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1 Background

The society of today relies heavily on transportation. Goods and people are trans-
ported across the globe at an unpreceded scale and volume. The Internal Combustion
Engine (ICE) is today an integral part of the world’s transportation systems. Com-
bustion engines emit greenhouse gases that contribute to global warming, one of the
most serious global threats today. Although the extent and the urgency of taking
action are debated, there is no doubt that we have to drastically reduce our car-
bon emissions. Rising fuel prices is another concern for engine manufacturers and
their consumers. Growing environmental concerns coupled with increasing fuel prices
are driving the development of cleaner and more efficient engines. One of several
ways to increase efficiency and reduce exhaust emissions is the use of variable valve
actuation.

1.1 Introduction

This thesis is part of a Homogeneous Charge Compression Ignition (HCCI) project
that is a cooperation of Volvo Powertrain, Cargine, the department of Combustion
Engines and the Department of Automatic Control at Lund University (Swedish
Energy Agency, Diesel Combustion with Low Environmental Impact, Ref FFI-LV,
project nbr 32067-1). The cylinder head of the target Volvo D12 engine, a 12-liter
six cylinder heavy-duty engine with six cylinders and 24 valves, has been outfitted with
pneumatic valve actuators from Cargine [1] that enables Variable Valve Actuation
(VVA). VVA essentially gives full control of valve lift, lift duration and timing at all
engine speeds and loads. Free valve control gives control of swirl and internal Exhaust
Gas Recirculation (EGR). It can also be used for pneumatic hybridization, capturing
energy usually lost from braking and storing it as pressurized air. This thesis aims
at implementing a control strategy that minimizes cylinder-to-cylinder variations and
cycle to cycle variations. Black-box modeling was used to develop a suitable valve
model and a feedback controller was implemented.

1.2 Task

The aim of this thesis is to implement a control system of Cargine valves in a Volvo
D12 cylinder head, a 12-liter heavy-duty engine with six cylinders and 24 valves.
The cylinder head is to be used in a laboratory engine at Lund University. The task
consisted of two parts. Investigation of relationship between control sequence ud and
valve displacement yd . The second part is to create a feedback controller to obtain
desired Valve Opening (VO) timing yV O, Valve Closing (VC) timing yV C and lift yL
through the control parameters: start of control pulse uV O, end of control pulse uV C
and actuator pressure uP .

1.3 Variable Valve Actuation

Valves are the standard option for facilitating gas-exchange in an ICE. Gas-exchange
is the process in which burnt gases are removed from the combustion chamber and
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exchanged with fresh air (direct injected ICE) or a mix of air and fuel (port injected
ICE). Conventional valve actuation is done through camshafts with a fixed valve
profile. However, the optimal valve profile is dependent on engine speed and load,
whereby the valve profile is bound to be a compromise. VVA gives the opportunity
to have specific lift profiles for every operating condition. Optimal VO and VC tim-
ings are dependent on load and speed conditions. For example, a spark ignition race
engine operating at high engine speeds keeps the inlet valve and exhaust valve open
longer to facilitate a quick gas exchange. However this setup will produce rough
idling and poor performance at low engine speeds since unburned fuel will exit the
open valves. Variable valve time thus gives greater efficiency and power across a
wider range of engine speeds [2, p. 215].

Variable valve actuation is fundamental for concepts yet to be commercialized; pneu-
matic hybrids, cylinder deactivation and it’s beneficial for HCCI. Pneumatic Hybrids
are a hybridization that has the potential of regenerating a substantial amount of
braking energy and reuse it for acceleration. A simulation study has shown the poten-
tial benefits of the pneumatic hybrid bus. A fuel consumption reduction of between
8 % and 58% was achieved, highly dependent on driving patterns [3]. Deactivating
cylinders enables the engine to run more efficiently at low loads because the still
active cylinders operates more efficiently at higher load. HCCI is an ICE in which
well-mixed fuel and oxidizer are compressed to the point of auto-ignition and promises
greatly increased fuel efficiency and lower emissions.

1.4 Camshaft-based VVA Strategies

Camshaft-based strategies have some extra components that enables the change
of timing, lift or a combination of the two. Camshaft phasing system rotates the
camshaft in relation to the crankshaft. The valve timing are changed but the dura-
tion and lift remain the same. A simple system offer the possibility to switch between
a set of profiles while a more complex system can change the timings continuously.

Cam profile switching is a way to change the duration and lift by switching the cam
profile. There are several different implementations of this, one being theMitshubishi
Innovative Valve timing and lift Electronic Control (MIVEC) [4]. The MIVEC system
has one low speed cam, one high speed cam and two rocker arms. The system uses
one rocker arm at a time or none, in other words the system offers valve deactivation.
There are also systems combining cam phasing with cam profile switching. Porsche’s
VarioCam Plus is such a system which has three cam profiles that offers 4 different
lift curves for the intake valves, all can be seen in Figure [5].

Combining both variable lift and timing can be done in cam-based systems in sev-
eral ways. See for example [6] for a description of the BMW Double Vanos system
that is the foundation for the BMW Valvetronic system that offer fully variable valve
actuation [7].
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Figure 1: VarioCam Plus valve lift curves [5]

1.5 Camless-based VVA Strategies

Camless-based VVA strategies offer great adjustability of valve timing and lift. The
drawback is that these systems are often complex and expensive and mainly used in
laboratory settings. Several different approaches has been proposed including elec-
tromagnetic, electro hydraulic and electro pneumatic systems.

ElectroMagnetic Valve actuation (EMV) systems uses a series of solenoids, springs,
a permanent magnet and an electromagnet to actuate the valve. Besides the flexi-
bility, the benefit with the EMV systems compared to a conventional camshaft-based
system is the steep VO and VC. One critical problem with an EMV system is the
control of valve seating velocity, a high seating velocity leads to high noise levels. It
has been shown that to mitigate this problem closed-loop feedback is needed [8]. A
successful solution is to have feedback from a measurement of the location of the
armature inside the actuator, see Figure 2.

Electro Hydraulic Valve actuation (EHV) systems use the elastic properties of a
compressed hydraulic fluid. The fluid acts as a liquid spring, accelerating each valve
during its opening motion and decelerating it during the closing motion. Ford has
developed an EHV system [9], which has been illustrated in Figure 3a. The seating
velocity is also a challenge with this system but can be solved by a practical solution,
a hydraulic snubbing action illustrated in Figure 3b.

Electro Pneumatic Valve actuation (EPV) system is a promising alternative to the
aforementioned EHV and EMV system. Both EHV and EMV systems perform well in
research settings, but have issues making them less suitable for production engines.
The EMV system suffers from high noise and packaging issues, while the EHV system
have problems with temperature variations and is expensive. EPV system are com-
paratively cheap, have the characteristics of a fully variable valve actuation system
and low seating velocity. Additionally the system is more robust since to air leaks are
less hazardous than oil leaks in an hydraulic system [10].
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Figure 2: Electromagnetic valve actuation system [8]

(a) Illustration of EHV system (b) Lift profile

Figure 3: Ford’s electrohydraulic valve actuation system [9]
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In this project, the EPV system used has been developed by Cargine Engineering
AB. A previous version of the system has been evaluated in [11] and a mathematical
model of the same system can be found in [12]. The current version used in this
project has been partially redesigned and only use one solenoid in the actuator, but
the fundamental dynamics of the actuation remain the same. This project is the first
multi-cylinder laboratory setting in which the system is used and the first time the
system is used in a diesel engine.
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2 Experimental Setup

The test rig is a Volvo D12 cylinder head, from a 12-liter heavy-duty engine with six
cylinders and 24 valves controlled by 24 Cargine actuators. A dummy cylinder has
been added beneath the second cylinder head as seen in Figure 4 in order to have
the exhaust valves open against a variable pressure.

Figure 4: Experimental setup

2.1 Actuators and Sensors

The control system setup consists of a target Personal Computer (PC) equipped
with a NI PCIe-7842R FPGA card [13]. The FPGA has programmable logic utilized
for sensor data acquisition, preprocessing and control signal generation. The sensors
and actuators consists of 24 Cargine EPV actuators, 24 analog lift sensors and three
air pressure regulators, two of which are electronically controlled Rexroth ED05 [14]
and one is a Norgren R07-200-RNKG [15]. The Rexroth pressure regulator controls
the intake valve air pressure and the exhaust valve air pressure and can be seen
mounted on the back wall in Figure 4. The Norgren pressure regulator is used to
change the pressure in the dummy cylinder. A mock engine is attached to the FPGA
card, sending a pulse each 1/5 Crank Angle Degree (CAD) to simulate a moving
piston, and another pulse at the start of each cycle, running at 1200 Revolutions
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Per Minute (RPM). The valve control system was built in Labview, a graphical
programming language developed by National Instruments.

2.2 Electro Pneumatic Valve Actuators

Cargine EPV actuators use pressurized air to push the valves into the open position
when the control signal is sent. Once in place, a hydraulic latch mechanism holds
the valves in place until the control signal is driven low; thereafter the valves dislodge
and close. The actuators have three parameters by which they can be controlled:
the air pressure uP , the VO timing uV O and the VC timing uV C. The actual signal
sent to the actuators u is given by

u(k) =

{
1, if uV O ≤ k ≤ uV C
0, otherwise

(2.1)

and uP is sent to the air pressure controller. The actuators are fed oil with 6
bar pressure and air with a pressure between 0-10 bar. The building’s common
air compressor provides a 50 liter tank with pressurized air at about 7 bar. The tank
is coupled with an air pressure amplifier that raises the pressure to 11 bars, which
is fed to the air pressure regulators seen on the back wall in Figure 4 that regulates
the pressure of the air fed to the Cargine EPV actuators.

2.3 Analog Lift Sensor

The analog lift sensor was used to measure valve lift. The lift sensor is mounted
as seen in Figure 5. The lift sensor outputs a square-wave with a frequency that
depends on the valve lift. As the frequency was not a linear function of the lift, a
second order mapping was obtained.
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Figure 5: Actuator setup
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3 Implementation

The control program is distributed in the sense that the actual controller is imple-
mented in the labview control program, while the FPGA card sends control signals,
receives measurement data, performs some signal processing, and communicates
with the PC. The structure and flow of the control program has been visualized in
Figure 6. The lift sensor readings is received by the FPGA card where outliers are
removed and the data filtered with a moving average filter and down-sampled. The
lift data is sent to the host, converted to valve lift, and then optionally fed to a
Kalman filter. Each cycle, three outputs are extracted from the valve valve lift data.
First, the VO time yV O, defined as the CAD when the valve position has reached
the trigger level T . Second, the VC time yV C, defined as the the CAD when the
valve position has fallen to T . Two trigger levels have been tried, 1mm and 4mm.
The third output is the valve lift yL when the valve is fully opened, calculated as the
average lift during a section of the valve lift event. The first two extracted outputs
can be expressed conveniently as⎧⎨

⎩
T = yd(yV O)
T = yd(yV C)
yV O < yV C

Figure 6: Control program structure
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3.1 Labview

Labview is a graphical programming language where an application is constructed by
wiring together provided building blocks. The Labview application has two sides, the
front panel and the block diagram. The block diagram is where functional blocks are
wired together and the controls and indicators of the front panel are connected. For
an introduction to Labview programming and a reference manual see the Labview
User Manual [16]. The front panel is the Graphical User Interface (GUI), designed
to simulate the interface of a real hardware. The GUI of the control program can
be seen in Figure 7. To the left, there are toggles to activate the control of VO and
VC, in the center, the VO and VC times can be set, and to the right the valve lift is
shown.

Figure 7: Labview control program

3.2 Field Programmable Gate Array

The FPGA can be reconfigured after manufacture, which gives the programmer
opportunity to change the function of the FPGA card as the requirements of the
application changes. The drawback is that the design is less optimized, leading to
greater use of area, reduced execution speed and increased power consumption [17].
The FPGA card used, NI PCIe-7842R, has 96 digital Digital Input/Output (DIO)
lines, 8 analog inputs, 8 analog outputs and a built in clock that runs at a frequency of
40 MHz. The FPGA card enables simultaneous execution of parallel task. In Table 1
The programmable logic blocks of the FPGA is the flip-flop, Lookup table (LUT),
embedded block Random Access Memory (RAM) and DSP48 slices. The n-input
LUT can implement any n-input boolean function as a truth table. Flip-flops are
circuits that have two stable states and can be used as data storage elements. The
flip-flop circuit change state when the control input signals change. Block RAM can
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be used to store datasets or pass values between parallel loops and thereby reduce
the number of flip flops used. Multiplication is resource intensive in the number of
LUTs and flip-flops used. DSP48 slices integrate a 25-bit by 18-bit multiplier with
adder circuitry. Please see the documentation for further details [18]. On the FPGA,
data acquisition and some rudimentary signal processing take place. Each rising edge
of each lift sensor triggers a FPGA DIO channel and the time between rising edges
is measured. The time measurements are in clock ticks of the built-in clock, running
at 40MHz .

Table 1: FPGA specifications

NI 7842R

FPGA type Virtex-5 LX50

Number of flip-flops 28,800

Number of 6-input LUTs 28,800

Number of DSP48 slices (25 ∗ 18 multipliers) 48
Embedded block RAM 1,728 kbits

Analog Input Channels

Number of Analog Input channels 8

Maximum sampling rate 200 kS/s (per channel)

Analog Voltage Input Range ±10 V

Analog Output Channels

Number of Analog Output channels 8

Maximum update rate 1 MS/s

Analog Voltage Output Range ±10 V

Digital I/O channels

Number of Digital I/O channels 96

Minimum sampling period 5 ns

Digital Voltage Input Range -20.0 to 20.0 V, single line

3.2.1 Communication to Host

The FPGA Communicates with the host PC, through a Direct Memory Access
(DMA) First In First Out (FIFO) queue. The DMA FIFO queue allows the FPGA
to directly access the RAM of the host for increased throughput compared to trans-
ferring the data between two local FIFO queues. The FPGA FIFO queue consist of
block RAMs on the FPGA side, RAM memory on the host side, and an DMA engine
that automatically transfers data between the two. The DMA FIFO is setup to write
6 unsigned 64 bit integers every 6th sample. The 64 bit unsigned integer consist
of four valve lift readings, the CAD value and the cylinder pressure. The valve lift
reading is a 8 bit unsigned integer, the CAD value is a 16 bit integer and the cylinder
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pressure reading is also a 16 bit integer. Each 64 bit unsigned integer contain the
valve lift readings from one cylinder. Each write cycle, one valve lift reading from each
valve is sent to the host PC, which receives 600 valve lift readings per valve and cycle.

3.2.2 Analog Lift Signal

The analog lift sensor output a square-wave with a frequency depending on valve lift.
The time between two rising flanks is measured on the FPGA card in clock ticks of
the built in clock. In Figure 8 100 samples from an analog lift signal is presented, the
signal was acquired by an oscilloscope. The signal is subject to noise which results
in outliers and noise when handled by the FPGA. See section 6.1 for a discussion of

Figure 8: Analog lift signal

outliers and noise. The raw sensor data acquired by the FPGA are plotted during a
lift event in Figure 9a. The unit clock ticks refers to the FPGA clock and the sample
rate is 1800 samples per revolution or 3600 samples per cycle, or 5 samples per CAD.
Using a simple heuristic algorithm, the outliers is easily identified and removed. The
implemented solution compares the difference between two consecutive samples, yi
and yi+1 , and if

yi+1 − yi = Δy < Δmin
where Δmin = 5, then the sample is replaced by the previous sample. A solution that
was chosen for simplicity, causality and low logical requirements when implemented
on the FPGA. The signal without outliers can be seen in Figure 9b.

3.2.3 Moving Average Filter and Downsampling

Since only one valve position can be sent every 6th sample, an average of the six
most recent samples is calculated and subsequently sent. In general, it is advisable
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to use unfiltered data in the identification procedure and then come up with a filter.
The necessity to use one here is due to the fact that otherwise only one sixth of the
data could be sent to the PC because of limitations in the amount of data that can
be sent from the FPGA.

The valve position calculated on the FPGA is in clock ticks, where a lift has a
resolution of about 25 clock ticks, varying between approximately 180 clock ticks
when the valve is closed to approximately 205 when the valve is fully opened. To
minimize the use of FPGA resources and to fit the averaged valve position reading
into an 8 bit unsigned integer the built in overflow behavior is used. An 8 bit unsigned
integer can represent a value between 0 and 255. A value above 255 rolls over, e.g.
260 rolls over to 4 = 260− 256. Thus simply adding the six lift values together will
cause rollover to occur four times. The lift resolution is amplified six times, with a
range of 150 ticks, but can still fit in an 8 bit unsigned integer. A closed valve will
generate a value of approximately 56 to be sent to the host, and a fully open valve
will generate a value of 206. Values that are translated into frequencies and then to
valve lifts on the host side. In total, the averaging operation only requires five add
operations per valve on the FPGA card. A comparison between the lift curve only
filtered by the moving averaging filter and also Kalman filtered is seen in Figure 10.

3.3 Sensor Mapping

Due to the analog lift sensor being nonlinear, a second order mapping was done,
using sensor readings from two different sensors. In Figure 11a the frequency of the
square-wave from the lift sensor is shown at different positions. It can be seen that
there is a significant frequency discrepancy between the two sensors, however the
discrepancy predominantly being a constant offset in frequency, which can be seen
more clearly in Figure 11b, where the mean frequency difference has been removed
from the second sensor. It is assumed that all sensors can be normalized by removing
the mean frequency difference when the valves are closed. With the relative position

(a) Raw lift sensor lift curve (b) Raw lift sensor lift curve with outliers
removed

Figure 9: Raw lift sensor readings
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(a) MA filtered lift curve (b) MA and Kalman filtered lift curve

Figure 10: Filtered lift sensor readings

available with sufficient accuracy, the absolute position profile can be obtained by
observing that the position of the valve is known when the valve is closed, thus the
frequency offset and the absolute valve position can be calculated.

(a) Calibration measurement (b) Calibration measurement with frequency
offset removed

Figure 11: Lift calibration using two sensors

3.4 Labview Implementation

To implement feedback from the previous cycle, start and stop timings of the con-
trol pulse need to be set at several different times because there is basically always
valves open. Therefor one cycle was split into 6 parts, and in each part, outputs
are calculated for two exhaust valves and two intake valves and control pulse timings
sent to the FPGA. The duration of a valve lift event has an absolute constraint in
that it can not open for roughly more than 360 CAD, since otherwise the piston
would hit the open valves. In practice, the valves are open far shorter periods. This
gives ample time to calculate the control signal with the implemented solution. For
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details on Labview programming see the reference manual or [19], one of the many
books available on the subject.

Due to time constraints due to the scope of the thesis, a set of simple controllers
where implemented. The controller setup consists of three Single Input Single Out-
put (SISO) systems [20], where the lift height is controlled by the actuator pressure,
the start of the control pulse controls the VO time, and VC time is controlled by
the end timing of the control pulse. All controllers are Proportional Integral (PI)
controllers [20] with very conservative controller gains.
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4 Modeling

The purpose of the identified model is to facilitate filtering of the lift sensor signal, in
an attempt to get more consistent lift data. For a general treatment of system iden-
tification and modeling see [21]. Two types of discrete time models where evaluated,
Autoregressive moving average with exogenous input (ARMAX) models and state-
space models. The model was the used to filter the output sequence to get a better
VO and VC signals. The state-space models were developed using the n4sid Matlab
command, see the Matlab documentation [22], or Ljung [23] for algorithm details.
The input sequence was defined as the pulse sent to the actuators multiplied by the
actuator pressure, and the output sequence is just the filtered and down-sampled lift
measurement. The control sequence ud is defined as

ud = up · u (4.1)

where up is the actuator pressure and u is the generated physical control pulse
sent to the actuators, defined in Equation (2.1). For successful identification it
is necessary to have enough variability in the input [21], which is why the control
signals were generated by the following procedure. The control parameters, up, uV O
and uV C were only changed if the realization of a binary random variable Xu was
one. The binary random variable had a probability of P (Xu = 1) = 0.15. Each input
that was to be changed was then drawn from a range of valid control signals with
constant probability density function. The Input-output data were subdivided into an
estimation part of 80% of the data and a evaluation part of 20% of the data. The
models were estimated using the estimation data and evaluated on the validation
data based on the criteria introduced in section 4.3.

4.1 ARMAX Modeling

ARMAX models have the following structure:

A(z−1)yk = z−dB(z−1)uk + C(z−1)wk (4.2)

where the A polynomial is the autoregressive part, the B polynomial is a moving
average of the input signal and the C polynomial is a moving average part of noise
terms. The input uk ∈ �m is modeled affecting the output yk ∈ �p with a delay
d time steps and the noise process {wk} is assumed to be a white-noise stochastic
process. The A,B and C polynomials have the structure

A(z−1) = 1 + a1z
−1 · · ·+ anaz−na

B(z−1) = b0 + b1z−1 · · ·+ bnbz−nb
C(z−1) = 1 + c1z

−1 · · ·+ cncz−nc
(4.3)

4.2 State Space Modeling

The state-space equations for system with m inputs and p outputs is given by the
equations

xk+1 = Axk + Buk + wk
yk = Cxk +Duk + ek

(4.4)
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with state vector xk ∈ �n and noise sequences wk ∈ �n, ek ∈ �p affecting the
dynamics of the system and the output respectively.

4.3 Model Evaluation

The developed models were evaluated on the evaluation data set by three evaluation
statistics based on the prediction errors and residual tests.

The Variance Accounted For (VAF) statistic defined as

τV AF =

(
1− (yN − ŷN)

T (yN − ŷN)
ŷTN yN

)
× 100%

where yN is the N point vector containing the output data and ŷN is the estimated
output. The Akaike Final Prediction Error (FPE) defined as

FPE(p) =
N + p

N − pV

where p is the identified number of parameters and V is the loss function defined as

V = det

(
1

N

N∑
i=1

ε(i , θN)ε(i , θ̂N)
T

)

Akaike’s Information Criterion (AIC) is defined as

AIC(p) = log(V ) +
2p

N

where V is the loss function defined earlier.

The transfer function of both the ARMAX models and the state space models can
be expressed as Y (z−1) = Hu(z−1) +Hw(z−1)W (z−1). The residuals ε(z−1), of the
evaluated models are obtained by

ε(z−1) = Ĥ−1w (z
−1)(Y (z−1)− Ĥu(z−1)U(z−1)) (4.5)

The residuals can be considered a disturbance input that would explain the disparity
between the observed data and data from the estimated model. If the model is correct
the residuals should not contain any structure, especially they should be uncorrelated
to inputs and outputs [21].
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5 Results

In this section results from the sensor calibration, model identification and the im-
plemented controller are presented.

5.1 Lift Sensor Noise

The lift sensor readings are subject to noise. The noise is concluded to be white
noise and the estimated power spectrum is shown in Figure 12, the power spectrum
is calculated for 64 frequencies, logarithmically spaced. The power spectrum has
been calculated for a valve turned off, all 3600 data points are used without the
average filter, using the Matlab psd command and a Kaiser window, see Matlab
documentation for details [22].

Figure 12: Power spectrum estimate of the noise affecting the lift sensor using a
periodogram with Kaiser window

5.2 Model Evaluation

The statistics for the identified models are presented in Figure 13. For easier com-
parison, an offset of 2.5 has been added to the AIC statistic and the VAF statistic
has ben replace by 1-VAF. The raw statistics can be found in Table 3 and the model
parameters in Table 2. A filter based was implemented in Labview based on the best
model, the third order n4s3 model, however the Labview program could not finish
execution in time consistently. The n4s2 model was then chosen as a compromise
between performance and implementation requirements. Figure 14 show the cross
correlation of the residuals and correlation between the input and the residuals for
the three state space models. The residuals of the first order model clearly contain
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structure, but to a lesser extent this is also true for the models of order 2 and three
as well. All three models exhibit cross correlation between input and output, that
manifests itself in that the models predict too low lift with lower than average values
of up and too high lift with higher than average values of up. The n4s2 state space
model is given by equation (4.4) and the matrices

A =

[
0.9682 −0.04126
0.08114 0.8981

]
, B = 10−5

[
2.814
39.75

]
,

C =
[
0571.1 12.47

]
, D = 0

(5.1)

Figure 13: Exhaust valve model evaluation. Smaller values imply a better fit. An
offset has been added to the AIC statistic

Table 2: Exhaust valve models

Name Type na nb nc n (n4sid only) delay

arx1 ARX 2 1 - - 23

arx2 ARX 3 2 - - 23

arx3 ARX 4 3 - - 23

amx1 ARMAX 2 1 1 - 23

amx2 ARMAX 3 2 2 - 23

amx3 ARMAX 4 3 3 - 23

n4s1 n4sid - - - 1 18

n4s2 n4sid - - - 2 18

n4s3 n4sid - - - 3 18
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Figure 14: Correlation of Residuals for state space models, n4s1 (blue),
n4s2 (purple) and n4s3 (pink).

Table 3: Exhaust valve model evaluation data

Model AIC FPE VAF [%]

arx1 -2.3284 0.0975 93.75

arx2 -2.3799 0.0926 93.71

arx3 -2.3920 0.0914 93.84

amx1 -2.3836 0.0922 93.82

amx2 -2.4610 0.0854 94.44

amx3 -2.4636 0.0851 94.67

n4s1 -2.3295 0.0973 92.69

n4s2 -2.4572 0.0857 94.94

n4s3 -2.4722 0.0844 95.30
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5.3 Controller

A Kalman filter based on the n4s2 system model was implemented in the controller
for one valve. The Kalman gain K is

K = 10−4
[
5.243
18.02

]
(5.2)

To evaluate the controller with and without the use of the Kalman filter two kinds of
input signal were used. The first signal used was a constant signal of 5 bar actuator
pressure and the signal sent to the actuator chosen according to Equation (2.1) with
uV O = −200 CAD BTDC and uV C = 0 CAD BTDC. The second signal was the same
type of signal as the one used in the modeling part, but with constant air pressure
at 5 bar. For both input signals a trigger level of 1 mm and 4 mm was tested and
the length of the input sequences was 200 cycles.

5.3.1 Constant Input

The variance of the first input sequence, the constant input sequence, is presented
in Table 4.

Table 4: Variance of steady state VO and VC with and without Kalman filter

With Kalman Filter w/o Kalman filter

VO 1 mm trigger level 0.1447 0.5364

VC 1 mm trigger level 0.7494 0.4790

VO 4 mm trigger level 0.0921 0.1573

VC 4 mm trigger level 0.1913 0.3297

5.3.2 Stochastic Input

The controller with Kalman filter response to a stochastic VO and VC input signal
similar to the signal used in identification can be seen in Figure 15 for 1 mm trigger
level and in Figure 16 for 4 mm trigger level. The response for the controller without
the Kalman filter can be seen in Figure 17 for 1 mm trigger level and in Figure 18
for 4 mm trigger level. The variance and mean of the error in the just mentioned
experiments are presented in Table 5.
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Table 5: Mean and variance of error sequences

With Kalman filter w/o Kalman filter
variance mean variance mean

1 mm Trigger
VO error 0.23 0.02 0.53 -2.72×10−4
VC error 0.79 -0.10 0.72 -0.08

4 mm Trigger
VO error 0.85 0.08 0.28 -0.0039
VC error 0.3126 -0.2575 0.7984 -0.0792

(a) VO timing (b) Error in VO timing

(c) VC timing (d) Error in VC timing

Figure 15: Control of exhaust VO and VC with Kalman filter (1mm trigger level)
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(a) VO timing (b) Error in VO timing

(c) VC timing (d) Error in VC timing

Figure 16: Control of exhaust VO and VC with Kalman filter (4mm trigger level)
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(a) VO timing (b) Error in VO timing

(c) VC timing (d) Error in VC timing

Figure 17: Control of exhaust VO and VC without Kalman filter (1mm trigger level)
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(a) VO timing (b) Error in VO timing

(c) VC timing (d) Error in VC timing

Figure 18: Control of exhaust VO and VC without Kalman filter (4mm trigger level)
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6 Discussion

A second order model of the exhaust valve was identified. A Kalman filter and a sim-
ple feedback was implemented on one valve. Both with and without the Kalman filter
the feedback control achieved variances beneath 1 CAD. From the results, there is
some support to conclude that the Kalman filter did improve the performance, how-
ever not by much and not consistently. The valve used for both model identification
and the control experiments was the one least susceptible to noise. It is reasonable
to believe that the Kalman filter would give stronger benefit on valves affected more
by noise.

There is some remaining structure in the auto correlation of output residuals and
cross correlation between input and output residuals as seen in Figure 14. The cross
correlation between input and output residuals suggest some dynamics that the model
fails to capture and that model complexity is insufficient. Increased model complex-
ity, maybe in the form of a nonlinear model, might be needed since increased model
order was not sufficient remove the cross correlation. There are several sources to
the remaining variance. The resolution of the FPGA is one fifth CAD and possi-
bly give a quantization error of one tenth CAD. Variations in supplied air pressure
probably have an effect on the variance. The model that the Kalman filter is was
based on, does not describe the system satisfactory as can be seen by the correlation
analysis and Figure 14.

Having access to whole lift curve each cycle gives endless possibilities in what data to
extract and use for the cycle-to-cycle feedback. It is interesting to note that there is
not that much difference in variance between the two trigger levels 1 mm and 4 mm.
It would be interesting to investigate the cross-correlation between the two, because
if the added noise is uncorrelated, better information can be obtained by combining
several points on each flank of the lift curve.

6.1 Lift Signal Noise

The outliers seen in Figure 9a have a certain regularity to them, the measured time
seem to be approximately half the clock ticks of the valid data points. The probable
cause of this is that the analog lift signal seen in Figure 8 triggers a second time
on the zero-crossing on the falling flank when the signal is only supposed to trigger
on the rising flank. This would explain the characteristics of the outliers. However,
an occasional faulty trigger event would result in two consecutive samples of half
the number of clock ticks, but in Figure 8 there is often several correct samples in
between two faulty samples. This implies that the FPGA triggers only on the falling
flank for several samples, a behavior that lacks explanation.
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6.2 Implementation Issues

Given the timing requirements of feedback from the previous cycle, the PC was unable
to run more than one Kalman filter in the control program, and even with one Kalman
filter the computations was not finished in time or not deterministic enough, resulting
in missed deadlines. There are at least thee possible ways to mitigate this problem.
Implementing the Kalman filter on the FPGA would lead to a reduced load on the
computer’s CPU. It would require a fixed-point implementation of the Kalman filter
which is not feasible to implement for all 24 valves on the current FPGA card. When
attempting a fixed-point low-pass filter of first order, the FPGA requirements scaled
up nicely when used on 12 lift signals, utilizing less than 50% of the FPGA resources
in terms of both LUTs and flip-flops. But when attempting to use it on all 24 valves,
the utilization reached above 200%. Further investigation is needed to determine the
reason for this behavior and if a second FPGA card or an improved one would suffice
to solve the issue. The second possible solution would be to optimize the Kalman
filter on the PC, removing features of the built-in Labview version and neglecting
small terms. The third would be to remove the need for Kalman filtering by reducing
the noise level which seem possible since with only one sensor attached, the signal
did not contain noise. The noise origin is unknown, however it is likely to be common
ground related, since all lift input share the same power source and have the same
ground signal on the FPGA card. Furthermore, filtering one of the lift signals through
an analog low-pass filter did not lead to any visually detectable reduction in noise
level on the raw analog lift sensor signal observed in an oscilloscope, the signal still
had the noise as in Figure 8.

6.3 Future Work

The next step would be to model and implement model based control of lift, VO and
VC timings with the additional input parameter of cylinder pressure. Such modeling
was attempted during the course of this project, but it turned out hard to fit a
model. One of the reasons was that the length of the datasets were limited. If
the whole lift curve was to be saved, the data acquisition and processing became to
cumbersome. During the acquisition of data, the disk could not write fast enough
to have more than a couple of hundred cycles of data at a time and the processing
of datasets with a large number of samples became time-consuming. Now, when
the preprocessing is done during execution, only a small number of values need to
be saved each cycle, which should make it possible to have larger data sets and a
better chance of developing models. There also need to be some way to change the
speed of the mock engine to cover that aspect. One way would be to implement the
mock engine on the FPGA instead. The overarching final goal would be to integrate
the valve control with the existing engine control platform, implemented in C++,
Matlab and Real-time Workshop.
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7 Conclusion

The main result of this project is that a FPGA based feedback controller was imple-
mented for all 24 valves in Labview. A second order model of the exhaust valve was
identified. A Kalman filter and a simple feedback was implemented on one valve.
Satisfactory control of VO and VC and Lift for a fixed engine condition was obtained.
The Kalman filtering in the controller had only small effect on the controller per-
formance. In order to have a Kalman filter on all valves, optimization of the filter
implementation, some kind of signal condition, or additional computational resources
is needed.
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