
ISSN 0280-5316
ISRN LUTFD2/TFRT--5892--SE

Collocation Methods in JModelica.org

Fredrik Magnusson

Department of Automatic Control
Lund University

February 2012

Lund University
Department of Automatic Control
Box 118
SE-221 00 Lund Sweden

Document name

MASTER THESIS
Date of issue

February 2012
Document Number

ISRN LUTFD2/TFRT--5892--SE
Author(s)

Fredrik Magnusson

Supervisor

Claus Führer Numerical Analysis, Lund Sweden
Johan Åkesson Automatic Control, Lund Sweden
Anders Rantzer Automatic Control, Lund Sweden
(Examiner)
Sponsoring organization

Title and subtitle

Collocation methods in JModelica.org (Kollokationsmetoder i JModelica.org)

Abstract

In this thesis, we use CasADi to implement a new optimization algorithm in the open-source
platform JModelica.org. CasADi is a tool for computing derivatives using automatic
differentiation, which is tailored for optimal control. JModelica.org is a platform for simulation
and optimization of physical systems created using the Modelica modeling language. The
implemented optimization algorithm is based on direct collocation using Radau or Gauss
collocation schemes. We provide a thorough presentation of how a dynamic optimization
problem described by Modelica and Optimica code is transcribed into a nonlinear programming
problem using direct collocation. This nonlinear programming problem is then solved using
CasADi’s interface to Ipopt, a numerical solver for optimization problems. The implemented
algorithm is compared to a similar and already existing optimization algorithm in JModelica.org
in five different benchmark problems, including a distillation column and a combined cycle
power plant. The new algorithm compares favorably to the other JModelica.org algorithm in a
majority of the cases

Keywords

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

0280-5316
ISBN

Language

English
Number of pages

104
Recipient’s notes

Security classification

http://www.control.lth.se/publications/

Preface

This master thesis has been carried out at the company Modelon in Lund in col-

laboration with the Department of Automatic Control at the Faculty of Engineering

of Lund University. Johan Åkesson, who is affiliated with both Modelon and the

Department of Automatic Control, has supervised the thesis.

I would like to thank Joel Andersson for developing CasADi and helping me get fa-

miliar with it, and also promptly addressing encountered issues with CasADi. Next

I want to thank Claus Führer from Lund University for sharing his insights on differ-

ential algebraic equation systems and collocation methods. I would also like to thank

everyone at Modelon, in particular the JModelica.org team, for being very helpful.

Finally I would like to thank Johan Åkesson for everything.

Contents

1 Introduction 1
1.1 Background . 1

1.2 An introductory example . 2

1.3 Aim of thesis . 4

1.4 Thesis outline . 5

2 Optimization 6
2.1 Static optimization . 6

2.2 Dynamic optimization . 8

2.2.1 Differential algebraic equation systems 8

2.2.2 The dynamic optimization problem 11

2.2.3 Optimal control and parameter optimization 14

2.2.4 Parameter estimation . 15

3 Collocation theory 17
3.1 Lagrange interpolation polynomials 17

3.2 Generic collocation theory . 18

3.2.1 Collocation polynomial construction 18

3.2.2 Convergence orders . 22

3.2.3 Transcription of dynamic optimization problems 23

3.3 Radau collocation . 28

3.4 Gauss collocation . 30

4 Languages and software 35
4.1 Modelica . 35

4.1.1 Optimica . 36

4.2 Python . 36

4.3 JModelica.org . 36

4.4 CasADi . 37

4.5 Ipopt . 38

5 Implementing collocation algorithms in JModelica.org 39
5.1 Optimization in JModelica.org . 39

5.2 A comprehensive collocation algorithm 40

5.2.1 Implementation overview 40

i

5.2.2 Collocation using CasADi 42

5.2.3 Algorithm demonstration 43

5.2.4 Algorithm options . 45

5.2.4.1 n_e . 45

5.2.4.2 hs . 45

5.2.4.3 free_element_lengths_data 46

5.2.4.4 n_cp . 46

5.2.4.5 discr . 47

5.2.4.6 graph . 47

5.2.4.7 rename_vars 47

5.2.4.8 write_scaled_result 48

5.2.4.9 result_mode 48

5.2.4.10 n_eval_points 48

5.2.4.11 blocking_factors 49

5.2.4.12 quadrature_constraint 49

5.2.4.13 eliminate_der_var 50

5.2.4.14 eliminate_cont_var 50

5.2.4.15 init_traj 51

5.2.4.16 parameter_estimation_data 51

5.2.4.17 exact_hessian 53

5.2.4.18 casadi_options 53

5.2.4.19 IPOPT_options 53

5.3 Scaling . 54

5.4 Variable elimination . 54

5.4.1 Continuity variables . 54

5.4.2 Derivative variables . 55

5.5 Free element lengths . 55

5.6 Unsupported features . 57

6 Benchmarks 58
6.1 Benchmark premises . 58

6.2 Van der Pol oscillator . 61

6.3 Continuously stirred tank reactor 62

6.3.1 CSTR remarks . 64

6.3.1.1 Control variable discontinuity 64

6.3.1.2 Optimization result verification 65

6.4 Quadruple-tank process . 66

6.5 Distillation column . 68

6.6 Combined cycle power plant . 71

7 Concluding remarks 73
7.1 Conclusions . 73

7.2 Future work . 74

A Collocation methods as Runge-Kutta methods 76
A.1 Introduction . 76

ii

A.2 Derivation by integration . 77

A.3 Derivation by differentiation . 78

A.4 Conclusions . 80

B Benchmark models 82
B.1 Van der Pol oscillator . 82

B.2 Continuously stirred tank reactor 83

B.3 Quadruple-tank process . 84

B.4 Distillation column . 87

iii

List of Figures

1.1 Optimal control of a VDP oscillator using backward Euler 4

5.1 Overview of JModelica.org’s optimization framework 39

5.2 Diagram of all Python classes and modules in JModelica.org related

to the LocalDAECollocationAlg algorithm, color-coded ac-

cording to their respective modules 41

5.3 Optimal control of a VDP oscillator using tenth-order Gauss collo-

cation . 45

6.1 Comparison of the old and new algorithm applied to a VDP oscillator 61

6.2 Comparison of the old and new algorithm applied to a CSTR 63

6.3 Part of the optimal control variable for the CSTR, where the collo-

cation points are marked by stars 64

6.4 Comparison between CSTR optimization with ne = 70 and simulation 65

6.5 Comparison between CSTR optimization with ne = 140 and simu-

lation . 66

6.6 Comparison of the old and new algorithm applied to the quadruple-

tank process . 67

6.7 Comparison of the old and new algorithm applied to a binary distil-

lation column . 70

6.8 Comparison of the old and new algorithm applied to a CCPP 72

iv

List of Tables

3.1 Radau collocation points . 28

3.2 Radau quadrature weights . 28

3.3 Gauss collocation points . 31

3.4 Gauss quadrature weights . 31

6.1 Run-time statistics for the Van der Pol oscillator benchmark 62

6.2 NLP problem statistics for the Van der Pol oscillator benchmark . . 62

6.3 Run-time statistics for the CSTR benchmark 63

6.4 NLP problem statistics for the CSTR oscillator benchmark 64

6.5 Estimated parameter values for the quadruple-tank process 67

6.6 Run-time statistics for the quadruple-tank process benchmark, using

121 measurement points . 68

6.7 NLP problem statistics for the quadruple-tank process benchmark . 68

6.8 Select execution times for the quadruple-tank process benchmark

with a varying amount of measurement points 68

6.9 Run-time statistics for the distillation column benchmark 70

6.10 NLP problem statistics for the distillation column benchmark 70

6.11 Run-time statistics for the CCPP benchmark 71

6.12 NLP problem statistics for the CCPP benchmark 72

v

Chapter 1

Introduction

1.1 Background

Optimization of large-scale dynamic systems, ranging from power plants to vehi-

cle systems is becoming a standard industrial technology. JModelica.org is a tool

partly aimed at large-scale optimization, which is done by formulating a dynamic
optimization problem (DOP) and then solving it using numerical methods. The DOP

is formulated with the use of the Modelica language and its extension Optimica. In

this thesis we consider three different generic DOPs.

The first is the optimal control problem (OCP), where the aim is to find the control

variable(s) that, in some sense, optimize a dynamic system, e.g. by minimizing the

amount of resources spent to perform a certain action. The second is the parame-
ter optimization problem, where the aim is instead to find optimal parameter values.

These two problems are closely related and will receive a common problem formu-

lation. The final DOP is the parameter estimation problem, where the problem is

to, given some measurement data of a dynamic system, find the values of unknown

model parameters that allows the model to most closely mimic the measured data.

Solving dynamic optimization problems is useful, or even necessary, in many differ-

ent fields and applications. Parameter estimation is used to improve physical models.

Parameter optimization aids the design process of a product with some design param-

eters by finding an optimal design. Optimal control has many different applications,

which are often categorized as being on-line or off-line. During on-line applications,

the DOP is solved during the actual control of the real system. This is typically done

in the form of nonlinear model predictive control, where the system state is sampled

and the sample is then used to find an optimal control trajectory for a short future

time horizon. After the computed control trajectory has been used to control the

system during the short horizon, the state is resampled and the process is repeated

iteratively. See [RM09] for more on nonlinear model predictive control.

1

There are many varieties of off-line applications of optimal control. One example

is finding theoretical optimal trajectories for the transition between two stationary

operating conditions in a system, which can be used either as a reference during

manual control or as a target for an automatic controller if combined with feedback

error control. Another example is the determination of how individual components

affect the overall performance of a system to identify system bottlenecks.

There are several approaches to solving DOPs. Up until the 1970s, the common way

was to use indirect approaches, which are based on calculus of variations. However,

indirect approaches do not handle inequality constraints easily and the approach is

very sensitive to initial guesses of the primal and dual variables, making them ill-

suited for developing domain-neutral software [Zav08].

This lead to the introduction of direct approaches, which try to find an approxima-

tive solution to the DOP by transcribing the infinite-dimensional DOP into a finite-

dimensional nonlinear programming (NLP) problem. The main difference among

direct approaches is how to handle the constraints corresponding to the system dy-

namics. The three most common direct approaches are direct single shooting, direct
multiple shooting and direct collocation. This thesis focuses on direct collocation

methods. For a description of the two other variants, see [Bie10, ch. 9] and [Bet10,

ch. 3].

1.2 An introductory example

An example of a simple problem, albeit non-trivial to solve analytically, of the kind

studied in this thesis is optimal control of the Van der Pol (VDP) oscillator [Kan07].

The dynamics of the VDP oscillator are given by

ẋ1(t) =
(
1− x2(t)

2
) · x1(t)− x2(t) + u(t), (1.1a)

ẋ2(t) = x1(t), (1.1b)

where x1 and x2 are the states, u is the control variable and t is the sole independent

variable: time. The considered time interval is given by [t0, tf], where t0 is the start

time and tf is the final time. The goal is to find a u that minimizes some cost. An

example of a typical cost function for this problem is the integral∫ tf

t0

(
x1(t)

2 + x2(t)
2 + u(t)2

)
dt.

The essential problem is then to drive the states x = (x1, x2) towards the origin

as quickly as possible while maintaining a small value of u2 at all times. To make

things a little more interesting, we can also impose the bound

u(t) ≤ 0.75, ∀t ∈ [t0, tf].

To demonstrate the idea of direct collocation, we now solve this problem using a

simple collocation method. We discretize the time interval [t0, tf] into ne = 100

2

elements with the constant element length h =
tf−t0
ne

. Let [a..b], where a, b ∈ Z,

denote the integer interval

{k ∈ Z : a ≤ k ≤ b}.

At the mesh points

ti = t0 + i · h, i ∈ [1..ne],

we denote the value of the states, their derivatives and the control variable by xi =
x(ti), ẋi = ẋ(ti) and ui = u(ti) respectively. For the discretized variables, the cost

function is approximated by

f =

ne∑
i=1

hi ·
(
x1

2
i + x2

2
i + u2i

)
.

We require the discretized variables to satisfy the system dynamics given by (1.1),

i.e.

ẋ1i = (1− x2
2
i) · x1i − x2i + ui, ∀i ∈ [1..ne] (1.2a)

ẋ2i = x1i, ∀i ∈ [1..ne] (1.2b)

To get the values of ẋi, we use the backward Euler approximation. This gives us the

equations

ẋi =
xi − xi−1

h
, ∀i ∈ [1..ne],

where x0 is some specified initial condition. These are called the collocation equa-

tions. This results in the following optimization problem for the discretized vari-

ables.

min f = min

ne∑
i=1

hi · (x12i + x2
2
i + u2i)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1i = (1− x2
2
i) · x1i − x2i + ui, ∀i ∈ [1..ne],

ẋ2i = x1i, ∀i ∈ [1..ne],

x10 = x1(t0),

x20 = x2(t0),

ẋ1i =
x1i − x1i−1

h
, ∀i ∈ [1..ne],

ẋ2i =
x2i − x2i−1

h
, ∀i ∈ [1..ne],

ui ≤ 0.75, ∀i ∈ [1..ne].

With the initial conditions

(x1(t0), x2(t0)) = (0, 1)

and letting t0 = 0 and tf = 10, this optimization problem has the solution shown in

Figure 1.1.

3

Figure 1.1: Optimal control of a VDP oscillator using backward Euler

The described transcription procedure corresponds to a specific kind of collocation

method called Radau collocation (with 1 collocation point), which is described in

Chapter 3. More advanced collocation methods are obtained by choosing more ad-

vanced finite difference approximations of the derivative than backward Euler.

We will in this thesis study different variants of the VDP OCP, as well as other, more

industrially relevant, problems.

1.3 Aim of thesis

In this thesis we (further) integrate the JModelica.org platform with the novel auto-

matic differentiation package CasADi with the purpose of implementing collocation

algorithms for solution of dynamic optimization problems. The goal is that once the

DOP has been formulated using Modelica and Optimica, the algorithms should be

able to efficiently and accurately solve the problem with little to no additional effort

from the user while still remaining robust.

The above aspiration may be a little too ambitious. In order to solve big and com-

plex problems efficiently (or at all), some tweaking of algorithm parameters may be

needed from the user. The aim is to have fully featured algorithms which allow the

advanced user to solve a wide variety of advanced problems.

4

1.4 Thesis outline

The thesis starts with introducing some basic concepts related to optimization and

defining the generic dynamic optimization problem in Chapter 2. In Chapter 3, we

present the relevant theory behind collocation methods. In Chapter 4, the languages

and software used for the implementation of the collocation algorithms are presented.

We then move on to describe how the languages and software of Chapter 4 and the

theory of Chapter 3 can be combined to implement advanced collocation algorithms

in Chapter 5. In Chapter 6, we present a few different problems which we solve using

our implemented collocation algorithms and compare the results and performances

with a similar JModelica.org optimization algorithm. The thesis is finished by eval-

uating these results in Chapter 7 and discussing possibilities of further development.

5

Chapter 2

Optimization

At the center of this thesis is the field of optimization of dynamic systems. Before

we begin the study of collocation methods, we will introduce some basic concepts

related to optimization as well as notation and nomenclature used throughout the

thesis. Formal definitions of the DOPs are also given.

2.1 Static optimization

The goal of optimization is to minimize an objective function

f ∈ C2(A,R),

where C2(A,R) denotes the space of twice continuously differentiable function from

A into R and A is some set. For now we assume that A is a subset of Rnz , where

nz is the number of optimization variables, but this assumption will be relaxed when

we discuss dynamic optimization in Section 2.2.

An equivalent formulation is to instead maximize −f . A simple example of an

optimization problem is

min
z∈R

f(z) = min
z∈R

z.

In this example we have let A = R. While this problem is simple in one sense, it is

impossible in another, since it has no solution. In order to make things slightly more

interesting and also provide us with a solution, we introduce variable bounds on the

form

A � zL ≤ z ≤ zU ∈ A. (2.1)

For example,

min
z∈R

z,

subject to

z ≥ zL = 0.

6

We denote the solution to the optimization problem by z∗, which in this case is

z∗ = 0.

Alas, there are no problems of interest to this thesis that can be formulated with just

an objective function and variable bounds. Thus we introduce constraints, a more

general form of variable bounds. Constraints can be divided into equality constraints,

which are of the form ge(z) = 0, and inequality constraints, which are of the form

gi(z) ≤ 0, where

ge ∈ C2(A,Rme) and gi ∈ C2(A,Rmi),

where me and mi are the number of scalar-valued equality and inequality constraints

respectively. We further extend the above optimization problem to exemplify this.

min
z∈R

z

subject to

⎧⎪⎨
⎪⎩
z ≥ 0,

ge(z) = sin(π · z) = 0,

gi(z) = 0.5− z2 ≤ 0.

Our previous solution of z∗ = 0 is no longer valid, as it violates the inequality

constraint. The solution is now the smallest positive root to ge that satisfies the

inequality constraint, which happens to be z∗ = 1. We will later see that there is a

need to further divide constraints into additional subcategories.

We have now arrived at the general nonlinear programming (NLP) problem

min
z∈A

f(z) (2.2a)

subject to

⎧⎨
⎩

zL ≤ z ≤ zU , (2.2b)

ge(z) = 0, (2.2c)

gi(z) ≤ 0. (2.2d)

An important tool when studying such problems is the Lagrangian function, which

is defined as

Λ(z, λ, ν) = f(z) + λ · ge(z) + ν · gi(z), (2.3)

where λ ∈ R
me and ν ∈ R

mi are called the dual variables, in contrast to z, which

is called the primal variable, and · denotes the inner product. These are then used to

formulate the famous Karush-Kuhn-Tucker (KKT) conditions, given by

∇zΛ(z
∗, λ∗, ν∗) = ∇f(z∗) + λ∗ · ∇ge(z

∗) + ν∗ · ∇gi(z
∗) = 0, (2.4a)

ge(z
∗) = 0, gi(z

∗) ≤ 0, (2.4b)

ν∗ · gi(z∗) = 0, ν∗ ≥ 0. (2.4c)

Under the assumption of a constraint qualification being satisfied, which we discuss

later, the existence of a λ∗ and ν∗ satisfying (2.4) is necessary in order for z∗ to be

7

a local minimum. Condition (2.4a) ensures that the solution is a stationary point.

Condition (2.4b) ensures the primal feasibility. Condition (2.4c) ensures that either

the dual variable belonging to a scalar inequality constraint is zero, in which case the

inequality constraint is said to be inactive, or the constraint function is equal to zero,

in which case the inequality constraint is said to be active.

Another requirement for z∗ to be a local minimum is that

p · ∇2
zzΛ(z

∗, λ∗, ν∗) · p ≥ 0, ∀p ∈ R
nz : ∇ge(z

∗) · p = 0 ∧ p 	= 0, (2.5)

which ensures that the solution (whose stationarity is ensured by (2.4a)) is not a local

maximum. The reason we required f, ge and gi to be twice continuously differen-

tiable is because these derivatives are needed for this condition.

As mentioned above, the KKT conditions require a constraint qualification condition.

There are many sufficient constraint qualifications of varying strictness and we do not

list them all here. One of the more common (and strict) constraint qualifications is

the linear independence constraint qualification, which states that the gradients of

all the equality constraints and active inequality constraints evaluated at z∗ should be

linearly independent. This together with (2.4) and (2.5) make up all the conditions

necessary for a point (z∗, λ∗, ν∗) to be a local minimum. If the inequality in (2.5) is

changed to a strict inequality, then the conditions are also sufficient for the point to

be a local minimum.

These optimality conditions are fundamental to solving NLP problems. However, in

this thesis we rely on the third-party software Ipopt to solve the arising NLP problems

and thus do not discuss these conditions further. For a more thorough introduction

to this topic, see [NW06, ch. 12] and [Bie10, ch. 4].

2.2 Dynamic optimization

In this thesis we optimize dynamic systems whose dynamics are described by a dif-
ferential algebraic equation (DAE) system. Before we discuss the DOP further, we

introduce DAE systems.

2.2.1 Differential algebraic equation systems

A DAE system is a generalization of an ordinary differential equation (ODE) system.

ODE systems have the general form

z(n) = F̃ (t, z(t), z′(t), z′′(t), . . . , z(n−1)(t)), ∀t ∈ [t0, tf],

where

z ∈ Cn−1(R,Rnz),

F̃ : R×
n∏

i=1

(Rnz) → R
nz

8

and n is called the order of the system. In this thesis we are however not interested in

the general form, since all ODE systems of order n can be transformed to a system

of order 1 by introducing n − 1 additional variables without loss of generality. For

example, the dynamics of the VDP oscillator are often described by the second-order

ODE

z̈(t)− (1− z(t)2) · ż(t) + z(t)− u(t) = 0.

By introducing x1 = z and x2 = ż, we recover (1.1), which is a first order ODE

system. Thus we only consider first order systems in this thesis.

A first order DAE system has the general form

F (t, z(t), ż(t)) = 0, ∀t ∈ [t0, tf].

While the difference between an ODE system and a DAE system may seem small

at first glance, this is not the case. The most important difference is that purely

algebraic equations of the form

Fi(t, z(t)) = 0,

where Fi is a scalar component of the vector-valued F , fall within the definition

of a DAE. This mixture of differential and algebraic equations gives rise to several

challenges when solving DAE systems compared to solving ODE systems. To fa-

cilitate the analysis of DAE systems, we separate the system variables depending on

whether we are interested in their derivatives. To this end, we decompose z into the

new variables x and w. The variable

x ∈ C(R,Rnx)

contains the functions whose derivatives are a part of the DAE system and

w ∈ Fb(R,R
nw)

contains the functions whose derivatives are not a part of the DAE system, where

Fb(R,R
nw) is the space of bounded functions from R into R

nw . The variable x is

called the differential variable and w is called the algebraic variable. The bound-

edness of w is only required to give us problems which we can handle, but it is

also possible to consider unbounded functions. A DAE system now instead has the

general form

F (t, ẋ(t), x(t), w(t)) = 0, ∀t ∈ [t0, tf], (2.6)

where

F : R× R
nx × R

nx × R
nw → R

nx+nw .

To demonstrate the difficulties of DAE systems, consider the following very simple

example from [Bet10, pg. 105], where nx = nw = 1.

ẋ(t)− w(t) = 0, ∀t ∈ [0, tf] (2.7a)

x(t)− t = 0, ∀t ∈ [0, tf]. (2.7b)

9

When dealing with ODE systems, we impose initial conditions in order to obtain a

well-posed problem. Let us attempt the same in (2.7) by setting x(0) = 1. Now,

the solution to the second equation is obviously x(t) = t, and thus we get from

the first equation w(t) = 1. However, our initial condition is clearly not satisfied,

as x(0) = 0 	= 1. In other words, the problem has no solution. This is quite

different from ODE systems, as according to the Picard-Lindelöf theorem [RR04,

th. 1.1 and 1.4], an ODE system together with arbitrary initial conditions will always

have exactly one solution locally, given some rather lax conditions on F , which are

satisfied in this case.

The question is then what properties are required of the initial conditions to the DAE

system to get a well-posed problem. At t0, we have nx + nw equations from

F (t0, ẋ(t0), x(t0), w(t0)) = 0. (2.8)

These equations have however 2 · nx + nw unknowns. So we need an additional nx

initial equations on the form

F0(ẋ(t0), x(t0), w(t0)) = 0. (2.9)

As noted in the above example, it is important that the initial equations satisfy the

DAE system at t0. It is also required that none of the initial equations are equivalent

to each other or any of the equations in (2.8). If F0 has all of these properties, we say

that the initial conditions (2.9) are consistent. The only initial condition consistent

with (2.7) is

F0(ẋ(0), x(0), w(0)) = x(0) = 0.

Trying to impose any other initial conditions will result in an ill-posed problem. So

in a sense, the above example actually does not need any initial conditions to be

well-posed. The initial conditions are rather imposed by the DAE system itself. This

is however not always the case. Some problems have several possible consistent

initial conditions, in which case one of them needs to be specified in order to achieve

well-posedness.

Most literature on dynamic optimization (e.g. [Bie10], [Bet10] and [Zav08]) focus

on a special case of (2.6): equation systems on the form

ẋ(t) = Fd(t, x(t), w(t)), (2.10a)

0 = Fa(t, x(t), w(t)), (2.10b)

which are called semi-explicit DAE systems. The semi-explicit form is useful for

discussing the notion of the index of a DAE system. We start by differentiating

(2.10b) with respect to t, yielding

0 = Fa
′
t + Fa

′
x · ẋ(t) + Fa

′
w · ẇ(t).

If the matrix Fa
′
w is non-singular, we get

ẇ(t) = − (
Fa

′
w

)−1 · (Fa
′
t + Fa

′
x · ẋ(t)

)
.

10

Together with (2.10a), we now have an ODE system and (2.10) is said to be a DAE

system of index one. If however Fa
′
w is singular, we can differentiate (2.10b) once

more. If the second differentiation results in an ODE system, the DAE system is

of index two. If not, the differentiation can be repeated. The DAE system is of

index n if an ODE is obtained after n differentiations of (2.10b). This is called

the differentiation index of the DAE system. A DAE system of index zero is thus

equivalent to an ODE system. There are other, non-equivalent, definitions of the

DAE system index, but this is the only one we consider in this thesis. Note that this

definition of index requires all the variables to be sufficiently differentiable (which

is not necessarily the case in this thesis). If they are not, the index becomes a local

property that may change at discontinuity points. See [HW96] for more on the index

of DAE systems and DAE systems in general.

In this thesis we only consider DAE systems of index one or zero. We avoid the

difficulties of higher-index systems by relying on the features of JModelica.org to

transform the considered models into lower-index systems, essentially allowing us

to also work with higher-index problems.

The conversion from (2.6) to (2.10) is always possible by introducing the additional

algebraic variables

w̃ = ẋ,

resulting in

ẋ(t) = w̃(t),

0 = F (t, w̃(t), x(t), w(t)).

The additional variables increase the size of the model, which is not always desirable.

It is often possible to convert a fully implicit DAE to a semi-explicit DAE without

the introduction of additional variables. The semi-explicit formulation is particularly

useful for shooting methods, but such a conversion is not always preferable for col-

location methods. Thus we choose to instead work with the fully implicit DAE form

(2.6) for the remainder of this thesis.

2.2.2 The dynamic optimization problem

For the optimal control problem our optimization variables are the time-dependent

control variables. We do not allow the derivative of the control variables to be a part

of the DAE system, so they are essentially algebraic variables. However, they are

treated very differently, so we need to separate them from the algebraic variables

(and the states). Thus, let u denote the control variable and nu the number of such

scalar variables. We introduce the term free to describe the variables we wish to

optimize, i.e. u is the free variable whereas x and w are the non-free variables. The

idea is that once we have freely chosen the free variables, the non-free variables can

be uniquely determined from the DAE system.

11

We now have four different time-dependent and vector-valued functions: ẋ, x, u
and w. Keeping these separated at all times will lead to increasingly cumbersome

notation, so we reintroduce the variable z as the Cartesian product of these functions,

i.e.

z := (ẋ, x, u, w),

nz := 2 · nx + nu + nw. (2.11)

For ease of notation, we do not distinguish between tuples and vectors, e.g. we do

not distinguish between R
a × R

b and R
a+b for arbitrary positive integers a and b.

For the parameter optimization problem and parameter estimation problem, the free

variables are instead time-independent parameters, which we denote by p. Note that

the DAE system describing the system dynamics may contain parameters which are

not free, e.g. physical constants, and are thus not a part of p. If we allow both free

control variables and parameters (in which case we have a combined optimal control

and parameter optimization problem), our DAE systems, together with the initial

conditions, now instead have the general form

F (t, z(t), p) = 0, ∀t ∈ [t0, tf], (2.12a)

F0(z(t0), p) = 0, (2.12b)

where

F : R× R
nz × R

np → R
nx+nw ,

F0 : R
nz × R

np → R
nx ,

p ∈ R
np ,

where np is the number of free parameters. Since the non-free variables (x and w)

should be determinable from the DAE system given fixed values of the free variables

(u and p), the DAE system should contain nx + nw scalar equations. Henceforth we

refer to the differential variable x as the state, which makes sense for DAE systems

of index one or zero.

With these newly introduced variables, we can formulate the general DOP as follows.

min
(z,p)∈A

f(z, p), (2.13a)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (t, z(t), p) = 0, (2.13b)

F0(z(t0), p) = 0, (2.13c)

zL ≤ z(t) ≤ zU , (2.13d)

pL ≤ p ≤ pU , (2.13e)

ge(t, z(t), p) = 0, (2.13f)

gi(t, z(t), p) ≤ 0, (2.13g)

Ge(Ze) = 0, (2.13h)

Gi(Zi) ≤ 0, (2.13i)

∀t ∈ [t0, tf].

12

We will now study each part of this problem individually.

The goal of the DOP is the same as any other optimization problem: minimizing

some cost function

f ∈ C2(A,R).

In Section 2.1 we assumed that A ⊂ R
nz . However, as we are dealing with dynamic

optimization, some of our optimization variables are now functions of time, so we

now instead assume that

A ⊂ Fb(R,R
nz)× R

np .

Note that we now consider all the variables z as optimization variables, and not

just its free component u. This is because when we add the constraints (2.13d) to

(2.13i), we can no longer choose the variables u and p completely arbitrarily. But

the fact remains that we seek the optimal values of the free variables and the remain-

ing variables can be uniquely determined by the constraints given values of the free

variables. The form of the objective function is dependent on what kind of DOP we

are solving (optimal control, parameter optimization or parameter estimation). So

for now all we say is that it should be a scalar-valued and twice continuously differ-

entiable function of the optimization variables. We discuss the objective function in

more detail in Sections 2.2.3 and 2.2.4.

The rest of (2.13) is however common to all considered DOPs. Equation (2.13b)

and (2.13c) are the system dynamics which enter the DOP as equality constraints.

Equations (2.13d) and (2.13e) are the variable bounds corresponding to (2.2b) of the

NLP problem. Note that our bounds for z are time-independent and must be satisfied

for all times t ∈ [t0, tf].

A lot of interesting problems can be formulated with just Equations (2.13a) to (2.13e)

(e.g. all the problems considered in Chapter 6). There are however times when you

want your solution to have some more properties than just satisfying some variable

bounds and system dynamics. This is done by imposing constraints, in addition to the

equality constraints corresponding to the system dynamics, as discussed in Section

2.1. In dynamic optimization, two types of constraints appear in addition to the

equality and inequality constraints. The first is on the form (2.13f), or its inequality

variant (2.13g). These are called path constraints and are enforced during all times.

The other type of constraints is called point constraints and are only enforced at

discrete time points, called constraint points. These have the form (2.13h), or its

inequality variant (2.13i), where Ze are the values of z at all the points in time where

we have a point equality constraint and Zi is defined analogously. A typical example

of a point constraint is a terminal constraint, as discussed at the end of Section 2.2.3.

Note that although (2.13b) and (2.13c) are actually path equality and point equality

constraints respectively, we have excluded them from the path and point equality

constraints (2.13f) and (2.13h), as (2.13b) and (2.13c) are always present and are

treated separately.

In Section 2.1 we required all the constraints to be twice continuously differentiable

in order to establish the second-order optimality condition (2.5). It will in Chapter 3

13

become apparent that we are not interested in the Hessian with respect to time, so we

require ge and gi to be twice continuously differentiable with respect to their second

and third arguments as well as Ge and Gi to be twice continuously differentiable with

respect to their only argument. We make however no restrictions on the continuity of

ge and gi with respect to their first argument, allowing us to have time-variant path

constraints, e.g. path constraints which are only enforced during certain times. We

also require F and F0 to be twice continuously differentiable (except with respect to

time) in order for all the constraints to be twice continuously differentiable.

2.2.3 Optimal control and parameter optimization

In the generic DOP (2.13) we allow both control variables and parameters to be

optimization variables, thus covering both optimal control problems and parameter

optimization problems. The general form of the objective functions for these two

problem types are also identical. Thus there is no need to distinguish between the

mathematical formulations of OCPs and parameter optimization problems. In this

thesis we consider two types of objective functions for these two problems. The first

is an objective function of the form

f(z, p) = φ(tf , z(tf), p), (2.14)

where φ ∈ C2(R × R
nz × R

np ,R). The differentiability is needed for the second-

order optimality condition (2.5). This objective function is said to be in Mayer form.

The other type we consider is of the form

f(z, p) =

∫ tf

t0

L(t, z(t), p) dt,

where L ∈ C2(R × R
nz ,R). This is called the Lagrange form. The function L is

called the Lagrange integrand.

As it turns out, these two forms can be interchanged equivalently. Given a DOP with

a Lagrange type objective function, the problem can be transformed into a DOP with

a Mayer type objective function by introducing the additional state xL and adding

the equation

ẋL(t) = L(t, z(t))

to the DAE system and the initial condition xL(t0) = 0. Integration then yields

xL(t) = xL(t0) +

∫ t

t0

L(t, z(t)) dt =

∫ t

t0

L(t, z(t)) dt.

By setting f(z) = φ(tf , z(tf)) = xL(tf), the conversion is complete. This conver-

sion often increases the difficulty of solving the DOP, as it introduces a possibly non-

linear constraint. The conversion from a Mayer type objective function to a Lagrange

objective function is also possible, as discussed in [Udr10], but is not something that

we will need.

14

Even though the two objective forms are equivalent, they have quite different numer-

ical properties, and it is thus interesting to consider both cases. In fact, for some parts

of this thesis, we will consider a combination of the two objective function types, i.e.

we let

f(z, p) = φ(tf , z(tf), p) +

∫ tf

t0

L(t, z(t), p) dt. (2.15)

This objective function is said to be in Bolza form.

In some cases, the time interval [t0, tf] is not fixed. In this case the endpoints t0
and/or tf become free optimization variables. The typical example of this is mini-
mum time problems, in which you wish to perform some action as quickly as possi-

ble while fulfilling some constraints. This is usually combined with point constraints

at tf , which are called terminal constraints, and the objective function is typically

f = tf .

2.2.4 Parameter estimation

The basic idea of parameter estimation is that some model of a system needs to be

calibrated against the true system by finding the correct values of certain unknown

parameters. To do this some measurement data is needed, which is then used to

find the parameter values that cause the model to align with the measured data. The

measured data is typically given at discrete time points. Let y ∈ Fb(R,R
ny) be the

measured variables, which can be either algebraic variables, states or both, where ny

is the number of measured variables. Also let

ym
(
t̂i
)
, i ∈ [1..ny],

be the values of the measured variables and let t̂i be the time points where the vari-

ables have been measured, which are called measurement points and must be shared

by all the measured variables.

The objective is then to minimize the deviation of y
(
t̂i
)

from ym
(
t̂i
)

at all the mea-

surement points. We define the deviation using weighted least squares, giving us the

cost function

f(z, p) =

nm∑
i=1

(
y
(
t̂i
)− ym

(
t̂i
)) ·Q · (y(t̂i)− ym

(
t̂i
))

, (2.16)

where Q ∈ R
ny×ny is called the weighting matrix. This is called discrete parameter

estimation.

Another possible situation is that the measured data ym is available as a continuous

function of time. Such is the case if the data is measured continuously or if the

discrete measurements are somehow interpolated. Our cost function is then instead

given by

f(z, p) =

∫ tf

t0

(y(t)− ym(t)) ·Q · (y(t)− ym(t)) dt, (2.17)

15

which is called continuous parameter estimation. When we implement our algo-

rithms in Chapter 5, we provide the possibility of linearly interpolating discrete

measurement data. Linear interpolation is quite rough and there are certainly bet-

ter methods available. One advantage of interpolating the discrete data, rather than

employing discrete parameter estimation, is that the measured variables no longer

need to share measurement points. We will in Chapter 3 see additional advantages

of continuous parameter estimation. In Section 6.4 we compare the results obtained

from discrete and continuous parameter estimation.

16

Chapter 3

Collocation theory

In Chapter 2, we introduced the dynamic optimization problem. The aim of this

thesis is to solve this problem, which is done by casting the infinite-dimensional DOP

to a finite-dimensional NLP problem using direct collocation methods, which then

can be solved numerically. This chapter is dedicated to the theory behind collocation

methods, in particular collocation methods with no collocation point at the start of

each element. We start by defining Lagrange interpolation polynomials, which we

then use to present the fundamental theory behind all of our collocation methods.

We finish by describing the specific Radau and Gauss collocation methods.

3.1 Lagrange interpolation polynomials

The collocation methods we use are based on Lagrange interpolation polynomials.

A Lagrange interpolation polynomial has the general form

ζ(t) =

nc∑
k=1

ζk · �k(t), (3.1)

where �k is the k:th Lagrange basis polynomial, ζk ∈ R is the basis coefficient of

basis polynomial k and nc is the number of interpolation points. The degree of ζ is

nc − 1. The basis polynomials are given by

�k(t) =
∏

l∈[1..nc]\{k}

t− tl
tk − tl

, (3.2)

where tk is interpolation point k. We define the product over an empty set to be equal

to 1 in order to handle the case nc = 1. Lagrange interpolation polynomials have the

important property

ζ(tk) = ζk, ∀k ∈ [1..nc]. (3.3)

This together with their simplicity is the main reason we choose to work with them.

17

We will also be needing the derivative of a Lagrange interpolation polynomial, which

is given by

ζ ′(t) =
nc∑
k=1

ζk · �′k(t), (3.4)

where the derivative of �k is obtained via the product rule as

�′k(t) =
∑

m∈[1..nc]\{k}

⎛
⎝ 1

tk − tm
·

∏
l∈[1..nc]\{k,m}

t− tl
tk − tl

⎞
⎠ . (3.5)

Note that all polynomials actually are Lagrange polynomials; (3.1) is just a specific

representation of an arbitrary polynomial. It is thus more semantically correct to

speak of the Lagrange form of a polynomial. Preserving this semantic correctness

can become quite cumbersome, so sometimes we instead simply refer to them as

Lagrange polynomials.

3.2 Generic collocation theory

3.2.1 Collocation polynomial construction

We start the DOP transcription by discretizing the time and variable trajectories into

ne elements. We approximate the variable trajectories

v(t) := (x(t), u(t), w(t)), ∀t ∈ [t0, tf]

in element i ∈ [1..ne] by a vector-valued Lagrange interpolation polynomial

vi = (xi, ui, wi) ∈ C∞(R,Rnx × R
nu × R

nw).

These are called collocation polynomials. Next, we normalize the time in element i
by

t(τ) = ti−1 + hi · τ, τ ∈ [0, 1] (3.6)

where ti is the time at the end of element i, which is called the mesh point of element

i, and hi is the length of element i.

The approximation of the variable trajectories v(t) over the entire time interval

[t0, tf] is then formed by “gluing” the collocation polynomials together at the mesh

points. Different structures of the collocation polynomials are needed depending on

which variable is considered, in particular on the desired continuity of the considered

variable. We introduce new variable compositions to keep track of the variables for

which we wish to enforce continuity. Let

(uC , uD) := u and (uCi , u
D
i) := ui, ∀i ∈ [1..ne],

(wC , wD) := w and (wC
i , w

D
i) := wi, ∀i ∈ [1..ne],

18

where uC is the vector of control variables for which we wish to enforce continuity,

uD is the vector of control variables which may be discontinuous, uCi and uDi are the

polynomial approximations of uC and uD respectively in element i, and wC , wD,

wC
i as well as wD

i are defined analogously for the algebraic variables. Let nC
u and

nD
u denote the number of scalar components in uC(t) and uD(t) respectively and nC

w

as well as nD
w be defined analogously for the algebraic variables. Since we want all

the states to be continuous, also let

vC := (x, uC , wC) and vCi := (xi, u
C
i , w

C
i), ∀i ∈ [1..ne],

vD := (uD, wD) and vDi := (uDi , w
D
i), ∀i ∈ [1..ne].

Note that since the controls are free, we can freely choose whether to enforce con-

tinuity for these. The algebraic variables on the other hand are implicitly defined

as functions of x and u by the relation (2.13b), so their continuity depends on the

continuity of their dependent variables and can thus not be enforced as arbitrarily as

the control variables. Enforcing continuity for algebraic variables which depend on

discontinuous controls (the states are always continuous) may result in an infeasi-

ble problem (specifically, the transcription will not be degree-preserving, which we

define later). So this should only be done when it is known a priori that the alge-

braic variables in question actually are continuous. And it is not always necessary

to enforce continuity for the continuous algebraic variables, since a discontinuous

approximation will often suffice.

The approximation of vC is continuous if and only if

vCi+1(0) = vCi (1), ∀i ∈ [1..ne − 1]. (3.7)

Since we have a condition on the value of the collocation polynomials vCi at the start

of each element, we place an interpolation there. Since we have no such condition

for the collocation polynomials vDi , we do not place an interpolation there. The

collocation polynomials in element i are thus given by

vCi (τ) =

nc∑
k=0

vCi,k · �̃k(τ),

vDi (τ) =

nc∑
k=1

vDi,k · �k(τ),

where

vCi,k =
(
xi,k, u

C
i,k, w

C
i,k

) ∈ R
nx × R

nC
u × R

nC
w

and

vDi,k =
(
uDi,k, w

D
i,k

) ∈ R
nD
u × R

nD
w

are the basis coefficients,

�̃k(τ) =
∏

l∈[0..nc]\{k}

τ − τl
τk − τl

,

�k(τ) =
∏

l∈[1..nc]\{k}

τ − τl
τk − τl

19

are the Lagrange basis polynomials, where τk is the k:th interpolation point normal-

ized according to (3.6). The purpose of normalizing the time is that this lets us use

the same interpolation points and basis polynomials in all the elements for all the

variables, as long as we separate vCi and vDi . Since we needed an interpolation point

at the start of each element for vCi in order to achieve continuity, we define

τ0 := 0.

How to actually achieve continuity using this interpolation point depends on which

specific collocation method is used and is thus discussed in the sections for the spe-

cific methods.

The choice of the remaining interpolation points is what defines a specific collocation

method. In this thesis we base this choice on the roots of the shifted Gauss-Jacobi

polynomial of degree K = nc − α− β, which can be described by

P
(α,β)
K (τ) =

K∑
j=0

(−1)K−j · γj · τ j , (3.8)

where {
γ0 = 1,

γj =
(K+1−j)(K+j+α+β)

j(j+β) , j ∈ [1..K],

where α and β are constants of our choosing. The polynomial is shifted in the sense

that normally the polynomial is defined with τ ∈ [−1, 1], whereas we have chosen

the domain [0, 1]. In this thesis we consider the following three combinations of α
and β.

α = 0 ∧ β = 0 → Gauss collocation,

α = 1 ∧ β = 0 → Radau collocation,

α = 1 ∧ β = 1 → Lobatto collocation.

We discuss Gauss and Radau collocation further in Sections 3.4 and 3.3 respectively.

The reason behind these choices of τk is that they yield a high approximation accu-

racy, which we briefly discuss in Section 3.2.2, and have certain stability properties.

For the approximation of ẋ in element i we use the derivative of xi, i.e.

ẋi :=
dxi
dt

With the normalized time, the collocation polynomials representing the state deriva-

tives are given by the chain rule, (3.6) and (3.4) as

ẋi(τ) =
dxi
dt

(τ) =
dτ

dt
· dxi
dτ

(τ) =
1

hi
·

nc∑
k=0

xi,k · ˙̃�k(τ), (3.9)

where
˙̃
�k(τ) is obtained via (3.5).

20

Another benefit of enforcing continuity for the control variables and algebraic vari-

ables is that their derivatives can be defined in the same way as ẋi, i.e.

v̇Ci (τ) :=
dvCi
dt

(τ) =
dτ

dt
· dv

C
i

dτ
(τ) =

1

hi
·

nc∑
k=0

vCi,k · ˙̃�k(τ). (3.10)

This can then be used to define constraints on the derivatives of the continuous con-

trol variables and algebraic variables, or include them in the cost function. We did

however not consider this possibility in the formulation of the general DOP in Chap-

ter 2, but the possibility of defining v̇Ci like this is relevant to other ideas discussed

later in this thesis.

We now compose our collocation polynomials ẋi, v
C
i and vDi into zi in a manner

similar to what we did in (2.11), i.e.

zi :=
(
ẋi, v

C
i , v

D
i

)
=

(
ẋi, xi, u

C
i , w

C
i , u

D
i , w

D
i

)
. (3.11)

Let z̃ denote the approximation of z, which is constructed by “gluing” the collocation

polynomials zi together as discussed at the beginning of this section. Let

ti,k := ti−1 + hi · τk.

When we transcribe the DOP (2.13), we will only be enforcing the constraints at

discrete time points. These points are given by the set

{ti,k : i ∈ [1..ne] ∧ k ∈ [1..nc]} ,

and are called the collocation points. Note that these coincide with the interpolation

points of the collocation polynomials, with the exception of τ0 in each element. We

thus redefine nc to be the number of collocation points in the collocation polynomials

rather than the number of interpolation points. We choose these interpolation points

as collocation points because we can easily get all the values of z̃ at these points via

(3.3), except those of ẋi. Since ẋi is obtained by differentiating the Lagrange form

of the collocation polynomial xi, the Lagrange form of ẋi is not easily obtained. We

could compute the Lagrange form of ẋi, in order to enable the use of (3.3), but we

would have little use of it. All we need is to be able to evaluate ẋi at arbitrary time

points, which we can do via (3.9). So we get the values of ẋi at the collocation points

as

ẋi,k := ẋi(τk) =
1

hi
·

nc∑
l=0

xi,l · ˙̃�l(τk). (3.12)

Note that ẋi,k, unlike vi,k, are not Lagrange basis coefficients, but rather the value of

the polynomial ẋi at τk (not unlike vi,k). The equations (3.12) are called collocation
equations.

Lagrange interpolation requires all the interpolation points to be distinct. Thus we

can not have a collocation point at the start of each element, since we have already

chosen τ0 = 0 as an interpolation point for vCi . Lobatto collocation, unlike Radau

21

and Gauss collocation, has a collocation point at the start of each element. For this

reason, the approach described in this section can not be used to create a Lobatto

collocation method. A different approach is required for Lobatto collocation, which

is discussed in Appendix A. Thus we do not discuss Lobatto collocation to the same

extent as we discuss Radau and Gauss collocation in this chapter.

Our collocation polynomials are now completed. To summarize, the variables z are

approximated in element i by the collocation polynomials zi, given by

zi =
(
ẋi, xi, u

C
i , w

C
i , u

D
i , w

D
i

)
,

where

ẋi(τ) =
1

hi
·

nc∑
k=0

xi,k · ˙̃�k(τ), xi(τ) =

nc∑
k=0

xi,k · �̃k(τ),

uCi (τ) =

nc∑
k=0

uCi,k · �̃k(τ), uDi (τ) =

nc∑
k=1

uDi,k · �k(τ),

wC
i (τ) =

nc∑
k=0

wC
i,k · �̃k(τ), wD

i (τ) =

nc∑
k=1

wD
i,k · �k(τ).

(3.13)

Note that we have not created a polynomial representation of p. This is not needed,

since the parameters are already discrete. We are now ready to put these to use by

transcribing the DOP (2.13) into an NLP problem. But before we proceed to do this,

we discuss how the choice of collocation points affects the orders of convergence for

our methods.

3.2.2 Convergence orders

This section assumes that u = uD and w = wD.

As shown in [AP91] and [KB08], the uniform global error of the approximated state

in element i, given by xi, is

O
(
h
min(nc+1,2·nc−α−β)
i

)
.

The uniform global error of the approximated algebraic variables and control vari-

ables in element i is

O (hnc
i) .

If nc > 1, the uniform global error is thus the same for Gauss, Radau and Lobatto

collocation.

At the mesh points, the global error of all variables is

O
(
h2·nc−α−β
i

)
.

22

Thus the convergence order of the solution is up to twice as high on the mesh points

than it is on the rest of the element (including the collocation points). This phe-

nomenon is called superconvergence. So at the mesh points, Gauss collocation pro-

vides the highest accuracy, and Radau collocation provides higher accuracy than

Lobatto collocation.

Note that this section is highly reliant on the DAE system being of index 0 or 1.

For DAE systems of higher index, the methods may suffer from convergence order

reduction, or even become unstable.

3.2.3 Transcription of dynamic optimization problems

For ease of notation, we introduce a variable composition similar to the one in (3.11).

Let

zi,k := zi(τk) = (ẋi,k, xi,k, ui,k, wi,k), ∀(i, k) ∈ [1..ne]× [0..nc],

where

ui,0 := uCi,0, ui,k :=
(
uCi,k, u

D
i,k

)
, ∀k ∈ [1..nc],

wi,0 :=wC
i,0, wi,k :=

(
wC
i,k, w

D
i,k

)
, ∀k ∈ [1..nc].

Let also

zCi,k := vCi (τk) = (xi,k, u
C
i,k, w

C
i,k), ∀(i, k) ∈ [1..ne]× [0..nc].

As optimization variables in the nonlinear programming problem we choose all the

values of ẋi,k and the Lagrange basis coefficients, i.e. zi,k for all k greater than 0, as

well as the parameters p. We also choose the initial values as NLP variables, which

we denote by z1,0 (which are not Lagrange basis coefficients). We further choose the

values of zCi,0 as NLP variables and refer to them as continuity variables. We thus let

Z = (z1,0, z1,1, z1,2, . . . , z1,nc ,

zC2,0, z2,1, z2,2, . . . , z2,nc ,

zC3,0, z3,1, z3,2, . . . , z3,nc ,

...,

zCne,0, zne,1, zne,2, . . . , zne,nc , p).

be the vector containing all the NLP variables (slight modifications will be made to

this vector for Gauss collocation). The dimension of Z, i.e. the number of scalar

optimization variables, is given by

nZ = nz + (ne − 1) · nC
z + ne · nc · nz + np

= (1 + ne · nc) · nz + (ne − 1) · nC
z + np.

(3.14)

23

The DOP transcription then gives us the following NLP problem.

min
Z∈RnZ

f̃(Z) (3.15a)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (ti,k, zi,k) = 0, (3.15b)

F0(z1,0) = 0, (3.15c)

uD1,0 −
nc∑
k=1

uD1,k · �k(0) = 0, (3.15d)

zL ≤ zi,k ≤ zU , (3.15e)

pL ≤ p ≤ pU , (3.15f)

ge(ti,k, zi,k) = 0, (3.15g)

gi(ti,k, zi,k) ≤ 0, (3.15h)

Ge(Ze) = 0, (3.15i)

Gi(Zi) ≤ 0, (3.15j)

ẋj,l − 1

hj
·

nc∑
m=0

xj,m · ˙̃�m(τl) = 0, ∀(j, l) ∈ [1..ne]× [1..nc](3.15k)

G(Z) = 0, (3.15l)

∀(i, k) ∈ {(1, 0)} ∪ ([1..ne]× [1..nc]).

Equation (3.15l) is equality constraints which depend on the choice of collocation

points and will thus be defined individually in each section corresponding to each

such choice. We will now study the remaining parts of (3.15), which essentially

are common to all collocation methods with no collocation point at the start of each

element.

Like before, we do not specify the structure of the objective function f̃ in the general

formulation, as it depends on what kind of DOP is considered. For optimal control

and parameter optimization, we need to transcribe the general Bolza type cost func-

tion, see (2.15). How we handle the Mayer part depends on the choice of collocation

points and is discussed later. For the Lagrange part, we need to be able to integrate

functions of z̃. We accomplish this using Gaussian quadrature. We start by using

(3.6) to define the Lagrange integrand in each element, given by

L̃i(τ, zi(τ), p) := L(t(τ), zi(τ), p) = L(t(τ), z̃(t(τ)), p).

We then have

f(z̃, p) =

∫ tf

t0

L(t, z̃(t), p) dt =

ne∑
i=1

(
hi ·

∫ 1

0
L̃i(τ, zi(τ), p) dτ

)

≈
ne∑
i=1

(
hi ·

nc∑
k=1

ωk · L̃i (τk, zi(τk), p)

)

=

ne∑
i=1

(
hi ·

nc∑
k=1

ωk · L̃i (τk, zi,k, p)

)

:= f̃(Z),

(3.16)

24

where the quadrature weights ωk are given by

ωk =

∫ 1

0
�k(τ) dτ.

This choice of quadrature weights provides the best integral approximation for the

given interpolation points, as shown in [Bie10, ch. 10].

Note that we in the approximation of the integral in (3.16) only used the values of

zCi at the collocation points, even though the values zi,0 are readily available as NLP

variables. This might seem wasteful. The reason for this is that the polynomials zCi
and zDi do not share all their respective interpolation points, but since they are both

a part of L̃i, they have to share quadrature weights. There are three possible ways to

handle this.

1. Use the quadrature weights belonging to zDi and ignore the values of zCi,0. This

essentially amounts to approximating the polynomials zCi of degree nc with

polynomials of degree nc − 1, using the values of zCi (τk) for all k ∈ [1..nc].

2. Use the quadrature weights belonging to zCi and use (3.13) to evaluate zDi (0).

3. If L has a structure that allows it to be decomposed as

L(t, z(t)) = L1(t, ẋ(t), x(t), u
C(t), wC(t), p) + L2(t, u

D(t), wD(t), p),

we can weight the polynomials separately depending on if they have an inter-

polation at τ0 or not. If only a part of L can be decomposed like this, then we

can separate the corresponding weights and employ option 1 or 2 for part of L
that can not be decomposed like this.

The most accurate option is number 3. There is however no easy way to implement

this in JModelica.org and the gain in accuracy is believed to be minor, so this option

is discarded. Which of the two remaining choices that is the most accurate is beyond

the scope of this thesis to investigate. Since option 1 is simpler to implement and also

requires less computations, this is the approach chosen for the quadrature in (3.16).

If the considered DOP instead is a continuous parameter estimation problem, see

(2.17), we use the same Gaussian quadrature, yielding

f(z̃, p) =

∫ tf

t0

(ỹ(t)− ym(t)) ·Q · (ỹ(t)− ym(t)) dt

=

ne∑
i=1

(
hi ·

∫ 1

0
(yi(τ)− ym(t(τ))) ·Q · (yi(τ)− ym(t(τ))) dt

)

≈
ne∑
i=1

(
hi ·

nc∑
k=1

ωk · (yi(τk)− ym(t(τk))) ·Q · (yi(τk)− ym(t(τk)))

)

=

ne∑
i=1

(
hi ·

nc∑
k=1

ωk · (yi,k − ym(t(τk))) ·Q · (yi,k − ym(t(τk)))

)

:= f̃(Z),
(3.17)

25

where ỹ, yi and yi,k are the components of z̃, zi and zi,k respectively corresponding

to the measured variables.

If we consider the discrete parameter estimation problem, there are two possible sit-

uations. The first is that all the measurement points t̂i coincide with a collocation

point. All the required values to evaluate the cost function are then already available

as NLP variables. If some measurement points do not coincide with a collocation

point, there are two possible approaches. The first is to evaluate the collocation poly-

nomials at the measurement points using (3.13). This is however very expensive and

is not a good approach for a large number of measurement points. The alternative

is to modify the mesh so that we actually have a collocation point at each measure-

ment point. In this thesis we leave this modification up to the user, and thus assume

the first situation, i.e. that all the measurement points t̂i coincide with a collocation

point. The cost function is then straightforward to transcribe as

f(z̃, p) =

nm∑
i=1

(
ỹ
(
t̂i
)− ym

(
t̂i
)) ·Q · (ỹ(t̂i)− ym

(
t̂i
))

:= f̃(Z),

where ỹ
(
t̂i
)

is the vector of NLP variables that has been determined to correspond

to the value of the measured variable y at the measurement point t̂i.

We have now discussed the transcription of all DOP cost functions considered in

this thesis and now turn our attention to the constraints. The constraints (3.15b) and

(3.15c) are direct transcriptions of (2.13b) and (2.13c) respectively, where we enforce

the system dynamics at the collocation points. To get consistent initial values z1,0
we also enforce F and F0 at t1,0 = t0. To this end we need the value of z1,0. The

constraints (3.15b) and (3.15c) give us all the parts of z1,0 corresponding to the non-

free variables, i.e. ẋ1,0, x1,0 and w1,0. The value of uC1,0 is a basis coefficient for

uC1 and can thus be chosen freely, since u is free. All that is missing to determine

z1,0 is the value of uD1,0. Since this is not a basis coefficient, it can not be chosen

freely, but instead needs to be governed by a constraint. This constraint uses (3.13)

to evaluate uD1 at t0 and then enforces this value as an equality constraint, which

gives us (3.15d).

There are two ways of transcribing the variable bounds and the path constraints, i.e.

Equations (2.13d) to (2.13g). We either enforce them at all the collocation points, or

at all the mesh points. Using just the mesh points is sensible due to the superconver-

gence properties of our methods, as discussed in Section 3.2.2. This may however

be problematic. Since the DAE system is not necessarily defined for variable val-

ues that do not satisfy the variable bounds and path constraints, we may be unable

to evaluate the DAE system at the collocation points if the variable bounds and path

constraints are not satisfied at these points. In order to avoid this problem, we choose

to enforce the variable bounds and path constraints at all the collocation points. We

also enforce them at the start time t1,0, which is done as a precaution rather than a

necessity, since if the user has supplied consistent initial conditions, they should also

satisfy the bounds and path constraints.

26

Point constraints are however less straightforward to transcribe. For these we run

into the same problems as we did in the case of discrete parameter estimation. We

also use the same solution, i.e. we assume that each constraint point coincides with

a collocation point. The values of Ze and Zi are thus available as already existing

NLP variables, which gives us (3.15i) and (3.15j).

In Section 2.1 we noted that the constraint functions must be twice continuously

differentiable with respect to all the primal variables (i.e. Z). Since the time is not

a primal variable, we do not need to make any restrictions on the differentiability of

ge and gi with respect to their first arguments, as mentioned in Section 2.2.2.

The last part of the NLP problem is the collocation constraints (3.15k), which are

the collocation equations (3.12) enforced at the collocation points. Note that, unlike

all the other constraints, we do not enforce the collocation equations at t1,0, which is

why we do not consider t1,0 to be a collocation point. This has the consequence that

ẋ1,0 is not determined by the value of dx1
dt (0), but rather the value that is consistent

with the DAE system and its initial conditions. These two values do not necessarily

coincide, which is why we can not enforce both of them. This is not necessarily a

problem, but if it is, there are two possible solutions. The first is to make the first

element sufficiently small, as the continuity of F gives that

dx1
dt

(0) → ẋ1,0, h1 → 0.

The other solution is to use a collocation method which has a collocation point at τ0,

such as the Lobatto method.

Finally we note that the general collocation method constructed in this section is

an optimization method. Using the ideas of Section 3.2.1, one can also construct

simulation methods. These simulation methods are also called collocation meth-

ods, and turn out to be a special case of implicit Runge-Kutta methods. It is shown

in Appendix A how a general simulation collocation method can be equivalently

formulated as an implicit Runge-Kutta method. The converse is however not true,

e.g. Runge-Kutta methods with non-distinct ci in their Butcher tableaus can not be

formulated as collocation methods. With the exception of Appendix A, we do not

focus on the Runge-Kutta formulations of our methods in this thesis. But it is still

worth keeping this correspondence in mind, since the specific optimization collo-

cation methods we derive during the rest of this chapter inherit some properties

from their Runge-Kutta simulation counterparts. There is also plenty of research

on Runge-Kutta methods which is directly applicable to our collocation methods,

e.g. some of the points discussed in Section 3.2.2.

In the succeeding sections we discuss the practical differences between Radau and

Gauss, e.g. how the transcriptions differ and are implemented. We do not focus on

the more theoretical aspects of the different methods, such as stability properties in

certain situations. See [HW96, ch. IV] and [Sim10, ch. 3] for discussions on these

topics.

27

3.3 Radau collocation

The collocation points τk for the Radau collocation method are obtained as the roots

of the shifted Gauss-Jacobi polynomial (see (3.8)) with α = 1 and β = 0. This

gives us nc − 1 interpolation points in the open interval (0, 1). The last is chosen

as τnc = 1. Below is a table with numeric values of the collocation points for all

nc ∈ {1, 2, 3, 4} and a table with numeric values of the corresponding quadrature

weights.

τ1 τ2 τ3 τ4

nc = 1 1.000000 N/A N/A N/A

nc = 2 0.333333 1.000000 N/A N/A

nc = 3 0.155051 0.644949 1.000000 N/A

nc = 4 0.088588 0.409467 0.787659 1.000000

Table 3.1: Radau collocation points

ω1 ω2 ω3 ω4

nc = 1 1.000000 N/A N/A N/A

nc = 2 0.750000 0.250000 N/A N/A

nc = 3 0.376403 0.512485 0.111111 N/A

nc = 4 0.220462 0.388193 0.328844 0.062500

Table 3.2: Radau quadrature weights

Let us continue by addressing the continuity conditions (3.7). Thanks to the colloca-

tion point τnc = 1 and the interpolation point τ0 = 0, the values of vCi (0) and vCi (1)
are easily obtained by (3.3), giving us

vCi (1) = vCi (τnc) = zCi,nc
,

vCi (0) = vCi (τ0) = zCi,0.

Since these two values have been chosen as NLP variables, continuity is enforced

with the constraints

zCi,nc
− zCi+1,0 = 0, ∀i ∈ [1..ne − 1]. (3.18)

The handling of Lagrange type cost functions as well as continuous and discrete

parameter estimation is fully described in 3.2.3. The only type of cost function

we have not yet discussed the transcription of is the Mayer type, see (2.14). This

is straightforward to transcribe for Radau collocation, since we have a collocation

point at tf = tne,nc . The Mayer type cost function is thus simply transcribed as

f(z̃, p) = φ(tf , z̃(tf), p) = φ(tne,nc , zne,nc , p) := f̃(Z). (3.19)

28

We now have all the information we need to fully transcribe the DOP into an NLP

problem using Radau collocation. The full transcription is given by (3.15). All

that remains is specifying the function G in (3.15l). For Radau collocation, we let

G = GR, where GR simply is the continuity constraints (3.18). We thus have

GR(Z) :=
(
zC1,nc

− zC2,0, z
C
2,nc

− zC3,0, . . . , z
C
ne−1,nc

− zCne,0

)
.

At the end of Section 3.2.3 we mentioned that our collocation methods are actually

implicit Runge-Kutta methods. As it turns out, Radau collocation with nc = 1
corresponds to the arguably most famous implicit numerical method. To see this, we

study the collocation equations at the mesh points, i.e.

ẋi(1) =
1

hi
·

nc∑
k=0

xi,k · ˙̃�k(1).

Applying (3.5) gives us

ẋi(1) =
1

hi
·

1∑
k=0

⎛
⎝xi,k ·

∑
m∈{0,1}\{k}

⎛
⎝ 1

τk − τm
·

∏
l∈{0,1}\{k,m}

1− τl
τk − τl

⎞
⎠
⎞
⎠

=
1

hi
·
⎛
⎝xi,0 ·

∑
m=1

⎛
⎝ 1

τ0 − τm
·

∏
l∈{1}\{m}

1− τl
τ0 − τl

⎞
⎠

+ xi,1 ·
∑
m=0

⎛
⎝ 1

τ1 − τm
·

∏
l∈{0}\{m}

1− τl
τ1 − τl

⎞
⎠
⎞
⎠

=
1

hi
·
(
xi,0 · 1

τ0 − τ1
+ xi,1 · 1

τ1 − τ0

)
=

1

hi
·
(

xi,0
0− 1

+
xi,1
1− 0

)

=
xi(1)− xi(0)

hi
,

which we recognize as the derivative approximation used to derive the implicit Euler

method.

We finish by counting our degrees of freedom to ensure that we have a sensible tran-

scription formulation, in the sense that given fixed (and feasible) values for all ui,k
and p, the rest of Z can be uniquely determined from the constraints. This corre-

sponds to having just as many scalar constraint equations as we have NLP variables

representing the non-free variables x, ẋ and w. If a transcription has this property,

it is said to be degree-preserving. This property guarantees that the variables ui,k
and p can be chosen as freely as in the continuous DOP, independently of the details

of the transcription. A transcription which is not degree-preserving may result in an

infeasible NLP problem, even if the original DOP is well-posed.

The total number of NLP variables is given by (3.14). Out of the nZ NLP variables,

we have

nf := nC
u + ne · nc · nu + np

29

NLP variables which represent values of the free DOP variables u and p, and we

should thus have as many degrees of freedom. Note that the variables uD1,0 and uCi,0
for all i ∈ [2..ne] do not provide any additional degrees of freedom, as they are reg-

ulated by the constraints (3.15d) and (3.15l). How the constraints (3.15e) to (3.15j)

affect the degrees of freedom is dependent on the DOP, so we disregard these for the

purpose of determining whether our transcription is degree-preserving. In order for

the transcription to be degree-preserving, the equations (3.15b) to (3.15d), (3.15k)

and (3.15l) should give us a total of

nZ − nf = (1 + ne · nc) · nz + (ne − 1) · nC
z + np

− (nC
u + ne · nc · nu + np)

= nz − nC
u + (ne − 1) · nC

z + ne · nc · (2 · nx + nw)

= 2 · nx + nw + nD
u + (ne − 1) · nC

z + ne · nc · (2 · nx + nw)

(3.20)

(scalar) equations.

Since the codomain of F is R
nx+nw and the codomain of F0 is R

nx , (3.15b) and

(3.15c) give us

(1 + ne · nc) · (nx + nw) + nx

equations. The constraints (3.15d) for the initial value of uD we get

nD
u

equations. The collocation constraints (3.15k), enforced at all collocation points,

give us

(1 + ne · nc) · nx

equations. Finally we have the method-dependent constraints (3.15l), which in this

case gives us

(ne − 1) · nC
z

equations. Summing them all up and subtracting the number of non-free variables,

given by (3.20), we get

(1 + ne · nc) · (nx + nw) + nD
u + (1 + ne · nc) · nx + (ne − 1) · nC

z

−(
2 · nx + nw + nD

u + (ne − 1) · nC
z + ne · nc · (2 · nx + nw)

)
=(1 + ne · nc) · (2 · nx + nw)

−(2 · nx + nw + ne · nc · (2 · nx + nw)) = 0.

In other words, we have the same number of non-free variables as equations and our

transcription is thus degree-preserving.

3.4 Gauss collocation

The collocation points τk for the Gauss collocation method are obtained as the roots

of the shifted Gauss-Jacobi polynomial (see (3.8)) with α = β = 0. This gives us

30

nc collocation points in the open interval (0, 1), i.e. we have no collocation points

on the element boundaries. Below is a table with numeric values of the collocation

points for all nc ∈ {1, 2, 3, 4} and a table with numeric values of the corresponding

quadrature weights. Note how all the collocation points are symmetric around 0.5,

which is no coincidence.

τ1 τ2 τ3 τ4

nc = 1 0.500000 N/A N/A N/A

nc = 2 0.211325 0.788675 N/A N/A

nc = 3 0.112702 0.500000 0.887298 N/A

nc = 4 0.069432 0.330009 0.669991 0.930568

Table 3.3: Gauss collocation points

ω1 ω2 ω3 ω4

nc = 1 1.000000 N/A N/A N/A

nc = 2 0.500000 0.500000 N/A N/A

nc = 3 0.277778 0.444444 0.277777 N/A

nc = 4 0.173927 0.326072 0.326072 0.173927

Table 3.4: Gauss quadrature weights

To handle the continuity conditions (3.7), we need the values of vCi at all the mesh

point. These are obtained using (3.13). We introduce these values as the NLP vari-

ables zCi,nc+1 (which are not Lagrange basis coefficients). These values are thus

obtained by the equations

zCi,nc+1 − vCi (1) = zCi,nc+1 −
nc∑
k=0

zCi,k · �̃k(1) = 0, ∀i ∈ [1..ne − 1], (3.21)

which are called evaluation constraints. Our continuity constraints are then given by

the conditions

zCi (1)− zCi+1(0) = zCi,nc+1 − zCi+1,0 = 0, ∀i ∈ [1..ne − 1].

There is an alternative way to determine the values of the continuity variables zCi,nc+1.

Equations (3.6) and (3.10) give

hi ·
∫ 1

0
v̇Ci (τ) = vCi (1)− vCi (0)

⇐⇒ vCi (1) = vCi (0) + hi ·
∫ 1

0
v̇Ci (τ) dτ.

31

By applying Gaussian quadrature to the integral (like we did for (3.16) and (3.17)),

we get

zCi,nc+1 ≈ zCi,0 + hi ·
nc∑
k=1

ωk · żCi,k, (3.22)

where żCi,k is defined in a manner analogous to how we defined ẋi,k in (3.12) by

using (3.10). This is called a quadrature constraint and can be used instead of (3.21)

to get the values of the continuity variables. As shown in [Bie10, th. 10.1], the

Gaussian quadrature approximation is exact for polynomials of degrees lesser than

2 · nc, and since v̇Ci is of degree nc − 1, the approximation (3.22) is actually exact.

The quadrature constraint is thus equivalent to the evaluation constraint. For now

we adopt the evaluation constraint, but in Chapter 5 we implement both alternatives.

This is discussed further in Section 5.2.4.12.

Since we do not have any collocation points at the mesh points, the DAE system

is not satisfied at these points. This is not a problem in and of itself, but it does

degrade the performance of the method when applied to DAE systems, especially

those of high index. As discussed in [AP91], it is possible to modify the collocation

method so that the approximated solution at least satisfies the algebraic (not the dif-

ferential) equations at the mesh points. The corresponding Runge-Kutta method is

called a projected implicit Runge-Kutta method. This is required to get the conver-

gence orders noted in section 3.2.2. We do however not investigate projected Gauss

collocation any further in this thesis.

Another consequence of not having a collocation point at the mesh points is that

we can not transcribe Mayer type cost functions in the same straightforward manner

as we did for Radau collocation in (3.19). We need the value of zne(1) to evaluate

Mayer type cost functions, and also for terminal constraints in the case of free final

time. We denote this value by zne,nc+1 and include it as an NLP variable. Its value

is obtained by evaluating the collocation polynomials using (3.13). The transcription

of Mayer type cost functions is thus given by

f(z̃, p) = φ(tf , z̃(tf), p) = φ(tne,nc+1, zne,nc+1, p) := f̃(Z)

and the value of

z̃(tf) =: zne,nc+1 =
(
ẋne,nc+1, z

C
ne,nc+1, z

D
ne,nc+1

)
,

which is called the terminal value, is obtained as

ẋne,nc+1 =
1

hi
·

nc∑
l=0

xi,l · ˙̃�l(1),

zCne,nc+1 =

nc∑
k=0

zCne,k · �̃k(1), (3.23)

zDne,nc+1 =

nc∑
k=1

zDne,k · �k(1).

32

The constraints obtained by enforcing these equations are also called evaluation con-

straints. Note that the constraint obtained by enforcing equation (3.23) could be

replaced by an equivalent quadrature constraint.

These are all the differences between the transcriptions obtained from Radau and

Gauss collocation, so we now have all the information we need to fully transcribe

the DOP into an NLP problem using Gauss collocation. Compared to the generic

transcription in Section 3.2.3, we have added the mesh point values of vCi and the

terminal values of zi as NLP variables. We thus get a new expression for the vector

containing all the NLP variables, given by

ZG =
(
z1,0, z1,1, z1,2, . . . , z1,nc , z

C
1,nc+1,

zC2,0, z2,1, z2,2, . . . , z2,nc , z
C
2,nc+1,

zC3,0, z3,1, z3,2, . . . , z3,nc , z
C
3,nc+1,

...,

zCne−1,0, zne−1,1, zne−1,2, . . . , zne−1,nc , z
C
ne−1,nc+1,

zCne,0, zne,1, zne,2, . . . , zne,nc+1, p
)
.

Thus we also get a new value for the total number of NLP variables, given by

nZG
= nz + 2 · (ne − 1) · nC

z + ne · nc · nz + nz + np

= (2 + ne · nc) · nz + 2 · (ne − 1) · nC
z + np.

The full transcription is given by (3.15). Like before, we just need to specify the G
in equation (3.15l). For Gauss collocation, we let G = GG, where GG consists of

five parts: evaluation constraints, continuity constraints, the terminal value of ẋ, the

terminal value of vC and the terminal value of vD. We thus have

GG(ZG) =

(
zC1,nc+1 −

nc∑
k=0

zC1,k · �̃k(1), zC2,nc+1 −
nc∑
k=0

zC2,k · �̃k(1), . . . ,

zCne−1,nc+1 −
nc∑
k=0

zCne−1,k · �̃k(1),

zC1,nc+1 − zC2,0, z
C
2,nc+1 − zC3,0, . . . , z

C
ne−1,nc+1 − zCne,0,

ẋne,nc+1 − 1

hi
·

nc∑
l=0

xi,l · ˙̃�l(1),

zCne,nc+1 −
nc∑
k=0

zCne,k · �̃k(1), zDne,nc+1 −
nc∑
k=1

zDne,k · �k(1)
)
.

We finish by counting our degrees of freedom to ensure that our transcription is

degree-preserving. Since we already know that the Radau transcription is degree-

preserving, see Section 3.3, we do not calculate the degrees of freedom explicitly.

33

Instead we simply note that compared to the Radau transcription, we have added

(ne − 1) · nC
z NLP variables for the mesh point values of vC and nz variables for all

the terminal values. All of these NLP variables are coupled with just as many eval-

uation (or quadrature) constraints. Thus the Gauss NLP formulation is also degree-

preserving.

34

Chapter 4

Languages and software

In this chapter we present the languages and software used to implement the collo-

cation algorithms.

4.1 Modelica

Modelica1 is a high-level, object-oriented, domain-neutral and equation-based lan-

guage designed for graphical and textual modeling of complex physical systems.

Development started in 1996 and today Modelica is used in a wide variety of applica-

tions, such as chemistry, mechanics and electronics. Its industrial usage is increasing

and it is today used extensively by e.g. automotive companies, such as BMW, Ford

and Toyota, and power plant providers, such as ABB and Siemens.

Without going into the details of Modelica syntax, the VDP in section 1.2 can be

described in Modelica by the following code.

model VDP

Real x1(start=0, fixed=true) "First state";
Real x2(start=1, fixed=true) "Second state";

input Real u "Control signal";

equation

der(x1) = (1 - x2^2) * x1 - x2 + u;
der(x2) = x1;

end VDP;

1https://modelica.org/

35

4.1.1 Optimica

Modelica is largely intended for simulation-based analysis. To accommodate the

need for conveniently formulating dynamic optimization problems based on Model-

ica models, the Modelica extension Optimica was developed as a part of the Ph.D.

thesis [Åk07], as described in [Åk08]. Basic features of Optimica used to formu-

late an optimization problem includes specifying free optimization variables (con-

trol variables and parameters), a Bolza type objective function, variable bounds and

general constraints.

The VDP OCP in section 1.2 can be described in Optimica, using the Modelica

model from section 4.1, by the following code.

optimization VDP_OCP(
objectiveIntegrand=x1^2 + x2^2 + u^2,
startTime=0, finalTime=10)

// The VDP Modelica model
extends VDP(u(free=true, max=0.75));

end VDP_OCP;

4.2 Python

Python2 is a programming language often described by adjectives such as high-level,

interactive, interpretive, object-oriented, dynamic, open-source and general-purpose.

One of these purposes is scientific computation, which is performed with the use of

the Python packages NumPy3 and SciPy4 as well as the plotting package matplotlib5,

which is designed to resemble the plotting functionalities of MATLAB6. All imple-

mentation made as a part of this thesis will be in Python.

4.3 JModelica.org

JModelica.org7 is a package for simulation and optimization of Modelica models.

It is developed in collaboration between industry and academia, with the purpose of

creating an industrially viable platform using state of the art algorithms to analyze

complex physical systems. Python is used as a glue language to create a user-friendly

interface to all of JModelica.org’s components.

2http://www.python.org/
3http://numpy.scipy.org/
4http://www.scipy.org/
5http://matplotlib.sourceforge.net/
6http://www.mathworks.com/products/matlab/index.html
7http://www.jmodelica.org/

36

Standard Modelica tools, such as Dymola8 and SimulationX9, focus on simulation,

whereas JModelica.org also puts a lot of focus on optimization. The current main op-

timization algorithm in JModelica.org is a Radau collocation method implemented

in C10. The goal of this thesis is to implement new collocation algorithms in JMod-

elica.org with the use of CasADi, resulting in simpler, easier to maintain and extend,

and perhaps even more efficient than the existing algorithm. The efficiency of the

new algorithms developed as a part of this thesis are compared to JModelica.org’s

present C-implemented algorithm in Chapter 6.

4.4 CasADi

In optimization it is important to efficiently calculate function derivatives. To this end

we use CasADi (Computer algebra system with Automatic Differentaion). Once a

symbolic representation consisting of CasADi objects of an NLP problem has been

created, CasADi provides all the derivative information needed for the numerical

solution of the problem with very little effort from the user. From CasADi’s official

website [A+11]:

“CasADi is a minimalistic computer algebra system implementing automatic dif-
ferentiation in forward and adjoint modes by means of a hybrid symbolic/numeric
approach. It is designed to be a low-level tool for quick, yet highly efficient imple-
mentation of algorithms for numerical optimization.”

CasADi is developed by mainly Joel Andersson and Joris Gillis at K.U.Leuven, Bel-

gium. It is implemented in C++ and has (nearly) fully-featured Python and Octave

interfaces. The first release was made in December 2010.

For a very thorough introduction to automatic differentiation (AD), see [GW08].

Conventional AD tools use graphs whose nodes are restricted to scalar-valued unary

and binary operations, allowing for very efficient evaluation. This possibility is avail-

able in CasADi in the form of SX (Scalar eXpression) graphs. CasADi also has

a more novel approach, where the nodes are allowed to contain more general op-

erations, such as branching and matrix operations. These are called MX (Matrix

eXpression) graphs. The additional generality available in MX graphs sometimes

results in slower performance, but if utilized correctly, can in some situations signif-

icantly increase the performance.

An important consequence of restricting the nodes to scalar expressions, is that ma-

trix operations are expanded into multiple scalar-valued operations. This can result

in very large graphs, which take considerable time to construct and handle while

also consuming a lot of memory. Since MX graphs allow matrix expressions, this is

avoided. MX nodes can also contain function calls, further reducing the graph size.

8http://www.3ds.com/products/catia/portfolio/dymola
9http://www.itisim.com/simulationx.html

10http://www.open-std.org/JTC1/SC22/WG14/

37

Another interesting possibility introduced by allowing function calls is the usage of

user-provided black-box functions, e.g. numerical integrators.

The SX and MX objects are in many ways similar to each other from a user point of

view, but are treated very differently by CasADi. For an introduction to the theory

behind CasADi, see [AHD10]. Which of the two that allows for the best performance

is dependent on the problem to be solved and it is up to the user to decide which

representation to use. It is often wise to use a combination of the two and rarely wise

to use MX exclusively. In Section 5.2.2 we briefly discuss what kind of graphs we

use for our algorithms.

CasADi also comes with several interfaces to other software useful for numerical

optimization. For solving NLP problems, interfaces to Ipopt and KNITRO11 are

available. For numerical integration there are interfaces to CVODES and IDAS from

SUNDIALS12. CasADi has additional interfaces, some of which are only used inter-

nally. The interface to Ipopt is used extensively in this thesis.

4.5 Ipopt

We dedicated Chapter 3 to transcribing the DOP into an NLP problem. To actually

solve the NLP problem (thus obtaining an approximate solution to the DOP), we use

Ipopt. From Ipopt’s official website13:

“Ipopt (Interior Point OPTimizer, pronounced eye-pea-Opt) is a software package
for large-scale nonlinear optimization. It is designed to find (local) solutions of
mathematical optimization problems of the form

min
x∈Rn

f(x)

subject to

{
gL ≤ g(x) ≤ gU ,

xL ≤ x ≤ xU ,

where f(x) : R
n → R is the objective function, and g(x) : R

n → R
m are the

constraint functions. The vectors gL and gU denote the lower and upper bounds
on the constraints, and the vectors xL and xU are the bounds on the variables x.
The functions f(x) and g(x) can be nonlinear and nonconvex, but should be twice
continuously differentiable.”

Note that the problem formulation used in Ipopt is slightly different than the NLP

problem we defined in (2.2). They are however equivalent, and the transformation

from our form to the one used in Ipopt is handled by CasADi’s Ipopt interface. Ipopt

uses an interior-point algorithm with a filter line-search method. Its underlying the-

ory and implementation is described in [WB06].

11http://www.ziena.com/knitro.htm
12https://computation.llnl.gov/casc/sundials/main.html
13http://www.coin-or.org/Ipopt/

38

Chapter 5

Implementing collocation
algorithms in JModelica.org

In this chapter we combine the theory of Chapter 3 with the languages and software

of Chapter 4 to implement new optimization algorithms in JModelica.org based on

collocation methods. We start by presenting an overview of JModelica.org’s opti-

mization framework and how the developed algorithms are integrated into JModel-

ica.org. We then proceed to describe how the algorithms are implemented and also

present some new theory regarding the implementation.

5.1 Optimization in JModelica.org

Figure 5.1 shows a diagram depicting an overview of the part of JModelica.org’s

optimization framework that is used for the algorithms developed in this thesis.

Figure 5.1: Overview of JModelica.org’s optimization framework

39

The user starts by defining the system model in Modelica and the dynamic optimiza-

tion problem in Optimica. JModelica.org provides an Eclipse1 plugin for textual

editing of Modelica code, but the user is free to create their Modelica and Optimica

files in any editor. The user interaction is carried out in Python. The Optimica file

is, via Python, sent to JModelica.org’s FMUX compiler. The FMUX compiler cre-

ates an XML file from the Optimica file, which describes the DOP. The XML format

is based on the Functional Mockup Interface2, which has been extended for addi-

tional purposes, in particular dynamic optimization. This XML format is described

in [PkC10] and is also used by CasADi.

The XML file is used to create an instance of the Python class CasADiModel,

which represents the dynamic optimization problem described in the original Opti-

mica file. This class is described in 5.2.1. The CasADiModel object is then used by

LocalDAECollocationAlg to transcribe the DOP into an NLP problem. This

NLP problem is then solved by Ipopt. The class LocalDAECollocationAlg is

a collection of all the algorithms developed as a part of this thesis and is described

in the succeeding sections of this chapter. The solution is then written to a result file

in a format compliant with Dymola. The solution is also represented by a Python

object which is returned to the user, allowing the user to freely analyze the data in

Python, e.g. plotting it using matplotlib. How to use JModelica.org’s optimization

framework is described fully in [AB11].

5.2 A comprehensive collocation algorithm

In this section we will describe how the algorithms of this thesis are implemented

and integrated into JModelica.org’s optimization framework.

5.2.1 Implementation overview

The algorithms developed in this thesis are contained in a single class, which is

named LocalDAECollocationAlg. A diagram depicting an overview of the

main Python classes and modules related to this class is shown in Figure 5.2.

The XML document created by JModelica.org’s FMUX compiler is used by the

CasADiModel class to create a representation of the corresponding DOP. This class

relies on both JModelica.org’s XML parser and CasADi’s FlatOCP class to do this.

The CasADiModel class contains an optimize method, which takes two param-

eters: an algorithm and a corresponding algorithm options object. JModelica.org

currently has 2 optimization algorithms that are used with CasADiModel (other al-

gorithms use other model classes, whose objects can be created in a similar manner

given the Modelica/Optimica file): LocalDAECollocationAlg (the algorithm

of this thesis) and PseudoSpectralAlg. The latter algorithm is intended for

1http://www.eclipse.org/
2http://www.modelisar.com/

40

global (also called pseudospectral) rather than local collocation. Both these algo-

rithm classes inherit the abstract JModelica.org algorithm class AlgorithmBase.

This abstract class is inherited by all JModelica.org algorithms, simulation and opti-

mization algorithms alike.

Figure 5.2: Diagram of all Python classes and modules in JModelica.org related to

the LocalDAECollocationAlg algorithm, color-coded according to their re-

spective modules

Global collocation means that the number of elements are considerably fewer than

the number of collocation points in each element, whereas local collocation means

that the number of collocation points in each element are considerably fewer than

the number of elements. Global collocation is more accurate and efficient than lo-

cal collocation for problems with relatively smooth solutions, but the less smooth

the problem is, the more the performance of global collocation deteriorates, whereas

41

local collocation does not suffer in the same manner. See [HR07] for a deeper dis-

cussion on the differences between local and global collocation.

The two JModelica.org optimization algorithms PseudoSpectralAlg as well

as LocalDAECollocationAlg are essentially very similar, but there are some

important differences. One fundamental difference is that PseudoSpectralAlg
is only implemented for ODE systems, whereas LocalDAECollocationAlg
handles DAE systems of index zero or one. See [AB11, ch. 8.8] for a description

of JModelica.org’s pseudospectral algorithm and [Ben05] as well as [Hun07] for an

in-depth description of its underlying theory.

The second parameter of CasADiModel.optimize is an options object belong-

ing to the algorithm. For the algorithm LocalDAECollocationAlg this object

should be either an instance of the class LocalDAECollocationAlgOptions,

which is a class inheriting the abstract JModelica.org class OptionBase (similar to

AlgorithmBase for algorithms), or a Python dictionary. This object lets the user

specify certain algorithm behavior, e.g. in our case things such as the parameters ne

and nc as well as whether to use Radau or Gauss collocation. The available options

are described in Section 5.2.4.

In CasADiModel.optimize, the supplied algorithm is initialized. The most in-

teresting part in the initialization of the LocalDAECollocationAlg algorithm

is the creation of a LocalDAECollocator object. This is where the colloca-

tion is performed. This process is described in Section 5.2.2. After the algorithm

has been initialized, its solve method is called, where the NLP problem created

by LocalDAECollocator is solved using Ipopt. So in summary, the classes

LocalDAECollocationAlg and LocalDAECollocationAlgOptions
are mainly used as interfaces between the user and the algorithm. The actual collo-

cation is done inside of LocalDAECollocator. A Python script demonstrating

how to use the optimization algorithm is available in Section 5.2.3.

5.2.2 Collocation using CasADi

In this section we briefly describe how some of the information contained in the

classes shown in Figure 5.2 is used by the class LocalDAECollocator to define

the NLP problem using CasADi. The computations are performed in the following

steps.

1. The amount of NLP variables is calculated, much in the same manner as we did

in Sections 3.3 and 3.4 to ensure that the transcriptions are degree-preserving.

The number of variables depend on several of the algorithm options, such as

blocking_factors and eliminate_der_var, which are described in

5.2.4. Once the number of NLP variables are known, the NLP variables are

created as either SX or MX objects depending on the chosen graph.

2. The NLP variables are used to construct all the constraints except the variable

bounds, since the variable bounds are treated separately by Ipopt. We do this

42

by defining a function evaluating the left-hand sides of the Equations (3.15b) to

(3.15d) and (3.15g) to (3.15l). A fundamental part of creating the constraints is

the polynomial operations. This is handled by JModelica.org’s polynomial
module, which performs the required calculations in a robust manner. The cost

function is then created in a straightforward manner.

The complete AD graphs for the cost and constraint functions are then fin-

ished. If the algorithm option graph is set to SX, these will be SX graphs,

and if graph is set to MX or expanded MX, these will be MX graphs. If an

SX graph is used, the graph has been created using only SX-related objects. If

an MX graph is used, a suitable mixture of SX and MX objects has been used.

For example, the DAE residual function is defined as an SXFunction, which is

then used to generate function calls in the MX graph to create the DAE-related

constraints.

3. At this point the graphs for MX and expanded MX are identical. If expanded

MX is chosen, the created MX graph is expanded into an SX graph. The point

of the expanded MX graph is that creating and expanding an MX graph may be

quicker than creating the SX graph from scratch, whereas the SX graph may

be quicker to evaluate than the original MX graph. In these cases the expanded

MX graph will be the most efficient.

4. If the algorithm option exact_hessian is enabled, the Hessian of the La-

grangian function defined by (2.3) is computed using CasADi.

5. The initial guesses, variable bounds and scaling factors (see 5.3) are computed

using the information in CasADiModel. If initial trajectories have been pro-

vided in the init_traj algorithm option, these are instead used to compute

the initial guesses for the provided trajectories.

6. Finally CasADi’s interface to Ipopt is used to create an IpoptSolver ob-

ject.

All this is done during the initialization of the LocalDAECollocationAlg ob-

ject (which initializes the LocalDAECollocator object). When the solve
method of the LocalDAECollocationAlg object is called, the created NLP

problem is solved by the IpoptSolver object.

5.2.3 Algorithm demonstration

In this section we present a Python script using LocalDAECollocationAlg to

solve the optimal control problem based on a Van der Pol oscillator, defined by the

Modelica and Optimica models shown in 4.1 and used in 1.2. The Modelica and

Optimica classes are assumed to be in a single file called VDP.mop, located in the

same directory as the Python script. We also show how to extract the solution from

the result and how to plot it using matplotlib.

43

Import numerical and plotting libraries
import numpy as N
import matplotlib.pyplot as plt

Import the required JModelica.org Python classes
from jmodelica import compile_fmux
from pyjmi import CasadiModel

Compile and load model
fmux_file = compile_fmux("VDP_OCP", "VDP.mop")
model = CasadiModel(fmux_file)

Create options object with default settings
opts = model.optimize_options(algorithm="LocalDAECollocationAlg")

Set some options
opts['n_e'] = 40
opts['n_cp'] = 5
opts['graph'] = "MX"
opts['exact_hessian'] = False
opts['discr'] = "LG"
opts['quadrature_constraint'] = False

Solve the OCP
result = model.optimize(algorithm="LocalDAECollocationAlg", options=opts)

Extract variable profiles
x1 = result['x1']
x2 = result['x2']
u = result['u']
time = result['time']

Plot
plt.figure(1)
plt.clf()
plt.subplot(3, 1, 1)
plt.plot(time, x1)
plt.grid()
plt.ylabel('x1')

plt.subplot(3, 1, 2)
plt.plot(time, x2)
plt.grid()
plt.ylabel('x2')

plt.subplot(3, 1, 3)
plt.plot(time, u)
plt.grid()
plt.ylabel('u')
plt.xlabel('t')
plt.show()

Running the script produces the plot shown in Figure 5.3, which is very similar to the

one shown in Figure 1.1, but slightly different due to the chosen algorithm options

and relatively simple plotting.

44

0 2 4 6 8 10
−0.5
−0.4
−0.3
−0.2
−0.1
0.0
0.1

x1

0 2 4 6 8 10
−0.2
0.0
0.2
0.4
0.6
0.8
1.0

x2

0 2 4 6 8 10
t

−0.6
−0.4
−0.2
0.0
0.2
0.4
0.6
0.8

u

Figure 5.3: Optimal control of a VDP oscillator using tenth-order Gauss collocation

5.2.4 Algorithm options

In this section we present the algorithm options for LocalDAECollocationAlg.

For each option we first present a copy of the part of the Python docstring belonging

to LocalDAECollocationAlgOptions corresponding to the option, and then

some further explanations.

5.2.4.1 n_e

Number of finite elements.

Type: int
Default: 50

This options specifies the value of the variable denoted by ne in Chapter 3.

5.2.4.2 hs

Element lengths.

Possible values: None, iterable of floats and "free"

None: The element lengths are uniformly distributed.

45

iterable of floats: Component i of the iterable specifies the
length of element i. The lengths must be normalized in the sense
that the sum of all lengths must be equal to 1.

"free": The element lengths become optimization variables and are
optimized according to the algorithm option
free_element_lengths_data.
WARNING: This option is very experimental and will not always give
desirable results.

Type: None, iterable of floats or string
Default: None

This option specifies the values of the variables denoted by hi in Chapter 3. By

setting hs = None, these variables get the values

hi =
tf − t0
ne

, ∀i ∈ [1..ne].

By instead providing a list of floats, the user can freely specify all the element

lengths.

The final possibility is hs = "free". This uses all the element lengths as opti-

mization variables, using the class FreeElementLengthsData. This option is

described more in detail in Section 5.5.

5.2.4.3 free_element_lengths_data

Data used for optimizing the element lengths if they are free.
Should be None when hs != "free".

Type: None or
jmodelica.optimization.casadi_collocation.FreeElementLengthsData
Default: None

This option is described more in detail in Section 5.5.

5.2.4.4 n_cp

Number of collocation points in each element.

Type: int
Default: 3

This options specifies the value of the variable denoted by nc in Chapter 3.

46

5.2.4.5 discr

Determines the collocation scheme used to discretize the problem.

Possible values: "LG" and "LGR"

"LG": Gauss collocation (Legendre-Gauss)

"LGR": Radau collocation (Legendre-Gauss-Radau)

Type: str
Default: "LGR"

Whether to use Radau or Gauss collocation, as discussed in Chapter 3.

5.2.4.6 graph

CasADi graph type. Possible values are "SX", "MX" and
"expanded_MX".

Type: str
Default: "SX"

What kind of CasADi graphs to use, as discussed in Sections 4.4 and 5.2.2.

5.2.4.7 rename_vars

Rename NLP variables according to their corresponding
Modelica/Optimica names. This only works if graph == "SX". This is
done in an inefficient manner and should only be used for
investigative purposes.

Type: bool
Default: False

The LocalDAECollocator instance used to construct the NLP problem is stored

as an attribute named solver in the result object returned after an optimization.

Thus the user has access to all the CasADi objects created during the NLP problem

construction. These objects can be printed in Python to get legible expressions for

e.g. all the constraints. By default, the NLP variable names are not very descrip-

tive, but by enabling this option, the NLP variables are renamed according to their

corresponding name in the Modelica/Optimica code. For example, the NLP variable

corresponding to the value of a state named x in element 3 and collocation point 2

will be named x_3_2.

47

5.2.4.8 write_scaled_result

Return the scaled optimization result if set to True, otherwise
return the unscaled optimization result. This option is
only applicable when the CasadiModel has been instantiated with
scale_variables=True. This option is only intended for debugging.

Type: bool
Default: False

Scaling is discussed in Section 5.3.

5.2.4.9 result_mode

Specifies the output format of the optimization result.

Possible values: "collocation_points", "element_interpolation" and
"mesh_points"

"collocation_points": The optimization result is given at the
collocation points.

"element_interpolation": The values of the variable trajectories
are calculated by evaluating the collocation polynomials. The
algorithm option n_evaluation_points is used to specify the
evaluation points within each finite element.

"mesh_points": The optimization result is given at the
mesh points.

Type: str
Default: "collocation_points"

If result_mode = "collocation_points", then the values denoted by

zi,k, ∀(i, k) ∈ [1..ne]× [1..nc]

in Chapter 3 are given as the result.

If result_mode = "element_interpolation", then the values of the ap-

proximative solution, denoted by z̃ in Chapter 3, at specific time points are given

as the result. These specific time points are determined by the algorithm option

n_eval_points. This is called dense output.

5.2.4.10 n_eval_points

The number of evaluation points used in each element when the
algorithm option result_mode is set to "element_interpolation". One
evaluation point is placed at each element end-point (hence the
option value must be at least 2) and the rest are distributed

48

uniformly.

Type: int
Default: 20

See Section 5.2.4.9.

5.2.4.11 blocking_factors

The iterable of blocking factors, where each element corresponds to
the number of elements for which all the control profiles should be
constant. For example, if blocking_factors == [2, 1, 5], then
u_0 = u_1 and u_3 = u_4 = u_5 = u_6 = u_7. The sum of all elements
in the iterable must be the same as the number of elements.

If blocking_factors is None, then the usual collocation polynomials
are instead used to represent the controls.

Type: None or iterable of ints
Default: None

Control signals are often discrete rather than continuous, in which case they are

sometimes better modeled as being piecewise constant. Piecewise constant control

signals are also often preferred during model predictive control. This possibility is

enabled by this option. Currently all the blocking factors must be shared by all the

control variables of the model.

5.2.4.12 quadrature_constraint

Whether to use quadrature continuity constraints. This option is
only applicable when using Gauss collocation. It is incompatible
with eliminate_der_var set to True.

True: Quadrature is used to get the values of the states at the
mesh points.

False: The Lagrange basis polynomials for the state collocation
polynomials are evaluated to get the values of the states at the
mesh points.

Type: bool
Default: True

Quadrature constraints are given by the equations (3.22).

In order to formulate the quadrature constraints, we need the values of żi,k. The

values of ẋi,k are already available as NLP variables, but the remaining values of

żCi,k need to be calculated for the quadrature constraint. If all the values of żi,k are

49

already available, quadrature constraints are believed to be more efficient, and per-

haps even more robust, than evaluation constraints but this has not been thoroughly

investigated.

Calculating the values of żCi,k which are not already available is not a cheap proce-

dure, and it may thus be more efficient to use evaluation constraints if such values

do not exist. However, as we do not support continuity for non-state variables in

the current implementation (see 5.6), all the needed values are already available,

and quadrature constraints are thus believed to be strictly superior in our case. The

exception is if the derivative variables have been eliminated, see Section 5.2.4.13.

In this case the only supported continuity constraints are evaluation constraints, see

(3.21).

5.2.4.13 eliminate_der_var

True: The variables representing the derivatives are eliminated
via the collocation equations and are thus not a part of the NLP,
with the exception of \dot{x}_{1, 0}, which is not eliminated since
the collocation equations are not enforced at t_0.

False: The variables representing the derivatives are kept as NLP
variables and the collocation equations enter as constraints.

Type: bool
Default: False

Elimination of derivative variables is discussed in Section 5.4.2.

5.2.4.14 eliminate_cont_var

True: Let the same variables represent both the values of the
states at the start of each element and the end of the previous
element.

False:
For Radau collocation, the extra variables x_{i, 0},
representing the states at the start of each element, are created
and then constrained to be equal to the corresponding variable at
the end of the previous element for continuity.

For Gauss collocation, the extra variables x_{i, n_cp + 1},
representing the states at the end of each element, are created
and then constrained to be equal to the corresponding variable at
the start of the succeeding element for continuity.

Type: bool
Default: False

Elimination of continuity variables is discussed in Section 5.4.1.

50

5.2.4.15 init_traj

Variable trajectory data used for initialization of the
optimization problem.

Type: None or jmodelica.io.DymolaResultTextual
Default: None

When solving the NLP problem, Ipopt needs an initial guess for all the variables. One

way of obtaining an initial guess for the NLP variables is by specifying a constant

initial guess for each of the DOP variables, and then use each such initial guess for

all the corresponding NLP variables. The initial guess for a DOP variable can be

set in Optimica using the variable attribute initialGuess. If no initial guess is

provided, the start value is used as the initial guess. If neither initial guess nor initial

value is provided, then 0 is used as an initial guess.

In simple cases, Ipopt is not sensitive to the initial guess and will converge quickly

even if the initial guesses for all the DOP variables are 0 (provided that the DAE is

defined for these variable values). In more advanced cases, it is important that the

initial guesses of the DOP variables are relatively close to the optimal solution to get

quick convergence (or to get convergence at all). In even more advanced cases, a

constant initial guess for a DOP variable will not suffice. Optimica currently has no

support for supplying such an initial guess, which is why we implement this algo-

rithm option. By supplying a result object from a simulation or a previous optimiza-

tion of the model, the previous results are linearly interpolated to get the variable

values at the collocation points, and these are then used as initial guesses. It is not

necessary to provide initial trajectories for all of the variables.

5.2.4.16 parameter_estimation_data

Parameter estimation data used for solving parameter estimation
problems.

Type: None or
pyjmi.optimization.casadi_collocation.ParameterEstimationData
Default: None

Optimica is not flexible enough to fully describe all the kinds of parameter estima-

tion problems which we consider. Thus we implement this algorithm option, which

lets us fully describe either a continuous or discrete parameter estimation problem

using the ParameterEstimationData class, whose documentation is available

below.
ParameterEstimationData

Data used to define the cost function for parameter estimation problems.

Parameters::

Q --
Weighting matrix.

51

Type: rank 2 ndarray

measured_variables --
List of the names of the measured variables.

Type: list of strings

data --
Object containing the measurement data.

If data is a function, it should take a time point as its argument
and return an array where element j contains the measured value of
measured_variables[j] at the given time point.

If data is a matrix, data[i][0] should contain measurement point i
and data[i][j] should contain the measured value of
measured_variables[j] at measurement point i.

Type: function or rank 2 ndarray

discrete --
Whether to perform discrete or continuous parameter estimation.

NOTE: Discrete parameter estimation is not yet supported!

Continuous parameter estimation uses the cost function

.. math::

f = \int_{t_0}^{t_f} (y(t) - y_m(t)) \cdot Q \cdot
(y(t) - y_m(t))\,\mathrm{d}t,

where y is a function created by gluing together the collocation
polynomials for the measured variables at all the mesh points and
y_m is a function providing the measured values at a given time
point. If the parameter data is a matrix, the data are linearly
interpolated to create the y_m function. If data is a function,
then this function defines y_m.

Discrete parameter estimation uses the cost function

.. math::

f = \sum_{i = 1}^{n_m} (y(t_i) - y_m(t_i)) \cdot
Q \cdot (y(t_i) - y_m(t_i)),

where y is the optimized values of the measured variables and y_m
is the measured values of the measured variables. This option
requires the parameter data to be a matrix. It is also required
that each measurement point coincides with either a collocation
point or a mesh point.

Type: bool
Default: False

eps --
In the case of discrete parameter estimation, the measurement point
t is considered to coincide with the collocation or mesh point v if
and only if |t - v| / (t_f - t_0) < eps.

Type: float
Default: 1e-5

52

5.2.4.17 exact_hessian

True: The Hessian of the Lagrangian function is obtained via CasADi
and supplied to Ipopt.

False: Ipopt uses a quasi-Newton method.

WARNING: exact_hessian is very slow in combination with MX graphs.

Type: bool
Default: True

Calculating the Hessian belonging to an MX graph is currently very slow in CasADi,

leading to long problem initialization times. The evaluation of the Hessian is how-

ever quick.

5.2.4.18 casadi_options

In addition, CasADi options can be provided in the options
casadi_options_f, casadi_options_g and casadi_options_l for the NLP
objective, constraint and Lagrangian functions respectively. For a
complete list of CasADi options, please consult the CasADi
documentation.

CasADi options are set using the syntax for dictionaries::

>>> opts[’casadi_options_g’][’numeric_jacobian’] = True

CasADi also has its own set of options regarding the evaluation of functions. We do

not discuss all these possibilities here, but instead refer to CasADi’s documentation

for SXFunctions and MXFunctions available in the C++ API docs at [A+11],

where all the options are described. The algorithm’s default CasADi options are the

same as CasADi’s default options.

5.2.4.19 IPOPT_options

IPOPT options can be provided in the option IPOPT_options. For a
complete list of IPOPT options, please consult the IPOPT
documentation available at
http://www.coin-or.org/Ipopt/documentation/.

IPOPT options are set using the syntax for dictionaries::

>>> opts[’IPOPT_options’][’max_iter’] = 200

Ipopt also has its own set of options regarding the solution of the NLP problem. The

algorithm’s default Ipopt options are the same as Ipopt’s default options, with the

exception of max_iter being set to 2000.

53

5.3 Scaling

When Ipopt solves the NLP problem, it is important that the NLP variables and

equations are well-scaled, meaning that the variables attain values close to 1 and

that the rows and columns of the Jacobian of all the constraint functions are of the

same magnitude. Equation scaling is done internally in Ipopt. CasADi also of-

fers equation scaling before the call to Ipopt, which is used by setting the option

scale_equations to True when instantiating the CasADiModel.

Variable scaling is however left up to the user, as neither Ipopt nor CasADi know a

priori what variable values are reasonable. The variable scaling is done by introduc-

ing scale factors zs, which are used to create the new variables

z̄ = zs · z,

based on the old optimization variables z. The scaled variables z̄ are then used

instead of the old variables z as optimization variables, and all occurrences of z in

the cost and constraint functions are substituted by z̄/zs.

The scaling factors are entirely determined by the user by setting the Modelica at-

tribute nominal. The scaling factors for the NLP variables corresponding to the

DOP variable are then set to 1 divided by the value given by the nominal attribute.

If no nominal value is set, the scaling factor is set to 1, i.e. no scaling is done.

See [NW06] for more on scaling.

5.4 Variable elimination

At the beginning of Section 3.2.3 we chose the variables ẋi,k, zi,k for all k ∈ [1..nc],
p, z1,0 and zCi,0 as NLP variables. For Gauss collocation, we further added the vari-

ables zCi,nc+1 as NLP variables. As it turns out, many of these can be eliminated by

substituting them by the expressions in their coupled constraints. This has various

benefits and drawbacks.

5.4.1 Continuity variables

For Radau collocation, the continuity variables zCi,0 are constrained to be equal to

zCi−1,nc
. They can thus be easily eliminated by replacing all occurrences of zCi,0 by

zCi−1,nc
. However, this may be unwise, as the resulting system is less sparse (since the

variables zCi−1,nc
will occur in more equations). So this is a trade-off between NLP

size (number of variables and constraints) versus sparsity. Experience shows that

the additional sparsity usually results in better performance, as discussed in [Bet10,

ch. 4].

54

For Gauss collocation, we have both zCi,0 and zCi,nc+1 as continuity variables in each

element. It would be possible to eliminate both of them, but this would tremendously

reduce the NLP sparsity and is thus not implemented. Instead we just provide the

option of eliminating zCi,nc+1.

5.4.2 Derivative variables

The state derivative variables ẋi,k obtained by the collocation constraints can also

be eliminated. This has even bigger impact on NLP sparsity than the elimination

of continuity variables. But rather than just reducing the NLP size, this has an ad-

ditional benefit. As discussed in Section 5.3, NLP scaling is very important. A

particularly difficult part of scaling is the scaling of derivatives. The magnitude of a

state derivative is often very different from the magnitude of the state itself. It would

thus be desirable to scale them independently of each other. This is possible for col-

location methods by scaling the collocation equations. This has however not been

implemented in this thesis. However, by eliminating the derivative variables using

the collocation equations, there is no longer a need to scale them, and this problem

is thus avoided.

5.5 Free element lengths

Thus far we have always used constant element lengths, and unless the user provides

a mesh, we use an equidistant mesh. There is a lot to be gained in terms of over-

all accuracy by instead using a mesh that has small elements in regions where the

solution is very nonlinear, and larger elements in regions where the solution is less

nonlinear. If the user has an idea of what such a mesh would look like, they can

provide it. That is however a rare situation. There is thus a need for automatically

finding such a mesh.

One approach to this is to let the element lengths hi enter as NLP variables. The

element lengths essentially affect two things: the discretization error and the cost.

Ipopt just minimizes the cost and has no knowledge of the discretization error, so

when a decrease in the cost results in an increase in the discretization error, we get

the opposite of the desired result. We thus need to somehow incorporate a measure

of the discretization error into the cost function.

A naive approach, which is the one mentioned in Section 5.2.4.3, is to assume that

the nonlinearity of the solution is proportional to the derivative. We thus want the

element lengths to be small where the derivative is big, and vice versa. This idea

inspires the augmented cost function

f̂ = f + c ·
ne∑
i=1

(
hai ·

∫ ti+1

ti

v̇Ci (t) ·R · v̇Ci (t) dt
)
,

55

where f is the original cost function, R weights the various derivatives and c as well

as a are method parameters. The integral is computed using Gaussian quadrature.

With appropriate choices of c, a and element length bounds, this approach works in

cases where the nonlinearity actually is proportional to the derivative (to the power

of two). However, this is rarely the case in practice. A common example of the

nonlinearity not being proportional to the derivative, is when the solution is non-

constant and (locally) linear, or at least close to being linear. Such is the case for

e.g. the continuously stirred tank reactor discussed in Section 6.3 and the combined

cycle power plant discussed in Section 6.6. It is possible to improve the augmented

cost function so that it works in a more general setting, as discussed in Section 7.2,

where we also discuss alternative applications and implementations of free element

lengths.

Below is the documentation of the class FreeElementLengthsData, which is

used to control the free element lengths in the implemented algorithm.

FreeElementLengthsData
Data used to control the element lengths when they are free.

The objective function f is adjusted to penalize large element
lengths for elements with high state derivatives, resulting in the
augmented objective function \hat{f} defined as follows:

.. math::

\hat{f} = f + c \cdot \sum_{i = 1}^{n_e} \left(h_i^a \cdot
\int_{t_i}^{t_{i+1}} \dot{x}(t) \cdot Q \cdot
\dot{x}(t)\,\mathrm{d}t\right).

Parameters::

c --
The coefficient for the newly introduced cost term.

Type: float

Q --
The coefficient matrix for weighting the various state
derivatives.

Type: ndarray with shape (n_x, n_x)

bounds --
Element length bounds. The bounds are given as a tuple
(l, u), where the bounds are used in the following way:

.. math::
l / n_e \leq h_i \leq u / n_e,
\quad \forall i \in [1, n_e],

where h_i is the normalized length of element i.

Type: tuple

56

Default: (0.7, 1.3)

a --
The exponent of the element length.

Type: float
Default: 1.

5.6 Unsupported features

In Chapters 2 and 3 we discussed certain problems and how to solve them which, for

various reasons, are yet to supported by the LocalDAECollocationAlg algo-

rithm. These are summarized here.

• The time interval [t0, tf] must be fixed, i.e. t0 and tf may not be free. This

was discussed in Section 2.2.3.

• Continuous parameter estimation is fully supported, but no forms of discrete

parameter estimation are implemented. This was discussed in Section 2.2.4.

• Since the time interval must be fixed, point constraints have not been imple-

mented either, as the main application of point constraints is terminal con-

straints for minimum time problems. This was discussed in Sections 2.2.2 and

2.2.3.

• Time-variant path constraints are not supported. This was discussed in Section

2.2.2.

• Variables bounds on state derivatives are not supported. These can however be

equivalently formulated as path inequality constraints, with the effect of being

handled slightly differently by Ipopt. This was discussed in Section 2.2.2.

• Enforcing control variables and algebraic variables to be continuous is not

supported. This was discussed in Section 3.2.1.

57

Chapter 6

Benchmarks

In this chapter we solve four optimal control problems and one parameter estimation

problem using the developed algorithm and compare the results with those obtained

with the old C-implemented collocation method in JModelica.org. The considered

problems in this chapter are based on a VDP oscillator, a continuously stirred tank

reactor, a quadruple-tank process, a distillation column and a combined cycle power

plant.

6.1 Benchmark premises

The old collocation algorithm implemented in C in JModelica.org, which is named

CollocationLagrangePolynomials in Python and henceforth referred to

as the old algorithm, and the algorithm implemented in this thesis, which is named

LocalDAECollocationAlg in Python and henceforth referred to as the new al-
gorithm, are in many ways similar. The old algorithm supports Radau collocation

with 1-10 collocation points. Since the purpose of this chapter is to compare the

old and the new algorithm, and not to compare Gauss and Radau or local and global

collocation, we will also be using Radau collocation with the same number of collo-

cation points for the new algorithm in the benchmarks.

The two algorithms are based on the same theory and the constructed NLP prob-

lems are nearly identical, so the obtained solutions can also be expected to be nearly

identical. There are however a few key differences. The old algorithm uses Cp-

pAD1 to construct and evaluate AD graphs for the DOP functions, which are then

used to construct the NLP problem. The new algorithm uses CasADi to construct

AD graphs for the entire NLP problem. This leads to longer initialization times, but

faster evaluation times for the new algorithm.

Since the new algorithm constructs AD graphs for the entire NLP problem, the com-

putation of the Hessian of the Lagrangian function, which can be used by Ipopt, is

1http://www.coin-or.org/CppAD/

58

easy and efficient. Obtaining this information for the old algorithm using CppAD,

although possible, would require a tremendous effort to implement, which has not

been done. Thus Ipopt employs a quasi-Newton method for the old algorithm, in

which the Hessian instead is approximated.

The other important difference between the old and new algorithm is how parame-

ter estimation is performed. The old algorithm uses discrete parameter estimation

and obtains the values of the variables at the measurement points by evaluating the

collocation polynomials, whereas the new algorithm uses continuous parameter es-

timation. The measurement data is also handled differently.

When doing parameter estimation with the old algorithm, a parameter is created

in Modelica for each measured value at each measurement point. These parame-

ters are then used to create the cost function (2.16). The measurement data for the

control signals are inlined as non-discrete functions, eliminating the control vari-

ables from the model. The values of the parameters belonging to the measurement

data are set post-compilation by the user in Python. For large amounts of measure-

ment data, this process creates a lot of Modelica parameters, which leads to long

compilation times. When doing parameter estimation with the new algorithm, the

control variables are kept in the model as free control variables, but are also treated

as measured variables, which is similar to constraining the control variables using

path equality constraints. The cost function (2.17) is created using the Python class

ParameterEstimationData, documented in Section 5.2.4.16.

A final difference worth noting is how blocking factors are handled. The old algo-

rithm introduces an NLP variable in each collocation point and then constrains them

to be equal according to the provided blocking factors. The new algorithm only in-

troduces an NLP variable for each distinct value of the control variable, i.e. for each

element in the blocking factor list. How this difference affects Ipopt has not been

investigated

For each benchmark we will provide the following run-time statistics:

• Compile: The CPU time it takes to compile the Modelica/Optimica code using

JModelica.org’s compilers and then create a model out of it. For the new

algorithm, the FMUX compiler is used as discussed in Chapter 5 to create a

CasADiModel. For the old algorithm, the JMU compiler is used to create a

JMUModel. Since the FMUX compiler just creates an XML representation of

the DOP, whereas the JMU compiler also generates and compiles the C code

used for CppAD, the compilation part will in general be a lot quicker for the

new algorithm.

• Initialize: The CPU time it takes to initialize the algorithm. For the new al-

gorithm, this is where the AD graphs for the NLP problem are created using

CasADi, which can be a time-consuming process for big problems. For the

old algorithm, AD graphs are only created for the DOP functions, which is

done during the model instantiation. This step will thus be a lot slower for the

new algorithm.

59

• Ipopt: The CPU time spent internally in Ipopt. Since the NLP problems con-

structed with the old and new algorithms are nearly identical from a mathe-

matical point of view, the main reason this time varies between the old and

new algorithm is that the new algorithm computes the Lagrangian Hessian us-

ing AD, as discussed earlier. However, Ipopt is very sensitive to seemingly

insignificant differences in the NLP problem, so the minor transcription dif-

ferences between the old and new algorithm may in certain cases result in very

different Ipopt iterations, in a manner which can be considered random, even

though the same solution will be found (up to user-provided tolerances).

• Evaluate: The CPU time spent evaluating the NLP functions when solving the

NLP problem in Ipopt. For the new algorithm, this is carried out by CasADi,

whereas for the old algorithm, this is carried out by CppAD.

• Total: The total CPU time from the start of the compilation until the optimiza-

tion result is returned. Note that this is not the sum of the rest, as there are a

few additional minor computations.

• Iterations: The number of iterations required by Ipopt to solve the problem.

This is related to the Ipopt statistic discussed above and varies for the same

reasons.

All of the stated times are measured in seconds. Which of these times are interesting

depends on the application. Roughly, it’s the sum of the Ipopt and Evaluation times

which are important for on-line applications, whereas for off-line applications it’s

the Total time that is of interest.

For each benchmark, we also provide the number of NLP variables nZ , as given

by (3.14), the number of equality constraints me (none of the benchmark problems

have any inequality constraints except variable bounds) and the number of non-zero

elements in the Jacobian of the equality constraints (whose size is me × nZ). The

numbers are only given for the NLP problem constructed by the new algorithm, since

the corresponding numbers for the NLP problem constructed by the old algorithm are

often very similar.

The Modelica and Optimica code used for the benchmarks can be found in Appendix

B, with the exception of the combined cycle power plant model, as it is proprietary.

For each model, we scale variables to the extent that nominal values are given in

Modelica, but let Ipopt handle the equation scaling. All the benchmarks are run

on a Windows 7 computer with an Intel Core i7-950 Quad processor @ 3.07 GHz

and 6 GB of Crucial DDR3 BallistiX-1600 RAM. Revisions [2993] and [2194] of

JModelica.org and of CasADi respectively are used, together with version 3.10.0 of

Ipopt with the MA27 linear solver. Unless otherwise stated, the default options of

the two algorithms are used, e.g. the meshes are equidistant and the NLP variables

are initialized according to the initial guesses given in the Modelica and Optimica

code.

For the new algorithm we always use pure SX graphs, for the following reasons:

60

• MX graphs in the current CasADi version have proven to be considerably

slower for our collocation algorithms, both to construct and evaluate.

• The memory usage of the pure SX graphs is not a hindrance for the considered

benchmarks.

• None of the additional generality of MX graphs is necessary for the considered

benchmarks.

6.2 Van der Pol oscillator

The VDP oscillator was introduced in Section 1.2 and a Modelica/Optimica imple-

mentation was provided in Section 4.1. However, for this benchmark we make a

slight modification by transforming the cost function from Lagrange to Mayer form,

as described in Section 2.2.3, in order to increase the difficulty of the OCP. With

ne = 100 and nc = 5, the following result is obtained.

Figure 6.1: Comparison of the old and new algorithm applied to a VDP oscillator

61

Compile Initialize Ipopt Evaluate Total Iterations

New algorithm 0.1 0.7 0.2 0.0 1.1 24

Old algorithm 3.5 0.0 0.5 0.2 4.3 30

Table 6.1: Run-time statistics for the Van der Pol oscillator benchmark

nZ me Non-zero Jacobian elements

3804 3304 16113

Table 6.2: NLP problem statistics for the Van der Pol oscillator benchmark

6.3 Continuously stirred tank reactor

The continuously stirred tank reactor (CSTR) model used for this benchmark was

developed in [HR71]. The system contains a highly nonlinear exothermic reaction

and has two states: reactant concentration c [mol/m3] and reactor temperature T
[K]. The rate F0 [m3/s], concentration c0 [mol/m3] and temperature T0 [K] of the

reactant inflow are assumed to be constant. The reactor has a liquid cooling system,

whose temperature Tc [K] is the sole control variable.

The dynamics of the system are modelled by

ċ(t) = F0 · c0 − c(t)

V
− k0 · e−

Ea
T (t) · c(t),

Ṫ (t) = F0 · T0 − T (t)

V
− H

ρ · Cp
· k0 · e−

Ea
T (t) · c(t) +

2 · U
r · ρ · CP

· (Tc(t)− T (t)),

where V, k0, EA, H, ρ, Cp, U and r are physical parameters and constants. The task

is to find the control signal that moves the system from the stationary operation point

c(t0) ≈ 956.3,

T (t0) ≈ 250.1,

Tc(t0) = 370

at t0 = 0, to another stationary operation point

cref ≈ 338.8,

T ref ≈ 280.1,

T ref
c = 280,

62

while minimizing the deviation from the final stationary operation point. We thus

formulate the Lagrange cost function

f(z) =

∫ tf

0

((
c(t)− cref

)2
+

(
T (t)− T ref

)2
+

(
Tc(t)− T ref

c

)2)
dt

and then transform it to Mayer form, for the same reason and in the same way that

we did in Section 6.2. In order to avoid too high temperatures, we also impose the

bounds

T (t) ≤ 350, ∀t ∈ [t0, tf],

Tc(t) ≤ 370, ∀t ∈ [t0, tf].

With tf = 200 s, ne = 70 and nc = 5, we get the following result.

Compile Initialize Ipopt Evaluate Total Iterations

New algorithm 0.5 0.6 0.5 0.1 1.8 88

Old algorithm 4.4 0.0 0.9 0.9 6.2 82

Table 6.3: Run-time statistics for the CSTR benchmark

Figure 6.2: Comparison of the old and new algorithm applied to a CSTR

63

nZ me Non-zero Jacobian elements

2664 2314 11634

Table 6.4: NLP problem statistics for the CSTR oscillator benchmark

6.3.1 CSTR remarks

In this section we discuss two aspects of the CSTR problem, which are not directly

relevant to the benchmark, but nonetheless interesting.

6.3.1.1 Control variable discontinuity

In Figure 6.2, we see that something peculiar happens to the control variable around

t = 37 for both the optimization algorithms. Figure 6.3 depicts an enlarged picture

of the control variable around that point in time. This kind of trajectory, where

it quickly jumps down up and down for no apparent reason, is obtained when the

optimal solution is discontinuous, and this discontinuity does not occur at a mesh

point. The algorithm is then forced to approximate a discontinuous function with a

polynomial, so we end up with something like this.

Figure 6.3: Part of the optimal control variable for the CSTR, where the collocation

points are marked by stars

64

If this kind of behavior is a problem, which it may be depending on the application,

there are two ways to solve it. The first is to locate the discontinuity a priori and

then construct a mesh such that the discontinuity coincides with a mesh point. This

approach is not feasible in on-line applications. The approach then is to let the

element lengths be free (or at least those elements close to the discontinuity), as

discussed in Section 5.5, in which case the NLP solver will find the discontinuity

and make sure that it coincides with a mesh point.

6.3.1.2 Optimization result verification

We have now seen some optimization results obtained with our optimization algo-

rithm, but how accurate are they? In Section 3.2.2 we discussed the convergence or-

ders of our methods, but unless we are successively decreasing our element lengths,

we do not know how far away the approximative solution is from the limit.

This is however not the most appropriate way of verifying the optimization result.

For large models, increasing the number of elements will rapidly increase the so-

lution time. A more efficient approach is to instead simulate the model, using the

control variable trajectories obtained from optimization.

We simulate the CSTR model with the control variable trajectory obtained by the

new algorithm in Section 6.3 (which is virtually the same trajectory as the one ob-

tained by the old algorithm), using the IDA solver from JModelica.org’s interface to

SUNDIALS. In the figure below, we compare the simulation and optimization result.

Figure 6.4: Comparison between CSTR optimization with ne = 70 and simulation

65

The optimization result certainly leaves something to be desired in terms of accuracy.

This kind of discrepancy can be expected for systems as nonlinear as this CSTR.

However, since we are using Radau collocation with 5 collocation points, and thus

have a method of order 9, we can expect quite the improvement if we halve all the

element lengths. We proceed to do so, and the result is shown below. The error is no

longer visible to the naked eye, and so we are satisfied.

Figure 6.5: Comparison between CSTR optimization with ne = 140 and simulation

6.4 Quadruple-tank process

The quadruple-tank process model used in this benchmark was developed in [Joh00].

The process consists of four tanks, each having an inlet flow of water regulated by

two pumps and a water outlet at the bottom. The model has four states, which are the

water heights xi [m] in each of the tanks, two control variables, which are the pump

voltages u1 [V] and u2 [V], and four free parameters, which are the water outlet

areas ai [m2] in each of the tanks. The dynamics of the system are modelled by

ẋ1 = − a1
A1

·
√

2 · g · x1 + γ1 · k1
A1

· u1 + a3
A1

·
√
2 · g · x3,

ẋ2 = − a2
A2

·
√

2 · g · x2 + γ2 · k2
A2

· u2 + a4
A2

·
√
2 · g · x4,

ẋ3 = − a3
A3

·
√

2 · g · x3 + (1− γ2) · k2
A3

· u2,

ẋ3 = − a4
A4

·
√

2 · g · x4 + (1− γ1) · k1
A4

· u1,

66

where A1, A2, A3, A4, γ1, γ2, k1, k2 and g are physical parameters and constants.

The task is to, given some measurement data from the real system, determine the val-

ues of the free parameters a1, a2, a3 and a4 which minimize the discrepancy between

the model behavior and the measurement data. The used measurement data span 60

seconds with a sampling frequency of 2 Hz, giving us 121 measurement points. The

control variables used during the measurements can be seen in the optimization result

in Figure 6.6.

The used weighting matrix Q is a diagonal matrix, where each of the parameter

weights is 1. The new algorithm also needs weights for the two control variables,

as they are treated as measured variables. We choose 5 as the weight for both the

control variables. With ne = 100 and nc = 5, the following result is obtained.

a1 [mm2] a2 [mm2] a3 [mm2] a4 [mm2]

New algorithm 2.6590 2.7056 3.0065 2.9348

Old algorithm 2.6592 2.7057 3.0067 2.9346

Table 6.5: Estimated parameter values for the quadruple-tank process

Figure 6.6: Comparison of the old and new algorithm applied to the quadruple-tank

process

67

Compile Initialize Ipopt Evaluate Total Iterations

New algorithm 0.3 9.3 0.3 0.1 10.0 20

Old algorithm 44.2 0.1 1.2 9.9 55.4 10

Table 6.6: Run-time statistics for the quadruple-tank process benchmark, using 121

measurement points

nZ me Non-zero Jacobian elements

5410 4406 24828

Table 6.7: NLP problem statistics for the quadruple-tank process benchmark

The compilation and evaluation times of the old algorithm is highly dependent on the

amount of measurement data, whereas the execution times of the new algorithm are

largely unaffected. The additional measurement points only affect the new algorithm

during the interpolation of the measurement data, which is a relatively quick proce-

dure. Below is a table of statistics showing how the execution times vary between

the old and new algorithm as the number of measurement points vary.

Compile Evaluate Total

New algorithm, ny = 31 0.3 0.1 10.0

Old algorithm, ny = 31 9.2 2.2 12.0

New algorithm, ny = 61 0.3 0.1 10.0

Old algorithm, ny = 61 17.8 3.9 22.5

New algorithm, ny = 121 0.3 0.1 10.0

Old algorithm, ny = 121 44.2 9.9 55.4

New algorithm, ny = 241 0.4 0.1 10.1

Old algorithm, ny = 241 158.8 41.0 203.6

Table 6.8: Select execution times for the quadruple-tank process benchmark with a

varying amount of measurement points

6.5 Distillation column

The distillation column model used for this benchmark is described in [HE02]. The

column has 32 trays, indexed from top to bottom, and the distillate has two chemical

components. The feed stream is introduced in tray 17. The mole fraction in the

vapor of the first component in tray i is yi [1] and is an algebraic variable. The

mole fraction in the liquid of the first component in tray i is xi [1] and is a state.

Additional algebraic variables are the liquid flowrate in the rectification section FR

68

[mol/s], the vapor flowrate in the column V [mol/s] and the liquid flowrate in the

stripping section FS [mol/s]. The control variable is the reflux ratio u [1]. We thus

have a total of 32 states, 35 algebraic variables and 1 control variable.

The dynamics of the system are modelled by

ẋ1 =
V · (y2 − x1)

AC
,

ẋi =
FR · (xi−1 − xi)− V · (yi − yi+1)

AT
, ∀i ∈ [2, 16],

ẋ17 =
D + FR · x16 − FS · x17 − V · (y17 − y18)

AT
,

ẋi =
FS · (xi−1 − xi)− V · (yi − yi+1)

AT
, ∀i ∈ [18, 31],

ẋ32 =
FS · x31 − (F −D) · x32 − V · y32

AR
,

yi =
α · xi

1 + (α− 1) · xi , ∀i ∈ [1, 32],

FR = D · u,
V = D + FR,

FS = F + FR,

where AC , AT , AR, D, F and α are physical parameters and constants.

The task is to drive the system from the stationary point at u = 3 to the stationary

point at u = 2, which is done by penalizing the deviation of u and any one of the

states or algebraic variables from their values at the second stationary point. We

choose to penalize the deviation of y1 from yref
1 ≈ 0.896. We thus construct the

Lagrange cost function

f(z) =

∫ tf

t0

(
1000 ·

(
y1(t)− yref

1

)2
+ (u(t)− 2)2

)
dt,

and then transform it to Mayer form for the same reason and in the same way that we

did in Section 6.2. The reflux ratio is not allowed to go below 1, so we also impose

the bound

u(t) ≥ 1, ∀t ∈ [t0, tf].

We also impose blocking factors on the reflux ratio, forcing it to change only every

2 seconds.

With t0 = 0 s, tf = 50 s, ne = 100 and nc = 4, the following result is obtained.

69

Figure 6.7: Comparison of the old and new algorithm applied to a binary distillation

column

Compile Initialize Ipopt Evaluate Total Iterations

New algorithm 3.4 12.7 9.2 0.5 26.0 29

Old algorithm 13.4 0.2 8.0 3.0 24.9 19

Table 6.9: Run-time statistics for the distillation column benchmark

nZ me Non-zero Jacobian elements

43793 43769 203662

Table 6.10: NLP problem statistics for the distillation column benchmark

A noteworthy and unexpected result is that the old algorithm evaluates its NLP func-

tions almost as quickly as the new algorithm in this case, even though the problem is

fairly large (which is what causes the long initialization time for the new algorithm).

So for off-line applications, this is a case where the old algorithm actually is more

efficient than the new algorithm, especially if the Compile time is unimportant. The

reason for the quick evaluation by the old algorithm has not been investigated.

70

6.6 Combined cycle power plant

The combined cycle power plant (CCPP) model used for this benchmark is described

in [CDk11]. The model has 9 states, 128 algebraic variables and 1 control variable.

The task is to minimize the time required to start up the power plant. The startup

process is considered finished when the normalized load input signal u [1] to the

steam turbine, starting at 15 %, has reached 100 % and the evaporator pressure p
[Pa], which is a state with an initial value of approximately 3.47 MPa, has reached

approximately 8.35 MPa.

In order to reduce the wear and tear on the steam turbine, which is one of the most

expensive parts of the power plant, the thermal stress in the turbine σ [Pa], which

is an algebraic variable, may not exceed 260 MPa. This is the main limiting factor

in the startup process. Another imposed constraint is that the derivative of the load

input signal u may not be negative and may not exceed 0.1/60 s−1. Since some of

the bounds are on the derivative of the control variable, which is not supported by

neither the old nor the new algorithm, we introduce the control variable u̇ and add

the equation
du

dt
= u̇,

to the DAE system. This converts the previous control variable u into a state, giving

us a total of 10 states, and the sole control variable is now instead u̇, which we can

impose the mentioned bounds on.

We formulate a Lagrange cost function which penalizes the deviation of the load

input signal and the evaporator pressure from their respectively desired values, given

by

f(z) =

∫ tf

t0

(
10−12 · (p(t)− 8.35 · 106)2 + 0.5 · (u(t)− 1)2

)
dt.

All the NLP variables, except those corresponding to u̇, are initialized based on a

simulation of the startup process with

u(t) = 0.15 + 0.85 · t

T ·
(
1 +

(
t
T

)6) 1
6

,

where T = 10000 s is the simulation duration. With t0 = 0 s, tf = 4000 s, ne = 40
and nc = 4, the following optimization result is obtained.

Compile Initialize Ipopt Evaluate Total Iterations

New algorithm 4.2 4.2 4.0 0.8 13.4 79

Old algorithm 22.0 0.1 6.0 46.3 74.5 69

Table 6.11: Run-time statistics for the CCPP benchmark

71

Figure 6.8: Comparison of the old and new algorithm applied to a CCPP

nZ me Non-zero Jacobian elements

24379 24219 74151

Table 6.12: NLP problem statistics for the CCPP benchmark

In this case we clearly see the benefits of constructing AD graphs for the entire

NLP problem using CasADi for large-scale problems, which is what allows for the

exceptionally quick NLP function evaluations.

72

Chapter 7

Concluding remarks

7.1 Conclusions

We have successfully derived and implemented an optimization algorithm based on

Radau and Gauss collocation and discussed why Lobatto collocation requires a dif-

ferent approach than the one employed in this thesis. The algorithm has been com-

pared to an old algorithm in JModelica.org, which employs Radau collocation. The

solutions found by the two algorithms have shown to be as identical as can be ex-

pected, i.e. up to Ipopt tolerances.

The performance of the new algorithm compared to the old algorithm, in terms of

speed, has varied slightly, but the new algorithm usually outperforms the old one.

During the NLP solution, the new algorithm clearly evaluates its functions faster,

and thanks to the possibility provided by the new algorithm to compute the Hessian

of the Lagrangian, the time spent internally in Ipopt is also most often shorter. The

new algorithm is thus clearly superior for on-line applications.

However, the time required to initialize the new algorithm is considerably longer

than the one required by the old algorithm. So in an off-line application where the

model is only compiled and instantiated a few times, but each model instance is

optimized several times but with different parameter values, such as variable bounds,

it is not clear which of the two algorithms is superior. For such an application, the

old algorithm was about twice as efficient for the distillation column, whereas the

new algorithm was about six times as efficient for the CCPP.

In off-line applications where you often recompile the model between each optimiza-

tion, the fast compilation provided by the FMUX compiler becomes useful. For such

applications the new algorithm should be superior in almost every case, although the

distillation column is an example of when the old algorithm actually is slightly faster.

Since the old and new algorithm construct nearly the same NLP problem, they should

have a similar amount of robustness. The robustness of the algorithms is directly

related to the robustness of Ipopt. Depending on the problem, Ipopt may be very

73

sensitive to scaling and initial guesses. Finding good nominal values and initial

guesses may require a lot of work from the user, but such is the nature of large-scale

optimization.

CasADi is a tool still under heavy development, so the overall performance of the

new algorithm can be expected to improve even further in the future.

7.2 Future work

In terms of being fully-featured, there are still a few important features missing for

the new algorithm. CasADi combined with Python is however very flexible, so

adding new collocation-related features is often straightforward, which is not the

case for the old algorithm implemented in C. In Section 5.6 we listed some missing

features. Some other important missing features are related to what we discussed in

5.5. The optimization of element lengths can be improved by analyzing the actual

discretization error and instead use this to augment the cost function. An alterna-

tive approach is to instead constrain the discretization error to be smaller than some

tolerance. This is discussed in [Bie10, ch. 10].

An altogether different approach to finding an optimal mesh is called mesh refine-
ment. This approach instead solves the NLP problem with a fixed element mesh,

assesses the discretization error, constructs a new mesh based on this and then it-

eratively repeats this process. The idea behind this approach is that solving the

problem repeatedly with a small mesh can be both faster and more accurate than

solving it only once using a large equidistant grid. Mesh refinement is discussed

in [Bet10, ch. 4.7].

When applying collocation methods to DAE systems, the discretization error analy-

sis required for these approaches is made more difficult. This is because collocation

methods often suffer from order reduction when applied to DAE systems, and the

reduction depends on the index of the DAE system, which is generally not known.

However, since JModelica.org transforms the DAE system into an index one (or zero)

system, and the orders of our methods are well-known in these cases, as discussed

in Section 3.2.2, the algorithms implemented in this thesis should be well-suited for

being combined with either a mesh refinement algorithm or an improved formulation

with free element lengths.

An application of having free element lengths other than improving the solution

accuracy, is the introduction of phases, as discussed in [Bet10, ch. 3]. In a single

phase the two following requirements are usually made:

1. The DAE system must remain the same.

2. The states must be continuous.

By allowing multiple phases, more complex systems can be modeled and optimized.

The phase boundaries are regulated by events, which are either time events or state

74

events. Time events trigger a phase change at a specific point in time. Since these

time points are known a priori, there is no need to have free element lengths to handle

these if an appropriate mesh has been chosen. State events however trigger a phase

change when the states (or algebraic variables) satisfy some conditions. Since it is

generally not known a priori at what points in time these events occur, at least some

of the element lengths need to be free in order to handle this.

More future work includes modifying the Gauss collocation implementation into

a projected Runge-Kutta method to improve its stability and accuracy properties,

as discussed in Section 3.4. It would also be interesting to implement collocation

methods based on integration rather than differentiation, as discussed in Appendix

A. This would also allow the implementation of a Lobatto collocation method.

Another topic the implemented algorithm can be used for is investigating how certain

transcription details affect the performance. For example, how does the elimination

of derivative variables affect the solution of the NLP problem, and how do evaluation

constraints compare to quadrature constraints? Does the choice of Radau versus

Gauss collocation points affect overall Ipopt robustness?

75

Appendix A

Collocation methods as
Runge-Kutta methods

In this appendix we present two different derivations of Runge-Kutta methods based

on collocation. We start by describing the problem to be solved and briefly introduce

Runge-Kutta methods. Next we present the first derivation, which uses the Lagrange

form of the collocation polynomial’s derivative and then integrates it to obtain the

collocation polynomial. The second derivation uses the Lagrange form of the col-

location polynomial itself as the starting point and then differentiates it to get the

collocation equations. The second approach is the one used in this thesis, as dis-

cussed in Chapter 3, and we show why this approach can not be used to construct a

Lobatto collocation method.

Collocation-related notation from previous chapters is not used unless explicitly rein-

troduced.

A.1 Introduction

In this Appendix we only consider scalar-valued ODEs on the form

ẋ(t) = f(t, x(t)).

The generalization from scalar-valued ODEs to ODE systems is trivial and skipped

for ease of notation. The generalization from ODE systems to DAE systems is non-

trivial, as discussed in Chapter 2 and 3. The ODE case is however sufficient for the

purposes of this appendix.

The goal is to take a single integration step from tn to tn+1 = tn + h, where h is the

step size, given the value xn = x(tn), thus finding the next value xn+1. The value

of xn is either given by the initial values or the previous integration step. An s-stage

76

Runge-Kutta method doing this has the general form

Xi = xn + h ·
s∑

j=1

ai,j · Ẋi, ∀i ∈ [1..s],

xn+1 = xn + h ·
s∑

i=1

bi · Ẋi,

(A.1)

where Xi are called the stage values,

Ẋi := f(tn + ci · h,Xi)

are called the stage derivatives and the coefficients

A = [ai,j] ∈ R
s×s, b = [bi] ∈ R

s, c = [ci] ∈ R
s

define the Runge-Kutta method. Runge-Kutta methods are conveniently represented

by their respective Butcher tableaus, given by

c A

b
.

A collocation method is constructed by finding the collocation polynomial u of de-

gree s that satisfies the initial condition at the start of the integration step and the

ODE at the collocation points, i.e.

u(tn) = xn, (A.2)

u̇(tn + ci · h) = f(tn + ci · h,Xi), ∀i ∈ [1..s], (A.3)

where ci are the collocation points. The value xn+1 is then found by evaluating the

collocation polynomial at the mesh point, i.e.

xn+1 := u(tn+1). (A.4)

Note that the coefficients c of the Runge-Kutta method are the collocation points

chosen for the collocation method. By defining

Xi := u(tn + ci · h) (A.5)

and noting that the stage derivatives are given by (A.3), a Runge-Kutta method is

obtained, which we show in two ways.

A.2 Derivation by integration

Let τ ∈ [0, 1] denote the localized and normalized time in an integration step. The

Lagrange form of u̇ is given by

u̇(tn + τ · h) =
s∑

i=1

u̇(tn + ci · h) · �i(τ), (A.6)

77

where �i is the Lagrange basis polynomial given by

�i(τ) =
∏

j∈[1..s]\{i}

τ − cj
ci − cj

.

Applying (A.3) to (A.6) and integrating yields∫ ci

0
u̇(tn + τ · h) dτ =

∫ ci

0

s∑
j=1

Ẋj · �j(τ) dτ, ∀i ∈ [1..s].

Applying (A.2) and some calculus gives

u(tn + ci · h)− xn
h

=

s∑
j=1

Ẋj ·
∫ ci

0
�j(τ) dτ, ∀i ∈ [1..s].

By defining

ai,j =

∫ ci

0
�j(τ) dτ. (A.7)

and applying (A.5), we obtain

Xi = xn + h ·
s∑

j=1

ai,j · Ẋj , ∀i ∈ [1..s]. (A.8)

By setting τ = 1 in (A.6) and repeating the above procedure, we obtain

u(tn + h) = xn + h ·
s∑

i=1

bi · Ẋi, (A.9)

where

bi =

∫ 1

0
�i(τ) dτ.

By (A.4), (A.8) together with (A.9) gives us a Runge-Kutta method on the form given

by (A.1).

A.3 Derivation by differentiation

The Lagrange form of u is given by

u(tn + τ · h) =
s∑

i=0

u(tn + ci · h) · �̃i(τ), (A.10)

where c0 = 0 and �̃i is the Lagrange basis polynomial given by

�̃i(τ) =
∏

j∈[0..s]\{i}

τ − cj
ci − cj

.

78

Note that c0 is not a collocation point.

Differentiating (A.10) with respect to τ gives

h · u̇(tn + τ · h) =
s∑

i=0

u(tn + ci · h) · ˙̃�i(τ).

At the collocation points, this equation together with (A.3) gives us the collocation

equations

h · Ẋi =

s∑
j=0

u(tn + cj · h) · ˙̃�j(ci), ∀i ∈ [1..s].

A slight reformulation using (A.5) gives us

s∑
j=0

˙̃
�j(ci) ·Xj = h · Ẋi, ∀i ∈ [1..s].

Together with (A.2), this gives us the equation system⎡
⎢⎢⎢⎢⎣

1 0 · · · 0
˙̃
�0(c1)

˙̃
�1(c1) · · · ˙̃

�s(c1)
...

...
. . .

...
˙̃
�0(cs)

˙̃
�1(cs) · · · ˙̃

�s(cs)

⎤
⎥⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣
X0

X1
...

Xs

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

xn

h · Ẋ1
...

h · Ẋs

⎤
⎥⎥⎥⎥⎦ .

Solving the first trivial equation

X0 = xn (A.11)

gives us⎡
⎢⎢⎢⎢⎣
˙̃
�1(c1)

˙̃
�2(c1) · · · ˙̃

�s(c1)
˙̃
�1(c2)

˙̃
�2(c2) · · · ˙̃

�s(c2)
...

...
. . .

...
˙̃
�1(cs)

˙̃
�2(cs) · · · ˙̃

�s(cs)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
L

·

⎡
⎢⎢⎢⎢⎣
X1

X2
...

Xs

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
X

= h ·

⎡
⎢⎢⎢⎢⎣
Ẋ1

Ẋ2
...

Ẋs

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Ẋ

−xn ·

⎡
⎢⎢⎢⎢⎣
˙̃
�0(c1)
˙̃
�0(c2)

...
˙̃
�0(cs)

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Q

.

If L is non-singular, we get

X = −xn · L−1 ·Q+ h · L−1 · Ẋ. (A.12)

If

L−1 ·Q = (−1,−1, . . . ,−1) =: −U, (A.13)

we get the equations defining the stage values for a Runge-Kutta method, where the

matrix A is given by L−1.

The coefficients b are found by evaluating

xn+1 = u(tn + h) =

s∑
i=0

�̃i(1) ·Xi.

79

Equation (A.11) yields that

xn+1 = xn · �̃0(1) +
s∑

i=1

�̃i(1) ·Xi.

Under the assumption that L is non-singular and that (A.13) holds, (A.12) gives us

xn+1 = xn · �̃0(1) +
s∑

i=1

�̃i(1) ·
(
xn + h · L−1

i · Ẋ
)

= xn ·
s∑

i=0

�̃i(1) +
s∑

i=1

�̃i(1) · h · L−1
i · Ẋ,

where L−1
i is the i:th row of L−1. Since

s∑
i=0

�̃i = 1,

which we do not show, we get

xn+1 = xn + h ·
s∑

i=1

�̃i(1) · L−1
i · Ẋ = xn + h ·

s∑
i=1

�̃i(1) ·
s∑

j=1

L−1
i,j · Ẋ ,

j

By noting that

bi =

s∑
j=1

�̃j(1) · L−1
j,i ,

we get

xn+1 = xn + h ·
s∑

i=1

bi · Ẋi.

Together with (A.12), we have thus obtained a Runge-Kutta method. In order to find

explicit values for A and b, L needs to be inverted, which is not something we do for

the general case.

A.4 Conclusions

Determining the singularity of L in the general case (for an arbitrary choice of col-

location points) is beyond the scope of this thesis. However, experiments (not docu-

mented in this report) for specific choices of c indicate that L is non-singular if and

only if c1 	= 0, which is the case for Radau and Gauss, but not Lobatto. It is actually

easy to realize that derivation by differentiation as described in Section A.3 breaks

down for c1 = 0, since we introduce c0 = 0 as an interpolation point for the col-

location polynomial, and the construction of a Lagrange interpolation polynomial is

dependent on all of the interpolation points being distinct.

80

Experiments also indicate that L−1 = A, where A is the coefficient matrix derived

in A.2, in the case that L is non-singular. Assumption (A.13) also seems to hold if

L is non-singular. This means that the two methods derived by either integration or

differentiation are in fact equivalent. This can be motivated by how derivation by

integration constructs the equation system

X = xn · U + h ·A · Ẋ,

whereas derivation by differentiation constructs the equation system

L ·X = −xn ·Q+ h · Ẋ

and then solves it for X to get the exact same structure as derivation by integration.

Once again, determining the singularity of L−1 = A is non-trivial in the general

case. It is, however, trivial to realize that A is singular in the case of c1 = 0. From

(A.7), we get that the first row of A is given by

A1 =

(∫ 0

0
�1(τ) dτ,

∫ 0

0
�2(τ) dτ, . . . ,

∫ 0

0
�s(τ) dτ

)
= (0, 0, . . . , 0),

and thus A is singular, further showing that derivation by differentiation does not

work for c1 = 0.

So why bother with derivation by differentiation? As it turns out, an implementation

based on derivation by differentiation has better numerical properties with regards to

round-off and iteration errors, as discussed in [HW96, ch. IV.8].

81

Appendix B

Benchmark models

In this chapter we provide the Modelica and Optimica source code used for the

benchmarks in Chapter 6, with the exception of the combined cycle power plant

model, which is proprietary.

B.1 Van der Pol oscillator

model VDP

Real x1(start=0, fixed=true);
Real x2(start=1, fixed=true);

input Real u;

equation

der(x1) = (1 - x2^2) * x1 - x2 + u;
der(x2) = x1;

end VDP;

optimization VDP_OCP(objective=cost(finalTime), startTime=0, finalTime=10)

Real cost(start=0, fixed=true);

extends VDP(u(free=true, max=0.75));

equation

der(cost) = x1^2 + x2^2 + u^2;

end VDP_OCP;

82

B.2 Continuously stirred tank reactor

model CSTR

parameter Modelica.SIunits.VolumeFlowRate F0 = 100/1000/60 "Inflow";
parameter Modelica.SIunits.Concentration c0 =

1000 "Concentration of inflow";
parameter Modelica.SIunits.Temp_K T0 = 350;
parameter Modelica.SIunits.Length r = 0.219;
parameter Real k0 = 7.2e10/60;
parameter Real EdivR = 8750;
parameter Real U = 915.6;
parameter Real rho = 1000;
parameter Real Cp = 0.239*1000;
parameter Real dH = -5e4;
parameter Modelica.SIunits.Volume V = 100 "Reactor Volume";
parameter Modelica.SIunits.Concentration c_init = 956.271065;
parameter Modelica.SIunits.Temp_K T_init = 250.051971;

Real c(start=c_init, fixed=true, nominal=c0);
Real T(start=T_init, fixed=true, nominal=T0);

Modelica.Blocks.Interfaces.RealInput Tc "Cooling temperature";

equation

der(c) = F0 * (c0 - c) / V - k0 * c * exp(-EdivR / T);
der(T) = F0 * (T0 - T) / V -

dH / (rho * Cp) * k0 * c * exp(-EdivR / T) +
2 * U / (r * rho * Cp) * (Tc - T);

end CSTR;

optimization CSTR_OCP(objective=cost(finalTime), startTime=0, finalTime=200)

CSTR cstr(c(initialGuess=600), T(initialGuess=300, max=350));
input Real u(initialGuess=320, min=100, max=370) = cstr.Tc;

Real cost(start=0, fixed=true, nominal=1e7);
parameter Real c_ref = 338.775766;
parameter Real T_ref = 280.099198;
parameter Real Tc_ref = 280;

equation

der(cost) = (cstr.c - c_ref)^2 + (cstr.T - T_ref)^2 +
(cstr.Tc - Tc_ref)^2;

end CSTR_OCP;

83

B.3 Quadruple-tank process

model QuadTank

// Process parameters
parameter Modelica.SIunits.Area A1 = 4.9e-4, A2 = 4.9e-4,

A3 = 4.9e-4, A4 = 4.9e-4;
parameter Modelica.SIunits.Area a1(start=0.03e-4), a2(start=0.03e-4),

a3(start=0.03e-4), a4(start=0.03e-4);
parameter Modelica.SIunits.Acceleration g = 9.81;
parameter Real k1_nmp(unit="m^3/s/V") = 0.56e-6,

k2_nmp(unit="m^3/s/V") = 0.56e-6;
parameter Real g1_nmp = 0.30, g2_nmp = 0.30;

// Initial tank levels
parameter Modelica.SIunits.Length x1_0 = 0.06255;
parameter Modelica.SIunits.Length x2_0 = 0.06045;
parameter Modelica.SIunits.Length x3_0 = 0.02395;
parameter Modelica.SIunits.Length x4_0 = 0.02325;

// Tank levels
Modelica.SIunits.Length x1(fixed=true, start=x1_0, min=0.0001);
Modelica.SIunits.Length x2(fixed=true, start=x2_0, min=0.0001);
Modelica.SIunits.Length x3(fixed=true, start=x3_0, min=0.0001);
Modelica.SIunits.Length x4(fixed=true, start=x4_0, min=0.0001);

// Inputs
input Modelica.SIunits.Voltage u1;
input Modelica.SIunits.Voltage u2;

equation

der(x1) = -a1/A1*sqrt(2*g*x1) + a3/A1*sqrt(2*g*x3) + g1_nmp*k1_nmp/A1*u1;
der(x2) = -a2/A2*sqrt(2*g*x2) + a4/A2*sqrt(2*g*x4) + g2_nmp*k2_nmp/A2*u2;
der(x3) = -a3/A3*sqrt(2*g*x3) + (1-g2_nmp)*k2_nmp/A3*u2;
der(x4) = -a4/A4*sqrt(2*g*x4) + (1-g1_nmp)*k1_nmp/A4*u1;

end QuadTank;

model PRBS1

Modelica.Blocks.Interfaces.RealOutput y;
parameter Integer N = 10;
parameter Real ts[N] =

{0., 3.3, 9.3, 15.3, 24.3, 36.3, 39.3, 42.3, 54.3, 57.3};
parameter Real ys[N] =

{5., 6., 5., 6., 5., 6., 5., 6., 5., 6.};

equation

y = noEvent(if time <= ts[2] then ys[1] else
if time <= ts[3] then ys[2] else
if time <= ts[4] then ys[3] else
if time <= ts[5] then ys[4] else
if time <= ts[6] then ys[5] else
if time <= ts[7] then ys[6] else
if time <= ts[8] then ys[7] else
if time <= ts[9] then ys[8] else
if time <= ts[10] then ys[9] else ys[10]);

end PRBS1;

84

model PRBS2

Modelica.Blocks.Interfaces.RealOutput y;
parameter Integer N = 11;
parameter Real ts[N] =

{0., 0.3, 9.3, 21.3, 24.3, 27.3, 39.3, 42.3, 48.3, 51.3, 57.3};
parameter Real ys[N] =

{5., 6., 5., 6., 5., 6., 5., 6., 5., 6., 5.};

equation

y = noEvent(if time <= ts[2] then ys[1] else
if time <= ts[3] then ys[2] else
if time <= ts[4] then ys[3] else
if time <= ts[5] then ys[4] else
if time <= ts[6] then ys[5] else
if time <= ts[7] then ys[6] else
if time <= ts[8] then ys[7] else
if time <= ts[9] then ys[8] else
if time <= ts[10] then ys[9] else
if time <= ts[11] then ys[10] else ys[11]);

end PRBS2;

optimization QuadTank_PE_Old(
objective=sum((x1_meas[i] - qt.x1(t_meas[i]))^2 +

(x2_meas[i] - qt.x2(t_meas[i]))^2 +
(x3_meas[i] - qt.x3(t_meas[i]))^2 +
(x4_meas[i] - qt.x4(t_meas[i]))^2 for i in 1:N_meas),

startTime=0, finalTime=60)

QuadTank qt(a1(free=true, initialGuess=0.03e-4, nominal=0.03e-4,
min=0, max=0.1e-4),

a2(free=true, initialGuess=0.03e-4, nominal=0.03e-4,
min=0, max=0.1e-4),

a3(free=true, initialGuess=0.03e-4, nominal=0.03e-4,
min=0, max=0.1e-4),

a4(free=true, initialGuess=0.03e-4, nominal=0.03e-4,
min=0, max=0.1e-4));

parameter Integer N_meas = 121;
parameter Real t_meas[N_meas] = 0:60.0/(N_meas-1):60;
parameter Real x1_meas[N_meas] = ones(N_meas);
parameter Real x2_meas[N_meas] = ones(N_meas);
parameter Real x3_meas[N_meas] = ones(N_meas);
parameter Real x4_meas[N_meas] = ones(N_meas);

PRBS1 prbs1;
PRBS2 prbs2;

equation

connect(prbs1.y, qt.u1);
connect(prbs2.y, qt.u2);

end QuadTank_PE_Old;

optimization QuadTank_PE_New(objective=1, startTime=0, finalTime=60)

QuadTank qt(a1(free=true, initialGuess=0.03e-4, nominal=0.03e-4,
min=0, max=0.1e-4),

a2(free=true, initialGuess=0.03e-4, nominal=0.03e-4,
min=0, max=0.1e-4),

a3(free=true, initialGuess=0.03e-4, nominal=0.03e-4,

85

min=0, max=0.1e-4),
a4(free=true, initialGuess=0.03e-4, nominal=0.03e-4,

min=0, max=0.1e-4));

input Real u1(free=true) = qt.u1;
input Real u2(free=true) = qt.u2;

end QuadTank_PE_New;

86

B.4 Distillation column

model Dist_Col

// Import Modelica SI unit library
import SI = Modelica.SIunits;
type MolarFlowRate = Real(quantity="Molar Flow Rate", unit="mol/s");
type Moles = Real(quantity="Mols", unit="mol", displayUnit="mols");

// The model has to be rescaled in order to enable
// use of SI units.

// Model parameters
parameter MolarFlowRate Feed = 24/60 "Feed Flowrate [mol/s]";
parameter SI.MassFraction x_Feed = 0.5 "Mole Fraction of Feed";
parameter MolarFlowRate D = x_Feed * Feed "Distillate Flowrate [mol/s]";
parameter Real vol = 1.6 "Relative Volatility = (yA/xA) / (yB/xB)";
parameter Moles atray = 0.25 "Molar Holdup in the Condenser [mol]";
parameter Moles acond = 0.5 "Molar Holdup on each Tray [mol]";
parameter Moles areb = 1.0 "Molar Holdup in the Reboiler [mol]";

// Algebraic variables
Real rr "Reflux Ratio";
MolarFlowRate L "Liquid Flowrate in the Rectification Section [mol/s]";
MolarFlowRate V "Vapor Flowrate in the Column [mol/s]";
MolarFlowRate FL "Liquid Flowrate in the Stripping Section [mol/s]";

parameter Integer N = 32 "Number of trays";

SI.MoleFraction y[N](each min=0) "Vapor Mole Fraction of Component A";

// Initial values for the states
parameter Real x_0[N] =

{0.93541941, 0.90052553, 0.86229644, 0.82169939, 0.77999079,
0.73857167, 0.6988049 , 0.66184252, 0.62850776, 0.59925269,
0.57418567, 0.55314422, 0.53578454, 0.5216655 , 0.51031495,
0.50127506, 0.49412898, 0.48544973, 0.47420289, 0.45980255,
0.44164493, 0.41918698, 0.39206347, 0.36023105, 0.32410541,
0.28463656, 0.24326615, 0.20174466, 0.16184802, 0.12508549,
0.09249569, 0.06458059};

SI.MoleFraction x[N](start=x_0, each fixed=true, each min=0)
"Reflux Drum Liquid Mole Fraction of Component A";

Modelica.Blocks.Interfaces.RealInput u;

equation

rr = u;
L = rr*D;
V = L+D;
FL = Feed + L;

// Vapor Mole Fractions of Componenent A
// From the equilibrium assumption and mole balances
// 1) vol = (yA/xA) / (yB/xB)
// 2) xA + xB = 1
// 3) yA + yB = 1
for i in 1:N loop

y[i] = (x[i]*vol) / (1 + (vol-1)*x[i]);
end for;

87

// ODEs
der(x[1]) = (V * (y[2]-x[1])) / acond;
for i in 2:16 loop

der(x[i]) = (L*(x[i-1]-x[i]) - V*(y[i]-y[i+1])) / atray;
end for;

der(x[17]) = (D + L*x[16] - FL*x[17] - V*(y[17]-y[18])) / atray;

for i in 18:31 loop
der(x[i]) = (FL*(x[i-1]-x[i]) - V*(y[i]-y[i+1])) / atray;

end for;

der(x[32]) = (FL*x[31] - (Feed-D)*x[32] - V*y[32]) / areb;

end Dist_Col;

optimization Dist_Col_OCP(objective=cost(finalTime),
startTime=0., finalTime=50.)

extends Dist_Col(u(min=1, initialGuess=1.5),
x(each initialGuess=0.5), y(each initialGuess=0.5));

Real cost(start=0, fixed=true);
parameter Real gamma = 1000;
parameter Real rho = 1;

parameter Real u_ref = 2.0;
parameter Real y1_ref = 0.89581418893128228;

equation

der(cost) = gamma * (y[1] - y1_ref)^2 + rho*(u - u_ref)^2;

end Dist_Col_OCP;

88

Index

A, 6, 13

C2, 6

F , 9, 12

F0, 12

G, 24

GG, 33

GR, 29

Ge, 13

Gi, 13

K, 20

Q, 15

Z, 23

ZG, 33

Ze, 13

Zi, 13

α, 20

β, 20

v̇Ci , 21

ẋ, 9

ẋi, 20

ẋi,k, 21

żCi,k, 32

�k, 17, 19

t̂i, 15

λ, 7

Fb, 9

ν, 7

ωk, 25

τ , 18

τk, 20

�̃k, 19

f̃ , 24–26, 28, 32

z̃, 21

f , 6, 15

ge, 7, 13

gi, 7, 13

hi, 18, 46

me, 7

mi, 7

n, 8

nZ , 23

nZG
, 33

nc, 17, 21, 46

ne, 18, 45

np, 12

nu, 11

nC
u , 19

nD
u , 19

nw, 9

nC
w , 19

nD
w , 19

nx, 9

ny, 15

nz , 6, 12

p, 12

t, 2

t0, 2

tf , 2

ti, 18

ti,k, 21

u, 11

uC , 19

uD, 19

ui, 18

uCi , 19

uDi , 19

ui,k, 23

uCi,k, 19

uDi,k, 19

v, 18

vC , 19

vD, 19

vi, 18

vCi , 19

89

vDi , 19

vCi,k, 19

vDi,k, 19

w, 9

wC , 19

wD, 19

wi, 18

wC
i , 19

wD
i , 19

wi,k, 23

wC
i,k, 19

wD
i,k, 19

x, 9

xi, 18

xi,k, 19

y, 15

ym, 15

z, 8, 12

z∗, 7

zL, 6

zU , 6

zi, 21

zi,k, 23

algebraic variable, 9

automatic differentiation (AD), 37

Butcher tableau, 77

CasADi, 37

collocation, 2

global, 41

local, 41

collocation equation, 21

collocation point, 21

collocation polynomial, 18

combined cycle power plant (CCPP), 71

consistent initial conditions, 10

constraint, 7

active, 8

equality, 7

inactive, 8

inequality, 7

path, 13

point, 13

constraint point, 13

continuity variable, 23

continuously stirred tank reactor (CSTR),

62

control variable, 11

CppAD, 58

degree-preserving transcription, 29

dense output, 48

differential algebraic equation (DAE), 8

differential variable, 9

distillation column, 68

dual variable, 7

element, 18

evaluation constraint, 31

event, 74

state event, 75

time event, 74

free, 11

Gaussian quadrature, 24

index, 10

interpolation point, 17

Ipopt, 38

JModelica.org, 36

Karush-Kuhn-Tucker (KKT), 7

Lagrange basis polynomial, 17

Lagrange integrand, 14

Lagrange interpolation polynomial, 17

Lagrangian function, 7

measurement point, 15

mesh point, 18

mesh refinement, 74

minimum time problem, 15

Modelica, 35

multiple shooting, 2

MX, 37, 43

expanded, 43

nonlinear programming (NLP), 7

objective function, 6

90

Bolza, 15

Lagrange, 14

Mayer, 14

off-line, 1

on-line, 1

optimal control problem (OCP), 11

Optimica, 36

ordinary differential equation (ODE), 8

parameter, 12

parameter estimation, 12, 15

continuous, 16

discrete, 15

parameter optimization problem, 12

phase, 74

primal variable, 7

pseudospectral collocation, 41

Python, 36

quadrature constraint, 32

quadrature weight, 25

quadruple-tank process, 66

Runge-Kutta, 27, 76

projected implicit, 32

scaling, 54

single shooting, 2

stage derivative, 77

stage value, 77

state, 12

superconvergence, 23

SX, 37, 43

terminal constraint, 15

terminal value, 32

Van der Pol (VDP), 2

variable bounds, 6

91

Bibliography

[A+11] Joel Andersson et al. CasADi. http://www.casadi.org/, Sep

2011.

[AB11] Modelon AB. JModelica.org User Guide 1.6.0. http://www.
jmodelica.org/page/236, Oct 2011.

[AHD10] Joel Andersson, Boris Houska, and Moritz Diehl. Towards a computer

algebra system with automatic differentiation for use with object-oriented

modelling languages. In 3rd International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools. Department of Elec-

trical Engineering and Optimization in Engineering Center (OPTEC),

K.U.Leuven, Belgium, Oct 2010.

[AP91] Uri M. Ascher and Linda R. Petzold. Projected implicit runge-kutta

methods for differential-algebraic equations. SIAM Journal on Numer-
ical Analysis, 28(4):1097–1120, 1991.

[Ben05] David Benson. A Gauss Pseudospectral Transcription for Optimal Con-
trol. PhD thesis, Massachusetts Institute of Technology, 2005.

[Bet10] John T. Betts. Practical Methods for Optimal Control and Estimation
using Nonlinear Programming. SIAM’s Advances in Design and Control.

Society for Industrial and Applied Mathematics, 2nd edition, 2010.

[Bie10] Lorenz T. Biegler. Nonlinear Programming: Concepts, Algorithms, and
Applications to Chemical Processes. MOS-SIAM Series on Optimiza-

tion. Mathematical Optimization Society and the Society for Industrial

and Applied Mathematics, 2010.

[CDk11] Francesco Casella, Filippo Donida, and Johan Åkesson. Object-oriented

modeling and optimal control: A case study in power plant start-up. In

18th IFAC World Congress, Milano, Italy, August 2011.

[GW08] Andreas Griewank and Andrea Walther. Evaluating Derivatives – Prin-
ciples and Techniques of Algorithmic Differentiation. MOS-SIAM Series

on Optimization. Society for Industrial and Applied Mathematics, 2008.

92

[HE02] Juergen Hahn and Thomas F. Edgar. An improved method for nonlinear

model reduction using balancing of empirical gramians. Computers &
Chemical Engineering, 26(10):1379 – 1397, 2002.

[HR71] G. A. Hicks and W. H. Ray. Approximation methods for optimal control

synthesis. The Canadian Journal of Chemical Engineering, 49(4):522–

528, 1971.

[HR07] Geoffrey T. Huntington and Anil V. Rao. A comparison between global

and local orthogonal collocation methods for solving optimal control

problems. 2007 American Control Conference, pages 1950–1957, 2007.

[Hun07] Geoffrey T. Huntington. Advancement and Analysis of Gauss Pseu-
dospectral Transcription for Optimal Control Problems. PhD thesis, Mas-

sachusetts Institute of Technology, 2007.

[HW96] Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential Equa-
tions II: Stiff and differential-algebraic problems. Springer series in com-

putational mathematics. Springer-Verlag, 2nd edition, 1996.

[Joh00] Karl Henrik Johansson. The quadruple-tank process: a multivariable labo-

ratory process with an adjustable zero. Control Systems Technology, IEEE
Transactions on, 8(3):456–465, may 2000.

[Åk07] Johan Åkesson. Languages and Tools for Optimization of Large-Scale
Systems. PhD thesis, Faculty of Engineering at Lund University, 2007.

[Åk08] Johan Åkesson. Optimica—an extension of modelica supporting dynamic

optimization. In In 6th International Modelica Conference 2008. Model-

ica Association, March 2008.

[Kan07] Takashi Kanamaru. Van der Pol oscillator. Scholarpedia, 2(1):2202, 2007.

[KB08] Shivakumar Kameswaran and Lorenz T. Biegler. Convergence rates

for direct transcription of optimal control problems using collocation at

radau points. Computational Optimization and Applications, 41:81–126,

September 2008.

[NW06] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer,

New York, 2nd edition, 2006.

[PkC10] Roberto Parrotto, Johan Åkesson, and Francesco Casella. An XML repre-

sentation of DAE systems obtained from continuous-time Modelica mod-

els. In Third International Workshop on Equation-based Object-oriented
Modeling Languages and Tools, September 2010.

[RM09] J.B. Rawlings and D.Q. Mayne. Model Predictive Control Theory and
Design. Nob Hill Pub., 2009.

93

[RR04] Michael Renardy and Robert C. Rogers. An Introduction to Partial Dif-
ferential Equations. Texts in Applied Mathematics. Springer, 2nd edition,

2004.

[Sim10] Theodore E. Simos. Recent Advances in Computational and Applied
Mathematics. Springer, 2010.

[Udr10] Constantin Udriste. Equivalence of multitime optimal control problems.

Balkan Journal of Geometry and Its Applications, 15(1):155–162, 2010.

[WB06] Andreas Wächter and Lorenz T. Biegler. On the implementation of a

primal-dual interior point filter line search algorithm for large-scale non-

linear programming. Mathematical Programming, 106(1):25–57, 2006.

[Zav08] Victor M. Zavala. Computational Strategies for the Optimal Operation of
Large-Scale Chemical Processes. PhD thesis, Carnegie Mellon Univer-

sity, 2008.

94

