

Package Dependency Structures

- On the use of Debian and APT for software

package management in Sony Ericsson

LTH School of Engineering at Campus Helsingborg

Bachelor thesis:
Sven Selberg

 Copyright Sven Selberg

LTH School of Engineering
Lund University
Box 882
SE-251 08 Helsingborg
Sweden

LTH Ingenjörshögskolan vid Campus Helsingborg
Lunds universitet
Box 882
251 08 Helsingborg

Printed in Sweden
Media-Tryck
Biblioteksdirektionen
Lunds universitet
Lund 2012

Abstract

Dividing complex systems into smaller components that are easier for humans

to comprehend and manage, is a wide spread method in software design. As

systems grow more complex, the task of solving the different dependencies

and constrictions of the various components in a system, and create a stable

and valid composition naturally also gains complexity. Various tools have

been constructed to manage these components, one of which is APT-get, the

meta-installer used by Debian to resolve dependencies and constrictions on the

Debian package.

APT-get and the Debian package are used in Sony Ericsson’s composition

system. The dependency-structure is starting to reach the level of complexity

where APT-get’s limitations are beginning to reveal themselves. A revision of

the dependency structure and the tools used for composition therefore was a

necessity, to lay the ground work for changes in the composition system.

This bachelor thesis handles three aspects of such a revision:

 A requirements specification of the requirements on dependency

structure in the future.

 A tool for easy revision of the present dependency structure.

 An investigation into possible alternative meta-installers and/or

alternative component-management-systems.

The result is a requirement specification of relevant stakeholders requirements

on package dependencies, with an implementation suggestion using the

present package management system. An investigation of alternative meta-

installers led to that Sony Ericsson is now pursuing a course set by research

conducted by the consortium Mancoosi, and are creating their own resolver

based on reverting the problem into a Boolean problem that can be solved by a

SAT solver. A fully integrated tool for dependency structure visualization and

dependency graph traversing was implemented using Java.

Keywords: Debian, package, dependencies, Sony Ericsson, APT-get, graph,

requirement specification, meta installer, solver

Sammanfattning

Uppdelning av komplexa system i mindre komponenter som är enklare för

människor att förstå och hantera är en vanlig metod i mjukvarudesign. När

komplexiteten i ett system ökar blir uppgiften att administrera beroenden och

konflikter för att säkra en giltig och stabil komposition i samma system även

den mer komplex. En mängd verktyg har konstruerats för att hantera dylika

situationer. En av dessa är APT-get, metainstalleraren som används av Debian

för att hantera Debianpaket.

APT-get och Debian används av SEMC (Sony Ericsson Mobile

Communication) för mjukvarukomposition. Beroende- strukturen i detta

system har nått en sådan grad av komplexitet att APT-get’s begränsningar har

börjat visa sig. En revision av beroendestrukturen och de verktyg som används

vid mjukvarukomposition, för att användas som underlag för framtida

förändringar, är därför en nödvändighet.

Detta examensarbete hanterar tre av aspekterna av en sådan revision:

 En kravspecifikation som specificerar krav på framtida

beroendestrukturer.

 Ett verktyg för att undersöka nuvarande och framtida

beroendestrukturer.

 En undersökning om möjliga, alternativa, metainstallerare och/eller

alternativa pakethanteringssystem.

Resultatet är en kravspecifikation med krav på en framtida beroendestruktur

från relevanta intressenter, med ett förslag till hur kraven kan implementeras

med nuvarande pakethanteringssystem. En undersökning av alternativa

metainstallerare har lett till att SEMC valt att fortsätta med APT-get med en

extern beroendelösningsalgoritm, baserad på forskningsresultat från

Mancoosi, som omvandlar problemet till ett boolskt uttryck och löser det med

en SAT-lösare. Vidare har ett fullt integrerat verktyg för visualisering av

beroendestrukturer och traversering av beroendegrafer implementerats med

hjälp av Java.

Nyckelord: Debian, Debianpaket, pakethantering, beroenden, Sony Ericsson,

APT-get, grafer, kravspecifikation, metainstallerare

Foreword
This bachelor thesis stems from Sony Ericsson Mobile Communications

Lund’s wishes to analyze the present, and possible future, dependency

structures in their software composition. And investigate alternatives to the

present package management tools.

The work has been conducted on site at Sony Ericsson Mobile

Communications (SEMC) in Lund.

The work has been done in cooperation with the staff at SEMC Mobile

Communication Software Environment department, in particular with the

assigned mentor, Axel Bengtsson, leader of the Build and Composition team

at SEMC Lund.

I would like to thank: Axel Bengtsson for being a great support and bottomless

source of inspiration. Clas Thurban, Project Manager at Software Environment

for valuable input and support, Andreas Larsson Manager at Software

Environment for giving me the opportunity to explore the composition system

at SEMC, my supervisor at LTH Mats Lilja, my examiner Christian Nyberg

and last but not least fellow student Kristian Månsson for making it seem

possible...

Sven Selberg

List of contents

1 Introduction .. 1

1.1 Objective .. 1

1.2 Scope .. 1

1.3 Purpose .. 1

1.4 Problem description ... 1

1.4.1 Implementation ... 1

1.4.2 Requirements ... 2

1.4.3 Finding alternatives to present package management 2

1.5 Methodology .. 2

1.6 Limitations ... 2

1.6.1 Implementation ... 2

1.6.2 Requirements ... 2

1.6.3 Finding alternatives to present package management 2

2 Technical Background .. 3

2.1 GNU/Linux .. 3

2.2 Debian... 3

2.3 DPKG .. 3

2.4 APT-get ... 3

3 Debian Binary Packages ... 5

3.1 Debian Binary Package format .. 5

3.2 Binary Package Control File (Package metadata) 5

3.3 Relationship fields .. 6

3.3.1 Depends ... 6

3.3.2 Recommends ... 6

3.3.3 Suggests ... 6

3.3.4 Enhances .. 6

3.3.5 Pre-depends ... 6

3.3.6 Breaks ... 6

3.3.7 Conflicts .. 7

3.3.8 Provides .. 7

3.3.9 Replaces ... 7

4 Sources ... 9

4.1 Supervisor at Sony Ericsson ... 9

4.2 Mancoosi research project and partners 9

4.2.1 Inria ... 9

4.2.2 The Edos project .. 9

4.2.3 The Mancoosi project (Mancoosi) .. 9

4.3 The packages file .. 10

5 APT-get ... 11

5.1 APT-get solving algorithm ... 11

5.1.1 Algorithm specification (EDOS project team, 2006) 11

5.1.2 Result ... 11

5.1.3 Conclusion ... 12

5.2 APT files .. 12

5.2.1 var/log/apt/history.log ... 12

5.2.2 etc/apt/sources.list ... 12

5.3 Pinning (APT team, 2003) .. 13

5.3.1 Default assignment .. 13

5.3.2 APT preference file .. 13

6 Package dependency solving .. 15

6.1 Definitions (Treinen R. Z., 2008) .. 15

6.2 Heuristic rules ... 15

6.3 Package pendency solving as a SAT problem (Treinen R. Z.,
2008) ... 16

6.3.1 Expansion .. 16

6.3.2 Installabilty of a package as a Boolean expression 17

6.3.3 Boolean expression for an entire installation 18

6.3.4 Optimization ... 18

7 Using APT-get with external solvers ... 19

7.1 Technical background ... 19

7.1.1 APT-CUDF (Debian team) ... 19

7.1.2 CUDF (Treinen & Zacchiroli, 2009) 19

7.1.3 EDSP ... 19

7.2 External solvers .. 19

7.3 Finding alternatives to APT-get, the SEMC Solver 19

8 Graph representation of package Dependencies 21

8.1 Terminology .. 21

8.2 Circular dependencies ... 21

8.2.1 Dealing with cyclic tendencies in a DAG (Directed Acyclic
Graph) representation ... 21

9 Pamp – A Package Dependency Graph Visualization tool 23

9.1 Introduction ... 23

9.1.1 Technologies .. 23

9.2 Start .. 23

9.2.1 Input Parameters ... 23

9.2.2 Set Up .. 24

9.3 Data objects and data object construction............................ 24

9.3.1 DependencyNode .. 24

9.3.2 DependencyEdge .. 25

9.3.3 DependencyNodeFactory .. 25

9.4 Building the Graph ... 25

9.4.1 PackageDepenencyTreeBuilder... 26

9.4.2 PackageDependencyTree .. 26

9.5 Visualizing the graph .. 26

9.5.1 GraphVisualizer .. 26

9.6 JGraphX.. 26

9.6.1 Selecting graph library .. 27

9.6.2 Working with JGraphX .. 27

9.7 Overview layout ... 27

9.8 Graph traversing ... 27

9.8.1 Why graph visualization and traversing? 28

10 Package Dependency Requirements Specification 29

10.1 Analysis .. 29

10.2 Stakeholders .. 29

10.2.1 Product Configuration Manager ... 29

10.2.2 Software Configuration Manager 29

10.2.3 External Applications Configuration Manager 29

10.2.4 Platform Development Configuration Manager 29

10.2.5 Content and Customization .. 29

10.3 Start up ... 29

10.4 The Document ... 30

10.5 Elicitation meetings .. 30

10.6 The requirements .. 30

10.7 A implementation suggestion .. 31

10.7.1 First common requirement ... 31

10.7.2 Third common requirements .. 31

10.8 Positive side-effects ... 32

11 Conclusions ... 33

12 Future work .. 35

13 References .. 37

14 Acronyms.. 39

1

1 Introduction

A plethora of solutions and tools exist for automating the retrieval,

configuration and installation of software packages on Unix-like computer

systems. One example is APT (Advanced Packaging Tool) which is based on

the Debian software package format, used in well-known distributions such as

Debian and Ubuntu. Based on the same purpose and principles, SEMC uses

APT and Debian packages for composing the SW used in their products.

1.1 Objective

A complex multi-dimensional package dependency structure is pushing this

technology to an extent where its limitations are starting to show, in turn

introducing a high risk in the software production chain. In order to manage

this risk, a good understanding is needed for the currently used and potentially

upcoming package dependency structures. And, for these structures, SEMC

would like to know how well Debian and APT perform in comparison to

alternative solutions.

1.2 Scope

The scope of this master thesis is thus to:

 Understand the Debian software package format and associated tools.

 Create a tool for graphical visualization of Debian package dependency

structures.

 Identify SEMC requirements on package dependency structures.

 Identify strengths and weaknesses in the SEMC solution compared to

possible alternatives.

1.3 Purpose

The purpose of this bachelor thesis is to:

 Visualize the present dependency structure.

 Specify the requirements on the future dependency structure.

And to;

 Find alternatives to the present dependency management system.

1.4 Problem description

1.4.1 Tool implementation
Making a tool that:

 Can be integrated into SEMC’s present tools and systems.

 Uses data from metadata or build-logs to visualize graphs.

 Visualizes dependency structures.

 Makes it possible to traverse dependency graphs.

2

 Investigate the metadata of selected packages.

1.4.2 Requirements

 Identify vital stakeholders, within SEMC’s organization, and their

requirements on dependency structures.

 Visualize these requirements in a specification to aid their use in future

dependency structure remodeling.

1.4.3 Finding alternatives to present package management
The objective is to dentify the strength and weaknesses of the present package

management and finding valid alternatives.

1.5 Methodology

Given the nature of the tasks of this thesis, it did not lend itself to applying a

given method. The method was instead to:

 Acquire a solid knowledge-base through extensive research on the

subject of Debian packages, dependency structures and dependency

solving.

 Apply acquired knowledge whilst implementing the different features.

The different methods used to implement the different parts of this thesis is

described in the chapters concerning those features.

1.6 Limitations

1.6.1 Implementation
The overview visualization is limited to the present dependency structure due

to the NP completeness of the graph layout problem (Joseph Diaz, 2000).

The implementation concerns the: depends, conflict and provides relationship,

with support to expansion to include all of the relationships in the Debian

metadata specification (Jackson & Schwartz, 2011).

1.6.2 Requirements
The requirements are restricted to those directly concerning package

dependencies.

1.6.3 Finding alternatives to present package management
Since there is close to infinite different package management setups the search

is limited to an effective time of two work weeks (80 hours) and is to be

deemed concluded by the end of this scope or when a valid alternative is

found and accepted by affected parties at SEMC.

3

2 Technical Background

This chapter gives a short background to the work presented in this thesis.

2.1 GNU/Linux

In 1984 the GNU project started with the ambition to create a free UNIX like

operating system (Stallman, 2012). GNU stands for “GNU’s Not Unix”. By

the early 90’s all that was missing for GNU to be a functioning operating

system was the kernel. The GNU project’s own efforts to create a kernel, the

GNU Hurd, this proved to be a time consuming task and when Linus Thorvald

freed Linux in 1992 it was the last piece of the GNU system. It was now

possible for users to combine Linux with the GNU system to get a free

operating system, a “Linux based version of the GNU system; the GNU/Linux

system, for short.”.

In the beginning of GNU/Linux the user had to compile each program that

they wanted from the source code given to them in a *.tar.gz file.

2.2 Debian

The Debian Project was started by Ian Murdoch in 1993. The idea was to

create a free distribution of the GNU/Linux system. A distribution was “micro

packaged” which is to say that the software were packaged in several

packages with detailed meta information about inter-package relationships.

The famous Debian package was born. Users no longer had to unpack and

compile source code from various files (Garbee, 2011).

2.3 DPKG

With the creation of Debian a tool for handling the unpacking, installation and

removal of the packages on the system was created, this tool was dpkg. It is

responsible for unpacking single packages (Debian Team, 2011).

2.4 APT-get

Apt, or Advanced Packaging Tool, was created to deal with the complexities

of package management (Debian Team, 2011). It is a meta-installer, which is

to say it tries to solve all dependencies of an installation, after which it relays

these packages to dpkg who installs the individual packages. Apt-get is not

restricted to handling installation of software, it also handles upgrades and

removals in a way that keeps the system stable. Apt-get is explained more

thoroughly in chapter 5.

4

5

3 Debian Binary Packages

At the core of this thesis lies the Debian package, here’s a short specification

of what a Debian package contains, and an in depth explanation of the binary

package control file (Jackson & Schwartz, 2011).

3.1 Debian Binary Package format

A debian package consists of an (.ar) archive with 3 files (debian-binary,

control.tar.gz, and data.tar.gz):

 Files to be installed on the system when the package is installed

(data.tar.gz).

 Control information files(control.tar.gz)

o The binary package control file containing the control fields of

the package (control).

o Package maintainer scripts (preinst, postinst, prerm, postrm...).

o A file for shared library dependency information (shlibs).

o A file that lists the package configuration files (conffiles).

o A file containing the MD5 sums for the files in data.tar.gz.

The control-file within control.tar.gz is mandatory, the rest are optional.

3.2 Binary Package Control File (Package metadata)

The control file contains vital information about the binary package and

consists of these fields:

 Package – The name of the binary package (mandatory)

 Source – the name of the package. May be followed by the version

number in parentheses. The entire field may be omitted if the source

package has the same name and version number as the binary package.

 Version – The version of the package (mandatory).

 Section – the application area to which the package has been classified,

i.e. “admin”, “database”, “games”, etc. (recommended)

 Priority – the priority value of the package, i.e. “required”, “important”,

“standard” etc. (recommended)

 Architecture – the architecture which the package is meant to run on

(mandatory)

 Essential – a Boolean value field, if set to “yes” the package

management system will refuse to remove the package.

 Relationship fields (described below)

 Installed-Size – an estimate of the total amount of disc space required to

install the package

 Maintainer – name and email address of the person or group of people

that are responsible for maintaining the package (mandatory)

6

 Description – text describing the package, consists of two parts, a

synopsis and a longer description (mandatory)

 Homepage – the URL of the website for this package

3.3 Relationship fields

The information provided by these fields is at the core of this bachelor thesis.

For an in-depth explanation of the relationships these fields represent see

below.

The relationship fields described below can be divided into three different

categories:

 Those who list the packages that are needed for the core functionality or

the packages that enhances the functionality of the given package

(depends, recommends, suggests, enhances, pre-depends).

 Those who list the packages that cannot be installed together with the

given package (conflicts, breaks).

 Provides, which provides a virtual package, normally describing one or

several functionalities that the package implements (example:

Implementation of an interface).

3.3.1 Depends
Depends is used for packages that are required for the depending package to

have a significant amount of functionality and/or for packages that are

required for the postinst, prerm and/or postrm scripts in order for them to run

properly. The depends-relationships are special because they can be

conjunctive, meaning that several different packages can satisfy the same

dependency.

3.3.2 Recommends
Recommends lists packages that under usual circumstances are found together

with the package.

3.3.3 Suggests
Suggests lists packages that enhance the functionality of the original package.

3.3.4 Enhances
Works like suggests but works in the opposite direction.

3.3.5 Pre-depends
Works like depends but forces dkpg to install the packages which are declared

in this list before the original package is installed.

3.3.6 Breaks
Breaks is used to declare that the package about to be installed breaks another

package i.e. reveals a bug or takes over a file from an earlier version of the

package. Breaks therefore usually has an “earlier versions than” clause.

7

3.3.7 Conflicts
Conflicts is a stronger restriction than breaks and is used when the conflicts

are not resolved in later versions of the package/packages that are listed. It is

also used in a construct where the package conflicts with a virtual package it is

providing. This so that only one package providing a given service can be

installed at a time.

3.3.8 Provides
Provides lists virtual packages which are provided by the package, mainly for

constructs like the one mentioned in Conflicts above and other.

3.3.9 Replaces
Replaces has two different uses. Together with breaks, it enables the package

to take over a file in another package which in later versions does not own the

file in question. Together with conflicts it enables the package to fully replace

another package and force its removal.

8

9

4 Sources

4.1 Supervisor at Sony Ericsson

The assigned supervisor for this bachelor thesis, Axel Bengtsson, Staff

Engineer at SEMC Lund, has been a valuable asset in every aspect of this

thesis.

The conclusions about APT-get’s solving algorithm, has in part been drawn

from his experience from working with the issues of APT-get on a daily basis.

Furthermore his knowledge about the organizational infrastructure

surrounding the software composition proved valuable in determining vital

stakeholders in the requirement elicitation for the requirement specification

and laid down the groundwork for a deeper understanding of the origins of

these requirements.

4.2 Mancoosi research project and partners

In the search for relevant literature on package dependencies, it became

apparent that the bulk of research in package dependencies, with regards to

open source systems (like Debian), originates from the Mancoosi research

project and its predecessors and academic partners, the Edos project and Inria.

This has led to that the main part of the theory on package dependency solving

and various solving algorithms, in this thesis stems in part or wholly from this

source. This can be perceived as problematic.

Since Mancoosi is a non-profit research organisation, their main interest lies in

solving the problems and finding out the facts to the best of their abilities, and

that the results are not, to any greater extent influenced by other factors. Since

Mancoosi takes on such a leading role in this field of research it is difficult not

to take their findings into account. With this in mind the fact that most of the

literature and theory that this thesis relies on comes largely from one single

source remains to be taken into consideration.

4.2.1 Inria
Inria stands for;“Institut National de Recherche en Informatique et en

automatique” (National Institute for Research in Computer Science and

Control). Created in 1967 Inria is a Public Scientific and Technical Research

Establishment under the supervision of various French authorities.

4.2.2 The Edos project
The Edos project was the predecessor of the Mancoosi project and ran

between 2004 and 2007 (Mancoosi). It was aimed at the stability of

distributions and the development of tools for checking the consistency of a

set of packages.

4.2.3 The Mancoosi project (Mancoosi)
Mancoosi is a European research project in the 7 th Research Framework

Programme (FP7) of the European Commission. Mancoosi stands for

10

“MANaging the Complexity of the Open Source Infrastructure”. While the

Edos Project was aimed at the distribution side of open source infrastructure,

the Mancoosi project is aiming at developing tools for the system

administrator.

4.3 The packages file

The packages file is a file that consists of the metadata for every package in a

repository. It is used by APT get to find out which packages are available and

the paths to the different packages files are found in the sources.list file.

11

5 APT-get

5.1 APT-get solving algorithm

Since part of the requests from SEMC was to find alternatives to APT-get, an

important assignment would be to investigate APT-get’s algorithm for solving

package dependencies. However I have been able to find little to no

documentation on how APT-get behaves “under the hood”, part from

innuendos and guesswork. Contacting the maintainer of the APT-get package

led to nothing. The two possible alternatives left were reversed engineering or

studying the source code. After talking with the skilled engineers and

programmers at SEMC, who themselves tried to penetrate the 15+ years old

tapestry that represents the APT-get source code, I concluded that it could not

be done within the confinements of this bachelor thesis. The extensive

research needed to conduct a “proper” reversed engineering, would also be

difficult to conduct within the scope of this thesis. Therefore this chapter is

merely a record of a perception of how apt-get’s algorithm works, and is

largely based on the findings of Mancoosi’s research. It’s an attempt to show

some of the problems and shortcomings of APT-get.

5.1.1 Algorithm specification (EDOS project team, 2006)
This specification comes directly from the EDOS project work page, for a

more in depth explanation of how they reached these results, consult the

source.

1. Check the dependencies of a package.

2. Try to install dependencies one-by-one in the order they are presented in

the meta-data.

3. For each dependency try to install its sub-dependencies by the greater

version presented.

4. If one sub-dependency fails by conflict with a package that will be

installed, then the install operation aborts. It does not try to back track

and check smaller versions.

5. If one sub-dependency fails by conflict with a package that is already

installed, then the install prompts for removal of the installed package.

It does not try to find alternatives for the conflict package.

The specification was deducted from a simple test with a package base of 15

packages with an optimal solution. APT-get did not manage to find said

solution.

5.1.2 Result
This shows how APT-get does not investigate every possible configuration but

instead, when heuristics fails, prompts the user to change the installation

manually to fit APT-gets needs. Therefore can be deduced, given the results

12

from the EDOS project test results, that APT-get’s solving algorithm is

incomplete.

5.1.3 Conclusion
The algorithm used by APT-get to solve dependencies to enable package

installment seems to be based on a semi-randomized trial-error methodology

with some heuristics. To install a package A, APT-get inserts every node

(package) that A depends on (and their dependencies, and their dependencies

and so on…). Thereafter APT-get builds a graph and traverses this graph,

trying to find a set of packages that solves the dependencies without being

restricted by constraints (i.e. conflicts or breaks). Testing any possible

combination of these packages is not reasonable for a large amount of

packages; hence APT-get has a time/operation restriction. After trying a set

number of combinations without finding such a set, APT-get concludes that

there are no solutions that will enable the installment of package A.

Furthermore if APT-get finds a set of packages that enables the installation of

A, APT-get does not take into account if packages that are not necessary to

install A is installed also, as long as they don’t conflict with any other installed

package. This leads to, at least two major issues:

 An existing solution is not found by APT-get.

o That this behavior is unfortunate is easily recognized.

 One or several packages are installed without there being a need for it.

o This behavior is not fatal on larger systems, for example a ubuntu

system on a pc, in such a case the user would most likely never

realize that additional packages had been installed, and since no

installed package depends on them they would be scheduled for

removal if later installation conflicts with them.

o On a smaller system, like an android system on a mobile phone,

extra packages use a larger percent of the recourses and there is a

larger risk of unwanted behavior and legal issues (specially on a

international product, such as a mobile phone, where some

applications are not allowed in certain countries).

5.2 APT files

In the dependency graph visualization implementation some of the log files

used by APT-get are used to gather information about the build. This is a short

description of these files.

5.2.1 var/log/apt/history.log
A history log that registers which packages where installed.

5.2.2 etc/apt/sources.list
This file contains a list of paths, local and remote, used by APT-get to find the

packages to install, i.e. the repositories.

13

5.3 Pinning (APT team, 2003)

To select which version of a package to install, APT-get sets the priority of

each version of a package by giving it a “pin”-number. These pin-numbers can

be assigned by default, through specifying them in the APT preferences file or

specifying them with a command line argument to APT-get. The priorities are

interpreted as follows:

 – The package is installed even if it means a downgrade

from the already installed package

 – The package is installed even if it is not part of the

“target release”, unless the installed version is more recent.

 – The package is installed unless there is a version

available that belong to the “target release” or if there is a more recent

package already installed.

 – The package is installed unless there is a more recent

version available or already installed.

 - The package is installed only if there is no installed

version of the package

 – The package is never installed

5.3.1 Default assignment
If no other pin is specified the package version receives the same priority as

the distribution to which it belongs. There are two ways of making a specific

distribution the “target release” (i.e. give it the highest priority) ; by specifying

it in the APT configuration file (APT::Default-Release “stable”) or by

specifying it in a command line argument (APT-get install –t testing <package

name>). APT-get gives the packages three different, default, values:

 100 – to versions already installed

 500 – to versions who are not installed and don’t belong to the specified

release, whether one is specified or not.

 990 – to versions who are not installed and belong to the specified

release, if one is specified.

5.3.2 APT preference file
To specify a pin-priority for a package or several packages you use the

following notation:

 Specific package and version:

Package: <package name>

Pin: version <package version>

Pin-Priority: <priority>

 All packages from a specific location

Package: *

Pin: origin “<package producer>”

Pin-Priority: <priority>

14

 All packages from a specific release with a specific version

Package: *

Pin: release a=<archive name>, v=<version>

Pin-Priority: <priority>

15

6 Package dependency solving

6.1 Definitions (Treinen R. Z., 2008)

To simplify the reasoning we let be a package in a repository R, and set to

be installed in an empty environment.

We define the function:

where are the packages that depends on directly. can

therefore be said to represent a set of packages with every package that is

directly or indirectly depending on for its installation.

It is trivial to deduce that contains at least one set of packages that,

without regards to constraints, solves the dependencies of package .

We can therefore state that has a set of subsets

where each subset is enough to solve the dependencies of . Given the

repository R as a set of packages {p1, p2, p3, ... , pn}, we define the function,

C(R), as the set of conflicts and/or other constraints that exists

between the packages in R.

Definition For package to be installable with regards to R, has to

have at least one subset: where .

6.2 Heuristic rules

 The relationship “predepends” is a stricter version of depends, and can

therefore be treated as a “depends” relationship when resolving the

dependencies of a package.

 The relationships “recommends”, “suggests” and “enhances” are not

vital to resolving the package dependencies.

 The relationships “breaks” and “conflicts” may restrict the ability of one

or many “sub-dependencies” to be resolved.

 If there are several different alternative sets of packages that will

resolve a certain package dependency, and at least one of those “sub-

dependencies” is resolved, the inability to resolve the other, alternative,

sets does not affect the possibility to resolve the entire dependency-tree.

 The relationship “replaces” is just a marker for special cases of

“conflicts” or “breaks”, and as such it does not, in itself, affect the

ability to resolve the package dependencies.

16

6.3 Package pendency solving as a SAT1 problem (Treinen R. Z.,
2008)

The lack of completeness in APT-get’s solving algorithm, discussed above, is

not a problem for the average Debian user, who will most likely not even

notice that his system contains packages that are not used by the other parts of

the system. They shouldn’t cause any major conflicts and if they do some time

in the future they are bound to be removed, since there are no other packages

that depend on them. But for a smaller system like an android system on a

smart-phone, extra packages without any function are using valuable resources

and are most unwelcome.

When treating dependency solving as a SAT problem end reverting the

problem into solving a Boolean expression you can create a solver that is

complete. And furthermore if reverting it to a pseudo-Boolean problem you

can optimize the solution with regards to different variables: size, latest

version etc.

6.3.1 Expansion
Before reverting the dependencies into a Boolean expression one must first

expand the expressions so that expressions of the type,

package: a

depends: b (>= 2), d

conflicts: c

,given that package b exists in version 1, 2 and 3, becomes the discrete

expression:

package: a

depends: b(=2) | b(=3), d

conflicts: c

Furthermore the virtual packages have to be reverted into Boolean expressions

as well. This is done by simply stating that the virtual package is a package

that depends on the various packages that provides it,

package: a

…

provides: v

package: b

provides: v

1 Boolean satisfiability problem

17

which gives the virtual package v the following expression:

package: v

depends: a | b

The rest of the packages in this short example, introducing the dependencies

of the two separate versions of package b, and the two packages d and f that

have no dependencies, would then be expanded as follows:

package: a

depends: b(=2) | b(=3), d

conflicts: c

package: b

version: 2

depends: d, f

conflicts: e

package: b

version: 3

package: d

package: f

6.3.2 Installabilty of a package as a Boolean expression

Definition 1 An installed package corresponds to the Boolean value “true”

whereas a package wich is not installed is corresponds to the Boolean value

“false”.

Definition 2 B(p) denotes the Boolean expression of the installability of

package p.

The Boolean expression for package a and the packages a depends upon or

conflicts with, in the previous example would then be:

18

This interprets as: For the expression B(a) to result as a “true”, package d has

to be installed with either package b version 2 or package b version 3, package

c must not be installed.

6.3.3 Boolean expression for an entire installation
The Boolean expression for the installation of package a in the above example

would be:

This has two solutions:

1. a = true, = true, d = true, f = true, c = false, e = false (with package

 installed)

2. a = true, = true, d = true, c = false (with package installed)

6.3.4 Optimization
A simple example is optimization with regards to number of packages, which

would translate to the solution with the fewest amounts of “true” variables

(installed packages). As not to get close to infinite number of solutions, one

must first discard the trivial solutions where packages that does not depend on

or conflict with any other packages and are not depended on by any of the

packages in the installation are installed.

Using a pseudo Boolean expression where “false” is interpreted as 0 and

“true” is interpreted as 1, and the packages are weighted with one of their

attributes: size, version, accessibility etc, makes it fairly straightforward to

choose the installation that requires the least disc-space or which installation

that takes the least time to download. An example of optimization with regards

to memory would be the given example of an installation of package a (above)

where the packages would occupy memory as follows:

Package a – 1kB

Package – 2kB

Package – 4kB

Package d and f – 0.5kB

Solution 1:

Solution 2:

Such optimization might come in handy in the general case of package

installation, whereas in the case of SEMC’s package management, multiple

possible solution, would translate into a non valid installation since specific

software configured according to customer requirements cannot have any

alternatives.

19

7 Using APT-get with external solvers

7.1 Technical background

7.1.1 APT-CUDF (Debian team)
APT-cudf provides integration between APT-get (EDSP) and external, CUDF-

based, dependency solvers.

7.1.2 CUDF (Treinen & Zacchiroli, 2009)
CUDF, Common Upgradeability Description Format, is developed by

Mancoosi and is used to describe and encode upgrade scenarios. It is an

intermediary file format between APT-cudf and the external solver.

7.1.3 EDSP
EDSP is an intermediate file format between APT-get and external solvers. It

resembles the Packages file (described in 2.3) and CUDF but has some APT-

specific fields. This intermediary format can be used to link an external solver

to APT-get. It is supported from APT version 0.8.16, which can be found in

debian-experimental and ubuntu-oneric amongst other distributions.

7.2 External solvers

With the aforementioned framework there are two possible alternatives:

1. Connect the external solver at the EDSP level.

2. Use APT-cudf and connect the external solver at the CUDF level.

Picture 1 Schema over APT-get with external solvers.

7.3 Finding alternatives to APT-get, the SEMC Solver

One of the objectives of this thesis was to find and evaluate alternatives to

APT-get for SEMC. The findings presented in this thesis, with regards to

using APT-get with an external solver, was regarded as an optimal solution,

since there would be no need to change meta installer, with the overhead that

this would result in.

20

The first attempt with a SAT based solver gave very promising results as this

solver managed to pass all the scenarios considered to mimic the complexities

in the near future.

Shortly thereafter SEMC started to develop their own solver that would be

tailored for their needs and the task of finding alternatives was deemed

completed.

21

8 Graph representation of package Dependencies

In the graph representation of package dependencies the actual graph consists

of the “depends” relationships that one package has to other packages. The

other relationships are regarded as attributes of the various nodes.

8.1 Terminology

A short summary, explaining the different terms used in this thesis when

discussing dependency graphs:

Root – Representing the product package, or the “top” of the dependency

graph.

Node – Representing a package in the dependency-graph structure. Root is a

special case of node.

Edge – In the graph representation of the dependency structure a dependency

is represented by an edge.

Sub-dependency-graph – A dependency graph that begins with a node, in the

dependency graph, other than the root.

Resolved dependency – a dependency where each sub-dependency is

resolved.

Dependency-graph – Representing every package and dependency from the

root down, resolved or unresolved.

Resolved dependency-graph – A dependency graph with every dependency

resolved from the root down.

8.2 Circular dependencies

A circular dependency is a dependency where a package depends on another

package that directly or indirectly depends on the first package. Such a

construction is possible and supported by APT-get. It is however considered a

bad construct. With packages with circular dependency it is obvious that at

least one of the packages will fail to have its dependencies resolved before

configuration.

8.2.1 Dealing with cyclic tendencies in a DAG (Directed Acyclic Graph)
representation
In this thesis I will not attempt to solve these cyclic tendencies, with respect to

which package should be unpacked first. In that sense cyclic dependencies are

not a problem I will consider as such. However with the presence of cyclic

dependencies it is no longer certain that the graph representing the

dependencies is a DAG.

To prevent this scenario I will treat the loop back to the previous package as a

“virtual” sub-graph that is resolved when/if all other dependencies are

resolved for the two inter-depending packages.

22

23

9 Pamp – A Package Dependency Graph Visualization
tool

Picture 2 The main menu of Pamp, the node ”app-storefront-ed” is selected in the overview graph and its

immediate relationships are described in text in the “package info” window, and in a graphical presentation below

the main menu. Traversal is made possible by selecting nodes in the sub-graph-window to make them come in
focus.

9.1 Introduction

One part of this bachelor thesis was to create a Visualization tool for Debian

packages in a SEMC software composition. As a request from SEMC this tool

was implemented using the Java programming language.

9.1.1 Technologies
Programming language: Java SE 1.6

External libraries: JGraphX Version 1.8.0.2 – Graph visualization library.

IDE: Eclipse Indigo Version 3.7.0

9.2 Start

9.2.1 Input Parameters

 Name of the temp catalog.

 Variant – SEMC specific identifier for different variants of a

composition.

24

 Root package – The name of the “main” package.

9.2.2 Set Up
When building a software composition the actual build is made in a temp

catalog in which an environment, for APT-get to function in, has been set up.

Given the name of this catalog the etc/apt/sources.list file in said catalog is

parsed to get the packages-files of the used repositories. From these

repositories meta-data about the packages are gathered.

From the temp catalog /var/log/apt/history.log is parsed to get which packages

were installed. If no packages were installed then the packages that should

have been installed, did the build succeed, are used instead.

9.3 Data objects and data object construction.

In accordance with the theory of chapter 3 the graph consists of nodes and

edges.

Picture 3 Description of a simple depends relationship described with the data objects, package: A, depends: B,CD.

9.3.1 DependencyNode
The DependencyNode has the following attributes.

 Package name – The name used in the Package meta data.

 Package ID name – Node specific name (a concrete and a virtual can

share the same name, there can be several versions of the same package

with the same name).

 Version – the version of the package.

 Package status – Concrete, Virtual or Broken (a package is considered

to be broken if another package is depending on the package and the

25

package is not available from the repositories specified in the temp

catalog).

 Lists of DependencyEdges representing the different relationships

specified by the Debian Binary Package Control File dependency fields,

as specified in 2.3.

The construct of having the DependencyEdges in lists enables easy traversing

of the graphs.

9.3.2 DependencyEdge
Given the nature of the depends-relationship (see 2.3.1) the dependency edges

come in two flavors.

 DependencyEdge

 MultipleDependencyEdge (that inherits DependencyEdge)

With this construction all DependencyEdges can be treated the same way

dynamically. When installed the MultipleDependencyEdge works as a

DependencyEdge since the dependency is solved by only one of the possible

alternatives.

The DependencyEdge has the following attributes:

 Multiple flag – a flag representing whether the DependencyEdge is

multiple or not.

 Resolved flag – a flag representing whether the DependencyEdge is

resolved or not. Used if all the alternatives are to be displayed in the

graph.

 Origin DependencyNode – a reference to the DependencyNode where

the DependencyEdge originates.

 Endpoint DependencyNode – a reference to the DependencyNode that

is the DependencyEdge’s endpoint.

 Endpoint name – used to get the reference of the endpoint

DependencyNode, when a DependencyEdge is created only the origin is

known, the endpoint is solved later.

 Edge type – the type of relationship this DependencyEdge represents

(see 3.2.1).

The MultipleDependencyEdge also has the attribute:

 Alternatives – a list of DependencyEdge’s representing the different

alternatives.

9.3.3 DependencyNodeFactory
A factory that creates DependencyNodes from the metadata provided in the set

up.

9.4 Building the Graph

After the set-up, all the data that is needed to building the package dependency

graph is available.

26

9.4.1 PackageDepenencyTreeBuilder
First of the graph is built recursively from the root-package and down with the

PackageDependencyTreeBuilder using the nodes provided by the

DependencyNodeFactory. The PackageDependencyTreeBuilder also holds the

attribute:

 Installed packages – a HashMap of the packages that where installed (if

any).

9.4.2 PackageDependencyTree
(The name “tree” is somewhat misguiding because the graph in question is not

necessarily a tree. The term “tree” is therefore not equivalent of the graph-

theory term.)

The result of the graph build is a PackageDependencyTree that have the

following attributes:

 Nodes – A HashMap of the nodes of the tree.

 Edges – A HashMap of the edges of the tree.

 Root package – the name of the package that is the root of the tree.

 Solved flag – a flag representing whether the graph is solved.

The PackageDependencyTree also has functionality to:

 Create a PackageDependencyTree that represents a sub graph

represented by the specified DependencyNode and its immediate

“neighbors” (This sub-tree is used to implement the graph traversing

functionality).

 Return a list with packages that has a relationship to the given package

and the nature of those relationships (see 2.3.1).

9.5 Visualizing the graph

The classes used for visualization of the graph where based on the JGraphX

library.

9.5.1 GraphVisualizer
An abstract class was created to deal with common functionality such as node

and edge shape and color, producing visual nodes and edges from the edges

and nodes in a PackageDependencyTree, various settings for layouts etc.

Furthermore this class contained functionality to alter the visualized graph: set

visual edge and/or node labels etc.

The class was instantiated by two concrete classes:

 One to display an overview of the SEMC specific dependency graph.

 One to display a sub graph, which was used when traversing the graph.

9.6 JGraphX

JGraphX is a library based on the Swing framework. Its main use is for graph

presentation, normally with much smaller graphs than the ones I aimed to use

it for.

27

9.6.1 Selecting graph library
After evaluating different graph visualizing libraries such as Graphviz and

Jung, the decision was made to go with JGraphX.

The main reasons for choosing JGraphX where:

 Java library – no porting

 Free/Open source

 Swing compatible – easy to integrate into a Swing GUI

 Flexible

 Up-to-date

Initial trials proved that it would be possible to produce an acceptable result

with this library.

9.6.2 Working with JGraphX
As JGraphX is a free Java version of a non-free javascript library most of the

tutorials and support forums concerned the javascript version, which naturally

have a slightly different behavior. This together with the fact that the library is

poorly documented, if documented at all, resulted in that the workload to “get

to grips” with the library was quite extensive; two to three working weeks.

Nevertheless after it was tweeked into functioning as expected there was much

to be gained by using functionality that was already built in.

Even though it meant some hacking to modify it to function for larger graphs,

the result was pleasing and the choice of graph library was, if not optimal,

than by far satisfactory.

9.7 Overview layout

Since graph visualization is regarded as a NP complete problem, making a

visualization tools for visualizing an overview of a arbitrary graph would fall

way out of the scope for a bachelor thesis, even creating a layout that would

present a readable graph for the specific graph provided by SEMC’s

composition proved to be challenging. Since the graph was fairly flat, quickly

expanding in the early stages, the only way to present it would be to place the

root node in the middle of a circular layout of the nodes in the next stage,

thereafter the sub graphs of each node in this circle would expand

perpendicular from the circles edge, creating a sun like pattern.

Implementing this with the JGraphX library was no easy task, and this part of

the implementation was by far the most timeconsuming.

9.8 Graph traversing

The graph traversing was implemented by displaying the chosen node in a

small sub-graph with all the nodes that have direct relationships with the

selected node. In this graph every node is selectable and on selection the sub-

graph for the selected node is displayed. This, together with a text field that

displays the meta- data concerning the selected node, proved to be a powerful

28

tool for graph traversal. In most cases an overview says little about the

problem at hand. Focusing on the area around the problem-package gives

more information about the problem at hand.

9.8.1 Why graph visualization and traversing?
The most common way of debugging a faulty installation is by examining log-

files or the packages-file itself. The latter means following the relationships in

a file that lists 8000+ packages, searching for anything in such a file, with only

the “find” command of the text editor, is a fairly time consuming task. Man is

not optimized for searching lengthy text-files; a graphical representation

makes more sense and is more easily comprehended.

29

10 Package Dependency Requirements Specification

The requirements specification consists in large parts of information that

SEMC, of obvious reasons, does not wish to be displayed in an official

document. This chapter is therefore a general description of the requirements

and the elicitation process.

10.1 Analysis

Since the goal of the requirement specification was to specify requirements on

future dependency structure, it was vital to keep the requirements on an

abstraction level above the present environment (i.e. APT-get and the Debian

package). This also made it natural to keep the elicitation process as open

discussions. To create a valid requirements-specification of dependencies, as

used in the composition process, the first objective was to obtain a deeper

understanding of the process that led to the dependencies being introduced and

identify possible stakeholders.

10.2 Stakeholders

After analyzing the package dependencies, the processes that introduced them

and the processes that dealt with them the following stakeholders became

apparent.

10.2.1 Product Configuration Manager
Responsible for the package configuration top entities, and with the

dependencies of these entities define the package configuration.

10.2.2 Software Configuration Manager
Responsible for compiling source code and package the resulting binaries in

Debian packages and making them available in the repository. Also

responsible for updating the packages-file of the repository.

10.2.3 External Applications Configuration Manager
Responsible for packaging external applications into Debian packages and

making them available in the repository.

10.2.4 Platform Development Configuration Manager
Responsible for handling of platform specific resources. None of the

requirements originated from Platform Development.

10.2.5 Content and Customization
Responsible for handling customer requests and providing a customization

entity that implement said requests and making it available in the repository.

10.3 Start up

After defining the stakeholders and their role in the organization a meeting

with these stakeholders was held to get a clearer view of what types of

30

requirements were to be expected and which the common requirements where

for the stakeholders. Instead of having a clear agenda, a graph of the workflow

in direct relation to the dependencies where used as a discussion basis. The

workflow graph consisted of the aforementioned stakeholders and the way

they interacted with various components such as: the Debian package

repository, the source code, customer requests etc.

10.4 The Document

After the startup meeting, when the nature of the requirements became more

apparent I decided to compose the document as follows:

1. Introduction – Background and goal for the document as well as a short

description of the content.

2. Stakeholders – A description and categorization of the stakeholders.

3. Elicitation – A record and short description of the various meetings,

what subjects that where discussed and the requirements introduced at

the meeting, if any.

4. Requirements – The requirements, categorized by the different

stakeholders and one category for common requirements.

5. Requests – Requirements that were not directly related to package

dependencies.

6. Issues – Issues with the composition that became apparent as the

document progressed.

10.5 Elicitation meetings

The meetings were held at SEMC. After the start up meeting, meetings were

held with the various stakeholders, department by department. When adjoining

topics emerged meetings were scheduled with all the interested parties. The

requirements and discussion from the start up meeting worked as a basis for

discussion in the various follow up meetings.

Apart from being vital in requirement elicitation, these meetings also led to a

deeper understanding of the background of the requirements and as a

consequence led to a more concise formulation of the requirements.

10.6 The requirements

Apart from requirements specific for the SEMC software composition there

emerged three common requirements:

1. Separate the “actual” dependency relationships from the structural

definitions.

1.1. The present package structure is used for structural purposes , these

structural definitions could be handled at a different level then the

package dependencies.

31

2. Let the *.deb package dependency attributes reflect the actual

dependencies and conflicts of the resources contained within the package.

2.1. The inter package relationships are at a abstraction level where the

underlying dependencies and conflicts of the resources contained

within the packages are not visible.

3. Change the structure to facilitate the possibility of defining higher level

entities.

3.1. If high level entities, such as features etc., where used, the dependency

structure would to a higher extent mirror the underlying software.

10.7 An implementation suggestion

At request from SEMC, an appendix was added to the requirements

specification. This appendix contained suggestions on how to implement the

requirements specification. The implementation suggestion concerned mainly

the issues presented in the first and third common requirements described in

chapter 10.6. To keep track of the dependencies of the resources of every

package was deemed a far to labor intensive task to fit the scope of a bachelor

thesis, and therefore there was given no suggestion on how to implement

requirements linked to this requirement.

10.7.1 First common requirement
The implementation of the requirements related to the first common

requirement mainly concerned different levels where to introduce the

structural definitions. One possible alternative is the extraction of sub-

packages-files at different levels: per product, per composition etc. one of the

benefits from extracting a sub-packages-file for every composition would be

the improved backwards-traceability of every build.

The extraction of these packages files could either take place pre packages file

creation, from the data that is used to create the master packages file, or they

could be parsed using a SEMC specific field in the package metadata.

10.7.2 Third common requirements
The implementations of the third, common, requirement, dealt with: how a

dependency structure could be realized in order to implement the requirements

concerning the ability to define features and other subsets of packages. One of

the main benefits from such a structure would be that decisions on the top

level configuration would be restricted to which features and functionality to

include. The dependency structure would also be human readable since the

dependencies would make the different high level entities identifiable. With

the present dependency structure there is no easy way identify which packages

that provides a certain feature, and removal or management of such a feature

can be a difficult and time-consuming task.

32

Picture 3 Feature package configuration

Picture 4 Final configuration after implementation (DPC - Deliverable Product Configuration, PCC - Product
Core Configuration, CS - Configuration Settings)

10.8 Positive side-effects

Apart from resulting in a requirements specification, the elicitation process led

to a number of fruitful cross apartment discussion that in them self could

prove to be vital in the composition structure remodeling process.

33

11 Conclusions

This thesis has successfully reached all of the three major goals described in

chapter 1.4.

11.1 Implement visualization tool

All the requirements in the problem description have been fulfilled by the

implementation, Pamp. Pamp have the potential of becoming an important

tool for debugging dependency structures, since graphical representation

makes the dependency structures more readable to man, and the traversing

functionality increases traceability of dependencies.

11.2 Identify and specify requirements on dependency structures

The requirement specification together with the implementation suggestion

gives valuable information about how the dependency structures of SEMC’s

build system could or should be modified, and is a vital piece in the puzzle

towards modifying the product configuration process.

11.3 Find alternative solutions to present build system

APT-get, using its own dependency solving algorithm, does not fulfill the

requirements SEMC has on a dependency solving meta-installer. APT-gets

inability to find existing solutions and tendency to install packages without

valid reason makes it a liability in the software composition process.

As presented in this thesis, using APT-get with an external solver, based on

the Boolean method that provides complete solutions and possibility for

optimization, is a powerful alternative that leaves customization of the other

tools in the composition chain to a minimum since APT-get remains the

interface towards package installation.

34

35

12 Future work

12.1 Further development of Pamp

The need for dependency graph visualization tools outside SEMC build

system would promote developing Pamp into an open source application

suitable for Debian package infrastructure in more general environments, i.e.

Debian distributions on personal computers.

12.2 Graph visualization and graph layout

Further research into graph visualization in general and graph layout in

particular should be promoted since graphs are a powerful tool to describe

processes, not only in computer science and software installation, and

visualization is vital in any information relay.

12.3 At Sony Ericsson Mobile Communication

Implementing some or all of the requirements in the requirement specification

should be a main concern for SEMC, since they stem from internal, valid,

sources. SEMC is currently developing their own solver based on the Boolean

method, as a direct result of the findings made in this thesis described in

chapter 6.3 and 7.

36

37

13 References

APT team. (2003, 8 17). apt_preferences(5). Retrieved 10 5, 2011, from

http://linux.die.net/man/5/apt_preferences

Debian team. (n.d.). Package: apt-cudf (2.9.8-1). Retrieved 1 12, 2012, from

packages.debian.org: http://packages.debian.org/experimental/apt-cudf

Debian Team. (2011, 08 27). The Debian GNU/Linux FAQ: Chapter 8 - The

Debian package management tools. Retrieved 9 1, 2011, from

www.debian.org: http://www.debian.org/doc/manuals/apt-howto

EDOS project team. (2006, 03 2). EDOS - package managers. Retrieved 01

13, 2012, from www.mancoosi.org:

http://www.mancoosi.org/edos/manager/#toc30

Garbee, B. e. (2011, 12 31). A Brief History of Debian. Retrieved 1 11, 2012,

from www.debian.org: http://www.debian.org/doc/manuals/project-

history/index.en.html

Jackson, I., & Schwartz, C. (2011, 04 07). Debian Policy Manual version

3.9.2.0. Retrieved 01 11, 2012, from www.debian.org:

http://www.debian.org/doc/debian-policy/

Joseph Diaz, J. P. (2000, 10 17). A Survey of Graph Layout Problems.

Retrieved 01 19, 2012, from www.citeseerx.ist.psu.edu:

http://citeseer.ist.psu.edu/viewdoc/download?doi=10.1.1.12.4358&rep=rep1&

type=pdf

Mancoosi. (n.d.). EDOS. Retrieved 01 17, 2012, from www.mancoosi.org:

http://www.mancoosi.org/edos

Mancoosi. (n.d.). mancoosi - managing software complexity. Retrieved 01 17,

2012, from www.mancoosi.org: http://www.mancoosi.org

Stallman, R. (2012, 01 02). Linux and the GNU Project. Retrieved 01 11,

2012, from GNU operating system: http://www.gnu.org/gnu/linux-and-

gnu.html

Treinen, R. Z. (2008, 11 24). Solving Package Dependencies:. Retrieved 09

16, 2011, from http://arxiv.org/abs/0811.3620v1

38

Treinen, R., & Zacchiroli. (2009, 11 24). CUDF 2.0 specification. Retrieved

01 12, 2012, from www.mancoosi.org:

http://www.mancoosi.org/reports/tr3.pdf

39

14 Acronyms

SEMC Sony Ericsson Mobile Communication

APT Advanced Packaging Tool

EDSP External Dependency Solver Protocol

DPKG Debian Package, software used to install, remove and provide

information about Debian packages.

PAMP Package Management Project

DAG Directed Acyclic Graph

SAT Boolean Satisfiability

CUDF Common Upgradability Description Format

