
Localization of Brain Activity in

Electroencephalography Data during

Brain-Computer Interface Operation

Author: Supervisors:

Oskar Hjärtquist Dr. Fredrik Sebelius

Dr. Zoran Nenadic

M. Sc. Thesis

Department of Measurement Technology and Industrial Electrical Engineering

Division of Electrical Measurements

Lund University

Department of Biomedical Engineering

University of California, Irvine

December 2011





Abstract

In this Master's thesis I present a means of �nding active sources
of cortical electrical activity from electroencephalogram (EEG) data ac-
quired during operation of a brain-computer interface (BCI). A novel
subspace-based technique was used to suppress spatially correlated EEG
interference sources, followed by a technique that estimates the source
parameters with a near maximum likelihood performance. These sources
are found to correlate with event-related potentials (ERPs) and are thus
hypothesized to be responsible for the N200 and P300 ERPs. The source
localization technique was tested on EEG data of 6 able-bodied sub-
jects, and my analysis underlines consistencies and variation of brain
activity locations both within and across subjects. Results are compared
to literature and results using other techniques and the new methods
show promise in localizing brain activity when dual-condition datasets
are available.

Keywords: Localization, Dipole source, Null Space Projection (NP), Noise
Subspace Fitting (NSF), Event-related potential (ERP, N200, P300), Elec-
troencephalography (EEG), Brain-Computer Interface (BCI) Speller



Sammanfattning

I det här examensarbetet presenterar jag en metod för att hitta källor
till elektrisk aktivitet i hjärnbarken i data som uppmätts vid användning
av ett brain-computer interface (BCI) med Elektroencefalogra� (EEG).
En ny delrumsgrundad metod användes för att dämpa störkällor, följt
av en metod som uppskattar källornas parametrar med nära maximum
likelihood-precision. De funna källorna korrelerar med event-related po-
tentials (ERPs) och antags ligga bakom N200 och P300 (ERPs). Käl-
lokaliseringstekniken testades på EEG data från 6 ej funktionshindrade
individer, och min analys understryker överensstämmelser och variation,
både inom och mellan dessa individer. Resultaten jämförs med litteratur
och resultat med andra tekniker, och de nya metoderna verkar lovan-
de i att lokalisera hjärnaktivitet när aktivitets- samt kontroll-data �nns
tillgängliga.
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Introduction

Brain-computer interfaces (BCIs) is the term for a group of applications
that allow an individual to obtain control over a device without any re-
quired motor function, i.e. by using signals from his or her brain. BCIs
may be used to restore communication or a motor function that has
been lost due to paralysis and thereby vastly improve the quality of life
for humans, in particular for patients with some type of damage to the
central or peripheral nervous system. Perhaps the most successful exam-
ple of a BCI system is the so called P300 speller, which allowed a patient
with locked-in syndrome (LIS, patients who are awake and conscious,
but essentially unable to move anything but their eyes [26]) to commu-
nicate with the rest of the world [1]. Other BCI systems include control
of wheelchairs [8, 14] and robotic orthoses [13, 19]. The ultimate goal
of BCI technology is to integrate with functional electrical stimulation
(FES) devices, thus enabling the brain and muscles to be reconnected.
Ideally, these neurorehabilitive devices should let the user control a mo-
tor function in an intuitive manner, i.e. the BCI and/or user's brain will
(co-)adapt so that when the user thinks: �move right�, the device (FES
controlled limb, prosthesis or wheelchair), will move right.

In addition to restoring communication or movements, BCIs represent
a valuable scienti�c tool, as they allow brain activity to be studied in the
context of feedback. By further understanding what happens in the brain
when we are exposed to certain stimuli, or attempt a certain action, we
can improve applications like the ones mentioned above by �ne-tuning
their movement, improving their rehabilitative abilities, or quickening
the learning curve for using the device.
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1. INTRODUCTION

One important part of getting a deeper understanding of brain infor-
mation processing is to be able to accurately and easily localize what part
of the brain activity originates from. In this thesis, I have investigated
methods that use data from electroencephalogram (EEG) BCI experi-
ments to �nd sources of activity in the human brain after a sensory (in
my case visual) stimulus. The questions I try to answer are:

1. Whether it is possible to localize sources of activity, and how to do
this in a principled manner by using only 15-channel EEG data.

2. How the sources of activity di�er between users with di�erent levels
of experience in using the BCI at hand (P300 speller).

3. If, and to what extent the naive user's brain or their approach seem
to adapt as they become more familiar with the system.

Having the tools to localize brain signals accurately in three dimen-
sions using a relatively simple method such as EEG, can be very useful
in evaluating other BCIs, and may even become useful in clinical appli-
cations and diagnosis. Mapping the sources of activity to areas of the
brain in this experiment allows us to better understand early processing
of sensory stimuli and decision making. On the other hand, having more
detailed insight into how the user actually operates a certain BCI system,
and how the brain seems to adapt as it learns how to use that BCI, may
be very helpful in developing new applications.

Before going into the details (methods, results, discussion) of my
project, I will give a short introduction of the principles and methods
that are considered routine in the �eld. Towards the end, I will talk in
particular about the P300, and localization of this �event-related poten-
tial�. For interested readers a very thorough review paper on these topics
can be found in Polich [20].

1.1 Electroencephalography (EEG)

The most common and least invasive method for recording brain activ-
ity to be used in BCIs is electroencephalography (EEG). This method

2



1.2. EVENT-RELATED POTENTIALS (ERPS)

is relatively simple, yet it o�ers a relatively high temporal resolution,
making it �ideal� for real-time control of a computer or prosthesis. An
electroencephalogram measures electrical potentials on the scalp, and the
activity seen in EEG is believed to originate mainly from synchronized
post-synaptic potentials in pyramidal cells in the cerebral cortex. Clin-
ical uses of EEG include: diagnosing epilepsy, (epileptic patients will
often have abnormal electrical activity), �nding tumors and diagnosing
brain death. In healthy well-rested subjects certain invariant oscillations
(brain-waves) can be seen, named in order of their frequency from low to
high: α, β, γ. These and other EEG waves (δ, θ, µ) are associated with
physiological states such as sleep, relaxation and intense thinking.

The major drawback of EEG is the very poor spatial resolution, as
electrical signals originating somewhere in the brain are distorted by the
cerebrospinal �uid, the meninges and the skull, and then recorded on the
outside of the scalp by electrodes often separated by at least a couple of
centimeters. Additionally, the potentials seen in EEG re�ect all kinds of
di�erent processes going on in the brain, and the signal-to-noise ratio is
consequently quite low.

1.2 Event-Related Potentials (ERPs)

Event-related potentials (ERPs) are electrophysiological responses, often
time-locked to some stimulus. By measuring scalp potentials with EEG,
and averaging over many trials, one can see a pattern of positive and
negative �humps�. These are ERPs and are traditionally given names
depending on their polarity (N or P) and latency (in ms, e.g. 200, 300)
with respect to the stimulus. Some often prominent peaks are the N200
(sometimes referred to as N2) and P300 (or P3).

ERPs are typically recorded with the above mentioned EEG method,
but can also be recorded with magnetoencephalography (MEG), which
uses the magnetic �elds from electrical currents in the brain, and the
ERPs are hence referred to as event-related �elds (ERFs) instead. Mag-
netic �elds are much less distorted by the matter between the source and
the measuring point, and MEG therefore has higher spatial resolution

3



1. INTRODUCTION

than EEG. However, it is very expensive and requires a much bulkier
apparatus, including a magnetically shielded room and active noise can-
celing magnetometers.

1.2.1 Oddball Paradigm and P300 Response

The discovery of the P300 event-related potential has been accredited to
Sutton et al. (1965) [29] who were examining the response in humans
after visual and auditory stimuli, mixed randomly and not mixed. They
found that the more frequent stimulus gave a weaker ERP response,
meaning that the unexpectedness of the stimulus is crucial. A more
thorough investigation of the individual event-related potentials and the
postulation of the �oddball� paradigm was then presented by Emanuel
Donchin in 1978 [5]. The oddball paradigm is based on the presentation
of an infrequent stimuli, and a subject's active response to that cue. They
reported ERPs from both auditory and visual experiments. By averaging
data from many trials, they were able to show later ERPs thought to be
related to cognitive events, such as the N200 and P300, very clearly.

The oddball paradigm is in visual experiments often implemented by
having the test subject focus on a screen and being asked to look for an
infrequent cue (this is the �oddball�). The cue can be a certain shape
[2], color [3] or simple recognition task (words vs. non-words or line
drawings vs. scrambled drawings) [12]. The cue is then presented among
other stimuli (non-oddballs or �evenballs�) which the subject is asked
to ignore. The surprise, or cognitive awareness that the user expresses
when the oddball is presented, can be seen in the EEG as positive and/or
negative ERPs. It is important that the oddball stimulus is infrequent
and random, with an oddball : evenball ratio of typically lower than 1 : 7.
If the oddball is more frequent, the response will become a lot weaker.

1.2.2 Details on the Visual P300

The P300 arises whenever a subject has to discriminate between sensory
stimuli. It is arousal dependent and results from very basic cognitive
events. Johnson et al. [9, 10] predicted that the P300 arises from multiple
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1.2. EVENT-RELATED POTENTIALS (ERPS)

di�erent neural generators by analyzing P300 and forming a �triarchic�
model. Each of these generators would be responsible for their own neu-
ral processes. They said (in 1993) that our understanding for how to
ellicit the P300 is far superior to what this ERP really means, and that
the functions of the P300 may be much more complex than previously
thought.

The idea that the P300 can be split up into subcomponents has since
been generally accepted. The two most important, or only, of these
subcomponents are P3a and P3b. Previously, theories of �no-go� P300
and �novelty� P300 that would be elicited by not only having a target
stimulus, but also a distractor stimulus were popular, but these have later
been shown to most likely be variations of the same neural mechanism,
namely P3a [4, 22, 25, 27]. Note that the P3a may not be prominent in
my experiments as it is typically seen in the above named experiments
with distractor stimuli [2], although it is normally apparent in about 10
% of individuals [20].

Based on neurophysiological results, experimental �ndings and per-
sonality ERP variation, Polich hypothesized [20] that the P300 and the
underlying subprocesses functional mechanism may involve inhibition of
on-going processes where the �rst action is reallocation of attentional re-
sources (P3a, frontally located) which may cause subsequent promotion
of temporal-parietal located memory storage functions (P3b). The exact
type of stimulus will determine what the resulting P300 ERP will look
like, as the two subcomponents are very much over-lapping each other in
time.

P300 latency is dependent on complexity of the task, and can vary
from 300 ms up to as much as 1 second. [10].

P300, or the ERP response in general does not look the same be-
tween individuals. It has been shown however, that monozygotic twins
have very similar P300s, and genetically close individuals in general have
similar ERPs [17, 21]. Still, even within the same individual, ERPs will
vary based on such seemingly small changes as ultradian rythms (natu-
ral processes in the brain that recur in cycles of around 90 minutes) [23].
Ravden and Polich found visual P300 habituation when measuring con-
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1. INTRODUCTION

sequent 10-minute trial blocks: P300 amplitude decreased over time at
electrodes FZ and CZ (parietal lobe, see �gure 2.2), possibly re�ecting a
biological variance in arousal state over time.

1.2.3 Brain-Computer Interface (BCI) Speller

The oddball paradigm can be utilized in P300 Spellers systems, which was
�rst implemented by Farwell and Donchin in 1988 [6]. In this application,
the user is paying attention to a screen showing a virtual keyboard, and
the stimulus is the letters �ashing. The P300 Speller utilizes the relatively
strong response seen as primarily N200 and P300 ERPs. Farwell and
Donchin's P300 speller reached a typing speed of 2.3 characters/min by
collecting data from a �ashing 6×6 grid and subsequently let a computer
analyze it to �gure out what letter the user tried to spell.

Since then, we have come a relatively long way. Faster computers
allow for simultaneous feature extraction, and today's state-of-the-art
P300 spellers can reach online information transfer rates (ITR) of over 3
bits/s, allowing a user to spell 12.75 characters/minute [31]. The e�ective
rate of spelling sentences could be even further improved by adding auto-
completion functions or word suggestions to the screen.

1.3 Localizing Brain Activity

An important step in getting a deeper understanding of the brain and
BCI operation is to be able to accurately and easily localize what part of
the brain electrical activity originates from. Today, this is typically done
with functional magnetic resonance imaging (fMRI) or invasive meth-
ods such as Electrocorticography (ECoG), which both have signi�cant
drawbacks. ECoG is a very precise method, but it is highly invasive and
is therefore used only in clinical applications to localize epileptogenic
zones during presurgical planning for epilepsy. fMRI's most signi�cant
drawback relative to EEG, is that it is more expensive and complicated,
and that it doesn't measure the electrical activity of the brain directly.
fMRI measures the hemodynamic response of the brain, i.e. increase
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1.3. LOCALIZING BRAIN ACTIVITY

of oxygenated hemoglobin, which presumably is correlated with higher
metabolic requirements in regions that are electrically active. Since the
time constant of the hemodynamic response is several hundreds of mil-
liseconds, the results are also drastically smeared in time.

1.3.1 The EEG Inverse Problem

As previously mentioned, EEG signals are assumed to arise from post-
synaptic potentials in pyramidal cells in the cerebral cortex. These po-
tentials will then propagate through the brain, the meninges and the
skull, distorting the signal widely. It can also be shown that reconstruct-
ing the sources does not have a unique solution. The reason for this is
that there is always a possibility that some potentials cancel each other
out, and this is known as the EEG inverse problem.

Instead, a forward model is used to solve the problem of localizing
sources. The head is described using either a sphere or a standardized
head model from magnetic resonance imaging (MRI), and the meninges
and skull are given electrical and geometric parameters. Given this head
model and the locations of the electrodes in the experiment, lead �eld
vectors (LFVs) which will represent the response at the scalp from a
unit amplitude dipole at position r and with dipole orientation Φ can be
created. If the number of sources of interest is NS then, mathematically,
what is measured at the scalp can be modeled as:

x(t) = As(t) + n(t) (1.1)

where x(t) is an m × 1 vector representing the measured potentials
at the m EEG electrodes, at time t. s(t) is the NS × 1 signal vector
consisting of dipole moments of the NS unit amplitude dipoles. A is an
m×NS lead �eld matrix. n(t) ∈ Rm×1 is a term representing the noise,
which includes not only sensor noise etc., but also actual EEG sources in
the brain that are not of interest.

The parameters (location, dipole orientation and moment magnitude)
are then estimated using some localization technique, such as multiple
signal classi�cation (MUSIC) [15, 24] which �nds the A(r) that is most
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1. INTRODUCTION

orthogonal to the noise, or a novel technique called noise subspace �tting
(NSF) [32] which will be presented in the methods section.

1.3.2 Previous Work

The P300 cluster and its origin has been a research interest for a long
time. However, success in localizing the actual sources for this cognitive
function has been very limited. P300 has been de�ned as a positive
ERP component with a maximum at CZ or PZ electrode (central part of
parietal lobe, see �gure 2.2) between 300 ms and 1 s after stimulus [10].
This quite wide de�nition may be one reason to the fact that many studies
show quite di�erent results for where activity actually originates from.
Bledowski et al. [2] also found that many people have tried to localize
P300 generating nuclei, with varying success. They found that there are
signi�cant discrepancies between results and explained it with the fact
that there is no unique solution to the inverse problem.

One way to improve EEG localization is to do concurrent fMRI and
EEG [16], to get a type of �seeding� for the EEG tomographic analysis,
and to get a more accurate model for the head and brain. For example
one could bene�t from knowing the actual thickness of the cranium, in-
stead of just assuming a uniform thickness which you have to do if you
use a spherical head model. Simultaneous fMRI and EEG is hard to do
practically, because the EEG system needs to be compatible with the
strong magnetic �eld in the MRI machinery. To work around this, some-
times the subject �rst performs the experiment in the MRI, and then
afterwards does the same routine with an EEG cap on. This, of course,
imposes its own complications. (Di�erence in subject performance, pre-
viously named ultradian rhythms, etc.). The possibly most successful of
these studies [2], found that the P3b was mainly produced in parietal and
inferior temporal areas, and that P3a came from the frontal lobe and the
insula.

Perhaps the most accepted tool for localization of brain activity is
a free software called �low resolution brain electromagnetic tomography�
(LORETA, described in methods section). LORETA, however, only eval-

8



1.3. LOCALIZING BRAIN ACTIVITY

uates a type of �heat map� of what regions of the brain are active, rather
than pinpointing an actual dipole location.

To conclude this chapter: There are multiple separate components to
the P300, and they are most likely located mainly in the parietal lobe,
but maybe also in the frontal regions of the cortex. The P300 is related to
simple cognitive processes, such as decision making and working memory.
In the coming sections, I will present methods � and my results and expe-
rience in working with them � with the aim of �nding sources of activity
in brains that are operating the previously described brain-computer in-
terface, a high-speed (superior information transfer rate) P300 speller.

9



Methods

In this chapter, I describe the methods: From experimental setup to data
processing to how I get the results. Figure 2.1 summarizes all the steps
of �nding sources of activity in my project, as well as the P300 speller
application itself (within dashed lines). A subject looks at the screen and
in response to visual stimuli his/her EEG is recorded (1). The data is
saved on a computer hard drive for subsequent o�ine analysis. The �rst
stage of localization is to evaluate the most likely location for any given
time point (2) and the last step is to �gure out which of these sources
actually contribute to shaping the ERPs (3). The details of the plots in
this �gure will be discussed in the Results chapter.

2.1 P300 Speller Experiment

The experimental setup to acquire data for the localization described in
this thesis is in essence identical to that of a recently developed P300
speller system developed by Nenadic et al. [31]. The only di�erence is
that I use 15 electrode EEG, instead of 8. This is visualized in �gure 2.2.
Electrode A2 (right ear tip) was used as reference point.

10



2.1. P300 SPELLER EXPERIMENT

Figure 2.1: Process for localizing sources of activity in P300 speller EEG
data, and schematic description of actual (online) application (within
dashed rectangle).

2.1.1 Equipment

The subject is wearing an EEG cap (Compumedics USA, Charlotte NC),
with 15 electrodes placed according to the 10-20 EEG standard. Signals
are improved by lowering the contact impedance through a combination
of conductive gel (Compumedics USA) application and a blunt needle
skin abrasion. The cap is connected to an ampli�er (Biopac, Goleta
CA) which ampli�es the signals and performs 16-bit A/D conversion.
The sampling frequency is set to 200 Hz and an analog band-pass �lter

11



2. METHODS

Figure 2.2: 15-channel EEG setup (brown and gray) and 8 channel setup
used in [31] (gray only). In green is the reference electrode, on the right
ear.

with frequency band 0.01−30 Hz is used. A standalone ear clip Ag-AgCl
(silver chloride) electrode on the right ear is used as a reference electrode.

2.1.2 Population Study

During an experiment a subject (typically) did 3 training sessions and 3
online sessions, with an alpha wave gauge and an impedance measure-
ment between ground and each channel done at least once, before the
�rst data acquisition. Impedances were kept at < 5 kΩ at 30 Hz and
were recorded for later use. The three di�erent sessions were done at
three di�erent interface speeds: low, medium and fast (referring to the
dwell time between consecutive �ashes: 400, 240 and 170 ms respec-
tively). The signi�cance of the dwell time parameter is discussed in the
next section. In the online section, the subject was asked to spell a sen-
tence to prove that he or she had purposeful control of the speller, and
the o�ine dataset was discarded if the subject could not spell. An online

12



2.1. P300 SPELLER EXPERIMENT

mode screen capture at fast interface speed can be found on the web
[www.youtube.com/user/UCIBCI]. Below is a test subject in an experi-
mental situation.

Figure 2.3: Sketch of expermimental situation. Seen is a subject, paying
attention to �ashing letters on a computer screen (center). Seen also is
various lab equipment, such as BCI computer (bottom left) and ampli�ers
(right).

2.1.3 O�ine �Training� Stage

The experiment starts with a training session, during which the subject
is presented with a 7 × 6 character (A-Z, 0-9 and some miscellaneous
characters) virtual keyboard on a computer monitor, and is asked to
pay attention to one of these characters (called the �oddball�, de�ned
in subsection 1.2.1). 6 random letters at a time will then repeatedly
�ash, with an interval of 170, 240 or 400 ms (depending on dwell time

13



2. METHODS

setting) for about 30 seconds. This process is repeated with 10 characters
in varying locations on the screen, resulting in a dataset of 700 to 1200
trials (depending on speed setting) with an oddball : evenball ratio of
1 : 7. Data is recorded for 400 ms (referred to as sample time) after
each presentation (oddball or non-oddball) and hence, for medium and
fast speeds, since the sample time is longer than the dwell time, there is
an overlap between trials. Data collected following an oddball is referred
to as �activity� data and data following an evenball is then the �control�
data.

The end result of data collection is essentially a: 15 channel x 80 time
samples (400 ms·200 Hz (sample time·sample rate)) x a few hundred to
a thousand trials - dataset, of control and activity data lumped together.
There is also a label corresponding to each trial, to keep track of the two
types of data.

This data is used to train the BCI computer to recognize the pattern
for the brain's reaction to an oddball stimulus, and a �lter is created that
extracts channels and time periods that are responsible for encoding the
di�erence between �control state� (evenball) and �activity state� (oddball)
data.

2.1.4 Online �Spelling� Stage

Once the computer has been trained a user proceeds with an online stage.
Here, the user can determine what letter he or she wants to type. The
letters will again randomly �ash, with more common characters of the
English alphabet, as well as expected letter combinations (based on built-
in dictionary), �ashing more prominently. Since the BCI computer knows
the subject's pattern for an oddball stimulus, a classi�er can quickly
determine if the user was attending to any of the letters that just �ashed
and so �gure out what character the user wanted to type.

During the online session, the subject was asked to spell the following
sentence:

�The quick brown fox jumps over the lazy dog*�,

14



2.2. PREPROCESSING AND DENOISING

a 44 character (counting spaces and *, which is the sign to exit the
interface) English-language pangram.

In this study, the online spelling session was only used as a benchmark
test of whether the subject had achieved purposeful control of the BCI
or not. If a subject could not spell online, the corresponding o�ine data
was determined to be of non acceptable quality.

2.2 Preprocessing and Denoising

The raw data acquired from each training session of the experiment can
now be divided into control state data, Xc, and activity state data, Xa,
with a number of trial ratio Xc : Xa of about 7 : 1. Due to the acquisition
overlap for fast and medium speeds mentioned above, as well as the long
response after an oddball (up to about 1 second) some control state data
trials need to be removed, reducing the Xc : Xa ratio to about 4 : 1.
Then, the rawdata needs to be adjusted for bias and impedance. It was
also sent through one of two noise-suppressing algorithms (prewhitening
or noise subspace �tting), all this is described in detail below.

2.2.1 Data Preprocessing

First thing to do is to divide all trials for each electrode by the impedance
measurement from the experiment. In some cases, only one impedance
measurement (from the beginning of the experiment) was available, and
every dataset from that day was then divided by that measurement. In
other cases each dataset had its own corresponding impedance measure-
ment and was adjusted accordingly. Either way, I found that it did not
much of a di�erence as impedances were quite stable throughout the
experiment.

Next, some trials were removed. Since our data acquisition for control
and activity state data is continuous, there will be some activity (ERPs)
in what is captured and labeled as control data immediately preceding
(fast interface speed) and following (slow, medium and fast interface
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2. METHODS

speeds) an oddball. In fact, the oddball response may be longer than
the 400 ms that we use as sample time, and we are presented to a trade-
o� problem between removing trials following an oddball (and thereby
minimizing activity contamination in control state data) and keeping
control state data trials (and improving the statistical averaging).

Trials were then averaged, control data Xc and activity data Xa sep-
arately, resulting in two 15 (channels) by 80 (number of time samples)
matrices.

Lastly, to adjust for sensor bias, for each sensor individually, the
average value for all data of that sensor at t = 0 was subtracted from
the whole 80 sample data such that each channel has a total average
potential of 0 at time 0.

Once the data is preprocessed and ready to use, the last step is to
�nd the �Number of Interfering Sources� (NI) in the control state data,
a parameter that is required for null space projection described below.
This number was found as the number of singular values of Xc needed
to satisfy a power ratio of .99, meaning 99% of the energy in the signal
can be recovered by NI sources.

2.2.2 Prewhitening (PW)

The whitening matrix is found by �rst estimating the covariance matrix
of control state (�no activity�) data, with the mean subtracted X̄c(t) with
n samples as:

R̂C =
1

n

n∑
t=1

X̄c(t)X̄
T
c (t) (2.2)

where X̄c(t) = Xc(t) − 1
n

n∑
t=1

Xc(t). Whitening of the activity state

data Xa(t) = As(t) +n(t) (equation 1.1) is then achieved by multiplying

with the whitening projection matrix, Pw = R̂
−1/2
C :

X ′a(t) = Pw ·Xa(t) = Pw · A · s(t)︸ ︷︷ ︸
′′unchanged′′

+Pw · n(t)︸ ︷︷ ︸
white

(2.3)

16



2.2. PREPROCESSING AND DENOISING

The trick is that the noise vector is now (closer to being) white, i.e.
any systematic information in the noise will be suppressed and thereby
in�uence analysis of X ′a(t) as little as possible.

2.2.3 Null Space Projection (NP)

A more sophisticated and newly developed method, null-space projection
(NP) [32] relies on the presence of control state data, which is used to
create a subspace that is orthogonal to the noise and that the activity
state data then can be projected onto. This method requires knowledge
of, or rather an estimation of, how many interfering sources, NI are
present. These interfering sources are not assumed to be static, but are
assumed to be essentially the same in control and activity data.

Control : Xc = AiSic +Wc (2.4)

Activity : Xa = AsSs + AiSia +Wa (2.5)

where Xc and Xa now are the 15×80 control and activity data matri-
ces described in the preprocessing section above. The noise is then broken
up into sources of interference, Sic, Sia which are NI × 1 vectors, and un-
organized noise terms, Wc,Wa. A is the m (number of electrodes)×NS

lead �eld matrix as described in equation 1.1.
The m×m− 1 nullspace H is then found by:

Ĥ = argmin
H
||HTXc||2F (2.6)

and with the decomposition of the control state measurements:

Xc = UΣV T =
[
UIU

C
N

] [ ΣI 0
0 ΣN

]
V T (2.7)

the solution to equation 2.6 is Ĥ = UC
N and the projection matrix can

be calculated as PH = ĤĤT . Finally, the new activity state data, X ′a is:

X ′a = PHXa = PHAsSs + PHWa (2.8)
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2. METHODS

which is �free� from interfering sources (Sia), compare to Xa in equa-
tion 2.5.

2.3 Localization

After the data has been pre-processed, it will be sent to a localization
algorithm. There is a multitude of options here, and I have used a couple
of traditional methods: linearly constrained minimum variance (LCMV)
beamforming [30] and multiple signal classi�cation (MUSIC) [15, 24] as
well as a newly developed method: noise subspace �tting (NSF) [32]. I
also used a free software package called standardized low resolution brain
electromagnetic tomography (sLORETA) which gives a distribution of
origin of activity. MUSIC, LCMV and the fundamentals for NSF were all
implemented and thoroughly described in [32] but are for quick reference
brie�y presented below.

2.3.1 MUltiple SIgnal Classi�cation (MUSIC)

MUSIC [15, 24] �nds the LFVs that are most orthogonal to some noise
subspace. The location r for that LFV is then the most probable location
of a source, and the corresponding Φ is the dipole orientation.

2.3.2 Linearly Constrained Minimum Variance (LCMV)
Beamforming

LCMV beamforming [30] �nds the sources by constructing beams by
assuming unit strength from all possible source locations, and by then
minimizing array output power from all other locations.

2.3.3 Noise Subspace Fitting (NSF)

Recently, a localization method originally developed for direction �nd-
ing [28] has been adapted to �nd highly correlated sources in EEG [15,
24]. It is called noise subspace �tting, and is asymptotically equivalent
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2.3. LOCALIZATION

to maximum-likelihood approaches, but is much faster because dipole
location and moment are decoupled.

Minimum Sample NSF

NSF was developed with the intention that a period of interest (in time)
would already be available or loosely de�ned and localization would then
be done with data from that time window. I found however, that using
only one sample in time and localizing sources for consequent time sam-
ples, was quite e�cient. It can also be shown that this does not violate
the data model or calculations in the method. For NS set to 1, as little
as 1 time sample can be used, and for NS = 2 at least 2 time samples
must be used. Locating more than 2 sources was never relevant for me,
not only because we expected 1 or maybe 2 sources to be present at any
given time, but also because I had only 15 channels in the experiment,
which would make locating 3 sources practically impossible.

Identifying Relevant Sources

Accompanied to the single sample NSF I developed an automatic cluster
�nder. We hypothesized that consecutive single sources located in close
euclidean proximity to each other was a sign of a �true� source. (Remem-
ber that NSF always will give some location for the number of sources
you are trying to �nd, but that it relies on the user to specify how many
true sources there actually are, which in some cases can be 0.) The basic
requirement is that a �source� must have a dipole moment of about 1/5
or more of that of the strongest dipole in the dataset. This to avoid
very weak, probably randomly formed clusters. Then, the actual cluster
�nder relied on two simple euclidean distance requirements:

1. Two consequent sources must not be separated with more than a
certain distance, and

2. At least 5 consecutive sources must satisfy (1).
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2. METHODS

2.3.4 Standardized Low Resolution Brain
Electromagnetic Tomography (sLORETA)

sLORETA [7, 11, 18] is a tomographic tool for EEG data, available for
free at [www.uzh.ch/keyinst/loreta]. It uses an averaged head model
from real MRI scans to give a type of density function for what areas of
the cortex are active. Loreta is quite accepted to be correct, and I used it
as a type of validation for that the NSF method gave reasonable results.
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Results

3.1 Raw Data

Each subject did 1-3 (depending on availability) sessions of the experi-
ment described in the methods section 2.1.3. I had 6 subjects, a total
of 10 experiments, and 24 datasets that passed the online spelling test,
presented in the table below. Three of these subjects (A, E and F) were
�experienced� users, meaning that they had spent at least a total of 20
hours using the P300 speller and other BCIs. The remaining subjects
(B, C, D) had never used a BCI before this study, and are called �naive�
users.

Table 3.1: Table over datasets. Datasets where the subject failed in
the corresponding online session have been struck out. Note that only
one subject completed the whole three sessions. *Subject A - session
2 was used for testing consistency. **Subject F was only available for
completion of one single dataset.

Subject session 1 session 2 session 3
A slow, med, fast med, med, fast, fast*
B slow, med, fast slow, med, fast med, fast, slow
C slow, med, fast med, fast, slow
D slow, med, fast med, fast, slow
E slow, med, fast
F fast**
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3. RESULTS

After preprocessing as described in methods 2.2.1, the data for each
individual channel can be plotted and the ERPs are clearly visible. To
show di�erence between individuals, below are results from two expe-
rienced subjects (A and E), and the most successful of the naive users
(B), all at medium interface speeds (�gure 3.4). Note, in particular, the
strong N200 (occipital channels) in both the experienced subjects, and
the strong P300 (FZ , CZ) in the naive subject.

A B E

Figure 3.4: 15-channel ERP plots for three subjects (left: subject A, cen-
ter: B, right: E). Each of the 15 subplots shows data for that particular
channel from 100 to 400 ms after stimulus and spans 14 µV from top
to bottom. Control state data is colored red, and activity data is green.
Data seen is average of hundreds of trials with standard error added.
(See nO: number of oddball trials, and nE: number of evenball trials.)

3.2 Case Study For Localization

Here, I present results for the di�erent localization methods I used. Sub-
ject B, session 3, medium speed is studied. Please refer to the above ERP
plot (3.4 center) to see all the data from this dataset. All results are
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3.2. CASE STUDY FOR LOCALIZATION

from the same time windows, namely 200-245 ms post-stimulus (N200)
and 255-325 ms (P300), which were the N200 and P300 time windows
automatically found by the source �nder described in 2.3.3. (The results
for this are presented further down 3.2.)

Scalp Topography

First out is a scalp topography, which was simply produced by taking the
average values for each sensor over each time window, and interpolating
values between the sensor positions. These values are then plotted as
hot or cold depending on their deviation from 0. This is maybe simplest
and most primitive way to localize activity and can be compared to just
studying the ERP plot and manually estimate a source location. Note
how there seems to be no activity in the occipital lobe even for N200.

N200 P300

Figure 3.5: Scalp topographies for subject B: N200 (left) and P300
(right). Scale is the same in both plots.

NP-MUSIC

The below results are created with null space projection (NP, 2.2.3) and
multiple signal classi�cation (MUSIC, 2.3.1). The number of interfering

23



3. RESULTS

sources (NI) was set to 5, which corresponds to a ratio of 99 %, auto-
matically set as described in methods (2.2.1). Results for LCMV are not
shown as they yielded virtually the same results as MUSIC for NS = 1,
and because I chose to chie�y work with MUSIC. I also did localization
for NS set to 2, but it seemed to almost never be signi�cant, i.e. there
was always only one dominating source. Prewhitening results were in
general not as good as NP and are not shown here.

N200 P300

Figure 3.6: NP-MUSIC: N200 (left), P300 (right). Hot regions represent
locations that are orthogonal to the noise subspace, which means they
are likely to host a source.
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3.2. CASE STUDY FOR LOCALIZATION

Minimal sample NP-NSF

Finally, using NP, single time sample null subspace �tting (NSF, 2.3.3),
and automatic clustering 2.3.3 I found three clusters (�gure 3.7), whereof
two correspond to N200 and P300. The time windows used in previous
analysis (scalp topography, NP-MUSIC) were found using this method.

Figure 3.7: Minimal sample NP-NSF sources. Dots are color coded with
respect to time and correspond to the location found by the method for
that particular time sample. Dot sizes are related to the dipole moment
magnitude. In the inserts that show the original data, the time windows
are shaded to show what parts of the data the clusters correspond to.
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3. RESULTS

sLORETA

For vari�cation and comparison sLORETA is shown below. As sLORETA
is evaluated for each time sample individually, I strictly used the sLORETA
for the �rst time frame (200 ms (N200) and 255 ms post-stimulus for
P300).:

N200 P300

Figure 3.8: sLORETA: N200 (left, posterior view), P300 (right, top
view). A standardized head model is colored with red and yellow for
increasing neural activity.
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3.3. RESULTS FOR ALL SUBJECTS

3.3 Results For All Subjects

Using the methodology described above, with the di�erence that prewhiten-
ing (PW, 2.2.2) was used instead of NP, source clusters were evaluated
for all 24 datasets. Sources were then picked out depending on time
windows, matching N200 and P300. Not all datasets included potential
N200 and P300 sources, and the dataset was in that case excluded. Here,
as opposed to in the previous section, all the markers are the same size.
This because dipole moments are not comparable between datasets. In-
stead, di�erent markers are used for experiments performed in di�erent
sessions (di�erent days). MUSIC heat maps were also evaluated for all
datasets, but since multiple heat maps could not be combined in one plot,
a representative one is shown. The situation is the same for sLORETA.
Only one view is shown for MUSIC and sLORETA as the results were
always con�ned to the cortex for both the methods, and hence the results
can be visualized in two dimensions.

3.3.1 N200 source location

On the next page are all dataset with clusters starting around 200 ms
post-stimulus (i.e. supposedly N200 source locations). Note the nice
correlation between the three methods, especially for the experienced
subjects, and subject B. Subject D is excluded here because no N200
source was found for the one dataset that passed the online test.

3.3.2 P300 source location

Doing the same for clusters that start around 300 ms (P300 locations)
yielded the following plots for the 6 subjects. Results are not as unam-
biguous here, and this will be discussed in the last chapter.
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3. RESULTS

A

B

C

E

F

Figure 3.9: Combined results for N200 localization in subjects (left to
right): A, B, C, E and F. From top to bottom: PW-NSF method top
view, PW-NSF side view, PW-MUSIC typical result (single dataset),
sLORETA typical result (single dataset).
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A

B

C

D

E

F

Figure 3.10: Combined results for P300 localization in all subjects (left
to right): A, B, C, D, E and F. From top to bottom: PW-NSF method
top view, PW-NSF side view, PW-MUSIC typical result (single dataset),
sLORETA typical result (single dataset).29



Discussion

4.1 Comments On Results

4.1.1 Localization Methods

I found, using previously described methods null-projection, noise sub-
space �tting with euclidean time-dependent clustering (2.3.3) that there
seem to be clusters of activity that highly correlate with ERPs found
in EEG, and additionally, they are located in reasonable areas of the
brain, based on literature. More interestingly, the NP-NSF single sample-
clustering method, found similar clusters in datasets that had no appar-
ent ERPs (see �gure 3.7, which has no visible N200), which speaks for
the power of this method.

Shown in �gure 3.7 is an example of locations that make sense. The
last source of activity (red) might be something late that is going on,
or just an artifact from data. The dots are smaller which means the
evaluated dipole moment was smaller, which I have found to be typical
for clusters that seem to have developed from non-interesting trends in
data. In fact, as mentioned in the methods, I do discriminate for sources
with too small dipole moments but this particular cluster passed the test,
i.e. the 'dots' are �large enough�.

Localizing the P300 can be hard when using NP, because the method
is very e�ective in removing any activity that is shared between control
and activity data. A few P300 peaks in control data, i.e. the subject
falsely reacting to an evenball, may cause major problems for NP to
locate P300, since the actual P300 then may be canceled out in the noise
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subspace. This is one of the advantages prewhitening has against the
more sophisticated null space projection. Another problem with NP was
to estimate the NI parameter: The 99 % automatic method worked fairly
well, but often results were better (more reasonable) if I tweaked the NI
parameter + or - 1. An alternative would be to consider using PW
instead, which does not require any input except for the control state
data. Prewhitening seemed more �stable� with respect to small changes
in data, but also far less powerful.

I also tried testing for consistency in localizing sources in same sub-
ject, same day (see * in table 3.1) and results were not shown because
they were non-conclusive. Again, this may be because of the experiment.
ERP data plots di�ered, maybe just enough to make locations deviate.
Using only 15 channels may be too sensitive with respect to variation in
measurements.

Lastly, it may be worth noting that by simply looking at the original
ERPs, or the scalp topographies, one would hardly be able to �gure
out where the dipole sources that constructed the measurements were
located. Proving the obvious need for more advanced localization.

4.1.2 ERP Locations

From �gure 3.9 and 3.10 it is evident that N200 quite consistently was
found in the occipital lobe and that no particular P300 location was
found.

Maybe we just had a too complicated experiment, with too many
parameters. We're doing this in an actual application environment, with
more parameters than we can count. Just �guring out what was N200
or P300, among other processes that seem to be going on, was hard.
By looking at the ERP plots in 3.4 this can be understood. These are
some of the best datasets I had, and it is not necessarily clear were the
di�erent ERPs are. It is encouraging, that despite this, NP-NSF still
managed to pick out a source around 200 ms, localized to the occipital
lobe (�gure 3.7).

As mentioned, it is quite clear that N200 is located in the occipital
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4. DISCUSSION

lobe. As for P300, you need to try hard to see a pattern. I would explain
this with an array of reason that are somewhat depending on each other:
First of all, very few of the subjects or their datasets had clear P300s.
In many of the ERP plots, it seems that there are multiple components
and variations in the P300 topology, which would also be supported by
the literature. As I wrote in the introduction, di�erent neural nuclei are
expected to �work together� to produce the P300, and that a source's
individual strength is dependent on how the subject is responding to the
oddball, which is not necessarily the same throughout our experiment.
So, can the localization methods not deal with this? I think they could,
there are a few problems however: To estimate more than one source with
only 15 channel EEG can be very di�cult and sensitive to interference
or slight variances in data, for any reason. This, in a way, leads to the
next problem: To use noise subspace projection (NP) which I found to
be very e�ective in suppressing interfering sources, one has to estimate
the NI parameter (the number of interfering sources), which can be done
automatically using the 99 % method described in 2.2.1. This method,
however, is not perfect, and I found a few times that alteringNI by plus or
minus 1, could improve (give more consistent) results. Lastly, it all comes
down to the fact that we do not have access to the ground truth, i.e. we do
not know when we have actually found good input parameters and when
the localization works optimally. Additionally, same subject but di�erent
experiments will have an error from simple things such as the EEG cap
not being in the exact same position between two experiments, and of
course previously mentioned naturally occurring biological processes in
the brain.

4.2 Conclusions

N200 was consequently located in the occipital lobe, which is expected
and very satisfying, as that is where the visual cortex is located and the
N200 results from physiological events that are in the very �rst few visual
processing stages. I was not able to draw any conclusions for a de�nitive
P300 location, but as said in the introduction, the P300 is expected to
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have multiple neural origins. Taking into account the low number of
electrodes (15) and the complexity of this experiment (not optimized for
localization by any means, this is an actual BCI application) I would say
that minimal sample NSF in conjunction with NP (with some tweaking)
or PW, shows promise for localizing sources of activity in EEG (and
MEG) data.

On the question of whether there is any di�erence between expe-
rienced and naive users, it is hard to say anything with such few (3)
successful subjects. Given knowledge of earlier experiments [31], a hunch
would be that experienced users have developed stronger early ERPs
such as the N200, which my results would support (�gure 3.4).

It is also hard to conclude anything about the adaption in naive users,
partly because three sessions might be too few, and partly because I only
had one naive subject that completed the three sessions. If anything,
ERPs became stronger (higher amplitude) and sources became more clear
as the subject used the interface more.

4.3 Future Work

To really test the ability of NSF, localization on data from a more con-
trolled experiment, maybe even a saline model head with absolutely
known source locations, number of interfering sources in the brain, etc,
may be needed to learn more about how NSF works in EEG source lo-
calization, in practice. NSF was, when it was implemented, tested on
digitally simulated EEG data, as well as real EEG (auditory) data[32],
but this real-world application proved very di�cult. The fact that I used
only 15 electrodes was probably an issue as well, and using more elec-
trodes should increase robustness with respect to data variance. A big
problem in this study was probably that there were too many parameters
in our experiment (stimulus, i.e. the letters, were spread out across the
visual �eld, subject movements were not monitored, etc.), and that I did
not know the ground truth.

Finding a better way to estimate NI, and maybe doing NP on subsets
of the full control state data would probably be a good next step. I found
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the NP method to be very powerful in suppressing interfering sources,
but this also works against it, as in the case of the P300: Sources may
be apparent, but weaker, in the control data, but still cancel out actual
activity almost completely.
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