by the derivative of t he real refractive index. Since n r(w ) < wd~w) a. simplified expression 
for t he group velocity is: 

(194) 

So in the case of slow light the group velocity is inversely proportional to the derivative of the 
real refractive index. T he ratio between the FWHM of the transmission peaks from Figure 22 and 
Figure 23 is roughly the same as the ratio between the group velocity for a cold cavity (for a cold 
cavity the derivative of t he real refractive index is zero and hence: v9 = cj nhost ) and the group 
velocity in F igure 24b. When studying Figure 24b in more detail note that the group velocity is 
much lower near the edges of the spectral hole (the edges of the spectral hole are just outside the 
x-axis values at ± 10 MHz) and hence the cavity transmission peak will be smaller near the edges 
of t he spectral hole. T his effect can be seen by comparing the FWHM of the transmission cavity 
peaks between Figure 23 and Figure 25. 

C . Spectra l hole together w ith t h e AFC protocol 

In a paper by Mikael Afzelius and Christoph Simon the derivations in the second half of the 
paper assumes that the cavity is on resonance for the frequencies of interest. With this assumption 
t hey show t hat t he efficiency can be as high as 92% where t he efficieny is only limited by t he finesse 
of the comb. While this sounds promising the question remains whether this assumption is true 
or not. And if it 's true what condit ion must hold for t he absorption profile. In t he following some 
results will be shown that investigates this assumption. To obtain 92% efficiency the finesse of 
t he frequency comb should be equal to 10 and the single pass effective absorption (opt ical depth) 
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FIG. 24: Numerical results for the real refractive index and the group velocity at the center of 
t he spectral hole in Figure 23. Zero detuning is at 5 · 1014 Hz. 
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(b) Reflection spectrum 

FIG. 25: Simulation of a cavity with a spectral hole present inside the medium. The spectral hole 
is represented as a supergaussian and the width is almost 20 MHz. The length of the crystal is 

set to L = 0.00200022m. The real refractive index and absorption profile has been scaled in order 
to fit into the plot. Peak absorption CX£ = 5 on the edge. Zero detuning is at 5 · 1014 Hz. The 

group velocity is lower near the edge of the spectral hole this is the reason for the difference in 
FWHM of the transmission peaks between this figure and Figure 23. 
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should be c/jfective = 0.1. This means that the absorption of the AFC peaks should be set to 
CX£ = 1 ([35], p. 3-4). 
At the Quantum information group in Lund the AFC peaks are made by initially burn a spectral 
hole. When the spectral hole has been created some ions are sent back into the spectral hole in 
such a way that they are forming an atomic frequency comb (AFC). A theoretical example of how 
the absorption profile might look like after this procedure is shown in Figure 26. 

Absorption profile 
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FIG. 26: AFC peaks are put back into a spectral hole. Example of t he absorption profile with the 
AFC protocol, finesse= 10, number of peaks= 6. Peak absorption CX£ = 5 on the edge. 
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FIG. 27: Simulation of a cavity with a spectral hole together with the AFC protocol inside the 
medium, finesse = 10, number of peaks= 6. The spectral hole is represented as a supergaussian and 
the width is almost 20 MHz. The length of the crystal is set to L = 0.00200013666 m. The real 

refractive index and absorption profile have been scaled in order to fit into the plot. Peak 
absorption CX£ = 5 on the edge. Zero detuning is at 5 - 1014 Hz. Note that all values are the same 

as in Figure 23 except that there are now AFC peaks present. 

By looking at the transmission spectrum it will be possible to some extent figure out what 
conditions and changes that must be done to the absorption profile in order to be on resonance. 

46 



From Figure 27a it can be seen that only the two peaks in the middle seems to be on resonance 
with the cavity. The result of this can be seen in Figure 27b where the frequencies in between the 
outermost AFC peaks are more or less 100% reflected. One effect that is important to note is that 
the AFC peaks themself change the real refractive index (due to the Kramers-Kronig relations) 
and thereby create resonance for some frequencies near themselfs. This can be seen from Figure 
27a where there are some narrow transmission peaks just beside the AFC peaks. 
A way to enhance the resonance around the AFC peaks is to lower the edges of the pit. In Figure 
28 the edges peak absorption is set to CX£ = 1. Now in Figure 28a it can be seen that in between 
the AFC peaks there are now transmission, t his means that the resonance condition is more or less 
completely fulfilled for this kind of absorption profile. 
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FIG. 28: Simulation of a cavity with a spectral hole together with the AFC protocol inside the 
medium, finesse= 10, number of peaks= 6. The spectral hole is represented as a supergaussian and 
the width is almost 20 MHz. The length of the crystal is set to L = 0.00200013666 m. The real 

refractive index and absorption profile have been scaled in order to fit into the plot. Peak 
absorption CX£ = 1 on the edge. Zero detuning is at 5 · 1014 Hz. Note that all values are the same 

as in Figure 27 except that the edges of the spectral hole are 5 times lower. 

D. Comparsion between theoretical and experimental data 

Despite the simplicity of this model it's the agreement with experimental data that matters. 
There are difficulties on the experimental side to determine all the parameters t hat are needed in 
the model. Many times experimentalists and theorists have to do intelligent guesses for a model 
to fit. This will be done for many cases in this section. 

1. Cold cavity 

In F igure 29 the experimental cold cavity transmission spectrum is compared with the one given 
by the model. The experimental data is scaled in height and therefore no units are given on the 
y-axis , only the shapes can be compared. 
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FIG . 29: Comparsion between theoretical and experimental data of the transmission spectrum for 
a cold cavity (only host medium present). The experimental data is scaled in height . 

2. Spectral hole 

The spectral hole for Pr:YSO can be made 18 MHz wide ([29], p. 25). The inhomogenous profile 
for a crystal inside a cavity can't easily be readout . The assumpt ion that needs to be made is that 
t he hole-burning procedure for a crystal inside a cavity is the same as the hole-burning procedure 
without a cavity. This is not necessarily the case . The 18 MHz spectral hole is shown in Figure 
30a, t he experimental comparsion is shown in F igure 30. The experimental data is scaled in height 
and therefore no units are given on they-axis, only the shapes can be compared . 
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FIG . 30: Comparsion between theoretical and experimental data of the transmission spectrum for 
a spectral hole. The experimental dat a is scaled in height . 
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3. AFC structure 

Four AFC peaks have been inserted into the pit. T he AFC peaks for the theoretical model are 
assumed to look the same and have gaussian shape, this is not neccesarily the case in reality. It's 
in any case interesting to compare this data with experimental data. The result can be seen in 
Figure 31. The experimental data is scaled in height and therefore no units are given on they-axis, 
only the shapes can be compared . 
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FIG. 31: Comparsion between theoretical and experimental data of t he transmission spectrum for 
a spectral hole together with four AFC peaks. The experimental data is scaled in height. 

21. CONCLUSIONS 

The FWHM and the mode spacing of t he resonance peaks inside the cavity is reduced three 
orders of magnitude inside a spectral hole (Figure 30) compared to a cold cavity with only the 
host material present (Figure 29). The resonance peaks and mode spacing can in theory become 
as narrow as wanted by just changing the absorption of the edges of t he spectral hole. A narrow 
resonance peak is not wanted for the AFC protocol. To get high efficiency all AFC peaks should 
be on resonance with the cavity. In Figure 27 and Figure 28 it can be seen that the edges of the 
spectral hole can't be to high. If the edges of the spectral hole is to high the derivative of t he real 
refractive index become large. The FWHM of the resonance peak is inversely proportional to the 
derivative of the real refractive index (can be seen from Eq. (193) and Eq. (194)) and therefor it's 
important to have low absorption for the edges. 
The length of the cavity can be changed in order to move the resonance peak in frequency this can 
be seen from Eq. (187) aswell as Figure 23. The length doesn't have to be changed much in order 
for the resonance peak to be moved a lot in frequency. 
One interpretation for the FWHM and the mode spacing to change three orders of magnitude, 
is that it takes the pulse (relative to the group velocity) three order of magnitude longer time to 
go through the crystal compared to a cold cavity. This means that the cavity behaves as it was 
three orders of magnitude longer than it actually is under these circumstances. According to this 
interpretation the cavity of real length L = 0.002 m together with a 20 MHz spectral hole with 
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absorption U£ = 5 on the edges give the same result as a cold cavity of length L = 2 m! 
The experimental data is in fair agreement with the theoretical model. Many variables that hasn't 
been measured or can't be measured (the absorption profile can't be measured inside a cavity) on 
the experimental side. These have to be guessed and put into the theoretical model. Still it was 
possible to fit the experimental data well enough with this model for all cases shown in Figures 
29, 30 and 31. The spectral hole (Figure 30a) made in a crystal without cavity seems to have the 
same structure as for a crystal inside a cavity. This might not be true for all cases but in this case 
it seems to be correct. 
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Part IX 

Maxwell-Bloch cavity simulations 
22. THEORY 

In this section a more advanced theory will be derived compared to Section 19. The equations 
are basically an extension of the semi-classical MB equations from Section VI where a cavity is 
included. The theory is based on derivations from Siegman's "LASERS" [25], Lamb's "Theory of 
an Optical Maser" [43] and Lei Stone Meng Ph. D. thesis [44]. 

A. Cavity decay constant 

A cavity with decay constant due to losses from two mirrors can be derived as follows. The 
decay constant is defined as the inverse time at the point when the initial intensity of a field is 
reduced by a factor of e- 1 and hence 

I(T) (195) 

(196) 

where I o is the initial intensity, T is the time it takes for the intensity to decrease a factor of P - 1 

and 1 is the decay constant. Suppose that the two mirrors have reflectivity R1 resp. R2. For a 
certain point in time t the intensity is decreased as 

I( t) 

q 

(197) 

(198) 

where q is the number of round-trips that have been done and Tis the time it takes to make one 
round-trip. By putting Eq. (195) equal to Eq. (197) the decay constant can be extracted. 

(R1R2r/T e -1 (199) 
T 

(200) T ln(R1R2) -1 

1 1 1 
(201) r=- -ln(--) 

T T R1R2 

The total cavity decay constant for a cavity with one partially transparent mirror and one 100% 
reflection mirror is ( [25], p. 935) 

1 
~~otal = /0 + /1 = 2aoc + T ln(l/ RI) (202) 

where /o := 2aor is the internal power losses in a real optical cavity, T is the round-trip time and 
R1 is the relfectivity of the partially transparent mirror. 
In the case of two partially transparent mirrors (with reflectivity R 1 resp. R2 ) and neglecting the 
internal power losses (a0 = 0) the cavity decay constant as Eq. (201) is 

(203) 
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and hence the total decay constant is the sum of both mirrors decay constants /l and 12. 
The time it takes for a round-trip in a cold cavity (only host medium present) can be expressed as 
a function of the speed of light in the medium and the length of the cavity, 

T= 2nL 
c 

(204) 

where c: is the speed of light in vaccum, n is the refractive index of the host medium and the factor 
of 2 comes from the fact that it's a round-trip. 

B. Derivation of the Maxwell-part for a cavity 

The field inside the cavity will be treated classically by Maxwell's equations in SI units. Starting 
of from Eq. (116) in one spatial dimension, 

(205) 

The polarization P will basicly be treated the same way as in the Maxwell-Bloch equations. For 
a two-level atom ensemble it's the T'x and ry components of the Bloch vector that determines the 
electric polarization. The Bloch vector evolves according to the Bloch equations, which are derived 
in Section 12 and Section 13. In the following the Maxwell-Bloch equations will be expanded and 
modified so that the equations can describe the evolution of a 2-level system with a host medium 
in a cavity. 
In the following a vital assumption to simplify the equations will be done, that is to expand the 
electric field and the polarization as ([25], p. 924) 

E(z, t) = L En(t)un(z) (206) 
n 

P(z, t) = L Pn(t)un(z) (207) 
n 

where En ( t) and Pn ( t) are coefficients that only depends on time, Un ( z) are orthogonal eigenmodes 
of a cold cavity of length L (only host medium present). Strictly speaking the terms En ( t) and 
Pn(t) should be derived by: 

11£ En(t) = - u~(z)E(z, t)dz 
v 0 

(208) 

11£ Pn(t) =- u~(z)P(z, t)dz 
v 0 

(209) 

where v is a nonnali11ation constant given that the cavity is defined from 0 to L. In the theory 
developed by Lamb [43] the Eq. (208) and Eq. (209) are calculated more carefully than in this 
thesis. In this thesis the derivation is simply assuming that En(t) and Pn(t) behaves similar to 
the MB equations without spatial dependency and no extra terms added from the inner product 
in Eq. (208) and Eq. (209). In some cases this will not be a good approximation. 
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The eigenmodes are functions that satisfy the Laplace equation 

( dd:2 + k;) Un ( Z) = 0 

Un(O) = 0 

'Un(L) = 0 

(210) 

(211) 

(212) 

where kn = Wnn/c are the eigenvalues and Wn are the resonance frequencies for the cold cavity 
(with the host material), The solution to one-dimensional Laplace equation is 

nnz 
un(z) =sin( L) 

for n=1,2, .. , . 
Inserting Eq. (206) and Eq. (207) into Eq. (205) gives: 

'"""" ( 2 dEn n 2 d2 En) '""""d2 Pn ~ - knEn- /LCTdt- C2 ----;]j2 Un = /L ~ dt2 Un 
n n 

<=? 

'""""(d2 En dEn 2 ) 1 '""""d2 Pn ~ ----;]j2 + T'cdt + wnEn Un = - m 2 ~ dt2 Un 
n n 

(213) 

(214) 

(215) 

(216) 

where T'c = CT/(n2E) is the cavity decay constant. Note that since 'Un is an orthogonal basis and it's 
possible to project Eq. (216) onto an arbitrary 1ln· Therefor every term in the sum can be treated 
separately as 

(217) 

In the following only one longitudal mode is going to be used, so the subscript n is going to be 
dropped: 

(218) 

where the resonance frequency We:= Wn· 
Now suppose the cavity has two transparent mirrors and the decay constant is defined as T'c = 1'1 +1'2 

(from Eq. (203)). In addition an external incoming field from one side will be added. The equation 
of motion is now 

d2E dE 2 1 d2P d~in 
dt2 + T'cdt +weE=- m2 dt2 + Kl dt (219) 

where ~in is the incoming field and K1 = v/1 - R1 ncL is the loss due to the first mirror ([44] p. 6). 
Note that by just inserting a field ~in into the equation is an assumption that might not hold for 
all cases. One typical situation where this assumption doesn't hold is when the cavity field and in 
the incoming field modes doesn't match. 
The electric field is now written in terms of Rabi frequencies similar to Eq. (79): 

E _ n iwLt(n + 'r>,) + - --e Hr ~H2 c.c. 
2/Lge 

(220) 
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First Eq. (220) is inserted into Eq. (219) 

n ( d 2 d 2) iw t . 1 d2 p d~in 
-2- -d 2 + {c-d +We (e L (Or+ zOi)) + c.c. = --2 -d 2 + K1-d 

/-Lge t t m t t 
(221) 

where W£ is the laser frequency. The left-hand side of Eq. (221) will be developed separately: 

_}!__ (!!!__ " !!__ ,2) iwLt(r. ·r..) _ 
2f-Lge dt2 + Yc dt + L<;c e Hr + ZH7 + c.c. -

iwLt n ( d2 (2 · ) d 2 2 · ) (r. ·r. ) 
e 2/-Lge dt2 + LWL + {c dt + Wn- WL + ZWC(c Hr + ZHi + C.C. 

SVEA (Slowly Varying Envelope Approximation) will be applied in the same manner as Eq. 
together with the assumption that 
lwn- W£1 « W£. Then the following inequalities are obtained ([25], p. 925-947), 

r.ll r.l 2 (\ 
Hr/i << W£Hr/i << WLHrji 

rcO~/i « {cWLOr/i 

w~- w'i =(we+ W£)(wc- wL):::::; 2wL(Wc- wL) 

These inequalities turns Eq. (223) into 

The polarization is expressed almost the same way as in Eq. (133): 

The external field is written as: 

where y~n and y~n are the real and imaginary Rabi frequencies of the incoming field. 
SVEA will be used for the polarization exactly as in Eq. (137). 
The right-hand side of Eq. (221) will now be developed and SVEA gives: 1~/i « W£lr/i 

(222) 

(223) 

(120) 

(224) 

(225) 

(226) 

(227) 

(228) 

(229) 

1 d2 P d~ 
- m2 dt2 + K1 d~n = (230) 

_, ,2 _1_NeiwLt j+oo g(~)(r + ir ) u* d~ + eiwLt K _!!____ (!!__ + iw ) (Yin+ i"fin) + c c =SVEA 
w L 4 2 x y Yge 1 2 dt L r 7 • • 

KEn _ 00 f-L~ 

-· ·2 --N e 7wLt g(~)(r + ir )u* d~ + e7wLt K --(Ym + i'Ym) + c c 
1 · j+oo · i~ L ·. · 

w L 4 2 · x Y Yge 1 2 r 7 • • 
Kf.n _ 00 /-Lge 

(231) 
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Now set Eq. (227) equal to Eq. (231) 

(232) 

(233) 

(234) 

(235) 

(236) 

The next step is to extract the real and the imaginary part aswell as the term eiwLt into two 
different equations. 

(237) 

(238) 

where a = 1 1 ' 9;1~wLN is called the absorption coefficient. 
c mE 

C. The complete equations 

The postulates of quantum mechanics are only valid for a closed system. When performing an 
experiment the system 2-level atom model is not a closed system. A quick fix to solve this problem 
is to introduce two phenomenological decay constants T1 and T2. 1/Tl is the rate for the population 
term of the atom to relax toward equilibrium. 1 /T2 is the rate at which the coherence will decrease. 
The complete equations is found by adding Eq. (237) and Eq. (238) that describes the macroscopic 
polarization and the Bloch equations from Eq. (100)-(102), this final set of equations: 

(239) 

(240) 

(241) 

(242) 

(243) 
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The reflected/transmitted fields out of the material are assumed to be (similar to expression in [9], 
p. 299, but with a phase shift of the reflected part of the incoming field): 

nrefl 
r )1- Roy/R;flr- ~y~n (244) 

flrefl 
~ 

V 1 - Ro y/R;rti - ~ Y}n (245) 

ntrans 
r )1- R2flr (246) 

ntrans 
~ )1- R2ni (247) 

where Ro is the reflectivity for the first mirror and R2 is the reflectivity for the second mirror of 
the cavity. Note that the reflected/transmitted fields is not valid for all choices to Ro and R2, a 
small investigation about this is done in Subsection 22 D. 

D. Regime where MB cavity model is valid 

Comparsion with the equations derived in Subsection 19 A will be done for one simple example 
in order to see in what regime the MB cavity model is valid. The MB cavity equation will be solved 
in the steady state d~r = 0 on resonance W£ = We. The Rabi frequency is assumed to only have 
a real part and no ions are present o: = 0 (cold cavity with only host medium present). Starting 
from Eq. (242): 

dflr "'fc 
-- (wL- w )rl· + __:rt, dt c z 2 r 

'Yc fl 
2 r 

- etc l+oo g(t6.)r dt6. + K1 y~n 
21fn _00 Y 2 

Inserting Eq. (252) into Eq. (246) and Eq. (244): 

(248) 

(249) 

(250) 

(251) 

(252) 

nrefl 
r (V1 _ R fjfK1yin _ fjf)yin = (y'1- Ro\1'1- Rl\/[{2 _ fjf)yin (253) 

·DVI1.2 r yno r l (-1-) yno r 
"'!c n vR1R2 

ntrans = ; 1 _ R K1 yin = v1 - R2v1- R1 yin 
r V 2 2 r ln(-1-) r 

"'fc TjT2 

(254) 

Finally taking the ratio between the outgoing intensity and initial intensity, 

I 1

2 yMB t2h 
(255) c 

ln(r11T2) 

RMB = I tot1r2 1
2 

(256) c - ro + ln(-1-) 
TjT2 

where ro = yff[(j, to= y'1- Ro, ii = y'1- R1, t2 = y'1- R2, r1 = .,fRl and r2 = y'R2. 
This is now going to be compared to Eq. (184) and Eq. (185) given that there is no absorption 
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ni = 0 and that the resonance condition is fulfilled 2kL = 2JT, 

The serie expansion of ln(x) is [45] 

ln(x) 

1 
ln(-) 

T'JT'2 

I 

tlt2 1

2 

1- TJT2 

I 
t1r2to 1

2 
-ro+---

1 - TJT'2 

(257) 

(258) 

(259) 

(260) 

where -1 ::; x::; 1. The regime where Eq. (255) and Eq. (257) resp. Eq. (256) and Eq. (258) are 
almost equal can now be found if 1 - r1 r2 ::::::; 0 and hence the MB cavity model is almost equal to 
the interference equations if the reflectivities are close to one. 

E. Numerical simulations with the Runge-kutta method 

The Runge-kutta method can be used to numerically solve the equations in the above section. 
In the numerical model g(tl) can't be defined from -oo to +oo, therefore a different a will be used 
called ao. ao := a(wo)fg(wo) where g(wo) # 0 ([22], p. 50). 

F. Impedance matching condition for the AFC protocol 

The impedance matching condition is fulfilled when the absorption of the material inside the 
cavity is matched to the transmission of the coupling mirror. This will in best case lead to total 
aborption. Total absorption of an incoming photon is the first vital step towards a high efficient 
quantum memory. Given that the reflectivity is chosen to be R1 = 0.98 for the first mirror and 
R2 = 0.9998 for the second mirror gives the following impedance matching condition for a cavity 
that is on resonance: 

e-aL yfR; yfR; 
{c} 

aL ln( J R2/ R1) ::::::; 0.01 

(261) 

(262) 

(263) 

The AFC peaks should then have an effective absorption of a';!fcctivc ::::::; 0.01. The peak absorption 
should then basically be the effective absorption multiplied by the finesse to reach the impedance 
matching condition [35]. 

G. Readout pulse 

To be able to test the equations derived in this section against the equations in Section 20 the 
readout pulse is going to be defined. The purpose of the readout pulse is to get the transmis­
sion/reflection spectrum for every frequency. The idea is to do a linear frequency scan with a weak 
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Name Value 

to 1vo.o2 

h VCf.02 
t2 vo.ooo2 
r·o VQ.98 
r1 vo.9s 

r2 vo.999s 

TABLE II: Constants for MB cavity simulations. 

pulse so that every time-step represent a particular frequency: 

fs(t) = Wstart +(Wend- Wstart)tj(tend) (264) 

where fs(t) is the linear frequency scan as a function of the time t. W8 tart and Wend are angular 
frequencies. The frequency scan starts at Wstart and stops at Wend given that the pulse is sent in 
for a duration of tend· The phase is defined to be the integral of the frequency [25]: 

'P(t) = J fs(t)dt = Wstartt +(Wend- Wstart)t 2 /(2tend)) (265) 

where 'P(t) is the phase that can be inserted into Eq. (51). 

23. RESULTS AND DISCUSSION 

The equations in Section 22 C are built up with many assumptions. In Subsection 22 D it was 
shown that for a cavity without atoms and with a frequency chosen such that there is resonance, 
only high reflectivities are a good regime for these equations. A simulation test will be done to 
see if this simulator produce the same result as the interference equations in Section 20 inside a 
spectral hole when the reflectivities are chosen to be high. If this holds, the next step is to try 
the AFC scheme by sending in a light pulse into the material. This wasn't possible to do with 
the interference equations. All results in this section will only be valid for one longitudal cavity 
mode and the decay constants for the Bloch equation 1 /T1 and 1 /T2 are put to zero if nothing else 
is noted. For all simulations concerning the interference simulator in this section some parameter 
will be constant, these are represented in Table II. For the MB simulator the length is chosen to 
be L = 0.002m, the refractive index n = 1.0. As can be seen in Table II, the reflectivity for the 
mirror for the incoming intensity is R1 = 0.98 and the reflectivity for the mirror in the back of the 
crystal is chosen to be R2 = 0.9998. 

A. Spectral hole as a supergaussian 

In the following a spectral hole from a supergauss function with a width of almost 20 MHz will 
be included inside the inhomogenous broadening. In Figure 32 the intereference simulator and MB 
cavity simulator output are shown for both the transmission and reflection part. The output from 
the equations in Section 22 C has been generated with a readout pulse described in Subsection 
22G. 
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The t ransmission spect rums coincide suprisingly well , while t he reflection parts are a litt le bit 
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·~ 0.04 r----. 
_g: 
l:J 

.~ 003 

I z 0.02 

Transmission spectrum 

l-- Output from intelference equations! 
--Output from MB equations 
--Absorption profile 

0.01 ) 

~ .~5====.I1 ~~~=-~0.~5 ~==~"==~?0 .5~~}====~1 .5 
Detuning (Hz) X 107 

(a) Transmission spect rum 

0.98 
8 r------.1 
~ 
~ 
1' 0.96 

~ 
.~ 

I 0.94 
z 

0.92 

Reflection spectrum 

-- Output from interference equations 
--Output from MB equations 
--Absorption profile 

0~ ~.5---~1---~0 .~5 ====~===?0.5~==~==~1 .5 
Detuning (Hz) X 107 

(b) Reflect ion spectrum 

FIG. 32: Simulation of a cavity with a spectral hole present. The spectral hole is represented as a 
supergaussian and the width is almost 20 MHz. The length of the crystal for the interference 

simulator , from Section 20 , is chosen so that the transmission peaks are centered in the spectral 
hole: L = 0.002000103 m. Peak absorption CY. L = 0.5 on the edge of the spectral hole. Zero 

detuning is at 5 - 1014 Hz. The resonance frequency for the MB cavity model is chosen to be 
We= WL , from Section 22 C (that is, the resonance frequency is chosen to be zero with respect to 
the detuning for the MB simulator) . The graph with the MB equations is obtained by a readout 

pulse described in Subsection 22 G. 

different from each other. The reflection spectrum in Figure 32b seems to be t ranslat ed overall and 
the highest value is R1 = 0.98 compared to the highest value of the interference simulator which is 
one. This error is non-wanted but as it 's proportional to R1 the claim in Subsection 22 D that t he 
model coincide when the reflect ivit ies are close to one seems still to be valid . 

B. Spectral hole together with the AFC protocol 

At the Quantum information group in Lund the AFC peaks are made by initially burn a spectral 
hole. When the spectral hole has been created some ions are sent back into the spectral hole in such 
a way that they are forming an atomic frequency comb (AFC) . An example of how the absorption 
profile might look like after t his procedure in t heory is shown in Figure 26 . In Figure 33 t he output 
from the MB simulator and the interference simulator are shown. In Figure 33 there have been 
six AFC peaks inserted into the spectral hole. The "noise" from the MB output comes from the 
fact that the readout pulse excites the atoms inside the material. This leads to that t he atoms 
send out coherent radiation for a short while after the excitation has occured. The mixing between 
the radiation from t he atoms and the linear frequency scan creates t his beating effect . This is 
an extreme effect in the reflection seen in Figure 33b , due to t his t he result with the interference 
simulator will not be shown. The t ransmission spectrums coincide fairly well. In Figure 34 the 
absorption on the edges of the spectral hole has decreased. The beating effect is still extreme for 
the reflection part , while the transmission spectrums look almost the same. 
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FIG. 33: Simulation of a cavity with a spectral hole together with the AFC protocol, finesse=8.5, 
number of peaks= 6. The spectral hole is represented as a supergaussian and the width is almost 
20 MHz. The length of the crystal is set to L = 0.002m. Peak absorpt ion <1'.£ = 0.5 on the edge. 
Zero detuning is at 5 · 1014 Hz. The resonance frequency We is chosen to be zero with respect to 

the detuning for the MB simulator. Note that all values are the same as in Figure 32 except that 
there are now AFC peaks present. 

Transmission spectrum 
0.06 

--Output from interference equations 
--Output from MB equations 

0.05 --Absorption profile 

0.04 

0.03 

0.02 

0.01 

~ -~5====3-1~===-0~.5~~~0~~~0~.5==~~==~1 .5 
Detuning (Hz) x 10' 

(a) Transmission spectrum 

Reflection spectrum 
1.4 

--Output from MB equations 
1.3 --Absorption profile 

1.2 

1.1 

0.9 

0.8 

0.7 r------. 
0.6 

0.5L--~--~--~--~--~-~ 
-1.5 -1 -0.5 0 

Detuning (Hz) 
0.5 

(b) Reflection spect rum 

1.5 

X 107 

FIG. 34: Simulat ion of a cavity with a spectral hole together with the AFC protocol, finesse= 8.5, 
number of peaks= 6. The spectral hole is represented as a supergaussian and the width is almost 
20 MHz. The length of t he crystal is set to L = 0.002m. Peak absorption O.£ = 0.085 on the edge. 
Zero detuning is a t 5 · 1014 Hz. The resonance frequency We is chosen to be zero with respect to 

the det uning for t he MB simulator. 
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C. Spectral hole and slow light effects 

The cavity resonance peak has decreased a factor of three inside a spectral hole compared to a 
cold cavity shown in for example Subsection 20 B. It was shown that this effect was connected to 
the group velocity. One interpretation of this effect is that the cavity of length 2mm together with 
a spectral hole acts as a cold cavity of length 2m. 
In the following this effect will be investigated in the time-domain instead of the frequency-domain 
(the cavity resonance peak has always been shown in the frequency-domain). In Figure 35 a 
gaussian pulse with a center frequency at detuning zero has been sent into a medium and is shown 
as a function of different peak absorptions of a spectral hole. In Figure 35c the transmission of 
the gaussian pulse is shown, when there is no spetral hole (red curve) the gaussian pulse is not 
delayed. In Figure 35b it can be seen that the reflection of the red curve is in almost exactly the 
same position as the incoming pulse (black dashed curve). The blue and green curves show how 
the pulse looks like when there is a spectral hole present. This is the time-domain version of the 
slow light effect. The intepretation is that it takes time to build up a field insidc the cavity (just as 
if the cavity length was in order of 2m). To clarify how this works Figure 36 shows the real Rabi 
frequencies multiplied by the transmission and reflection coefficients (this is the same as looking 
at Eq. (244) with ro = VRQ and to = y'l - Ro). The blue negative curve is the reflected field 
and the red curve is the field inside the cavity multiplied by the transmission coefficient out of the 
transparent mirror. Note that the red curve is delayed compared to the reflected field (blue curve) 
and by adding those curves the outgoing green curve is obtained. The square of the green curve 
in Figure 36 is shown as the green curve in Figure 35. 

D. Spectral hole and slow light effects with an AFC structure 

The first step that must be fulfilled in the making of a highly efficient quantum memory is to 
absorb as much of the incoming pulse as possible. Two examples will be shown that demonstrates 
how the edges of a spectral hole affects the storage of an incoming pube. In Figure 37 the spetral 
hole and the AFC peaks have the same peak absorption. The peak absorption of the AFC struc­
ture is chosen such that the impedance matching condition holds, given that the structure is on 
resonance. The efficiency is above 80% which is fairly good for a quantum memory. In Figure 38 
the peak absorption of the AFC peaks is such that the impedance matching condition holds, given 
that the structure is on resonance. The edges of the spectral hole has been increased compared 
to Figure 37. Total absorption of the incoming pulse is now not possible due to the slow light ef­
fects described in Subsection 23 C, this affects the efficiency of the quantum memory in a negative 
manner. 

E. Efficiency for the AFC protocol together with a cavity 

Two different cases will be shown to sec how the absorption of the incoming field and the 
efficiency are affected. The incoming pulse is a gaussian with center around zero detuning (wL = 0 
Hz with respect to the detuning). In Figure 39 the first case is shown, the x-axis is the peak 
absorption of the edges of the spectral hole and the y-axis is the peak absorption of the AFC peaks 
(for example if the peak absorption of the AFC peaks is (n = 0.085 and the peak absorption of the 
AFC edges are rYL = 0.085 the absorption profile in Figure 37a is used, if the peak absorption of the 
AFC peaks is aL = 0.085 and the peak absorption of the AFC edges are rYL = 0.5 the absorption 
profile from Figure 38a is used). In Subsection 22 F it was shown that for reflectivity R1 = 0.98, 
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FIG. 35: Simulation of a cavity with a spectral hole. T he spectral hole is represented as a 
supergaussian and the width is almost 20 MHz. The length of the crystal is set to L = 0.002 m. 

The slow light effects delays t he buildup inside t he cavity compared to a cold cavity. 

t he effective absorption should be approximately c/j f eetive = 0.01 with a finesse F = 8.5 the peak 
absorption becomes a~eak = ayfeetive · F = 0.085. 

T he second case shown in Figure 40 shows different resonance frequencies We on the x-axis . The 
incoming pulse and the AFC-structure are centered around zero detuning. The peak absorption 
edges of the spectral hole are constant and set to Ct£ = 0.17. 
To clarify how much the resonance frequency (we) shifts t he cavity peak inside the spectral hole 

a figure will be shown. The maximum resonance frequency used in Figure 40 was We = 0.2G Hz 
with respect to the detuning (note that W£ = 0 with respect to the detuning) . In F igure 41 t hree 
different values of t he resonance frequencies have been used together with an empty spectral hole 
(the AFC peaks are removed to avoid the beating effect). 
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FIG. 36: Simulation of a cavity with a spectral hole. The spectral hole is represented as a 
supergaussian and the width is almost 20 MHz. The length of the crystal is set to L = 0.002 m. 
The peak absorption on the edge of the spectral hole are chosen to be aL = 0.4. The field of the 
incoming reflection and the transmitted cavity field is shown separately and then added together 

as the green curve. T he transmitted cavity field is not built up directly inside the cavity and 
hence the result ing outgoing field in reflect ion has both a negative aud positive amplitude. 
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FIG. 37: Simulation of a cavity with a spectral hole together with the AFC protocol, finesse=8.5, 
number of peaks=6. The spectral hole is represented as a supergaussian and the width is almost 

20 MHz. The length of t he crystal is set to L = 0.002 m. Peak absorption CX£ = 0.085 on the 
edge. Zero detuning is at 5 · 1014 Hz. The resonance frequency We is chosen to be zero with 

respect to the detuning for t he MB simulator. 
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FIG . 38: Simulation of a cavity with a spectral hole together with the AFC protocol, finesse=8.5 , 
number of peaks=6. The spectral hole is represented as a supergaussian and the width is almost 
20 MHz. The length of the crystal is set to L = 0.002 m. Peak absorption CY£ = 0.5 on the edge. 
Zero detuning is at 5 · 1014 Hz. The resonance frequency We is chosen to be zero with respect to 
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FIG. 39: Efficiency for the outgoing stored pulse and absorpt ion of incoming pulse shown as a 
function the peak absorption of the AFC peaks and peak absorption on t he edges of the spectral 
hole. The spectral hole is represented as a supergaussian and the width is almost 20 MHz. The 
length of the crystal is set to L = 0.002 m. The resonance frequency is chosen to be zero with 

respect to the detuning. 
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FIG. 41: Transmission spectrum for an empty spectral hole shows how much t he cavity peak is 
shifted for different resonance frequencies. We = 0.2 GHz is t he maximum resonance frequency 

with respect to the det uning that was used in Figure 40. The reason for t he shift to be in order of 
MHz when the value of we is in the order of GHz is due to the change in refractive index 

explained in Subsection 20 B. 
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24. CONCLUSIONS 

In this section semi-classical equations to simulate a cavity with a medium inside have been 
derived. The equations in this section should by all means give rise the same effects as the inter­
ference equations derived in Section 19. The comparsion between the two simulators was shown in 
Figues: 32, 33 and 34. The transmission spectrums from the two simulators coincide fairly well. 
The reflection spectrum contains a lot of beating effects coming from the fact that the readout 
pulse excite population that sends out coherent radiation for a short while. The outcoming pulse 
is then a mix of radiation from the linear frequency scan and the ions. 
In Figure 39 the absorption of the incoming field and the efficiency of the outgoing stored pulse 
were shown as a function of the peak absorption of the edges of the spectral hole and the peak 
absorption of the AFC peaks. Most efficiency is obtained having a low peak absorption on the 
edges of the spectral hole. The motivation of this in the time-domain is that the slow light effect 
has to be small otherwise it will take to long time to build up a field in the cavity which is described 
in Subsection 23 D. The motivation in the frequency-domain is that the edges of the spectral hole 
should be as low as possible because the cavity peak is getting broader in frequency and can cover 
more of the AFC structure. 
For R1 = 0.98 and R2 = 0.9998 which is chosen to be the reflectivity for these simulations the 
impedance matching conditions is fulfilled when the peak absorption of the AFC structure was 
0.085 given that the finesse is F = 8.5. This value maximizes the efficiency in Figure 39 if the peak 
absorption of the edges are low enough. 
In Figure 40 the absorption of the incoming field and the efficiency of the outgoing stored pulse 
were shown as a funtion of the peak absorption of the AFC peaks and the resonance frequency 
We. The efficiency was at maximum for We = 0 Hz where the resonance frequency is given with 
respect to the detuning. The reason for the maximum to be at We = 0 Hz is that the incoming 
pulse (w£ = 0 Hz with respect to the detuning) and the AFC structure are centered around the 
zero detuning. 
The conclusions of this section arc that negative effects of the quantum memory efficiency and 
the absorption of the incoming pulse can be seen when the peak absorption of the edges and the 
resonance frequency are not optimal. These are important facts to know in order to realize a high 
efficient quantum memory with this type of setup. In these simulations it has been shown that, 
given that the experiment can be approximated and evolves according to the Equations (239)-(247), 
an efficiency over 80% can be obtained under perfect conditiom; with an AFC finesse of F = 8.5. 
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FIG. 42: Picture from [46], where the peak (burn-back) was created in the orthogonal direction 
relative the storage pulse propagation. 

Part X 

Hole-burning techniques 
Making a spectral hole in t he inhomogenous profile is a key concept for many applications. Both 
the CRIB and the AFC scheme (see Section VII) relies on the fact that there is one or several 
narrow peak(s) in the absorption profile. Near the peak(s) (in t he frequency-domain) there should 
be ideally no absorbing ions in order to get a high-efficiency quantum memory. In this section a 
new scheme is introduced t hat improves the sharpness of structures at the edge of a spectral hole. 
The scheme is theoretically explained , moreover a proof-of-concept by Maxwell-Bloch simulations 
has been done to see how much improvement the scheme gives compared to old techniques. 
Two main ways exists in order to burn a spectral hole. Either the burning is performed by pulses 
propagating in the same/ opposite direction as the storage pulses or t he buning pulses propagates 
in orthogonal direction relative the storage pulses. Both ways have different advantages and dis­
advantages. 

25. THEORY 

A. Burning in orthogonal direction relative the storage pulses 

In 2010 a paper regarding quantum memories was published in Nature [46]. Experimental 
results had shown efficiency close to 70%. This experiment was done with t he GEM protocol (see 
subsection 16 D 2) . The need of an init ial sharp peak is crucial to get high efficiency. In order to 
obtain a sharp peak they burned the structure from the orthogonal direction relative the storage 
pulse propagation. In Figure 42 the experimental setup is shown. Note that the burn-back beam 
is orthogonal to the probe direction. This way the peak will be uniform along the probe direction. 
For the purpose of a quantum memory this technique is very promising. In the case of a quantum 
memory the direction of t he incoming pulse is well-defined in direction. Therefor the incoming 
pulse can be chosen to be orthogonal to the burn-back beam. 
For other applications the direction of t he incoming pulse is not well-defined . For example the 
direction might be randomly distributed . In this case burning in the orthogonal direction relative 
the storage pulses will not work since the orthogonal direction is undefined . 
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FIG. 43: Example 1: The Bloch simulator and the Maxwell-Bloch simulator is compared for low 
optical depth. T he goal is to burn a spectral hole. The simulators follow the approximations in 
Subsection 25 G. And the optical depth is chosen to be cxL = 1. Note that both result looks the 

same, and hence for this example the Bloch simulator is a good approximation of t he 
Maxwell-Bloch simulator. 

B. Burning in the same direction as the storage pulses 

In Lund at the Quantum Information Group t he hole-burning procedure is done by sending in 
burn pulses in the same direction as the storage pulses. The advantage of burning in the same 
direction as the storage pulses is that it 's easy. The laser doesn't have to be aligned in any particular 
way since the storage pulses will go the exact same direction. Although the alignment is easier 
when burning in the same direction as the storage pulses, there is a problem in making structures 
that is uniform through the whole crystal. 

C. The sharpness problem 

Experimentally it has been seen that creating a structure in t he inhomogenous profile in a crystal 
wit h low optical depth differs compared to a crystal wit h high optical depth. The reason for this is 
that the burning pulses are absorbed differently for different optical depth . Previous simulations 
in Lund at the Quantum Information Group has been done wit h a 2-level Bloch-simulator together 
with a program calculating the de-excitations in the crystal. These results were very successful 
when comparing with experiments for low cxL. But for high cxL the simulator suddenly didn't show 
the same result as experimental data. 
A comparsion between the Maxwell-Bloch simulator and the Bloch simulator will be shown in order 
to see t he difference. The Bloch simulator only consists of Eq. (142)- (144) whereas t he Maxwell­
Bloch simulator consists of Eq. (142)- (146) . T herefore the difference between t he simulators is 
that the Maxwell-Bloch simulator takes into account the spatial change in the burn pulses (the 
Maxwell part) while the Bloch simulator doesn 't . Two examples will be shown in order to see the 
difference. Both examples are created by the simulator described in Subsection 25 G. The goal is 
to burn a spectral hole into an atomic distribution. In t he first example shown in F igure 43, a low 
aL is used. It can be seen t hat the spectral hole in Figure 43a looks t he same as in Figure 43b. 
Hence the simulators coincide pretty well. That is, the Bloch simulator is a good approximation to 
the Maxwell-Bloch simulator for low cxL . In the second example a relatively high cxL is used (see 
Figure 44) and as can be seen the results Figures 44a and 44b don 't coincide. The conclusion why 
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FIG. 44: Example 2: The Bloch simulator and the Maxwell-Bloch simulator is compared for high 
optical depth. The goal is to burn a spectral hole. The simulators follow the approximations in 
Subsection 25 G. And the optical depth is chosen to be o:L = 20. Note that both result don't 

look the same, and hence for high optical depth the Bloch simulator isn 't a good approximation 
of the Maxwell-Bloch simulator. 

Figure 44a and Figure 44b differs is that the Maxwell part in the Maxwell-Bloch simulator takes 
into account that the burning pulse is decreasing when exciting atoms as it propagates through 
the crystal. This means that the initial burning pulse will not look the same in the whole crystal 
for large o:L due to absorption. 
The fact that the burning pulse will get partially absorbed as it propagtes through an absorbing 
medium is obvious. But this effect is negative since many applications rely on the fact that 
the structure of the atomic distribution is uniform. A first solution to the problem would be to 
repeat the same pulse several times, but in fact this will not solve the problem completely. The 
reason is that the burning pulses are well-defined in time and hence the pulses has some tail in 
frequency and is not as sharp as wanted. The time- and frequency-domain are connected via the 
Fourier transform. For example the Fourier transform of a square pulse in time-domain gives a sine 
function in frequency. This drawback will always exist if you can 't use infinitely long pulses in the 
time-domain. The consequence for the burning procedure is that the front of the crystal will always 
contain less absorbing atoms than the back. As an example lets continue with Figure 44b and send 
in the same pulse 15 times (the simulations uses the approximation stated in Subsection 25 G) . 
In Figure 45, one edge of the spectral hole can be seen at 5 different positions. The non-uniform 
effect through the crystal can be seen. If the burning pulse is repeated several times the front 
absorption will decrease outside the wanted interval due to that the incoming pulses are broad in 
the frequency domain. 

D. A scheme to minimize the sharpness problem 

From subsection 25 C it should be clear that repeating the burning pulse several times is not a 
very good solution to get a uniform and sharp edge for high o:L. 
In this part of the thesis a scheme to improve the uniformity and sharpness of the edges is proposed. 
The scheme is based on using the DC Stark effect to shift the atoms absorbing frequency both 
constant and linearly with the z-position. 
There are several steps included in the scheme with some assumptions. 
The first assumption is that the Stark splitting will split the resonance frequency into max two 
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FIG. 45: Edge of a spectal hole with a L = 20 plotted at 5 different positions inside crystal. The 
burning pulse is repeated 15 times. Note that the front of the crystal contains less absorbing ions 

than the back for any given frequency. 

parts . For example crystals for t he transverse CRIB protocol is not accepted (the transverse CRIB 
prot ocol assumes that the dipole moment has a random orientation with respect to the electric field , 
see subsection 16 D 1 for more details) while crystals for t he AFC and the longitudal CRIB protocols 
are accepted (AFC and longitudal CRIB both can have crystal properties that has a maximum of 
two dipole moment orientation with respect to the electric field) . Figure 6 demonstrat es the effect 
for a Eu : Y Al03 crystal with two dipole moment orientations with respect to the electric field 
where the energy levels are split into two parts, one part shifted to higher energies and the other 
part to lower energies. 
The second assumption is t hat a tunable const ant DC field can be applied as well as a tunable 
linear DC field as a function of z-posit ion (like t he linear shift in t he GEM protocol in subsection 
16 D 2) . 
In the following the scheme will be presented . In the result section a proof-of-concept for the 
scheme is done and in the conclusions the scheme is summarized in a list . 
The idea of the scheme is to be able to burn away ions in the cryst al in sections. By shifting ions 
differently in frequency for different z-position t his will be possible. This way the front and the 
back of the crystal can get the same shape in principle. 
The first step is to burn a hole through the cryst al with as straight edges as possible (having a 
good initial pulse, without any applied electric fi eld) . This init ial hole should be more narrow than 
the hole that is wanted . Suppose that this first step is completed , this is shown in Figure 46a . 
Figure 46a shows the total absorpt ion inside the cryst al for one edge of the spectral hole. It will be 
important to look seperately at the ions that shifts to the left (shift to lower frequencies) and to 
the right (shift to higher frequencies) when an electric fi eld is applied . Figure 4Gb and Figure 46c 
represent t he ions going to the left respectively the ions going to the right when an electric field is 
applied. Since there is no electric field applied at the moment these look the same. The sum for 
Figure 46b and Figure 46c gives Figure 46a and hence the equation in Figure 47 is used. 
Suppose a linear electric field with respect to the z position is applied according to the following 
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FIG. 46: One edge of the initial hole. 

freq . 

(c) Edge of initial hole, 
ions going to right 

FIG. 47: Color equation, ions going to right (blue) + ions going to left (red) = total ions 
distribution (green) 

equation 

17( z) = 110 · (z - L/ 2) 

17left (z ) = - 17o · (z - L/2) 

17right(z) = 170 · (z - L/2) 

(266) 

(267) 

(268) 

where 17(z) is the linear frequency gradient, 170 is the maximum strength of the electric field , L is 
the total length of the crystal. 17leJt( z) describes how the ions that shift to the left (blue color) are 
changing their resonance frequency and 7]right(z) describes how the ions that shift to the right (red 
color) are changing their resonance frequency. 
To get a feeling of how this would be done experimentally, Figure 48 is a small sketch of how four 
electrodes would be setup around the crystal. By just applying Eq. (266) the result will look like 
Figure 49a. Figure 49b and Figure 49c show the different components from Eq. (267) resp. Eq. 
(268). 
By now it should be clear how a linear freqency gradient shifts the resonance frequency in the 
crystal. To continue explaining the scheme one problem arise with just using a linear frequency 
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FIG. 48: Experimental sketch for how a linear electric field can be applied to a crystal. The 
electric field strength is indicated by the red arrows. 
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equation in Figure 47). 
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FIG. 49: Effect of a linear frequency gradient on the edge of Figure 46 by Eq. (266). 
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when a linear frequency 
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burning square pulse 

comes in. 

freq . 

(b) Result after t he 
electric fie ld is turned 

off. 

FIG . 50: Example of burning away some ions together with a linear frequency gradient. The 
incoming pulse is assumed to be a square pulse in frequency. Note that this type of burning 

procedure is not a wanted effect in order to get an uniform edge. 

gradient given that the ions split into two parts . The problem is t hat if a pulse comes in it will 
burn away ions in the front of the ions going to left (blue color) and after that burn away ions 
going to the right (red color) in the end of the crystal. A non-uniform edge will be created and 
this is not wanted in this scheme. To see an example of this effect , suppose there is an square pulse 
in frequency coming in from z = 0 propagating to z = L shown in Figure 50a. When the electric 
fi eld then is t urned off the result of the total distribution is shown in Figure 50b. 
The trick to fix this problem which continues the explanation of the scheme is to add a constant 
electric field as well. The result of only having a const ant electric field is shown in Figure 51. As 
can be seen the separation between the ions going to the left and ions going to the right is large. 
By applying a linear frequency gradient in addition to the constant elect ric field we can now access 
the back of t he crystal without affecting the front (assuming that we have an ideal square pulse in 
frequency) . The tunable electric field equations now look like: 

ry( z ) = T/O · (z- L/ 2) + 17c 

T/l ejt (z) = - ryo · (z - L/2) - rye 

T/right(z) = 1]0 · (z - L/2) + 17c 
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freq. 

(a) Total distribution (b) Ions going to left by 
Eq. (267) 

(c) Ions going to right 
by Eq. (268) 

FIG. 51: Effect of a constant electric field on the edge of a spectral hole . 

freq. freq. 

(a) Total distribution (b) Ions going to left by 
Equation 267 

(c) Ions going to right 
by Equation 268 

FIG. 52: Effect of a constant electric field together with a linear frequency gradient on the edge 
of a spectral hole. 

where the parameters are the same as Eq. (266) and 7Jc is the strength of the constant electric 
fi eld . This step can be seen in Figure 52 and now applying the square pulse in frequency, as in 
Figure 50a, only the back of the crystal is affected. The last thing to do in order to complete the 
scheme is to do the inverse (changing sign of the electric field) of Figure 52 to be able to burn in 
the back of the crystal on the ions going to left (blue). 

E. Burning in the same and opposite direction as the storage pulses 

There is another/complementing possibility to minimize the number of pulses sent in. This is 
to every second time send in a pulse from the opposite direction of the crystal. The effect will 
be that the ions in the middle will be the ones that has to be taken care of separately in order 
to get uniform and sharp edges. With the scheme in the previous subsection together with two 
extra electrodes this can be done. So this scheme presented below is an extension to the scheme 
in subsection 25 D. To get a feeling of how this would be done experimentally, Figure 53 is a small 
sketch of how 6 electrodes would be setup around the crystal. The set of equations can now be 
rewritten as 

7J( z) 

T/left ( Z) 

7Jright ( Z) 

T/o · (z - L/4)(B(z) - B(z- L/4)) - T/o · (z- 3L/4)(B(z - L/2)- B(z- L)) (272) 

- 7'}( z) (273) 

77( z ) (274) 

where ry(z) is the linear frequency gradient, B is the Heaviside step function , 7Jo is the strength of 
the electric field , L is the total length of the crystal, "lleft(z) is how the ions are shifted to the left 
(blue) and 7Jright (z) is how the ions are shifted to the right (red). 
To separate the blue ions from the red ions a constant field is applied . This effect together with 
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FIG. 53: Experimental sketch with 6 electrodes, the strength of the electric field are shown as red 
arrows. 

(a) Total distribution 

freq. 

(b) Ions going to left by 
Eq. (273) 

(c) Ions going to right 
by Eq. (274) 

FIG. 54: Effect of a frequency shift on t he edge by Equation 272. 

the effect of sending in a burn pulse is shown in Figure 55. This extra scheme would improve the 
uniformness of the burning procedure even more since the same structure can be created separately 
in the back, the front and the middle of the cystal without the effect of affecting each other. 

F- Rules and definitions for the proof-of-concept 

The making of a sharp uniform edge is not trivial. There are a lot of different variables, in other 
words this is a multi-dimensional optimization problem. To solve this problem optimally a clever 
optimization algorithm have to be used but this goes outside the scope of this thesis. The purpose 
of t his proof-of-concept is only to show t hat it 's possible to use the scheme and that it improves 
the sharpness. Two restrictions have been made for the proof-of-concept: 

• Only two pulses are allowed, they are predefined. 

• The initial hole is predefined and creat ed by the widest pulse in frequency from the two 
pulses allowed. 

• The electric field can be tuned const ant and/or linear with respect to z-direction. 

The concept is said to be proven if the edge can be made sharper and uniform t han with either of 
the two pulses when no electric field involved. 
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FIG . 55: Effect of a constant electric field t ogether with a frequency shift on the edge. It 's now 
possible to burn away parts from the middle wit hout affecting the front/back of the crystal. 

Two measures will be defined , one measure is t he uniformness and the ot her measure is sharpness. 
The uniformness is defi ned to be the distance between the front and back summed between two 
different values on the y-axis called low and high , see results in Table III. In mathematical terms 
this is: 

u (l ow , high) = :..::.10-"-w ________ _ 
high - low 

(275) 

where u is the measure of uniformness, Xstart(Y) (the blue curve) and Xend(Y) (the red curve) is 
the x-values for given y-values. The parameters is also shown in Figure 56, the uniformness is 
illustrated as the black area. The smaller the black area is t he more uniform structure exist s. 
Suppose that an average of all z-slices in a spectral hole is t aken. Then the sharpness is defined 
to be the dist ance between on the x-axis for some y-values low and high . This is described by the 
following equation: 

s (l ow, high ) = lx (y = low) - x(y = high) i (276) 

where s is a measure for sharpness, x(y) is the average curve of all z-slices, low and high are two 
chosen value between zero and one. 

G. Approximations in simulating a spectral hole burning process 

The Maxwell-Bloch equations will be used (derived in Section VI) with some additional approx­
imation. When burning a spectral hole several pulses are sent into the material. Usually a long 
wait ing time will occur between each pulse. This waiting time is important in order to let the ion 
de-excite. The de-excitation process is a key point since with some probability t he ions can fall 
down into a t hird level that has a long lifetime. This process is called optical pumping [47] . 
In the following the additional approximation is described : 

• For all discretized points in space and in frequency ( detuning) there will be some or no 
excit ation by the incoming burn pulses . The final excitation probability (t he excitation 
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FIG. 56: Eq. (275) is shown in t he figure. The black area is the definit ion of u(low, high) , 
low= 0.19 and high = 0.67 in this case. 

probability is (1 + rz)/ 2) , after the pulse has propagated through the sample, is with what 
probability that the ions will be assumed to drop down into a third level. This third level 
doesn't effect the 2-level system of interest (this is an approximation of optical pumping). 
This approximation relies on that the third level has a much longer lifetime compared to the 
two-level system being simulated. 

26. RESULTS AND DISCUSSION 

A proof-of-concept is going to be shown with simulations that follow the approximation in 
Subsection 25 G. The ions going to the left can be well separated from the ions going to the right 
due to an applied constant electric: field (Figure 52) , therefore the simulations will only care about 
the ions going to the right (red color) . It is then assumed that the inverse is done in the same way 
for t he ions going to the left by only applying a sign change to t he electric field . 
Two pulses are allowed according to Subsection 25 F. The initial hole is shown in Figure 57, t his 
hole is made by sending in t he widest predefined pulse in frequency seven times . 
The scheme described in Subsection 25 D has been applied by using the second predefined pulse 
(this pulse is more narrow in frequency than the initial pulse that burned the spectral hole in 
Figure 57) together with a lot of trial and error in selecting t he constant and linear electric field. 
The result between the initial hole and the improved one by using the scheme can be compared in 
Figure 58. 

As can be seen in Figure 58b the height of all curves to the right of the edge has decreased , 
this is a cost one have to pay when sending in extra pulses. This is an effect coming from the fact 
that the pulses is fini te in time (8 0J-Ls) in the simulations and therefore the pulse has a long tail in 
frequency. To see how well the scheme works compared to sending in each of the two pulses that 
was used in the simulations without any applied electric field is going to be plotted. In Figure 59 
the two different predefined pulses can be compared, where t he repetition of t he pulses is chosen 
in a way to optimize the sharpness of the edge. 
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FIG. 57: Initial hole in the proof-of-concept. The widest pulse in frequency of the two allowed 
pulses has been sent in seven times. The results has been obtained by simulations that follow t he 

approximation in Subsection 25 G. The optical depth of the peak absorption is chosen to be 
GL = 20. 
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(a) Initial hole in t he proof-of-concept. From 
Figure 57. 
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(b) T he narrow pulse is repeated 4 t imes for 
different linear frequencies. 

FIG. 58: Comparsion between the inital hole from Figure 57 and the improved edge create by the 
described scheme in Subsection 25 D. Note that the improved edge is not at the same frequency 

as the inital hole due to the extra pulses that is sent in. 
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(a) Inital/widest pulse in frequency repeated 
14 t imes. 

09 

0.8 

0.7 

0.6 

0.5 

0 4 

0 3 

0.2 

0 1 

Atomic dis1ribution after pulse number. 20 

- z=sta!l 

::::;~~~""4 --z=middlefront 
.,; - z=middla 

1.4 1.6 1.8 
detuning 1/s Hz 

- z=middleback 
- z=end 

2.2 2.4 2.6 

X 10° 

(b) Most narrow pulse in frequency repeated 
20 t imes. 

FIG. 59: Compare the two predefined pulses without frequency shift . 
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FIG . 60: Average of all z-slices to see difference of the sharpness of the edge. 

TABLE III: Comparsion with Eq. 275 with low = 5% and high = 85%. 

Figure Description u (in units of 0.1 MHz 
58a 7 wide pulses 4.94 
- 9 wide pulses 3.91 
59 a 14 wide pulses 3.18 
- 7 narrow pulses 5.69 
59b 20 narrow pulses 1.90 
58b 7 wide pulses and t hen apply tuned electric fi eld with 4 narrow pulses 0.87 
- 7 wide pulses and then apply t uned electric field with 6 narrow pulses 1.38 

As the number of pulse repetition increases the Eq. (275) decreases if no electric field is applied. 
So the more pulse repetition the more uniform distribution. This is obvious by taking the example 
to send in infinitely many pulses (given that the third-level lifetime is infinite). This will create 
a non-existing edge and hence all z-slices will look the same. Another way to see the difference 
between the different populations is to take an average of all the z-slices, this is done in Figure 
60. Note that the more pulses one sends in comes with the price that the absorption after the 
edge becomes lower (right side of the Figure 60). In Table IV the values Eq. (276) is chosen to 
low = 5% and high = 85%. 

Eq. (276) is a function that can be minimized in an optimizat ion algorithm to find local/global 
minima. 
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27. CONCLUSIONS 

In this part some explanation of how one can burn structures in the inhomogenous broadening 
in different ways was described. Either the burning is performed by pulses propagating in the 
same/opposite direction as the storage pulses or the buning pulses propagates in orthogonal direc­
tion as the storage pulses. Both ways have different advantages and disadvantages. The advantage 
of burning in the same direction as the storage pulses is that it's easy to know the direction to send 
in the storage pulse. The disadvantage is that it's hard to create a uniform and sharp structure 
given that the optical depth is high. The advantage of burning in the orthogonal direction relative 
the storage pulses is that the structure can be created more uniform in the direction that the 
storage pulses enters. The disadvantage is that it might be hard to know where to send in the 
storage pulse. But also if the probe beam is not well defined in direction or randomly distributed 
in angle, this scheme will suffer from non-uniform/sharpness problems as the other ones. 
A new scheme was introduced as well as a proof-of-concept by simulations showing that the scheme 
actually works. 
Summary of the scheme: 

• Burn an inital hole that is more narrow in frequency than wanted. 

• Use a constant electric field together with a linear frequency gradient field that is depending 
on z-direction. The constant electric field is needed when the distributions is splitted in two 
parts 

• Tune the linear frequency gradient so that the end of the crystal is reached and then send 
in a more narrow pulse in frequency. This way different parts in the crystal can be treated 
more or less seperately and hence a uniform structure can be made. 

• After each narrow pulse change the linear frequency gradient so that the end result will be 
uniform. 

• Repeat the procedure but with a sign change of the electric fields, that way both the ions 
going to the left and the ions going to the right is affected equally. 

Things to remember: 

• The pulses is limited in time so the pulses has long tails in frequency. 

• In order to keep as much of the atomic distribution outside of the pit as high as possible 
don't send in too many pulses. This is due to the frequency tails. 

TABLE IV: Comparsion with Eq. 276 with low = 5% and high = 85%. 
Proof-of-concept*=7 wide pulses and then apply tuned electric field with 4 narrow pulses 

Curve in Figure 60 Description s (in units of 0.1 MHz 
Red 7 wide pulses 3.99 
- 9 wide pulses 3.81 
Blue 14 wide pulses 5.24 
- 7 narrow pulses 2.99 
Purple 20 narrow pulses 4.37 
Green Proof-of-concept* 2.62 
- Proof-of-concept* 3.31 
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• The sharpness problem is a multi-dimensional optimization problem. To use this scheme 
optimally, a smart optimization algorithm is required together with for example Eq. (276) 
in order to find local/ global minimas. Eq. (276) is a measure of how sharp an edge is. 

• All comparsion tables and figures described above is only a proof-of-concept done with trial 
and error. The improved edge is most uniform according to Eq. (275) and most sharp 
according to Eq. (276) with low = 5% and high = 85% seen in Tables III and IV. 
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Part XI 

Summary 
This thesis have theoretically investigated three different problems that all concern highly efficient 
quantum memories. The method of investigation was to numerically solve a set of equations. The 
main set of equations that were used are called the Maxwell-bloch equations, this is a semi-classical 
model where the ions are evolving according to quantum mechanics in the dipole approximation 
and the incoming electric field by Maxwell's wave equation. The connection between quantum 
mechanics and Maxwell's equations is that the ions contributes to a macroscopic polarization that 
affect the electric field. 
The main conclusions for all three problem will be listed: 

1. Transverse/longitudal CRIB and AFC are three different quantum memory protocols. Every 
protocol has advantages and disadvantages: CRIB relies on a frequency shift of the ions in 
order to send out the stored pulse, the Stark effect can be used to make this possible. The 
AFC protocol don't need a frequency shift, but instead it's the periodic structure in the 
inhomogenous profile that makes it possible to send out a stored pulse. The AFC and 
transverse CRIB protocol doesn't give high efficiency in the forward direction while in the 
backward direction efficiency close to unity is possible. Longitudal CRIB can give efficiency 
close to unity in the forward direction but introduces a phase shift to the outgoing field. 
Three different shapes of the peaks inside the inhomogenous profile were used to see how 
much the efficiency is affected. It turns out that the shape is very important and in the three 
cases that were tested the supergauss shape was in favor of a gauss or a lorentz shape. 

2. A new experimental setup where a rare-earth-ion-doped crystal together with a cavity has 
been put together at the Quantum information group in Lund. The experimental results was 
explained in this thesis. The cavity resonance peak for a cold cavity is in the order to GHz 
whereas inside the spectral hole the cavity resonance peak is in the order of MHz. It turns 
out that the cavity resonance peak is proportional to the group velocity. The group velocity 
inside a spectral hole is approximately three orders of magnitude lower than the phase speed 
of light in vaccum. The experimental results were matched to the theoretical result and a 
fair agreement between these two was found. 
A set of equations based on the Maxwell-Bloch equantions for a cavity was derived and 
showed that under perfect circumstances the new experimental setup together with the AFC 
protocol can give efficiency over 80%. But if the edges of the spectral hole are to high 
compared to the AFC peaks or if the cavity is not perfectly on resonance the efficiency will 
be greatly reduced. 

3. Creating sharp structures inside the spectral hole is important for the quantum memory 
protocols. A new scheme was explained that allows creation of a more sharp and uniform 
strucuture inside the inhomogenous profile relying on the Stark effect. A proof-of-concept 
with the Maxwell-Bloch equations showed that this scheme works in principle, but to get 
optimal values a multi-dimensional optimization algorithm is required. 
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