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Sammanfattning
Den här kandidatuppsatsen skrevs huvudsakligen i syfte att agera språngbräda

åt ett mer fördjupande masterprojekt, föreslaget - liksom denna uppsats - av

David Hobbs. Den inleder med introduktion och detaljerad härledning av

grundläggande omloppsmekanik för gravitationellt bundna system, med utgång

från Newtons naturlagar. Detta omfattar t.ex. ellipsformeln, Keplers lagar och

andra relevanta samband inklusive radialhastighet. En enkel simulering utförs

även här för att visa effekterna av projektion på himlasfären.

Sedan beskrivs i tur och ordning de sex vanligaste metoderna som används

för att detektera planeter runt stjärnor utöver Solen. Särskilt fokus har här lagts

dels på den metod som nyttjar stjärnors radialhastigheter, och dels på den metod

som bygger på astrometri. Astrometrin är måhända särskilt intressant med

tanke på att Gaiaexperimentet påbörjas om ett drygt år. Några simulationer

av radialhastigheter utförs i tillhörande sektion, om inte annat för att se om den

härledda modellen är något att ha.

Därefter beskrivs minsta-kvadratmetoden i syfte att brygga sträckan mellan

den praktiska observationen medelst teleskop eller dylikt instrument, och den

slutgiltiga uppskattningen av planetsystemens fysikaliska storheter. Majoriteten

av - om inte alla - detektionsmetoder inkorporerar minsta-kvadratmetoden på

ett eller annat sätt.

Slutligen formuleras ett förslag på hur man kan tänkas kombinera mätdata

från radialhastighets- och astrometriexperiment i en gemensam minsta-kvadrat-

algoritm, detta i hopp om att förbättra precision och frikoppla parametrar.

Denna kombination av mätdata är vad det projekt som denna upptsats agerar

språngbräda för ska gå in mer på, är det tänkt.

Uppsatsen avslutas med några tankar om hur framtiden ser ut med avseende

på utsikten om att detektera allt mindre och mer jordliknande planeter, något

som för många är den heliga graalen inom just detta forskningsområdet.



Contents
1 Introduction 3

1.1 The ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 From Newton to Kepler . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Kepler’s second law . . . . . . . . . . . . . . . . . . 5
1.2.2 Kepler’s first law . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Kepler’s third law . . . . . . . . . . . . . . . . . . . 8

1.3 The ellipse equations . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Eccentric anomaly . . . . . . . . . . . . . . . . . . . 9
1.3.2 Mean motion . . . . . . . . . . . . . . . . . . . . . . 10
1.3.3 Orbital speed . . . . . . . . . . . . . . . . . . . . . . 10
1.3.4 Kepler’s equation . . . . . . . . . . . . . . . . . . . . 11
1.3.5 The true and eccentric anomalies . . . . . . . . . . . 12
1.3.6 The 3D-problem . . . . . . . . . . . . . . . . . . . . 12
1.3.7 Radial velocity and barycentric motion . . . . . . . . 14

2 Methods of detection 18
2.0.8 Rogue planets . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Radial velocity . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.1 Complications . . . . . . . . . . . . . . . . . . . . . 20
2.1.2 Finding parameters . . . . . . . . . . . . . . . . . . . 21
2.1.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Planet transits . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 From observables to model parameters . . . . . . . . 25
2.2.2 Polarimetry and spectroscopy . . . . . . . . . . . . . 27

2.3 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Pulsar timing . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Eclipsing binaries . . . . . . . . . . . . . . . . . . . . 30
2.3.3 Pulsating stars . . . . . . . . . . . . . . . . . . . . . 31

2.4 Astrometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Gravitational microlensing . . . . . . . . . . . . . . . . . . . 34
2.5.1 Some lensing basics . . . . . . . . . . . . . . . . . . 35
2.5.2 Magnification . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Direct observation . . . . . . . . . . . . . . . . . . . . . . . 37
2.6.1 Types of coronagraphy . . . . . . . . . . . . . . . . . 38

3 The final step - the least-squares algorithm 40
3.1 The basic idea . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 However... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Matrix form . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Combining astrometric and radial velocity data 44
4.1 Least-squares incorporation . . . . . . . . . . . . . . . . . . 45

5 Conclusion 47

2



1 Introduction

1.1 The ellipse

Johannes Kepler (1571 – 1630) was the first scientist to observe that planets
trace elliptical orbits around the Sun.1

Ellipses can be defined as the locus of all points whose distance sum to two
fixed points in space is constant. In mathematical terms this can be written as

��
x− D

2

�2

+ y2 +

��
x+
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2

�2

+ y2 = L

where the two fix points (often called focus points or just foci) are situated in
a cartesian coordinate system at

�
−D

2 , 0
�

and
�
D

2 , 0
�
, and the distance sum is

labeled L. This expression can be massaged in simple ways and rewritten into
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A geometrical observation (figure 1) is then required to simplify this fur-
ther. The semi-major and -minor axes are labeled a and b. From the pic-
ture, it is realized that the semi-major axis is by definition equal to L

2 . Us-
ing the pythagorean theorem, the isosceles triangle drawn clearly shows that
b
2 =

�
L

2

�2 −
�
D

2

�2
= L

2−D
2

4 .
Equation 1.1 can then be simplified into

x
2

a2
+

y
2

b2
= 1 (1.2)

1Today this has been slightly revised - the entire solar system’s centre of mass lies com-
pletely stationary in a location in which all orbiting bodies’ ellipse foci coincide. It should
be mentioned however, that if ignoring perturbations caused by the >1 planets of our solar
system, Kepler was not incorrect in this conclusion.
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Figure 1: A crudely drawn ellipse with relevant geometry written out.

Eq. 1.2 is the canonical ellipse equation which shows how ellipses differ
from circles in a rather intuitive way (margin) - the ellipse can, with some x

2

r2
+ y

2

r2
= 1

loss of rigour, be thought of as a circle with dimension-specific radii. For the
astronomer however, this form is of little or no use. The polar coordinate version
with one focus at the origin is better since it expresses the geometry with angles.

If the polar origin is chosen to be the right focus:
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(1.3)

This is the polar form of conic sections. If e is restricted to [0, 1), this
describes an ellipse.
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1.2 From Newton to Kepler

Newton’s famous law of gravitation may fail at predicting the behaviour of very
strong gravitational fields, but it is accurate enough for deriving Kepler’s three
laws:

1. Planetary orbits are elliptical, with the sun at one focus.

2. The radius vector of the planet orbit sweeps equal areas in equal times
(regardless of absolute angular position).

3. The orbital period squared is directly proportional to its semi-major axis
cubed.

It so happens that the second law is the most easily derived one, and will
therefore be derived first, followed by the first and third.

1.2.1 Kepler’s second law

In a polar coordinate system with a star at absolute rest, the orbiting planet
position vector will be called r = r̂ · r, where r = |r|, and r̂ then being its unit
vector. A second unit vector, θ̂, is directed orthogonally with respect to r, in
the approximate direction of planet movement. In order to use Newton’s law,
the position vector needs to be differentiated with respect to time twice since,
according to Newton, any force is F = mr̈ = m

∂
2(r ˙̂r)
∂t2

, and the force on the
planet would in this case be gravitation:

r̈ = −G
msun +mplanet

r2
r̂ ≡ − µ

r2
r̂ (1.4)

Note that the attracting mass is that of the entire system, as opposed to just
the star. This is because we’ve chosen the coordinate origin to be in the star
rather than the system’s center of mass, but must still account for Newton’s third
law i.e. that the star should feel the same force as its planet. The acceleration
of the star that this necessitates is accounted for by using the system’s total
mass as the attractor of the planet.

The derivatives of r:
ṙ =

∂ (r̂r)

∂t
= r ˙̂r + r̂ṙ

Using ˙̂r = θ̂θ̇, where θ is the polar angle:

ṙ = rθ̂θ̇ + r̂ṙ

Now, the second derivative then becomes, with ˙̂
θ = −r̂θ̇:

r̈ =
∂

∂t

�
rθ̂θ̇ + r̂ṙ

�
=

∂

∂t

�
rθ̂θ̇

�
+

∂

∂t
(r̂ṙ) = θ̇

∂

�
rθ̂

�

∂t
+ rθ̂θ̈ + ṙ ˙̂r+ r̂r̈

= θ̂θ̇ṙ + rθ̇
˙̂
θ + rθ̂θ̈ + ṙθ̂θ̇ + r̂r̈ = θ̂

�
rθ̈ + 2θ̇ṙ

�
+ r̂

�
r̈ − rθ̇

2
�
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Figure 2: An infinitesimal element of an orbit. The area is that of a triangle,
i.e. r

2
dθ = r

2 · θ̇ · dt.

Equating this with 1.4,

− µ

r2
r̂ = θ̂

�
rθ̈ + 2θ̇ṙ

�
+ r̂

�
r̈ − rθ̇

2
�






− µ

r2
= r̈ − rθ̇

2

0 = rθ̈ + 2θ̇ṙ

(1.5)

Ignoring the radial result for the moment, the angular result can directly be
used to prove Kepler’s second law.

The area swept over by the line joining the sun and its planet is
´

1
2r

2
θ̇dt, as

illustrated by figure 2. The expression r
2
θ̇ is constant in time2, and the integral

becomes 1
2r

2
θ̇ · t+ C which is directly proportional to time. The second law is

thus proven, as its statement is equivalent to that swept area is proportional to
time.

1.2.2 Kepler’s first law

To derive this, it will prove convenient to define u = p

r
, where p = l

2

µ
, with

l = θ̇r
2.

To obtain the shape of the orbit, r should be expressed in terms of θ, which
can be arranged by differentiating r twice with respect to θ, and then solving
the resulting differential equation:

r̈ =
∂ṙ

∂t
=

∂
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�
∂r

∂θ

∂θ

∂t

�
=

∂
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�
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∂
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�
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�

2 ∂
∂t

�
r2θ̇

�
= θ̇ ∂r2

∂r ṙ + r2θ̈ = r
�
rθ̈ + 2ṙθ̇

�
= r · 0 = 0 Perhaps not-so incidentally, this

quantity is the specific angular momentum.
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Inserting this in 1.5, we get
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One solution to this is u = 1, and remaining solutions can be found by
adding the solutions of the homogeneous version:

∂
2
u

∂θ2
+ u = 0

The characteristic equation is R2+1 = 0, with solutions

�
R1 = i

R2 = −i
, mean-

ing the general solution is3

u = C1 exp (iθ) + C2 exp (−iθ)

= (C1 + C2) cos θ + i (C1 − C2) sin θ = ...

�
u is a real quantity

�
... = e cos θ

Finally, adding the homogeneous solutions and solving for r :

r =
p

1 + e cos θ

This has the same form as the polar form ellipse derived above, and the first
law is thus proven.

3See any book on differential equations for details of the process. Wikipedia should suffice.
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1.2.3 Kepler’s third law

The period of an orbit can be expressed as the orbit’s area divided by the areal
speed:

P =
A

Ȧ

The area of an ellipse is πab = πa
2
√
1− e2, and the areal speed is θ̇r

2

2 =
l

2 = 1
2

√
pµ = 1

2

�
a (1− e2)µ:

P =
πa

2
√
1− e2

1
2

�
a (1− e2)µ

⇔ P
2 =

4π2
a
4
�
1− e

2
�

a (1− e2)µ
=

4π2

µ
a
3 ∝ a

3 (1.6)

⇒ P
2 ∝ a

3

The third law is thus proven when assuming a constant µ, which is false for
solar systems whose planets are not all perfectly equal in mass. The approxi-
mation is good when the planets are light in comparison to their star.

1.3 The ellipse equations

An crucial part of science is gathering information and observing. Unfortunately,
exoplanets are presently beyond direct imaging in all but the most extreme cases
and their orbital parameters must therefore be deduced indirectly from other,
more readily measurable quantities. Some equations that will prove important
for this deduction process are:

Eccentric anomaly: r = a (1− e cosE) (1.7)

Mean motion: n =
2π

P
= µ

1/2
a
−3/2 (1.8)

Orbital speed: V
2 = µ

�
2

r
− 1

a

�
(1.9)

Kepler’s equation: M = n (t− tp) = E − e sinE (1.10)

The true and eccentric anomalies: cos θ =
cosE − e

1− e cosE
(1.11)

The 3D-problem:




X

Y

Z



 =




r (cosΩ cos (θ + ω)− sinΩ sin (θ + ω) cos i)
r (sinΩ cos (θ + ω) + cosΩ sin (θ + ω) cos i)

r sin (θ + ω) sin i





(1.12)

Radial velocity: vr = VZ +
na1 sin i√
1− e2

(cos (θ + ω) + e cosω) (1.13)

Each of these will now be derived and explained.

8



Figure 3: An ellipse and its auxiliary circle, i.e. an overlain circle with a radius
equal to the semi-major axis of the ellipse. The angle θ is the true anomaly.

1.3.1 Eccentric anomaly

The so-called eccentric anomaly, E, is the angle depicted in figure 3.
Realized from the geometry:

ae = a cosE + r cos (π − θ) = a cosE − r cos θ

⇔ cos θ =
a (cosE − e)

r

⇔ 1 + e cos θ =
ae (cosE − e) + r

r

⇔
a
�
1− e

2
�

1 + e cos θ
= r =

ra
�
1− e

2
�

ae (cosE − e) + r

⇔ ae (cosE − e) + r = a
�
1− e

2
�

⇔ r = a
�
1− e

2
�
− ae (cosE − e)

⇔ r = a− ae
2 + ae

2 − ae cosE

⇔ r = a (1− e cosE)

With the eccentric anomaly, the rectangular coordinates describing an ellipse
can be rewritten:

x = a (cosE − e) (1.14)

y = a

�
1− e2 sinE (1.15)
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The first equation is obtained by first noting that if we put our origin at
the center of the ellipse, then simple geometry gives x = a cosE, and as we
switch back to the origin at the right focus, this becomes x = a cosE − ae =
a (cosE − e).

Again taking the ellipse center as our origin (the y-coordinate does not
change!), the second equation can be derived through the canonical ellipse equa-
tion:

y = b

�
1− x2

a2
= b

�
1− a2 cos2 E

a2
= b

�
1− cos2 E = b sinE = a

�
1− e2 sinE

1.3.2 Mean motion

n, sometimes called mean motion, is the lable given to the average angular
speed:

n =
2π

P

By using 1.6, you immediately get

n
2 =

4π2

P 2
= 4π2 1

4π2
a
−3

µ

⇒ n = a
−3/2

µ
1/2

1.3.3 Orbital speed

The orbital speed V , i.e. the orbit tangent velocity, can be expressed as a
function of the orbital separation. To derive it, start with:

V
2 = ṙ · ṙ =

∂ (rr̂)

∂t
· ∂ (rr̂)

∂t
=

�
∂r

∂t
r̂+

∂r̂

∂t
r

�
·
�
∂r

∂t
r̂+

∂r̂

∂t
r

�

=
�
ṙr̂+ θ̇θ̂r

�
·
�
ṙr̂+ θ̇θ̂r

�
= ṙ

2 + r
2
θ̇
2

To evaluate this, go back to 1.3:

ṙ =
∂

∂t

�
p

1 + e cos θ

�
= pθ̇

e sin θ

(1 + e cos θ)2
=

rθ̇

1 + e cos θ
e sin θ

Now, observe that

rθ̇

1 + e cos θ
=

l
1/2

θ̇
1/2

1 + e cos θ
=

p
1/4

µ
1/4

rθ̇
1/2

p
= p

−1/2
µ

1/2 =
µ

1/2

a
1/2 (1− e2)

1/2
=

na√
1− e2

The expression for ṙ then becomes

ṙ =
na√
1− e2

e sin θ
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Using the same observation again,

rθ̇ =
na√
1− e2

(1 + e cos θ)

V
2 can thus be written
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e sin θ
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1.3.4 Kepler’s equation

This derivation begins with ṙ
2 = V

2 − r
2
θ̇
2, which was shown to be true in

the previous derivation. Using the identities found later in that very same
derivation, we rewrite into

ṙ
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2
r
2

r2
−

n
2
a
4
�
1− e

2
�

r2

⇔ ṙ
2 =

n
2
a
2

r2

�
2ar − r

2 − a
2
�
1− e

2
��

⇔ ṙ
2 =

n
2
a
2

r2

�
a
2
e
2 − (r − a)2

�

⇔ ṙ =
na

r

�
a2e2 − (r − a)2

Using the eccentric anomaly identity derived earlier to substitute r:

⇔ ∂ (a− ae cosE)

∂t
=

n

(1− e cosE)

�
a2e2 − (a (1− e cosE)− a)2

⇔ aeĖ sinE =
n

(1− e cosE)

�
a2e2 (1− cos2 E)
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⇔ aeĖ sinE =
nae

(1− e cosE)
sinE

⇔ Ė (1− e cosE) = n

⇔
ˆ

Ė (1− e cosE) dt =

ˆ
ndt+ C

⇔
ˆ

Ėdt− e

ˆ
Ė cosEdt = nt+ C

⇔ E − e

ˆ
∂ (sinE)

∂t
dt = nt+ C

Put C = −ntp, where tp denotes measured time of periapse passage4:

⇔ E − e sinE = n (t− tp)

Now, the mean anomaly is defined to be M = n (t− tp), and what do you
know - out comes Kepler’s equation:

M = E − e sinE

1.3.5 The true and eccentric anomalies

This is a simple combination of equations 1.3 and 1.7:

r =
a
�
1− e

2
�

1 + e cos θ
= a (1− e cosE)

⇔ 1− e
2

1 + e cos θ
= 1− e cosE

⇔ 1− e
2

1− e cosE
− 1

e
= cos θ

⇔ cos θ =
1− e

2

e (1− e cosE)
− 1− e cosE

e (1− e cosE)
=

1− e
2 − 1 + e cosE

e (1− e cosE)
=

cosE − e

1− e cosE

1.3.6 The 3D-problem

The probability that some planet’s orbit is perfectly aligned with the tangent
plane of the celestial sphere5 is zero. A vanishing fraction of systems might have
inclinations below measurable values, but the rest will be oriented in all sorts of
funny ways. To account for this, a reference coordinate system is introduced. Its
axes are labelled X, Y and Z (mutually orthogonal in the usual fashion), where
the X and Y-axes are aligned with right ascension and declination respectively
(or the other way around depending on preferences), and the Z-axis is pointing
to Earth. Its origin coincides with the orbit coordinate system’s origin. As

12



Figure 4: The reference coordinate system XYZ in relation to the orbit coordi-
nate system xyz. The planet orbit is restricted to the xy-plane.

figure 4 demonstrates, the coordinate system of the orbit can be expressed in
terms of the reference coordinates by means of three anti-clockwise rotations.

The first rotation is around the z-axis, aligning the x-axis with the line of
nodes6. The second rotation is around the x-axis, parallelizing the two planes.
The third rotation is around the (reoriented!) z-axis, aligning the xy- and XY-
planes. These rotations can be mathematically described with 3 × 3 matrices,
since we are dealing with three dimensions.

The standard anti-clockwise rotation matrices are

Rx (α) =




1 0 0
0 cosα − sinα
0 sinα cosα





Ry (α) =




cosα 0 sinα
0 1 0

− sinα 0 cosα





Rz (α) =




cosα − sinα 0
sinα cosα 0
0 0 1





4I.e. time of minimum distance from the planet’s star.
5An imaginary and arbitrarily distant sphere centered on Earth upon which objects in the

sky may be projected for geometrical convenience.
6The intersection between the orbital plane and the XY-plane is commonly referred to as

the line of nodes.
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The subscript denotes which axis the rotation is performed around. Using
the notation in figure 4, we can write



X

Y

Z



 = Rz (Ω)Rx (i)Rz (ω)




x

y

z



 = Rz (Ω)Rx (i)




x cosω − y sinω
x sinω + y cosω

z





= Rz (Ω)




x cosω − y sinω

cos i (x sinω + y cosω)− z sin i
sin i (x sinω + y cosω) + z cos i



 =

=




cosΩ (x cosω − y sinω)− sinΩ (cos i (x sinω + y cosω)− z sin i)
sinΩ (x cosω − y sinω) + cosΩ (cos i (x sinω + y cosω)− z sin i)

sin i (x sinω + y cosω) + z cos i





=




r (cosΩ cos (θ + ω)− sinΩ sin (θ + ω) cos i)
r (sinΩ cos (θ + ω) + cosΩ sin (θ + ω) cos i)

r sin (θ + ω) sin i





The last step is performed by substituting x and y into their polar forms,
using trigonometric identities and finally noting that z = 0 for all points in the
planet orbit. As X, Y, Z and the various angles are measured (if possible), this
matrix takes care of the problematic 3D aspects. Figures 5 and 6 showcase the
reality of the 3D-problem.

1.3.7 Radial velocity and barycentric motion

This derivation is rather lengthy. For starters, express the position of the sys-
tem’s center of mass R:

R =

�
miri�
mi

→ Mr1 +mr2
M +m

Where M = mstar, m = mplanet and the two vectors r1 and r2 are the
position vectors of the star and its planet respectively (note that the vector r
used earlier can now be written as r2 − r1).

Now, define two additional vectors R1 and R2:

R1 = r1 −R

R2 = r2 −R

This definition implies that

MR1 +mR2 = M (r1 −R) +m (r2 −R) = Mr1 +mr2 −R (M +m)

= R (M +m)−R (M +m) = 0
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Figure 5: The orbit of Mercury observed a) head-on and b) from a direction
perpendicular to the solar system invariable plane, with the vernal equinox
pointing to the right. The red points are the orbit foci, of which one is the
position of the Sun, and the other is imaginary.
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Figure 6: The orbit of Mercury observed from some two random positions (ver-
nal equinox pointing wherever). Note how the difference in foci orientation from
c) to d) is important to avoid false impressions of elliptical orbit shapes.
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Figure 7: A planet and its star with relevant position vectors drawn with respect
to origin O.

As R1 and R2 have opposite directions, the magnitudes must then obey:

MR1 = mR2

Now, with assistance from figure 7, observe how

r = |r1 − r2| = |R1 −R2| = R1 +R2

The two last equations can be combined:

R1 =
m

M
(r −R1) =

m

M
r − m

M
R1

⇔ R1

�
1 +

m

M

�
=

m

M
r

⇔ R1 =
m/M�
M+m

M

�r =
m

M +m
r (1.16)

In the same manner,

R2 =
M

M +m
r

Applying eq.1.3 to this finding gives:

R1 =
ma

M +m

�
1− e

2
�

1 + e cos θ
= a1

�
1− e

2
�

1 + e cos θ

R2 =
Ma

M +m

�
1− e

2
�

1 + e cos θ
= a2

�
1− e

2
�

1 + e cos θ
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Spelling it out, the star and its planet will trace elliptical orbits around the
center of mass, and their eccentricities will be equal to each other and to the
eccentricity of the planet-star orbit. The differences arise as a scaled major axis,
as the equations demonstrate.

As for the radial velocity, the various vectors defined can now be collectively
massaged into an expression for either the star’s or the planet’s velocity along
the Z-axis. As Doppler spectroscopy allows us to measure the radial velocity of
the star, this quantity is the more important one for the time being. Start by
projecting star velocity on the Z-axis (now originating from the center of mass!)
and take it from there:

vr = ṙ1 · Ẑ =
∂ (R+R1)

∂t
· Ẑ = Ṙ · Ẑ + Ṙ1 · Ẑ = VZ + Ż

Ż = sin i
�
R1θ̇ cos (θ + ω) + Ṙ1 sin (θ + ω)

�

Use the identities for ṙ and rθ̇ found in the derivation of Kepler’s equation:

Ż = K (cos (θ + ω) + e (sin θ sin (θ + ω) + cos θ cos (θ + ω)))

= K
�
cos (θ + ω) + e

�
cosω

�
sin2 θ + cos2 θ

�
+ sin θ cos θ sinω − cos θ sin θ sinω

��

= K (cos (θ + ω) + e cosω) =
na1 sin i√
1− e2

(cos (θ + ω) + e cosω)

∴ vr = VZ +
na1 sin i√
1− e2

(cos (θ + ω) + e cosω)

The constant K = na1 sin i√
1−e2

is introduced to simplify what meets the eye but
also represents an amplitude of sorts, as the only other factor in the expression
is periodic. VZ is the projected systemic velocity, i.e. the center-of-mass velocity
in the radial direction.

2 Methods of detection
Exoplanets are intrinsically elusive from our perspective on Earth. To the best
of our knowledge, their vast majority exists only as companions of stars (the mi-
nority being Rogue planets), and as they neither fuse their own nuclear fuels or
reflect isotropically without losses, light signals from exoplanets are effectively
drenched in their parent star’s brilliance. This poses a problem with observa-
tions as long as our instruments are not adequately sensitive or resolving (they
pretty much are not, as of today). There are however a number of circumstances
which present possibilities – both for direct and indirect observations.
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2.0.8 Rogue planets

Planets are not necessarily orbiting their parent stars. During star system for-
mation, they could conceivably be thrown out by some unfortunate instability,
drifting for ages through interstellar space. Alternatively, the gas cloud collapse
mechanism that is believed to account for the existence of stars could also result
in less massive bodies, reminiscent of Jovian planets.

Detecting these planets is obviously a great challenge, since their Planck
radiation is weak. Apart from direct imaging, the only conceivable method for
detection is gravitational lensing. As explained below however, this technique
suffers from the requirement of chance alignments on the celestial sphere, and
is therefore largely unable to bear appreciable fruit.

2.1 Radial velocity

As a planet and its star orbit their common center of mass, the star will from
Earth appear to move along a more or less inclined ellipse. The radial component
of movement will cause a slight Doppler shift of the star’s spectrum, which a
sufficiently sensitive spectrograph could measure. Today, velocity variations
over 1 m/s are measurable. Successful use of this technique gives a minimum
mass of the exoplanet or the true mass if the inclination of the orbital plane
happens to be known. An example of a situation where the inclination is known
would be that of simultaneous applications of the transit method (explained
later) and this spectroscopy method – for starters, observable transits always
imply inclinations ∼ 90◦, but the transit method can on its own constrain this
value further. This is of great help of course, since the sin i factor would cease
to be a problem.

Problems with this technique include minute inclinations and sluggish orbital
periods – a planet orbiting its star in a plane perpendicular to our line of sight
will yield a radial velocity of zero, and orbital periods of tens or hundreds of years
might not disclose adequate velocity changes during the experiment lifetime.

How does one extract velocity from the measured Doppler shift? Start with
the relativistic expression:

λobs = λem

1 + β cosα�
1− β2

As per standard notation, β = v/c. The factor cosα accounts for the fact
that it’s the projected velocity along the line of sight that matters (incidentally
a classical approximation). As star system velocities are on the order of 100 km
s−1, β2 ∼ 10−12 ≈ 0, we can approximate into

λobs = λem (1 + β cosα) = λem + λem

v · cosα
c

⇔ v · cosα =
λobs − λem

λem

c
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⇔ vr =
∆λ

λem

c

As mentioned above, the radial velocity method gives a minimum mass esti-
mate of the exoplanet. How? Massage the expression for K with Kepler’s third
law:

K = n
sin i√
1− e2

a1 =
2π

P

sin i√
1− e2

�
P

2
GM∗
4π2

�1/3

=
sin i√
1− e2

�
2πGM∗

P

�1/3

=

�
2πG

P (1− e2)
3/2

�1/3

M
1/3
∗ sin i =

�
2πG

P (1− e2)
3/2

�1/3

m sin i

(M +m)
2/3

... where M∗ is the equivalent attracting mass in the COM-star system.
Under the assumption that the planet mass is very minute in relation to

its star’s, and that the star mass can be estimated with the theory of stellar
structure and evolution (e.g. using temperature and luminosity), K can be
simplified into

K =

�
2πG

PM2 (1− e2)
3/2

�1/3

m sin i

... where everything inside the paranthesis is available. Sadly this is as far
as it gets if using the radial velocity method alone.

2.1.1 Complications

When measuring in practise, the VZ term in the radial velocity equation is
measured from our own solar system’s center of mass. From there, one must
of course take into account the velocity of the spectrometer used, along with a
problematic bunch of various velocity sources:

• Earth motion and rotation, including perturbations caused by the rest of
the solar system. Today, proper adjustments for these effects can bring
the introduced error below 1 m s−1.

• Stellar motion in the galaxy, i.e. projection effects. Nearby stars can have
significant acclerations in the radial direction if the projection geometry is
changing rapidly. Barnard’s star for example appears to accelerate radially
at 4.50 m s−1 yr−1 .

• Stellar rotation, convection granules and star spots. The effects of these
phenomena vary between minute to about 1 km s−1.

• Gravitational distortion of space-time. These values are typically on the
order of several hundreds of m s−1. Lower for red giants, higher for white
dwarves.
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With all these nuisances in mind, it is no small challenge to measure radial
velocity wobbles caused by exoplanets at workable signal-to-noise ratios. Earth’s
influence on the sun (when observing in the ecliptic) is for example about 0.1
m s−1:

�
2πG

PM2 (1− e2)
3/2

�1/3

m sin i =

�
2πG

PM2

�1/3

m =

�
2πG

PM2

�1/3

m =

=

�
2π · 6.67384 · 10−11N(m/kg)

365.256363004... days · (1.9891 · 1030)2 kg2

�1/3

5.9736·1024 kg = 0.089... m s−1

2.1.2 Finding parameters

So let’s say the astronomer has measured the wobble of some star with sufficient
resolution. How do you go about translating the data points into a model? The
answer is for the majority of astronomers a non-linear least-squares algorithm,
whereby you input an initial guess of each of the parameters (e.g. period,
eccentricity etc.), and the algorithm will iteratively change the values a bit back
and forth until the model fits optimally to the data points acquired through
measurement. For the algorithm to function, the partial derivatives of the model
with respect to each of its parameters need to be supplied. According to Wright
& Howard (2009), these derivates are:

dE

dP
=

−2π(t−tp)/P 2

1− e cosE

dE

dtp
=

−2π/P

1− e cosE

dE

de
=

sinE

1− e cosE

∂θ

∂E
=

�
1 + e

1− e

1 + cos θ

1 + cosE

∂θ

∂e
=

∂θ

∂E

sinE

1− e2
.

At first glance these derivatives do not appear to tie any strings together,
considering the appearance of the model (eq. 1.13). For the purposes of math-
ematical (at the expense of conceptual) simplicity and numerical efficiency,
Wright & Howard rewrite the model into

vr = h cos θ + c sin θ + v0

where the three introduced parameters are defined as

h = K cosω
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c = −K sinω

and
v0 = VZ +Ke cosω.

Writing vr as the scalar product between its parameters and the independent

variable, i.e. vr = �βF =
�
h c v0

�



cos θ
sin θ
1



, the derivative can be written

dvr

dx
=

d

�
�βF

�

dx
=

d�β

dx
F+

dF

dx

�β,

where x denotes any of the parameters that F is a function of. dF
dx

can be
evaluated by using Kepler’s equation and eq. 1.11, and it just so happens7 that
d�β

dx
as well can be expressed in terms of dF

dx
, reducing the problem to calculating

the inner derivatives of F, i.e. the derivatives of the true anomaly, which in turn
can be expressed as8

dθ

dx
=

∂θ

∂x
+

∂θ

∂E

dE

dx
.

From this vantage point, the derivatives above tie together the loose ends.
For a contextual perspective, read the section below on the least-squares algo-
rithm.

2.1.3 Simulations

Simulated plots of radial velocity are displayed in figures 8 and 9. Parameters
for the simulations were collected from Wikipedia (the solar system planets)
and exoplanets.org (HD 4113). Date of collection was 29/12/2011.

2.2 Planet transits

If fortune smiles upon the observing astronomer, an exoplanet’s orbit is nearly
perpendicular to the plane of the sky. Then, every time the planet passes in front
of its star it will occlude it slightly – the planet’s dark disk replaces a fraction
of the star’s shining disk. As is the case for most detection techniques, multi-
ple planets will reveal themselves through the superposition of their individual
effects - in this case, a periodic modulation of apparent star luminosity.

To see if this technique is practically feasible, an example calculation could
be performed. Let’s say Jupiter passes in front of the sun at a distance great
enough to regard the two bodies as two-dimensional. Jupiter’s radius is roughly
a tenth of the sun’s, and since disk area scales with radius squared, the Sun
would appear to lose about 1 % of its luminosity. This is not impossible to
measure since it happens to correspond to a magnitude change of about 0.01,

7For details on this refer to their paper.
8Again, refer to the original paper for details.
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Figure 8: The simulated reflex wobble of the sun from a) Mercury and b) the
Earth. The observer is situated in the solar system’s invariable plane, moving
with the solar system barycentre and having the vernal equinox as reference
direction. Time is measured from moment of perihelion passage, and is not
mutual. Note the shifting axis scales.

23



Figure 9: The simulated reflex wobble of a) the sun from Jupiter and b) HD 4113
from HD 4113b. In a) the observer is situated in the solar system’s invariable
plane. The vernal equinox is used as reference direction. Systemic velocities
have been removed. Time is measured from moment of perihelion passage, and
is not mutual. Note the shifting axis scales.

24



Figure 10: A basic schematic of what the transit method offers. The dashed
lines in the picture’s lower half indicate levels of same flux. Figure taken from
Winn (2010).

and that is a precision often found in tables of star magnitudes. For the time
being, ground-based telescopes do not much surpass this precision, while space-
based telescopes tend to be a rough order of magnitude or so more precise,
corresponding to the ability to find planets a few times more massive than Earth.
This technique benefits from short periods (increases probability of detection
and improves signal-to-noise ratio) and sizeable planets (stronger occlusion),
with fortunate alignment obviously being a prerequisite.

As can be seen in figure 10, a property of the transit method that emerged
during the past decade is exploitation of the fact that bodies around stars go
through phases (they reflect different amounts of starlight depending on the
observer’s perspective) just like our own moon. This particular part of the
transit technique is applicable on any orbit inclination, but is a rather weak
method on its own as it requires higher photometric sensitivity.

2.2.1 From observables to model parameters

The directly measurable quantities from observing a periodically occluding sys-
tem are
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1. Transit depth ∆F

F
, where F represents flux in some way. ∆F is defined

as the difference between the flux received immediately before the transit
initiates, and the flux received at maximum occlusion.

2. Period P, obviously. Unless the planet orbit precesses excessively, mea-
suring the period is quite straightforward.

3. Total transit duration τT , i.e. the time elapsed between the two instants
determined by the planet touching the rim of the stellar disk on its way
over, and then having just left it.

4. τF , i.e. the time elapsed while the planet disk is completely within the
stellar disk.

All four of these are directly available from a data series of flux vs time. Pe-
riodograms9 could be employed for data extraction. The transit method can
however give us much more under certain assumptions and the theoretical mod-
els constructed from those assumptions. It might be tempting to use a simple
model wherein two spheres gradually overlap in a circular orbit, but as is often
the case, reality is more complicated than that.

Limb darkening

The photosphere of stars have finite opacity and negative temperature/density
gradients (diminishes towards surface). This means that one will observe higher
blackbody temperature i.e. higher photon flux when the line of sight is parallell
to the star’s surface normal, and lower flux as the angle between line of sight
and surface normal increases. This obviously has an effect on the transit light
curve since the planet will, as it moves across the stellar disk, occlude areas of
varying brightness - the sometimes smoothed edges of transit curves, including
rounded shapes of the primary transits, are because of limb darkening. To make
matters worse, limb darkening is a function of the wavelength band observed in.
Longer wavelengths tend to give less pronounced limb darkening, while shorter
wavelengths have the opposite effect. For models on limb darkening, see Mandel
& Agol (2002) and Seager & Mallén-Ornelas (2003).

Eccentricitiy

Circular orbits would be neat, but from radial velocity measurements we know
that 25 % or so of transiting planets have significant eccentricities. The effects of
this include but might not be restricted to asymmetry in the light curve, a bias
in transit probability and total transit duration. The curve asymmetry can be
quantified by noting the difference between the durations of a transit’s ingress
and egress. Barnes (2007) derived an expression for the duration of either one:

τ =
Rp

√
1− e2

v0 (1 + e cos θ) cos (arcsin b)
,

9A representation of the data in frequency space, obtained through the Fourier transform.
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where Rp is the planet’s radius, v0 is the azimuthal velocity (velocity com-
ponent perpendicular to direction of orbit curve) for a circular orbit with the
same semi-major axis as the actual planet and b is the planet’s impact param-
eter with respect to the star. The difference will be non-zero for all eccentric
systems whose argument of pericentre or apocentre do not happen to coincide
with the mid-transit position.

The transit probability for highly eccentric orbits is actually higher than for
low eccentricities. This is because, while for a planet the time spent close (close
as in closer than semi-major axis) to its star is independent of its eccentricity,
the angular portion of its orbit spent close to its star increases with eccentricity.
Planets closer to their stars produce a larger solid angle wherein the transit is
visible due to elementary projection geometry. If then two planets have different
eccentricities but equal semi-major axes, the planet with the higher eccentricity
will spend a larger fraction of its orbit at a distance shorter than the semi-major
axis. Figure 11 demonstrates this. It follows that eccentricity will produce a bias
in transiting systems, and the 25 % of transiting planets found to be significantly
eccentric are not representable for the entire population. See Kipping (2008)
and Barnes (2007) for models taking the eccentricity into account.

Reflected light

This was mentioned earlier - given a planet with non-zero albedo (i.e, it does
not absorb all incoming radiation), the starlight reflected upon its surface is
detectable in principle. In fact, secondary transits (planet transit on the far side
of its star as seen from Earth) imply its existence - if the planet was completely
dark, there would not be any secondary transits. A complication though this
might be, it is actually rather fortunate as it allows the use of more detailed
models and thus the prospect of estimating additional parameters.

According to Collier Cameron et al. (1999) and Leigh et al. (2003a), the
flux ratio � between the planet’s reflected starlight and the star’s normal output
can be written

� = p (λ)

�
Rp

a

�2

g (α) ,

where p (λ) is the brightness ratio between the planet at zero phase (entire
hemisphere irradiated) and a Lambertian flat disk, g (α) is the phase function
which describes how the reflected starlight’s projection is modulated in the orbit
and a is the semi-major axis of the planet orbit.

As is often praxis, the various parameters in the many models are estimated
through least-squares fitting.

2.2.2 Polarimetry and spectroscopy

Starlight from sunlike stars is largely unpolarized on the whole, but varies be-
tween stellar limb and center. This presents two oppurtunities - if the starlight
exhibits excessive and time-varying polarization, this is indicative of an ex-
oplanet presence since its atmosphere reflects and polarizes during its phases,
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Figure 11: Two planet orbits showing why planets in eccentric orbits are easier
to spot with the transit method. The shaded region illustrates the extra angles
spent at a distance shorter than the common semi-major axis, if your planet
orbits around f2 with higher eccentricity rather than f1 with lower eccentricity.
The larger circle represents the celestial sphere, with C being the geometrical
center for all three ellipsoids.
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while if an exoplanet transits the star and thus occludes areas on the stellar disk
of varying degrees of polarization, this would also betray the planet’s existence
(Leroy, 2000). The latter of these effects may suffice for detecting Earth-like
planets, and estimating the orbit eccentricity (Carciofi & Magalhães, 2005),
while the former could potentially allow estimation of P, e, and i, but also give
hints about the nature of the particles in the atmosphere responsible for the
scattering process.

Polarization is not the only effect that atmospheres of exoplanets contribute
with, they also constitute a source of absorption and/or emission lines in the
integrated system spectrum. The absorption is relevant when the planet passes
in front of the star, as a fraction of the starlight is then forced to pass through
the exoplanet atmosphere. As this happens, the primary transit depth will vary
slightly as a function of the wavelength observed with because matter does not
generally absorb light uniformly over the EM spectrum. The projected area of
the exoplanet atmosphere during full transit is, depending on the geomtrical
shape of the planet, an annulus with a radial dimension of something like 5 ·H
where the canonical scale height H is:

H =
kT

µmgp
,

with k being Boltzmanns constant, T the temperature, µmthe mean molecu-
lar mass (of the absorbing particles) and gp the surface gravity on the exoplanet.
Expressed with H, the area ratio (serving as an estimation of the absorbed flux
fraction) between the atmosphere annulus and the stellar disk is on the order
of ∼ 10RpH

R2
∗

where Rp and R∗ is the planet radius and the stellar radius respec-
tively. As an example, the atmosphere of a Jupiter-sized planet orbiting very
close to its star (i.e. a ’Hot Jupiter’) would absorb around 10−4 of the starlight.
Note that, unfortunately, the absorption scales with the inverse of molecular
mass, and eventual organic i.e. heavy molecules will not assist this technique
(Seager et al., 2009).

The emission on the other hand is observable by calculating the spectrum
difference between star plus planet and star alone (secondary transit), or star
plus planet and star minus planet (primary transit). Either way will estimate the
spectrum of the planet. This spectrum supplies information on e.g. temperature
gradients in the planet’s atmosphere (emission lines would indicate a positive
gradient for example), element abundances, albedo etc.

2.3 Timing

The period of a signal from an accelerating system will appear to change in time
in all cases except for when the signal is emitted from an object in circular orbit
around the observer (ignoring relativistic effects). In astrophysics, these systems
are not uncommon. Examples include pulsars, eclipsing binaries and pulsating
stars. This technique is powerful because the complex physical situation boils
down to very accurate timekeeping - something we’re rather good at. As a
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testament to this, the lowest-mass exoplanet discovered as of 2010 (named PSR
B1257+12 A) was found around a millisecond pulsar with a mass of 0.02 Earths.

2.3.1 Pulsar timing

Pulsars are neutron stars10 whose radio emission beams coincidentally sweep
across Earth. If they are not undergoing dynamical changes (for example, ac-
creting mass from a companion), their rotation periods are practically constant -
they typically slow down at 10−15 seconds per revolution, corresponding to 0.03
seconds in a million years. This is quite fortunate, as it gives the astronomer
a chance to detect very minute accelerations of the neutron star. How? If a
planet is orbiting the pulsar, this implies a reflex wobble i.e. periodic velocity
modulation. If for example the pulsar is wobbling away form Earth at increasing
radial velocity, and during that time sends two signals, the second signal will
be sent at a slightly greater distance than it would if the pulsar was moving
with constant velocity, and the period will appear to have increased since the
speed of light is finite. Without knowing the radial velocity of the pulsar, its
absolute period is not available, but this does not affect the applicability of the
technique.

An obvious downside to using pulsars is their rarity (total number confirmed
is currently approaching 2000), but one could also question the usefulness in
searching for planets around pulsars when remembering how neutron stars are
formed (supernova explosions). Granted, theories of dynamic nature would not
mind, while the astrobiologist would. It is a bit sad that the best instrument
available to us for detecting planets of earthlike mass is unavailable up until the
point where potential life as we know it is wiped clean from the system.

2.3.2 Eclipsing binaries

Timing can also be applied on binary star systems with inclinations minute
enough for eclipsing to occur. As the two stars revolve, their brightness signal
will change periodically as they align themselves with Earth. An exoplanet in
orbit around them both will cause their mutual center of mass to wobble, and
as was the case for pulsars, this will yield a modulation of the signal period.

The signal period for eclipsing binaries is generally a lot longer than it is
for pulsars. This means rather large errors in the period measurements, and
consequently difficulties with estimating modulations of the period. In order to
penetrate the noise, the modulation must be significant i.e. the orbiting planet
should be massive, it should be orbiting at a large distance, and for statistical
purposes its period should be short (short period implies higher number of
measurements). These terms are not satisified simultaneously, since Keplerian
orbits link orbit distance with orbit period (eq 1.6). As an example, Wolszczan
derived an equation in 1997 that implies detectability of planets at about ten
Jupiter masses, given a timing accuracy on the binary period of 10 s and planet
orbit periods of 10-20 years.

10The remains of stars who were of roughly 8 - 40 solar masses.
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2.3.3 Pulsating stars

Detecting and characterising planets around stars in advanced stages of evolu-
tion is interesting because it would supply us with information on planet sur-
vivability under dynamically violent circumstances, and thus how our own solar
system might look like in the coming billions of years. Presently, the vast major-
ity of pulsating stars under investigation (for purposes of detecting exoplanets)
are white dwarves. As they cool down, their surface atmospheres are ionized in
various ways, creating density gradients and displacements of these. As gravity
tends the system to equilibrium, positional oscillations of the atmosphere arise.
These periods typically take on values between 100 and 1000 seconds, and are
actually remarkably stable and thus excellent clocks.

The periods are not as impressive as those found with pulsars, and conse-
quently the lowest mass of an orbiting body needed for detectability is a lot
higher. On the other hand, white dwarves are fairly common in the solar neigh-
bourhood, much unlike pulsars.

2.4 Astrometry

Remembering equation 1.16, the projected semi-major axis of a star in a solar
system (the astrometric signature) is

α =
a
∗

d
sin i =

m

M

a

d
sin i, (2.1)

where a
∗ and a are the semi-major axes of the star perturbing planet respec-

tively, d is the distance to the star from Earth, i is the inclination, m is the
planet mass and M is the star mass.

As is obvious from this equation, the star’s wobble on the celestial sphere
is most easily measured when a number of fortunate circumstances are present.
The inclination should ideally be around 90 degrees, the orbiting planet should
be massive and at a respectable orbit distance while the system should not be
too far off from Earth. This contrasts with the preferred circumstances in us-
ing radial velocity or transits where you would desire short orbital periods and
minute inclinations, which implies that the techniques are somewhat comple-
mentary. The GAIA and SIM11 -missions will pioneer the search for exoplanets
with astrometry – progenitor instruments have simply not been sensitive enough,
and as α scales reciprocally with distance, there will be issues even for future
missions beyond a certain parallax.

Astrometry might seem deceptively straightforward when regarding equation
2.1, but is unfortunately very much not so. As the instrument accuracy creeps
down towards the venerable 1 µas, various physical effects will have a significant
impact on the measurement. These effects include:

• Aberration. The tangential velocity of an observer relative to the object
being observed will shift the apparent source position towards the apex of

11Actually SIM has been cancelled, but luckily chinese astronomers are aiming to undertake
a very similar mission based on SIM, so hopefully the essence of the mission is not lost.
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the observer velocity, since the speed of light is finite. Abberation will shift
star positions by about 20 as, depending on where in its elliptical orbit
Earth happens to be. Modern models of relativity are powerful enough to
sufficiently account for this effect.

• Gravitational distortion of space-time. The gravitational potential well of
our sun will deflect incoming light to some extent, shifting apparent star
positions away from the sun with a few mas, with differential values (i.e.
those which will show when measuring wobble) of about 1 µas, depending
primarily on the star’s apparent position, its wobble and the angle between
source direction and the ecliptic. Best case is of course when this angle is
zero, assuming the sun’s gravitational field is spherically symmetric. As
is the case for aberration, the relativity models available today are more
than enough to compensate for this at µas accuracy.

• Stellar motion in the galaxy. The Milky Way is spinning, but not par-
ticularly uniformly with respect to its inhabitant stars. Stellar velocities
will appear to change in all sorts of ways with the projection geometry,
yielding so-called perspective acceleration. These effects are particularly
significant at small distances, which is unfortunate as shorter distances
generally means data which is both more accesible and more precise.

• Stellar surface structure jitter and disk instabilities. Sunspots and other
exotic phenomena may very well shift the photocentre of a star, while
gravitational instabilities in the circumstellar disk may cause slow but
significant and unpredictable reflex motions.

2.4.1 Modeling

For the purpose of including the influence of exoplanets in the astrometrical
model, we describe the stellar motion on the celestial sphere using rectangular
coordinates for their conceptual simplicity. Remember eq 1.12? If one would
reverse the polar form and ignore the Z-component (astrometry is only rarely
capable of measuring it anyway), you get, after some rearranging:
�

X

Y

�
=

�
x (cosΩ cosω − sinΩ sinω cos i) + y (− cosΩ sinω − sinΩ cosω cos i)
x (sinΩ cosω + cosΩ sinω cos i) + y (− sinΩ sinω + cosΩ cosω cos i)

�

From here, we define for convenience a handful of constants12:

A = a
∗ (cosω cosΩ− sinω sinΩ cos i)

B = a
∗ (cosω sinΩ + sinω cosΩ cos i)

F = a
∗ (− sinω cosΩ− cosω sinΩ cos i)

G = a
∗ (− sinω sinΩ + cosω cosΩ cos i)

12Often referred to as Thiele-Innes constants, although their appearance can differ subtly
from author to author.
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Now, the long matrix equation above can be neatly condensed into

X = Ax+ Fy (2.2)

Y = Bx+Gy. (2.3)

Note that this definition of X and Y requires a normalisation of the coor-
dinates x and y (compare with equations 1.14 and 1.15):

x = cosE − e

y =
�
1− e2 sinE

Accounting for nominal star position (α0, δ0) at t = t0, parallax �, proper
motion (µα, µδ), ignoring the various error sources described above, the astro-
metric position (α (t) , δ (t)) of a star at a time t can now be written, after
introducing the planet-induced wobble from eqs 2.2 and 2.3:

α (t) cos δ = α0 cos δ +�Πα,t + µα cos δ (t− t0) +Bx (t) +Gy (t)

δ (t) = δ0 +�Πδ,t + µδ (t− t0) +Ax (t) + Fy (t)

The funny-looking Πα,t and Πδ,t are the so-called parallax factors, accounting
for Earth’s elliptical motion around the sun13.

The model is now ready as input for a least-squares algorithm. This ne-
cessitates finding the model’s partial derivatives with respect to all the various
unknown parameters. Wright & Howard (2009) undertook and completed this
quest:

dx

dP
= −dE

dP
sinE

dx

dtp
= −dE

dtp
sinE

dx

de
= −dE

de
sinE − 1

dy

dP
=

�
1− e2 cosE

dE

dP

dy

dtp
=

�
1− e2 cosE

dE

dtp

dy

de
=

�
1− e2 cosE

dE

de
− e sinE√

1− e2

The various derivatives of the eccentric anomaly were expressed earlier in
section 2.1.

Now what? See the section below on the least-squares algorithm.
13For more on this see the papers by Green in 1985 and Seidelmann in 1992.
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2.5 Gravitational microlensing

Gravitational lensing is a phenomenon predicted in general relativity, and it
has been observed on multiple occasions. The principle is such that any lump
of matter will bend the geometry of space-time in its vicinity towards itself,
implying amongst other things that straight lines cease to be straight and that
light rays passing by massive objects are focused to significant degrees. Appli-
cation of this phenomenon in the search for exoplanets is possible if Earth and
two stars happen to be aligned along a straight line. The closer star will then
deflect and focus the photons of the farther star. As this happens, assuming the
closer star happens to host a planet, that planet’s own gravitational field will
superpose a weak lensing effect over its star’s.

When observing these lensing effects as a consequence of galaxies and galaxy
clusters, the lens and the possibly several distorted images it produces are gen-
erally resolvable. Obviously and unfortunately, stars and planets are not as big
as galaxies and as long as we are unable to resolve them, the lensing effect will
manifest only as a characteristic and sudden increase in apparent flux from the
farther star.14 In this flux modulation, there will be introduced irregularities
as a consequence of the asymmetrical mass distribution of planetary systems
(unless of course the asymmetry somehow through the geometrical projection
mimics something resembling a point mass e.g. the star on its own), and it is
these irregularities that can be translated into physical parameters of the lensing
system.

Interesting advantages of this technique include:

• A relatively weak dependency on both distance and planet mass (several
kpc or Earth-massed planets respectively is in principle not a problem).

• Complete independency on wavelength (photons of different wavelengths
will be affected identically with respect to the gravitational lens).

• Its potential ability to detect rogue planets, and thus extract information
on e.g. their frequency.

• Its maximal planet-detection sensitivity at orbital separations of around 1
AU, which translates to the habitable zone for many main sequence stars.

... while not-so-interesting disadvantages include:

• The signifcant rarity of the prerequisite chance alignments. Staring to-
wards the high-density galactic bulge, you can’t expect more than ∼10−8

of the stars to undergo a lensing event at any one time that could betray
the presence of an exoplanet. Large enough surveys can remedy this to
some extent, fortunately.

• The fact that in practise, observations can only be performed once, mean-
ing you don’t get second chances.

14The unability to resolve the situation is the reason for naming the technique microlensing
rather than lensing.
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Figure 12: A simplistic view of gravitational lensing. The various quantities are
explained in the text. Picture taken from Perryman (2010).

• Its sensitivity bias for lenses halfway to the source, meaning ∼4 kpc if
staring at the galactic bulge. This regrettably implies that other detection
techniques will have a very hard time doing follow-up observations with
the instruments available today.

2.5.1 Some lensing basics

Figure 12 exhibits the relevant ingredients in a simple type of lensing situation.
To make sense of the various angles, we start with the deflection angle αGR.
It is the angle through which light rays from the source is deflected in order
to reach the observer. With given lens mass MLand impact parameter b, the
deflection angle can be expressed as (Will, 1993)

αGR =
4GML

c2b
, (2.4)

where G is the gravitational constant and c is the speed of light. Noting
that the Schwarzschild radius RS is equal to 2GML/c2, the expression for eq. 2.4
can be simplified into

αGR =
2RS

b
.
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These last two equations are valid approximations when the lens’ Schwarzschild
radius is negligible in relation to the impact parameter, i.e. b � RS .

The remaining angles θS and θI are respectively the angle between lens
and source, and between lens and source image as seen by the observer. The
corresponding distances between observer and lens and source are DL and DS

respectively, with DLS = DS −DL. We wish to express the image angle θI to
examine the prospect of resolving the picture. To reach this goal, we start by
noting

θSDS = θIDS − αDLS

⇔ θS = θI −
αDLS

DS

= θI −
2RSDLS

DSb
= θI −

2RSDLSDL

DSDLb
= θI −

2RSDLS

DSDL

1

θI

⇔ θ
2
I
− θIθS − 2RSDLS

DSDL

= 0. (2.5)

This equation is obviously quadratic with respect to the image angle, and
so far the model is consistent with observations (we observe two images). For
convenience, we now define the Einstein radius θE ≡

�
2RS

DLS
DLDS

. This permits
a simplification of eq.2.5 into

θ
2
I
− θIθS − θ

2
E
= 0,

with solutions
θ
+
I
=

1

2

�
θS +

�
θ
2
S
+ 4θ2

E

�
,

θ
−
I
=

1

2

�
θS −

�
θ
2
S
+ 4θ2

E

�
.

The angular separation between the images is thus ∆θI =
�

θ
2
S
+ 4θ2

E
. As

the source angle is small, we could assume it to be zero15 and obtain a rough
estimation of a typical resolution requirement:

∆θI ∼ θE =

�
2RS

DLS

DLDS

∼ 1 mas,

assuming a lens situated half-way to the galactic bulge with a mass of about
the sun and a source at around 8 kpc i.e. the galactic bulge. 1 mas is far
beyond the capabilities of all but the best ground-based telescopes, meaning
the microlensing is mainly observable through its magnification effect.

2.5.2 Magnification

Gravitational lenses do not deflect all rays equally, as a direct consequence of
that gravity follows an inverse square law. This will introduce asymmetries in
the source wavefronts, with areas of both higher and lower flux than had been

15If it actually was zero, the geometry becomes symmetrical and the two images instead
become an Einstein ring. These are extremely rare but have actually been observed.
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observed without a lens present. In the case of higher flux, the magnification
can be quantified as the ratio between the image area and the source area
(because gravitational lensing does not alter surface brightness of the source. See
Schneider et al 1992, section 5.2). The magnification stems from the fact that
a larger fraction of the source surface radiates in the direction of the observer.

Assuming a point mass lens and introducing u = θS/θE, the magnification
due to both images may be written

A =
u
2 + 2

u
√
u2 + 4

,

where a quick look reveals that
�
A → 1

u
if u � 1

A → 0 if u � 1
,

which is not a disaster. The limit u → 0 (which would lead to infinite
magnification) is not useful since the model is simplistic both in its geometry
and the assumption that the lens is a point etc. Magnification values have been
observed to frequently reach 102 and even 103 i.e. a magnitude increase of
between 5 and 10, which is considerable to say the least.

The magnification is one of the observables during a microlensing event.
Another observable is the duration of the event. Together with the shape of the
event light curve, several physical parameters e.g. the mass ratios and linear
separations between lens components and more can be deduced from complex
modelling and subsequent least squares fitting. See Gould et al. (2006b) for
details on this.

2.6 Direct observation

A direct observation means capturing the point-spread function of the exo-
planet on e.g. a CCD, regardless of if the light is reflected from the parent
star or thermally emitted from the planet itself. Resolving exoplanets also
counts, obviously, but that is a prospect far into the future. There is nothing
in principle that prevents a CCD or some other detector from revealing the
presence of exoplanets directly, but the practicalities are of dominant concern -
today this technique only discovers the larger type of Jovian planets, preferably
with reflecting ring systems (for extra brightness if the spatial alignments are
favourable).

Of what nature are these mentioned practicalities? Many different kinds, it
turns out.

• Angular separation is a function of distance. Beyond a certain minimum
distance, resolving the planet from its star is science fiction from where
we stand today.

• Noise. Stars are often between 105 and 1010 times brighter than their
planets, depending on albedo and a few other things. The signal-to-noise
ratio of the starlight will overpower the exoplanet signal significantly.
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• The costs for building telescopes of adequate size are ludicrous - the E-
ELT is estimated to cost a little more than €109. This disadvantage can
be expected to grow less painful as construction technologies are optimized
and resources are amassed at increasing rates.

The first problem is not really solvable in and of itself (unless someone is psyched
to embark on a very, very, very long odyssey). All you can do is build bigger
and better telescopes, with consequences mentioned in point three. The second
problem is where most of today’s creative resources are focused - many different
methods, each aiming to completely or to a sufficient degree eliminate the par-
ent star signal, are being invented, developed, improved and tested. The older
of these methods are hubbed around a simple piece of opaque material placed
in front of the star PSF16, introducing diffraction effects and such undesirables.
Newer methods turn to the quantum world, exploiting properties of light with
complex contraptions, finding various ways of creating self-interference in hopes
of eliminating starlight while keeping as much light as possible from nearby
(fainter) sources. The various branches of this field collectively constitute coro-
nagraphy, since the basic idea was first employed in an attempt to observe the
solar corona (which is a million times fainter than the photosphere).

2.6.1 Types of coronagraphy

There are many kinds of different approaches to neglect the star signal while
keeping the planet signal as intact as possible. Here follows very brief outlines
of some of them.

Lyot coronagraphs are the conceptually simplest kind. As the image is
focused in the focal plane, a physical object is placed so as to absorb or reflect
the light that happens to cross its path, leaving only off-axis structure plus
some diffraction effects from the on-axis blocking. A Lyot stop is employed in
an attempt to block out the remaining diffraction effects.

Interferometric coronagraphs exploit the self-interference of light. Incoming
light is by means of various mechanisms split into two or more identical parts
as it enters the telescope pupil. The phase of the separated beams of light are
then somehow manipulated and upon fusing the beams afterwards, destructive
interference selectively removes undesirable light sources.

Apodisation coronagraphs use amplitude or phase masks to suppress parts
of the image, i.e. they manipulate point-spread-functions that if present would
prevent the contrast levels necessary to see dark objects like planets. Amplitude
masks are reminiscent of the Lyot approach, but offer greater flexibility and
detail in the physical blocking of the light. Phase masks utilize destructive
interference for similar effect.

Improved Lyot coronagraphs replace the classical componenths of a Lyot
coronagraph with either amplitude masks or phase masks to allow for a more
flexible and finer approach when reducing diffraction. Examples of improved

16Point-Spread-Function: The distribution of intensity in an unresolved picture of for ex-
ample a distant star or quasar.
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Figure 13: The very hot and massive planet 2M1207b directly imaged alongside
its brown dwarf parent (left), and two snapshots of the planet Fomalhaut b in
its huge orbit around its parent star (right).
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Lyot coronagraps include the optical vortex coronagraph and the four-quadrant
phase mask.

Additional approaches include e.g. Pupil replication (Greenway et al., 2005),
Pupil filtering/remapping (Perrin, 2006) and Free-flying occulters. Free-flying
occulters are self-descriptive - man-made objects intended for positioning be-
tween a star and the observing telescope. Several proposals on free-flying occul-
ters have been made e.g. Schultz et al., (2003); Copi & Starkman (2000) and
Cash et al. (2005).

3 The final step - the least-squares algorithm
In this thesis, the detection methods from radial velocity and astrometry have
been given extra detail, but as the reader might have noticed, the sections above
are missing a crucial part: How do we combine model and measurements into
actual estimates of the physical parameters we are seeking to find?

The answer is for most problems of this sort a numerical least-squares al-
gorithm. These algorithms take data from measurements as input, and then
output the model parameters that best fit the data put in. The models of exo-
planet systems in this thesis are largely non-linear with respect to their various
parameters, which obviously must be taken into account in the algorithm.

3.1 The basic idea

The method of least squares dates back to Gauss and his work during the final
years of the 18th century and the first few of the 19th. It is an algorithm that
seeks to minimize the effect of measurement error on the physical model you’re
trying to find. The conceptually simplest way of describing the fundamental
idea goes something like:

1. Choose some model f describing the sought after quantity in terms of some
independent variable y (the number of independent variables is not con-
strained in principle) and a set of unknown parameters x = (x1, x2, x3, ...):
f = f (y,x).

2. Measure the sought after quantity as a function of the independent variable
and express the result as a data set (f1, y1) ; (f2, y2) ; (f3, y3) ... = (fi, yi).17

3. Define a new function through ri = f (yi,x) − fi: ri is the quantity
value mismatch between your model’s prediction f (yi,x) and the mea-
sured value fi.

4. Define another function through S = r
2
1+r

2
2+r

2
3+... =

�
r
2
i
: S is the sum

of all the squares of the mismatches between model and measurement.
17Step 1 and step 2 can of course be performed in any order.
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5. We wish to find the set of parameters x that makes S as small as possible
(in other words, find the best possible model for the data set obtained), so
we observe that S is an analytical function and remember from high school
how the minima (extrema) of such functions are found - the derivative is
zero. So we form the following system of equations18:

∂S

∂x1
= 0

∂S

∂x2
= 0

∂S

∂x3
= 0

∂S

∂x4
= 0
...

(3.1)

6. Solve for the parameters and calculate. When you’ve found the x that
solves the above equations simultaneously, you’ve found the best model19
and are done.

3.2 However...

If it looks simple, you’re not looking deep enough. In the introduction, some
steps are far from trivial. What if the elements of x cannot be analytically
solved for? This is an example of where a simple idea turns complicated when
you want to apply it on the real world.

When the elements of x appear as non-linear functions, the method used is
renamed into the fabulous ’non-linear least-squares’. This algorithm can take
many forms in practice. A few examples include Levenberg-Marquardt, Nelder-
Mead, Davidon-Fletcher-Powell and Gauss-Newton. The essence of the concept
remains the same, but some re-thinking is necessary.

For starters, the zero-derivative approach is no longer a means of finding the
elements in x, even though the solution to the set of equations above is still what
we’re looking for. What to do instead? Most, if not all, algorithms start off by
guessing a x, either based on previous estimates or on nothing. The implications
and/or results of this guess is then analyzed and turned into a (hopefully) better
guess, until subsequent guesses are practically identical i.e. the minimum of S
has been reached. The actual steps taken vary from algorithm to algorithm.
Indeed, some algorithms simply guess all over the place, and are of course not
suitable for great accuracy. Instead, they could be used to find a decent first
guess for more sophisticated algorithms.

18If you solve for the parameters from these equations, you may call the new but equivalent
equations normal equations.

19In the sense that the function S is minimized.
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I find examples the most accesible way of introducing new concepts and
ideas, and as Newton’s method (on which the Gauss-Newton method may be
regarded an improvement) is to the best of my knowledge the simplest non-linear
least squares algorithm, it will have to do as an introductory example:

1. Having expressed the derivatives of S with respect to its parameters, guess
an initial set of parameters xi.

2. Express ∂
2
S(xi)
∂x2 as the slope of the tangent to the point

�
∂S(xi)

∂x ,xi

�
:

∂
2
S

∂x2 =
∆ ∂S

∂x
∆x =

∂S
∂x−0

xi−xi+1
.

3. Solve for the linear root: xi+1 = xi −
∂S
∂x
∂2S
∂x2

.

Describing it in words, it’s best to imagine the derivatives of S as a function
in parameter space of x dimensions. The first guess corresponds to a point
somewhere on the curve ∂S

∂x , and from this point we draw its tangent all the
way down or up to the line corresponding to ∂S

∂x = 0 i.e. the zero-level. This
is basically a linearization of ∂S

∂x in the point specified by the initial guess. The
slope of this linear approximation can be expressed using the two points now
available, and x at the zero-level is now your new guess. Picture 14 might help
to clear things up.

Note that in Newton’s method, the second derivative of S must be avail-
able in a closed analytical form. This requirement does not appear in all meth-
ods. For example, the Levenberg-Marquardt algorithm used by Howard&Wright
(2009) only requires analytical forms of the first derivative.

3.3 Matrix form

The system of equations 3.1 can be condensed into a single matrix equation.
This comes in handy when the numerical problem is large - if your data set is
huge, or the number of parameters is large (which is the case when fitting data
to a model that accounts for multiple planets, for example). A commonly used
form for the normal equations is

ATA∆x = ATr,

where r is the set of residuals: r = (r1, r2, r3, ...), ∆x is the correction, i.e. the
difference between the upcoming estimate and the previous one: ∆x = xi+1−xi

and A, the observation matrix, is the Jacobian of r: A =





∂r1
∂x1

∂r1
∂x2

. . .

∂r2
∂x1

∂r2
∂x2

. . .

...
...

. . .



.

Solving for the correction, which must be done to find the new guesstimate of
x, you get:

∆x =
�
ATA

�−1
ATr.
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Figure 14: The Newton algorithm in a nutshell. xi is the initial guess. Note
how the algorithm will never find anything but the closest root, which might
not correspond to the global minimum of S.
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Often, this equation is condensed further into

∆x = N−1b,

where then N = ATA and b = ATr.
Example techniques and algorithms that may be employed to solve this equa-

tion include Cholesky decomposition and Householder’s methods. Generally,
∆x or b will never reach zero no matter how perfect the algorithm, because of
measurement errors and the fact that the model used is probably not completely
realistic.

4 Combining astrometric and radial velocity data
This thesis ends with a briefly outlined suggestion on how to use radial velocity
data for improvement of astrometric detection of exoplanets. Currently, the
radial velocity technique is the mainstream in exoplanet detection, with greater
success than any other technique. It has a serious intrinsic flaw however, and
that is its m sin i degeneracy - without help from other techniques, you obtain
but a minimum mass of the planet. Astrometry has the potential to save the
day, as it will be able to provide all seven orbital parameters, including the
inclination i. As a bonus, it can also constrain the exoplanet mass and relative
inclinations in multiplanet systems. Its success so far has been very limited due
to the high demands on instrument accuracy.

Astrometry is currently undergoing a renaissance through the global space
astrometry mission Gaia which will amass direct astrometric data on about 1
billion sources between magnitudes 6 and 20, along with some indirect data
on exoplanets of Jupiter mass. Additional astrometric missions continue to be
proposed (examples include SIM and NEAT), and they aim to detect exoplan-
ets with Earth-like mass in addition to the basic astrometry. Radial velocity
measurements for the detected astrometric planets are either already available,
or obtainable through follow-up surveys.

The strengths of combining these two detection methods are evident in that
astrometric measurements cannot distinguish the ascending node from the de-
scending node. Radial velocity can (see Catanzarite, 2010). Additionally, as
four of the orbital elements (Ω, ω, i, a∗) are present in both the astrometric and
radial velocity solution, this will constrain the 3-D orbit with superior accuracy
and precision because the parameters of an orbit fitted with both radial velocity
and astrometric data sets must be consistent with both.

Catanzarite (2010) and Wright & Howard (2009) have both proposed meth-
ods of combining radial velocity and astrometric data. Catanzarite (2010) has
focused on minimizing the number of parameters involved, hoping to improve
computational speed. However, this process requires a complex and iterative
post-processing phase to ensure that the data sets are consistent. Wright &
Howard (2009) have used a more conventional approach.

The astrometric solution can be partially linearized by using the Thiele-Innes
constants explained in an earlier section. The three nonlinear parameters e, tp
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and P remain nonlinear, however. For an N -planet system then, the astrometric
solution is modeled with 6 + 7N parameters20, 3N of which are the nonlinear
ones just mentioned. For the radial velocity solution a similar linearization
can be performed. Each planet then has the basic nonlinear parameters (e, tp,
P ), two linear parameters C and H (see Wright & Howard (2009) for details
on these) and an offset γ. All of these together result in a total of 7 + 9N
parameters, of which two per planet are redundant. This redundancy does not
cause much harm and will, for simplicity’s sake, be duly ignored.

4.1 Least-squares incorporation

The scheme above will be developed for the Gaia mission in the coming years.
Translating into mathematics of the least-squares method will be unavoidable
sooner or later, so here follows an introduction on how this translation might
look like. First, one must specify how to set up the normal equations. The
Gaia data processing uses normal equations constructed on the fly by summing
the contributions from a large number of observation equations. The individual
observation equations can be written (cf. equations in section 3.3):

Am,n∆xn = rm,

where the matrix A has dimensions m×n, with the rows m � n correspond-
ing to individual observation equations. ∆x with length n is the (column) vector
of parameter corrections (or ’updates’) and r is the residual (column) vector of
length m. In practice, we do not have to keep track of these quantities. Instead
they can be added directly to form a set of normal equation, given by

ATA∆x = ATr,

which in shorthand notation is, as in the previous section,

N∆x = b.

This equation can be solved by either a linear or nonlinear factorization
algorithm. In a combined radial velocity and astrometric solution, the only
introduced complication is defining the construction of the individual rows of
observation. We do this with two types of rows corresponding to the two types
of observational data as illustrated below

20Normally we only solve for 5 astrometric parameters, but in some cases we can also solve
for radial motion.
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This huge equation demonstrates how two rows of observations, one astro-
metric (upper) and one radial velocity (lower), could be combined into the ob-
servation matrix. The vertical suspension points indicate that an additional row
(ideally one from astrometry and one from radial velocity) will be added for each
data point, while the zeroes indicate that no information on the corresponding
parameter is available from this observation (the horizontal suspension points
are simply there to remedy limitations on page formatting). Complications
will arise as entries for e, T and P are nonlinear, but the equation is sufficient
for outlining the principle. The sixth column in A appears at first glance not
well-formed, but radial velocity and radial motion are closely (mathematically)
related and thus conceptually equivalent in this outlined idea. For a multiplanet
fit, you would for every additional planet add nine columns to A and nine rows
to ∆x.

A joint solution such as this for Gaia or similar missions could help to better
constrain the physical parameters of the observed stars and thus their planets.
Gaia is presently due for launch in 2013.
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5 Conclusion
On page 4 in Perryman’s The Exoplanet Handbook from 2011, you can find
figure 15. The anticipated progress is a bit dated, since it was taken from a
paper by Perryman in 2000.

Some comments on the various methods with regard to Perryman’s chart:

Timing

The strength of the timing method is millisecond pulsars, the strength of which
Perryman did not realize as he made the picture. As mentioned earlier in the
thesis, planets down to 0.02 Earth masses can be detected if they orbit millisec-
ond pulsars. No other technique can presently accomplish this. Apart from the
millisecond pulsars however, the timing method does not hold great promise in
relation to other techniques. The prerequisites of both small inclinations and
a periodic signal of some sort leads me to think that this technique is more of
an oppurtunistic approach. For the astrobiologists the timing method is even
less interesting since neutron stars, white dwarves and pulsating stars are all
implying a violent environment for any potential life-bearing planet. Eclipsing
binaries would be the exception to this, but their rarity and sluggish signal
periods are unavoidable problems.

Radial Velocity

Radial velocity has been a cornerstone for exoplanet detection since its early
days, and there’s no reason it should not remain highly relevant and applicable.
It should never face complete obsoleteness when bearing in mind that it does
not depend too much on distance, and that it’s a necessary complement to the
transit method. Perryman’s extrapolation of its capabilities seem reasonable.

Astrometry

This is another instance where Perryman is rather pessimistic. Astrometry is
in theory very powerful - it constrains many parameters, and does not suffer
from the presence of multiple planets. The only major drawback would be
its dependence on distance. If any of the mission proposals on searching for
exoplanets through astrometry (e.g. NEAT and SIM) launches, then Earth-
mass planets not too far from here might very well be detectable. It is hard to
tell when to expect this to happen though. Perryman’s projection is a cointoss.

Microlensing

The microlensing method is a little bit odd and exotic in relation to other tech-
niques. It can detect planets at extremely large distances, with a peak sensitivity
to planets inside the habitable zones of most main-sequence stars, but lensing
incidents are rare and difficult to complement with other techniques. Perry-
man’s projection of the photometric performance is probably rather reasonable
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Figure 15: Perryman’s chart of detection methods and their projected capabil-
ities.
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as the lensing effect is not a strong function of planet mass. The prospect of
detecting astrometric effects from lensing is, like pure astrometry, slumbering
until Gaia or instruments of comparable resolution are operational, but may
very well develop into another functional opportunistic approach.

Direct imaging

The Earth’s atmosphere is a major problem for direct imaging. Building the
required huge telescopes is preferably done on ground level for practical and eco-
nomical reasons, but then you need adaptive optics of extreme complexity which
might still not be enough to reach necessary resolutions. A 100 m class space
telescope would be a dream come true for many astronomers, but is presently
sci-fi. There is promise however in coronagraphy. If good progress is made in
this field and then applied at space-based observatories, Perryman could well
be correct in his projection.

Transits/Photometry

The transit method has both major drawbacks and major advantages. Its weak-
ness revolves around its dependency on minute inclinations and ambigious data
(sunspots etc.), while it is strong in parameter extraction and compatibility with
survey-type missions eg. Kepler. If photometric sensitivity progresses unpre-
dictably well in the future, the reflected light from planets may become a new
cornerstone in exoplanet detection, as the inclination requirement is softened up
slightly (in principle, anything but head-on orbits could be analyzed by modula-
tions of the reflected light due to phases). I can’t help but think that Perryman
is a bit on the pessimistic side regarding reflected light, and I don’t see why he
would project stagnation for both ground- and space-based photometry. I see
great promise in the transit method, provided higher photometric sensivity.
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