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Abstract
Calculations on Pm I like ions in a isoelectronical sequence has been
made using Multiconfigurational Dirac-Fock (MCDF). Spectra in these
heavy atoms are very massive and complicated as so many shells are
open and so many transitions are possible. Moving down the ion
sequence the electron configuration is going to change due to increasing
nuclear charge. The work was focused on finding when a configuration
giving a simple spectrum is the lowest lying energy level. All calcula-
tions were made using GRASP (General Relativistic Atomic Structure
Package).
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1 THEORY

1 Theory

1.1 The Hamiltonian

In quantum mechanics an atom can be fully described from its wave function ψ. Using the
schrödinger equation (SE)

HΨ = EΨ (1)

the energy of the system can obtained where the non relativistic hamiltonian H is

H = − h2

2m
∇2 + V (r) (2)

for a one electron system. As we are dealing with heavy ions with large nuclear mass and
several electrons we need to use a relativistic hamiltonian with interactions between the electrons.
The Dirac-Coulomb Hamiltonian is written as

HDC =

N∑
i=1

(αi · pic+ (βi − 1)c2 − Z

ri
) +

N∑
i>j

1

rij
(3)

where α and β

α =

(
0 σ
σ 0

)
(4)

β =

(
I 0
0 I

)
(5)

where σ is the Pauli spin matrices and I and 0 are the unit respectively zero matrices. As it
is known many-body problems are not easy to solve and the electron-electron interactions, the
1
rij

term in Eq(3), becomes impossible to solve exactly or explicitly for the ions in these calcula-
tions. As such some approximations is needed to simplify the system to a level where it’s possible
to solve the SE for the system.

1.2 Central Field Approximation

The first approximation made is the central field approximation where the hamiltonian is split
up

HDC = H0 + V (r) (6)

where V(r) is

V (r) =

N∑
i>j

1

rij
−

N∑
i=1

U(ri) +
Z

ri
(7)

The electrons are treated as moving in a consistent field created by all the electrons and the HDC

is reduced to a single body problem.
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1.3 State functions 1 THEORY

1.3 State functions

We can separate H0 into one electron equations Hi as

Hiψα(Fi) = Eiψα(Fi) (8)

where α is a specific electron state defined by a set of quantum numbers {nακαmα} using κ
to simplify equations to come as κ = ±(j + 1/2) The one electron equations can then be written
as

ψnκ(r) =
1

r

(
Pnκ(r) χκm(θ, φ)
iQnκ(r) χ−κm(θ, φ)

)
(9)

where Pnκ and Qnκ are the radial parts and χ-terms are the spin-orbit parts. Using Slater
determinants we can construct the full N-electron system by taking the product of all the one-
electron functions. By taking linear combinations of Slater determinants we can form states that
are the simultaneous eigenfunctions of H0, J

2, Jz and π. These state functions Φ(αjJ) are called
CSFs (Configuration State Functions) where αj contains enough parameters to define each state
uniquely.
Atomic state functions (ASFs) can now be defined by taking a linear combination of CSFs with
the same J value as

Ψ(γJ) =
∑
j

cjΦ(αjJ) (10)

where cj are so called mixing coefficients and are obtained by diagonalizing the energy matrix
with the requirement

∑
j c

2
j = 1.

1.4 Multi Configurational Dirac Fock

Using linear combinations of CSFs the energy expression for the atom becomes

ε(γJ) =

M∑
i=1

M∑
j=1

cicj〈Ψ(γiJ)|H|Ψ(γjJ)〉 (11)

=
M∑
i=1

c2iHii + 2

M∑
j=1

cicjHij (12)

with the hamiltonian matrix

Hij =< Φ(γiJ |H|Φ(γjJ) > (13)

Introducing c = (c1, c2, ..., cM )† as a vector of the mixing coefficients the energy expression
can be written as

E = c†Hc (14)

The expression can be improved further with the use the theory of angular momenta we can
replace the hamiltonian Hij with

Hij =
∑
ab

ωijabI(a, b) +
∑
abcd

∑
k

υijabcd;kR
k(ab, cd) (15)
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1.4 Multi Configurational Dirac Fock 1 THEORY

where the radial integral I(a, b) and the Slater integral Rk(abcd) as

I(a, b) =

∫ ∞
0

dr

[
cQa

(
d

dr
+
κ

r

)
Pb + cPa

(
− d

dr
+
κ

r

)
Qb − 2c2QaQb −

Z

r
(PaPb +QaQb)

]
(16)

Rk(abcd) =

∫ ∞
0

ρeac(r)Yk(bd; r)
dr

r
=

∫ ∞
0

ρebd(r)Yk(ac; r)
dr

r
(17)

where ρeab(r) and Yk(ab; r) are

ρeab(r) = Pa(r)Pb(r) +Qa(r)Qb(r) (18)

Yk(ab; r) = r

∫ ∞
0

rk<
rk+1
>

ρeab(s)ds (19)

By substituing (15) into (12) and using

ωab =

M∑
i=1

M∑
j=1

cicjω
ij
ab (20)

υabcd;k =

M∑
i=1

M∑
j=1

cicjυ
ij
abcd;k (21)

the energy can be written as

ε(γJ) =
∑
ab

ωabI(a, b) +
∑
abcd;k

υabcd;kR
k(ab, cd) (22)
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2 METHODS OF CALCULATION

2 Methods of calculation

2.1 Self-Consistent Field

The calculations in the GRASP rely on EOL(Extended Optimal Level) calculations for optimiza-
tion. By optimizing the weighted sum of the total energy with respect to the specific ASFs the
self-consistent field procedure used will be

1. Obtain initial preset estimates of the wave functions.
2. Diagonalize the Hamiltionian matrix to obtain the mixing coefficients c.
3. Solve the MCDF equations using the mixing coefficients from step 2.
4. Step 2 and 3 is repeated until a specific convergence is reached.

2.2 Multiconfiguration setup

To start each calculation one must set up the Atomic state function to use for the specific case.
Starting out with a single CSF for the state of interest and add more CSF of interest. By deciding
what orbitals should be allowed and setting the number of electrons possible to occupy different
orbitals all possible CSFs for the ASF can then be derived.
This multiconfiguration approach will improve the results as some of the correlations between
different states with the same J will be handled.

2.3 Correlation effects

To determine what orbitals to include and how many electrons to excite from each subshell it is
important to determine what needs to be included. Depending on the possible setups available
different correlations will be accounted for. Having two valance electrons in the outermost orbital
with a closed core will address the valence correlations. In our calculations on the Pm I this is
not very common as the 4f145s will not have two valence electrons if the f14 is to be closed.
By allowing one excitation from the closed core the core-valence correlations will be addressed.
Usually the outermost closed orbital will be excited as its energeticly favourable. This allows for
CSFs such as 4f135s2 and 4f135s5p By allowing two electrons to excite from the core, core-core
correlations can be addressed. This is however not implemented in the ASFs of these calculations
as the CSF expansion would exceedingly big and the computing power needed is not available.
As well good convergence becomes harder to achieve.

2.4 Spectroscopic orbitals

To improve calculations the GRASP has an option to choose which orbitals are spectroscopic and
which are for correlation. The extra requirement on the spectroscopic orbital is that the number of
nodes for the wave function is correct according to n−l−1. This is only true for orbitals occupying
electrons. Correlation orbitals could have any number of nodes. It is not always possible to get
convergence using this as it forces the right number of nodes throughout the whole calculation.
A manual control at the end gives the same result.
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3 ENERGY LEVELS IN THE ION SEQUENCE

3 Energy levels in the ion sequence

3.1 Setup and Procedure

To determine where in the Pm I sequence the spectra will become simple we want to look for
when the simple states such as 4f145s become the lowest lying energy level. In theory the energy
levels will have a linear dependence on Z so by varying this while looking at the energy for
certain ASFs we can find where the spectra will become simple.

Starting with determining what energy levels can be interesting to study. In ground state Pm
I has 61 electrons with the setup 4d105s25p66s24f5. This state would be impossible to calculate
with MCDF with so many valence electrons and open orbitals. As Z increases the electrons will
be more tightly bound causing them to choose orbitals closer to the core. Minimizing N becomes
more important than minimizing N+L. For example, the 4f56s2 in Pm I will be 4f66s in SM II
where Z increased by 1 and so on. As we can’t study these states it is better to start on the other
end with the simplest and move up towards the ground state. 6 states will be studied in these
calculations.

4f145s
4f145p
4f135s2

4f135s5p
4f125s25p
4f115s25p2

These states are the most likely to be among the lowest lying when getting close to the most
simple states. Two different parts of the calculations were made. The first one is a simple Dirac
Fock calculations with only the CSFs forming the specific state giving no correlation effects. Next
step is then to include correlation orbitals using the MCDF-approach. As these calculations take
more time and computer power initial DF-calculations were made to give a first overview of the
system before more power was concentrated at the correct values of Z.

Next step is to decide what correlation orbitals are to be included in the multi configurational
calculations. For each orbital included the CSF expansion grows and not all orbitals are usefull
to the calculations. When doing calculations on serveral states balance in correlation must also
be considered. Selecting the right orbitals is therefore critical for good results. Our states include
5s and 5p valance electrons. Correlation can only occur between states with equal parity. It’s
therefore only possible with jumps of l = 2n for single excitations as π = (−1)

∑
l . This is not

a problem for double excitation. The most likely correlation for 5s and 5p is therefore 5d and 5f.
5g is therefore excluded. Orbitals with n = 6 are the next to consider. The 6s and 6p orbitals
will influence a lot. Including these in the 4f145s is no problem but doing this with 4f125s25p
for example would give a CSF expansion with around 250 000 CSFs. To get a proper balance the
n = 6 orbitals were excluded.

Another factor discussed earlier is the number of allowed excitations from each orbital. All
orbitals from 4d and below were closed for these calculations as an excitation from these orbitals
would give us much higher energy. From 4f single excitations were allowed and from all n = 5
orbitals 2 excitations were allowed with a maximum of 2 total to limit the calculations while mak-
ing sure most of the important correlations can be included.

During the calculations one has to choose what states to optimize on, denoted ASF serial in
GRASP. For the lowest 1 is chosen, for the second lowest 2 and so on. All CSFs in the expansion
will contribute to create the state with the given energy level in the order. If a lower lying state is
included in the expansion one must take this into account. For example in 4f135s2 the 4f125s25p
CSFs are included as a single excitation from 4f to 5s is needed and the parity is the same. They
have the J-values 5/2 and 7/2 in common. 4f125s25p has 12 levels for 5/2 and 12 levels for 7/2
so if it’s lower for a given Z, 4f135s2 will be level 13.
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3.2 Results and discussion

Figure 1: Energy levels for the ion sequence

The first calculations made started at Z=63. Increasing with a few Z at a time to get several
data points for each energy level to be able to create a regression for higher Z. This can be seen in
figure 1. (Data from all calculations can be found in appendix). All states have 2 lines, the highest
and the lowest level except for the 4f145s as it only has one level. 4f145s is in all figures set to
zero energy as this is what is of interest. Another state that could be of interest is the 4f135s2 as
it’s relatively simple.

The area of interest is from Z=72 up to Z=78 for these two cases if the extrapolation is correct
and correlation effects don’t change way to much. The general outline of the energy levels look
correct of what could be expected. 4f145s lower than 4f145p and 4f135s2 lower than 4f135s5p
and the difference between them is quite close. An excitation from 5s to 5p should ”cost” equally
much.
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Figure 2: DF calculations

In the process of doing the MCDF calculations one has to do the single state DF-calculation to
have the wave functions for the non correlation orbitals. Trying to optimize them all at one time
will make convergence impossible. The correlation orbitals will therefore be added after the DF
calculation. In figure 2 the DF results for Z=72 to Z=78 are shown.

In figure 3 the MCDF calculations are shown. QED effects are also included at this stage.
As seen only a few states are included in this calculation. The 4f115s25p2 and 4f125s25p are
really hard to get convergence on and are massive calculations. The general layout is the same
so correlation did not have any major impacts. For the 4f135s5p at Z=72,73 one can see that the
highest energy is much lower than before which seems very strange. When looking closer it was
discovered that it had converged to the 4f125p5d5f state instead.

Doing the calculations for 4f135s2 it turned out not to be the lowest lying energy level for
Z=72 but it was for Z=73. If ASF serial was set to 1 the 4f125s25p state was found instead. This
does not tell us that 4f125s25p is lower for sure. The correlation for this state is not included in
the CSF expansion for the calculation, since 4f11 is not possible from 4f13 as only one excitation
from 4f was allowed. But this gives us a good hint where 4f135s2 becomes the lowest. An extra
calculation on this was therefore attempted to try and find out if this was the case or if some more
limitations are need.

Z=73 Z=74
4f135s2 -15544.206 -16073.316
4f125s25p -15544.374 -16073.008

With the help of a more powerful computer to do the calculation with over 80 000 CSFs in the
expansion it was possible to get good convergence without any extra limitations.
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Figure 3: MCDF calculations

The other area of interest is where 4f145s becomes the lowest. According to the data in figure 3
it’s at Z=78 but not far from 77. Since both states involved are fairly simple an extra calculation
was made to include n = 6 orbitals to see if more correlation would affect the results. Results
showed that the effects were not big enough. The energy changed only by 0.01-0.02 hartrees
when adding n = 6 while the splitting was in the order of 0.2 hartrees. These states are not very
correlated.

Looking at the c2 weights for 4f135s2 state the biggest correlation was the 4f135p2 CSF with
in the order of 0.5% . It is possible that other states such as 4f125s25p have more correlation and
will therefore be affected more when adding n = 6. By looking at the difference from the DF
to the MCDF with n = 5 for the two cases the change in 4f135s2 was about 0.02 hartree while
the change for 4f125s25pwas 0.2 hartrees. Since the required energy needed to change the lowest
energy level at Z=74 is around 0.3 hartrees more correlation could affect the results in a significant
way.
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Figure 4: Energy level diagram(hartrees)

To give a better idea how the spectra would look at different Z simplified energy level dia-
grams were made for Z=73 and Z=78. Here it’s very visible that the spectra for Z=73 still will be
very complex. Even though a state with few levels is the lowest it will still have many possible
transitions. Within 2 hartrees there are over 700 levels. There won’t be transitions between all of
these since most of them are forbidden but it will still be a forest of lines in the resulting spectra.

Looking at the Z=78 instead we see very few levels and only a few lines would make up the
spectrum which would be easy to identify. As seen the lowest lying state is not a very important
property for when the spectra becomes simple. There needs to be a gap up to the complex states
as well to get few possible transitions as well.
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4 Appendix

Z 4f145s 4f145p h 4f145p l 4f135s2 h 4f135s2 l
63 -10837,972 +0,738 +0,621 -1,712 -1,725
64 -11265,143 +0,783 +0,652 -1,769 -1,785
66 -12149,883 +0,911 +0,739 -1,812 -1,836
68 -13075,368 +1,080 +0,848 -1,730 -1,765
70 -14041,987 +1,275 +0,968 -1,528 -1,576
72 -15050,298 +1,496 +1,095 -1,216 -1,280
73 -15570,284 +1,613 +1,159 -1,024 -1,098
74 -16100,946 +1,737 +1,225 -0,810 -0,893
75 -16642,380 +1,866 +1,291 -0,574 -0,668
76 -17194,674 +2,002 +1,358 -0,317 -0,422
77 -17757,982 +2,143 +1,425 -0,042 -0,159
78 -18332,381 +2,291 +1,494 +0,253 +0,123

Z 4f135s5p h 4f135s5p l 4f125s25p h 4f125s25p l 4f115s25p2 h 4f115s25p2 l
63 -0,845 -1,266 -2,593 -2,996 -3,444 -4,246
64 -0,851 -1,297 -2,628 -3,085 -3,458 -4,353
66 -0,750 -1,266 -2,508 -3,084 -3,160 -4,261
68 -0,488 -1,094 -2,103 -2,810 -2,410 -3,744
70 -0,080 -0,794 -1,435 -2,290 -1,261 -2,856
72 +0,459 -0,384 -0,535 -1,556 +0,242 -1,649
73 +0,772 -0,143 -0,007 -1,118 +1,113 -0,940
74 +1,113 +0,121 +0,572 -0,636 +2,061 -0,166
75 +1,481 +0,407 +1,197 -0,112 +3,080 +0,671
76 +1,876 +0,713 +1,869 +0,451 +4,170 +1,566
77 +2,209 +1,036 +2,583 +1,051 +5,327 +2,516
78 +2,740 +1,380 +3,341 +1,687 +6,551 +3,519

Tables with energies from Dirac Fock calculations. (Hartrees)
4f145s gives full value, rest is difference relative.

Z 4f145s 4f145p h 4f145p l 4f135s2 h 4f135s2 l 4f135s5p h 4f135s5p l
72 -15024,387 +1,482 +1,080 -1,248 -1,311 -0,170 -0,445
73 -15543,077 +1,586 +1,149 -1,059 -1,129 +0,345 -0,142
74 -16072,396 +1,722 +1,219 -0,841 -0,920 +0,777 +0,127
75 -16612,434 +1,850 +1,283 -0,605 -0,695 +1,319 +0,413
76 -17163,282 +1,987 +1,351 -0,347 -0,447 +1,826 +0,721
77 -17725,093 +2,128 +1,419 -0,067 -0,179 +2,249 +1,048
78 -18297,939 +2,276 +1,487 +0,228 +0,103 +2,696 +1,393

Tables with energies from MCDF calculations. (Hartrees)
4f145s gives full value, rest is difference relative.
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