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Abstract 

Introduction: Arterial spin labelling (ASL) is a non-invasive magnetic resonance imaging (MRI) technique for 

assessment of perfusion. ASL uses magnetically labelled blood water as a diffusible endogenous tracer to measure 

the perfusion of brain tissue, i.e. the cerebral blood flow (CBF). Traditionally, ASL samples images at a specific 

point in time allowing the CBF to be calculated using a model of the signal. With time-resolved ASL, perfusion-

weighted images are sampled as a function of time, allowing the CBF to be calculated using a model-free 

approach by means of deconvolution. The QUASAR ASL implementation employs this approach and has 

previously been used to calculate CBF through deconvolution with block-circulant singular value decomposition 

(cSVD) resulting in slightly lower perfusion values than those achieved with gold standard methods (such as 

PET). The use of non-linear stochastic regularization (NSR) for deconvolution has previously been investigated, 

showing good potential to reproduce realistic tissue residue functions in contrast-agent-based perfusion studies by 

dynamic susceptibility contrast MRI (DSC-MRI). The NSR method gives the possibility to correct for arterial 

dispersion and therefore potentially improve the perfusion quantification. In this study, NSR was applied as a 

deconvolution method for absolute quantification of CBF using time-resolved ASL data obtained by the 

QUASAR pulse sequence. The aim was primarily to see if the implementation was feasible for ASL data, and 

secondly to assess the potential of improving the absolute CBF quantification and the retrieved residue functions 

in ASL experiments. 

Materials and Methods: Data originated from volunteers participating in a multi-centre reproducibility study of 

QUASAR. The imaging was carried out with a Philips Achieva 3T MRI unit using the following protocol: 7 

slices, 6 mm slice-thickness, 2 mm slice gap, 64×64 matrix, 240×240 mm
2
 FOV, 35°/11.7° flip angles, 

TR/TE/ΔTI/TI1 = 4000/23/300/40 ms, 13 inversion times, 84 series, 2.5 SENSE factor, 150 mm labelling 

thickness, 3.75×3.75 mm
2
 in-plane resolution and a total scantime of 6 min. To obtain the data required for the 

deconvolution, the acquired ASL image data were post-processed using in-house-developed software, with some 

additions and modifications compared to previous post-processing software from the QUASAR studies. The most 

important addition was the implementation of a fractional segmentation and a subsequent novel method to 

calculate the equilibrium magnetization of arterial blood, which is an essential parameter that directly scales the 

CBF. To make use of NSR with ASL data, some modifications compared to the available NSR software for DSC-

MRI data was needed. One of the main modifications was to model the high measurement noise generally 

immanent to ASL. 

Results and Discussion: The implementation resulted almost consistently in smooth, physiologically realistic 

residue functions. Especially compared to the most common model-free deconvolution method, cSVD, the 

resolved residue functions had significantly more physiologically realistic characteristics, primarily regarding 

monotonic decrease, non-negative values and, consequently, no oscillations. Visual inspection of reconvolved 

tissue signals served as a qualitative validation, and indicated that the method was able to solve a variety of 

different kinetic signals. The absolute quantification of CBF in grey matter did not differ from previous methods 

and resulted in problems with under- and overestimations in certain voxels. This could partially be explained by 

the fact that NSR tends to fail if the measured signal is too noisy in a voxel, whereas, for example, cSVD produces 

a potentially false but non-zero result for those voxels. However, the new implementations of fractional 

segmentation and estimation of the equilibrium magnetization of arterial blood proved to have the potential to 

reduce CBF quantification errors due to partial volume effects and the presence of non perfused volumes (e.g., 

CSF). 

Conclusion: The implementation of NSR on QUASAR data was successful and encouraging results were 

obtained. Resolved residue functions showed more realistic characteristics than what is normally achievable with 

common deconvolution methods. However, the resulting CBF values did not appear to be more realistic than 

those obtained using previous deconvolution methods. NSR as a deconvolution method for ASL is likely to 

require substantial verification and optimization to be considered a complement to the already existing methods.  



II 

 

Table of contents 

1 Introduction ........................................................................................................ 1 

1.1 Blood flow to the brain ............................................................................. 1 

1.2 Aims of the present study .......................................................................... 2 

2 Theory ................................................................................................................ 4 

2.1 Introduction to perfusion quantification with bolus-tracking .................... 4 

2.2 Basic principles of arterial spin labelling .................................................. 6 

2.2.1 Perfusion quantification in ASL ........................................................... 8 

2.3 Model-free arterial spin labelling .............................................................. 9 

2.3.1 Arterial input function and arterial blood volume .............................. 11 

2.3.2 Brain-blood partition coefficient and M0,a .......................................... 13 

2.3.3 Mapping of M0,t and T1t ...................................................................... 14 

2.3.4 Mapping of B1 inhomogeneities and slice-profile effects ................... 16 

2.4 Fractional segmentation .......................................................................... 17 

2.5 Estimation of M0,a ................................................................................... 20 

2.6 Deconvolution ......................................................................................... 22 

2.6.1 Deconvolution in perfusion MRI ........................................................ 24 

2.7 Non-linear stochastic regularization ........................................................ 25 

2.7.1 ASL-NSR Implementation ................................................................. 28 

3 Materials and methods ..................................................................................... 31 

3.1 Subjects and imaging protocol ................................................................ 31 

3.2 Post-processing ....................................................................................... 31 

3.3 Analysis................................................................................................... 33 

4 Results.............................................................................................................. 34 

4.1 Fractional segmentation .......................................................................... 34 

4.2 Estimation of M0,a ................................................................................... 35 

4.3 Residue function characteristics .............................................................. 39 

4.4 Arterial dispersion correction .................................................................. 43 

4.5 Cerebral blood flow ................................................................................ 44 

4.6 ASL-NSR implementation ...................................................................... 47 

5 Discussion ........................................................................................................ 49 

5.1 Fractional segmentation .......................................................................... 49 

5.2 Estimation of M0,a ................................................................................... 51 

5.3 Residue function characteristics .............................................................. 53 

5.4 Arterial dispersion correction .................................................................. 55 

5.5 Cerebral blood flow ................................................................................ 56 

5.6 Delay sensitivity ...................................................................................... 57 

5.7 ASL-NSR implementation ...................................................................... 58 

6 Conclusion ....................................................................................................... 59 

Acknowledgements .................................................................................................. 60 

References ................................................................................................................ 61 



1 

 

1 Introduction 

1.1 Blood flow to the brain 
The importance of the delivery of blood to the human brain has been known for 

centuries (Hill, 1896). Early studies on the anatomy of the cerebral vasculature and 

the cerebral circulation laid the very basis for succeeding studies of the delivery of 

blood to the brain tissue. Constant upholding of this blood supply is vital to the 

homeostasis of the brain tissue since the blood delivers oxygen and nutrients. The 

process of the delivery of oxygenated blood to the capillary bed of tissue is called 

perfusion and the cerebral blood flow (CBF) is the measurable physical quantity of 

the perfusion of the brain. Figure 1.1 shows an example of a CBF map in a brain 

slice. The CBF is often presented in units of ml/100g/min and is thus a volumetric 

flow rate. 

 

Figure 1.1: Measurement of regional CBF is often displayed as a 2D map of the perfusion. 

This allows the specialist physician (e.g. radiologist or clinical neurophysiologist) to perform 
a visual evaluation of the perfusion in different tissues and regions of the brain. 

Since the perfusion of the brain is vital, the measurement of CBF is of great clinical 

importance. Firstly, the generation of quantitative maps of regional CBF can be used 

to identify areas with vascular disorders, e.g., a decreased CBF due to an ischaemic 

stroke. Furthermore the coupling between CBF and metabolism makes the 

quantification a possible marker of brain function which has led to a multitude of 

studies investigating the connection between an abnormal regional CBF and the 

diagnostics and prognostics of different disorders, such as neurodegenerative 

diseases. 

Kety and Schmidt were the first scientists to describe a technique to accurately 

measure quantitative CBF (Traystman, 2004). They adopted Fick's principle and 

posed that the amount of an inhaled, diffusible and inert gas, taken up by the brain 

tissue, is equivalent to the amount of the gas that is delivered to the brain by arterial 
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blood minus the amount that is carried away by venous blood (Kety and Schmidt, 

1945). The subjects inhaled nitrous oxide until steady-state and the CBF was 

estimated from the changes in the arterial and venous concentrations of the tracer. 

Their reported global mean CBF level of 54±12 ml/100g/min in healthy young men 

(Kety and Schmidt, 1948) is still regarded to be a quite reasonable value. 

In the following decades, other methods for quantitative measurement of CBF have 

been developed, mainly in the areas of single photon emission computerized 

tomography (SPECT), positron emission tomography (PET), computerized 

tomography (CT) and magnetic resonance imaging (MRI). The methods differ in the 

tracer agents applied, where SPECT uses photon emitting tracers like 
133

Xe, PET 

makes use of positron emitting tracer compounds such as H2
15

O,
18

F-fluoromethane 

or 
77

Kr, dynamic perfusion CT uses non-ionic iodinated contrast agents and Xe-CT 

stable xenon, while dynamic susceptibility contrast MRI (DSC-MRI) and dynamic 

contrast enhanced MRI (DCE-MRI)  employs chelates of gadolinium(III) as 

intravenously injected contrast agents and arterial spin labelling (ASL) is based on 

the use of magnetically labelled blood-water as an endogenous tracer. Almost all 

methods employ a modelling of the tracer kinetics (the contrast agent transport in 

tissue) to quantify the CBF, usually either with compartment models or some 

version of the indicator dilution theory, as developed by Meier and Zierler (Zierler, 

1962). 

1.2 Aims of the present study 
Arterial spin labelling has been used for perfusion quantification of the brain since 

its introduction in 1992 (Detre et al., 1992; Williams et al., 1992), and has since then 

advanced in many different ways and directions. Most ASL implementations model 

the MR signals and use different assumptions to obtain regional CBF (i.e., a CBF 

map). Recently, an ASL pulse sequence capable of measuring the MR signal at 

multiple points in time made CBF quantification possible with much fewer 

assumptions (Petersen et al., 2006a). This sequence is called "Quantitative STAR 

labelling of Arterial Regions" (QUASAR) and in this approach the time-resolved 

ASL data are used to calculate kinetic tracer data which allows for quantification of 

the perfusion by means of deconvolution. Since the implementation does not utilize 

any modelling of the signals, it is often called model-free ASL. The QUASAR 

reproducibility study resulted in a mean grey matter CBF of 47.4 ml/100g/min 

which is in the lower end of published values obtained using ASL techniques and 

quite low compared to gold standard methods such as PET (Leenders et al., 1990). 

Deconvolution is a mathematical operation which is far from straightforward, and 

the result from such an operation can depend on the selected methodology. Petersen 

et al. used a deconvolution method called block-circulant singular value 

decomposition (cSVD). However, cSVD has been shown to have limited accuracy 

since obtained CBF values depend on dispersion (i.e., broadening) of the arterial 

bolus signal and on a threshold value applied to limit the effects of noise, and also 

since it produces physiologically unrealistic solutions (i.e., non-monotonically 
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decreasing with negative values). We hypothesized that a better suited 

deconvolution technique could improve the perfusion quantification with model-free 

ASL. Non-linear stochastic regularization (NSR) is a deconvolution technique 

developed specifically to respect the generally smooth characteristics of the 

physiological signals in DSC-MRI (Zanderigo et al., 2009), and the present study 

aimed to implement and adapt NSR to serve as a deconvolution method in model-

free ASL. We also present a novel method for estimation of the equilibrium 

magnetization of arterial blood, which is an essential parameter for the perfusion 

quantification in ASL. 
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2 Theory 

2.1 Introduction to perfusion quantification with bolus-
tracking 

This section gives a brief introduction to the basics of bolus-tracking perfusion 

quantification which is essential to the following theory. As will be seen later, 

perfusion quantification with model-free ASL can be interpreted in a very similar 

manner. 

Kety and Schmidt measured the concentration of a freely diffusible tracer in arterial 

and venous blood to calculate CBF. Another method to quantify brain perfusion is to 

use bolus-tracking of a tracer transversing the microvascular system. With bolus-

tracking, the CBF is often calculated through the indicator-dilution theory proposed 

by Meier and Zierler (Zierler, 1962). The indicator dilution theory describes the 

passage of a tracer through the microvasculature by means of dynamic functions. 

The individual tracer particles follow different paths through the microvasculature 

and their transit times therefore have a distribution with a shape depending on the 

flow and the vascular structure. The transport function 𝑕(𝑡) is the probability 

distribution function of these transit times given an ideal bolus injection (an 

infinitely short tracer-bolus injected into the tissue-feeding vessel at the entrance of 

the capillary network). Since 𝑕(𝑡) is a probability distribution, the integral over all 

transit times equals unity:  

  𝑕 𝜏  𝑑𝜏 = 1

∞

0

 2.1 

The residue function 𝑅(𝑡) is the fraction of tracer still present in the 

microvasculature at time 𝑡 after the ideal bolus injection. Since  𝑕 𝜏  𝑑𝜏
𝑡

0
 is the total 

fraction of tracer that has left the microvasculature at time 𝑡, the residue function can 

be formulated as: 

 𝑅 𝑡 = 1 −  𝑕 𝜏  𝑑𝜏

𝑡

0

 2.2 

The definition of 𝑕(𝑡) implies that 𝑅 𝑡  is a monotonically decreasing and non-

negative function equal to unity at time zero and converging to zero as time 

approaches infinity. The shape of 𝑕(𝑡), and therefore 𝑅 𝑡 , is characteristic for the 

system and the tracer (Zierler, 1965). Figure 2.1 displays the relationship between 

𝑕 𝑡  and 𝑅 𝑡 . 
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Figure 2.1: The relation between 𝑕(𝑡) and 𝑅(𝑡). 

Since the rate of the injection is finite, and due to bolus broadening when traversing 

the circulatory system from the site of injection (typically a peripheral vein) to the 

brain, the tracer bolus will not be an ideal delta function in reality and the so-called 

arterial input function 𝐴𝐼𝐹(𝑡) is the course of tracer concentration in the tissue-

feeding artery entering the microvasculature at time 𝑡. By using time-domain 

impulse functions, and assuming a time-invariant and linear system, the course of 

tracer concentration 𝐶(𝑡) in tissue can be described as (Zierler, 1962): 

 𝐶 𝑡 =  𝐶𝐵𝐹 ⋅ 𝐴𝐼𝐹 𝑡 ⨂𝑅 𝑡 = 𝐶𝐵𝐹 ⋅  𝐴𝐼𝐹 𝜏 ⋅ 𝑅 𝑡 − 𝜏  𝑑𝜏

𝑡

0

  2.3 

where  ⨂ is the convolution operator and the right-hand side is the convolution 

integral. Figure 2.2 displays a graphical example of Eq. 2.3. The tissue signal 𝐶(𝑡) is 

the output of the system, the arterial input function is the input to the system, and the 

residue function is the characteristic of the system and the tracer, also known as the 

convolution kernel (e.g., 𝐶𝐵𝐹 ⋅ 𝑅(𝑡)). Hence, 𝐶𝐵𝐹 ⋅ 𝑅(𝑡) can be obtained by 

deconvolution of the measured time courses 𝐶(𝑡) and 𝐴𝐼𝐹(𝑡), and the CBF can be 

calculated as the initial height of 𝐶𝐵𝐹 ⋅ 𝑅(𝑡) since 𝑅(0) = 1. It is obvious that a 

unique 𝐶𝐵𝐹 ⋅ 𝑅(𝑡) needs to be determined in every voxel to obtain a regional CBF 

map like the one in Figure 1.1. The true AIF at the entrance of the capillary system 

is sometimes dispersed (broadened or smeared out) compared to the AIF actually 

measured at another site, resulting in an apparent, dispersed residue function (e.g., 

not monotonically decreasing). Therefore, the CBF is often estimated as the 

maximum of 𝐶𝐵𝐹 ⋅ 𝑅(𝑡) instead of the value at time zero and it is clear that this 

leads to underestimated CBF if dispersion effects are present. 
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Figure 2.2: The measured tissue signal is the realization of a convolution between the arterial 

input function and the residue function, multiplied by the CBF. 

2.2 Basic principles of arterial spin labelling 
The basis for ASL, or arterial spin tagging, was laid in 1992 by the joint efforts of 

Donald Williams, John Detre, John Leigh and Alan Koretsky (Detre et al., 1992; 

Williams et al., 1992). They showed that saturation or inversion (labelling) of 

arterial spins induces a measurable change in the longitudinal magnetization of 

tissue downstream, and that this change can be used to quantify the perfusion of the 

brain. It should be noted that Kwong and colleagues independently showed that the 

change of apparent tissue relaxation time, also due to an inversion, can be used to 

quantify perfusion (Kwong et al., 1992), although their research focused more on 

neural activation which is beyond the scope of this thesis. 

 

Figure 2.3: Schematic figure of the basic ASL experiment. The ascending arterial blood is 

inverted and shortly after, when the labelled blood reaches the brain tissue, the imaging is 
initiated. 

Arterial spin labelling uses magnetically labelled blood water as an endogenous, 

diffusible tracer to measure small changes in the longitudinal magnetization (signal), 

due to the inflow and blood-tissue exchange (through the blood-brain barrier) of 

labelled blood-water. In its most simple form the idea is to label (invert or saturate) 
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arterial blood-water in a slice proximal to the imaging plane, wait until the labelled 

blood has reached the imaging plane and the blood water has exchanged with tissue, 

perform the image read-out and then repeat the process but without labelling the 

arterial blood, thus producing a reference called control image. Figure 2.3 displays 

the concept of labelling arterial blood on its way to the brain. The difference image 

resulting from subtracting the labelled image from the control image reflects the 

regional CBF and by constructing a model of this magnetization difference a 

quantitative CBF map can be extracted. A large number of different ASL techniques 

exist and all of them cannot be derived here. It seems, however, appropriate to 

briefly explain the different main branches of ASL since they can exhibit both 

methodological and theoretical differences. Traditionally, ASL is divided into two 

groups of experiments, namely continuous ASL (CASL) and pulsed ASL (PASL). 

The first ASL experiment in rats by Williams and colleagues (Detre et al., 1992; 

Williams et al., 1992) is pertained to the CASL methods where arterial blood is 

continuously labelled proximal to the imaging plane until a steady state is reached in 

the tissue magnetization. The labelling employs so-called continuous flow-driven 

adiabatic inversion which is performed by applying a 2-4 s continuous 

radiofrequency (RF) pulse with a magnetic field gradient in the flow direction. This 

will saturate static tissue while the spins that move in the gradient direction will be 

inverted due to the variation in resonance frequency. The labelling also gives rise to 

unwanted off-resonance saturation of the pool of bound protons in brain tissue 

macromolecules, which due to cross-relaxation mechanisms affects the pool of free 

protons and thus the image signal. This magnetization transfer effect must be 

reproduced in the control experiment to avoid any contribution from static tissue in 

the difference image. This can be accomplished in various ways, and Williams and 

colleagues used a distal labelling outside the rat head, with labelling and control 

slices placed symmetrically on each side of the imaging plane. Such an approach is 

only valid for a single slice half-way between the labelling and control slices, and a 

better solution is to use double adiabatic inversion (Alsop 1998), which employs two 

adjacent inversion planes, thus returning the traversing spins to the original non-

inverted state. Williams and colleagues also suggested the use of gradients 

(Williams 1992) to minimize signal contribution from flowing spins in large vessels 

(thus eliminating signal originating from macroscopic flow, i.e., not perfusion). 

In pulsed ASL, first suggested 1994 by Edelman et al. (Edelman et al., 1994), the 

labelling is performed with a temporally short inversion pulse (5-20 ms) over an 

extended volume (i.e., a thick slice). Figure 2.4 shows the basic idea of a PASL 

experiment. The control image must still be compensated for the magnetization 

transfer effects, and this can be achieved by using two subsequent inversion pulses 

of half the RF power. This first PASL sequence named "Echo-Planar Imaging and 

Signal Targeting with Alternating Radiofrequency" (EPISTAR) has spawned 

sequences such as STAR-HASTE, PULSAR and QUASAR. A conceptually 

different PASL sequence is "Flow Alternating Inversion Recovery" (FAIR) (Kim, 

1995; Kwong et al., 1995) in which the spin population of a slice in the imaging 

plane is inverted and then the spins of the whole brain are inverted for the control 
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image. These different sequences are nicely reviewed by Petersen et al. (Petersen et 

al., 2006b). 

In addition, a hybrid method called pseudocontinuous ASL (pCASL) has recently 

emerged (Wu et al., 2007). This approach uses repeating short (pulsed) RF pulses to 

label by flow-driven adiabatic inversion like CASL. The method has proven to be 

very useful since it can exploit the higher tagging efficiency of PASL and the higher 

SNR of CASL, without the need of continuous RF transmission. 

 

Figure 2.4: By inverting spins proximal to the imaging plane and subtracting the resulting 

image from a control image with no effective labelling, the difference image is obtained. This 

difference is called ΔM and it can be used to calculate the tissue perfusion. Images describes a 
PASL experiment and comes from (Petersen et al., 2006b). 

2.2.1 Perfusion quantification in ASL 

Williams and colleagues described the change in brain tissue magnetization, with 

respect to the inflow and outflow of labelled blood, by means of a modified Bloch 

equation: 

 
𝑑𝑀𝑡(𝑡)

𝑑𝑡
=
𝑀0,𝑡 −𝑀𝑡(𝑡)

𝑇1𝑡

+ 𝐶𝐵𝐹 ⋅  𝑀𝑎 𝑡 − 𝑀𝑣 𝑡   2.4 

where 𝑀𝑡  is the tissue magnetization, 𝑀0,𝑡  is the equilibrium tissue magnetization, 

𝑇1𝑡  is the longitudinal relaxation time of tissue and 𝑀𝑎  and 𝑀𝑣  is the magnetization 

of arterial and venous blood, respectively. This is a direct adaption of the tracer 

clearance theory developed by Kety and Schmidt (Kety and Schmidt, 1948). As 

steady state is reached, the label and control images are registered and the perfusion 

can be calculated by solving the differential equation. Improved versions of this 

model have later been introduced. 
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In 1998 Buxton et al. (Buxton et al., 1998) proposed the use of a general kinetic 

model to describe the magnetization difference ∆𝑀 (i.e., the difference in signal 

between the label and the control images): 

 ∆𝑀 𝑡 = 2 ⋅ 𝑀0,𝑎 ⋅ 𝐶𝐵𝐹 ⋅  𝑐(𝜏)

𝑡

0

⋅ 𝑟 𝑡 − 𝜏 ⋅ 𝑚 𝑡 − 𝜏  𝑑𝜏 2.5 

where 𝑀0,𝑎  is the equilibrium magnetization in arterial blood, 𝑐(𝑡) is the fractional 

input function describing the delivery of labelled spins entering the 

microvasculature, 𝑟 𝑡  is the fractional wash-out function corresponding to spins 

leaving the microvasculature, and 𝑚 𝑡  is the fractional longitudinal relaxation 

function describing the relaxation of labelled spins. This formulation is similar to the 

indicator dilution theory (cf. Eq. 2.3) although ASL uses a diffusible tracer. The 

model is applicable to any ASL experiment and can be used with different 

compartment models. Still, the dynamic functions have to be modelled if the CBF is 

to be quantified from traditional ASL data. In the present study, the QUASAR 

sequence is employed which describes time-resolved ASL data through the general 

kinetic model (Eq. 2.5) enabling CBF to be calculated by means of deconvolution 

instead of modelling (Petersen et al., 2006a). 

2.3 Model-free arterial spin labelling 
This chapter describes the method of model-free ASL and the MRI sequence 

QUASAR as suggested and developed mainly by Esben Petersen and Xavier Golay 

(Petersen, 2009; Petersen et al., 2006a; Petersen et al., 2010). 

All ASL approaches are based on modelling the change in longitudinal 

magnetization due to the inflow and blood-tissue exchange of labelled blood water. 

The inversion time, i.e. the time between labelling and read-out, has to be chosen 

carefully in order for most models to be accurate. Model-free ASL, as proposed by 

Petersen et al. (Petersen, 2009; Petersen et al., 2006a), acquire multiple ASL images 

at different inversion times, thereby obtaining the signal as a function of time (see 

Figure 2.5). With the ingenious MRI sequence QUASAR, Petersen and colleagues 

were able to sample dynamic functions and calculate the CBF using a model-free 

approach by means of deconvolution. Figure 2.5 displays how QUASAR provides 

the difference in magnetization between label and control, ∆𝑀, as a unique dynamic 

signal in every voxel. The implementation was evaluated in 284 healthy volunteers 

in a multi-center reproducibility study (Petersen et al., 2010). 
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Figure 2.5: In model-free ASL, all images are acquired at multiple points in time allowing the 
exploitation of dynamic signals. 

The QUASAR sequence is a combination of the PULSAR labelling (Golay et al., 

2005), Look-Locker readout (Look and Locker, 1970) and Q2-TIPS bolus saturation 

(Luh et al., 1999). The PULSAR labelling consists of an initial four-pulse saturation 

which minimizes the signal from static tissue, lowering the noise in the difference 

image, followed by a modified EPISTAR labelling and a subsequent saturation pulse 

for a clean start of the bolus, similar to QUIPSS I (Wong et al., 1998). The readout 

uses a multi-slice, single-shot, gradient-echo EPI sequence combined with a small 

flip angle to allow sampling with a high temporal resolution (Look-Locker sampling 

strategy). Bolus saturation is also applied just proximal to the imaging plane before 

each slice acquisition to ensure a well-defined end of the bolus (Q2-TIPS). Bipolar 

crusher (spoiler) gradients can be used to null the signal from large arteries (Ye et 

al., 1997) and the QUASAR sequence exploits this by repeating the entire 

experiment with and without crusher gradients. By subtracting the crushed signal 

from the non-crushed signal, the shape of the AIFs can be acquired (see Figure 2.6). 

The crushed signal is used when calculating Δ𝑀 to ensure that the CBF is not 

overestimated due to signal contribution from inflowing arterial blood (vascular 

artifacts). The experiment is also repeated with a lower flip angle to allow mapping 

of B1-inhomogeneities (spatial variations of the excitation RF field) and slice 

selection effects. 

Petersen et al. exploited the sampled dynamic perfusion signal together with 

sampled arterial input functions and directly applied the general kinetic model 

proposed by Buxton et al. (Buxton et al., 1998). Using notations similar to 

traditional bolus-tracking experiments (cf. Eq. 2.3) the general kinetic model (Eq. 

2.5) can be written as (Petersen 2006a): 
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 ∆𝑀 𝑡 = 𝐶𝐵𝐹 ⋅  𝐴𝐼𝐹(𝜏)

𝑡

0

⋅ 𝑅 𝑡 − 𝜏  𝑑𝜏 2.6 

where 𝐴𝐼𝐹 𝑡 = 2 ⋅ 𝑀0,𝑎 ⋅ 𝑐(𝑡), 2𝑀0,𝑎  is the magnetization difference and 𝑅 𝑡 −

𝜏 = 𝑟 𝑡 − 𝜏 ⋅ 𝑚 𝑡 − 𝜏  is the effective residue function, i.e. the combined effects 

of the wash-out and relaxation of labelled spins. 𝑀0,𝑎  is the equilibrium 

magnetization in arterial blood as described earlier. 

Model-free ASL is quite unique in utilizing a bolus-tracking approach with a 

diffusible tracer, with characteristics somewhere in between the bolus-tracking 

methods using intravascular tracers and the tracer clearance methods using diffusible 

tracers. This is important to keep in mind when interpreting the theory as well as the 

results. Since ASL uses a diffusible tracer, the transit times of spins that exhibit 

blood to tissue to blood exchange are in the order of several minutes and the 

clearance 𝑟(𝑡) will be a slowly decreasing function of time. However, the relaxation 

of the labelled spins 𝑚(𝑡) will occur fast (T1 of arterial blood and tissue is ~1.5 s at 

3T) resulting in a rapid decrease of 𝑅(𝑡). It is obvious that the characteristic that 

traditionally is called the residue function corresponds to 𝑟(𝑡) in model-free ASL. 

However, in this paper 𝑅(𝑡) will be referred to as the residue function. Note that this 

does not compromise the definition of the residue function as a monotonically 

decreasing function, and that the perfusion still is calculated from 𝐶𝐵𝐹 ⋅ 𝑅(𝑡) since 

no spins have relaxed at time zero, i.e., 𝑚 0 = 1, and hence 𝑅 0 = 1. The arterial 

input function is also different from the traditional definition. Instead of only 

describing the tracer concentration at the entrance of the capillary system, it actually 

has to consider the amount of magnetization that is available in arterial blood at the 

site of the studied capillary system. 

2.3.1 Arterial input function and arterial blood volume 

As mentioned above, the shape of the AIF can be obtained by subtracting the 

difference signal curve from the noncrushed data with the difference signal curve 

from the crushed data, i.e., Δ𝑀𝑛𝑐𝑟 (𝑡) − Δ𝑀𝑐𝑟 (𝑡). See Figure 2.6 for a visual 

description of this method. The arterial blood volume (aBV) is the fraction of a 

voxel that consists of arterial blood. This quantity can be calculated with QUASAR 

by comparing the area under the local AIF with the initial bolus area from the 

labelling: 

 𝑎𝐵𝑉 =
  Δ𝑀𝑛𝑐𝑟  𝑡 − Δ𝑀𝑐𝑟  𝑡   𝑒𝑡 𝑇1𝑎 ∞

−∞
𝑑𝑡

2 ⋅ 𝑀0,𝑎 ⋅ 𝜏𝑏 ⋅ 𝛼
 2.7 

where 𝑇1𝑎  is the longitudinal relaxation time in arterial blood, 𝜏𝑏  is the temporal 

length of the initial bolus, known through the bolus saturation, and 𝛼 is the inversion 

efficiency, i.e. the fraction of the achieved inversion in the labelling plane. Figure 

2.7 shows a graphical interpretation of Eq. 2.7. 
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Figure 2.6: The basic idea of obtaining the dynamic of the AIF by subtracting a vascular 

crushed Δ𝑀𝑐𝑟  from a normal acquisition with no crusher gradients Δ𝑀𝑛𝑐𝑟 . 

 

Figure 2.7: The arterial blood volume is calculated by dividing the area under the local 

vascular signal corrected for relaxation (unique for every voxel), by the initial bolus area at 
the site of the labelling. 

The label will experience multiple saturation pulses due to the Look-Locker readout 

between the arterial arrival time 𝜏𝑎  and the arrival to the microvasculature at time 

𝜏𝑚 . To correct for this, the AIF should be multiplied by 𝑐𝑜𝑠𝑛𝜙, where the number of 

saturation pulses is given by 𝑛 = 𝑓𝑙𝑜𝑜𝑟 (𝜏𝑚 − 𝜏𝑎) Δ𝑇𝐼  , Δ𝑇𝐼 is the time between 

the excitation pulses and 𝜙 is the flip angle (𝑓𝑙𝑜𝑜𝑟 𝑥  is the largest integer not 

greater than 𝑥). Finally, scaling to the correct aBV fraction and accounting for 

relaxation, 𝐴𝐼𝐹(𝑡) can be calculated by: 

 𝐴𝐼𝐹 𝑡 =
 Δ𝑀𝑛𝑐𝑟  𝑡 − Δ𝑀𝑐𝑟  𝑡   𝑒𝑡 𝑇1𝑎 

𝑎𝐵𝑉
⋅ cos𝑛 𝜙 ⋅ 𝑒− 𝑡+ 𝜏𝑚−𝜏𝑎   𝑇1𝑎  2.8 

where the last exponential corrects for relaxation of arterial blood between the time 

of arrival to the site of the AIF and to the microvasculature. To couple with Eq. 2.6, 
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the AIF can equivalently be calculated as the normalization of the fractional input 

function 𝑐(𝑡): 

 𝐴𝐼𝐹 𝑡 = 2 ⋅ 𝑀0,𝑎 ⋅ 𝛼 ⋅ cos𝑛 𝜙 ⋅ 𝑐(𝑡) 2.9 

where 

 𝑐 𝑡 =
 Δ𝑀𝑛𝑐𝑟  𝑡 − Δ𝑀𝑐𝑟  𝑡   𝑒𝑡 𝑇1𝑎 

  Δ𝑀𝑛𝑐𝑟  𝑡 − Δ𝑀𝑐𝑟  𝑡   𝑒𝑡 𝑇1𝑎  𝑑𝑡
∞

−∞

⋅ 𝑒− 𝑡+ 𝜏𝑚−𝜏𝑎   𝑇1𝑎 ⋅ 𝜏𝑏  2.10 

Since there is considerable measurement noise in the QUASAR data, a gamma-

variate function is fitted to the measured AIF. A unique AIF is then calculated for 

every voxel, based on the mean of the surrounding AIF curves, the arterial delay, the 

equilibrium magnetization in arterial blood (𝑀0,𝑎 ) in the current voxel, the number 

of saturation pulses from the read-out during the vascular transit time (𝜏𝑚 − 𝜏𝑎 ) and 

the relaxation of the labelled blood during the same transit time. Figure 2.8 shows 

examples of maps of the microvascular arrival time 𝜏𝑚 , the arterial arrival time 𝜏𝑎 , 

the arterial blood volume aBV and the pure blood area (initial bolus at the site of 

labelling, i.e., the denominator in Eq. 2.7). 

 

Figure 2.8: Examples of parameters relating to the calculation of the AIF. From left to right: 

microvascular arrival time 𝜏𝑚 , arterial arrival time 𝜏𝑎 , arterial blood volume aBV and pure 
blood area. 

2.3.2  Brain-blood partition coefficient and M0,a 

The determination of the magnetization in fully relaxed arterial blood 𝑀0,𝑎  is of 

considerable importance since it directly scales the calculated value of the CBF. 

Traditionally, 𝑀0,𝑎  has been estimated as a global parameter, obtained from the 

sagittal sinus. But since the QUASAR sequence enables mapping of the equilibrium 

magnetization in tissue 𝑀0,𝑡 , 𝑀0,𝑎  can be estimated on a voxel-by-voxel basis 

through the brain-blood partition coefficient 𝜆: 

 𝜆 =
𝑀0,𝑡

𝑀0,𝑎

 2.11 

The brain-blood partition coefficient can thus be seen as the relation between the 

proton density of the tissue and the arterial blood. This coefficient is not limited to 

use in ASL but is generally used to correct for the difference in distribution volume 

of tracers between blood and tissue (i.e., the ratio of equilibrium tracer concentration 
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in tissue and blood). Since proton density varies between tissue types, 𝜆 varies 

across the brain. Calculation of 𝑀0,𝑎  from Eq. 2.11 requires properly determined 

values of 𝑀0,𝑡  and 𝜆. 

2.3.3 Mapping of M0,t and T1t 

The use of a Look-Locker sequence to map 𝑀0,𝑡  and 𝑇1𝑡  was proposed by Parker et 

al. (Parker et al., 1998) and was implemented into the QUASAR methodology by 

Petersen et al. (Petersen, 2009). The raw images from the Look-Locker read-out 

follow a saturation recovery as the longitudinal relaxation recovers exponentially to 

a steady-state value (see Figure 2.9 and Figure 2.11). 

 

Figure 2.9: Example of raw image data for the 12 first inversion times (left to right order). 

The successive signal recovery is clearly seen in the images. 

The longitudinal magnetization prior to the 𝑛𝑡𝑕  excitation can be expressed through 

the Bloch equations as: 

 

𝑀𝑧 𝑛 = 𝑀0,𝑡

 

 
 
 
 1 +  𝑀𝑧+ − 1 𝑒

−
𝑇𝐼1
𝑇1𝑡  cos 𝜙 𝑒

−
Δ𝑇𝐼
𝑇1𝑡  

𝑛−1

+  1 − 𝑒
−
Δ𝑇𝐼
𝑇1𝑡  

1 −  cos 𝜙 𝑒
−
Δ𝑇𝐼
𝑇1𝑡  

𝑛−1

1 −  cos 𝜙 𝑒
−
Δ𝑇𝐼
𝑇1𝑡  

 

  
 

 

2.12 

where 𝑀𝑧+ is the longitudinal magnetization immediately after excitation, 𝑇𝐼1 is the 

time between the preparation and the first excitation and Δ𝑇𝐼 is the time between the 
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excitation pulses. The measured signal after the 𝑛𝑡𝑕  excitation pulse will then 

depend on the longitudinal magnetization just before that excitation: 

 𝑀𝑥𝑦
∗  𝑛 = 𝑀𝑧 𝑛 ⋅ sin 𝜙 ⋅ 𝑒−𝑇𝐸 𝑇2

∗  2.13 

where the star (∗) refers to the non-negligible 𝑇2
∗ effects in the image (the raw 

images are primarily proton density weighted). Figure 2.10 displays how the actual 

signal varies with time, including the effect of the repeated low flip angle 

excitations. 

 

Figure 2.10: The actual signal recovery during the multiple excitations. The signal starts at 

zero since a saturation (90 degree flip angle) recovery is visualized. The dips correspond to 

the low flip angle pulses and the values of the peaks are 𝑀𝑧 𝑛  in Eq. 2.12. 

The sampled signal course follows an exponential saturation recovery with a 

limiting value being the effective equilibrium tissue magnetization evaluable 

through Eq. 2.12: 

 𝑀0,𝑡,𝑒𝑓𝑓 = lim
𝑛→∞

𝑀𝑧 𝑛 = 𝑀0,𝑡 ⋅
1 − 𝑒

−
Δ𝑇𝐼
𝑇1𝑡

1 − cos 𝜙 𝑒
−
Δ𝑇𝐼
𝑇1𝑡

 2.14 

Also, the effective longitudinal relaxation time in tissue can be solved to yield: 

 
1

𝑇1𝑡,𝑒𝑓𝑓

=
1

𝑇1𝑡

−
ln cos 𝜙  

Δ𝑇𝐼
 2.15 

Both 𝑀0,𝑡,𝑒𝑓𝑓  and 𝑇1𝑡,𝑒𝑓𝑓  can be estimated on a voxel-by-voxel basis by fitting the 

signal propagation of the raw images to a function on the form: 

 𝑆 𝑡 = 𝑀0,𝑡,𝑒𝑓𝑓   1 − 𝐴 ⋅ 𝑒−𝑡 𝑇1𝑡,𝑒𝑓𝑓   2.16 

where 𝐴 is a fitting parameter and 𝑡 is the time after the labelling (inversion time). 

An example of a measured saturation recovery with a fitted curve can be seen in 

Figure 2.11. When 𝑀0,𝑡,𝑒𝑓𝑓  and 𝑇1𝑡,𝑒𝑓𝑓  have been estimated, the true 𝑀0,𝑡  and 𝑇1𝑡  

can be calculated using Eqs. 2.14 and 2.15. However, to avoid significant errors in 
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𝑀0,𝑡  and 𝑇1𝑡  it is important to take imperfect excitation (inhomogeneous RF field) 

into account. The correction of the flip angle due to these inhomogeneities will be 

discussed in the next section. 

 

Figure 2.11: The signal recovery is sampled and fitted, allowing the voxel-wise calculation of 

𝑀0,𝑡,𝑒𝑓𝑓  and 𝑇1𝑡,𝑒𝑓𝑓 . 

2.3.4 Mapping of B1 inhomogeneities and slice-profile effects 

One problem with the calculation of 𝑀0,𝑡  and 𝑇1𝑡  is that the true flip angle 𝜙 is 

needed. The flip angle is often lower than the nominal flip angle due to B1-field 

inhomogeneities and slice-profile effects, thus varying across the image. The true 

flip angle can therefore be defined as the nominal flip angle, multiplied by a 

correction factor accounting for B1-field inhomogeneities and slice-profile effects: 

 𝜙 = 𝜙𝑛 ⋅ 𝑔 2.17 

where 𝜙𝑛  is the nominal flip angle and 𝑔 is the correction factor. Petersen et al. 

employed the dual flip angle strategy (Petersen, 2009), proposed by Parker et al. 

(Parker et al., 1998), to map 𝑔. The slice-profile effects will appear as B1 variations 

and will therefore be included in 𝑔. Since neither B1 inhomogeneities nor the true 

relaxation time of tissue varies with flip angle the use of two different flip angles 

enables the estimation of 𝑔 (through Eq. 2.15) by minimizing 

 
1

𝑇1𝑡,𝑒𝑓𝑓 ,𝑙𝑜𝑤

+
ln cos 𝜙𝑛,𝑙𝑜𝑤 ⋅ 𝑔  

Δ𝑇𝐼
−  

1

𝑇1𝑡,𝑒𝑓𝑓 ,𝑕𝑖𝑔𝑕

+
ln cos 𝜙𝑛,𝑕𝑖𝑔𝑕 ⋅ 𝑔  

Δ𝑇𝐼
  2.18 

for 𝑔. (The slice-profile effects vary with flip angle in a 2D acquisition and this can 

be accounted for by a correction of 𝑔 for one of the flip angles.) See Figure 2.12 for 

an example of a map over the combined B1 variations and slice-profile effects. 
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Figure 2.12: The correction factor 𝑔 mapped in a single brain slice. White color corresponds 

to an obtained flip angle equal to the nominal. Note that the nominal flip angle is seldom 

achieved. 

When 𝑔 has been mapped, 𝑀0,𝑡  and 𝑇1𝑡  can be calculated with the correct flip angles 

through Eqs. 2.14 and 2.15. An example of maps of 𝑀0,𝑡  and 𝑇1𝑡  is shown in Figure 

2.13. In previous implementations of QUASAR, maps of 𝑀0,𝑎  were calculated by 

dividing 𝑀0,𝑡  by 𝜆 using one of a few different methods. The following two chapters 

(2.4 and 2.5) will introduce a new method for this calculation and for mapping of 

𝑀0,𝑎 . 

 

Figure 2.13: Example of calculated parameter maps for 𝑀0,𝑡  and 𝑇1𝑡 . Both maps show visible 

contrast between tissue types. 

2.4 Fractional segmentation 
The QUASAR post-processing software, written by Esben Petersen in Interactive 

Data Language (IDL), uses a binary segmentation based on the tissue relaxation rate 

(𝑅1𝑡) histogram of the image series. By fitting three components to the histogram, 

appropriate thresholds can be chosen to segment the three compartments; 

cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM). The 

segmentation can be used for calculation of means of quantities in different tissue 
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types, e.g., CBF in GM or aBV in WM. For convenience, the three compartments 

are also referred to as different “tissue types” henceforth (although, strictly 

speaking, CSF is not a tissue). 

As a further development, we suggest the implementation of a modified version of a 

new fractional segmentation called "Fractional Signal mapping from Inversion 

Recovery" (FRASIER) (Shin et al., 2010). The FRASIER segmentation method uses 

inversion recovery of the longitudinal magnetization, i.e. the signal, which is 

registered with a Look-Locker sampling strategy. Since the read-out is similar to the 

one used in the QUASAR sequence (the most obvious difference being that 

FRASIER uses inversion recovery whereas QUASAR uses saturation recovery), the 

implementation was rather straight-forward and included some modifications and 

improvements. Among the improvements were that the correction of the flip angle 

could be exploited, which yielded maps of tissue-specific equilibrium (steady-state) 

magnetization 𝑀𝑠𝑠,𝑖  (see later in the chapter), instead of global values as in the 

original method. Furthermore, this exploitation also resulted in maps instead of 

global values of the effective longitudinal relaxation times 𝑇1𝑡,𝑒𝑓𝑓 ,𝑖  which improved 

the segmentation. 

It was assumed that the measured saturation recovery can be modelled as a linear 

combination of the different recovery functions of the three compartments, with 

limited interactions between them. The three monoexponential functions will then 

consist of different 𝑀0,𝑡,𝑒𝑓𝑓 ,𝑖  and 𝑇1𝑡,𝑒𝑓𝑓 ,𝑖  where 𝑖 represents the type of contents, i.e., 

CSF, GM or WM. Figure 2.14 displays an example of these monoexponential 

functions in one voxel. The functions are estimations of the saturation recovery seen 

if the voxel had purely consisted of the respective tissue type. The segmentation 

basically consists of solving the linear combination of the individual tissue functions 

that build up the measured signal. 

 

Figure 2.14: A measured saturation recovery (signal) and three available components with 

different relaxation times and limiting values. The segmentation problem consists of finding 

the linear combination of the three monoexponential recovery functions that best reproduces 

the measured signal. 
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For a saturation recovery, the measured signal can then be written as: 

 𝑆 𝑡 =  𝑓𝑠,𝑖  𝑀𝑠𝑠,𝑖   1 − 𝐴 ⋅ 𝑒−𝑡 𝑇1𝑡,𝑒𝑓𝑓 ,𝑖  

𝑖

 2.19 

where 𝑓𝑠,𝑖  is the fractional signal of tissue 𝑖 (the fraction of the measured signal that 

can be assigned to tissue 𝑖), 𝐴 is the fitting parameter from Eq. 2.16, 𝑇1𝑡,𝑒𝑓𝑓 ,𝑖  is the 

effective relaxation times and 

 𝑀𝑠𝑠,𝑖 =
1 − 𝑒

−
Δ𝑇𝐼
𝑇1𝑡,𝑖

1 − cos 𝜙 𝑒
−
Δ𝑇𝐼
𝑇1𝑡,𝑖

 2.20 

where 𝑇1𝑡,𝑖  is the true relaxation times for the different tissues, 𝜙 is the flip angle 

corrected for inhomogeneous excitation, and Δ𝑇𝐼 is the time between the excitation 

pulses. 𝑀𝑠𝑠,𝑖  can be interpreted as the available magnetization if a voxel only 

contained the tissue type 𝑖. Comparing to Eq. 2.14 it is obvious that 𝑓𝑠,𝑖  is the true 

𝑀0,𝑡,𝑖  and 𝑀𝑠𝑠,𝑖 = 𝑀0,𝑡,𝑒𝑓𝑓 ,𝑖/𝑀0,𝑡,𝑖 . The chosen notation is, however, intuitive when 

speaking of fractional signals and more straightforward with regard to calculations. 

For a discrete set of 𝑁 measured signal values 𝐒𝐦 =   𝑆 𝑡1  …  𝑆 𝑡𝑁  
𝑇 , Eq. 2.19 

can be written in matrix form as 

 𝐒𝐦 = 𝐗𝐅𝐬 + 𝐞 2.21 

where 

 𝑋𝑖,𝑗 = 𝑀𝑠𝑠,𝑖 1 − 𝐴 ⋅ 𝑒−𝑡𝑗 𝑇1𝑡,𝑒𝑓𝑓 ,𝑖  ,   1 ≤ 𝑗 ≤ 𝑁 2.22 

 𝐅𝐬 =   𝑓𝑠,𝐶𝑆𝐹   𝑓𝑠,𝐺𝑀   𝑓𝑠,𝑊𝑀   
𝑇
 2.23 

and 𝐞 is the column vector containing the measurement noise. With this formulation 

𝐅𝐬 can be estimated by means of linear least squares estimation, i.e., 𝐅𝐬 =

 𝐗𝑇𝐗 −1𝐗𝑇𝐒𝐦, where  𝐗𝑇𝐗 −1𝐗𝑇  is the pseudo-inverse of 𝐗. 

To carry out the calculation, both the true and the effective relaxation times for the 

three different tissue types need to be determined (see Eqs. 2.19 and 2.20). An 

estimation of the true relaxation times for GM and WM can be obtained from the 

maximum values of a histogram over relaxation rates in the whole brain. The reason 

that relaxation rates is used instead of relaxation times is purely practical; the GM 

and WM components are easier to separate when studying the relaxation rates. An 

example of such a histogram is shown in Figure 2.15. The effective relaxation times 

can then be calculated voxel-by-voxel according to Eq. 2.15. The relaxation time of 

CSF is hard to estimate from the histogram since it has a wide spread and mixes 

excessively (in a given voxel), primarily with GM. Therefore the true relaxation 

time in CSF is assumed to be 3 s, and the effective relaxation time is calculated 

voxel-wise in the same manner as for GM and WM. 
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Figure 2.15: Relaxation times for GM and WM are estimated as the inverse of the two mean 

values of the relaxation rate histogram peaks. 

When the fractional signals have been obtained through the linear least squares 

estimation, the fractional volumes can be calculated by dividing by the water content 

of the tissue 𝑖: 

 𝑓𝑣,𝑖 =
𝑓𝑠,𝑖

𝜌𝑖
 2.24 

Water contents of 100%, 89% and 73% were used for CSF, GM and WM, 

respectively (Donahue et al., 2006). Both the fractional signals and the fractional 

volumes can be constrained by  𝑓𝑣/𝑠,𝑖 = 1𝑖  to obtain normalized values. 

Note that the method is based on 𝑇1 mapping of the brain but does not exploit these 

maps per se (or the image contrast), but rather uses the unique magnetization 

recoveries of the different tissues, and is therefore dissimilar to other common MRI 

tissue segmentation methods. 

2.5 Estimation of M0,a 
Different methods for estimating 𝑀0,𝑎 , i.e. the magnetization available in fully 

relaxed arterial blood (at the current flip angle and field strength), have been used in 

the past. A common method is to use the signal from the sagittal sinus, assuming 

sufficiently good resolution to neglect any partial volume effect. Correction for the 

difference in 𝑇2
∗ between arterial and venous blood can be applied. The drawback is 

that this method generally suffers from partial volume effects and high uncertainty 

since very few voxels can be used. An alternative approach is to calculate 𝑀0,𝑎  as 

the ratio between the equilibrium tissue magnetization 𝑀0,𝑡  and the brain blood 

partition coefficient 𝜆 (see Eq. 2.11). Petersen et al. compared three different 

methods for user-independent estimation of 𝑀0,𝑎  using this approach (Petersen 

2009). In the first method, a global 𝑀0,𝑎  was calculated by dividing the mean 𝑀0,𝑡  in 

GM with a mean value of 𝜆 in GM. The exclusion of WM reflects the fact that WM 

CBF is difficult to measure by ASL due to low and delayed perfusion in WM 

leading to low signal-to-noise ratio (SNR). The measured signal (Δ𝑀 in Eq. 2.6) is 

[s] 
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𝑇2
∗-dependent and therefore 𝑀0,𝑎  should also reflect this 𝑇2

∗ variation. The global 

value of 𝑀0,𝑎  will include average 𝑇2
∗ effects in GM, but since these effects vary 

across the brain, errors could be introduced. The second method proposed is to 

divide 𝑀0,𝑡  with a 𝜆 which depends linearly on 𝑇1𝑡 , given mean values for GM and 

WM. This assumes that the spin lattice relaxation is linear with proton density. The 

third method is to divide 𝑀0,𝑡  with an average full brain value for 𝜆. Like the second 

method this also maps 𝑀0,𝑎  voxel-by-voxel and accounts for 𝑇2
∗ effects, but it does 

not compensate for variations in 𝜆. Petersen et al. pointed out that, if using method 

3, it might be better to divide by the mean partition coefficient in GM since the CBF 

is only calculated for GM, and the use of a whole brain 𝜆 of 0.9 ml/g will 

systematically overestimate the CBF in GM. This variant of method 3 was therefore 

included in the present work and referred to as method 4. The methods can be 

summarized as: 

 Method 1.  𝑀0,𝑎
      = 𝑀0,𝐺𝑀

          𝜆𝐺𝑀       

 Method 2.  𝑀0,𝑎 = 𝑀0,𝑡   𝜆𝑡 𝑇1𝑡   

 Method 3.  𝑀0,𝑎 = 𝑀0,𝑡   𝜆𝑏𝑟𝑎𝑖𝑛          

 Method 4.  𝑀0,𝑎 = 𝑀0,𝑡   𝜆𝐺𝑀       

where 𝑒−𝑇𝐸 𝑇2,𝐺𝑀
∗              

 (the average 𝑇2
∗ effects in GM) is included in 𝑀0,𝐺𝑀

         (method 1) 

and 𝑒−𝑇𝐸 𝑇2𝑡
∗  (the 𝑇2

∗ effects across the brain) is included in 𝑀0,𝑡  (methods 2 and 3). 

Petersen et al. found that their second method had the best performance (Petersen, 

2009), which is intuitively reasonable since it respects both the variations of 𝜆 and 

𝑇2
∗ effects across the brain. In the QUASAR reproducibility study (Petersen et al., 

2010) method 3 was used. Potentially improving on these methods, we propose a 

novel method for the estimation of 𝑀0,𝑎 . This method uses the new implemented 

fractional segmentation to correct the equilibrium tissue magnetization for presence 

of CSF and to calculate a weighted value of the brain-blood partition coefficient. 

Since arterial blood cannot normally be present in the CSF, its tissue-blood partition 

coefficient is zero. Previous methods do not consider this fact, which could 

introduce errors in the presence of partial volume effects, particularly with the low 

resolution of ASL. These errors would therefore be emphasized in voxels containing 

significant amounts of CSF, common in cortical grey matter (sulcal CSF) and 

periventricular tissues such as subcortical grey matter (ventricular CSF). The reason 

for this being frequently overlooked is probably that is has a rather small impact and 

perhaps due to a misinterpretation when applying the brain-blood partition 

coefficient in perfusion MRI. The brain-blood partition coefficient is often stated as 

the relation between proton densities in tissue and blood when used in ASL. This is 

an interpretation of the original definition of 𝜆 as the relation in distribution volumes 

between tissue and blood, for a water-based tracer. Following this original definition 

it becomes obvious that CSF should be excluded from the calculation, since a tissue 

only can be considered a part of the distribution volume provided that the tracer can 

distribute in that tissue. The proposed method is summarized mathematically below. 
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Assume that normalized fractional signals 𝑓𝑠,𝑖  and volumes 𝑓𝑣,𝑖  have been obtained 

through the modified FRASIER segmentation method explained earlier. An 

estimated value of 𝜆 can be calculated voxel-by-voxel as a weighted sum of the 

mean partition coefficients in GM and WM, where the weighting factors are the 

normalized fractional volumes of the respective tissues: 

 𝜆𝐺𝑀+𝑊𝑀 = 𝑓𝑣,𝐺𝑀 ⋅ 𝜆𝐺𝑀     + 𝑓𝑣,𝑊𝑀 ⋅ 𝜆𝑊𝑀
       2.25 

In this study, mean brain-blood partition coefficients of 0.98 ml/g and 0.82 ml/g 

were used for GM and WM, respectively. These mean values are based on PET 

measurements of the water content of blood, grey matter and white matter 

(Herscovitch and Raichle, 1985), and have been reproduced in ASL experiments 

(Roberts et al., 1996). As described above, the contribution from CSF should be 

excluded from the equilibrium tissue magnetization when calculating 𝑀0,𝑎 = 𝑀0,𝑡/

𝜆. This is done by removing the normalized fractional signal of CSF from 𝑀0,𝑡 : 

 𝑀0,𝐺𝑀+𝑊𝑀 = 𝑀0,𝑡   1 − 𝑓𝑠,𝐶𝑆𝐹  2.26 

Now, 𝑀0,𝑎  can be calculated in the traditional way: 

 𝑀0,𝑎 =
𝑀0,𝐺𝑀+𝑊𝑀

𝜆𝐺𝑀+𝑊𝑀

 2.27 

where 𝑒−𝑇𝐸 𝑇2,𝐺𝑀 +𝑊𝑀
∗  (the combined 𝑇2

∗ effects of GM and WM) is included in 

𝑀0,𝐺𝑀+𝑊𝑀 . As described earlier, 𝑀0,𝑎  should include 𝑇2
∗ effects across the brain, 

requirement which could be violated with the suggested method since 𝑀0,𝑡  is altered. 

However, since 𝑇2
∗ is long in CSF (compared with the parenchyma), the error is 

likely to be small for a TE of 23 ms. It should be noted that this new method cannot 

calculate 𝑀0,𝑎  in pure CSF, since 𝜆 is zero in these voxels. This problem can be 

bypassed by dividing the 𝑀0,𝑡  of such voxels with an average whole brain 𝜆, but in 

reality this is irrelevant since CBF should be zero in these voxels anyway. 

The presented approach is similar to method 2 described earlier, in which 𝜆 is 

calculated by linear relation to 𝑇1𝑡 , although the new method employs no such 

assumption of linearity. The new method takes the definition of 𝜆 into account and 

could potentially improve ASL-based CBF quantification. 

2.6 Deconvolution 
Deconvolution is a problem that is common for many physiological systems when 

the quantity of interest is not directly measurable. Generally, the unknown quantity 

is either the system input or the system characteristics (the convolution kernel). Here 

we assume that the input is measurable and that the kernel is the unknown quantity. 

In such a case, the convolution kernel can be estimated by deconvolving the 

measured input with the measured noisy system output. The deconvolution problem 

is generally ill-posed, mainly meaning that there is no unique solution, and ill-

conditioned, meaning that small errors in the measured data can induce large 

changes in the solution. When estimating the convolution kernel in physiological 
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systems more problems arise since the solution has to be realistic, e.g., smooth 

and/or positive. 

Deconvolution problems can be solved by model-based (parametric) or model-free 

(non-parametric) methods. In the model-based methods the solution is modelled as a 

parametric function, avoiding the ill-posedness by reducing the problem into a 

parameter optimization. Model-based deconvolution will not be discussed to any 

extent in this paper. Model-free methods estimate the solution without any 

assumptions of the shape of the solution. One straightforward model-free 

deconvolution is the direct application of the convolution theorem. The convolution 

theorem states that a convolution in the time domain equals a multiplication in the 

frequency domain, and vice versa. Hence, by using the Fourier transform the 

unknown kernel can be estimated. 

Another model-free approach is to use regularization as a way to stabilize the 

solution of the ill-posed inverse problem. Regularization uses a side constraint, 

supplementing the minimization of the sum of squares error between the 

reconvolved output (obtained by convolving the measured input with the estimated 

convolution kernel) and the measured noisy output data. The most common side 

constraint is that the solution should be smooth, which is realized by penalizing on 

the solution’s derivates. Andrey Tychonoff was among the first to mathematically 

formalize this type of regularization, and this is why it is often referred to as 

Tikhonov regularization. The amount of smoothness is determined by the 

regularization parameter. A higher value on the regularization parameter yields a 

smoother solution, but at the cost of poorer correlation with the measured data. 

Figure 2.16 shows the basic idea of regularization. 

 

Figure 2.16: Arbitrary example of solution obtained by Tikhonov regularization (right) as 

compared to raw deconvolution (left). Red stars correspond to noisy measured output data and 

the solid line is the reconstructed output based on the estimated kernel. Instead of only 

optimizing on the residual errors, some deviation from the measured data is allowed as long 
as the solution has a certain degree of smoothness. 

Regularization can be formulated mathematically by assuming a time-invariant 

linear system where 𝑧 𝑡  is the true output function, 𝑔 𝑡  is the input function and 

𝑢 𝑡  is an unknown convolution kernel, together forming the convolution integral: 
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 𝑧 𝑡 =  𝑔 𝜏 ⋅ 𝑢 𝑡 − 𝜏  𝑑𝜏

𝑡

−∞

 2.28 

similar to the convolution integrals discussed in previous sections. If 𝑦 𝑡 = 𝑧 𝑡 +

𝑣(𝑡) is the measured noisy output, where 𝑣(𝑡) is the noise affecting the 

measurements, the problem can be written in matrix form as 𝐲 = 𝐆𝐮 + 𝐯, where 𝐲 is 

a finite number of registered observations, 𝐆 is the convolution with the input, 𝐮 is 

the kernel and 𝐯 is the measurement errors. The natural way to estimate the kernel is 

by direct inversion, 𝐮 = 𝐆−1𝐲, which corresponds to minimizing the effects of noise 

and the difference between predicted and measured data, i.e. 𝐮 = 𝑎𝑟𝑔𝑚𝑖𝑛   𝐲 −

𝐆𝐮  2  . Regularization adds the side constraint to this minimization, and the 

regularized estimate of the input, given a priori information about the solution, can 

be written 

 𝐮 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐮    𝐲 − 𝐆𝐮  2 + 𝛾2  𝐋𝐮  2  2.29 

where 𝛾 is the regularization parameter and 𝐋 is the operator that introduces penalty 

if the solution does not follow the a priori expectation. As mentioned earlier 𝐋 is 

often chosen as a derivative operator which bounds the solution to have a certain 

amount of smoothness. In that case the regularization parameter controls the amount 

of smoothness in relation to the residual error. 

The deconvolution technique applied in this study, called non-linear stochastic 

regularization (NSR), is based on Tikhonov regularization, although interpreted in 

relation to the theory of statistical mathematics with the basic concepts remaining 

the same. 

2.6.1 Deconvolution in perfusion MRI 

A wide variety of deconvolution techniques have been used for MRI-based 

perfusion quantification in the past, mainly in contrast agent techniques such as 

DSC-MRI. For model-free deconvolution, Fourier transform (FT) is the most 

straightforward method. The method is insensitive to arterial delay but very sensitive 

to measurement noise. In practice, it is necessary to low-pass filter the transformed 

signals to remove high frequency components and thereby avoid overfitting. The 

result is highly dependent on how the user chooses to filter the transformed signals. 

Even if the signals are filtered consistently, Østergaard et al. showed that the result 

is biased, leading to underestimated CBF in the case of high blood flow rates 

(Østergaard et al., 1996). However, Wirestam et al. performed noise reduction of the 

measured data by wavelet transform followed by Fourier transform with a low 

regularization level and obtained satisfactory CBF values (Wirestam and Ståhlberg, 

2005). 

Gaussian process deconvolution is an alternative deconvolution method that 

employs a Gaussian process to generate smooth solutions by using a priori 

information (Andersen et al., 2002). However, the method does not account for the 

non-negativity of the residue function. Tikhonov regularization (described earlier) 

has also been used as an attempt to improve the physiological validity of the solved 
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residue function in DSC-MRI (Calamante et al., 2003). The method proved to 

reduce unwanted oscillations of the residue function, but it did not remove them 

completely and the non-negativity of the solution is not accounted for. 

Block-circulant singular value decomposition (cSVD) is currently the most common 

deconvolution approach in perfusion MRI applications (Wu et al., 2003). This 

algorithm is a modified version of singular value decomposition (SVD), which 

formulates the deconvolution problem as an inverse matrix problem (Østergaard et 

al., 1996). By decomposing the input function into two orthogonal matrices and a 

non-negative diagonal matrix, the inverse of the input function matrix can be 

expressed as a matrix product. However, a threshold on the diagonal matrix is 

needed to avoid unphysiological oscillations (high frequency components) of the 

solution. The delay or time-shift sensitivity of SVD (the solution depends on the 

time of the measured signals rising edges) was solved by the introduction of cSVD, 

which uses zero-padding and edge-wrapping to compose a block-circulant input 

matrix. The use of cSVD benefits from low noise sensitivity and robust results. The 

drawbacks are that the same threshold as in SVD needs to be set by the user or by an 

automatic/adaptive algorithm, and that the solution generally does not follow the 

definition of the residue function, often violating the physiological characteristics 

such as monotonical decrease (non-oscillating) and non-negativity. 

A great many other methods have been reported in the literature and each method 

has its own set of advantages and drawbacks. Zanderigo nicely reviews a great many 

deconvolution methods applied in DSC-MRI (Zanderigo, 2006). 

2.7 Non-linear stochastic regularization 
Regularization can be interpreted by means of stochastic mathematics if the 

unknown signals and parameters are described by probabilistics. De Nicolao et al. 

(de Nicolao et al., 1997) gives an excellent review of the regularization method for 

nonparametric input estimation, and at the same time proposing a stochastic 

formulation of the classical Tikhonov regularization, where the unknown signal is a 

priori modelled as the realization of a stochastic process (multiple integration of 

white Gaussian noise). The method provides statistically based criteria to compute 

the regularization parameter and other parameters such as the measurement noise if 

it is unknown. One problem with the method is that since the integrated random 

walk allows negative values, the solution is allowed to have negative values. This is 

often not desired in physiological functions and Pillonetto et al. suggested a new 

stochastic model that excluded negative values by modelling the unknown input as 

the exponential of a step-wise integration of white Gaussian noise (Pillonetto et al., 

2002). Bell and Pillonetto built on these methods and solved the problem by placing 

a Bayesian prior on the function space and estimated unknown parameters by 

maximizing an approximation of the marginal likelihood where the unknown 

solution has been integrated out (Bell and Pillonetto, 2004). This allows a non-linear 

relationship between the unknown solution and the measured data. The estimated 

solution is calculated by maximizing the a posteriori probability density function 
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with the estimated parameters. This is all realized by constructing the solution as a 

linear combination of eigenvalues and eigenvectors, in theory allowing an infinite 

solution space. Furthermore, estimates of the solution rapidly converge to the true 

solution as the number of eigenvalues and eigenvectors increases, allowing the use 

of a low number and thereby reasonable calculation cost. 

All three papers cited above emphasized the applicability to physiological 

measurements. Zanderigo et al. implemented the non-linear approach proposed by 

Bell et al., to solve the deconvolution problem in DSC-MRI (Zanderigo, 2006; 

Zanderigo et al., 2009). They called their method "Non-linear stochastic 

regularization" (NSR), and showed that it is capable of reproducing a realistic 

residue function better than most other commonly used deconvolution techniques, 

such as SVD or Tikhonov regularization (Zanderigo et al., 2009). A brief review of 

the theory behind NSR is given in the following paragraphs. The review is 

incomplete since the mathematical theory behind NSR is extensive and beyond the 

scope of a medical radiation physics MSc thesis. See (Bell and Pillonetto, 2004) and 

(Zanderigo, 2006) for the complete theory. 

Non-linear stochastic regularization can be viewed as a Tikhonov regularization 

interpreted in a probabilistic manner. The residue function 𝑅(𝑡) is modelled as the 

realization of the integration over a stochastic process, given by Gaussian white 

noise. By using a non-linear Bayesian estimator and formulating a log-normal prior 

for the residue function, the deconvolution problem can be solved with the 

calculation steps proposed by Bell and Pillonetto (Bell and Pillonetto, 2004). 

Zanderigo et al. modelled 𝐶𝐵𝐹 ⋅ 𝑅(𝑡) as the convolution of the exponential of a 

Brownian motion (representing the integral of the Gaussian white noise), and an 

exponential function representing the arterial dispersion: 

 𝐶𝐵𝐹 ⋅ 𝑅 𝑡 = 𝑑(𝑡)⨂𝑒𝑅1 𝑡  2.30 

where 

 𝑑 𝑡 =
1

𝜃1

𝑒−𝑡/𝜃1  2.31 

and 

 𝑅1 𝑡 = 𝑎 + 𝜃2 𝛽(𝑡) 2.32 

Here, 𝛽(𝑡) is the Brownian motion (stepwise integration of a white Gaussian noise), 

𝑑 𝑡  is the modelled arterial dispersion, and 𝜃1, 𝜃2 and 𝑎 are unkwon scalars. As 

mentioned earlier, the exponential ensures that the solution is non-negative. 
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Figure 2.17: DSC-MRI residue function 𝑅(𝑡) with dispersion (dashed line) and corrected for 

dispersion (solid line). Image from Zanderigo 2006. 

As mentioned in Chapter 2.1, the true AIF may be dispersed, compared to the 

measured one. This means that the arterial signal that we measure is not an exact 

AIF per definition, since that would demand the bolus to be registered exactly at the 

entrance of the local capillary system. In practice, the shape of the vascular bolus 

that is measured at a specific site might broaden on its way to the capillary system. 

By including the arterial dispersion in the model, it is possible to correct for 

potential errors due to the use of an incorrect AIF. In NSR, the dispersion 𝑑(𝑡) is 

modelled as a vascular transport function. This formulation was adopted from 

Calamante et al. (Calamante 2000), as a first approximation, assuming a well-mixed 

compartment. The formulation is easily derived since, given a well-mixed 

vasculature, the corresponding vascular residue function 𝑅𝑣𝑎𝑠𝑐 (𝑡) can be expressed 

as an exponential, i.e., 𝑒−𝑡 𝜃1 , and the definition of the residue function (see Eq. 2.2) 

gives the vascular transport function as: 

 𝑕𝑣𝑎𝑠𝑐  𝑡 = −
𝑑𝑅𝑣𝑎𝑠𝑐 (𝑡) 

𝑑𝑡
=

1

𝜃1

𝑒−𝑡/𝜃1  2.33 

This allows for the interpretation of 𝜃1 as a vascular mean transit time from the site 

of the measured AIF to the microvasculature, so that a larger 𝜃1 corresponds to more 

pronounced arterial dispersion. As 𝜃1 goes to zero, the dispersion function 𝑑(𝑡) 

approaches the delta function, corresponding to absent dispersion. It is important to 

point out that this is only a first approximation, since a particular vascular transport 

function will depend on many factors, such as the topology of the vasculature, the 

tissue type, the site of the measured AIF and the cerebral blood volume (CBV). 

The inclusion of the vascular transport function allows the NSR algorithm to take 

dispersion of the bolus into account, by using the associative properties of 

convolution, i.e.: 

  𝐴𝐼𝐹 𝑡 ⨂𝑑 𝑡  ⨂𝑅 𝑡 = 𝐴𝐼𝐹(𝑡)⨂ 𝑑 𝑡 ⨂𝑅 𝑡   2.34 
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where 𝐴𝐼𝐹 𝑡  is the measured AIF at a given site, 𝐴𝐼𝐹 𝑡 ⨂𝑑 𝑡  is the dispersed 

AIF at the entry of the microvasculature (i.e. the true AIF), and 𝑑 𝑡 ⨂𝑅 𝑡  can be 

seen as an effective (dispersed) residue function obtained due to the use of the non-

dispersed AIF (CBF is left out for simplicity). This means not only that dispersion is 

incorporated in the model, but also that correction for dispersion can be made by 

reproducing the undispersed 𝐶𝐵𝐹 ⋅ 𝑅(𝑡). This is a huge advantage compared to 

many other deconvolution techniques since dispersion can cause significant 

underestimation of the CBF. Figure 2.17 shows an example of a residue function 

deformed due to arterial dispersion (dashed line) and the same residue function 

corrected for dispersion (solid line). Another advantage of NSR is that it reproduces 

the residue function on a fine virtual time grid which yields smooth results with an 

apparently high temporal resolution. It should be noted that the resolution of the 

virtual grid needs to be determined by the user and that the AIF must have the same 

temporal resolution which, in this work, was solved by exploiting the gamma-variate 

fit of each AIF. In this work a virtual temporal resolution of 25 ms was chosen, 

compared to the real temporal resolution of 300 ms for the measured data. Note that 

in the present work it is the broadening of the AIF from the site of the measurement 

to the site of the capillary system that is referred to as arterial dispersion, and not 

from the labelling site to the measurement site. 

It is important to emphasize that NSR is not a parametric model in the deterministic 

sense even if, in a way, 𝐶𝐵𝐹 ⋅ 𝑅(𝑡) is modelled. The prior for 𝑅 𝑡  is namely 

specified over an infinite dimensional function space. This means that the prior 

model describes a very general shape, allowing a wide variety of different residue 

functions, not restricted as for a parametric function. 

In order to formulate the NSR optimization in matrix form (in the same manner as 

Eq. 2.29), we assume that 𝐲 is the measured tissue signal, 𝐆 is the convolution with 

the AIF, 𝚺𝐯 is the covariance matrix containing the measurement noise, including an 

unknown scalar 𝜃3, and 𝐑𝟏 is the residue function to be estimated. Then, after the 

unknown scalars 𝜃1, 𝜃2, 𝜃3, 𝑎 and 𝛾 (the regularization parameter; see below) have 

been determined through the optimization of an approximation of the marginal 

likelihood, the maximum a posteriori estimate of 𝐑𝟏 is given by: 

𝐑 𝟏 = arg min𝐑𝟏   𝐲 − 𝐆 𝐝⨂𝑒𝐑𝟏  𝑇  𝚺𝒗
−1   𝐲 − 𝐆 𝐝⨂𝑒𝐑𝟏  + 𝛾−2   𝐑 𝟏 

2
𝑑𝑡  2.35 

where 𝐑 𝟏 is the time derivate of 𝐑𝟏 and 𝛾 is the regularization parameter controlling 

the smoothness of the solution. Note that the regularization parameter is not chosen 

by the user, but set automatically in the preceding parameter estimation. 

2.7.1 ASL-NSR Implementation 

To apply NSR to time-resolved ASL data, some modifications were necessary. 

Firstly, the measurement noise is modelled as 𝜃3/(1 + 𝑦) by Zanderigo et al. 

(Zanderigo, 2006). With the low SNR in ASL experiments, the same model cannot 

be used (see Figure 2.18). However, ASL enables an estimation of the measurement 

error, since it is based on repeated experiments. The calculated population standard 
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deviation of Δ𝑀, calculated on a voxel-by-voxel basis and for every time point, 

makes a good starting value for the measurement noise when optimizing the 

unknown scalars (where 𝜃3 is the one related to the noise amplitude). Hence, the 

measurement noise in our implementation is modelled as 𝜃3 ⋅ 𝑆𝐷∆𝑀 , where 𝑆𝐷∆𝑀  is 

the standard deviation of the repeated measurements of ∆𝑀. 

 

Figure 2.18: Comparison of the measurement noise in two different bolus-tracking 

experiments; DSC-MRI and ASL. The figures display measured signal in arbitrary units as a 

function of time in seconds. The relative amplitude of the measurement noise is significantly 
higher for the ASL data. 

 

Figure 2.19: Example map of the estimation of the measurement error, calculated as the 
standard deviation of the repeated measurements. 

The delay sensitivity of deconvolution methods employing stochastic approaches 

has to our knowledge not been thoroughly reviewed. Note that the delay discussed in 

this study is the time it takes for the arterial bolus to travel from the actual AIF 

measurement site to the entrance of the capillary system, i.e., not the arterial delay 

(from labelling site to capillary system) generally referred to in ASL experiments. 

An artificial tissue signal and arterial input function was used to get an indication of 
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the delay sensitivity of NSR. The tissue signal was shifted in small increments, 

forcing it to start before the start of the AIF (simulating inappropriate AIF selection 

at a site where the bolus is delayed compared with the tissue site) as well as after the 

input function (simulating conventional arterial delay). From this study, it was 

concluded that the NSR algorithm is rather sensitive to delay (see Chapter 4.6). 

Therefore, a shift of the AIF was implemented. The size of the shift was chosen so 

that the start of the AIF, as well as possible, coincided with the start of the tissue 

signal. This was motivated by the fact that the beginning of the true AIF should 

coincide with the first labelled water molecule passing the entrance to the capillary 

system, and so should the start of the tissue signal (which consists of the combined 

signal from labelled spins in the microvascular system and the exchanged labelled 

spins in the tissue). Thus, by incorporating this correction for arterial delay, as well 

as the correction for arterial dispersion, the resulting AIF should be closer to the true 

AIF. 

As mentioned earlier, the residue function is a monotonically decreasing function 

per definition. There is, however, no such constraint on the solution (corrected for 

dispersion) in NSR, in principle allowing 𝑅(𝑡) to show any shape, including shapes 

without monotonical decrease. In some cases, this poses a problem when using ASL 

data since an inappropriately selected or significantly delayed AIF, as well as a 

noisy tissue signal, can lead the algorithm to a solution that is not monotonically 

decreasing. These inaccurate solutions can be avoided by introducing a measure of 

the degree of monotonical decrease for the solution. If the solution is a discrete 

vector 𝐑 =  𝑅1 , 𝑅2, … , 𝑅𝑁 , the first forward difference of this vector is: 

 𝚫𝐑 =  𝑅2 − 𝑅1,  𝑅3 − 𝑅2, … ,  𝑅𝑁 − 𝑅𝑁−1  
2.36 

All elements of this difference vector should be non-positive for the solution to be 

considered non-increasing. The parameter 

 𝛿𝑖𝑛𝑐 =  Δ𝑅𝑖
∗

𝑖

 2.37 

where 

 Δ𝑅𝑖
∗ =  

Δ𝑅𝑖 , Δ𝑅𝑖 > 0
0,              Δ𝑅𝑖 ≤ 0

  2.38 

is the sum of all positive values of the difference vector, works as a measure of the 

increasing behavior of the solution. Now, any increase of the solution can be 

minimized by incorporating this parameter as a second side-constraint in the 

optimization process of NSR. If the solution follows the definition, then 𝛿𝑖𝑛𝑐  is zero 

and the optimization procedure works as usual (i.e., optimizes on the square 

deviations and the smoothness of the solution), but if the solution is not 

monotonically decreasing, the optimization process includes the minimization of 

𝛿𝑖𝑛𝑐 . 
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3 Materials and methods 

3.1 Subjects and imaging protocol 
Data from ten volunteers (6 male, 4 female, age 21-65) investigated within the 

QUASAR test-retest study (Petersen et al., 2010) were used in this study. The 

experiments were performed with a Philips Achieva 3T MRI unit (Philips Medical 

Systems, Best, The Netherlands) using an 8-element head coil. The pulse sequence 

used the following protocol: 7 slices, 6 mm slice-thickness, 2 mm slice gap, 64×64 

matrix, 240×240 mm
2
 FOV, 35°/11.7° flip angles, TR/TE/ΔTI/TI1 = 

4000/23/300/40 ms, 13 inversion times, 84 series (48 crushed, 24 non-crushed and 

12 low flip angle - alternating label and control), 2.5 SENSE factor, 150 mm 

labelling thickness, 3.75×3.75 mm
2
 in-plane resolution and a total scantime of 6 

min. Raw data were exported in Philips PAR/REC file format. 

3.2 Post-processing 
Raw QUASAR data were exported to a PC running MATLAB 2010b (The 

MathWorks, Inc., Natick, MA, USA). The data were post-processed using an in-

house software built on the model-free ASL method as proposed by Petersen et al. 

(Petersen, 2009; Petersen et al., 2006a), and NSR software written by Zanderigo et 

al., available at http://www.dei.unipd.it/ricerca/bioing/nsr_software (Zanderigo et 

al., 2009). Data were also post-processed with the QUASAR software written by 

Petersen to obtain CBF maps corresponding to deconvolution with cSVD. 

Each session consisted of 7644 2D images. Magnitude images were sorted into 

slices, time points, label/control and the three different sequence types (crushed, 

non-crushed and low flip angle). A whole-brain mask was automatically generated 

by using an adaptive threshold combined with minor erosion and dilation, to avoid 

unnecessary calculations in irrelevant voxels. Effective equilibrium magnetization of 

tissue, 𝑀0,𝑡,𝑒𝑓𝑓 , and effective longitudinal relaxation time of tissue, 𝑇1𝑡,𝑒𝑓𝑓 , were 

mapped in the whole brain by fitting an ideal saturation recovery to the measured 

non-crushed data, as described in section 2.3.3. 𝑇1𝑡,𝑒𝑓𝑓  was also mapped for the low 

flip angle acquisitions to enable estimation of the flip angle correction (see section 

2.3.4). Longitudinal relaxation time of tissue, 𝑇1𝑡 , and equilibrium magnetization of 

tissue, 𝑀0,𝑡 , were calculated through Eqs. 2.14 and 2.15. 

The whole brain was segmented into fractional maps of GM, WM and CSF by using 

non-crushed data, calculated relaxation times of tissue, calculated equilibrium 

magnetization of tissue and true flip angles as parameters in the modified FRASIER 

segmentation described in section 2.4. Resulting fractional volumes and signals were 

used to calculate 𝑀0,𝑎  by the novel method described in section 2.5. For comparison, 

𝑀0,𝑎  was also estimated using the four previously proposed methods, all described 

in section 2.5. 
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Perfusion-weighted images, Δ𝑀, were obtained by subtracting labelled images from 

control images using the crushed data. Δ𝑀 images with large deviations from the 

mean image were assumed artifactual and therefore omitted from the study. 

A dynamic vascular signal was obtained for every voxel by subtracting crushed data 

from non-crushed data. A gamma-variate of the form 𝐴 ⋅  𝑡 − 𝑡0 
𝐵 ⋅ 𝑒−𝑡/𝐶 , where 𝐴, 

𝐵, 𝐶 and 𝑡0 are fitting parameters, was fitted to the vascular signal. Arterial blood 

volume (aBV) was calculated by dividing the area under the gamma-variate function 

accounted for relaxation of arterial blood, assuming a 𝑇1𝑎  of 1.65 s (Lu et al., 2004), 

with the area of the theoretical labelling bolus, i.e., 2 ⋅ 𝑀0,𝑎 ⋅ 𝜏𝑏 ⋅ 𝛼, where 𝜏𝑏  is the 

bolus length (640 ms) as predefined through the bolus saturations incorporated into 

the sequence and 𝛼 is the labelling efficiency assumed to be 0.95. The arterial signal 

is only reasonably high in a limited number of voxels in the brain and voxels with an 

aBV exceeding 1.2% were identified as potential AIFs. However, AIFs with a poor 

gamma-variate fit were considered too noisy and were omitted. Figure 3.1Fel! 

Hittar inte referenskälla. displays an example of accepted AIFs in a single brain 

slice. Since each tissue signal is to be deconvolved with an AIF, the Euclidian 

distance in three dimensions was used to identify the closest AIF for every voxel in 

the brain. An automatic edge detection using the classical Canny algorithm was used 

to identify the time of the start of both the AIF (𝜏𝑎 ) and the non-crushed perfusion 

weighted tissue signal (𝜏𝑚 ). Based on the AIF that was selected through the 

Euclidian distance condition, the AIF of each voxel exhibited a unique set of 

parameters, i.e., the vascular-microvascular transit time (𝜏𝑚 − 𝜏𝑎 ; correction for 

relaxation of the labelled spins), the number of excitation pulses during that transit 

time (correction factor cos𝑛 𝜙; see section 2.3.1 for details) and the equilibrium 

magnetization of arterial blood at the site of the tissue voxel (𝑀0,𝑎 ; scales the AIF to 

the full magnetization difference). All AIFs were subsequently shifted in time to 

minimize the time between the start of the AIF and the tissue curve. 

 

Figure 3.1: Example of selected AIFs. The intensity of the red color corresponds to the aBV 
of each AIF. 

Deconvolution was performed using NSR applied to the corresponding AIF and 

tissue signals for one voxel at a time (see section 2.7 for details on NSR). The 

deconvolution technique was modified as described in section 2.7.1 to be applicable 

to the QUASAR data. The NSR algorithm demands a predefined number of 
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eigenvalues and eigenvectors, 𝑁, which was fixed to 10 throughout the study. The 

virtual time grid had an increment of 25 ms and spanned from 25 ms to 4 s. Starting 

values for the optimization process was 𝜃1=0.1, 𝜃2=1 and 𝜃3=0.2. The standard 

deviation of Δ𝑀 was used as the estimated measurement error in the NSR 

optimization. The proposed extra side-constraint (see section 2.7.1) was reviewed 

but only preliminary results are presented, and the side-constraint was not used in 

the other results of this study. Deconvolution was also carried out with cSVD in a 

limited number of cases to compare the visual cSVD characteristics of kinetic curves 

with those of NSR. Software written by and received from Petersen was used for 

comparison of absolute CBF values as calculated with cSVD. 

3.3 Analysis 
Results from the NSR deconvolution, NSR with correction for dispersion (NSRCD) 

and cSVD were visually evaluated by displaying CBF maps, as well as kinetic 

curves of AIF, tissue signal and solved residue function. Reconvolved tissue signals 

were obtained and superimposed on the measured tissue signal by convolving the 

solved residue function with the corresponding AIF. The effect of the dispersion 

correction was quantified by comparing calculated CBF values with NSR and 

NSRCD both in whole brain and in GM. Voxels were defined to be GM if they had a 

fractional volume of GM, as obtained from the segmentation, higher than 80%. 

The fractional segmentation was visually evaluated by displaying probability maps 

of the different tissue types as well as combined maps in which each tissue type 

corresponded to a specific color. The novel method for estimating 𝑀0,𝑎  was 

compared with the four previous methods, both visually and using absolute and 

relative values in the whole brain as well as in GM only (fractional volume threshold 

of 80%). A statistical t-test (two-sample paired difference, 5% significance level) 

was used to see if the novel method differed significantly from any of the two most 

realistic methods (method 2 and method 4). 

The delay sensitivity of NSR was investigated by using simulated DSC-MRI data 

and shifting the AIF in small increments. The result was evaluated by studying the 

maximum value (in arbitrary units) of the residue function as a function of the time 

shift, as well as by observing how the residue function characteristic changed with 

the amount of shift. 
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4 Results 

4.1 Fractional segmentation 
The implementation of a fractional segmentation was quite successful. The 

calculation of pure tissue voxel magnetizations (Eq. 2.20) yielded maps of this 

parameter for the different tissue types, as seen in Figure 4.1. The different tissue 

types have different mean values corresponding to different equilibrium 

magnetizations. The maps are not homogenous due to the imperfect excitation RF 

pulses (cf. Figure 2.12). Figure 4.2 shows an example of the resulting normalized 

fractional signals in a slice in one subject, and Figure 4.3 shows the same for 

normalized fractional volumes. The two latter figures are similar to each other since 

the only difference is the inclusion of tissue water densities in the fractional 

volumes. 

 

Figure 4.1: Available magnetization for pure tissue voxels. From left to right: CSF, GM and 

WM. The maps have the same grey scale. 

 

Figure 4.2: Fractional signals for CSF, GM and WM (left to right), normalized to show values 

between zero and one. 
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Figure 4.3: Fractional volumes for CSF, GM and WM (left to right), normalized to show 
values between zero and one. 

The segmentation in one slice can be viewed in a single image by allocating separate 

colours to different tissues. In Figure 4.4, this procedure has been used to display the 

fractional volumes of all slices in one subject. 

 

Figure 4.4: Fractional segmentation maps of seven slices in a subject. The images are 
cubically interpolated to enhance the visualization. 

4.2 Estimation of M0,a 
The novel method for estimation of 𝑀0,𝑎  was feasible. It resulted in similar absolute 

values of 𝑀0,𝑎  as those calculated by previously proposed methods (Petersen, 2009). 

However, the novel method resulted in generally more homogeneous maps of 𝑀0,𝑎 . 

Figure 4.5 shows an example of 𝑀0,𝐺𝑀+𝑊𝑀 , 𝜆𝐺𝑀+𝑊𝑀  and the resulting map of 𝑀0,𝑎  

obtained by dividing the former two. 
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Figure 4.5: From left to right: Tissue equilibrium magnetization without signal originating 

from CSF (𝑀0,𝐺𝑀+𝑊𝑀 ), estimated map of the brain-blood partition coefficient (𝜆𝐺𝑀+𝑊𝑀 ), and 

the estimated equilibrium magnetization in arterial blood (𝑀0,𝑎 = 𝑀0,𝐺𝑀+𝑊𝑀/𝜆𝐺𝑀+𝑊𝑀 ). 

The novel method is visually compared to the previously three proposed methods, as 

well as a fourth method called “method 4” which is the same as “method 3” but 

using a mean whole brain 𝜆 of 0.98 ml/g instead of 0.90 ml/g (i.e., the literature 

value for GM instead of for whole brain). Figure 4.6 shows 𝑀0,𝑡 , 𝜆 and 𝑀0,𝑎  for the 

different methods (method 1-4 and the novel method) in one slice in one subject. 

𝑀0,𝑎  for all five methods is shown for all slices in one subject in Figure 4.7. 

 
Figure 4.6: 𝑀0,𝑡 , 𝜆 and 𝑀0,𝑎  for the different methods. From top to bottom: Method 1-4, and 

the novel method. 
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Figure 4.7: 𝑀0,𝑎  in all slices in one subject for the different methods. Slices are in inferior-

superior from left to right. 

In Figure 4.8 the mean value of 𝑀0,𝑎  in the whole brain is compared to the mean 

values of 𝑀0,𝑎  as obtained with the other four methods. A value larger than one 

corresponds to a higher mean 𝑀0,𝑎  with the novel method, and a value lower than 

one corresponds to a higher mean 𝑀0,𝑎  for the alternative method. Remember that 

the value of 𝑀0,𝑎  scales the CBF linearly. Figure 4.9 shows the same but only for 

voxels considered to be GM. In general, the novel method results in slightly higher 

mean values on 𝑀0,𝑎 . However, as expected, method 3 results in higher 𝑀0,𝑎  than 

any other method, since it underestimates 𝜆, at least in GM voxels. Furthermore, in 

Figure 4.9, methods 1 and 4 coincide. This is obvious since both methods use a 

mean brain-blood partition coefficient of 0.98 ml/g, and looking at GM only, both 

method also use 𝑀0,𝐺𝑀
         in the calculation of the mean of 𝑀0,𝑎 . 
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Figure 4.8: Mean 𝑀0,𝑎  of the whole brain with the novel method, divided by the means 

obtained by methods 1-4. Subject 1-10 on the x-axis. 

     

Figure 4.9: Mean 𝑀0,𝑎  in GM with the novel method, divided by the means obtained by 

methods 1-4. Subject 1-10 on the x-axis. 

The novel method was also compared to the other methods in terms of absolute 

values. Figure 4.10 displays absolute mean 𝑀0,𝑎  in GM for the different methods. 

The mean value of 𝑀0,𝑎  in GM was consistently higher with the novel method as 

compared to method 4 (p<0.001, two-sided t-test), but not compared to method 2 

(p>0.05, two-sided t-test). Once again the overestimation of 𝑀0,𝑎  with method 3, due 

to the underestimation of the brain-blood partition coefficient in GM, is clear. 

Disregarding method 3, which clearly overestimates 𝑀0,𝑎  in GM, all methods 

generated quite similar mean 𝑀0,𝑎  in GM. 
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Figure 4.10: Absolute mean values of 𝑀0,𝑎  in GM voxels for the novel method (blue), method 

1 (orange), method 2 (light blue), method 3 (red) and method 4 (green) for the ten subjects. 
The error bars correspond to one standard deviation. 

4.3 Residue function characteristics 
It is difficult to quantify CBF in WM using ASL, since WM has lower perfusion 

signal and longer bolus arrival times. Hence, this work is primarily concerned with 

the quantification in GM. Figure 4.11 displays an example of dynamic functions, 

and the resulting residue function, for one GM voxel. The AIF corresponds to the 

fitted gamma-variate on the virtual time grid. In the middle figure, circles represent 

the measured ∆𝑀 𝑡  and the solid line is the reconvolved tissue signal, which is 

obtained by convolving the solved residue function (from the deconvolution) with 

the fitted AIF. The square sum of the deviations between the measured data and the 

reconvolved function is the actual residual norm which is part of the minimization 

optimization process of the deconvolution. The figure to the right displays the 

solved residue function, with (solid line) and without (dotted line) correction for 

dispersion. Comparing to Eq. 2.30 the solid line corresponds to 𝑒𝑅1 𝑡  and the dotted 

line corresponds to 𝑑(𝑡)⨂𝑒𝑅1 𝑡 . It is clear that the corrected residue function 

follows the definitions of monotonical decrease and non-negativity. 

The example in Figure 4.11 is representative in that the experiment is slightly too 

short for the tissue signal to return to baseline, which results in both a reconvolved 

tissue signal and a residue function that do not converge to zero. On the other hand, 

the example does not represent all cases since not all GM voxels resulted in a 

corrected residue function that was monotonically decreasing (all residue functions 

followed the non-negativity according to the nature of NSR). 
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Figure 4.11: Left: The gamma-variate fitted AIF, normalized for the current voxel. Middle: 

The measured ∆𝑀(𝑡) data (circles) and the reconvolved tissue signal (solid line). Right: The 

residue function obtained by deconvolution with NSR, with (solid line) and without (dotted 

line) correction for arterial dispersion. 

Since each session resulted in several thousand tissue voxels and every tissue voxel 

has a unique solved residue function, it is difficult to display a general residue 

function. Therefore, a few examples of some different representative residue 

functions obtained with the implementation are shown in Figure 4.12.  Figure 4.12a 

shows a common result which can be interpreted as very little arterial dispersion, 

since the two curves are almost identical. The shape of the residue function is 

definitely realistic, since it follows an approximately exponential decrease as 

expected from the relaxation of labelled spins. Figure 4.12b displays an extreme 

amount of arterial dispersion. This is a good example of the potential errors in 

quantified CBF if correction for arterial dispersion is disregarded. Figure 4.12c 

displays a pretty common result with a moderate arterial dispersion and a noticeable 

“hump” around the middle of the curve. The hump is the result of a small increase in 

the tissue signal about 1-2 s after the signal peak. Figure 4.12d shows a common and 

satisfactory result with a moderate arterial dispersion and a monotonically 

decreasing corrected residue function. The figure also displays a very common 

characteristic in that the residue function does not converge to zero since the tissue 

signal has not returned to baseline during the course of the experiment. Figure 4.12e 

shows a result which corresponds to a failed optimization in the deconvolution 

process. This could for example be due to an excessively noisy tissue signal, 

extreme delay or bad starting values for the optimization parameters. Figure 4.12f is 

similar to Figure 4.12c although the hump is larger which results in an 

unrealistically oscillating residue function. Note that the proposed modification that 

could potentially avoid these kinds of errors (see section 2.7.1 and 5.7) has not yet 

been implemented due to the lack of a proper validation of its reliability. 
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Figure 4.12: Examples of different solved residue functions for different GM voxels. All six 

figures have 𝐶𝐵𝐹 ⋅ 𝑅(𝑡) on the y-axis and time on the x-axis. Solid line corresponds to a 

residue function corrected for arterial dispersion and dashed line is the corresponding 

uncorrected residue function. a)-d) are results which are regarded to be satisfactory and e)-f) 

are examples of results that are physiologically unrealistic. 

The appearance of the resolved residue function depends on the eigenvalues that the 

optimization calculates, together with the three NSR parameters 𝜃1, 𝜃2 and 𝜃3. As 

described in more detail in the theory chapter, 𝜃1 is the estimation of the amount of 

arterial dispersion, 𝜃2 is connected to the non dispersed and non negative residue 

function and 𝜃3 is the estimated noise level, or more precise, the fraction of the noise 

level stated by the user that the optimization recognizes. Figure 4.13 displays 

examples of these parameters in one slice and subject. 
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Figure 4.13: From left to right: Example of parameter maps of 𝜃1, 𝜃2 and 𝜃3. 

Comparing to cSVD, which is probably the most common deconvolution technique 

in perfusion MRI and also the one used in previous QUASAR implementations 

(Petersen et al., 2006a; Petersen et al., 2010), it is clear that NSR consistently 

produced much more realistic residue curves, without any need for thresholds or 

oscillation indexing to suppress oscillations. Figure 4.14 displays the AIF, the tissue 

signal (measured and reconvolved) and the estimated residue function in a typical 

GM voxel, obtained by both NSR and cSVD. Even though a threshold was used to 

suppress the oscillations in cSVD, the result violates the definition of the residue 

function. Furthermore, NSR respects measurement errors in a more natural way, 

rendering a smooth residue function and consequently smooth realistic reconvolved 

tissue curves. 

 

Figure 4.14: A typical deconvolution case, solved with NSR (top) and cSVD (bottom). Left 

column is the fitted AIF (cSVD has the experimental temporal resolution), middle column is 

measured and reconvolved tissue signal and right shows the solved residue function. Note the 
negative values and oscillating behavior of the residue function solved by cSVD. 
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4.4 Arterial dispersion correction 
It is visually clear from the displayed solved residue functions that the dispersion 

correction (as a part of NSR) has some effect on the quantitative CBF. Table 4.1 

summarizes a study of the effect of the arterial dispersion correction on the absolute 

CBF in GM. It displays different measures of the effect for the ten subjects 

individually and in mean. The first table row shows the amount of GM voxels (in 

percent of all GM voxels) that show a dispersion correction effect larger than 5% on 

the CBF value. The mean value implies that 30% of the GM voxels has a dispersion 

correction effect larger than 5%. The next row is the same calculation but shows the 

amount of voxels that has a correction effect on CBF which is below 1%. This limit 

is regarded to correspond to negligible correction effect. This means that in average, 

46% of the GM voxels has no dispersion correction effect and 54% has a non-

negligible effect. The third row corresponds to the amount of voxels that has a 

correction effect larger than 5%, in percent of the voxels that show a non-negligible 

effect. For example, for subject 1 this means that 55% of the GM voxels has a non-

negligible correction effect, and out of these, 57% has a correction effect larger than 

5%. The fourth row is the actual dispersion correction effect on the absolute CBF in 

all GM voxels, and the last row is the same but omitting the voxels with a negligible 

effect. The mean CBF correction effect for all GM voxels in all subjects is 6%, and 

when omitting voxels with negligible effect it is 10%. 

Table 4.1: Dispersion correction effect on calculated CBF for the ten subjects. All measures 

are stated in percent. 

Subject: 1 2 3 4 5 6 7 8 9 10 Mean 

Percent of GM voxels over 

5% effect: 
31 34 28 17 34 34 30 28 28 31 30 

Percent of GM voxels 
below 1% effect: 

45 36 46 61 42 41 44 53 49 44 46 

Percent of GM voxels 
(with non-neglible effect) 

over 5% effect: 

57 53 52 44 59 58 54 59 54 56 55 

Effect for GM voxels 

(Mean±SD): 
6±13 7±12 5±9 3±7 6±11 7±14 6±12 5±13 5±13 6±11 6±12 

Effect for GM voxels (with 

non-neglible effect) over 

1% (Mean±SD): 

10±16 10±14 9±10 8±10 10±13 11±16 10±14 11±17 10±16 10±14 10±14 

  

The mean correction effect has a standard deviation that overlaps zero. There are 

indeed a few voxels that actually display a negative correction effect, but mainly it 

depends on the distribution of the correction effect. Figure 4.15 shows an example 

of a histogram over the correction effect in one subject. 
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Figure 4.15: Histogram of the arterial dispersion correction effect on the absolute CBF for 
one subject. 

4.5 Cerebral blood flow 
Figure 4.16 displays CBF maps from all slices of one subject, calculated with the 

QUASAR methodology, and deconvolved with NSR, NSRCD (NSR with correction 

for dispersion) and cSVD. It is obvious that cSVD generated higher CBF values in 

the peripheral GM regions. As an aid, Figure 4.17 displays a scatter plot of voxel 

values in the maps obtained by NSRCD and cSVD. 

 

Figure 4.16: CBF maps as obtained by deconvolution with NSR (top), NSRCD (middle) and 

cSVD (bottom). 
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Figure 4.17: Scatter plot of CBF values voxel by voxel, as calculated by cSVD (x-axis) and 
NSRCD (y-axis). 

The mean CBF in GM for all subjects was 37.9±6.1 ml/100g/min with no dispersion 

correction and 39.9±6.2 ml/100g/min with dispersion correction, as compared to 

cSVD deconvolution giving a mean CBF of 43.6±6.4 ml/100g/min for the same 

subjects. The absolute CBF calculated using NSRCD was 8.6% lower than for cSVD, 

although the difference is not statistically significant (p>0.05, two-sided t-test). 

Figure 4.18 displays the result, comparing NSR with cSVD, in a graph. Generally, 

NSR resulted in slightly lower CBF than cSVD when comparing each subject 

separately. The CBF is lower than expected from gold-standard methods for healthy 

volunteers (Leenders et al., 1990) and certainly seems to be underestimated.  
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Figure 4.18: A graph comparing the CBF calculated with NSR deconvolution (y-axis) and 

cSVD deconvolution (x-axis). The CBF calculated with NSR is showed both with (red dots) 

and without (blue dots) correction for dispersion. The black dashed line is the line of identity, 

and the colored dashed are linear regressions (with a forced intercept equal to zero) 

corresponding to the data points of the same respective color. 

Table 4.2 displays the calculated CBF in GM for the ten subjects in the study, with 

three different deconvolution variants, i.e., NSR, NSRCD and cSVD. In the last 

column, the absolute CBF difference between NSRCD and cSVD is shown. 

Table 4.2: A summary of the results of the absolute CBF estimates. The last column 

compares NSRCD with cSVD. All values are in ml/100g/min. 

Subject NSR NSRCD cSVD NSRCD - cSVD 

1 38.6 41.1 46.4 -5.3 

2 31.5 34.4 34.0 0.5 

3 23.9 25.4 37.0 -11.6 

4 42.2 43.5 51.6 -8.1 

5 37.8 40.2 38.9 1.3 

6 42.4 45.3 45.2 0.1 

7 44.2 47.2 49.8 -2.6 

8 37.8 40.1 48.5 -8.4 

9 37.4 39.6 48.2 -8.6 

10 42.9 41.9 36.5 5.4 

Mean 37.9 39.9 43.6 -3.7 
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4.6 ASL-NSR implementation 
The result from the preliminary study of the delay sensitivity of NSR is shown in 

Figure 4.19. The NSR algorithm fails to reconstruct the tissue signal, potentially 

giving false CBF values, when the tissue signal arrives before the AIF 

(corresponding to negative shift values in Figure 4.19a). These negative delays seem 

to result in extremely overestimated CBF values. We also observed that, for positive 

shifts, the NSR algorithm usually reconstructs the residue function correctly, albeit 

shifted to the right corresponding to the delay. This is, however, only true for the 

dispersed residue function. One of the main advantages of NSR is the ability to 

reconstruct a residue function corrected for dispersion, but the results from this 

simulation suggest that an AIF delay can interfere with this correction, resulting in a 

residue function (and CBF) more similar to that of the uncorrected case. However, 

this test was more of a way to test how the algorithm handles shifted signals and the 

simulated delays in Figure 4.19a are quite exaggerated (corresponding to seconds in 

a DSC-MRI experiment). To test the impact of more realistic delays, in the order of 

a few seconds (Calamante et al., 2000), the tissue signal was shifted in smaller steps 

in Figure 4.19b. As indicated in the figures, the possibility to correct for dispersion 

seems to decrease as the arterial delay increases. Also, a small decrease in the 

uncorrected maximum value of the residue function is seen as the delay increases. 

 

Figure 4.19: a) The maximum of the residue function as a function of the shift. Negative shift 

corresponds to a tissue signal starting before the arterial input function. A shift of zero 

corresponds to a tissue signal starting at the same time as the arterial input function, as 

expected when sampling an AIF close to the microvasculature. b) The maximum of the 

residue function as a function of smaller shifts. The vertical axis has the same arbitrary units 
as in a) to simplify comparison. 

Finally, the implementation of an extra side constraint to minimize local increases of 

the solution proved to have potential. Preliminary results are encouraging since 

increasing as well as oscillating behavior of the solution is suppressed when the side 

constraint is used. Figure 4.20 displays an example of the potential impact of the 

side constraint. In the example, the implementation changed the (dispersion 

corrected) unrealistic solution into a physiologically realistic shape and generated an 
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almost identical reconvolved tissue signal. This means that the optimization has 

succeeded to minimize the increasing behaviour of the solution without the cost of a 

poorer correlation between measured data and the solution. However, the absolute 

CBF can change drastically when the new side constraint is used and therefore this 

implementation needs to be further verified. 

 

 

Figure 4.20: Impact of the additional side constraint on the monotonic decrease in a GM 

voxel. Top: Result from unmodified optimization showing non-physiological increase of the 

residue function. Bottom: Result from the same voxel, with inclusion of the additional side 

constraint minimizing the increasing behaviour of the solution. Figures on the left show 

measured tissue signal (Δ𝑀) together with the reconvolved tissue signal, and figures on the 

right show 𝐶𝐵𝐹 ⋅ 𝑅(𝑡), with and without correction for dispersion. 
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5 Discussion 

The application of NSR to time-resolved ASL data was feasible, although the 

resulting absolute CBF in GM was not entirely satisfactory since it was almost half 

of what is expected in healthy subjects, based on gold-standard methods (Leenders 

et al., 1990). The absolute CBF was, however, only slightly, and not significantly, 

lower than the CBF obtained by deconvolution with cSVD (Petersen et al., 2006a). 

The NSR implementation resulted in the possibility to study the residue function, 

𝑅 𝑡 = 𝑟 𝑡 ⋅ 𝑚 𝑡 , in more detail than in most other time-resolved ASL 

experiments. Also, the implementation of a fractional segmentation was successful 

and resulted in realistic segmentations of the tissue types CSF, GM and WM without 

any need for additional imaging. The novel method for calculation of the 

equilibrium magnetization in arterial blood was implementable. The method 

generated homogeneous maps with values similar to those obtained by previously 

proposed methods (Petersen, 2009), but accounting for the amount of perfused 

tissue. 

5.1 Fractional segmentation 
The fractional segmentation, FRASIER, proved to be easily adaptable to the model-

free ASL data, and to be able to differentiate between tissue types with great 

success. Maps of segmented tissues in form of fractional volumes were consistently 

realistic, although verification from, for example, an experienced radiologist would 

be beneficial. The segmentation method did not demand any prior information from 

the user, although 𝑇1 in CSF was deliberately assumed to be 3 s since that value 

proved to be difficult to automatically obtain from the relaxation data. This 

assumption could be questioned, since many authors assume a longitudinal 

relaxation time of up to 4.5 s for CSF at 3T. However, the impact of this selection 

proved to be very small for the segmentation results, probably since the relaxation 

time difference between CSF and the parenchyma is large. The segmentation 

assumes that representative values of 𝑇1 exist for the different tissue types. If, for 

example, a certain GM structure has a lower 𝑇1 than the average value, FRASIER 

will misinterpret it to be a mixture of GM and WM (Shin et al., 2010). However, this 

is not necessarily a drawback compared to other methods since the majority of 

existing automatic segmentation algorithms assumes that the brain tissues have 

different representative relaxation parameters or MR signal/intensity. 

The segmentation approach paved the way for a new method to estimate the 

equilibrium magnetization in arterial blood, by calculating both a weighted brain-

blood partition coefficient and an equilibrium tissue magnetization excepting the 

signal from CSF. In addition, it proved to be a powerful tool when calculating mean 

parameters in different tissue types, most importantly CBF. Contrary to previous 

methods, the calculation of CBF in GM did not depend on a binary segmentation 

based on 𝑇1 in tissue. Instead, the mean calculations could be easily varied with, for 

example, a threshold on the fractional volume of GM as the selective measure. 
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Previous studies have shown that CBF is largely underestimated in ASL 

experiments when including voxels only partially containing GM (Asllani et al., 

2008). For example, including all voxels containing between 40% and 100% GM 

resulted in an underestimation on the CBF of about 50%. By choosing a high 

threshold of 80-90% fractional GM volume in order for a voxel to be included in the 

mean GM CBF calculation, underestimation can be avoided, or at least reduced. 

However, it also introduces larger errors since the number of voxels included in the 

quantification is significantly reduced (see Figure 5.1). 

 

Figure 5.1: The partial volume effect on the CBF for one subject. The x-axis is the lower 

threshold on the fractional volume that is required for a voxel to be included in the 

calculation. The left y-axis is the CBF and the right y-axis is the number of voxels included 

in the CBF calculation for a certain threshold. 

Some authors have suggested methods to correct the CBF for partial volume effects 

in ASL experiments (Asllani et al., 2008; Chappell et al., 2011). This is indeed very 

tempting since the resolution in most ASL experiments is poor. However, the 

suggested methods employ either local linear regression, resulting in a smoothing of 

the CBF map, or modelling of the kinetics with crude assumptions; assumptions that 

model-free ASL initially was created to avoid. However, using the fractional 

segmentation implemented in this study, it would be possible to solve the partial 

volume problem if CBF was measurable in WM, for example, by using a mixture 

model. Moving towards higher field strengths and newer ASL sequences with higher 

immanent SNR, the quantification of CBF in WM is likely to become feasible, 

potentially enabling direct correction for partial volume effects. 
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5.2 Estimation of M0,a 
Petersen et al. suggested exploiting the brain-blood partition coefficient to map 𝑀0,𝑎  

including 𝑇2
∗ effects across the brain to account for the 𝑇2

∗ effects in Δ𝑀 (Petersen, 

2009).The new method, presented in this study, builds on this approach and maps 

𝑀0,𝑎  accounting for 𝑇2
∗ effects, the variation of 𝜆 as well as partial volume effects of 

the apparent distribution volume. However, it uses the combined tissue 

magnetization of GM and WM, and not CSF. This could potentially introduce errors 

since the 𝑇2
∗ effects are not fully accounted for. The 𝑇2

∗ contrast from CSF is, 

however, expected to be small for a 𝑇𝐸 of 23 ms, since CSF has a long transverse 

relaxation time. If 𝑇2
∗ in CSF could be quantified or estimated, the error could be 

reduced using 𝑓𝑠,𝐶𝑆𝐹 ⋅ 𝑒
−𝑇𝐸/𝑇2,𝐶𝑆𝐹

∗
. 

The novel method for estimation of 𝑀0,𝑎  is to our knowledge the only one respecting 

the original definition of the brain-blood partition coefficient in ASL experiments. It 

interprets the brain-blood partition coefficient as the difference in distribution 

volumes of water between blood and perfused tissue, rather than the difference in 

proton density. The most widely used method is to use a global value of 0.9 ml/g or 

0.98 ml/g for the partition coefficient, and compared to these methods, the new 

method is very different. The impact of the correction is, however, small with 

respect to the mean CBF, but could be important when studying regional CBF, 

especially in GM voxels with significant amount of CSF. The proposed method is 

also an improvement from the similar method 2 (see theory chapter) which uses a 

linear assignment of 𝜆 to the 𝑇1 of tissue. This assumption of linearity is not needed 

in the novel method. Figure 5.2 displays difference maps between method 2 and the 

novel method. The underestimation when using method 2 is clear in voxels 

containing both GM and CSF. The error can yield an underestimation of several tens 

of percent depending on the fraction of GM and CSF in the specific voxel. The 

potential error of method 2 is not only the result of including CSF in the distribution 

volume, but also that the linear assignment of 𝜆 to the 𝑇1 can result in extreme 

values of 𝜆 in voxels with CSF. For example, if 𝑇1 is 1.5 s for GM, 1.0 s for WM 

and 4 s for CSF, then a voxel filled with 60% GM and 40% CSF would have an 

approximate partition coefficient of 0.59 ml/g, whereas method 2 would result in an 

estimated value of about 1.3 ml/g. The overestimation of the calculated CBF would 

partially be corrected for by the fact that method 2 includes the signal contribution 

from CSF, but even so the error could be several tens of percent. 



52 

 

 

Figure 5.2: 𝑀0,𝑎  difference maps between method 2 and the novel method in one subject. 

Method 2 underestimates 𝑀0,𝑎  in voxels with partial CSF, most seriously in peripheral GM 

and GM close to the ventricles. 

The new method assumes that the brain-blood partition coefficient only varies with 

tissue type. Herscovitch and Raichle showed that water content also varies among 

different GM structures and WM regions (Herscovitch and Raichle, 1985). Different 

GM structures can have a partition coefficient varying between 0.88 and 0.99 ml/g, 

and different WM regions show a range of 0.83-0.96 ml/g, with respective means of 

0.98 ml/g and 0.82 ml/g. Since 𝜆 scales 𝑀0,𝑎 , which in return scales CBF, an error in 

the partition coefficient transfers linearly (in an inverse manner) to the CBF. The use 

of an estimated mean GM partition coefficient of 0.98 ml/g could result in a 10% 

underestimation of the CBF in certain GM structures with particularly low water 

content. These errors could be avoided by assigning different partition coefficients 

to different structures and regions, but it would be difficult without demanding user 

input. 

The use of the brain-blood partition coefficient is only valid if the blood-tissue 

exchange of water is instantaneous upon arrival to the capillary system. Many 

studies have shown that water is not a freely diffusible tracer. The QUASAR 

implementation avoids the use of compartment models to describe the water 

exchange between blood and tissue, by sampling the shape of the arterial function. 

However, by using the partition coefficient in the calculation of 𝑀0,𝑎 , the 

assumption of free diffusibility remains. Also, 𝜆 depends on the hematocrit level of 

the blood, which shows low intra subject variation but differences between different 

individuals can be significant (Herscovitch and Raichle, 1985). One way to 

minimize this error, as well as the intra brain variability of 𝜆 between different 

structures and regions, would be to implement a sequence capable of measuring the 

proton density and mapping the brain-blood partition coefficient for each subject. 
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5.3 Residue function characteristics 
The resolved residue functions showed very satisfying characteristics with generally 

non-negative, non-oscillating and monotonically decreasing behaviour. It is very 

encouraging that NSR, with some modifications, was smoothly adoptable from 

DSC-MRI to model-free ASL, especially since ASL has poorer SNR and fewer 

sampling points during the bolus passage. Also, the propagation of the tracer bolus, 

the kinetic response and the different sampling frequency and total time span differ 

substantially between the two perfusion quantification methods. For example, after 

the labelling, model-free ASL performs imaging for about 4 seconds with around 

300-400 ms sampling frequency, whereas a DSC-MRI experiment often lasts for 

around 1 minute with a sampling frequency of 1-2 seconds. 

The implementation resulted mostly in smooth, non-oscillating and non-negative 

residue functions with physiologically realistic shapes. However, it also showed 

examples of non-monotonically decreasing residue functions, as well as other non-

physiological shapes. It is not straightforward to point out exactly why the 

implementation is not entirely robust, but some reasons can be presumed. The error 

in the measured MR signal is probably the most limiting factor in an ASL 

experiment. In almost all cases when the residue function displayed unrealistic 

shapes, the tissue signal was very noisy. If the optimization minimizes the deviation 

between measured signal and the solution well enough, it risks to largely ignore the 

side constraint which exists only to obtain physiologically realistic and smooth 

shapes. Improving the modelling of the measurement noise in the NSR 

implementation might be the most important work in future optimizations. 

Among the advantages of NSR is that it recreates the residue function with a 

virtually high temporal resolution which is helpful when studying the characteristics 

of the kinetic curves. However, this demands that the AIF is defined on the same 

time grid, implying that the measured input signal needs to be fitted to a parametric 

function if a time resolution finer than that of the measurement is desired. Choosing 

the gamma-variate as a parametric function assumes that the bolus of labelled spins 

has been largely dispersed, traveling from the labelling site to the tissue feeding 

artery, since the initial bolus has an almost rectangular shape. The gamma-variate 

can be questioned since a dispersed rectangular shape, including relaxation of the 

labelled blood water, is not necessarily best described by this parameterization. As 

an example, Figure 5.3 displays how both a gamma variate and a very different 

parametric function (based on a theorized bolus deformation) can show a fairly good 

fit to the data, and still present very different shapes. The alternative 

parameterization starts with an ideal bolus of the predefined length, which is then 

dispersed by deconvolution with a first order transport function, and multiplied with 

a relaxation function. This model is very rough and is not suggested as an alternative 

since it is not verified and probably less robust, but rather as a comparing example 

of the variety of possible AIF shapes. Repeating experiments with inversion times 

changed in small increments would allow a higher temporal resolution, potentially 

enabling a good choice of the parameterization by studying general shapes of input 

functions in large vessels. 
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Figure 5.3: Alternative parameterizations of the AIF can result in very different shapes. Red 
dots are the measured signal in a voxel identified as an AIF. 

Figure 4.13 showed examples of resulting NSR parameter maps of 𝜃1, 𝜃2 and 𝜃3, 

but it is clearly difficult to deduce any valuable information from these maps. The 

parameter relating to the measurement noise, 𝜃3, is expected to be fairly constant 

between tissue types since it only reflects the noise level (Zanderigo, 2006). 

Zanderigo et al. pointed out that 𝜃1 maps (dispersion) could potentially be used as an 

indicator of pathological tissue, as a complement to the other haemodynamic 

parameters such as CBF, CBV, MTT (Zanderigo et al., 2009). However, our study 

uses a nosier perfusion MRI method and no global AIF, which means that the 

dispersion is more difficult to quantify and interpret. As a future investigation it 

would be interesting to use NSR in model-free ASL with a global AIF to see if the 

𝜃1 map would contain any information about the arterial dispersion in ASL, for 

example in patients with known stenosis. 

Whereas the calculated CBF did not seem to change significantly with the new 

implementation, deconvolution with NSR surpasses cSVD largely when looking at 

the recreation of a voxel-wise residue function. Figure 4.14 displayed a comparison 

of the residue function characteristics between deconvolution by NSR and cSVD. 

Whereas NSR succeeded to resolve smooth realistic residue functions in most cases, 

cSVD consequently generated non-physiological oscillating and negative solutions. 

The large oscillations of cSVD generally seem to depend on “overfitting” of the 

tissue signal. Since the tissue signal is very noisy in the ASL experiment, cSVD 

performs poorly considering residue function characteristics. The only way to avoid 

oscillations in cSVD is to set an even more narrow threshold, with the risk of largely 

underestimating the CBF. 

It is easy to get carried away by the beautiful results emerging from NSR, but one 

should certainly exercise some degree of caution. One of the main motivations of 

NSR is that it respects the definitions of the residue function as defined in the 

indicator-dilution theory proposed by Meier and Zierler (Zierler, 1962). However, 

these definitions are based on capillary systems rather than voxels (although the 

typical interpretation is to look at the residue function as the fraction of labelled 
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spins that still remains in the voxel rather than within the capillary system at a 

specific time), and also that input and output functions are ideal, which is not the 

case in practice. Since it is impossible to measure a true AIF at the entrance of a 

capillary system and at the same time couple it with the signal from that capillary 

system, it is possible that NSR generates realistic residue functions at the cost of 

being more or less incorrect. 

5.4 Arterial dispersion correction 
Our hypothesis was that the deconvolution with cSVD was a significant reason for 

the underestimation of CBF in model-free ASL, and therefore that the application of 

an alternative deconvolution method could improve the absolute quantification. For 

example, cSVD underestimates the CBF if the arterial dispersion is significant 

(Calamante et al., 2000), whereas NSR can correct for arterial dispersion 

(Zanderigo, 2006). However, dispersion of the bolus from the measurement site of 

the AIF to the capillary system is expected to be small in an experiment employing 

local AIFs. Furthermore, many authors have described more complex modelling of 

arterial dispersion in ASL (Gallichan and Jezzard, 2008; Kazan et al., 2009) and the 

NSR implementation would probably benefit from replacing the first approximation 

of the vascular transport function with a more realistic model, preferably together 

with a more realistic parameterization of the AIF. 

The most interesting result from the study of the effect of the dispersion correction 

was that about half of the GM voxels had a noticeable dispersion effect (>1%) and 

that the mean effect in these GM voxels was approximately 10%. This result could 

imply that dispersion is not negligible even when employing local AIFs, and that 

correction is of importance in the quantification, especially in regions far from a 

measureable input function. Also, the histogram in Figure 4.15 shows that the 

dispersion correction can have an effect on the CBF of several tens of percent. These 

voxels or regions correspond logically to areas with large dispersion, as identified by 

NSR. 

The authors of the model-free ASL implementation and the QUASAR sequence, 

primarily Petersen and Golay, have pointed out the importance of dispersion, as well 

as analyzed its impact on the perfusion quantification using QUASAR (Petersen and 

Golay, 2010). They showed that QUIPSSII is robust to dispersion but that the 

quantification of arrival time is affected by dispersion. Furthermore, they suggested 

the use of the Gaussian dissipation function, rather than the gamma variate, to 

parameterize the vascular signal. They also showed that unexpected bolus 

shortening, i.e., the AIF bolus length being shorter than the nominal bolus length 

(640 ms in this work), could be a related source of error. This effect was more 

frequent than expected, resulting in large underestimations of the CBF. 

In conclusion, the dispersion correction had an effect on the resulting CBF in GM, 

although the effect was small (mean 6% for GM). Arterial dispersion is therefore 

probably not the main reason for the underestimation of CBF in GM in model-free 

ASL. 
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5.5 Cerebral blood flow 
As pointed out several times above, the calculated CBF estimates in GM were lower 

than expected for normal volunteers. The study aimed at improving the 

quantification of CBF by model-free ASL, which previously has resulted in CBF at 

the lower end of previously published values. Different versions of the QUASAR 

sequence have rendered CBF values in GM from 38 to 47 ml/100g/min (Petersen et 

al., 2006a; Petersen et al., 2010). Petersen et al. pointed out that their results are 

close to the values obtained using similar acquisition techniques and within the 

range of previously published values (Petersen, 2009). They suggest that the reason 

for their values being low compared to many literature values could be that 

QUASAR calculates CBF in a full brain GM ROI, whereas many other studies uses 

small hand drawn ROIs, and that the regularization technique generally 

underestimates CBF. Furthermore, the use of crusher gradients eliminate signal from 

fast-flowing blood in arteries and arterioles, potentially generating lower CBF 

estimates than other imaging modalities in which that signal is present (Knutsson et 

al., 2010). 

The resulting CBF in GM from this study was 39.9±6.2 ml/100g/min and is 

consequently also within the range of published QUASAR values. However, it is not 

possible to neglect that the result is significantly lower than those from gold 

standard techniques. A standard reference is Leenders et al., who published a mean 

GM CBF of 54.8±12.0 ml/100g/min obtained with the 
15

O steady-state inhalation 

method (PET), in 34 healthy volunteers (Leenders et al., 1990). The true CBF in GM 

is often stated to be even higher, about 60-70 ml/100g/min (acknowledging that 

Leenders et al. did not correct for GM/WM partial volume effects). 

One main difference between NSR and cSVD is that NSR generated very low or 

zero CBF values in many voxels in which cSVD showed higher values (Figure 5.4). 

This depended on the noise in the tissue signal. If NSR cannot find any fitting 

solution, it optimizes fully on the side constraint, which means that the solution 

becomes the most regular and smooth shape that is mathematically possible, i.e., a 

straight line. This constant is most often zero or close to zero, and therefore the 

estimated CBF is zero. In contrast, cSVD deconvolution, with the same AIF and 

tissue signal, will in almost all cases generate a higher value. Looking at the residue 

function from this calculation it is clear that cSVD generates highly unrealistic, 

oscillating solutions, especially when the measured signal is noisy. Since the 

solution has an oscillating shape, the calculated CBF will be the maximum value of 

this function. These voxels should preferably be omitted when calculating the mean 

CBF in GM. However, the present implementation of NSR also overestimates the 

CBF in some voxels and considering both under- and overestimation of NSR and 

cSVD, the results do not differ significantly. The overestimation in some voxels 

seems to originate from delays not manageable by the automatic shift algorithm. As 

mentioned earlier, a negative shift (i.e., an AIF arriving after the starting edge of the 

tissue signal) can introduce extreme overestimations of the CBF. 
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Figure 5.4: Comparison of CBF maps obtained by deconvolution with NSRCD (left) and 

cSVD (right). NSRCD has regions with low CBF values compared to cSVD, which probably 

is underestimation (or optimization failure), primarily due to poor SNR. 

In addition to the differences between NSR and cSVD mentioned above, the 

methods seem to perform very differently as seen in the scatter plot in Figure 4.17. 

The overall higher CBF values for cSVD are seen in the plot, and also the great 

number of voxels with zero CBF for NSR as well as the absence of such voxels for 

cSVD. This emphasizes that NSR fails to calculate the CBF in voxels with too noisy 

tissue signals and that cSVD probably has large errors in the calculated CBF in the 

same voxels. 

Movement during and between acquisitions can be a significant source of error in 

the CBF quantification. The pulse sequence lasts for 6 min with 84 different 

acquisitions. Errors introduced by movement are particularly important when 

calculating CBF voxel-by-voxel. As mentioned earlier, many authors use ROIs to 

represent a particular tissue, and this study could potentially benefit from the use of 

mean dynamic curves including neighboring voxels (in plane). Better yet, a 

movement correction is capable of reducing errors due to movement and such an 

implementation could be considered in the future. 

5.6 Delay sensitivity 
It is clear that NSR is sensitive to arterial delay. The preliminary investigation 

showed that it is essential for the AIF and the tissue signal to have realistic starting 

edges in relation to each other, i.e., that they start almost simultaneously, and that 

the calculated CBF depends on the delay. The result was undesired but encouraged 

the implementation of a shift optimization algorithm, which also proved to result in 

a higher frequency of physiologically realistic residue functions in general. The 

delay sensitivity was primarily a concern for the dispersion-corrected residue 

functions. Large arterial delays tended to reshape the corrected residue functions 

into looking more like the corresponding dispersed curves. As mentioned earlier, the 

dispersion effect when measuring local AIFs is expected to be small, and therefore 

the delay sensitivity would not primarily be an issue for the CBF quantification, but 

rather the validity of the residue function characteristics. However, for patients 

where an AIF is not available close to the pathology, the delay sensitivity can be of 

significance for the perfusion quantification. 
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5.7 ASL-NSR implementation 
The complexness of the NSR algorithm made it somewhat difficult to implement in 

for data that are very different from the DSC-MRI data for which it was originally 

intended. To obtain realistic solutions with ASL data, several modifications had to 

be tested and optimized. Among those was the modelling of the measurement noise. 

Without this modification it was impossible to obtain any good results from the 

deconvolution. Also, the starting parameters of NSR had to be tested for a variety of 

different tissue and vascular signals to find the optimal values. 

Several things remain to be optimized in the implementation. For example, the 

number of eigenvalues and eigenvectors were fixed at 10 during the whole study. A 

minor test showed that the number could affect the CBF, and this number should be 

optimized to obtain acceptably small errors without too large computational cost. 

Furthermore, it is important to investigate the selection of NSR starting values. For 

this study, initial manual variation, followed by visual inspection of the result, 

served as a subjective method to find optimal starting values that worked for a wide 

variety of input signals. It is difficult to find general starting parameters that work 

for all subjects and voxels, and a future improvement could be to automatically 

analyze the tissue and arterial signal prior to the deconvolution, and chose a unique 

set of starting parameters based on the shape and on empirical experience. 

We chose to abandon the measurement noise modelling that was initially suggested 

in NSR (Zanderigo, 2006), and instead exploited the fact that the ASL sequence 

utilizes repeated measurements, enabling estimation and mapping of the 

measurement noise through the population standard deviation. This proved to be an 

essential modification to obtain reasonable residue function solutions. Zanderigo et 

al. posed that the noise level in the measurement was proportional to the inverse of 

the tissue signal intensity (Zanderigo, 2006), which proved to be successful in the 

DSC-MRI case. For model-free ASL, averaging is required due to the low perfusion 

signal. Therefore it is more natural to assume that the noise level is proportional to 

the standard deviation, rather than to the resulting mean value. 

Among the modifications was also the implementation of a measure of the 

monotonic decrease of the solution, as an extra side constraint in the optimization 

process of NSR. The implementation proved to be able to suppress oscillating 

behavior of residue functions but it was never rigorously verified and therefore left 

out of the deconvolution process for the time being. It was clear that the side 

constraint generally minimized oscillations in the solution, but it was not made clear 

whether the modification could bias the CBF calculation. It would have to be 

verified that the CBF is not under- or overestimated, but rather corrected, when 

using the modification. Further testing and optimization of this side constraint could 

potentially improve CBF quantification with the ASL-NSR implementation.  
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6 Conclusion 

Non-linear stochastic regularization as a deconvolution method for absolute 

quantification of cerebral blood flow using model-free arterial spin labelling data 

has been evaluated. The implementation resulted in realistic residue functions with 

promising potential to quantify the cerebral blood flow in grey matter. Residue 

functions were smooth, non negative and reconstructed on a virtual time grid with a 

high temporal resolution. The study also brought on the successful implementation 

of a fractional segmentation, enabling flexible calculations of mean values of 

different parameters in grey matter and white matter. The fractional segmentation 

formed the basis for a novel method for the estimation of the equilibrium 

magnetization of arterial blood which is an essential parameter for the perfusion 

quantification in ASL. The equilibrium magnetization of arterial blood scales the 

CBF linearly, and the new method could potentially avoid underestimation of the 

CBF, particularly in areas with high (voxel-wise) mixture of grey matter and CSF. 

The possibility to correct for arterial dispersion, inherent to the NSR algorithm, 

proved to have a significant effect on the quantification, even though model-free 

ASL employs local arterial input functions. The underestimation of the perfusion 

due to arterial dispersion has been discussed thoroughly in the literature, and a 

possibility to model and correct for it would be a huge step forward in the process of 

improving ASL quantification of perfusion. 

A lot of work remains for NSR to become an as powerful tool as in DSC-MRI. The 

implementation demanded several modifications which are not finalized regarding 

optimization and verification. Among the most obvious topics are the measurement 

noise modelling, the selection, fitting and averaging of arterial input functions, the 

shift of the dynamic curves (or equivalently minimizing the delay sensitivity of 

NSR) and the variability of NSR, such as starting parameters, implementation of 

extra side constraints, number of eigenvalues/eigenvectors and the virtual time 

resolution. The calculation of fundamental parameters such as the brain-blood 

partition coefficient, the equilibrium magnetization and relaxation time in arterial 

blood and the inversion efficiency, are also subject to potential improvements. 

Future possible improvements also include optimizing the computational cost of 

NSR, since a calculation of one session can take several hours on a standard PC. 

Together with expected improvements of, for example, correction for partial volume 

effects, ability to measure CBF in white matter, controlling arterial input functions 

and correction for unexpected bolus reduction, NSR could potentially have an 

important role in perfusion quantification using time-resolved ASL. The results of 

this work can hopefully be of value for understanding the underlying processes of 

the haemodynamics and kinetic responses in ASL experiments. 
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Introduction 

QUASAR model-free Arterial Spin Labeling (ASL) has been applied to quantification of Cerebral Blood Flow 

(CBF) [1]. Block-circulant singular value decomposition (cSVD) for deconvolution [2] is often associated with 

non-physiological (oscillating and negative) residue functions and potential effects of arterial dispersion [3,4]. 

Non-Linear Stochastic Regularization (NSR) has previously been used to reproduce realistic residue functions in 

dynamic susceptibility contrast MRI, including correction for arterial dispersion [5]. To characterize the residue 

function R(t) in model-free ASL, and possibly to improve absolute CBF quantification, NSR was applied to 

deconvolution of QUASAR data. 

Subjects and Methods 

Data from volunteers participating in the QUASAR reproducibility study were analyzed [6]. Imaging was carried 

out using Philips Achieva 3T MRI: TR/TE/ΔTI/TI1=4000/23/300/40 ms, 64x64 matrix, 7 slices and 13 inversion 

times. The tissue perfusion signal ΔM(t) and the arterial input function AIF(t) were calculated similarly to ref. 

[1], and CBF∙R(t) was obtained according to ΔM(t)=CBF∙R(t)⊗AIF(t). The required deconvolution was 

performed using NSR [5], i.e. a stochastical interpretation of Tikhonov regularization with R(t) modelled by 

multiple integration of a random-walk process. 

 

 

Results 

Figure 1 shows R(t) for a grey-matter (GM) voxel, with/without 

dispersion correction, as well as the fitted AIF(t) and the measured and 

reconvolved ΔM(t) data. NSR consistently resolved realistic, non-negative 

residue functions, with little or no oscillations, from time-resolved ASL 

data. Figure 2 shows a CBF map from one subject. The effect of 

dispersion correction was analyzed for GM in one subject. In 45% of the 

voxels, the dispersion correction had negligible effect (<1%) on the peak 

R(t) value. For the remaining voxels, the peak R(t) value was (10±16)% 

(mean±SD) higher after dispersion correction, with 57% of these voxels 

showing a dispersion correction effect exceeding 5%. NSR returned a GM 

CBF of (40.5±5.1) ml/100g/min (n=9), while the corresponding result for 

cSVD was (44.0±7.0) ml/100g/min. 

Discussion 

Residue functions resolved by NSR satisfactorily meet the criteria of non-negativity and monotonic decrease, 

making NSR superior for investigating the physiological dynamics of brain perfusion. To further optimize 

absolute CBF quantification, future investigations will deal with optimization of NSR starting values and 

evaluation of delay sensitivity. 
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Introduction 

The equilibrium magnetization in arterial blood M0,a is an essential parameter for quantification of Cerebral 

Blood Flow (CBF) by Arterial Spin Labeling (ASL). M0,a can be estimated by dividing the equilibrium 

magnetization in tissue M0,t by the brain-blood partition coefficient λ, i.e., M0,a=M0,t/λ [1]. The QUASAR 

implementation [2] is able to map M0,t, enabling calculation of M0,a if λ can be determined. Different approaches 

for the calculation have previously been reviewed [3], and in this study we propose a new method using 

fractional segmentation. 

Subjects and Methods 

Volunteers were examined at 3T (Philips Achieva) using the QUASAR sequence [2]: 

TR/TE/ΔTI/TI1=4000/23/300/40 ms, 64x64 matrix, 7 slices and 13 inversion times. The new segmentation 

technique FRActional Signal mapping from InvErsion Recovery (FRASIER) [4] was modified to be applicable 

to QUASAR data. FRASIER segmented 

grey matter (GM), white matter (WM) 

and cerebrospinal fluid (CSF) as 

normalized fractional signals fs,i and 

fractional volumes fv,i; i=[GM,WM,CSF]. 

Since there is no arterial blood in the 

ventricles, λ is not defined in CSF. 

Therefore, λ can be calculated as a 

weighted sum of the mean λ in GM (0.98 

ml/g) and in WM (0.82 ml/g) [3], i.e., 

λw=fv,GM∙λGM+fv,WM∙λWM. M0,t should be 

corrected for the presence of CSF which 

is accomplished by using fractional 

signals, i.e., M0,GM+WM=M0,t(1–fs,CSF). 

M0,a can then be calculated voxel-wise as 

M0,a=M0,GM+WM/λw. 

Results  
Figure 1 shows fractional volumes in one subject. Figure 2 shows M0,GM+WM, λw, M0,a, and M0,a calculated in a 

traditional manner by dividing M0,t by λGM=0.98 ml/g. The mean value of M0,a in GM was consistently higher 

(n=10, p<0.001) compared to the traditional calculation. Mean values were (6.05±0.25)∙10
7
 ml

-1
 for the new 

method and (5.99±0.25)∙10
7
 ml

-1
 for the λGM method. 

 

Discussion 

The presented approach is similar to the method in which λ is calculated by linear assignment to tissue T1 [3], 

although the new method employs no assumption of linearity. M0,a should include T2* changes across the brain, 

which could be violated as M0,t is altered. However, since T2* is long in CSF compared with the parenchyma, the 

error is likely to be negligible for a TE of 23 ms. The new method takes the definition of λ into account and 

could improve ASL-based CBF quantification. 
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