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1. Introduction 

The need for high density memories is to increase in a near future, due to that even the 
non specialist uses more advanced computers and computer applications. Today the 
utilisation of light seems to be the most promising way to achieve both high density 
storage and high speed processing. Light produced by a laser which can provide an 
extremely narrow linewidth, offers the possibilities of addressing individual energy levels 
in atoms and molecules. Of course if it would be possible to create a memory where, for 
instance, each excited atom correspond to a binary "1" and each ground state atom a "0", 
the "ultimate" memory would be born - reading and writing at the speed of light and 
offering a storage density of 1 o23 bits per cm3. The storage capacity that the stimulated 
photon echo storage concept provides can't compete with the "ultimate" memory, but is a 
step in the right direction. The first steps toward storing data using stimulated photon 
echo in rare earth doped crystals were taken in 1987 by Ravinder Kachru et al. at SRI, 
California and at present a couple of hundred bits has been stored for some hours [13]. 
In this Diploma paper I show that, for the conventional approach to photon echo storage 
with destructive reading a theoretical analysis gives that for optically thin media the 
improvement in storage density that can be obtained by echo storage is marginal if any. 
With non-destructive reading the increase in storage density theoretically may increase to 
250 times the theoretical limit of conventional optical storage. The performance of 
photon echo storage could change for optically dense samples. A definite statement of 
photon echo storage therefore have to wait until an analysis for optically dense media is 
performed. 



2 

2. Theory of the Photon Echo 

We start this chapter with an explanation of the of the ordinary photon echo, section 
(2.1) and then extend it to the stimulated photon echo in section (2.2). The explanation 
given, is not the strict mathematical treatment, but rather one that gives a simple way of 
understanding what's happening. A more rigorous approach can be found in [1, 2]. Our 
treatment of the ordinary photon echo in (2.1) closely follows that by Durrant et al. [3]. 

2.1 The Photon Echo 
Since the photon echo process is complex and involves a significant amount of 

quantum mechanics, we start with outlining the physical characteristic of the photon echo 
process and picture an analogy that helps us to get a grasp of the key element of the 
photon echo process. We aren't to begin with considering the general case of photon 
echo's generated by a sequence of many optical pulses, but only the case of a sequence of 
two optical pulses. Figure 1 illustrates the excitation pulse sequence and echo formation 
time in this case. 

state 2 

pulse 1 pulse 2 Echo 

'~ state 1 

1 2 Echo 

-----+--------;---------r---------7t 

Fig. 1. Echo formation by excitation with two pulses. The sample is excited by a sequence of 
two short co- linear optical pulses tuned to resonance with a transition of energy hv. For pulses 
arriving at time's t = 0 and t = 1:. the echo is emitted at time t = 21: and co - propagate with the 
input pulse sequence. 
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Physical Characteristic of the Photon Echo Process: 

Consider a system of two-level atoms. When resonant light interacts with this system 
the occupation number of the upper state increases. The atom is thus to be found more 
and more frequently in the upper state, while the occupation of the lower state decreases 
correspondingly. Eventually a state is reached in which the occupation numbers are 
equal. If one applies the external electric field to the atom for twice as long, it goes 
completely into the upper state. We now imagine that an atom has been excited to its 
upper state. It can be shown that the dipole moment of the atom then oscillates freely 
with the frequency of the optical transition, m. According to Maxwell's theory, however, 
an oscillating dipole emits electro-magnetic waves, in this case light waves. This means 
that the ensemble of excited atoms emits light after the excitation. However, since the 
atoms are subject to different fields within the crystal, their transition frequencies are not 
all the same, and light emitted by oscillating dipoles with different frequencies will soon 
have different phases. The emitted intensity is therefore reduced. The key feature of the 
photon echo process is that a second pulse can bring the diverging phases of the 
oscillating dipoles back together in phase. As the oscillating dipoles come back into 
phase, they emit a light pulse which can be seen as the "Echo" of the previously applied 
pulses. 

Analogy to the Photon Echo Process: 

What happens can be compared with runners on a track. At the beginning of the race, all 
the runners are at the same place, the starting line. After the starting shot (write pulse), 
they have, however moved different distances away from the starting line because of 
their different running speed. If we think of a second gun shot as a signal for the runners 
to turn around and return to the start at the same speed as before. Obviously they all 
reach the start at the same time. 

In the above description the runners symbolise the phase of the individual atomic dipoles 
and the gun shots corresponds to the excitation pulses. 
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2.1.1. The Response of an Atom to a Pulse of Resonant Light 

Consider the response, when a pulse of resonant light interacts with a single atom. This 
atom is completely isolated from the influences of other atoms. The Schrodinger 
equation for the interaction of a two-level atom with a coherent radiation field, has the 
form 

(2.1) 

if we neglect homogeneous decay effects. Here H is the Hamiltonian for an electron 
moving in the potential field V of the nucleus. H* is the radiation dependent part of the 
Schrodinger equation. We are from here on using a somewhat different notation (Ket 
notation), that is 

\l'(r,t)=jr,t) (2.2) 

We assume that we already solved the Hamiltonian equation 

i=1,2 (2.3) 

where Ei is the energy. To find the explicit form of H*, let us picture the radiation field 
as a plane wave: 

E = £0 cos(k · r- wt) (2.4) 

Then the interaction with a laser pulse, in the electric dipole approximation, can be taken 
to be 

* -H = -E(r,t)d (2.5) 

We assume, furthermore, that the atom is localised at position r. With the simple two­
state model, a general state of the atom at any time t can be represented by the ket 

- TU ( c(t) ) jr,t)=c(t)il)+d(t)e 1 12)= -iO.t 
d(t)e 

(2.6) 

where the kets represents the two orthonormal eigenstates of the atomic Hamiltonian 
with eigenvalues 0 and (h/2rr)w, and c(t) and d(t)exp(-iQt) are the time-dependent 
amplitudes in the Schri:idinger representation. The factor exp(-iO.t) represent the free 
evolution of the atom under action of the unperturbed Hamiltonian. 
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The radiation dependent part of the Hamiltonian is 

H = cos(wt- k · f)h = _ (2.7) 
* _ * ( 0 -Eocos(wt-f.r)ddipolJ 

-Eo cos(mt-k·r)ddipol 0 

where I have introduced the abbreviation 

h = -E d = * - ( o -Eod
0
dipol) 

0 -Eoddipol 
(2.8) 

We have in equation (2.8) used that for electric dipole transitions it is reasonable to 
assume that the diagonal elements of H* vanish, due to symmetries and selection rules. 
In order to determine the still unknown coefficients c(t) and d(t), we calculate the 
expectation value of the Schrodinger equation, Eq. (2.1). 

(s!H + H* I r ,t) = (sji1i!!_lr,t) 
dt 

for (sl = (II and (21. This yields 

* -i!J.t . d Huc(t)+H 12d(t)e = ln-c(t) 
dt 

H;1c(t)+H22d(t)e-int =in :t[d(t)e-iQt] 

If we rearrange slightly, we obtain 

* n d Huc(t)+H 12d(t)e- 1 t -in-(c(t))=O 
dt 

* [ ] -i!J.t . d ( ) -i!J.t H21c(t) + H22 -nQ d(t)e -ln- d(t) e = 0 
dt 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

From these equations we obtain the resulting equations for the time-dependent 
amplitudes in the Schrodinger representation: 

* 
!!_c = -id(t) hl2 [ei((m-Q)t-kf) +e -i((m+Q)t-kf)] 
dt 21i 

(2.14) 
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* 
!!_d = -ic(t) h21 [e -i((w-Q)t-kP) +ei((w+O)t-kP)] + i(Q _ m)d(t) (2. 1s) 
dt 2/i 

If we in equation (2.13) use the fact that the value of the ordinary Hamiltonian 
components H 11 and H22 equals 0 and (h/27t)ffi and the abbreviation introduced in (2.7), 
then is it straightforward to obtain equation (2.14) from (2.12) and equation (2.15) from 
(2.13). 

2.1.2. The Rotating Wave Approximation 

The "rotating wave approximation" means, that the "non-resonant" term oscillating at 
frequency m+Q is neglected. That this approximation is valid, can be realized in the 
following way; c(t) and d(t) vary quite slowly in time compared to the frequency m+Q. 
This makes it possible for use to average (2.14) and (2.15) over a time which is large 
compared to 1/(m+.Q), but still short compared to the time constant that determines the 
change in c(t) and d(t). The result of this averaging is that the rapidly changing term m+ 
.Q makes negligible contribution. We now introduce the further assumption that the field 
is in resonance with the electronic transition ( m=O). This gives the following equations 

* d h12 - .k--
-c = -id(t)-e l r 
dt 211 

(2.16) 

* d h21 .k--
-d = -ic(t)-el r 
dt 211 

(2.17) 

To solve these equations, we first take the time derivative of (2.16): 

* d 2 d h -·k-, 
-(c(t)) = -i-(d(t))___]]_e l 1 

&2 & 2/i 
(2.18) 

and then, substitute (2.17). This yields 

2 * * d h h 
-(c(t))+c(t) 21 12 =0 
dt2 4n2 

(2.19) 
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We recognise (2.19) as a typical oscillator equation with the general solution 

(2.20) 

Using (2.16) and (2.20) we obtain 

(2.21) 

where the amplitudes are free to vary. If one substitute these equation's in (2.16), (2.17) 
and integrate with the use of that we know the initial amplitude's c(ti) and d(ti), one gets 
the following solutions for a pulse of length tp: 

c(tl +t p )=Ac(t1 )+iBe( -ik ·r) d(t1) (2.22) 

(2.23) 

where A=cos(8/2) and B=sin(8/2) and 8 is the pulse area and equals 

~h;lh;2tp e = ------''-
tz 

(2.24) 

To get a picture of what happens when a laser pulse with pulse area 8 and propagation 
vector k interacts with the atom, I use the atomic state amplitude evolution diagram 
shown in figure 2. This shows that when the laser light interacts with the sample, 
represented by the two-state atomic model, then time-dependent amplitudes of the two 
states are mixed. As we will see later it is the state amplitudes mixing that are the key to 
the creation of the photon echo. What is most important to notice in the diagram is that 
the atomic amplitude multiplied by a factor corresponding to the strength of the optical 
pulse is transferred between the two atomic states. 
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d(t. ) 
I 

) d(t ) = Ad(t. )+iBexp(ikr)cf t ) 
p I ) 

c( t. ) 
I 

) c( t ) = Ac(t. )+iBexp(-ikr)df t ) 
p I ~ 

_n'---------~~ 7t 
t. t 

I p 

Fig. 2. Time evolution diagram of the atomic state amplitude from equation's (2.22) and (2.23). 
The picture shows a two-state atom under the influence of a resonant optical pulse of pulse area 
e and propagation vector k. The arrows between the states indicate upwards and downwards 
transitions where amplitude is transferred between the states. A = cos(8/2) and B = sin(8/2). 
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2.1.3. Time Dependence of the Sample Polarisation 

In order to bee able to calculate the polarisation of the sample, have we first to obtain 
an expression for the dipole moment of a single atom. Then is it only to perform the 
summation of the atomic dipole moment over a volume of the sample. The polarisation is 
then obtained by simply dividing the sum with the volume. 

Let us assume that the atom is initially in it's ground state corresponding to c(t=O)=l and 
d(t=O)=O. Then the atomic dipole moment, D, induced by the pulse is 

( I I ) ( * d t * eiO.t )( 0 ddipol J( c(t p )_ J 
D(r,tp)= r,tp d r,tp = c(tp) ( p) ddipol O d(tp)e-10.t 

(2.25) 

where C.C. is the complex conjugate. If we use the result that we obtained in equation 
(2.22) and (2.23) with q = 0, then can we rewrite the atomic dipole moment as 

(2.26) 

where dctipoJ(t) =e-iO.tctdipol have been introduced for convenience. 

Now, consider a sample consisting of N atoms, which all are excited with the same 
amplitude and with the same phase by a plane wave with propagation vector k. Then 
immediately after the pulse, we have a total polarisation of N·D(r,tp). If we assume that 
the inhomogeneous broadening of the transition frequency can be described by a 
normalized distribution function p(il), where w+il is the transition resonant frequency of 
an atom in the sample. Then if we have an atom with resonant frequency W+Ll the atomic 
amplitude evolution diagram looks like that in figure 3. 
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iB(1) exp(ikr) ) ~B{i)exp(ikr)exp(- iL'la- t r
1 

))j 

1 --~) A(1) ) 

_n first pulse 

0 t p1 
~t 

Fig. 3. Atomic amplitude evolution diagram for pulsed excitation and subsequent free evolution of an 
atom of resonance frequency ro + Ll initially in the ground state in a inhomogeneously broadened sample. 
The upper state has a time - dependent phase factor. This gives a time-dependent dipole moment. The 
dipole moment of the system is calculated from equation (2.26) using the terms in the boxes above. A(l) 

= cos(91/2) and B(l) = sin(9lf2) where 91 pulse area for the first pulse. 

We see from the term exp(-i.Ll(t- tpt)) in figure 3 that atoms in the sample with different 
transition frequencies, caused by the inhomogeneous broadening, have different phase 
relations at a time t > tp 1. If we now calculate the atomic dipole moment then we get 

D(f,t)=(f,tjdlr,t)=(A(l) -iB(l)e-i/(.feiil(t-tpi))( ~ ddipol)( - A(l) ) 
ddlpol 0 iB(l)eik·r e-iil(t-tp!) 

1 . . i(i(.r-il(t-t )) 
=2lddipol(t)sm(O)e P +CC. 

(2.27) 

Polarization of a sample is the contribution from all the atomic dipole moments in a 
sample per unit volume to a specific point r. If the sample contains N contributing parts 
per cubic meter that oscillate with different frequency. Then it is straightforward to 
calculate polarization through a simple integration over all the frequency components in 
the volume of interest. 
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The polarisation of the sample P(r,t), at a position r and at time t > tp: 

. ~ +co 

P(r,t) = ± Nddipol (t)sin(O)ei(k ·f) J p(fl)e -ifl(t-tp )dfl +C. C. (2.28) 

-co 

where p(fl) describe the relative number of active atoms that have a frequency between co 
and w +fl. 

One can from (2.28) see that the polarization of the sample is a decreasing function with 
time. The relation between emitted intensity and the sample polarization is 

(2.29) 

this means that the light emitted by the sample is a decreasing function of time. 

2.1.4. Echo formation 

We now let a second pulse interact with the sample, from figure 4 it is seen that the 
ground state term is phase advanced with respect to an upper state term. 

i8(1) exp(ikr)x iA(2)8(1) exp(ikr)3xp(- i.6. 1:) 

exp(- iLH) -~-~) Ji8(2)A(1)exp(ikr)! 
~ ............ --- - 7 rx exp0 ~(t--:;:. t-t )~ 

-----.llL....A2:..J 

------------~---------------------------------- -- -. '-.....! 
_, -........ -I ........ -........ -'>< 

I - ........ - ........ - ........ _..., ') 
A(1) I ) A(2)A(1) + -7 x1l 

L-

------------~----~~~~~~~---------------- - --. r:-8(2)8(1) exp(- i ~ 1:)j ....__...._ ___ 
____ __.n second pulse 

t +1: t + t +1: 
p1 p1 p2 

-----~ t 

Fig. 4. Atomic amplitude evolution diagram for the second pulse and subsequent free evolution 
of an atom of resonance frequency ro + A When an expression begins with X, it means that it 
has to be multiplied by the earlier expression. The upper and lower state amplitudes are 
coupled through equation (2.27) and the expressions inside the boxes are responsible for the 

echo generation. A(2) = cos(92f2) and B(2) = sin(92f2). 
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At a time 'C after the second pulse there is no phase difference between the upper and 
lower state, then the polarisation in the sample has passed a second maximum. The time­
dependence of the atomic dipole moment after the second pulse has interacted with 
sample is calculated from the terms inside the boxes in figure 4. 

D(r ,t) ~ (r,tjdlr,t) ~ ( -8(2)B(l)eiLI.r -i8(2)A(!)e -ik·i' eitl(t-<-t pi-t p2)) 

( 
0 ddtpol )( -B(2)B(l)e -i!1r J 

ddtpol 0 iB(2)A(l)e(f.r ei!1(t-r-tpi-fp2) = 

i e2 2 t[k·r-!1(t-2r-tpi-tp2)] 
-2ddipol(t)sin(81)sin(T) e +CC. 

(2.30) 

And the corresponding polarisation is obtained in the same way as in the preceding 
section. 

P(r,t) = -ltNddipol (t)sin(e1 )sin(
8

2 )2 ei(k·r) 
2 2 

+oo (2.31) 

x J p(!1)e-i!1(t-2r-tpi-fp2) +CC. 

-oo 

If we assume that distribution function, p(L1), can be approximated by a gaussian 
function, then can we evaluate the integral. The peak intensity of the echo is (assuming 
tp 1, tp2 << 'C) 

/peak oc iP(r,2r)i
2 = l N 2 sin(el )2 sin( 

82 
)4 

4 2 
(2.32) 

The echo's intensity depends on the density of active centers, pulse area of the first and 
second laser pulse, but from (2.31) we see that the time when the echo is formed depends 
only on the time 'C between the two pulses. Results can easily be generalized to a system 
of more than two pulses and with pulses that aren't co-linear here we just give the results. 
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2.1.5. Multiple Data Pulses and Non Co-linear Excitation Pulses 

Multiple data pulse echo formation can be represented in the following way, 81 is the 
first pulse (write pulse), ei is the i:th data pulse in a sequence of pulses that correspond to 
the data that are to be stored and 83 is the read pulse that forces the echo to emerge. The 
echo corresponding to the i:th data pulse, then has the form: 

(2.33) 

I have in equation (2.33) again assumed that we can neglect the pulse interaction time in 
comparison with the pulse duration. If the write pulse and the data pulse sequence 
propagates at a small angle ~ from the read pulse the echo is emitted in a direction 2~ 
from the read pulse. 
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2.2. Stimulated Photon Echo 

To understand how any information can be stored in a sample using the photon echo 
concept, we consider what happens to the population of atoms which at the beginning all 
are situated in the ground state [4]. 

D 
~ < ) 

~ - r-r- -
' 

echo sequence 

, 
write pulse read pulse 

Fig. 5. Pulse sequence. 

When the first pulse(write) interacts with the sample, the pulse produces a population 
distribution of atoms in the upper level. That is the laser pulse transfer some of the atoms 
to their excited state. If we look at the atoms in the sample all together, then can we 
picture that we have an excited state that can be thought of as a continuum of levels. In 
some of the levels in this continuum have we transferred atoms with the laser pulse( write 
pulse). This means that we have created a population distribution in the excited state of 
the sample. This population distribution starts immediately to relax due homogeneous 
and inhomogeneous relaxation processes. 

Later, when the data pulse sequence at some time after the write pulse interact with the 
sample, the relaxed population distribution in the excited state will be modulated. This 
modulation is due to either constructive or destructive interference between the 
electromagnetic field of the data pulses and the dipoles created by the first pulse. The 
dipoles that are in phase with the second, which arrives at a time, 't, are all those with a 
detuning flv from the laser frequency vo where the detuning, flv, multiplied by the time 
between the pulses, 't, equals an integer. This results increased excitation of these atoms 
and a corresponding increase of the population in the excited state. If flV·'t on the other 
hand equals half of an integer, then the dipoles are out of phase with the second pulse and 
a decrease in the excited state population will be observed. 

In the previous section it was shown that for the ordinary photon echo process the echo 
was emitted from the sample at a time completely decided by the time between the first 
and second pulse. This makes the photon echo process disadvantageous for storage of 
data, because when we have stored data, then we want to be able decide when to read the 
stored data, by sending an external signal to the sample. To understand how this can be 
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the readout process due to the fact, that in excitation out of a specific ground state 
hyperfine level nuclear spin reorientation may occur and we then does not know which 
excited state we are to end up in. 

Excitation of the sample with a read pulse, figure 5, forces the modulated population 
distribution in the hyperfine structure of the ground level (3H4) to transfer to the 
hyperfine structure of the excited state. We now have an analogue to the case I describe 
in section (2.1.4) on Echo Formation. The sample radiates the stored data pulse and the 
time when this radiation accrues is completely decided by the read pulse. A fundamental 
difference between the photon echo and the stimulated photon echo process is that in the 
stimulated photon echo process we already have the information in the sample and only 
have to transfer it to the excited state any time we wish read it. 
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3. Material Considerations for Time-Domain Optical Storage 

The need for optical storage of information is to increase in a near future, due to the 
increased use of optical - processing and computers. It is therefore important to know the 
allowed material parameter space for the possible storage methods. Our aim here is to 
decide this parameter space for the stimulated photon echo storage concept in optically 
thin media. 

3.1. Model 

The total number of photons in the stimulated photon echo is given by equation (3.1). 
This expression is a modified version of that given by Abella et al. [6], where branching 
ratio, write-,data- and read-pulse areas have been included. 

where 
n = Density of storage centers 
Ax = Laser focal spot area 
L = Length of storage volume 
A = Einstein coefficient for the transition 
Tinh= Inhomogeneous relaxation time 
'! = Duration of each data bit 
11 = Branching ratio for Llm "/:. 0 hyperfme transitions 
llq = Quantum efficiency of detector 
'A = Excitation wave length 
e = Index of refraction squared of sample material 
9W, 9D ,9R = Pulse areas for write, data and read pulses 

(3.1) 

(Henceforth Y]q = 0.75, £ = 3, ew = rc/2 and 8R= rc/2.) This expression is valid only for 
small Fresnel numbers, A << 4LA,, ([6], appendix C). To fulfil this condition, at least 
approximately, we select the length of the storage volume to twice the Rayleigh length 
(L= 2Ax/A). Furthermore we have assumed that the direct optical transition branching 
ratio is much smaller than the total transition branching ratio (Appendix A), and that the 
branching ratio for direct optical transitions therefore can be neglected. In order to be 
able to compare the storage density of the photon echo method with the storage density 
obtain with ordinary optical storage methods, I introduce the parameter k in the 
following way A= (U)2. The storage densities that we are able to achieve with ordinary 
optical storage methods are l!A-2. Furthermore it is assumed that the number of stored 
data bits (N) within the laser focal volume is a large number. Assuming a data sequence 
of N bits such that N8o = rc/2 we can then write sin(8D) = rc/(2N). 
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With these conditions are we able to rewrite equation (3.1). This yields 

(3.2) 

If we specify the number of photons (ll), we do that later on, then we are able to obtain 
an expression for the fractional increase in storage density (Nfk2) compared to the 
ordinary storage density of optical methods (1/A-2) as a function of hyperfine branching 
ratio (TJ), concentration of ions (n), the Einstein coefficient for the transition (A), the 
pulse length for one data bit ('t) and the inhomogeneous relaxation time Tinh· 

(3.3) 

3.1.1. Limit set by the inhomogeneous relaxation time 

We have to avoid excessive spectral diffusion[?]. This means that we can not allow the 
interaction between the doping ions to bee too severe. This then puts a limit on the 
maximum value of the density of storage centers, n, of about nmax=I026 fm3. It is clear 
from equation (3.3) that in order to obtain a large fractional increase in storage density 
(Nfk2) that we should choose the duration of each data bit ('t) as small as possible. The 
smallest possible value for the data bit duration is when it equals the value of the 
inhomogeneous relaxation time, 't = Tinh· 

With equation (3.3) and the fact that the data bit duration must be larger than or equal to 
the inhomogeneous relaxation time, 't > Tinh, can we express an upper limit of the 
fractional increase in storage density as 

N "~31/q 3 I r-:.-= - ~- --nJ,; kry- v A -r 
k2 8 JE Jff 

(3.4) 
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If we assume that the inhomogeneous line width can be approximated by an gaussian 
function, then can we express the inhomogeneous relaxation time, Tinh, as[8] 

(3.5) 

where a is the peak absorption cross section. Equation (3.5) enables us to eliminate the 
inhomogeneous relaxation time, Tinh, dependence in the expression for the fractional 
increase in storage density, equation (3.3). This yields that the fractional increase in 
storage density (Nfk2) can be rewritten as 

N n 3mJq 11 1 1 
--- (ncrL) 
k2 4 ln(2)JE k .Jff .j(A-r) 

(3.6) 

3.1.2. Optically thin medium 

As only optically thin media are considered, there is an upper limit on the absorption 
coefficient (a=naL). This is, somewhat arbitrarily, chosen to naL::;; 0.3. The reason for 
restricting our analysis to optically thin media, is that for optically thick media we can 
not consider that the medium to be homogeneously excited by the laser pulses. This 
makes the analysis tremendously more complex. Now we can with this upper limit on the 
absorption coefficient and equation (3.6) again gets an upper limit on the fractional 
increase in storage density (Nfk2) 

!!_<3n 3mJq 11 1 1 
k2- 40 ln(2)JE k .Jff .j(A-r) 

(3.7) 
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3.2. Noise Mechanism 

We now need to make assumptions of how many photons that the echo necessary must 
contain in order to obtain a reasonable signal to noise. The noise mechanisms that are 
valid in our case are the spontaneous emission noise, scattered light and different noise 
mechanisms in the photomultiplier[9]. 

Spontaneous noise: The spontaneous noise is due to the spontaneous emission of light in 
the crystal under the time 't, this spontaneous emission is at least approximately the same 
in all directions and we have only to take into account that amount of light that are in the 
direction of the detector. An estimation of the number of spontaneous emitted photons 
under one second is 

(3.8) 

where .Q is space angle of the detector. 

Scattered light: This light is primarily due to limited ability to switch off the excitation 
light when the photon echo is recorded by the detector. 

Noise mechanisms in the photomultiplier: In the photomultiplier the noise is due to 
cathode shot noise, dynode shot noise and Johnson noise. Shot noise is caused by 
fluctuations in the electron current that are due to the discrete nature of the photons. 
Dynode shot noise is the shot noise due to the random nature of the secondary electron 
emission process at the dynodes. Since current originating at a dynode does not 
experience the full gain of the tube, the contribution of all the dynodes to the total shot 
noise output is smaller by a factor of 8-1 then that of the cathode(where 8 is the dynode 
amplification factor); since 8 = 5 it amounts to small correction and will be ignored in the 
following. Johnson noise is due to the fluctuations in the voltage across a resistor. These 
fluctuations are often caused by thermal motion of the charge carriers. 

The fundamental noise limit in our analysis is the Cathode shot noise, from here on 
referred to as shot noise. The shot noise is the square root of the number of photons in 
the echo, we can now express the Signal to Noise Ratio (SNR) in the following way 

rr 
SNR=-=Jff 

Jff 
(3.9) 

We suppose that we need a signal-to-noise ratio, SNR, of the order of 10. A value of the 
signal-to-noise ratio of 10 corresponds to that we have to detect 100 photons at the 
detector to achieve the required SNR (e. g. [10]). 
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3.3. First Read 

With the restrictions given by equations (3.4) and (3.7) together with the fact that we 
have chosen the number of required photons in the echo, n, to equal 100 we are now 
able to present primarily allowed regions in (A-t,11) space for any given value of the 
fractional increase in storage density , Nfk2 

A't 

-16 I I 1"10 0.0._0_1 ______ __,0.0_1 _______ 0.~.....1 ______ ___, 

Fig. 7. The allowed region (marked with + ) for the first read in 11 (hyperfine transition 
branching ratio) vs. kt (transition probability · data bit duration) space for a fractional increase 
in storage density of Nfk2 = 2 (limited by the solid lines), Nfk2 = 10 (limited by the dotted 
lines) and Nfk2 = 20 (limited by the dashed lines). 

It is assumed that 1 kbyte (8·1024 bits) is stored in each single point. From figure 7 we 
see that the allowed region shrinks drastically when the fractional increase in storage 
density (Nfk2) increase. For a fractional increase in storage density of 2 are the allowed 
values of the branching ration 0.01 < 11 <1 and the allowed values of Einstein coefficient 
times the data bit duration 10-15 < A't < 10-7. If a fractional increase in storage density 
of 10 is required then the allowed parameter space shrinks to 0.1 < 11 <1 and 10-13 < A't 
< 10-8. Furthermore, in the photon gating case, 11 = 1, the largest possible fractional 
increase in storage density, N/k2, equals 250 at an A·'t value of 10-8. 
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3.4. Multiple Reads 

To obtain expressions that are valid for multiple reads we have to consider what 
happens when the relaxed storage media interact with the second(read) pulse. In the 
medium the fraction ( 1-11) of the original information is again stored in the hyperfine 
structure after the first read pulse. When the read pulse interacts with the sample, the 
fraction (1-110) of the information stored in the relaxed medium is transferred to an exited 
level, here TlQ is the optical transition branching ratio and we can in comparison with the 
total branching ratio regard it as zero. Fori reads then, we have to replace 11 with 110-11 
)i-1 in the previous equations to obtain the adequate expressions for multiple reads. It 
then follows from Equations (3.4) and (3.7) that 

N n J31Jq 3 i-1 1 ...-:: -:::;- -nA: kTf(I-Tf) --vA-r 
k2 8 JE Jff 

(3.10) 

N 3n 37rTfq Tf(l-Tf)i-l 1 1 
-<-
k2 - 40 ln(2)JE k .Jff ,J(A-r) 

(3.11) 

A't 

Fig. 8. The allowed region (marked with +) for 10 consecutive readings in 11 (hyperfine 
transition branching ratio) vs. At (transition probability · data bit duration) space for a fractional 
increase in storage density of Nfk2 = 2 (limited by the solid lines), Nfk:2 = 10 (limited by the 
dotted lines) and Nfk2 = 20 (limited by the dashed lines). 
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From figure 8 is it clear that to perform 10 consecutive readings from the storage sample 
with a signal to noise ratio of 10, with the limitations we so far have imposed on the 
storage medium, the fractional increase in storage density (NJk2) must at least be smaller 
than 8. 

For the cases shown in figure 8 it is only when the fractional increase in storage density 
(NJk2) equals two, that we have the possibility of obtaining multiple reads. If we 
consider the case of a fractional increase in storage density of two, then the shrinking of 
allowed region for 1, 5, 25 and 45 consecutive reads is shown in figure 9. From figure 9 
we obtain that when we have 45 or more consecutive reads, then the allowed region 
vanishes. This means that we have achieve a fundamental limit of the maximum number 
of reads, and this limit is 45 consecutive readings. This limit is set by the photon echo 
process itself and is therefore of great importance, but the number of reads are further 
restricted by the limits imposed by the material. 

Number of reads 

\ 

\ 

' 
' ·,; 
'·· \ ,. 
•' 

;' \ 

Fig. 9. The allowed region for a fractional increase in storage density (Njk2) of 2, in 11 
(hyperfine transition branching ratio) vs. At (transition probability · data bit duration) space for 
5 reads (limited by the dotted lines),20 reads (limited by the dashed lines) and 45 reads (limited 
by the dash dotted lines). 

It is worth noticing that in so called photon-gated storage[?] where upper state atoms 
after write and read pulses are forced into some reservoir state by a laser pulse of 
different wavelength, the available area in (Tl,A'C) space does not change with the number 
of reads. Instead the allowed value of A-r is given by figure 7 with Tl = 1. For any specific 
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storage/processing material there be further restrictions in the available (ll,A't) space. 
This is described in the following sections. 

3.5. Limitations set by the time- domain approach 

The limits that we have imposed so far are that the data bit duration must be larger then 
or equal to the inhomogeneous relaxation time, equation (3.4), and the restriction that we 
only consider optical thin mediums, equation (3.7). These limits are sample independent 
and therefore the space between these two curves determines an intrinsic limit of the 
photon echo approach. However, this restrictions is not stringent enough, and we have to 
consider the following additional limits. 

1. The laser intensity, I, should not be larger than the saturation intensity Isat = 
hv/(oTI), where TI is the upper state lifetime. 

2. Thermal considerations limit I such that I< Ith = 106 Wfm2 (Ref. [10]). 

3. The product of the electro-magnetic field at the focal point and the data-bit 
duration should be sufficient to rotate the Bloch vector the angle eo = rr/(2N). 
Corresponding to transferring a fraction 1!4· (sin eo )2 of the atoms to the 
excited state. 

4. Eq. (3.7) is valid only for values of A sufficiently large that ncrL = 0.3 and 

must be extended to the case nmaxcrL ::::;; 0.3. 

These conditions put three new limits on 't. We now want to decide which values of the 

data-bit duration that are allowed. With the expression 8=(J.1E't)/ for the pulse area can 
we rewrite condition 3 as a lower limit for the data-bit duration 

> 1tn r_--
2NpE 

Furthermore, we know that the laser intensity is 

1 2 
1=-cc.oE 

2 

and that we can express the transition dipole moment, J.l, as[ll] 

(3.12) 

(3.13) 

(3.14) 
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If we rearrange equation (3.13) and substitute this together with equation (3.14) in 
equation (3.12), we obtain 

r > n /n {E£ _!__I_ 
~6VJJ N JIA 

(3.15) 

The assumption that we have a gaussian line width enable us to express the absorption 
cross section, cr, as 

(3.16) 

We can now with use of equation (3.16) express the saturation restriction on the laser 
intensity, condition 1, in terms of Einstein coefficient for the transition. These together 
with equation (3.15) give the final expression for the lower restriction of the data - bit 
duration: 

r > n (nln(2))1
/
4 .Jr1Tinh 

2 J6 N 
(3.17) 

From condition 2 we get that thermal considerations put an upper limit on the promoted 
laser intensity and this together with circumstance that the Bloch vector should be able to 
rotate an angle of So = n/(2N) in the time 't, condition 3. This gives another lower limit 
of the data-bit duration. 

/n{FCI I 
r > n~6 VJJ N .J!thA 

(3.18) 

To obtain this it is only to use condition 2 in equation (3.15). The actual lower limit is 
decided by which of these two restrictions that imposes the strongest condition on the 
process. To obtain an upper limit of the data-bit duration, we have to consider that we 
have an upper limit of the absorption in the sample, condition 4, For any specific material 
and transition, condition 4 can be fulfilled by rewriting equation (3.3) as 

(3.19) 

If we re-examine equation (3.7) then we realise that we can rewrite this as an upper limit 
for the data-bit duration. Further more is it clear that for small A is the limit imposed by 
equation (3.19) stronger than the limit of equation (3. 7). To see how these limitations 
change allowed region we now consider a specific example. 
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3.6. Praseodymium 

Consider the 3H4 - 102 transition in Pr3+:YA103 (see figure 5 in chapter 2.2 for 
energy level diagram). For this transition A= 20 s-1, Tinh = 60 ps, T1 = 180 !!Sand 11 = 

0.06 (see appendix A) [5]. To obtain the transition dependent restrictions on the data bit 
duration, 't, equations (3.18) and (3.19) are plotted vs the Einstein coefficient for the 
transition, A, in figure 10. The thermal limit, equation (3.18) (solid line), is independent 
of our choise of sample material, while equation (3.19) depends on the branching ratio, 11 
and the inhomogeneous relaxation time. Equation (3.12) will give a limit below equation 
(3.13) in the region shown in figure 9 and will therefore not be drawn. The thermal limit 
is calculated assuming that the memory is continuously addressed. For data access 
frequencies, fa, such that fa < 1/Nt the thermal requirement for the storage material is 
relaxed and the solid curve is then adjusted downward. 

1·10-6 

N!i=2 
1·10-7 

1·10-B 

't 

(sec) 1·10-9 

1·10-10 

1·10-ll 

Limit set by the rotation of Bloch vector 

Ho-12.c..,-_____ __L_ _____ -'-=" _____ -:' 
0.1 10 100 

A (1/sec) 

Fig. 10. Allowed data bit duration, 1, as a function of transition probability, A, for different 
values of Nfk2. Solid line, thermal limit. Dotted, dash dotted and dashed lines, signal- to- noise 
limit for Nfk2= 2, 10, 20. 
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3.6.J.Processing Applications 

When we use the storage medium for optical processing applications we are 
continuously addressing the medium and the thermal limit can not be relaxed. From 
figure 10 we get the allowed values of the data bit duration, 't, with respect to the 
limitations set by time-domain approach for a fractional increase in storage density 
(Nfk2) of 2, 10 and 20 , these are 

Nfk2 Allowed 1 Corresponding A 1 

2 5·10-11 < 't < 5·10-8 1·10-9 < A 1 < 1·10-6 
10 5-I0-11 < 't < 2·10-9 1·10-9 < A 1 < 4-I0-8 
20 5. 1 o-11 < --r < 5. 10-10 1·10-9< A --r< 1·10-8 

For processing applications the branching ratio for the transition is equal to one. From 
figure 7 we see that the allowed values of the transition probability times data-bit 
duration, A't, are 10-15 < A·'t < 5-10-7, I0-13 < A-r < 10-7 and I0-12 < A·'t <5-I0-8 for 
a fractional increase in storage density (N!k2) of 2, 10 and 20. We have now imposed all 
the restrictions and are then able to decide the allowed parameter space when we use 
Pr3+:Y Al03 as an optical processor. 

Njk2 Allowed 1 data processing rate Occupying area for 
(s) each kbyte 

2 5-I0-11 < 't < 2·10-8 500 MHz - 25 GHz 4000 ')...2 
10 5·1o-11 < --r < 5·1o-9 250 MHz - 25 GHz 800A.2 
20 5-I0-11 < 't < 5·10-10 2,5 GHz - 25 GHz 400 ')...2 
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