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Abstract

Imaging of stellar surfaces in visible wavelengths is one of the current frontiers in as-
tronomy. With a few exceptions, stars can not be seen in visible light as anything but
point objects with current technology. Being able to properly image stars would open up
the door to a vast field of new discoveries, permitting direct studies of phenomena such
as rotationally deformed stars, circumstellar disks and clouds, stellar winds and wind
collision zones, mass accretion structures, pulsating stars etc.

Ground based phase interferometers have been able to produce images of a few large
stars in infrared light by connecting several telescopes over distances of ∼100 m, but are
limited by the need to keep the optical path constant down to a fraction of the wave-
length of the light over very large distances. Intensity interferometry works around these
problems by measuring correlations in light intensity fluctuations, essentially removing
the need for high-quality optics and making the system virtually immune to atmospheric
disturbances, permitting the connection of a great number telescopes to form one giant
kilometer-scale hypertelescope. This comes at the cost of higher light intensity require-
ments and the loss of the phase of the Fourier transform of the stellar surface brightness.

Invented in the 1940’s by Robert Hanbury Brown, intensity interferometry has not
been used in astronomy since the 1970’s (though the physical principle behind it has
become very important in particle physics), due to the requirement for very large flux
collectors and fast photo-detectors. However, recent technological advances and new
mathematical algorithms for image reconstruction have sparked a renewed interest in
this technique.

A “digital revival” of intensity interferometry would enable visible-light imaging of
stellar objects at resolutions that are orders of magnitude better than what is possible
today or in the foreseeable future. An interesting possibility is to use air Cherenkov
telescopes – which happen to share many requirements with intensity interferometry.

In this thesis, the theory and history behind intensity interferometry are laid out and
a number of astrophysically interesting targets of study are identified. A new method
for simulating intensity interferometry measurements, valid for modern photon-counting
detectors, is derived and implemented as a simulation software package. It is also shown
how this method can be extended to higher-order correlations. The simulation software
is applied to a number of astronomical objects with extra attention given to the use of
the upcoming European mega-project CTA (Cherenkov Telescope Array) as an intensity
interferometer. Finally, the results from laboratory experiments at Lund Observatory
are presented.



Populärvetenskaplig sammanfattning

Trots att det g̊att mer än 400 år sedan teleskopet uppfanns är det fortfarande praktiskt
taget omöjligt att avbilda stjärnor som annat än punktobjekt med dagens teknik. De
flesta stjärnor som är synliga p̊a natthimlen har en vinkelstorlek p̊a omkring 1 milli-
b̊agsekund (en 3600000-dels grad), vilket p̊a ett ungefär motsvarar en ärta i Paris sedd
fr̊an Lund.

För att avbilda ytstrukturer p̊a s̊a otroligt små objekt krävs att man kopplar samman
flera teleskop över stora avst̊and genom s.k. interferometri. Dagens interferometrar är
dock tekniskt mycket komplicerade och fungerar i praktiken bara i infrarött ljus och med
(i sammanhanget) relativt korta teleskopavst̊and.

En alternativ (eller kanske snarare kompletterande) teknik, intensitetsinterferometri,
utnyttjar ljusets kvantmekaniska egenskaper för att ta sig runt de tekniska sv̊arigheterna
hos vanlig interferometri. Med denna teknik – som nu h̊aller p̊a att återupplivas med
modern utrustning, efter att inte ha använts inom astronomi p̊a flera decennier p.g.a. de
höga krav som ställs p̊a bl.a. snabba ljus-detektorer och stora teleskop – är det möjligt
att koppla ihop hundratals teleskop till ett enda kilometerstort hyperteleskop.

En s̊adan kilometerstor intensitetsinterferometer skulle ge en bildskärpa hundratals
g̊anger bättre än dagens största teleskop och skulle kunna avbilda en l̊ang rad fenomen
som tidigare endast kunnat studeras indirekt, exempelvis snabbt roterande, deformer-
ade stjärnor, cirkumstellära skivor och gasmoln, kolliderande stjärnvindar, pulserande
stjärnor etc.

I det här examensarbetet ger jag en översikt av teorin bakom intensitetsinterferometri
och de vetenskapliga möjligheter som tekniken medför. Jag presenterar ett datorpro-
gram för simuleringar av intensitetsinterferometriska mätningar av stjärnor och använder
detta för att simulera mätningar och avbildningar av ett antal astronomiska objekt. En
studie gällande möjligheterna att använda det planerade europeiska jätteprojektet CTA
(Cherenkov Telescope Array, ett instrument primärt för detektion av kosmisk gamma-
str̊alning) för intensitetsinterferometri presenteras ocks̊a. Slutligen jämförs de teoretiska
resultaten med resultat fr̊an laboratorie-experiment utförda i Lund.
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Nomenclature

Most of the abbreviations and symbols used in the text are described here.

Symbols

τc The coherence time of light
lc The coherence length of light
V The visibility of interference fringes
Γ12(τ) The mutual coherence function of light at points 1 and 2 for time delay τ

γ12(τ) The complex degree of coherence of light at points 1 and 2 for delay time τ

γ12 The complex degree of coherence of light at points 1 and 2 for τ =0
α The quantum efficiency of a detector
θ The angular diameter of a star

x
∗ The complex conjugate of x

�x� The time average of x

Abbreviations

AGIS Advanced Gamma-Ray Imaging System
APD Avalanche Photo Diode
BSC Bright Star Catalog
CTA Cherenkov Telescope Array
GA Genetic Algorithm
HBT effect Hanbury Brown & Twiss effect
IACT Imaging Air Cherenkov Telescope
II Intensity interferometry
mas Milli-arcseconds
µas Micro-arcseconds
PMT Photomultiplier Tube
SII Stellar intensity interferometry
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Chapter 1

Introduction

1.1 The Potential of Intensity Interferometry

Ever since Galileo first pointed his telescope towards the skies 400 years ago, the abil-
ity to visually observe and image celestial objects has played an enormously important
role in the advance of astronomy as a science. Virtually every significant breakthrough
in telescope technology has brought with it not only a better understanding of already
known phenomena, but also a range of serendipitous discoveries. Seen from this per-
spective, it is interesting to note that, with a few exceptions, astronomy – literally the
science of stars – is still not able to image stars.

The angular diameter of the bright stars visible in the sky is typically on the order
of 1 milliarcsecond (mas) or 4.8 · 10−9 radians. The Rayleigh criterion tells us that to
resolve such a stellar disk at 500 nm under perfect atmospheric conditions, we would
need a telescope with a diameter:

D = 1.22
λ

θ
= 1.22

500 nm

4.8 · 10−9
≈ 125 m.

This is an order of magnitude larger than what exists today, and such a telescope is
unlikely to be constructed within the foreseeable future.

However, as we shall see in the following chapters, a revival of intensity interferome-
try, using digital technology, offers a way around the technical difficulties and promises
affordable and feasible stellar imaging down to and even beyond milliarcsecond resolu-
tion.

The maximum obtainable resolutions of some of the world’s major observatories –
both planned and in operation – are shown in different wavelength regions in Fig. 1.1.
The red line shows what could be achieved if a telescope array such as the upcoming
CTA (Cherenkov Telescope Array) was used for intensity interferometry. It is clear from
this figure alone, that this technique represents a step into a completely uncharted region
of the wavelength-angular resolution plane.

From stellar simulations and observations we know that we can expect to see a wealth
of features if stars could be imaged at mas level. Supergiants like Betelgeuse, which has
an angular diameter of around 40 mas, have been (at least partially) resolved by current

13



14 Chapter 1. Introduction

Figure 1.1: Angular resolutions for some existing and future observatories in different wavelength regions.
For all instruments except Chandra, the resolutions have been calculated using the Rayleigh criterion – i.e.
it is the highest physically obtainable (diffraction-limited) resolution. For VLBI, a baseline corresponding
to the diameter of the Earth was assumed.
Legend: HST – Hubble Space Telescope; JWST – James Webb Space Telescope; NSII – Narrabri Stellar

Intensity Interferometer; E-ELT – European Extremely Large Telescope; VLTI – Very Large Telescope

Interferometer; SKA – Square Kilometer Array; VLA – Very Large Array; ALMA – Atacama Large

Millimeter Array; VLBI – Very Long Baseline Interferometry; CTA - Cherenkov Telescope Array.

14



1.1. The Potential of Intensity Interferometry 15

telescopes and display features drastically different from the Sun. Betelgeuse shows
very different diameters for different spectral passbands, and various hot spots on the
surface. The hot spots are interpreted as low-density areas in the atmosphere where
the hotter interior of the star shines through [1]. All of this tells us that these kinds of
supergiants generally do not have a smooth spherical surface like the Sun, but are fuzzy
and irregularly shaped.

Stellar models also indicate that rapid rotation will greatly affect the shape and
nature of a star. Recent phase interferometry studies of for example Achernar[2] and
Altair [3] show a significant rotational flattening of the stars. In some cases the rotation
also results in a disk around the star.

Other, more exotic effects are predicted to occur in stars with differential rotation.
Such stars might take on a “donut-like” shape [4], but this has yet to be confirmed by
observations.

Further targets of study might include pulsating stars, supernova candidates, stars
with hot stellar winds and mass transfer in binaries. Since intensity interferometry is
especially sensitive to hot targets, it might even be possible to observe exotic objects
such as ultra-hot white dwarfs, which can reach temperatures of hundreds of thousands
of Kelvin. However, since these stars are extremely faint, this will likely not be feasible
with first generation instruments.

Compared to conventional phase interferometry, intensity interferometry has several
advantages (and some disadvantages). While phase interferometry is extremely sensitive
to atmospheric disturbances and optical imperfections, an intensity interferometer can
operate with fairly coarse optics and is virtually immune to atmospheric scintillation
effects.

One downside is that the technique requires very large flux collectors and very fast
electronics. Also, while a phase interferometer measures a complex quantity called the
visibility – essentially the Fourier transform of the the target’s intensity distribution – an
intensity interferometer can only measure the square of this complex quantity, meaning
that the phase information from the image is lost. However, as we shall see in the
coming chapters, all of these challenges should be possible to overcome, making intensity
interferometry a very cost-effective alternative (or complement) to phase interferometry
and extremely large telescopes.

15
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Chapter 2

Theory and History of Intensity
Interferometry

This chapter covers the basics of the theory behind interferometry in general and intensity
interferometry in particular. Since intensity interferometry shares many basic concepts with
regular phase interferometry, the basic theory of coherent light and phase interferometry is
dealt with first. A full description of the physics behind intensity interferometry requires a
quantum-optical approach, which is mostly beyond the scope of this thesis. However, the
classical theory presented here will suffice for most basic purposes.

2.1 Coherence of Light

All interferometry experiments rely on a basic property of light called coherence. Put
simply, the coherence is the degree to which properties of the light such as its phase and
amplitude can be predicted in the future (or the past) given knowledge of them at the
present. Since coherence is such an important concept, we will start with a slightly more
thorough treatment below.

For the sake of simplicity, light waves are often described in basic level physics text-
books as single-frequency plane waves on the form E(x, t) = sin(kx− ωt). While some-
times a convenient simplification, this description is not a very realistic one. Real light
consists of a superposition of many such monochromatic waves, and in addition it un-
dergoes frequent phase shifts.

A more realistic way of looking at light is as a sum of many individual wavetrains,
or harmonic pulses of duration ∆t, each having the form:

E(x) =

�
E0 cosωpt when −∆t/2 ≤ t ≤ ∆t/2
0 when |t| > ∆t/2

(2.1)

Each such pulse is a (quasi-)monochromatic wave extending a certain length in space
and time, i.e. a truncated sinusoidal function. The frequency contents of such a pulse is

17



18 Chapter 2. Theory and History of Intensity Interferometry

given by its Fourier transform, which can be shown (e.g. [5]) to be:

A(ω) = E0
∆t

2
sinc [(ωp − ω)∆t/2] (2.2)

where sinc (x) = sin(x)/x.
From Eq. (2.2) it is clear that the longer the pulse, the narrower its Fourier transform,

and the smaller its frequency content. In the limit ∆t → ∞ – a pulse of infinite duration
– we get back to the idealized case of a single monochromatic wave.

With this model of light as a series of finite wavetrains, we can proceed to define a
number of useful concepts. The average time that a wavetrain exists, τc, is called the
coherence time of the light. Within a time interval smaller than the coherence time, the
light is roughly sinusoidal and both the phase and the amplitude are predictable. In
other words, if we know the phase at some time t, we can calculate it at a time t� as long
as t�− t is at most about the same as τc. However, if t� > t+ τc, we can not say anything
about the phase at t�

The spatial equivalent of the coherence time is called the coherence length, lc = cτc.
This is just the spatial extent of the average wavetrain.

The coherence time can be approximated as the inverse of the frequency bandwidth
∆ν, which is the width of Eq. (2.2). Thus, the ideal monochromatic light wave, having
∆ν = 0, will have an infinite coherence time and coherence length, meaning the phase
and amplitude is completely predictable at any time and place. Since τc = ∆ν

−1, we
may think of the coherence time and length as measures of the spectral purity of the
light. The closest one can get (with current technology) to a monochromatic wave is a
laser. However, even laser light will have a finite coherence length and time.

2.2 Visibility and Coherence Functions

When (partially) coherent light beams interfere they form alternating dark and light
bands known as interference fringes. The interference of the light in all sorts of interfer-
ence experiments thus gives rise to a varying intensity distribution on the screen. The
contrast between the brightest and the darkest parts on the screen is called the visibility.
This quantity is what is measured directly in a phase interferometer, and – as we shall
see – indirectly by an intensity interferometer. Formally, the visibility is defined as:

V =
Imax − Imin

Imax + Imin
(2.3)

As we can see from Eq. (2.3), the visibility ranges from 0 (no fringes) to 1 (when Imin = 0).
See figure 2.1 for an illustration of varying visibility.

2.2.1 A Look at Young’s Double Slit Experiment

There is a fundamental relationship between the visibility and the coherence of light,
which will be outlined below (the derivation here is a rough outline of that in [5], and the

18



2.2. Visibility and Coherence Functions 19

Figure 2.1: Young’s double slit experiment (left) as compared to a stellar phase interferometer (exempli-
fied here by the VLTI). In the phase interferometer, the telescopes play the same role as the slits in the
double slit experiment. However, instead of simply letting the light pass through to a plane, it is guided
to detectors through an elaborate system of mirrors and delay lines. The contrast of the fringes gives the
magnitude of the visibility, and their position along the optical path gives the phase. Figure from [6].

reader is referred there for more details). We consider the famous Young’s experiment
(figure 2.2), where an extended source σ illuminates two small holes S1 and S2 in a
screen. We will call the light field from σ E(r, t), and the fields at S1 and S2 will be
E1(t) and E2(t) respectively. The light reaching a point P on the screen is then

EP = K1E1(t− r1/c) +K2E2(t− r2/c),

where the constants K1 and K2 are so-called propagators, depending on the sizes and
locations of the apertures S1 and S2.

The intensity at P is then simply the average of the light amplitude times its complex
conjugate averaged over some time interval:

I = �EP (t)E
∗
P (t)�, (2.4)

where �� denotes averaging over time. Since we are assuming that the fields are stationary,
i.e. they do not change their statistical nature over time, we may start measuring at
any time origin. In other words a term such as �E1(t − t1)E∗

1(t − t1)� is equivalent to
�E1(t)E∗

1(t)�. With this in mind, we may insert the expression for EP into (2.4) and
rewrite it as:

19



20 Chapter 2. Theory and History of Intensity Interferometry

Figure 2.2: Young’s double slit experiment.

I = K1K
∗
1 �E1(t− t1)E

∗
1(t− t1)+�K1K

∗
1 �E2(t− t2)E

∗
2(t− t2)�+ (2.5)

K1K
∗
2 �E1(t− t1)E

∗
2(t− t2)�+K2K

∗
1 �E2(t− t2)E

∗
1(t− t1)� (2.6)

= K1K
∗
1IS1 +K2K

∗
2IS2 + 2Re[K1K

∗
2 �E1(t+ τ)E∗

2(t)�]. (2.7)

In the last step, the symbols τ = t2− t1 and IS1 = �E1(t)E∗
1(t)�, IS2 = �E2(t)E∗

2(t)� have
been introduced. The two last terms are then just a quantity plus its complex conjugate,
which is equal to twice its real part.

The time average part in the last term in (2.5) is a cross-correlation between E1 and
E2. This function is called the mutual coherence function of the light at S1 and S2, and
is denoted:

Γ12(τ) = �E1(t+ τ)E∗
2(t)�. (2.8)

If we write the cross-correlation out explicitly it becomes:

Γ12(τ) =
1

T

� T

0
E1(t+ τ)E∗

2(t) dt.

Note here that if E1(t+τ) and E2(t) do not depend on each other in any way, the integral
will tend to zero as the integration time increases. However, if they vary in more or less
the same way, i.e. they are both large at the same time and small at the same time, the
integral will not be zero. So a cross-correlation will be a measure on how similar one
function is to another shifted by a time τ .

20



2.2. Visibility and Coherence Functions 21

Now, making use of the fact that the K factors are purely imaginary and setting
I1 = |K1|2IS1 and likewise for I2, we end up with the following for the intensity at P :

I = I1 + I2 + 2|K1||K2|Re Γ12(τ). (2.9)

Now consider the special case where S1 and S2 are made to coincide. The optical
path difference of the two light beams will be zero and the mutual coherence function
will be an auto-correlation:

Γ11(0) = �E1(t)E
∗
1(t)� = IS1 and Γ22(0) = �E2(t)E

∗
2(t)� = IS2

From (2.9) we know then that |K1|2 = I1/Γ11(0) and similarly for |K2|2. This gives:

|K1||K2| =
√
I1I2�

Γ11(0)Γ22(0)
,

which makes it convenient to introduce the complex degree of coherence, which is the
normalized version of the mutual coherence function:

γ12(τ) =
Γ12(τ)�

Γ11(0)Γ22(0)
=

�E1(t+ τ)E∗
2(t)��

�|E1|2��|E2
2 |�

, (2.10)

leading to the final expression for the intensity distribution on the screen:

I = I1 + I2 + 2
�
I1I2Re γ12(τ). (2.11)

Finally, if we note the fact that γ12 is a complex function, and rewrite it as γ12(τ) =
|γ12(τ)|eiΦ12(τ), for some phase angle Φ12, we see from Eq. (2.11) that

Imax = I1 + I2 + 2
�

I1I2|γ12|

and
Imin = I1 + I2 − 2

�
I1I2|γ12|.

Thus we can relate the coherence function to the visibility, using (2.3):

V =
Imax − Imin

Imax + Imin
=

2
√
I1I2

I1 + I2
|γ12(τ)|, (2.12)

or, if I1 = I2:
V = |γ12(τ)|. (2.13)

To sum things up, if we measure the contrast of the interference fringes, i.e. V , we can
deduce the coherence function of the light. And as Eq. (2.10) tells us, this says something
about the statistical coherence of the two light fields. As we shall see shortly, knowing
the coherence function allows us to say a lot about the source, and even reconstruct its
intensity distribution.
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22 Chapter 2. Theory and History of Intensity Interferometry

2.3 Phase Interferometry

2.3.1 The Michelson Stellar Interferometer

The first interferometric device successfully used in astronomy was the Michelson stellar
interferometer (or simply Michelson interferometer1), conceived in 1890 by A.A. Michel-
son, and first used in real measurements in the 1920’s [7]. The operation of a Michelson
interferometer is outlined in Fig. 2.3 and bears many similarities to Young’s double slit
experiment discussed above.

Figure 2.3: Outline of a phase interferometer. Figure from [5].

Instead of simply letting the light pass through two apertures as before, light is now
collected into a telescope using two movable mirrors. The light is focused onto a screen,
and if the light source is a point source, e.g. a distant star, the intensity on the screen
will look like that in Young’s experiment, Eq. (2.11).

Now, let’s say we observe two nearby point sources, for example a close binary star.
If some sort of filter is used, the light will be of narrow-bandwidth, centered around some
wavelength λ0. Light from the first star will go through the interferometer and produce
a fringe pattern at a point P0 on the screen. Light from the other star will come in at
a (very small) angle θ to the optical axis and form another fringe pattern at some point
P . Because it’s slightly off-axis, this light will be delayed by a time approximately equal
to bθ/c, which means it will be out of phase by 2πbθ/λ0.

The two point-sources are completely incoherent, and their respective fringe patterns
will simply add up. If the separation between the mirrors, b, is varied, the separation

1Usually, the term Michelson interferometer refers to a different instrument from the same inventor,
used to measure the effects of the Earth’s motion on the speed of light. Here however, we shall use the
term to denote Michelson’s stellar interferometer.
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2.3. Phase Interferometry 23

between P and P0 will vary. If the light from star 1 comes in along the optical axis
it will have a fringe maximum at the center of the screen. If the mirror separation is
increased until the phase difference is π, the pattern from star 2 will have a minimum
at the center and the two patterns will cancel each other out, bringing the visibility to a
minimum. If the intensities of the two stars are equal, V will be zero. This all happens
when 2πbθ/λ0 = π, or

b =
λ0

2θ
⇒ θ =

λ0

2b
. (2.14)

So, by starting at a very small mirror separation, or baseline, b, and gradually in-
creasing it until the first visibility minimum occurs, one can measure angular separation
with great accuracy using a Michelson interferometer. Notice here that the two point
sources are completely incoherent and are not interfering with each other. What we are
measuring is just the sum of the two individual interference patters.

If the light source is not just two points, but rather an extended source, such as a
stellar disk, the visibility can be found by treating the source as consisting of many small
point sources. For a circular source of uniform intensity, it can be shown (e.g. [5]) that
the visibility takes the form:

V = |γ12(0)| = 2

����
J1(πbθ/λ0)

πbθ/λ0

���� , (2.15)

where J1 is the Bessel function of first order (V is plotted in Fig. 2.4). This function has
its first zero at πbθ/λ0 = 3.83, meaning that the fringes will disappear when

b = 1.22
λ0

θ
.

This equation looks very similar to the familiar Rayleigh criterion, which gives the res-
olution of a telescope as a function of wavelength and telescope diameter. This means
that the resolution of a Michelson interferometer with baseline b is 1.22λ0/b – the same
as a telescope of diameter b. In other words, an interferometer with baseline b will
have the same resolution as a telescope with a diameter equal to the separation of the
interferometer mirrors!

2.3.2 The van Cittert-Zernike Theorem

The Michelson interferometer described above works best if the target is about the same
size as the resolution of the interferometer. If the target is very small or very large,
no useful information will be gained. However, the baseline can be varied so that the
resolution matches the size of the target. Thus, one might suspect that by combining
measurements from interferometers with different baselines, one might be able to recon-
struct information about both large and small scale structures of an extended target.
The English radio astronomer Sir Martin Ryle pursued this idea in the 1960’s, leading
to the development of the technique called aperture synthesis, for which he received the
1974 Nobel Prize in physics.

23



24 Chapter 2. Theory and History of Intensity Interferometry
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Figure 2.4: Visibility (solid lines) and squared visibility (dashed lines) as a function of baseline for light
with λ = 500 nm. Inner curves are for a solid disk of angular size 2 mas, and outer curves are for a disk
of size 1 mas.

Consider an electric field E(R, t) at some point R in space (we are ignoring polar-
ization effects here). Such a field can be divided into its Fourier components Eν(R), so
that:

Eν(r) =

���
Kν(R, r)Eν(R) dx dy dz

where K is again a propagator, and r is the position of the observer. Assuming that the
source lies on a two-dimensional celestial sphere of radius R = |R| (R is large), we can
simplify this to:

Eν(r) =

�

S
Eν(R)

e
2πiν|R−r|/c

|R− r| dS (2.16)

where Eν is the surface brightness of the source. The explicit form of the propagator
K comes from Huygen’s principle and is valid if polarization is ignored and the space
between the target and the observer is assumed to be empty (see [8] for details).

We can now relate this to the correlation function Γ12 = �Eν(r1)E∗
ν(r2)�. Inserting

Eq. (2.16) into this expression gives:

Γ12 = �
��

Eν(R1)E∗
ν (R2)

e
2πiν|R1−r1|/c

|R1 − r1|
e
2πiν|R2−r2|/c

|R2 − r2|
dS1 dS2�. (2.17)

Taking s = R/R and the observed intensity Iν = R
2�|E(s)|2� and assuming that the

source is spatially incoherent, i.e. �Eν(R1)E∗
ν (R2)� = 0 if R1 �= R2, this last equation

can be simplified with some manipulation (again, see[8] for details):

Γ12 ≈
�

Iν(s)e
−2πiνs·(r1−r2)/c dΩ, (2.18)

where dΩ = |R|−2 dS is a small angular element.
We now measure the separation r1 − r2 in some plane perpendicular to the line of

observation, so that r1 − r2 = (uλ, vλ, 0), and use coordinates (l,m) for the (angular)
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positions on the target. After some more manipulation, one eventually ends up with the
following expression for the correlation:

Γ(u, v) =

��
Iν(l,m)e−2πi(ul+vm) dl dm. (2.19)

Equation (2.19) is a form of the van Cittert-Zernike theorem, which is the backbone of
all interferometric imaging. It tells us that the quantity measured by an interferometer
for a given baseline is a component of the Fourier transform of the surface intensity
distribution of the source. Note that we can expand the concept of visibility to be
a complex quantity, with a magnitude equal to the previous definition, and a phase
corresponding to the position of the interference fringes (see Fig. 2.1). Since Eq. (2.19)
is a Fourier transform, it can be inverted:

Iν(l,m) =

��
V (u, v)e2πi(ul+vm) du dv. (2.20)

The result is remarkable. By using many different separations and orientations of
a single (or – as is more often the case – several) interferometers we can sample the
(u, v)−plane and reconstruct the source image with a resolution equal to that of a tele-
scope with a diameter of the longest baseline. This is the technique known as aperture
synthesis.

2.3.3 Modern Day Phase Interferometry, Possibilities and Limitations

The idea of using interferometry to measure stellar diameter was first suggested by
Fizeau in 1868, and carried out by Stephan in 1874, using a mask placed over his 80
cm reflector at Marseille Observatory, effectively turning it into a two-aperture 80 cm-
baseline interferometer. He found out, however, that it was impossible to resolve any
stars for this small aperture [9]. Instead, Michelson is usually given credit as the first
person to perform useful interferometric measurements of astronomical objects. His 6-
meter interferometer, described above, operated in the 1920’s, mounted on the Hooker
telescope on Mt. Wilson, while his later 15-meter instrument proved too unstable to be
usable [7].

However, the challenges involved in maintaining the optical path differences during
observations and making sure that the entire optical system was accurate down to a
fraction of a wavelength of the light proved enormous. Because of this, the technique lay
dormant for almost half a century following the pioneer work done by Michelson.

It wasn’t until 1975 that Labeyrie succeeded in measuring directly the interference
fringes between two different telescopes (as opposed to the two mirrors feeding a sin-
gle telescope in Michelson’s interferometer). His instrument, Interféromètre à Deux
Télescopes (I2T) [9] made observations in both visible and near-IR wavelengths dur-
ing the 1970’s and 1980’s, and its successor, Grand Interféromètre à Deux Télescopes
(GI2T) was in operation until 2006 [10].

Phase interferometry has seen great progress during the last decade, and as of 2006, 9
optical and infrared interferometers were in operation all over the world [11]. Among the
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26 Chapter 2. Theory and History of Intensity Interferometry

foremost of these is ESO’s Very Large Telescope Interferometer (VLTI) at Cerro Paranal
in Chile [12]. The VLTI connects the four 8 m main telescopes of the VLT and four
1.8 m Auxiliary Telescopes (AT’s) using an elaborate system of delay lines consisting
of movable mirrors on rails in underground tunnels. The instrument has been used
to measure the shapes of stars (see Sec. 5.4.1), and recently even aperture-synthesized
milliarcsecond resolution images in the infrared [13].

The system currently providing the longest operational baselines is the CHARA array
on Mount Wilson, consisting of six 1 meter telescopes with a maximum baseline of 330
m. Figure 2.6 shows an example of the extremely high resolution images possible with
this array.

Figure 2.5: These reconstructed images of the Mira variable T Leporis obtained with the VLTI at different
wavelengths are an example of current state-of-the-art stellar imaging. The star is imaged in infrared
light, revealing molecular clouds surrounding the star. The scale is in mas. Figure from [13].

Despite this recent progress within phase interferometry, there are still some inherent
difficulties with the technique when it comes to shorter wavelengths. The entire system
– telescopes, delay lines and instrumentation – needs to be perfect down to a fraction of
a wavelength. Even vibrations of a single micrometer can ruin measurements in visible
light. This puts enormous demands on high quality mirrors, top-notch adaptive optics
systems and extremely high-precision delay lines. Thus, even state-of-the-art systems
like the VLTI cannot conduct measurements like the one in Fig. 2.5 using visible light.

As we shall see, intensity interferometry eliminates many of the difficulties with phase
interferometry, and might soon fill the niche of ultra-high-resolution imaging of hot and
bright stars in visible wavelengths.
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2.4. Intensity Interferometry 27

Figure 2.6: Aperture synthesized infrared images produced with the CHARA array showing the obscuring
circumstellar disk of � Aurigae. Note the angular scale! Figure from [14].

2.4 Intensity Interferometry

2.4.1 Hanbury Brown and the Narrabri Interferometer

As we saw in the previous section, phase interferometry can produce some fantastic sci-
entific results, but it quickly becomes an extremely expensive and technically demanding
technique when long baselines are required. This problem was addressed by Robert
Hanbury Brown in 1949 2. As he was pondering over how to measure the angular sizes
of the radio sources Cassiopeia A and Cygnus A (which were not resolvable by phase
interferometers available at the time), he was struck with the basic idea: if the phases
of two light beams are correlated, shouldn’t there also exist a correlation between the
intensities? In other words, if two simple square law detectors were brought close to each
other and pointed at the same target they should see the same intensity fluctuations.
If they are then moved apart, the intensity correlation should decrease, and the rate of
decrease will be a measure of the spatial correlation, and thus the angular size of the
target.

By using intensity correlations rather than phase interference, Hanbury Brown hoped
to simplify the problem of the very precise timing required in long baseline phase inter-
ferometry. Together with Richard Twiss, he worked out the underlying mathematics
and set out to build a simple radio interferometer. While Cassiopeia A and Cygnus A
turned out to be so large that they could actually have been measured using only slight
modifications to contemporary phase interferometers (“we had used a sledge-hammer to
crack a nut”) Hanbury Brown and Twiss soon realized that their invention had some
very interesting unforeseen properties. They had noticed that even when there were
serious atmospheric disturbances and the radio sources were scintillating violently, the
correlations were hardly affected at all. After looking over the mathematics again (see
Sec. 2.4.2), Richard Twiss concluded that this was to be expected, and that insensitivity

2The entire story behind the invention of intensity interferometry can be found in Hanbury Brown’s
book The Intensity Interferometer [15]
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28 Chapter 2. Theory and History of Intensity Interferometry

to atmospheric disturbances was actually an inherent property of an intensity interfer-
ometer.

This realization sparked the idea of an intensity interferometer working in optical
wavelengths. The initial calculations were disappointing however – the telescopes needed
to achieve adequate fluxes would need to be larger (and more expensive) than anything
that existed at the time, and to top it all off one of them would need to be mobile. It
took them half a year to realize that while the telescopes indeed had to be very large, the
optical quality was not important. There was no need to form a conventional image –
the telescopes needed only to serve as “light-buckets” collecting as much light as possible
and focusing it on the detectors. This meant that the whole project could be done on a
much smaller budget.

After proving the concept in laboratory experiments (e.g. [16]) and by measuring the
angular diameter of Sirius using two World War II searchlights as “telescopes” [17], they
proceeded to seek funding for a full-scale optical intensity interferometer.

Figure 2.7: View of the Narrabri Stellar Intensity Interferometer showing the two 6.5-meter flux collectors
on the circular track. The building in the middle is the control building and the one at the lower part of
the picture is the garage for the reflectors. Figure from [15].

The final result was the Narrabri Stellar Intensity Interferometer (NSII), constructed
at Narrabri, Australia in the early 1960’s. The NSII consisted of two 6.5-meter reflectors,
constructed from many smaller hexagonal mirrors, standing on a circular track (188 m
diameter) and connected to a central control building. The telescopes were movable
on the track, making it possible to vary the baseline. The observatory was operating
between 1965 and 1972, measuring the angular diameters of 32 single stars along with
other measurements including binary star separations, emission zones around hot stars
and the effects of limb-darkening. A detailed description of the results from NSII can be
found in [15].
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Having done all the measurements that were possible with the flux collectors at
Narrabri, planning was started for a successor to the instrument with bigger reflectors
and longer baselines [18]. However, it was eventually decided that the new science that
could be gained from a better interferometer did not justify the costs involved. To this
day, the SII at Narrabri remains the only astronomical intensity interferometer to ever
have been in operation doing real science.

2.4.2 Basic Theory of Intensity Interferometry

Intensity Correlations

As mentioned above, the basic idea behind an intensity interferometer is that if light
is coherent when it comes to the phase, the amplitude (and thus the intensity) of the
light shouldn’t be completely random. As it turns out, for quasi-monochromatic thermal
light, both the phase and the amplitude are relatively slowly changing functions of time.
Typically the light wave will undergo a few tens of thousands of oscillations before there
is a phase shift, and the phase shift is generally accompanied by a shift in amplitude.
While the amplitude itself is impossible to detect, one should be able to study the changes
in intensity and somehow relate these to the coherence of light.

Figure 2.8: The basic components of an intensity interferometer.

In its simplest form an intensity interferometer consists of two flux collectors, each
with an attached square-law detector feeding one channel of a correlator (Fig. 2.8). The
intensities at detectors 1 and 2 will be:

I1(t) = E
∗
1(t)E1(t) I2(t) = E

∗
2(t)E2(t).

And the correlation between the intensities will be

�I1(t)I2(t+ τ)� = �E1(t)
∗
E1(t)E2(t)

∗
E2(t)� (2.21)
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30 Chapter 2. Theory and History of Intensity Interferometry

Equation (2.21) can be expanded if the complex field amplitudes are divided into their
real and imaginary parts. Here we must make an assumption that is fundamental to the
operation of an intensity interferometer: that the light is thermal. If the light is thermal,
the real and imaginary parts of E1 and E2 are Gaussian random variates, i.e. the values
of E1 and E2 measured at different times can be treated as random variables following
a normal distribution. If this is the case, one can use the so-called Gaussian moment
theorem, which relates all higher order correlations of Gaussian variates to products of
their lower-order correlations (the mathematics of this is described in detail by Mandel
[19], and discussed more in chapter 4). It is possible to show then, that:

�I1(t+ τ)I2(t)� = �I1��I2�+ |Γ12(τ)|2, (2.22)

or
�I1(t+ τ)I2(t)� = �I1��I2�(1 + |γ12|2). (2.23)

If we define the intensity fluctuations ∆I as:

∆I1(t) = I1(t)− �I1� and ∆I2(t) = I2(t)− �I2�,

Eq. (2.23) becomes:
�∆I1(t+ τ)∆I2(t)� = �I1��I2�|γ12(τ)|2, (2.24)

since �∆I� = 0. It should be noted that we have not taken polarization into account here.
As it turns out[5], Eq. (2.24) holds for linearly polarized light. In the case of unpolarized
light, a factor 1/2 enters on the right-hand side of the equation.

Relation to Phase Interferometry

One thing that is notably absent from the previous section about intensity interferometry
are interference terms. In fact, an intensity interferometer is not really an interferometer
at all – it only measures intensity correlations – and the name was given to illustrate the
analogy in usage with phase interferometry. There is however a fundamental relationship
to phase interferometry. As Eq. (2.24) shows, we can find the square of the coherence
function by measuring the intensity correlations. If we relate this to Eq. (2.13), we get:

|V | = |γ12(τ)| =

�
�∆I1(t+ τ)∆I2(t)�

�I1��I2�
. (2.25)

So we can actually measure the visibility of the interference fringes without doing any
interference experiments. This means that one can use for example (2.14) to determine
angular sizes of distant objects with a resolution equal to that of a phase interferometer,
as illustrated in Fig. 2.4. One significant advantage of the intensity interferometer is that
the intensity fluctuations are virtually unaffected by atmospheric disturbances. While a
phase interferometer needs very high quality optics and usually adaptive optics systems
and baselines that are kept accurate down to a fraction of the wavelength of the light,
intensity interferometry is possible using very crude optics. Generally, irregularities in
mirrors and baselines up to a few centimeters can be tolerated.
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One major disadvantage is of course that only the modulus of the visibility is mea-
sured – the phase information is lost. Since the phase information is needed in the van
Cittert-Zernike theorem, one would think that aperture synthesis is impossible. Indeed,
that was long thought to be the case, but more recent research has shown that clever
mathematical tricks can be utilized to (at least partially) recover the phase information
if certain assumptions are made. We shall see more about this in coming sections.

Intensity Interferometry in Practice

The equations above are quite idealized and in a real instrument the situation is obviously
quite different. A thorough treatment of noise properties and similar issues in the simple
interferometer described above was done by Hanbury Brown (see for example [15], [16]).
Parts of this are no longer relevant due to technological advancements (a much more in-
depth discussion of the ins-and-outs of more modern components will be given in chapter
3). However, some of the results of Hanbury Brown are still worth taking note of.

The description so far has been a classical one, where light is treated as a wave.
Regardless of how one detects the light, the signal will always be discretized by the
detectors as it is converted to an electrical current (you either emit a photoelectron or
you don’t). If the probability of emitting a photoelectron is taken to be proportional to
the intensity of the light, the current in a detector will be:

i(t) = αeI(t),

where e is the charge of an electron and α is the quantum efficiency of the detector.
The noise in the detector can be divided into two principal components: the wave noise
and the shot noise. The wave noise is due to fluctuations in the classical wave and the
shot noise is due to the discretization in the detector and the randomness in emission of
photoelectrons. It should be noted that the wave noise is a property of the incoming light,
whereas the shot noise arises in the detectors. Thus the wave noise will be correlated
while the shot noise will not.

Furthermore, a photodetector can never detect any “true” instantaneous value of the
intensity – due to finite response times and the discrete nature of light itself the measured
quantity will always be a time average over some time T . As it turns out, this will reduce
the correlation by a factor τc/T , where τc is the coherence time of the light. It can be
shown [15] that the correlations between the two photocurrents can be written:

c̄(d) = �∆i1∆i2� = α
2
A

2
e
2
n
2|γd(0)|2(∆f/∆ν), (2.26)

where c̄(d) is the time average of the correlation at baseline d; ∆f is the electrical
bandwidth of the detector; ∆ν is the spectral bandwidth of the light; A is the area of
the detectors and n is the intensity in number of photons per seconds. This expression
is valid for the type of detectors used at Narrabri. For digital photon-counting detectors
the noise properties will be a little different, but the general picture is the same.

If the shot noise is assumed to be equally large in both detectors it can further be
shown that the r.m.s. noise in the output of one detector is:

N(T ) =
√
2e2Aαn∆ν

�
∆f/T
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which gives the following expression for the signal-to-noise ratio of the instrument:

(S/N)rms =
c̄(d)T

N(T )
= Aαn|γd(0)|2(∆fT/2)1/2. (2.27)

An interesting thing to note here is that the spectral bandwidth ∆ν vanished from the
signal-to-noise ratio. Making the spectral filter narrower gives less light so one might
expect a lower signal. However, squeezing the bandwidth together produces more spec-
trally pure light with a longer coherence time which compensates for the lower intensity.
As we shall see later on, this provides some interesting scientific opportunities.

Also worth considering is what happens if one of the detectors in Fig. 2.8 is moved
a small distance x < λ. This will induce a phase-shift Φ = 2πx/λ in the light reaching
that detector. From Eq. (2.26) we see that the measured correlation is proportional to
the square of the modulus of the coherence. Now, when the phase shift is introduced,
the new coherence function γ

�
0 will be:

γ
�
0(0) ≈ γ0(0)e

iΦ
.

But since we only measure the modulus of the coherence and |γ0(0)eiΦ| = |γ0(0)|, the
correlation will not be affected at all by small path differences like these. It can further
be shown that the loss of coherence from longer path differences are on the order of 105

times smaller than for a Michelson interferometer. Thus, an intensity interferometer is
virtually immune to atmospheric disturbances, and optical imperfections can be big (up
to centimeter scales) before they have any significant impact.

Semiclassical Treatment of Photodetection

One of the key points in understanding the relationship between a quantum view of light
and the classical description derived above is in the physics of photoelectric detection of
light. A semiclassical theory on photoelectric detection is derived by Leonard Mandel in
[19], and the reader is referred there for a comprehensive treatment of the subject.

One way of detecting light is by using a photomultiplier, in which electrons are
emitted from a cathode through the photoelectric effect. When light impinges on the
photomultiplier, there is a probability P that a photoelectron will be emitted:

P =
1

�2

����
� t0+∆t

t0

�E|ĤI(t1)|E0�
����
2

, (2.28)

where |E� and |E0� are the different energy levels of the electron and ĤI(t1) is the
interaction energy – a property of the light [19]. If reasonable assumptions are made,
it can be shown [19] that for a short measurement interval, ∆t, this probability can be
approximated as

P (t) ≈ αI(t)∆t, (2.29)

where α is a constant depending on the detector properties and I is the light intensity.
For two independent detectors this becomes:

P (t1, t2) = α1α2I1(t1)I2(t2)∆t1∆t2. (2.30)
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The details in the physics will vary for different types of detectors, but Eq. (2.29)
remains valid. In other words, the probability of detecting a photon within a small
time interval in a photon-counting detector is proportional to the intensity of the light
(provided ∆t is small). But the intensity of the light is proportional to the square of the
amplitude of the light’s E-vector, which is a wave. Therefore, it is a mistake to regard
the light as consisting of separate photons when it is on its way to the detector. The
light must be treated as a wave phenomenon before detection, and we see the quantum
effects only at the detector when a photo-electron is or is not emitted.

In practice, one is often interested not in the probability of one detection occurring
in a very small time interval but rather in the expected number of detections within a
larger interval. This number is readily found by simply dividing the detection time into
many small intervals and integrating:

�n� = α

� t+T

t
I(t�) dt�. (2.31)

This number can now go well beyond one, and can of course no longer be interpreted as a
probability. Writing down the probability p(n, t, T ) of detecting n photoelectrons during
a time interval t to t+T is straightforward however. If the detection events are assumed
to be independent, the probability will follow a Poisson distribution with a mean value
of �n�. Inserting the expression for �n�:

p(n, t, T ) =
1

n!
< n >

n
e
−<n> = (2.32)

=
1

n!

�
α

� t+T

t
I(t�) dt�

�n
exp

�
−α

� t+T

t
I(t�) dt�

�
. (2.33)

From the equation above we see that randomness comes into the act of photoelectric
detection in two ways. First, the detection process is random, with the intensity of the
light determining the probability of detecting a photon. Second, the intensity itself is
fluctuating in a random manner. It is by determining the characteristics of these latter
fluctuations that an intensity interferometer can be used to measure the coherence of
light.

The equations above will be valid only for one realization of an ensemble of possi-
ble intensities. Practically meaningful results can be obtained by taking the ensemble
average, denoted by ��:

P (t) ≈ α�I(t)�∆t

�n� = α

� t+T

t
�I(t�)� dt�. (2.34)

For our purposes, it is safe to assume that the field is stationary, i.e. its statistics are
independent of the time. Thus the average �I(t)� does not depend on the time and can
be moved out from the integral:

�n� = α�I(t)�T. (2.35)
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34 Chapter 2. Theory and History of Intensity Interferometry

This means that Eq. (2.30) becomes:

P (t1, t2) = α1α2�I1(t1)I2(t2)�. (2.36)

But in general
�I1(t1)I2(t2)� �= �I1(t1)��I2(t2)�, (2.37)

which means that
P12(t1, t2) �= P1(t1)P2(t2). (2.38)

In other words, if the probabilities of detecting a photon in detector A and B are PA

and PB respectively, the probability of both detectors registering an event at the same
time is not necessarily PAPB. The difference in probability will depend on the statistics
of the light field.

For thermal (chaotic) light, one can usually assume that the field follows Gaussian
statistics. In this case it can be shown that

�I1(t1)I2(t2)� = �I1��I2�(1 + |γ12|2), (2.39)

which we have already seen as Eq. (2.23).

2.4.3 Relation to Quantum Optics

While both the scientific results and underlying theory of Hanbury Brown’s and Twiss’
first intensity interferometer, operating in radio wavelengths, were accepted by the as-
tronomical community more or less immediately, significant controversy arose when the
concept was expanded to optical wavelengths. At the time, no complete theory of the
quantum nature of light existed, and many physicists believed that the idea of intensity
correlations violated fundamental quantum mechanical principles, confused partly by the
fallacy of regarding photons as little “bullets of light”, and failing to see how these little
bullets could interfere with each other. Since photoelectric devices are intrinsically tied
to the quantized nature of light it was not at all obvious at the time that the correla-
tion would be preserved in the process of photoelectric emission. Several papers were
published disputing the claims of Hanbury Brown and Twiss and it took several labora-
tory experiments ([17], [16]) and a short but convincing article by Purcell [20] to silence
the critics. Eventually the whole situation was resolved when Roy Glauber developed a
quantum theory of optical coherence in the 1960’s (a theory which earned him the 2005
Nobel Prize in physics).

Photon Bunching and Antibunching

Since we have already seen that the modulus of the coherence of light, |γ|, can only be
between zero and one, Eq. (2.39) would seem to imply that the probability of detecting
two photons close to each other (in time or space) is always greater than or equal to the
sum of the individual detection probabilities (i.e. the probability one would expect from
completely non-coherent light). This tendency for photons to appear close to each other
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2.4. Intensity Interferometry 35

is known as the Hanbury Brown-Twiss effect (HBT effect) or photon bunching. It occurs
only in fluctuating fields, such as those from thermal light sources, and is attributed to
the boson nature of thermal photons [19].

This is however one point where the (semi-)classical treatment breaks down. Contrary
to what one would expect from Eq. (2.39) there is also such a thing as photon anti-
bunching – a tendency for photons to avoid each other. An understanding of this requires
a full quantum mechanical description of the light (and not just of the detection process)
which is beyond the scope of this report. One can find such a treatment in [19].

Figure 2.9: Photon arrival times in light beams with different quantum-mechanical statistics. The top
row shows thermal (Bose-Einstein distributed) photons, which tend to “buch together”. The middle
row shows antibunched photons, resulting from a light source that is not in thermodynamic equilibrium.
Bottom row shows idealized laser light. Figure from [21].

2.4.4 Digital Revival

The progress in instrumentation technology since the Narrabri Interferometer was aban-
doned has been enormous. Today, high-resolution photon-counting detectors and hard-
ware correlators are commercially available, and new mathematical algorithms permit
(partial) reconstruction of the visibility phase, allowing for image reconstruction. The
most expensive components – large flux collectors – exist in the form of Cherenkov tele-
scopes. All of this has sparked a renewed interest in astronomical intensity interferometry
in the recent years.

In 2008, the SII (Stellar Intensity Interferometry) Working Group, within commission
54 of the International Astronomical Union, was formed. The group first met at the
August 2008 SPIE meeting in Marseilles. Following this meeting, a workshop on stellar
intensity interferometry was held at the University of Utah in January 2009 (see e.g.
chapter 5). The envisioned path [22] towards the revival of SII as a modern astronomical
technique can be roughly divided into four (possibly overlapping) phases:

1. Initial Prototype Phase (-2010). Present work, conducted by groups in both
the US and in Europe, consists mainly of development and testing of equipment,
such as correlators, photo-detectors and optical fibers. One aspect of these efforts
(and an important point for this thesis) is the need to properly understand the
noise properties and limitations of an intensity interferometer. When planning and
seeking funding for an instrument it is of course necessary to know what equipment
is needed and what one can do with a given set of instrumentation.
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36 Chapter 2. Theory and History of Intensity Interferometry

A test facility – StarBase Utah – is being set up by the University of Utah outside
Salt Lake City. This facility, which as of spring 2010 is very close to being in full
operation, consists of two 3 m reflectors on a 23 m baseline. It will serve as a
test environment in which instrumentation can be tried out and its performance
evaluated.

2. IACT Array “Piggyback” Phase (2011-2013). Once more is known about
the technical requirements, it will be possible to use arrays of Cherenkov Tele-
scopes, so-called Imaging Air Cherenkov Telescopes (IACTs), to conduct intensity
interferometry on a larger scale. This is described in more detail in Sec. 3.2.1.

3. CTA/AGIS Phase (2013-2020). The Cherenkov Telescope Array (CTA) is a
European project to construct a giant array of some 50-100 flux collectors spread
over more than a square kilometer. Work is being done to ensure that CTA is
capable of SII from the start (see Sec. 3.2.1). In this phase it is reasonable to
expect the first results of real scientific value, such as reconstructed images.

4. Dedicated SII Facility (2020-). If results from the CTA phase are good, the
ultimate goal would be a dedicated SII facility. Such a facility might consist of a
large number of flux collectors over a large area, likely with capabilities for time-
tagging and recording of individual photons, high-bandwidth data transfer systems
and distributed computer farms for offline calculation of correlation functions in
software.

While phase 4 is still highly hypothetical, phase 3 is much more likely to happen.
And as we shall see in the coming chapters, already an array like the CTA, if equipped
for SII, will be capable of completely new science, allowing studies of stellar objects in
unprecedented detail.

Non-Astronomical Intensity Interferometry

It is worth mentioning that while intensity interferometry has not been used as an as-
tronomical technique for many decades, it has been adopted and developed by particle
physics (see e.g. [23], [24]), and is now a widely used method for studying atomic and
sub-atomic structures (here, the technique is often referred to as femtoscopy or sometimes
Hanbury Brown-Twiss (HBT) interferometry).

The crucial point here is that the HBT effect is not limited to photons, but applies
to all quantum-mechanical particles. Bosons (such as photons) tend to ’clump together’
in space and time, which can be (partly) understood through the classical interpretation
outlined above. However, a full quantum-mechanical description (e.g. [23]) reveal other
effects that can not be understood classically. It turns out, for example, that fermions
behave in a manner opposite to that of bosons – i.e. they tend to arrive separated in
space and time. Figure 2.10 shows the results from an experiment illustrating this effect.

Just as it is possible to draw conclusions about the intensity distribution of astro-
nomical objects with very small angular diameters by correlating photons, it is possible
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2.4. Intensity Interferometry 37

to measure the space-time geometry of very small particle emission regions by detect-
ing and correlating the particles emitted from them. Such an emission region could for
example be the collision zone in a particle collision experiment.

The terminology and mathematical formalism of particle physicists differ significantly
from those of astronomers, which is somewhat of an obstacle for astronomers wishing to
draw upon the experience and theoretical insights gained by particle physicists. Never-
theless,this sort of inter-disciplinary collaboration could prove to be very important in
reviving intensity interferometry as a modern astronomical technique.

Figure 2.10: Experimental evidence of the difference between fermions and bosons. In this experiment,
clouds of 4He (bosons) and 3He (fermions) were produced and launched towards a detector area. The
amount of particle pairs detected at a given separation ∆z is plotted as a function of separation. The
bosons (upper plot) tend to favor arrival in close pairs (i.e. they are ’bunched’), while fermions (lower
plot) show a decreased probability of arriving in close pairs (’anti-bunching’). This anti-bunching effect
requires a full quantum-mechanical description to explain [25].
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Chapter 3

The Components of an Intensity
Interferometer

This chapter gives an overview of the different components needed for a modern intensity in-
terferometer. It describes the functionality and performance of the instruments and detectors
that exist today and of some that are planned for the future.

3.1 Overview – a Modern Intensity Interferometer

As mentioned above, no astronomical intensity interferometer has been in scientific oper-
ation since the Narrabri SII closed down in 1972. However, just like phase interferometry
was resurrected when technology had progressed enough, hopes are now high [26] that
the technological advances made since the 1970’s will make a revival of intensity in-
terferometry worthwhile. Already, all the components needed for a modern intensity
interferometer exist and have been proven to work.

In very general terms, an intensity interferometer can be divided into three main
parts: flux collectors to collect light from the target, photo-detectors to detect and time-
tag photons, and a data handling system to calculate correlation functions and do data
analysis such as image reconstruction (see Fig. 2.8). The calculation of correlation
functions is a time-consuming process, but can be handled in real-time with specialized
hardware correlators. The rest of this chapter gives a more in-depth description of these
components.

3.2 Telescopes and Flux Detectors

Intensity interferometry requires the measurement of the second-order correlation of light.
This means that the sensitivity scales as the square of the received flux. This all means
that the collection of light is extremely important to get a good signal. Very large
flux collectors are needed. Luckily though, optical quality is less important. As we
have already seen, an intensity interferometer can tolerate optical defects up to a few
centimeters.
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40 Chapter 3. The Components of an Intensity Interferometer

3.2.1 Air Cherenkov Telescopes

One class of already existing, large flux collectors are the so-called Imaging Air Cherenkov
Telescopes, IACTs. These instruments are arrays of very large reflectors that detect the
Cherenkov light induced from very high energy cosmic gamma ray photons. The gamma
rays produce a cascade of relativistic, charged particles – a so-called shower – when they
enter the atmosphere. The charged particles in turn give rise to a flash of Cherenkov
light. By using several connected telescopes it is possible to calculate an approximate
direction to the source of the shower. The Cherenkov light is very faint, typically only a
few tens of photons per m2. This means that the flux collectors have to be very large.

Today, several large IACTs (see e.g. [27]) are in operation. Among these are H.E.S.S.
in Namibia (four 13 m telescopes, one 28 m dish under construction), MAGIC on La
Palma (two 17 m telescopes), CANGAROO-III in Woomera, Australia (four 10 m tele-
scopes) and VERITAS in Arizona (four 12 m telescopes).

IACTs happen to share many basic requirements with intensity interferometry – they
have large flux collectors where light gathering capability is more important than optical
quality, and the telescopes are typically spaced around 100 meters apart (approximately
the baseline needed for a resolution of 1 mas).

All this means that Cherenkov arrays can be converted to SII receivers with relatively
small (and non-permanent) modifications. All that is required is in principle an optical
collimator, a filter, a photo-detector at the focal plane and some sort of data acquisi-
tion and processing system [22]. Another advantage from an SII point of view is that
Cherenkov light can only be detected when there is little or no moonlight, which means
that for a significant amount of time each year, the telescopes are not in use.

In October 2007, the VERITAS array was used for intensity interferometry exper-
iments, the first ever case of optical telescopes being connected digitally rather than
optically [28].

While arrays such as VERITAS may be suitable for testing of equipment, the baselines
and number of telescopes are too small to offer much new science. This might change in
the near future as the proposed American project AGIS and the European Cherenkov
Telescope Array, CTA, become a reality.

CTA will consist of up to a hundred flux collectors of varying sizes, spread out over
more than a square-kilometer. It will provide a great number of baselines, the longest
of which might be more than a kilometer, enabling very good (u, v)-coverage. A special
workgroup within the CTA collaboration, led by Dainis Dravins, is currently working
to assure that intensity interferometry capabilities are considered from the beginning in
the design of CTA. At the point of writing, the CTA SII group has recently submitted a
CTA Phase A design study for enabling SII capability for CTA. The design requirements
include some way of easily attaching and removing detectors at the telescopes and the
possibility to focus the telescopes at infinity [29]. If all goes well, CTA might become
the world’s first square-kilometer optical stellar imager within the coming decade(s).
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3.3. Photon-counting Detectors 41

Figure 3.1: Basic outline of a photomultiplier tube. Fig. from [30].

3.3 Photon-counting Detectors

With the telescopes in place the next part in the chain is a device to detect the intensity
of the light and feed it to the correlator.

Most light sensing in modern astronomy is done with charge-coupled devices, CCDs.
These devices have revolutionized astronomy with their excellent properties for imaging.
However, the readout time for a CCD is often on the order of seconds or more, and
thus they are not suitable for intensity interferometry where intensity fluctuations on
nanosecond levels need to be measured.

There are a number of detector types that can be used for this type of high-time-
resolution measurements. In broad terms they can be divided into two groups: photo-
multiplier tubes (PMTs) and avalanche photo-diodes (APDs).

3.3.1 Photomultipliers

Photomultiplier tubes (PMTs), or simply photomultipliers, have been around for more
than seven decades (this is the type of detectors used by Hanbury Brown at Narrabri).
The basic structure of a PMT is outlined in Fig. 3.1.

The device consists of a glass tube with vacuum inside. When an incident pho-
ton strikes the photocathode, an electron is emitted through the photoelectric effect.
The emitted electron is then focused onto the electron multiplier, consisting of several
dynodes. When it strikes the first dynode, a secondary electron is emitted (so-called
secondary emission). The secondary electron is then accelerated by an electric field and
strikes the second dynode with a much higher energy, resulting in several new emitted
electrons. These are in turn accelerated onto the third dynode and so on, each time with
more electrons emitted, resulting in a large number of electrons reaching the anode [30].

In the end, the PMT produces an electrical current proportional to the light intensity,
or number of photons per second.
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42 Chapter 3. The Components of an Intensity Interferometer

3.3.2 Avalanche Photo-diodes

Avalanche photo-diodes, APDs, are an alternative to PMTs. They are semiconductor
devices containing a p-n junction. When an incoming photon is absorbed in the depletion
layer in the junction, an electron-hole pair is created. If the device is operating in so-
called avalanche mode, or photoconductive mode, a large reverse voltage is applied to
the diode. This means that there is a large probability that the electron or hole will
trigger an avalanche breakdown where more and more electrons or holes are created in a
chain reaction eventually causing the diode to be conductive and producing an electrical
pulse [31].

Typically, the current pulses produced in APDs are converted by electronics into
standard TTL voltage pulses making them simple to feed into digital electronics such as
correlators (3.4.1).

Detectors combining many APDs into an array are just now starting to become fea-
sible. These devices – referred to as solid-state photomultipliers (SSPMs) – will combine
the high time-resolution of APDs with some of the imaging capabilities of CCDs.

3.3.3 Properties of Photon-counting Detectors

Both APDs and PMTs have a large number of characteristics that are important to
understand their performance and characteristics. Some of the most important in the
context of this work are listed below:

• Quantum efficiency. In simple terms, this is the percentage of incident photons
that are detected. PMTs suffer from quite low quantum efficiencies, typically on
the order of 15 % depending on photocathode material [30], while APDs often reach
up to 50% and sometimes even as high as 95 % [31].

• Time resolution. APDs will have a dead time after each detection where the
device is reset to its original state, during which nothing is detected. This means
that the detector will start to miss photons when the number of incoming photons
per second is on the order of one over the dead time, or time resolution.

For PMTs, the ability to detect rapid fluctuations in the light intensity is commonly
expressed as the electric bandwidth of the detector. A high bandwidth means that
photons can be detected with a good time resolution.

For modern detectors, both PMTs and APDs, the time resolution can be as small
as picoseconds, but is typically on the order of nanoseconds.

• Dark current. In both types of detector, there is always the possibility of an
electron becoming thermally excited (as opposed to emitted through the photo-
electric effect) and triggering a detection. This is known as dark current and can
be minimized by cooling the detector. Since intensity interferometry requires high
count rates, the dark current (which is a small constant background independent
of the light intensity) is typically not a big issue, except perhaps for very faint
targets.
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• Afterpulsing. Due to imperfections in materials, there is always a possibility
of electrons being “trapped” in impurities and re-released after some time, which
can cause false detection a small time interval after the real detection. This is a
potential problem since such false detections mimic correlation signals.

3.4 Data Handling and Software

3.4.1 Hardware Correlators

One very time consuming part of the data processing is the calculation of correlation
functions. If Ai and Bi are the recorded (discrete) intensity series and N = T/∆t (T is
the total integation time, and ∆t is the time resolution of the data aquisition system) is
the number of samples, then the normalized correlation function calculated by a digital
correlator for delay time τ will be:

c(τ) = N

�N
i=1AiBi+τ/∆t�N

i=1Ai
�N

i=1Bi+τ/∆t

(3.1)

Depending on the sampling time, this will result in several hundred millions of multipli-
cations for each recorded second and delay time.

Today, a large selection of dedicated digital hardware correlators are commercially
available. Manufacturers include Becker & Hickl, PicoQuant, Brookhaven Instruments,
Photocor Instruments and correlator.com. Hardware correlators exist in a variety of
forms, both as internal PCI cards and as stand-alone modules connected to the USB port
of the computer. They are usually marketed for use in various biochemical applications,
such as the study of decay times of florescent biomolecules, but they are also very well
suited for astronomical uses.

At the time of writing, Lund Observatory has four digital hardware correlators from
correlator.com. Two of these are custom-built units capable of handling 8 input channels
at a time resolution of 1.4 ns, calculating auto- and cross-correlation functions with
sample times ranging from 1.4 ns up to several hours, in real time.

Figure 3.2 outlines the basic operations of a digital hardware correlator and how it
calculates Eq. 3.1. The memory register n(ti−k), k = 1, 2, 3, . . . keeps track of the number
of counts k time intervals ago. The storage counters contain the raw (un-normalized
correlation) for different delay times (τ).

Standard TTL pulses from the photon detector are fed to a counter, which counts
the number of photons n(ti) in a time interval. It multiplies this value with the values
n(ti−1), n(ti−2) . . . in its memory and adds these products to the values in the storage
counters 1 through L. Finally it shifts all the values in the memory register one step to
the right and places the value n(ti) at the leftmost place, and repeats for the next time
interval. This way, the values in the storage counters will contain the raw correlation for
τ = ∆t, 2∆t, 3∆t . . ., i.e. the numerator in Eq. 3.1. To get the normalized correlation,
one also needs to store the total number of counts in each channel.
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Figure 3.2: Outline of the principles behind a digital correlator. Figure from [32].

The process described above will give the auto-correlation of the input. For the
calculation of a cross-correlation, two different counters are needed – one feeding the
memory register and one providing the numbers to multiply with.

Today, most correlators consist of many modules like the one above, each with an
increasing sample time. The first module might have sample time ∆t, the next one 2∆t,
then 4∆t, 8∆t and so on. This is known as a multiple-τ correlator. Using the multiple-τ
scheme, it is possible for a correlator to keep track of correlations for delay times ranging
from very small (nanoseconds) up to very long (several hours) in a single measurement.

Other Uses for Hardware Correlators

As mentioned above, hardware correlators have a wide range of uses. Whenever one
wants to study variability in a signal, these instruments perform all the heavy number
crunching needed in real time. In July 2009 correlators belonging to Lund Observatory
were tried out along with the OPTIMA high speed photon counting instrument [33]
at Skinakas Observatory, Crete. The idea was to observe variabilities in astronomical
sources such as pulsars in real time.

While the count rate from the detectors of OPTIMA turned out to be too low to use
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the hardware correlators for any astronomically interesting measurements, we found that
the correlators were excellent for monitoring different sources of errors in the telescope,
such as wind shake. An example of this is shown in Fig. 3.3. The autocorrelation of
the signal shows a clear spike at around 0.1 s due to wind shake in the telescope. A
smaller signal is seen at a period of around 27 s. This is due to some unidentified, likely
mechanical, noise source in the telescope system.

Figure 3.3: Autocorrelation of signal from high mass X-ray binary 4U1907+09.

3.4.2 Software Correlators

Hardware correlators have the advantage of being very fast and relatively affordable.
However, they also have some significant drawbacks. The most obvious one is that
photon series are not saved, only the correlation functions. This means that one discards
a certain amount of information, for example everything that is contained in the higher-
order correlations.

In theory, therefore, storing all the output from the detectors and calculating the
correlation functions “offline” is highly desirable [34]. Software correlators are not a new
concept, and are not very complicated to implement (in principle, all that is needed is a
computer program that evaluates Eq. 3.1). However, the amount of data processing and
storage required adds significant costs to the system.
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As an example, a system of 50 telescopes, each with a detector running at 10 MHz
would produce data rates of 500 MB/s (assuming one byte per detected photon) and over
14 TB of raw data for an 8 hour observation run. On top of this there are 50·49/2 = 1229
second-order correlations, 50 · 49 · 48/(3 · 2) = 19600 third-order correlations etc to be
calculated. The bandwidth and storage required are high but not unrealistically so, but
the calculation of the correlation functions will require a great amount of computer power
to be feasible in any reasonable amount of time. Even if the calculations could be done
with the same speed as a dedicated hardware correlator (i.e. 1 h computing time for 1 h
of data), the second-order correlations alone would take 1229 · 8 h = 409 days.

However, very similar issues are currently being faced, and overcome, for example at
the LOFAR project [35], which aims to connect a great number of very simple radio an-
tennas to form a gigantic “software telescope”. While hardware correlators are probably
the least complicated and most cost-effective way of realizing an intensity interferometry
system at this stage, technology developed in projects such as LOFAR combined with a
few more years of Moore’s law will likely make software correlation the way of the future.

3.4.3 Data Extraction and Image Reconstruction

The “raw” output from an intensity interferometer is a set of correlations for a number of
points in the Fourier plane (see Sec. 4.4.2). Each such correlation is directly proportional
to the magnitude of the Fourier transform of the intensity distribution of the target.

As discussed above, a data handling system could work either using hardware corre-
lators, saving only correlations, or by saving the complete photon recording history and
doing the correlations offline in software. The first approach would be fast, simple, and
relatively inexpensive but would throw away some potentially useful information, while
the second approach would retain all recorded information at the cost of highly complex
and expensive data handling systems.

Once the correlations – i.e. the Fourier magnitude – are obtained, there is the question
on how to interpret the data. At the Narrabri SII, data were used exclusively for model
fitting [15]. In most cases the model was a uniform circular disk, and the data points
were used to find the radius of the disk, i.e. θ in Eq. (2.15).

Modern phase interferometry often work in a similar fashion. In principle, model-
independent image reconstruction is possible here since the full Fourier transform (in-
cluding the phase) is measured, but since the sampling of the Fourier plane if often very
sparse, better results are often obtained by making assumptions about the target.

Upcoming Cherenkov telescope arrays such as the CTA will consist of up to a hundred
telescopes, meaning several thousands of baselines (as contrasted by the single baseline
of the Narrabri interferometer). Using Earth rotation synthesis (Sec. 4.4.2) with such a
system makes it possible to get a very dense sampling of the (u, v)-plane. It is easy to
believe that the lack of phase information makes model-independent image reconstruction
impossible for intensity interferometry. However, this is not the case, and in Sec. 4.5 two
different methods for image reconstruction from SII data are presented.
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Chapter 4

Computer Simulations

One of the main goals of this project was to develop a computer program to simulate
intensity interferometry observations. In this section, a method for simulating the measured
intensity correlation between pairs of telescopes is derived, and a complete simulation software
is presented. Different methods for image reconstruction from the measured correlation are
discussed, and finally the simulation software is applied to a set of candidate configurations
for the upcoming Cherenkov Telescope Array (CTA) to evaluate the performance of these if
used for intensity interferometry.

4.1 Theory

We begin by considering only correlations measured by two telescopes.
A two-telescope intensity interferometer will measure the second-order correlation

function �I(r1, t1)I(r2, t1)�/(�I(r1, t1)��I(r2, t1)�) where I(r1, t) and I(r2, t) are the in-
tensities measured by the telescopes at r1 and r2 respectively and angle brackets denote
time average.

If we assume that we detect the light using some photon-counting detector with a
(small) sample time ∆t, then the probability of detecting a photon within a time interval
∆t is [19], as we have already seen:

P1(r1) = α�I(r1, t)�∆t, (4.1)

where α is the quantum efficiency of the detector. We assume here that the light field
fluctuates on a timescale much less than ∆t, so that �I(t)� is independent of t. It is also
necessary that the intensity is low enough that the resulting probability P1 � 1, or the
detector will not be in its linear regime.

For two independent detectors, the probability of detecting one photon in each during
the same time interval will be:

P2(r1, r2, t1, t2,∆t) = α1α2�I(r1, t1)I(r2, t2)�∆t
2
. (4.2)

That is, the probability of joint detections depends on the correlation of the two field
intensities. If the statistical properties of the fields are known, it is possible to obtain a
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relationship between the correlation of the fields and the coherence function of the light.
In particular, for thermal light the fields follow Gaussian statistics, and the correlation
function can be shown to be [19]:

�I1(t1)I2(t2)� = �I1(t1)��I2(t2)�[1 + |γ12(t2 − t1)|2] (4.3)

for polarized light, where I1(t) = I(r1, t) and I2(t) = I(r2, t) and γ12(τ) is the complex
degree of coherence between the points r1 and r2 for time delay τ ≡ t2 − t1. Inserting
into equation (4.2) we obtain a new expression for the joint detection probability per
time:

P2(r1, r2, τ) = α1α2�I1(t)��I2(t+ τ)�[1 + |γ12(τ)|2]. (4.4)

Note here that since the light fields are stationary, the terms �I1(t)� and �I2(t)� will
not depend on the time and can be regarded as constants. In the future we will write
�I1� ≡ �I1(t)�.

It is clear that we need to know two things to simulate a measurement process:

1. How to calculate the coherence function γ from the stellar intensity distribution.

2. How the photon arrival time statistics depend on γ.

4.1.1 Stellar Coherence Functions

The relation between the stellar surface intensity distribution and the measured correla-
tion (or interferometric visibility) is fundamental to interferometry, both optical and in
radio wavelengths. Two telescopes separated by a vector (x, y) in a plane perpendicular
to the line of sight measure the coherence function for a point in the Fourier-plane, or
(u, v)-plane, where x = λu and y = λv. The coherence function is the Fourier transform
of the stellar brightness distribution I(l,m) [8]:

γ(u, v) =

��
I(l,m)e−2iπ(ul+vm) dl dm. (4.5)

Here, l and m are dimensionless (angular) coordinates on the stellar surface, and the
integration is to be taken over the entire sky.

For our purposes, the brightness distribution will be a discrete bitmap where I(l,m)
corresponds to the pixel value at pixel (l,m). The integral then takes on the form of a
sum:

γ(u, v) ≈
�

l

�

m

I(l,m)e−2iπ(ul+vm)∆l∆m. (4.6)

The coherence function is now a discrete Fourier transform, and will thus repeat itself
with regular intervals. This can be a problem for measurements at long baselines, but it
is easily avoided by using a sufficiently high resolution image.
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Figure 4.1: Normalized coherence function of a circular uniform disk of angular diameter θ = 0.5 mas,
calculated using equation (4.6). The z−axis shows |γ|2. Compare to the one-dimensional plots in Fig.
2.4.

4.1.2 Photon Statistics

We consider now a situation where two photon-counters A and B are measuring light
from a star. The setup is such that there is no time delay between the two detectors
– a plane wavefront will strike them both at exactly the same time. The intensities at
each detector are IA(t) and IB(t) respectively. For each small time interval ∆t there is
a probability PA that detector A will detect a photon, a probability PB that detector B
will detect one and a probability PAB that they both will detect one photon.

Equation (4.1) tells us that

PA = αA�IA�∆t

PB = αB�IB�∆t

We know from Eq. (4.4) that PAB will be slightly larger than PAPB if γ �= 0. Since we
are measuring over a time interval ∆t which is generally much longer than the coherence
time of the light, we will need to integrate the probability over a detection time interval
to obtain the probability of a joint detection:

P2(rA, rB,∆t) =

�
αAαB�IA��IB�

� ∆t/2

−∆t/2
(1 + |γAB(τ)|2) dτ

�
∆t. (4.7)
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If the light is cross-spectrally pure1, the coherence term |γAB(t)|2 can be factorized into
a spatial and a temporal part (see [19]):

|γAB(τ)|2 = |γAB(0)|2|γ(τ)|2. (4.8)

The spatial part |γAB(0)|2 follows from the geometric layout of the telescopes and the
spatial intensity distribution of the target. The temporal part |γ(τ)|2 is unity for τ = 0
and negligibly small for values larger than the coherence time of the light, τc. Thus, if
∆t � τc it is reasonable [19] to set:

� ∆t/2

−∆t/2
|γ(τ)|2 dτ ≈

� ∞

−∞
|γ(τ)|2 dτ = τc. (4.9)

So the probability of a joint detection in A and B within a time interval ∆t will be:

PAB = αAαB�IA��IB�[1 + |γAB|2
τc

∆t
]∆t

2 =

= PAPB + αAαB�IA��IB�|γAB|2
τc

∆t
∆t

2
, (4.10)

where we have written γAB(0) ≡ γAB for brevity. We see that the joint detection
probability will be PAPB plus a factor that depends on the coherence.

4.2 An Intensity Interferometry Simulation Algorithm

We assume that we have a situation with photon counters that can only detect one or
zero photons in each time interval. The raw correlation �IAIB� will then simply be the
number of coincidences, i.e. the number of times when both detectors detect a photon
simultaneously. The normalized correlation function can then be written:

g
(2) =

NAB

NANB
N, (4.11)

where NA and NB are the number of counts in detectors A and B respectively, NAB

is the number of coincidences and N = T/∆t (again, T is the total integration time,
and ∆t is the time resolution of the detectors) is the number of sampled time intervals.
We can treat a measurement of the second-degree coherence as an experiment where
three random numbers NA, NB and NAB are drawn from three different probability
distributions.

For each time interval of length ∆t, we know from above that there is a probability
PA of detection in A, a probability PB of detection in B and a probability PAB of a joint
detection. It then follows that NA, NB and NAB will follow Poisson distributions with
mean values λA = PA ·N , λB = PB ·N and λAB = NAB ·N respectively.

1Cross-spectral purity is a concept that was introduced by Mandel. In short, it means that the spectral
distribution of the light at some point in the plane of observation is of the same form as the spectral
distribution at the pinholes in a double slit type experiment. The full details can be found in [19].
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However, since we are normally dealing with very large values for N , it is reasonable
to approximate these as normal distributions with mean value µA = λA and standard
deviation σA =

√
µA and similarly for NB and NAB.

We can then simulate a measurement by an intensity interferometer using the follow-
ing method:

1. Start with an intensity distribution of a star and use this to calculate the spatial
coherence, γAB.

2. Calculate the received intensities �IA� and �IB� from the properties of the star and
atmosphere.

3. Use γAB to calculate the probabilities PA, PB and PAB as described above.

4. Draw three random numbers NA, NB and NAB from three normal distributions,
as described above.

5. The ’measured’ correlation will then be g
(2) = NAB

NANB
N .

4.2.1 Signal-to-Noise Estimates

Since the distributions of NA, NB and NAB are known, it is in principle possible to
derive a probability distribution for the correlation itself, which would directly give an
estimation of the signal-to-noise. However, the mathematics become very awkward, and
we have not been able to find an analytical form for this expression.

A simpler (although more time consuming) approach is to use a Monte-Carlo method.
A large number n of correlation measurements are performed for zero baseline and stored
in a list C1. A second list C2 is then produced in the same way for a very long baseline
(zero coherence). The vector C = C1−C2 is then regarded as the signal, and the signal-
to-noise ratio taken as the mean of the signal divided by the standard deviation of the
signal:

S

N
=

C̄�
1
n

�n
i=1(Ci − C̄)2

. (4.12)

4.3 Three-Telescope Measurements

Normally, measurements would only be made for two telescopes at a time. Even when
using arrays of many telescopes, these are typically correlated in pairs. There are however
some applications for higher-order correlations (e.g. [36]), and the method above can
be generalized to correlations of arbitrary degree, although the mathematics quickly
get a little awkward for higher degrees. Below, we derive a method for simulating a
measurement of the third-order correlation, g(3), by a system of three telescopes. This
section is not essential to the rest of the project, and the results here are not used in the
simulations; it is included mostly to show how these higher-order could potentially be
studied, should one want to in the future. It is possible to skip to Sec. 4.4.
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In analogy with Eq. (4.2), the probability of a simultaneous detection in three detec-
tors will be

P3(r1, r2, r3, t1, t2, t3∆t) = α1α2α3�I(r1, t1)I(r2, t2)I(r3, t3)�∆t
3
. (4.13)

What we need then, is a way of expressing the third-order correlation, �I(r1, t1)I(r2, t2)I(r3, t3)�,
in terms of the individual (mean) intensities and the complex degree of coherence.

We start by treating the (polarized) light field as an analytic signal V (r, t) with zero
mean. Following [19], we then define a correlation function of order (M,N) as:

Γ(M,N)(x1, x2, . . . ,xM ; y1, y2, . . . , yN ) =

�V ∗(x1)V
∗(x2) . . . V

∗(xM )V (y1)V (y2) . . . V (yN )�, (4.14)

where xm and ym are space-time points, xm = (rm, tm). We are mainly interested in
correlations where M = N , and we will set Γ(M) ≡ Γ(M,M).

If the fields are Gaussian, it is possible to use the Gaussian moment theorem [19] to
express higher-order correlations as products of first-order correlations:

Γ(M)(x1, x2, . . . , xM ; y1, y2, . . . , yM ) =
�

All permutations

Γ(1)(xi1, yj1)Γ
(1)(xi2, yj2) . . .Γ

(1)(xiM , yjM ). (4.15)

The subscripts ip and jp are integers in the range 1 ≤ ip, jp ≤ M and the summation is
to be taken over the M ! possible permutations of ip and jp.

For the third-order correlation this becomes:

Γ(3)(x1, x2, x3; y1, y2, y3) =

Γ(1)(x1, y1)Γ
(1)(x2, y2)Γ

(1)(x3, y3) + Γ(1)(x1, y2)Γ
(1)(x2, y3)Γ

(1)(x3, y1)+

Γ(1)(x1, y3)Γ
(1)(x2, y1)Γ

(1)(x3, y2) + Γ(1)(x1, y1)Γ
(1)(x2, y3)Γ

(1)(x3, y2)+

Γ(1)(x1, y2)Γ
(1)(x2, y1)Γ

(1)(x3, y3) + Γ(1)(x1, y3)Γ
(1)(x2, y2)Γ

(1)(x3, y1).

Since we only consider measurements in three points simultaneously, we now put xi =
yi; i = 1, 2, 3. We also note that

Γ(1)(xm, xm) = �V ∗(xm)V (xm)� = �I(xm)�

and that

Γ(1)(xm, xn) = [Γ(1)(xn, xm)]∗ ⇒ Γ(1)(xm, xn)Γ
(1)(xn, xm) = |Γ(1)(xm, xn)|2.

We then get:

Γ(3)(x1, x2, x3) =

�I(x1)��I(x2)��I(x3)�
+ �I(x1)�|Γ(1)(x2, x3)|2 + �I(x2)�|Γ(1)(x1, x3)|2 + �I(x3)�|Γ(1)(x1, x2)|2

+ Γ(1)(x1, x2)Γ
(1)(x2, x3)Γ

(1)(x3, x1)

+ Γ(1)(x2, x1)Γ
(1)(x3, x2)Γ

(1)(x1, x3).
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Finally, we replace the correlation functions with the normalized version defined by:

γ
(1)(x1, x2) ≡

Γ(1)(x1, x2)�
�I(x1)�)

�
�I(x1)�)

.

After some algebraic manipulation, this results in the following:

Γ(3)(x1,x2, x3) =

�I(x1)��I(x2)��I(x3)�[1 + |γ(1)(x1, x2)|2 + |γ(1)(x2, x3)|2

|γ(1)(x1, x3)|2 + 2Re(γ(1)(x1, x2)γ
(1)(x2, x3)γ

(1)(x3, x1))].

Using Eq. (4.13) we end up with an expression for the probability of a triple detection
within a time interval ∆t (cf. Eq. (4.7)):

P3(r1,r2, r3,∆t) = (4.16)

α1α2α3�I1(t)��I2(t+ τ1)��I2(t+ τ2)�
� ∆t/2

−∆t/2

� ∆t/2

−∆t/2
[1+

|γ12(τ1)|2 + |γ23(τ2 − τ1)|2 + |γ13(τ2)|2+
2Re(γ12(τ1)γ13(τ2)γ23(τ2 − τ1))] dτ1 dτ2 ·∆t.

The squared coherence terms inside the integral can be treated as before (see Eq.
(4.9)):

� ∆t/2

−∆t/2
|γ12(τ)|2 dτ = |γ12|2

� ∞

−∞
|γ(τ)|2 dτ ≈ |γ12|2τc. (4.17)

|γ(τ)|2 will have a bell-shaped form symmetric around the origin. Thus, if we change
the argument to, say, τ2 − τ1, this only translates the curve along the τ -axis, it does not
affect the value of the indefinite integral in (4.17).

The last term inside the integral in (4.16) requires some extra thought. We begin by
splitting the coherence terms into their spatial and temporal parts, so that the last part
of the integral becomes:

� ∆t/2

−∆t/2

� ∆t/2

−∆t/2
Re[γ12γ13γ23γ(τ1)γ(τ2)γ(τ2 − τ1)] dτ1 dτ2 (4.18)

The important part here is the temporal coherence γ(τ). For values of τ larger than
the coherence time τc, γ(τ) can be considered to be zero, so we need only integrate over
a time interval where |τ | < τc. For smaller values of τ , γ(τ) is approximately periodic.
According to [19], it can be written as:

γ(τ) = e
−2πiν̄τ

, (4.19)

where ν̄ is the mean frequency of the light.
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The integral (4.18) then becomes:

� ∆t/2

−∆t/2

� ∆t/2

−∆t/2
Re[γ12(0)γ13(0)γ23(0)e

−4iπν̄(τ1+τ2+τ2−τ1 ] dτ1 dτ2 = (4.20)

= ∆t

� ∆t/2

−∆t/2
Re[γ12(0)γ13(0)γ23(0)e

−4iπν̄τ2 ] dτ2.

All of this gives us then the final expression for the probability of a triple detection:

P3(r1, r2, r3,∆t) = α1α2α3�I1��I2��I2�[1+ (4.21)

τc/∆t(|γ12|2 + |γ13|2 + |γ23|2)+

2/∆t

� τc

−τc

Re(γ12γ23γ32e
−4πν̄τ ) dτ ]∆t

3
.

The last integral is hard to evaluate analytically, but there are no reasons why it should
not be possible to evaluate it numerically.

4.4 Implementation

The method for simulations described in Sec. 4.2 was implemented as a Python program,
using numpy 2 for numerical calculations. The program takes as input information about
a star (a bitmap image, angular diameter, apparent V magnitude and effective tem-
perature), information about the instrumentation (detector sample time and quantum
efficiency, telescope diameter, filter wavelength and bandwidth), a baseline in (x, y)-
coordinates and an integration time. From this it calculates the coherence function
and the received intensity from the star. It then scales the intensity by calculating the
intensity that would equal one photon per ∆t, i.e. I0 = hc/(λf∆t), where λf is the
filter wavelength, and expressing the received intensity as a fraction of this. Finally,
it produces a measured correlation and a signal-to-noise ratio according to the method
described above. The coherence time of the light is taken to be:

τc =
1

∆νf
≈

λ
2
f

c∆λf
, (4.22)

where ∆λf is the filter bandwidth. This assumes that the light has a spectral density
that is approximately constant over the filter passband.

Figures 4.2 and 4.3 show two sample simulations of different surface intensity dis-
tributions and with varying integration times (given for each data point). Both input
images were taken to be 1 mas across. The apparent V magnitude was 6 and the effective
temperature 13000 K. The simulations where done for a telescope diameter of 15 m, a
550 nm filter of 1 nm bandwidth and a detector with a sampling time of 0.1 ns and a
quantum efficiency of 70 %.

2http://www.numpy.scipy.org

54



4.4. Implementation 55

Figure 4.2: Simulated measurements of a uniform circular stellar disk. Input image, 1 mas across, is
shown in the top-left corner.
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Figure 4.3: Simulated measurements of a binary system. Input image, 1 mas across, is shown in the
top-left corner.
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4.4.1 Comparison with Results from Narrabri

As a sanity check, it is interesting to see that the simulations give results that are
comparable to those obtained by Hanbury Brown et al. at Narrabri [15]. Figure 4.4(b)
shows the output from a simulation of a circular uniform stellar disk with properties
corresponding to those of Sirius (θ = 5.6 mas, Teff = 10000 K, mV = −1.46). The
simulation was done for two 6.5 m reflectors, at 450 nm with a spectral bandwidth
of 1 nm. The detectors were taken to have a quantum efficiency of 10 % and a time
resolution of 10 ns (i.e. an electrical bandwidth of 100 MHz), and the the observation
time was 40 hours for each data point.

(a) Measurements by Hanbury Brown et al. [37] (b) Simulated measurements.

Figure 4.4: Observations of Sirius by Hanbury Brown et al. as compared to simulations with similar
input parameters. The lines show the theoretical correlation curves. Error bars in the simulation plot
were calculated using Eq. (4.12).

The simulation parameters were chosen to be as similar as possible to those used in
Fig. 4.4(a). As we see, the results look very similar (there is a small difference in the
shape of the correlation curves which is due to the more sophisticated model used by
Hanbury Brown et al., incorporating effects such as limb darkening; for the simulations
a simple circular uniform disk was used).

It should be noted, however, that it is difficult to make exact comparisons between
these simulations and the measurements from Narrabri. For a bright star such as Sirius,
digital detectors will start to saturate (i.e. they approach or exceed one photon per time
resolution interval) and some sort of light attenuation device will have to be used, unless
the spectral filter is very narrow. Therefore, the filter bandwidth will affect the signal-
to-noise for very bright stars, in a way that may be quite different from the situation
when analog detectors are used (as was the case at Narrabri).

All in all, a direct numerical comparison of simulation results with the measurements
at Narrabri is not very meaningful, but we note from Fig. 4.4.1 that the results look
reasonable, and are at least not off by orders of magnitude.
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4.4.2 Telescope Arrays and Rotation of the Earth

The simulation code described in the previous section only works for two telescopes with
the star fixed at Zenith (which of course is unrealistic). In a real-world scenario, we will
usually have an array of telescopes, which will usually be correlated in pairs. An array
consisting of n telescopes will give rise to n(n− 1)/2 pairs, or baselines, though they are
not necessarily all unique. Each such baseline represents a point in the (u, v)- (Fourier-)
plane.

One way of increasing the coverage of the (u, v)-plane is to move one or several of
the telescopes around. This is what was done at the Narrabri interferometer. However,
making a telescope mobile greatly increases the technical difficulties in its construction.
A different approach is so-called Earth rotation synthesis. Due to the Earth’s rotation,
stars will move across the sky, and give rise to many different projected baselines, see Fig.
4.5. Making use of this allows one to measure a great number of points in the uv-plane.

Figure 4.5: As the Earth rotates, the projected baseline will change. Each such projected baseline
represents a point in the Fourier plane. By having many pairs of telescopes, it is possible to cover a large
part of the Fourier plane simply by making use of the Earth’s rotation.

A baseline can be expressed as a vector B = (Bnorth, Beast, Bup) in an Earth-centric
coordinate system. Here, Bnorth and Beast denote the telescope separations along the
north-south and east-west directions respectively. Bup is the difference in elevation be-
tween the telescopes (so if the telescopes are located on a flat field, Bup = 0). As the
target of observation moves along the sky due to the Earth’s rotation, the projected
baseline is [38]:

Bp = P




Bnorth

Beast

Bup



 (4.23)

where

P =




− sin l sinh cosh cos l sinh

sin l cosh sin δ + cos l cos δ sinh sin δ − cos l cosh sin δ + sin l cos δ
− sin l cosh cos δ + cos l sin δ − sinh cos δ cos l cosh cos δ + sin l sin δ





Here h is the hour angle of the star (h=0 for the southern meridian), l is the latitude
of the telescope and δ is the declination of the star. From this we get the point in the
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Fourier plane as: 


u

v

w



 =
Bp

λ
. (4.24)

The w component will be directed along the line of sight towards the target of observation.
Thus, it does not affect the projected baseline, but is just a measure of the optical path
difference between the two telescopes. In a real-world scenario, a time-delay needs to be
introduced into one telescope whenever w �= 0.

As h increases, a star will trace out an ellipse in the (u, v)-plane. The coherence
in a point (u, v) will always be the same as in (−u,−v), so each baseline will give
measurements for two points in the (u, v)-plane.

In these simulations, the ellipses traced out were treated as series of discrete points,
and the methods described above were then applied to each such point. As an example,
Fig. 4.6 shows the (u, v)-coverage of the VERITAS 4-telescope array as a star moves
across the sky through the zenith, as measured during an 8 hour period.

Figure 4.6: Simulated Fourier plane coverage of the VERITAS array for an 8 hour period.

With the method for simulating measured correlations and calculating the (u, v)-
coverage of a telescope array described above, it is now possible to simulate a realistic
measurement of a real astronomical target with a large scale telescope array. A pristine
image of the target is fed to the program in the form of a bitmap image and the output
is a large number of data points, spread out over the Fourier plane, each one containing
the measured correlation function for a specific baseline.
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These points are samples from the magnitude of the two-dimensional Fourier trans-
form of the target surface brightness distribution. Working with a discrete set of non-
uniformly spread out points is not very convenient. For any sort of data analysis, it
would be much better to have the Fourier magnitude on a dense and uniform grid (ap-
proximating a continuous function). There are several ways to solve this problem, but
one of the most straightforward is to make a triangulation and a linear interpolation.

A triangulation is a connection of a set of points into triangles, see Fig. 4.7 for an
example. A commonly used triangulation is the so-called Delaunay triangulation, which
connects the points in such a way as to maximize the minimum angle of the triangles.

Once a triangulation is made, it is possible to evaluate the Fourier magnitude any-
where in the plane. Because each triangle specifies a plane, one can perform a linear
interpolation to find the value of the function in any point. Several algorithms for per-
forming a Delaunay triangulation exist (see e.g. [39]), but fortunately, the numerical
package numpy, which is used here, has its own built-in function griddata which trian-
gulates a set of points and interpolates over an evenly spaced grid.

The structure and function of this full simulation code is outlined in Fig. 4.9.

Figure 4.7: Example of a Delaunay triangulation of a set of points randomly scattered in a plane.

Figure 4.8 shows an example of the output from the program. The simulated target
is a binary star, measured with one of the envisioned CTA array configurations. Each
point in the plot is a correlation measurement, and the underlying contour plot is simply
the interpolation of all the points, resulting from the Delaunay triangulation.

4.5 Image Reconstruction

4.5.1 Cauchy-Riemann Image Reconstruction

Since only the magnitude of the Fourier transform of the intensity distribution is mea-
sured in intensity interferometry, images can not be obtained directly from the van Cittert-
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Figure 4.8: Simulated measurement of a binary star with a CTA-type telescope array. The color scale
shows normalized correlation. Each point represents one baseline. In reality, these would not be discrete
points, but would be parts of ellipses, traced out in the Fourier plane as the target moves across the sky.
However, in these simulations, the ellipses are treated as consisting of many discrete points.
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Figure 4.9: Rough outline of the simulation software.
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Zernicke theorem (2.20). However, there exist a number of methods for recovering the
phase of a complex function when only the magnitude is known.

A method of phase retrieval specifically intended for intensity interferometry was
proposed by Holmes and Belen’kii [40]. The basic ideas behind this method are outlined
below, but interested readers are referred to [40] for the details.

Starting from Eq. (2.19), the Fourier transform Γ(u, v) can be written as:

Γ(u, v) =

��
Iν(l,m)e−2πi(ul+vm) dl dm =

= ∆l∆m

�

j,k

I(j∆θ, j∆θ)zjuz
k
v + �(u, v), (4.25)

where zu = exp(−2πiu∆θ), zv = exp(−2πiv∆θ) and �(u, v) is the error from using
a discrete Fourier transform. Because the Fourier transform is a polynomial in the
two complex variables zu and zv, it is also an analytical function, and so the Cauchy-
Riemann equations apply. Setting Γ = R exp(iΦ) and zu = ξ + iψ (or equivalently for
zv) the Cauchy-Riemann equations give:

∂[R exp(iΦ)]

∂ξ
=

∂[R exp(iΦ)]

∂(iΨ)
. (4.26)

By splitting this up in real and imaginary parts and equating these, one obtains:

∂Φ

∂ψ
=

∂s

∂ξ
(4.27)

∂Φ

∂ξ
= − ∂s

∂ψ
(4.28)

where s ≡ ln(R). These two equations give a relation between the phase Φ and the
magnitude R. Since the magnitude is sampled at discrete points, this must be written
in finite form:

∆Φ = (∆s/∆ξ)∆ψ (4.29)

∆Φ = −(∆s/∆ψ)∆ξ. (4.30)

A further constraint on the phase is given by the fact that it satisfies Laplace’s
equation in the (ξ,ψ) plane:

∂
2Φ

∂ξ2
+

∂
2Φ

∂Ψ2
= 0. (4.31)

A problem here is the presence of zeros in the magnitude which will give rise to
singularities, since s = ln(R) will not be defined at these points. In practice however,
one can usually get around this by a clever sampling of the Fourier plane (but even near-
zeros will introduce errors to the reconstructed phase). Most of the time, the phase of
an image can be reconstructed with only a translational and mirror-flip ambuigity [40].

Reconstruction of two-dimensional images from intensity interferometry measure-
ments are currently being actively researched at the University of Utah [41]. A work-
in-progress version of image reconstruction software developed by Paul Nuñez was used
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to reconstruct images from simulated II data; some results from this are shown later on
in Secs. 4.6 and 5.5. It should be stressed however, that by the time of this writing,
the image reconstruction software was not in a “finished” state, and so imperfections
in the reconstruction probably do not represent fundamental limitations in the Cauchy-
Riemann method, but may simply be due to practical issues with the implementation.

4.5.2 Genetic Algorithm Image Reconstruction

About Genetic Algorithms

As part of this project, a different method for image reconstruction was tried out, using
a genetic algorithm. Genetic algorithms (GAs) are a type of computational methods
which utilize concepts from evolutionary biology to obtain solutions to problems such as
optimization problems (see e.g. [42]), and are a subset of the much larger field of evolu-
tionary computing. These types of algorithms are particularly useful for problems with
a large solution space where there exists a way of assessing the quality of an individual
solution, but where there is no easy way to arrive at the best solution.

An example of a problem that lends itself well to a GA is the well-known Travelling
Salesman Problem (given a number of cities on a map, find the shortest route connecting
them all visiting each city only once). The number of possible solutions is large (n!/2 for
n cities), it is possible to compute the quality of a given solution by simply calculating
the length of the route, but there is no easy way of determining the shortest route.

Taking its terminology largely from biology, GAs treat each solution as an “individ-
ual” with a genome, which in turn gives rise to a phenotype. A set of individuals – a
population – is created, and new generations are obtained by repeatedly selecting the
best individuals and cross-breeding and mutating them. In general, a GA consists of the
following:

• A method for encoding a solution as a chromosome in some suitable format. A
common format is a binary string, but other encodings, such as matrices can also
be used.

• A fitness function, f(x), which gives the fitness or quality of chromosome (solution)
x.

• A method for mutating (i.e. randomly altering) a chromosome. In the case of a
binary string encoding, this might be as simple as flipping a few of the bits.

• A method for crossover – the creation of a new individual from two parents. For
binary strings this is often done by splitting the strings at some random point and
splicing the first part of the first string with the second part of the second one.

• A selection method for selecting parents from a population. Usually individuals
are assigned a selection probability proportional to its fitness.

Typically a GA starts by generating a first generation of some size. The fitness
function is then calculated for each individual. New generations are then formed by
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using the selection method to select two parents and doing a crossover to produce a new
individual until the new generation reaches a sufficient size. For each new individual
there is also a probability (usually fairly low) of a mutation occurring. Often, so-called
elitism is also applied, where the best individuals are carried over directly to the new
generation so as not to lose any good solutions.

The iteration process can then be continued for a set number of iterations or until a
sufficient fitness level is reached. When done, the best individual of the last generation
is taken as the solution to the problem.

Application to Image Reconstruction

In the case of image reconstruction from the Fourier magnitude the solution space is the
set of all possible images. If the image size is fixed to, say, 100x100 pixels and each pixel
is represented by a byte, i.e., 256 possible (gray scale) values, we end up with 25510000

possible solutions. The fitness function should tell us how well the Fourier magnitude of
the solution matches the observed Fourier magnitude.

Using GAs for image reconstruction from Fourier magnitudes seems to be an area
that is not very well explored. A paper by Yoshimori et al. from 2001 [43] discusses
a method for applying genetic algorithms to other phase reconstruction algorithms to
prevent these from getting stuck at local minima. This method seems to work very well
at least for their test cases, but it assumes that the Fourier magnitude is fully known
rather than sparsely sampled.

Here, a few different somewhat simplified versions of the algorithm of Yoshimori et
al. were implemented and tried out on simulated II data. One implementation was done
using the free GA package pyevolve3, and another was written in Python from scratch
in an attempt to parallelize the code and take advantage of multi-core CPUs. No big
qualitative difference was visible in the results from these two implementations.

Images were encoded simply as 100x100 matrices with each value being an integer
between 0 and 255. Other encodings, such as binary strings could also be used, but
since a major idea behind GAs is to transfer “useful building blocks” of solutions to later
generations [42] it makes more sense to have a two-dimensional encoding. This is also
the approach used in [43].

The crossover mechanism can also be implemented in a straightforward manner. A
position along the parent image’s vertical axis is chosen at random and everything above
this location is taken from the first parent, while everything below is taken from the
second parent.

When it comes to the mutation method, there are many different possibilities, and
a few different approaches were tried out. The obvious and most general way is to
randomly change the values of a few individual pixels. This was found to work decently
for small images (around 10x10 pixels), but the algorithm tended to converge very slowly
for higher resolution images. A different approach where shapes such as rectangles and
circles of random sizes and (possibly negative) grayscale values were “painted” onto the

3http://pyevolve.sourceforge.net/
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image proved more successful. This method did however tend to produce some ugly
artifacts in the images, as is clearly seen in the chopped-off part of the right star in Fig.
4.11(b).

For the selection of parents, a method known as Roulette Wheel Selection was used.
In this method, the probability p of a chromosome x with fitness f(x) of being selected
is p = f(x)/

�
i f(xi). This means that even chromosomes with a lower fitness have

a chance of being selected, which in theory should minimize the risk of the algorithm
getting stuck in a local minimum. In addition, a strictly elitistic version, where the best
parents were always selected, was also tried out 4. It was found that, at least for the test
cases used here, the choice of selection method did not matter much.

Lastly, there’s the fitness function. From the simulated observations we have values
of the Fourier magnitude in a number of points scattered across the (u, v)-plane. From
these values one can interpolate and the the Fourier magnitude evaluated over a regular
grid (see Sec. 4.4.2). One suitable choice of fitness function is f(x) = |Fx −Fobs|, where
Fx is the Fourier magnitude of the image x and Fobs is the observed (interpolated)
Fourier magnitude. Note that for this choice of fitness function, a lower value of f(x)
means a better solution. In practice, the reciprocal value of the sum of residuals was
used so that higher values means better fitness. This simplifies the implementation of
the Roulette wheel selection.

Results

Figures 4.10 and 4.11 shows two examples of GA reconstructions – a binary star and
a circular disk observed with a CTA-like array. The simulations did not include any
measurement noise, the only imperfections in the observed Fourier magnitude was from
the sparse sampling of the (u, v)-plane.

The results are far from perfect, but the general shape and size of the pristine images
are reconstructed fairly well, and it is clear that it is possible to reconstruct images from
II data with this method.

There are some serious drawbacks to the usage of GAs for image reconstruction. They
are computationally heavy and take a long time (several hours in most of the examples
tried here) to finish. Also, one is not guaranteed to end up with the best solution.

However, there are also some appealing aspects. These types of algorithms are con-
ceptually simple and require very little mathematical knowledge to implement. This
means that it is easy to replace parts of the code and try out different encodings, differ-
ent mutation methods, different fitness functions etc.

One niche where GAs might fit in is as a hybrid between model-fitting and true image
reconstruction. Images could be constrained in various ways – for example an image could
be assumed to consist of 0-n ellipses, 0-k rectangles etc, each with different positions,
sizes and intensities. Mutating an image would then mean altering not individual pixel
values, but rather the properties of the shapes constituting the image. This would of

4With this selection method, the algorithm is no longer a GA in a strict sense, but rather a “Random
Search Algorithm”.

66



4.5. Image Reconstruction 67

(a) Pristine image (b) Reconstructed image

(c) Observed Fourier log-magnitude (d) Fourier log-magnitude of reconstructed
image

(e) Evolution of fitness function.

Figure 4.10: GA reconstruction of a binary star, observed with a CTA-like telescope array. Note that
Fourier magnitudes are invariant to translation, so there’s no way to reconstruct the exact position of
the target. Figure 4.11(e) shows the improvement of the fitness function (difference between observed
and reconstructed Fourier magnitude) as the algorithm progresses.
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(a) Pristine image (b) Reconstructed image

(c) Observed Fourier log-magnitude (d) Fourier log-magnitude of reconstructed
image

(e) Evolution of fitness function.

Figure 4.11: GA reconstruction of a uniform circular disk, observed with a CTA-like telescope array.
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course make the reconstruction less general and more dependent on assumptions, but it
would bring down the number of degrees of freedom by several orders of magnitude.

4.6 CTA Telescope Array Layouts

4.6.1 About CTA and Telescope Placement

The upcoming European CTA (Cherenkov Telescope Array, see Sec. 3.2.1) has the poten-
tial to become the first modern intensity interferometer to conduct scientifically interest-
ing studies. The final design for CTA when it comes to telescope sizes and placement has
yet to be finalized, and a number of candidate configurations are currently being evalu-
ated with regard to their performance in the γ-ray regime, see Fig. 4.14. However, the
relative performance of these candidate arrays for γ-ray astronomy (which will of course
be the main function of CTA) is not necessarily the same as for intensity interferometry.

Optimizing the telescope placement in an interferometric array is a highly complex
and widely studied problem (see e.g. [44], [45]). In short, the situation can be summarized
as following: each separation between a pair of telescopes (a baseline) corresponds to one
point in the Fourier plane – long baselines provide high-frequency components (i.e. small
details in the target of study), and short baselines provide low-frequency components (i.e.
larger field of view). An array with n telescopes will have n(n − 1)/2 baselines, though
these are not all necessarily unique. The sampling of the Fourier plane is further affected
by the Earth’s rotation, the latitude of the array and the declination of the observed
object, following Eq. (4.23).

The optimal telescope configuration is thus dependent upon the task at hand. If the
objective is to study very small structures, then long baselines are required. If, on the
other hand, one wishes to measure large-scale structures, shorter baselines are necessary.
For a general-purpose array, it is usually preferable to have a healthy mixture of short
and long baselines, sampling the (u, v)-plane as uniformly as possible. In any case it is
almost always best to avoid regularly spaced telescopes, since such placement will result
in duplicate baselines.

In intensity interferometry, the main targets of study are bright stars (mV � 6), and
thus it is crucial to know something about their angular extent. Figure 4.12 shows the
relationship between angular diameter, apparent magnitude, and effective temperature,
assuming circular stellar disks of uniform surface brightness radiating as perfect black-
bodies. The grey, dashed lines show the baselines at which different angular diameters
are resolved.

Figure 4.13 shows the angular diameters of the stars in the Bright Star Catalogue
(essentially all the stars that are visible to the naked eye). As we see, most of the
brightest stars in the sky have angular diameters on the order of one milliarcsecond,
which is resolved by a baseline of ∼ 100 m. This means that a telescope array will need
baselines at least as long as 100 meters to image any stellar surface features, but it also
means that an array that lacks baselines as short as this will be unable to image the
shapes of most suitable targets. Thus, perhaps somewhat surprisingly, for kilometer-
scale telescope arrays the number of short baselines can be a strongly limiting factor
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Figure 4.12: Relationship between stellar diameter and effective temperature for different apparent mag-
nitudes. Stars were assumed to be perfect blackbodies with uniform circular disks, observed in the V
band (545 nm).
Dashed grey lines show the baselines at which different diameters are resolved, i.e. where the first
minimum of the coherence function (Eq. (2.15)) is reached.

when it comes to imaging stars.

4.6.2 Candidate Configurations

A number of candidate array layouts for the CTA are being studied within its design
study, of which some are shown in Fig. 4.14. Each of these candidate layouts is a subset
of an all-encompassing larger array, shown in the bottom-right corner. Note that several
among the configurations are not fundamentally different from each other. Already from
a quick glance at Fig. 4.14 one can roughly divide the layouts into three groups: A, B,
F and G, whose telescopes are concentrated in a fairly small area and which lack longer
baselines; C, D and J which contain telescopes more sparsely spread out over a large
area; and E, H, I and K which contain a larger number of telescopes and provide both
long and short baselines. For this project, the configurations B, D and I were selected
for more detailed study, as “representatives” of the three groups.

The left column in Fig. 4.15 shows the telescope placement of the three configurations,
B, D and I (from top to bottom). The middle column shows a “snapshot” (u, v)- (Fourier)
coverage of the arrays at an instant in time for a star in the zenith. In the right column,
the effect in the (u, v) plane of the star moving 20 degrees to the west is shown.

Already from Fig. 4.15 and Table 4.1 a few things can be said about the candidate
designs if applied to intensity interferometry. Configuration B samples the central parts
of the Fourier plane very densely and would provide a field-of-view that is fully capable of
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Figure 4.13: Approximated angular diameters of the stars in the Bright Star Catalogue (BSC), containing
all the stars in the sky with mV < 6.5. Effective temperatures of the stars were estimated by fitting a
polynomial to data relating Teff and B − V color index from [46] and inserting the color indices of the
BSC into this. The effective temperatures were then used to calculate the angular diameters assuming
the stars are blackbodies with uniform circular disks.
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Figure 4.14: Overview of candidate configurations for CTA. Each configuration is a subset of a larger
superset configuration (bottom-right corner) produced by Konrad Bernlöhr. In this work, configurations
B, D, and I are compared and their performance for intensity interferometry evaluated.
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imaging the shapes of almost any stellar object. However, it is lacking longer baselines,
making it unable to resolve details smaller than ∼200 µas.

Configuration D on the other hand provides baselines out to 2180 m, permitting
studies of very detailed structures, down to around 50 µas. The shortest baseline is 170
m, however, which means that any structures larger than ∼0.75 mas will be lost. This
makes it unsuitable for most stars.

Configuration I seems to provide the best of two worlds. It has baselines short enough
to measure the shapes of the disks of most stellar objects, while still providing very long
baselines and a very good resolution.

Figure 4.15: Left column: Telescope placement for the three candidate configurations examined: B, D
and I from the top to the bottom.
Middle column: (u, v)-plane coverage at an instant in time for a star in the zenith. Upper right-hand
squares show the central 400x400 m area.
Right column: (u, v)-plane coverage for a star starting in the zenith and moving 20 degrees to the west.
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Table 4.1: Properties of the three examined candidate configurations. The resolution range is the mini-
mum and maximum angular sizes that can be resolved with the array, according to the Rayleigh criterion:
θ = 1.22D/λ.

Conf. B Conf. D Conf. I

Number of telescopes 42 57 77
Unique baselines 253 487 1606
Shortest baseline 32 m 170 m 90 m
Longest baseline 759 m 2180 m 2200 m

Resolution range @500nm 0.16 - 3.9 mas 0.05 - 0.75 mas 0.06 - 1.4 mas

4.6.3 Simulated Observations

Varying Target Magnitude

The simulation code from Sec. 4.4 was applied to the candidate configurations using the
binary star in Fig. 4.16 as input.

Figure 4.17 shows the results of varying the magnitude of the target. The simulations
were carried out with the star starting at the zenith and moving 50 degrees to the
west in steps of 5 degrees, with an integration time of 2 hours for each time step (thus
corresponding to several nights of observations). The observation wavelength was 500
nm with a filter bandwidth of 1 nm, and the detectors were assumed to have a time
resolution of 1 ns and a quantum efficiency of 0.7.

The data from the simulations are shown in the Fourier plane. To better illustrate
the locations of low-amplitude structures and noise in the Fourier plane, the data were
logarithmized and normalized after performing a linear interpolation between the points
in the plane to obtain the Fourier magnitude evaluated over a regular grid (see Sec. 4.4.2).
A 3D shading was then applied to the data to further highlight the locations of structures.
The absolute values of the measured correlations are not of any real significance in this
context.

(a) Image (b) Fourier magnitude

Figure 4.16: Test image used for simulations and its (logarithmized) Fourier magnitude.
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Figure 4.17: Output from simulated observations of the binary star in Fig. 4.16 with configuration B
(top row), D (middle row) and I (bottom row).

Figure 4.17 illustrates the relationship between features in the image plane (Fig.
4.16(a)) and the Fourier plane. We see clearly the shortcomings of configuration B in
resolving the higher-frequency components.

Configuration D measures the higher-frequency components very well but even for a
target with such a small angular extent as this, the central parts of the Fourier plane –
which determine the overall shape of the object – are distorted due to poor sampling.

Configuration I samples the whole Fourier plane well, but its smaller telescopes (see
Fig. 4.15) make it a bit more sensitive to target magnitude.

Observations with Subsets of the Configurations

Figure 4.19 shows the output from simulations of the binary star in Fig. 4.16(a) using
only subsets of the candidate configurations. The subsets (shown in Fig. 4.18) were
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generated by selecting telescopes from the full configurations in a pseudo-random fashion,
attempting to preserve the general shape of the arrays. In the left column half of the
telescopes have been selected, in the middle column one in four, and in the right column
one in eight.

The simulation parameters are the same as in Fig. 4.17 except that the magnitude
of the star is now fixed at 5 and the integration time has been increased to 10 hours per
timestep in order to highlight sampling effects rather than measurement noise.

Figure 4.18: Subsets of the candidate configurations (B, D, I from top to bottom). In the leftmost column
half the telescope of the superset configuration was selected in a pseudo-random fashion. In the middle
column, one in four telescopes was selected, and in the rightmost column one in eight.

It is obvious that more telescopes are better in terms of Fourier plane sampling, and
too few telescopes can completely ruin the results as illustrated by the observation by D8.
It should be noted, however, that no attempt was made here to optimize the selection of
telescopes in order to improve the sampling.
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Figure 4.19: Output from simulated observations of the binary star in Fig. 4.16 with subsets of configu-
ration B (top row), D (middle row) and I (bottom row).

Image Reconstruction

The discussion above has only dealt with Fourier magnitudes, which is what is directly
measured by an intensity interferometer. Fourier magnitudes alone can be used to fit
model parameters such as stellar diameters, binary separations, circumstellar disk thick-
nesses etc. As we saw in Sec. 4.5, model-independent image reconstruction from the
Fourier magnitude alone is indeed possible (though with some limitations).

A number of proof-of-concept examples of images reconstructed from simulated data
using the candidate configurations are shown later on, in Sec. 5.5. However, image recon-
struction is an active area of research and many practical issues remain to be improved.
Thus, it is difficult at this stage to determine whether imperfections in reconstructed
images are due to fundamental limitations of the algorithms used or simply due to prac-
tical issues that can be solved. Because of this, there is a great risk that a comparison
between reconstructed images from the different candidate arrays would be misleading,
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which is why the focus here is placed on the algorithm-independent Fourier magnitudes
instead.

4.6.4 Conclusions

An instrument such as the CTA will likely be able to produce excellent scientific data
if used as an intensity interferometer, providing measurements of spatial structures on
scales down to a few tens of µas – orders of magnitude better than what is possible today
in visible light.

The candidate configurations examined here – while not optimized for intensity inter-
ferometry – all provide very dense sampling of the (u, v)-plane due to the sheer number
of telescopes. Apart from the simulations described above, a number of other tests were
carried out to determine the effects of varying the declination of the star and the geo-
graphic orientation of the telescope array. It was found that the very large number of
telescope make the effects of any such variations negligible.

It should be noted however, that an array such as configuration D will be severely
crippled by its lack of short baselines, essentially limiting the instrument to studying
stars smaller than ∼0.5 mas.
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Chapter 5

Hot Stars as Targets for Intensity
Interferometry

The following chapter describes a brief investigation of possible suitable targets for intensity
interferometry that was presented at the 2009 Workshop on Stellar Intensity Interferometry
in Salt Lake City. It is also summarized in [47].

The simulation code from the preceding chapter was applied to models similar to these
targets; the results from these simulations are presented at the end of this chapter.

5.1 Background

The signal to noise ratio of an intensity interferometer improves with the temperature
of the target. Since SII is insensitive to atmospheric disturbances, observations in the
violet or blue pose no problem. Eliminating the “Achilles’ Heel” of standard phase
interferometry will enable high resolution studies of hot stars over very long geometric
baselines.

As a small step in the ongoing evaluation of the scientific potential of SII, a list of a
handful of bright, hot and astronomically interesting stars was produced. These targets
provide a quick overview of some of the things that are reasonable to observe with SII
within the not-too-distant future. Such a list might also be useful as a rough starting
point for future observing programs.

5.2 Selection of Objects

As a starting point, the Bright Star Catalogue (BSC) was used. This catalog, shown as
a color-magnitude plot in Fig. 5.1, contains the brightest stars in the sky, down to an
apparent magnitude of around 7.

To get a rough estimate of the effective temperatures of the stars in the BSC, table
values from [46] were used to acquire a polynomial fit relating color index to effective
temperature. The hotter part of the BSC, Teff � 9000 K, is shown in Fig. 5.2 with color
index converted to effective temperature.
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Figure 5.1: The entire Bright Star Catalogue

In the sky, approximately 2600 stars exist that are brighter than visual magnitude
7 and hotter than 9000 K. This is an interesting number to note, as all of these stars
would likely be realistic targets even for a fairly modest intensity interferometer.

To narrow the list down, hot and bright objects with Teff > 9000 K and V < 2 were
selected along with extremely hot ones, Teff > 25000K. To this new list, a few other
interesting targets were then added manually. Finally, the angular diameters of the
targets were looked up in CHARM2, a compilation of angular diameter measurements
from different sources [48].

It should be noted that the selection criteria used are not based upon any calculations
on what is possible to observe. Rather, they were decided upon in order to extract a few
of the “best” targets that exist. The list should thus not be interpreted as an evaluation
of what can be seen, but rather as an exemplification of a few stars that can be considered
“prime observational targets”.

5.3 List of Objects

After the selection process described above, the list of targets contained 37 objects,
plotted in Fig. 5.3. The sizes of the circles indicate the angular diameter. A cross in the
circle indicates that no entry was found in CHARM2.

Table A.1 shows the list of targets along with some data and notes highlighting their
scientific relevance. In very general terms, a target should have some sort of features on
a (sub-)milli-arcsecond level to be considered astronomically interesting in this context.
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Figure 5.2: The hotter part of the Bright Star Catalogue
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Figure 5.3: The final selection of stars
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Figure 5.4: The flattened shape of α Eridani as
revealed by the VLTI. Each ’line’ along the edge
of the star represents a measurement (with error
bars) of the stellar diameter at different angles.
Figure from [2].

These features could be, for instance, deformation due to rapid rotation, pulsation, stellar
disks, hot stellar winds, mass accretion etc.

5.4 Some Specific Targets

Of the stars in table A.1 a few especially interesting ones were singled out for further
investigation. The literature was examined for relevant previous studies. These stars are
presented below, along with some brief notes on their science potential for SII.

5.4.1 Achernar (α Eridani)

Achernar is a rapidly rotating Be-star (v sin i = 250 km/s). Long-wavelength studies
with the VLTI (Fig. 5.4) have recently revealed the flattened shape of the star – a direct
result of the rotation [2].

In addition to the flattening, the rapid rotation of Achernar results in other effects,
such as a complex stellar wind and a circumstellar disk with H-alpha emission lines. The
presence of bright emission lines is especially interesting in this context; since the S/N
of an intensity interferometer is independent of the spectral passband, studies in the
continuum may be combined with observations centered around the emission line.

5.4.2 Rigel (β Orionis)

Rigel is the nearest blue supergiant (240 pc). It is a very dynamic object with variable
absorption/emission lines and oscillations on many different timescales – from minutes
to weeks [49]. The physical properties of Rigel have recently been shown to be very
similar to the supernova progenitor of SN1987A. This realization makes understanding
the dynamical nature of Rigel highly relevant.
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Figure 5.5: Intensity distribution at 500 nm at
the surface of Vega.

5.4.3 β Centauri

β Centauri is a binary system consisting of two very hot, very massive variable stars.
Both components are variable both spatially and in their line profiles.

The intricate nature of the system has led to it being called “a challenge for current
evolution scenarios in close binaries”, and studies of this object on a (sub-)milliarcsecond
level will no doubt yield valuable information for stellar evolution modeling [50].

5.4.4 Vega (α Lyrae)

While one of the most fundamental stars in the sky for calibration purposes, the nature
of Vega has proven to be more complicated than previously thought. Recent phase
interferometry studies suggest an 18-fold drop in intensity at 500 nm from center to limb
(Fig. 5.5), consistent with a rapidly rotating pole-on model, as contrasted to the 5-fold
drop predicted by non-rotating models [51]. Intensity interferometry will allow direct
studies of the intensity distribution at shorter wavelengths and in different passbands.
Such observations will lead to a better understanding of the link between rotation and
limb darkening in different wavelength regions.

5.4.5 η Carinae

η Carinae is the most luminous star known in the Galaxy, and an extremely unstable
and complex object. Recent VLTI studies have revealed asymmetries in the stellar winds
due to the rapid rotation of the star [52]. Like Rigel, η Carinae is believed to be on the
verge of exploding as a core-collapse supernova.

5.4.6 γ2 Velorum

γ
2 Velorum is a binary consisting of a hot O-type star and a Wolf-Rayet star. The

proximity to the O-type star creates a situation where two stellar winds interact, creating
a wealth of interesting phenomena such as wind collision zones, wind-blown cavities and

83



84 Chapter 5. Hot Stars as Targets for Intensity Interferometry

eclipses of spectral lines [53]. The bright emission lines of WR stars make them suitable
for comparative studies in different passbands, as discussed above.

5.5 Simulated Observations

To study what could actually be observed with a given set of instrumentation, the sim-
ulation code from Chapter 4 was applied to models of targets similar to the ones singled
out above. The plots below are generally on the same format as Fig. 4.17, i.e. they
show the logarithm of the measured correlation interpolated over a grid and with 3D
shading applied to highlight structures and noise in the Fourier plane. Given the Fourier
magnitude, which is the “raw data” of an intensity interferometer, one can go in several
directions: one can for example try to reconstruct the image of the source, or one can use
prior knowledge of the target and attempt to fit a model with one or several parameters
to the data.

In this chapter, focus is placed on the Fourier magnitude. Just by looking at the
measured correlations, we can say something about what can be observed and where in
the Fourier plane most of the important information is located for some interesting types
of astronomical targets.

A few reconstructed images are also shown, created using the software package SI-
ISoft v0.11 courtesy of Paul Nuñez, University of Utah. This software uses the Cauchy-
Riemann method described in Sec. 4.5.1. It should be noted that the difference between
the pristine and the reconstructed image depends on a number of factors:

• The area in the Fourier plane sampled by the telescope array. Any frequencies too
high or low to be covered will naturally be beyond recovery. In other words, the
reconstructed image can never be better than the pristine image convolved with
the point-spread function of the array.

• The density and uniformity of the Fourier plane sampling.

• Measurement noise.

• Issues with the image reconstruction algorithm itself.

As the version number indicates, this software was not in a “finished” state as of this
writing. It is stressed therefore that imperfections in the reconstructed images do not
necessarily represent fundamental limitations with II or even with the algorithm used,
but may simply be due to minor issues with this particular implementation.

5.5.1 Simulation Parameters

The simulations take the following parameters as input (the notation here will be used
in the rest of the section):

• mV – The V band apparent magnitude of the target.

• Teff – The effective temperature of the target.
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• h – The hour angle range for the simulation. h = (0 ◦
, 50 ◦) means that the target

started in the south and moved 50 degrees west during the observation.

• ∆h – The hour angle step, see Sec. 4.4.2 and Fig. 4.6 for an explanation.

• δ The declination of the star.

• T – The observation time per hour angle step.

• ∆t – The time resolution of the detectors.

• QE – The quantum efficiency of the detectors.

• λf – The filter wavelength.

• ∆λ – The filter bandwidth.

• l – The latitude of the telescope array.

• Array – The telescope array used. In this section the candidate layouts CTA B,
CTA B and CTA I were used. These configuration are shown in Fig. 4.15.

5.5.2 Stellar Diameters and Binary Separations

The main purpose of the Narrabri Intensity Interferometer was to measure the angular
diameters of stars. Even with only two telescopes, this was done with great accuracy.
It was also possible to study such things as binary separations by fitting models to the
data [15].

A modern intensity interferometer using a CTA-like array would be able to perform
these sorts of measurements in a much more accurate and model-independent manner,
since such an array samples the Fourier plane in thousands of points as compared to
the ∼5 points for typical measurements at Narrabri. This will also make it possible to
study a much wider range of features including rotational deformation and mass transfer
regions.

Binary Radii

Figure 5.5.2 shows the results from simulations of three binary stars with the radius of
one of the stars being varied (simulation parameters are listed in the image caption).
The radius of the secondary changes by only a few tens of micro-arcseconds, but still this
change is clearly visible in the Fourier magnitude, and even the reconstructed images
reproduce the stellar diameters and separations with remarkable accuracy.

Binary Separations

Figure 5.7 shows three frames from an image sequence of an eclipsing binary. Input
parameters, similar to those in the previous simulations, are given in the figure caption.
Once again, it is evident that properties such as stellar diameters and binary separations
are very well reconstructed.
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86 Chapter 5. Hot Stars as Targets for Intensity Interferometry

(a) Reconstructed images

(b) Fourier magnitudes

Figure 5.6: Simulation of binary stars with different radii.
Simulation parameters: mV = 3; Teff = 7000 K; h = (−50 ◦, 50 ◦); ∆h = 10 ◦; δ = 30 ◦; T = 5 h; ∆t = 1
ns; λf = 500 nm; ∆λ = 1 nm; QE= 0.7; l = 30 ◦; Array= CTA B

Hot, Rapidly Rotating Star

Figure 5.8 gives a showcase of what could be possible with a large telescope array. It
shows a rotationally flattened star, a mere 200 µas from pole to pole. This is similar to
a visible-light version of Fig. 5.4, but the resolution here is about 10 times better and
the reconstruction is completely model-independent.

5.5.3 Dark Surface Features

The dense sampling of the Fourier plane provided by CTA-like telescope arrays enables
studies going beyond simple determination of stellar shapes and diameters, to image
surface features such as starspots and obscuring dust disks (cf. Fig. 2.6).

A number of simulations of such features were carried out, and the general conclusion
is that dark surface features need to be large to be observed. Imaging such phenomena

86



5.5. Simulated Observations 87

(a) Reconstructed images

(b) Fourier magnitudes

Figure 5.7: Simulation of binary stars with different separations.
Simulation parameters: mV = 3; Teff = 7000 K; h = (−75 ◦, 75 ◦); ∆h = 10 ◦; δ = 30 ◦; T = 10 h;
∆t = 1 ns; λf = 500 nm; ∆λ = 1 nm; QE= 0.7; l = 30 ◦; Array= CTA B

as planetary transits will likely be very challenging and will probably not be realistic in
the foreseeable future.

Figures 5.9 and 5.10 show two examples of what is nevertheless possible – a flattened
star with an obscuring disk, and a circular star with a large dark spot. Comparing the
shape of the Fourier magnitude in Fig. 5.9(b) with Fig. 5.8(b), we see that the case with
a disk is clearly distinguishable from the case without a disk, and likewise the Fourier
magnitude in Fig. 5.10(b) is different from the case of a uniform circular disk (which
gives rise to a circularly symmetric Fourier magnitude).

The reconstructed images are somewhat less than perfect, but as stressed earlier this
can not yet be interpreted as being due to any fundamental limitations.
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88 Chapter 5. Hot Stars as Targets for Intensity Interferometry

(a) Reconstructed image (b) Fourier magnitude

Figure 5.8: Simulation of a rotationally flattened hot star.
Simulation parameters: mV = 5; Teff = 12000 K; h = (−50 ◦, 50 ◦); ∆h = 10 ◦; δ = 30 ◦; T = 10 h;
∆t = 1 ns; λf = 500 nm; ∆λ = 1 nm; QE= 0.7; l = 30 ◦; Array= CTA D

5.5.4 Emission-Line Features

One interesting feature of intensity interferometry is that the signal-to-noise is inde-
pendent of spectral passband. A narrow filter will let through less light, but it will
contain less frequencies and have a longer coherence time and these two effects exactly
compensate for each other (to a first order approximation).

Thus, if the target has emission-line features the signal-to-noise can be greatly in-
creased by observing in a narrow spectral range centered around the emission line. For
example, Be-stars typically reach fluxes up to 6 times above the continuum level in the
emission lines [54]. Observing such a star in an emission line would be equivalent to
continuum observations of a star 6 times (or roughly 2 magnitudes) brighter.

This property of intensity interferometry was exploited already at Narrabri by Han-
bury Brown et al [15] when measuring the stellar diameters of γ2 Velorum (Sec. 5.4.6).

Figure 5.12 shows a Be star with emission lines coming from a thin circumstellar disk.
The flux from the emission line was assumed to be 6 times stronger than the continuum.
The disk is only 20 µas thick but gives rise to very distinct structures in the Fourier
plane at long baselines.

Another possibility, perhaps a bit more far-fetched, is to exploit the insensitivity to
optical passband to image non-radial higher-mode pulsations in stars such as Cepheids.
Such stars will have some regions moving outwards at high velocities, while other areas
will move inwards [55]. In white light, the differences between these regions will be

88



5.5. Simulated Observations 89

(a) Reconstructed image (b) Fourier magnitude

Figure 5.9: Simulation of a rotationally flattened star with an obscuring disk.
Simulation parameters: mV = 3; Teff = 9000 K; h = (−50 ◦, 50 ◦); ∆h = 10 ◦; δ = 30 ◦; T = 3 h; ∆t = 1
ns; λf = 500 nm; ∆λ = 1 nm; QE= 0.7; l = 30 ◦; Array= CTA B

negligible. However, if the star is observed in a very narrow passband centered on an
absorption line, then light emitted from rapidly moving areas may be Doppler shifted
enough to avoid the absorption line, and the result will be a large contrast between
inwards-moving and outwards-moving areas.

Figure 5.13 shows a simulated observation of a star with non-radial pulsations, with
stellar diameters resembling those of the Cepheid l Car. A theoretical surface map of the
perturbations from a m = 4, l = 5 mode pulsation from Jankov et al. [55] was mapped
onto a sphere to create the pristine image (Fig. 5.13(c)). An absorption line depth of
∼50% was assumed.

A clearly visible problem here is that Cepheids are relatively cool stars, and bright
Cepheids will thus have large angular diameters, putting all the structures in the Fourier
plane within a very small area (see Fig. 5.13(a)). A second simulation of a hypothetical
hot Cepheid-like star, with angular diameter θ = 1 mas, is shown in Fig. 5.13(b). The
Fourier magnitude is clearly distinct from the circularly symmetric case, suggesting that
the study of phenomema like this are not completely unrealistic.
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(a) Reconstructed image (b) Fourier magnitude

Figure 5.10: Simulation of a star with a large dark spot.
Simulation parameters: mV = 3; Teff = 10000 K; h = (−50 ◦, 50 ◦); ∆h = 10 ◦; δ = 30 ◦; T = 10 h;
∆t = 1 ns; λf = 500 nm; ∆λ = 1 nm; QE= 0.7; l = 30 ◦; Array= CTA B

Figure 5.11: Spectrum of the typical B[e] star HD38489. The flux in the emission lines are many times
stronger than the continuum, so II observations in emission lines can be equivalent of increasing the
intensity by several magnitudes. Figure from [54].
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(a) Fourier magnitude, emission line (b) Fourier magnitude, continuum

(c) Input image

Figure 5.12: Simulation of a flattened star with emission line disk. Figure 5.12(a) shows observation at
HeI emission line at 587 nm. Figure 5.12(b) shows the same target observed in the continuum.
Simulation parameters: mV = 6; Teff = 7000 K; h = (0 ◦, 50 ◦); ∆h = 10 ◦; δ = 30 ◦; T = 10 h; ∆t = 1
ns; λf = 587 nm; ∆λ = 1 nm; QE= 0.7; l = 30 ◦; Array= CTA I
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(a) Fourier magnitude (b) Fourier magnitude of small star

(c) Input image

Figure 5.13: Simulation of Cepheid-like star. Figure 5.13(b) shows the same as fig. 5.13(a) but with the
angular diameter of the target decreased to 1 mas.
Simulation parameters: mV = 3.4; Teff = 7000 K; h = (−75 ◦, 75 ◦); ∆h = 5 ◦; δ = 30 ◦; T = 10 h;
∆t = 1 ns; λf = 500 nm; ∆λ = 1 nm; QE= 0.7; l = 30 ◦; Array= CTA B
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Chapter 6

Laboratory Experiments

While the main focus of this project was on theory and simulations, some attempts were also
made to carry out laboratory experiments in order to identify potential practical problems with
the instrumentation and to verify results from the simulations. Unfortunately, the equipment
used turned out to give flux rates that were not sufficient to measure any real intensity
interferometric signal. Nevertheless, some results were obtained, and these are presented in
this chapter along with some of the experiences gained and some thoughts on how these
experiments could be improved in the future.

6.1 Laboratory Setup and Equipment

A laboratory experiment – similar in principle to the outline of a simple intensity in-
terferometer in Fig. 2.8, but with modern digital equipment – was set up in the optics
laboratory at Lund Observatory.

In the first version of the experiment, a mercury arc lamp shining through a 25 µm
pinhole acted as an “artificial star”. Light from the lamp was gathered by two ∼3 cm
refractors and focused on the light sensitive areas of two photon counting detectors. The
signals from these two detectors were then fed to a digital correlator connected to a
computer. The whole setup is outlined in Fig. 6.1.

Figure 6.1: Outline of the laboratory experiment.

The correlation measured will be proportional to the optical coherence, so by making
measurements while increasing the detector separation, one should obtain something like
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the dashed lines in Fig. 2.4, though for a 25 µm pinhole at a distance of 4 m the coherence
function will reach its first minimum at around 10 cm.

6.1.1 Practical Issues

One big practical issue was the problem with focusing the light form the arc lamp onto
the very small light sensitive area of the detectors (this area is on the order of 0.1x0.1
mm for most detectors). The light from the lamp was too faint to be seen by the naked
eye and monitoring the received light intensity required a computer which is a problem
since the light from the computer screen was much brighter than the light from the arc
lamp.

To deal with this problem, a simple computer program was written using dll inter-
face files from the correlator manufacturer correlator.com. This program monitors the
received light intensity and emits short beeps twice a second with a frequency propor-
tional to the photon count rate. Using this program it is possible to do all the focusing in
complete darkness by just adjusting the positions of lenses and detectors until the beeps
reach a maximum tone height.

A second – and as it would turn out, more serious – issue was the received flux
from the lamp. To get a good signal (i.e. a detectable difference in correlation between
different detector separations), a high flux within a low spectral passband is required.
Furthermore, the light source must have a very small spatial extent to provide a diffrac-
tion pattern of reasonable size (since the detectors could not practically be brought closer
to each other than ∼5 cm). The light must also be chaotic in nature (as discussed in
the theory section) ruling out lasers. The Hg arc lamp was selected for this purpose: it
reaches temperatures of up to 3000 K, which gives it an extremely high surface bright-
ness. A narrow-band optical filter was selected singling out the brightest emission line,
at 546 nm, so as to increase the spectral purity of the light while keeping the flux as high
as possible.

However, the count rates obtained were not enough to detect a real signal within a
reasonable integration time. Figure 6.2 shows signal-to-noise ratios simulated using the
method described in Sec. 4.2.1 for different count rates. Clearly, count rates of a few
MHz would be desirable; however the actual received count rates were only on the order
of a few hundred kHz.

Nevertheless, it was possible to do some experiments relating to the noise properties
of the setup, even though the count rates were too low to give any measurable HBT
correlation. These are described below.

6.2 Experimental Results

6.2.1 Systematic Effects from Detectors

Although the Hg arc lamp turned out to give too low count rates to see any differences
in correlation between different detector separations, it was possible to examine some
properties of the noise. A digital correlator, as described in Sec. 3.4.1, generally stores
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Figure 6.2: Simulated signal-to-noise ratios for different count rates and integration times. The noise
rates were calculated using Eq. (4.12).

correlation in many channels with semi-exponentially increasing delay times. For II, the
most interesting channels are the ones with short delay times, especially the first channel.
In theory, for measurements such as these, with no sources of correlation present, one
would expect all the channels to be centered around a value of 1.0.

However, measurements showed that systematic effects were present, causing differ-
ent channels to center around different values. Figures 6.3 and 6.4 show superimposed
plots of the first 10 channels of the output from the correlator (a Flex 03-LQ01 from cor-
relator.com) with two different types of detectors. The measurements were carried out
under identical conditions, with the same integration times (200 s for each measurement).

Cleary, the patterns depend on which type of detector is used, but they look very
consistent between different measurements. Further experiments confirmed that the
curves looked very similar for a given type of detector even when measurement conditions
were being varied. Presumably the difference arises from some sort of detector effects,
such as after-pulsing and/or defects in the shape of the TTL pulse. However, since the
effects seem systematic and consistent, calibrating and adjusting for them should be
possible.
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Figure 6.3: First 10 channels of the digital correlator for 20 measurements with id-Quantique id100-50
detectors.

Figure 6.4: First 10 channels of the digital correlator for 20 measurements with SensL detectors.

6.2.2 Scaling of Noise Levels

It was also possible to test some aspects of the computer simulations even with these low
count rates. Even if no correlation is expected, simulations should still give reasonable
variations in noise levels. To test this, four series of measurements were carried out,
with two different types of detectors. For each detector type, one series of thirty 100-
second measurements and one series of twenty 200-second measurements were performed.
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Then, a large number (10 000) of simulated experiments were carried out and their results
plotted as a histogram along with the measured correlations.

(a) 100 second integration time (b) 200 second integration time

Figure 6.5: Simulated and measured differences between 100 and 200 seconds integration time. The dots
show the two first correlator channels from measurements with SensL detectors at 7.5 cm separation
(the different locations of the dots on the y axis were chosen simply for clarity). We do not expect any
difference between these two channels since the flux rates were too low to give any HBT signal. We do
however expect the spread of the correlations to decrease when the integration time increases (i.e. the
histogram should get narrower), and this is exactly what is seen. It seems also that this decrease in
spread is accurately predicted by the simulations.

Figure 6.5 shows the results from two of these experiments (the plots from the other
two were nearly identical), using SensL detectors. The output from the correlator has
been centered around 1 to compensate for the effects described in the previous section,
so that only the spread in data remains. Only the two first channels from the correlator
are shown. The scale on the y-axis is arbitrary (only relative numbers matter for the
histograms, and for the measurement points the y-axis positions were chosen simply for
clarity). From these figures, it would seem that at least the scaling with integration time
is predicted more or less correctly by the simulations.

6.3 Thoughts for the Future

Unfortunately it proved impossible to reach sufficient flux rates with Hg arc lamp. One
could imagine a number of ways to work around this problem:

• The “telescopes” could be make bigger, directly increasing the flux rates.

• A low-pressure lamp with very narrow spectral lines could be used. Some experi-
ments were performed with a Na lamp in the hope that the higher spectral purity
of the light would compensate for the lower flux. For this particular lamp, the light
turned out to be too faint however.

• The light source could be moved closer to the detectors, but this would cause the
diffranction pattern to become very small and some way of practically moving the
detectors closer together would have to be devised.
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• Light from a laser could be made pseudo-thermal by shining it through an emulsion
of micro-particles undergoing Brownian motion. A set of micro-spheres of different
sizes were ordered for this purpose as part of this project, but arrived too late for
any experiments to be carried out.

In theory however, this method appears very promising as one can essentially obtain
any coherence time desired by adjusting the sizes and concentrations of the micro-
particles.

98



Chapter 7

Summary and Conclusions

Already, phase interferometry is beginning to open the door to a completely new area of
astronomical research – imaging of stellar surfaces. To extend this field to visible light
and even better resolutions, intensity interferometry seems to be the most promising
method.

In this thesis I have shown that the science case for sub-milliarcsecond imaging in
visible wavelengths is solid, and that this can be realistically achieved with intensity inter-
ferometry. All of the required instrumentation exists today. Both fast photo-detectors
and digital correlators are commercially available and the most critical component –
large telescope arrays – will be built in the near future in the form of giant Cherenkov
telescopes such as the CTA.

I have shown in this thesis that a facility such as the CTA, if used for intensity
interferometry, would be able to study stellar surfaces at an unprecedented level of detail.
I have also shown that new image reconstruction algorithms, such as the Cauchy-Riemann
method, perform well and are robust enough to function with realistic noise levels in
the data and with the sparsity in the Fourier plane sampling imposed by a CTA-like
array. Furthermore, the genetic algorithm reconstruction method presented here – while
seemingly inferior to the Cauchy-Riemann method – proves that the problem of image
reconstruction from the Fourier magnitude can be tackled with a multitude of approaches.

In short, most of the results so far seem good – a digital revival of intensity interfer-
ometry appears to be worthwhile, and one can only hope to see the first real scientific
results within the next decade or so.
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Appendix A

List of Hot and Bright Stars

Name θ (mas) vrot (km/s) Spec. class Teff (K) V [mag] Notes

Achernar, α Eri, HR472 1.9 250 B3Ve 15000 0.46 High rotational velocity, Be-star

Rigel, β Ori, HR1713 2.4 30 B8Iab 9800 0.12 Emission line star, SN candidate

λ Lep, HR 1756 70 B0.5IV 28000 4.29

Bellatrix, γ Ori, HR 1790 0.7 60 B2III 21300 1.64

Elnath, β Tau, HR 1791 1.5 70 B7III 13500 1.65

ν Ori, HR 1855 20 B0V 28000 4.62

HR 1887, HD 36960 40 B0.5V 26000 4.78

Alnilam, � Ori, HR 1903 0.7 90 B0Iab 18000 1.7

µ Col, HR 1996 150 O9.5V 33000 5.17 High vrot
β CMa, HR 2294 0.5 35 B1II/III 23000 1.98 Short period β Cep variable

Alhena, γ Gem, HR 2421 1.4 30 A0IV 9100 1.93

S Mon, HR 2456 60 O7Ve 26000 4.66

Sirius, α CMa, HR 2491 5.9 10 A1V 9100 -1.46 Very bright, well studied

EZ CMa, HR 2583 WN4 33000 6.91 Highly variable W-R star

Adara, � CMa, HR 2618 0.8 40 B2Iab 20000 1.5 Double star

Naos, ζ Pup, HR 3165 0.4 210 O5Ia 28000 2.25 High vrot
γ2 Vel, HR 3207 0.4 WCv+ 21300 1.78

β Car, HR 3685 1.5 130 A2IV 9100 1.68

Regulus, α Leo, HR 3982 1.4 330 B7V 12000 1.35 High vrot
Acrux, α1 Cru, HR 4730 120 B0.5IV 24000 1.33

Acrux, α2 Cru, HR 4731 200 B1V 28000 1.73 High vrot
β Cru, HR 4853 0.7 40 B0.5IV 23000 1.25

� UMa, HR 4905 40 A0p 9500 1.77

Spica, α Vir, HR 5056 0.9 160 B1III-IV+ 23000 0.98 High vrot
Alcaid, η UMa, HR 5191 <2 200 B3V 18000 1.86 High vrot
β Cen, HR 5267 0.9 140 B1III 23000 0.61

τ Sco, HR 6165 25 B0.2V 26000 2.82

λ Sco, HR 6527 160 B2IV+ 21000 1.63 High vrot
Kaus Astr., � Sgr, HR 6879 1.4 140 B9.5III 9800 1.85

Vega, α Lyr, HR 7001 3.2 15 A0V 9100 0.03 Bright, well studied, rotating

Peacock, α Pav, HR 7790 0.8 40 B2IV 19000 1.94 Spectroscopic binary

Deneb, α Cyg, HR 7924 2.2 20 A2Iae 9300 1.25 α Cyg variable

α Gru, HR 8425 1.0 230 B6V 13000 1.74 High vrot
Fomalhaut, α PsA, HR 8728 2 100 A4V 9300 1.16 First exo-planet imaged in visible light

η Car, HR 4210 5.0 (shell) pec 36000 6.21 Many extreme properties

WD 0005+511 200000 13.23 Hottest WD known

Table A.1: List of stars with (Teff > 9000 K ∧ V < 2) ∨ Teff > 25000 K
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Appendix B

Presentations and Publications

B.1 Workshop on Stellar Intensity Interferometry

Salt Lake City, January 2009. Presentation Hot Stars as Targets for Intensity Interfer-
ometry.
http://www.physics.utah.edu/~lebohec/SIIWGWS/

B.2 Astro 2010 White Paper

Barbieri C., Daniel M. K., de Wit W. J., Dravins D., Jensen H.,Kervella P., LeBohec S.,
Malbet F., Nunez P., Ralston J. P., Ribak E. N., Ridgway S. T. 2009, New Astrophysical
Opportunities Exploiting Spatio-Temporal Optical Correlations, Astro2010 Science White
Paper, arXiv:0903.0062

B.3 Astronomdagarna 2009

Poster Digital Revival of Intensity Interferometry presented at Astronomdagarna, Stock-
holm, September 2009

B.4 SPIE Conference on Astronomical Instrumentation,
San Diego, June-July 2010

• Jensen, H., Dravins, D., LeBohec, S.L. and Nuñez, P.D., 2010, Stellar intensity
interferometry: Optimizing air Cherenkov telescope array layouts, Proc. SPIE
7734, 7734-64

• Nuñez, P. D., LeBohec, S. L., Kieda, D. B., Holmes, R., Dravins, D. and Jensen,
H., 2010, Stellar intensity interferometry: Imaging capabilities of air Cherenkov
telescope arrays, Proc. SPIE 7734, 7734-47
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• LeBohec, S., Nuñez, P. D., Kieda, D. B. et al., 2010, Stellar intensity interfer-
ometry: Experimental steps toward long-baseline observations Proc. SPIE 7734,
7734-48

• Dravins D., Jensen, H., LeBohec, S., Nuñez, P.D. 2010, Stellar Intensity Interfer-
ometry: Astrophysical targets for sub-milliarcsecond imaging, Proc. SPIE 7734,
7734-9
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Abstract. The space-time correlations of streams of photons can provide fundamentally new
channels of information about the Universe. Today’s astronomical observations essentially
measure certain amplitude coherence functions produced by a source. The spatial correlations
of wave fields has traditionally been exploited in Michelson-style amplitude interferometry.
However the technology of the past was largely incapable of fine timing resolution and
recording multiple beams. When time and space correlations are combined it is possible to
achieve spectacular measurements that are impossible by any other means. Stellar intensity
interferometry (SII) is ripe for development and is one of the few unexploited mechanisms to
obtain potentially revolutionary new information in astronomy. As we discuss below, the modern
use of SII can yield unprecedented measures of stellar diameters, binary stars, distance measures
including Cepheids, rapidly rotating stars, pulsating stars, and short-time scale fluctuations that
have never been measured before.

1. Introduction
More than 40 years ago the basic principles of intensity interferometry were developed and proven
through the measurement of stellar diameters with sub-milli-arcsecond resolution [1, 2]. Yet this
breakthrough ran its course due to technological limitations. The old technology was limited to
two telescope beams, and integration of correlations was done by the elegantly primitive device
of counting the turns of an electric motor. In the interim the technology of photon detection has
exploded, and the ability to handle and correlate multiple beams with exquisite time resolution
has been perfected. It is hard to overstate the advantages now possible with current and future
detection technology, both in real-time and off-line, both with simple pairs and with multiple
detector arrays.

SII works by comparing the random intensity fluctuations of light waves entering separated
detectors. Nothing special is needed from the source, and black-body, thermal correlations
are ideal. While quantum properties derived from the statistics of photon arrival times (e.g.
photon bunching behavior) add extra information, the effect is robust, and works whether or
not quanta are well-resolved. Statistical correlations of beams of a given wavelength λ separated
by a given distance D allows resolution of structure at the Rayleigh criterion ∆θ ∼ λ/D. This
is how measurements equivalent to 100 meter telescopes were made with SII 40 years ago [3].
The exacting match of optical path lengths needed in amplitude (Michelson) interferometry
is completely unnecessary, because different phase properties dominate SII. Troublesome
sensitivity to path length differences caused by atmospheric turbulence is completely eliminated
for the same reason. Vast quantities of photons are however required and the visual wavelength
region is most appropriate. Several algorithms are available for phase recovery in a multi-
beam set-up, permitting model independent imaging [4, 5]. Current detection technology allow

http://arXiv.org/abs/0903.0062v1


therefore a revolution in SII: multiple telescope, long baseline optical intensity interferometry.
A system can be devised [6, 7] that would consist of hundreds of large flux gathering surfaces
spread out over kilometers of baseline that would enable to make the next big step in astronomy:
optical imaging at µ-arcsecond resolution.

2. Astrophysical applications for µ-arcsecond imaging SII
Properly imaging stellar surfaces constitutes a major break-through in stellar astrophysics. Stars
have angular sizes of tens of milli-arcseconds or less, and until now, apart from the sun, only
Betelgeuse and Altair have been imaged albeit with a modest number of resolution elements
(at maximum ten). Technical requirements for SII are such that one can easily be looking at
hundred resolution elements with an order of magnitude increase in angular resolution. Stellar
physics has been waiting for a long time to make this leap forward, and it is similar to the
impact realized by Hanbury Brown and Twiss when they measured 32 stellar diameters with
the first and only application of SII in astronomy [3]. Modern SII would undoubtedly extend
solar physics to the realm of the stars. Moreover, feasibility studies indicate that SII may not
be limited to resolving Galactic sources only. We present therefore an overview of core galactic
and extra-galactic science drivers:

• Stellar surface phenomena and dynamo action

• Conditions for planet formation around young stars

• Cepheid properties and the distance scale

• Mass loss and fast rotation of massive hot stars and supernova progenitors

• Nuclear optical emission from AGN

• Structure of gamma-ray bursts

Of course, feasibility of these science topics depends on the design of the intensity interferometer.
For practical purposes we adopt a conservative limiting visual magnitude mv < 8m and a
resolution of a 0.1 milli-arcsecond, and we detail the science that would be opened up within
these limits.

Stellar surface phenomena, star formation and binaries Pre-main sequence (PMS)
objects are young stars that are contracting towards the main-sequence, still lacking internal
hydrogen combustion. Key questions relating to the physics of mass accretion and PMS evolution
can be addressed by means of very high resolution imaging. Spatially resolved studies would
involve the absolute calibration of PMS tracks, the mass accretion process, continuum emission
variability, and stellar magnetic activity. The technique may allow spot features on the stellar
surface to be resolved. Hot spots deliver direct information regarding the accretion of material
onto the stellar surface. Cool spots, on the other hand, may cover 50% of the stellar surface,
and they are the product of the slowly decaying rapid rotation of young stars. Imaging them
will constrain the interplay of rotation, convection, and chromospheric activity as traced by cool
spots and need not be limited to PMS stars only. It may also provide direct practical application
as the explanation for the anomalous photometry observed in young stars [10].

In the last decade several young coeval stellar groups have been discovered in close proximity
(∼50 pc) to the sun. Famous examples are the TW Hydra and β Pic comoving groups.
The majority of the spectral types within reach range between A and G-type, and about 50
young stars have mv < 8m. Their ages lie within the range 8 to 50 Myr (see [11] for an
overview). The age intervals ensures that a substantial fraction of the low-mass members are
still in their PMS contraction phase. Key targets for calibration of evolutionary PMS tracks
in the Hertzsprung-Russell diagram are spectroscopic binaries. Resolving binaries delivers
the inclination of the system and hence access to the mass of the components. This is a



Figure 1. Four examples of images reconstructed from SII data as would be recorded with an
array that operates at a wavelength of ∼ 400 nm with one hundred telescopes and a telescope
separation of ∼ 100 m. The pristine image is shown at the top left in each example. The images
were produced [8] using an algorithm based on the Cauchy-Riemann equations [9]. The analysis
does not yet include a realistic noise component, which is still actively being investigated.

fundamental exercise not only for PMS stars but for all spectroscopic binaries in any evolutionary
stage. Measurement of angular sizes of individual PMS stars in combination with a distance
estimate (e.g. GAIA) allows a direct comparison between predicted and observed sizes of these
gravitationally contracting stars. The proximity of the comoving groups ensures that their
members are bright. Their proximity renders the comoving group also relatively sparse making
them very suitable, unconfused targets. The sparseness is also the reason for incomplete group
memberships, making it likely that the number of young stars close to the sun will increase with
the years to come.

Distance scale and pulsating stars Measuring diameters of Cepheids is a basic method
with far reaching implications for the calibration of the distance scale. A radius estimate of
a Cepheid can be obtained using the Baade-Wesselink method. The Baade-Wesselink method
relies on the measurement of the ratio of the star size at times t1 and t2, based on the luminosity
and color. Combined with a simultaneous measurement of the radial velocity, this method
delivers the difference in the radius between t1 and t2. With the known difference and ratio of
the radius at two times, one can derive the radius of the Cepheid. Combining SII angular size
measurement with the radius estimate one obtains the distance (see [12]). This makes possible
the calibration of the all important Cepheid period-luminosity relation using local Cepheids.
Nearly all of the Hipparcos distances for Cepheids have rather large trigonometric errors (see
[13]) giving rise to ambiguous results. A count of Cepheids observed with Hipparcos [14] shows



that at least 60 Cepheids are visually brighter than 8m.

Rapidly rotating stars and hot stars As a group, classical Be stars are particularly well-
known for their close to break-up rotational velocities as deduced from photospheric absorption
lines. In addition the stars show Balmer line emission firmly established as due to gaseous
circumstellar disks, that appear and disappear on timescales of months to years. Photometric
observations of Be star disks seem to indicate that they may actually evolve into ring structures
before disappearing into the interstellar medium (e.g. [15]). These two phenomena (rapid
rotation and circumstellar disks) are somehow related, but many open questions exist regarding
the detailed physical processes at play. The Be-phenomenon is important given the large number
of stars and fundamental stellar physics involved (fraction of Be stars to normal B-type peaks at
nearly 50% for B0 stars, [16]). Absorption line studies cannot provide the final answer to their
actual rotational velocity due to strong gravity darkening at the equator and brightening at the
pole areas. Direct measurement of the shape of the rotating star is not hampered by gravity
darkening, and can provide a direct indication of the rotational speed (see α Eri with the VLTI,
[17]). The disk’s Bremsstrahlung can constitute ∼ 30% of the total light in V -band [16]. There
are about 300 Be stars1 brighter than mv = 8m, roughly corresponding to a distance limit of
700 pc.

The signal-to-noise ratio of an optical intensity interferometer improves with the temperature
of the target. Since SII is insensitive to atmospheric turbulence, observations in the violet or
blue pose no problem. Eliminating the “Achilles’ Heel” of standard phase interferometry will
enable high resolution studies of hot stars over very long geometric baselines. A rough estimate
of the effective temperatures of the objects in the Bright Star Catalog reveals that approximately
2600 stars brighter than visual magnitude 7 and hotter than 9000 K exist in the sky, all of which
should be realistic targets even for a fairly modest intensity interferometer. Typical angular
sizes for the stellar surface disk range between 0.5 and 5 mas. Of these targets, a handful of
especially interesting ones are presented below, along with some brief notes on their possible
science potential.

• Rigel (β Orionis) Rigel is the nearest blue supergiant (240 pc). It is a very dynamic object
with variable absorption/emission lines and oscillations on many different timescales - from
minutes to weeks [18]. The physical properties of Rigel have recently been shown to be
very similar to the supernova progenitor SN1987A. This realization makes understanding
the dynamical nature of Rigel highly relevant.

• β Centauri β Centauri is a binary system consisting of two very hot, very massive variable
stars. Both components are variable both spatially and in their line profiles. The intricate
nature of the system has led to it being called ”a challenge for current evolution scenarios
in close binaries” [19].

• Vega (α Lyrae) While one of the most fundamental stars in the sky for calibration
purposes, the nature of Vega has proven to be more complicated than previously thought.
Recent phase interferometry studies suggest an 18-fold drop in intensity at 500 nm from
center to limb, consistent with a rapidly rotating pole-on model, as contrasted to the 5-fold
drop predicted by non-rotating models [20]. Intensity interferometry will direct studies
of the intensity distribution at shorter wavelengths and in different passbands. Such
observations will lead to a better understanding between the link between rotation and
limb darkening in different wavelength regions.

• η Carinae η Carinae is the most luminous star known in the Galaxy, and an extremely
unstable and complex object. Recent VLTI studies have revealed asymmetries in the stellar

1 http://www.astrosurf.com/buil/us/becat.htm



winds due to the rapid rotation of the star [21]. Like Rigel, η Carinae is believed to be on
the verge of exploding as a core-collapse supernova.

• γ2 Velorum γ2 Velorum is a binary consisting of a hot O-type star and a Wolf-Rayet
star. The proximity to the O-type star creates a situation where two stellar winds interact,
creating a wealth of interesting phenomena such as wind collision zones, wind-blown cavities
and eclipses of spectral lines [22]. The bright emission lines of WR stars make them suitable
for comparative studies in different passbands, as discussed above.

Optical emission from AGN Nuclear optical continuum emission from AGN is visible
whenever there is a direct view of the accretion disc (although jets can also contribute to this
component). NGC 1068 is among the brightest and the most nearby active galaxy (18.5 Mpc),
and hence the prototypical AGN. The core of the galaxy is very luminous not only in the optical,
but also in ultraviolet and X-rays, and a supermassive black hole is required to account for the
nuclear activity. The VLTI has succeeded in resolving structures in the AGN torus at mid-
infrared wavelengths [23] on scales of 30 milli-arcsecond. On the other hand, the blue optical
continuum emission is dominated by thermal emission from the inner accretion disk (the source
of the “big blue bump” in many quasars) and much more compact. The optical emission regions
have an expected size of 0.3 milli-arcsecond at the distance of NGC 1068 and resolving it would
be a fantastic achievement. The nucleus has a visual magnitude of around 10m.

Gamma-ray bursts and supernovae The energy, spectrum and delay between the
spectrally-remote events and their inexplicable energy have long been puzzling. Initial models
assumed clashes between expanding shells to explain these bright events [24], and later
concentrated on polar shells. Another model tried to explain the effect by assuming relativistic
plasma spheres in which directionality sets all these observed parameters [25]. Resolution is
required to decide between the many models for these hot spots. The currently available high-
spatial resolution instruments are all insufficient as amplitude interferometers cannot operate
on long enough baselines in the crucial blue and ultraviolet regime [27]. Early warning systems
will allow to obtain some spatial and spectral information at the peak of the optical flux. Since
most of these events are extremely far, we can expect only those within z= 1 to be resolvable.
There have been at least two such bright (mv < 9m) objects, GRB990123 and GRB080319B,
and there are others (e.g. GRB050509B) with host galaxies, all of which are of interest.

3. Cherenkov telescope arrays as an optical intensity interferometer
The major observational advantages of an intensity interferometer are its low requirements on
path length equalization and its relative insensitivity to atmospheric seeing. However traditional
implementation has required huge quantities of light. Cherenkov telescopes are capable of
gathering huge quantities of light and recent studies [28] have rediscovered the potential of the
next-generation Imaging Air Cherenkov Telescope (IACT) arrays as a multi-element intensity
interferometer. Two major IACT array facilities for γ-ray astronomy are currently under design-
study: the Advanced Gamma Imaging System (AGIS [29]) in the US and the Cherenkov
Telescope Array (CTA [30]) in Europe. Current designs will offer several thousand baselines
(tens to a hundred telescopes) from a few tens of meters to more than a kilometer (Figure 2)
and would achieve a limiting magnitude for SII of mv ≈ 9m, achievable within a few hours
exposure [28, 31, 32]. CTA is on the roadmap2 of the European Strategy Forum on Research
Infrastructures (ESFRI), is stated as one of the ”Magnificent Seven” of the European strategy
for astroparticle physics published by ASPERA3 and is highly ranked in the strategic plan for

2 ftp://ftp.cordis.europa.eu/pub/esfri/docs/esfri roadmap update 2008.pdf
3 http://www.aspera-eu.org/images/stories/roadmap/aspera roadmap.pdf
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Figure 2. Left: Proposed lay-out for the future CTA. Small red dots are the 85 100m2 dishes,
large blue dots are the four 600m2 dishes (adapted from [26]). Right: Limiting optical magnitude
estimate as function of baseline for a 5σ detection, in a 5 hr integration on a centro-symmetric
object with 50% visibility. Sensitivity for SII of current ground-based γ-ray facilities (HESS,
and VERITAS) are also included. Final limiting magnitudes depend on signal bandwidth and
CTA design details, see [28].

European astronomy of ASTRONET4. The AGIS collaboration has provided a white paper
for the Division of Astrophysics of the American Physical Society on the status and future of
ground-based TeV γ-ray astronomy [33]. The next generation of IACT arrays are foreseen to
come on-line within the next 10 years. Implementation of SII with IACT arrays will result in
imaging capabilities with an expected angular resolution of 0.05 mas at 400 nm.

IACT γ-ray observations are done with a low duty cycle due to a requirement for low night-sky
background light levels excluding moonlight.Meanwhile SII observations in narrow optical bands
are much less affected by the background The SII exploitation of large IACT arrays will close
to double their operational duty cycle for a modest additional cost. The elegant combination
of SII − IACT will increase and diversify science output by giving access to unprecedented
imaging capabilities.

These new developments across the community have resulted in the formation of a working
group on the topic within the IAU commission 54 on optical and infrared interferometry5.
The group met officially for the first time during a workshop in January 20096. A report for
the CTA collaboration is in preparation. Provisions will be included in the high energy γ-ray
camera design to make the future installation of SII specific hardware possible. The foreseen
IACT arrays offer a sufficiently dense coverage of the Fourier plane to perform actual image
reconstruction. Implementation of SII on IACT arrays is identified as a natural first step
towards revival of intensity interferometry.

4. Concluding remarks
The natural synergy of IACT arrays and SII will bring together disparate research communities
around a single large scale facility with imaging capabilities at an unprecedented angular

4 http://www.astronet-eu.org/
5 http://physics.technion.ac.il/̃ intint/index.html
6 http://www.physics.utah.edu/˜lebohec/SIIWGWS/



resolution. This will usher in true imaging of diverse stellar phenomena such as rapidly
rotating stars and mass accretion processes. It will illuminate stellar evolution processes through
calibration of pre-main sequence tracks and highly evolved systems close to going supernova.
It will significantly improve the distance scale by calibrating the Cepheid period-luminosity
relation. Extra-galactic targets are fainter and smaller, but not out of reach of future IACTs.
The time for revival of intensity interferometry in astronomy has arrived.

The temporal variant of SII has been chosen for a planned quantum optics instrument
for the European Extremely Large Telescope, and is in an advanced stage of development.
Quanteye is designed to perform on sub-nanoseconds time scales allowing photon correlation
spectroscopy[34, 35, 36, 37]. It will provide new insights into high-speed astrophysical
phenomena and the fine structure of photon emission. As astronomy is ultimately driven by
technical innovation rather than theoretical predictions, these and other related developments
of intensity interferometry will undoubtedly open up a new vantage point on the universe.
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ABSTRACT

Kilometric-scale optical imagers seem feasible to realize by intensity interferometry, using telescopes primarily
erected for measuring Cherenkov light induced by gamma rays. Planned arrays envision 50–100 telescopes, dis-
tributed over some 1–4 km2. Although array layouts and telescope sizes will primarily be chosen for gamma-ray
observations, also their interferometric performance may be optimized. Observations of stellar objects were nu-
merically simulated for different array geometries, yielding signal-to-noise ratios for different Fourier components
of the source images in the interferometric (u, v)-plane. Simulations were made for layouts actually proposed for
future Cherenkov telescope arrays, and for subsets with only a fraction of the telescopes. All large arrays provide
dense sampling of the (u, v)-plane due to the sheer number of telescopes, irrespective of their geographic orien-
tation or stellar coordinates. However, for improved coverage of the (u, v)-plane and a wider variety of baselines
(enabling better image reconstruction), an exact east-west grid should be avoided for the numerous smaller tele-
scopes, and repetitive geometric patterns avoided for the few large ones. Sparse arrays become severely limited
by a lack of short baselines, and to cover astrophysically relevant dimensions between 0.1–3 milliarcseconds in
visible wavelengths, baselines between pairs of telescopes should cover the whole interval 30–2000 m.

Keywords: Instrumentation: high angular resolution – Instrumentation: interferometers – Stars: individual

1. IMAGING STARS WITH INTENSITY INTERFEROMETRY

1.1 Introduction

A small number of the apparently largest stars have now been imaged with phase/amplitude interferometers,
revealing their oblate shapes caused by rapid rotation or perhaps being surrounded by circumstellar winds, disks,
or shells. Clearly, improving the angular resolution by just another order of magnitude would enable many more
phenomena to be resolved.1 However, atmospheric turbulence makes the required interferometry over hundreds
of meters quite challenging for phase/amplitude interferometers which require optical path-length precisions
within a fraction of an optical wavelength.

Optical intensity interferometry currently seems the most realistic way to realize imaging of stars on scales
well below one milliarcsecond (mas).2,3 Using a simple λ/D criterion, 1 mas resolution at λ=500 nm requires
a baseline around 100 meters, while 1 km enables 100 µas. For the forthcoming large arrays of Cherenkov
telescopes, extensions over some 2 km are discussed, and if such could be utilized at λ=350 nm, resolutions could
approach 30 µas.

1.2 Theory of Intensity Interferometry

Intensity interferometry measures correlations in light intensity fluctuations between pairs of telescopes.4,5 This
correlation is related to the squared modulus of the complex degree of coherence of the light:

|γ|2 =
〈∆I1∆I2〉
〈I1〉〈I2〉

(1)
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where Ii and ∆Ii are the intensity and intensity fluctuations respectively, measured by telescope i and 〈〉 denotes
the time average.

The complex coherence is proportional to the Fourier transform of the stellar surface brightness, Θ, sampled
at a point (u, v) in the Fourier plane, according to the van Cittert-Zernike theorem:

γ(u, v) ∝
∫∫

Θ(l,m)e−2πi(ul+vm) dl dm (2)

where l,m are (angular) positions in the sky. So, in short, each pair of telescopes in an intensity interferometer
measures the square of the magnitude of the Fourier transform of the target at one point in the Fourier plane.

Long telescope separations, or baselines, measure high-frequency components, corresponding to small struc-
tures on the target, while short baselines sample the low frequencies. For a baseline B = (BNorth, BEast) the
associated Fourier-plane coordinates are (u, v) = 1

λ (BNorth, BEast).

For an array of N telescopes there are N(N − 1)/2 (not necessarily unique) baselines. As the target of
observation moves across the sky, the projected baselines, Bp, will change, with each telescope pair tracing out
an ellipse in the Fourier plane according to the following expression:6

(u, v, w) =
1
λ
Bp =

1
λ




− sin l sinh cosh cos l sinh

sin l cosh sin δ + cos l cos δ sinh sin δ − cos l cosh sin δ + sin l cos δ
− sin l cosh cos δ + cos l sin δ − sinh cos δ cos l cosh cos δ + sin l sin δ








BNorth

BEast

0



 (3)

where l is the latitude of the telescope array and δ and h are the declination and hour angle of the star. The
w component corresponds to the time delay between the two telescopes. This effect, known as Earth rotation
synthesis, greatly increases the Fourier-plane coverage of a telescope array.

From the Fourier magnitude, it is possible to both reconstruct the image of the target7 (provided the sampling
is good enough), or fit a model to the data.

Figure 1. Approximated angular diameters of the stars in the Bright Star Catalogue (BSC),8 containing all stars in the
sky with mV < 6.5 (a few outliers have been omitted for clarity). Effective temperatures were estimated from their B−V
color index, and then used to calculate the angular diameters.



Optimizing the telescope placement in an interferometric array is a complex problem that has been widely
studied for optical and radio interferometers (e.g., Refs. 9–11). The optimal configuration depends upon the
task: if the objective is to study very small structures, long baselines are required. If, on the other hand,
one wishes to measure large-scale structures, shorter baselines are necessary. For a general-purpose array, it is
usually preferable to have a healthy mixture of short and long baselines, sampling the (u, v)-plane as uniformly
as possible. In some interferometers this is satisfied by movable telescopes; in others one maintains similar
diffraction-limited resolutions for observations at different wavelengths, placing telescopes in self-similar patterns
(e.g., logarithmic spirals), while still others may be constrained by the local geography. In any case it is almost
always best to avoid regularly spaced telescopes, since such placement results in duplicate baselines.

1.3 Astrophysical Targets

Ideal targets for intensity interferometry are hot and bright stars.1 The limiting magnitude depends on the size
of the flux collectors, the detectors with their electronics, and the integration time, but simulations and previous
experience suggest a limiting magnitude around mV ∼ 9,2 while initial observing programs will likely be limited
to mV ! 6.

The Bright Star Catalogue (BSC)8 lists all stars brighter than mV = 6.5 (a total of 9096), and can be used
to illustrate the parameters of likely observational targets. The B − V colors of the BSC entries were converted
to theoretical effective temperatures by fitting a polynomial to data relating Teff and B − V color index from
Bessel et al.12 These effective temperatures were then used to calculate the angular diameters assuming the stars
are blackbodies with uniform circular disks; see Fig. 1.

Most bright stars have angular diameters on the order of one milliarcsecond (mas) or less. Such a star is
resolved by telescopic baselines of ∼100 m, so an array must provide baselines at least this long to be able to
observe any significant number of objects. However, it is important to note that short baselines are also crucial.
An array lacking baselines shorter than ∼ 100 m will have too narrow a field of view to image the shapes of most
stars.

1.4 Technical Requirements

Intensity interferometry places substantial technical requirements on the detection equipment used (for a dis-
cussion of its technical aspects, see Ref. 13). Very high time-resolution detectors are required to measure the
rapid intensity fluctuations, and fast hardware is needed for calculating correlation functions. However, by far
the most expensive components are the flux collectors. The technique is sensitive to the square of the received
light intensity, and large amounts of starlight need to be collected. On the other hand, there is no need for
high-quality optics – a time resolution on the order of 1 ns, say, corresponds to a light travel distance of 30 cm,
and optical imperfections comparable to such a magnitude can be tolerated. Despite the tolerance for optical
imperfections, the cost associated with a large array of ∼10 m telescopes is substantial, so a very attractive
possibility is to operate intensity interferometry as an auxiliary program on arrays set up for other purposes.

Seemingly ideal for this purpose are those air Cherenkov telescopes that are being erected for gamma-ray
astronomy (e.g., Refs. 14,15). These measure the feeble Cherenkov light in air produced by cascades of secondary
particles initiated by highly energetic gamma rays. They must have a time resolution of a few nanoseconds (set
by the duration of the Cherenkov light flash); they must be sensitive to short optical wavelengths (Cherenkov
light is bluish); they must be large (Cherenkov light is faint), and they need to be separated by distances of
∼50 m to ∼200 m (extent of the Cherenkov light-pool onto the ground).

2. EXISTING CHERENKOV TELESCOPE ARRAYS

A number of air Cherenkov telescope facilities are already in operation, with the major ones summarized in
Fig. 2 and Table 1.



Table 1. Properties of some existing Cherenkov arrays. N denotes the number of telescopes, A is the light collection area of
each telescope, n is the number of unique baselines simultaneously available, Bmin, Bmax indicates the range of baselines
for observation at zenith. The corresponding range of angular diameters in milliarcseconds (1.22λ/b) for observations at
400 nm is indicated by θmin, θmax.

Array N A (m2) n Bmin, Bmax (m) θmin, θmax (mas)

CANGAROO-III16 4 57 6 100, 184 0.5, 1.0
HAGAR17 7 7 21 50, 100 1.0, 2.0

H.E.S.S.-I18 4 108 6 120, 170 0.6, 0.8
MAGIC19 2 227 1 85, 85 1.2, 1.2
PACT20 25 9.5 300 20, 128 0.8, 5.0

TACTIC21 4 7 6 17, 20 5.0, 6.0
VERITAS22 4 113 6 80, 140 0.7, 1.2

2.1 Interferometric capabilities of existing arrays

Already the baselines offered by some of the existing arrays may be adequate for starting intensity interferometry
experiments. Their adequately large flux collectors should provice excellent signal-to-noise ratios, but the longest
baselines do not reach more than some 200 meters and their achievable angular resolution essentially overlaps with
that feasible with existing phase interferometers (though observations could be made in the blue or violet, where
the contrast of many stellar features is expected to be higher). Table 1 lists some of their relevant properties.

Figure 3 shows a simulation of the Fourier plane coverage of the baselines possible with the VERITAS array
for an 8-hour observation of a star moving through zenith, cf. Eq. (3). While the (u, v)-coverage is increased
greatly through Earth rotation, it is still rather sparse and does not extend very far.

Figure 2. Overview of existing air Cherenkov telescope arrays. The geometric layout is shown with north upwards (the
scale varies between different arrays in the figure; see Table 1 for array sizes).

3. FUTURE CHERENKOV TELESCOPE ARRAYS

The largest current projects for future observatories are CTA (Cherenkov Telescope Array),23 and AGIS (Ad-
vanced Gamma-ray Imaging System).24 Either of them is envisioned to comprise around 50-100 flux collectors
with diameters up to ∼20 m spread over kilometer-scale distances. These would be excellent facilities for inten-
sity interferometry, both in terms of resolution and Fourier-plane sampling, and their design studies now also
incorporate their possible use for optical interferometrry. For such use, appropriate data analysis software would
digitally synthesize baselines between all possible pairs of telescopes.2,3



Figure 3. Simulated (u, v)-coverage of the VERITAS array (Fig. 2 and Table 1) for an 8-hour observation of a star moving
through zenith. Each pair of telescopes traces out two partial ellipses in the Fourier plane, since the Fourier magnitude
in a point (u, v) will be the same as in the point (−u,−v). The filled circles indicate the snapshot Fourier plane coverage
when the star is in the zenith. The small crosses mark 2-hour intervals before and after the meridian passage.

3.1 Candidate configurations

Any dedicated interferometer can be optimized for the best coverage of the interferometric (u, v)-plane. However,
for Cherenkov telescope arrays, intensity interferometry is a secondary application and telescope placements
and sizes will primarily be chosen for their gamma-ray observations. Nevertheless, also the interferometric
performance may be optimized, without compromising the gamma-ray performance nor adding extra costs.

A number of candidate array layouts for the CTA are being studied within its design study,23,25,26 of which
a number is shown in Fig. 4. Each of these candidate layouts is a subset of an all-encompassing larger array,
shown in the bottom-right corner. Note that several among the configurations are not fundamentally different
from each other. Already from a quick glance, one can roughly divide the layouts into three groups: A, B, F
and G, whose telescopes are concentrated in a fairly small area and which lack longer baselines; C, D and J
which contain telescopes more sparsely spread out over a large area; and E, H, I and K which contain a larger
number of telescopes and provide both long and short baselines. For this paper, the configurations B, D and I
were selected for more detailed study, as “representatives” of the three groups.

The left column in Fig. 5 shows the telescope placement of the three examined configurations B, D and I.

Table 2. Properties of the three examined candidate configurations. N is the number of telescopes, A is the light collection
area of each type of telescope, n is the number of unique baselines available, Bmin, Bmax indicates the range of baselines
for observations in zenith. The corresponding range of angular diameters in milliarcseconds (1.22λ/b) for observations at
400 nm is indicated by θmin, θmax.

Array N A (m2) n Bmin, Bmax (m) θmin, θmax (mas)

Conf. B 42 113, 415 253 32, 759 0.13, 3.2
Conf. D 57 113 487 170, 2180 0.05, 0.6
Conf. I 77 28, 113, 415 1606 90, 2200 0.05, 1.13



Figure 4. Different telescope array layouts currently being discussed for CTA. Each of the configurations is a subset of the
large array shown in the bottom-right corner. For this paper, configurations B, D and I were selected for further study.

The middle column shows a “snapshot” (u, v)-plane coverage of the arrays for a star in the zenith. In the right
column, the effect in the (u, v)-plane of the star moving 20 degrees from the zenith to the west is shown.

Already from Fig. 5 and Table 2 something can be said about the designs if applied to intensity interferometry.
Configuration B samples the central parts of the Fourier plane very densely and would provide a field of view
that is fully capable of imaging the shapes of almost any stellar object. However, since it lacks longer baselines,
it is unable to resolve details smaller than ∼0.13 mas.

Configuration D, on the other hand, provides baselines out to 2180 m, permitting studies of very detailed
structures, down to around 50 µas. However, its shortest baseline is 170 m, which means that any structures
larger than ∼0.6 mas will be lost. This makes it unsuitable for most stars (cf. Fig. 1). Configuration I seems
to provide the best of the two worlds: it has baselines short enough to measure the shapes of the disks of most
stellar objects, while still providing very long baselines and a very good resolution.

4. SIMULATED OBSERVATIONS WITH CHERENKOV TELESCOPE ARRAYS

An intensity interferometer using two photon-counting detectors A and B and a digital correlator will measure
the correlation of Eq. (1) in a discrete form:

g(2) =
NAB

NANB
N, (4)

where NA and NB are the number of photons detected in A and B respectively, NAB is the number of joint
detections and N is the number of sampled time intervals. In the simulations presented below, each measurement
was simulated by generating random numbers NA, NB and NAB and inserting into Eq. (4). These will be Poisson
distributed random variables∗ with mean values λA = PA ·N , λB = PB ·N and λAB = PAB ·N . Here, PA and

∗In reality, the measurement time is always long enough for the Poisson distributions to be adequately approximated
as normal distributions.



Figure 5. Left column: Telescope placement for the three candidate configurations B, D and I (top to bottom). Middle
column: (u, v)-plane coverage at an instant in time for a star in the zenith. Upper right-hand squares show the central
400x400 m area. Right column: (u, v)-plane coverage for a star moving from the zenith through 20 degrees to the west.

PB are the probabilities of detecting a photon in A and B respectively within a small time interval ∆t and PAB

is the probability of a joint detection within ∆t.

These probabilites can be written out in terms of variables depending only on the instrumentation and the
target of study (e.g. Ref. 27):

PA = αA〈IA〉∆t (5)

PB = αB〈IB〉∆t (6)

PAB = PAPB + αAαB〈IA〉〈IB〉|γAB |2
τc
∆t

∆t2 (7)

Here α denotes the quantum efficiency† of the detectors, 〈I〉 is the mean light intensity, τc is the coherence time
of the light (determined by the wavelength and optical passband) and γAB is the degree of optical coherence
(proportional to the Fourier transform of the target). Such simulations were carried out for the various candidate
configurations using the binary star in Fig. 6 as the source to be observed.

4.1 Varying target magnitude

Figure 7 shows the results of varying the brightness of the target. The simulations started with the star in zenith
and then moving 50 degrees to the west in steps of 5 degrees, with an integration time of 2 hours at each time
step (thus, such an observation would require several nights of integration). The observational wavelength was
500 nm and the detectors were assumed to have a time resolution of 1 ns and a quantum efficiency of 70 %.

†The quantum efficiency of a detector is essentially the ratio of detected photons to incoming photons.



(a) Source image (b) Fourier magnitude

Figure 6. Test image of a binary star used for simulations and its (logarithmized) Fourier magnitude.

Figure 7. Simulated observations of the binary star in Fig. 6 with configuration B (top row), D (middle) and I (bottom).
Vertical columns are for differently bright stars; left is for mV = 3; center for mV = 5, and mV = 7 to the right.

The data from the simulations are shown in the Fourier plane. To better illustrate the locations of low-
amplitude structures and of noise, the data were logarithmized and normalized after first performing a linear
interpolation between the “observed” points, in order to obtain the Fourier magnitude over a regular grid. A 3D
shading was then applied to the data to further highlight the locations of structures (the absolute values of the
measured correlations are not of any real significance in this context).



These simulations are consistent with earlier results in that the practical limiting magnitude seems to lie
somewhere around mV = 6−7. Configuration B performs well in reproducing the three central lobes of Fig. 6(b),
but it lacks the longer baselines needed for higher-frequency components.

Configuration D, on the other hand, measures the higher-frequency components very well but even for a
target with such a small angular extent, the central parts of the Fourier plane – which determine the overall
shape of the object – are distorted due to poor sampling at short baselines. Configuration I samples the whole
Fourier plane well, but its smaller-size telescopes (see Fig. 5) makes it a bit more sensitive to target magnitude.

Figure 8. Subsets of the candidate configurations (B, D, I from top to bottom). In the leftmost column half the telescopes
of the superset configuration were selected in a pseudo-random fashion. In the middle column, one in four telescopes was
selected, and in the rightmost column one in eight.

4.2 Observations with subsets of the configurations

It is interesting to examine the performance of also various smaller subsets of the telescope arrays. It is not
known whether some modifications or special equipment might be required at each telescope to be used for
intensity interferometry, nor whether the full array will always be available. Observations using only a subset of
the telescopes may thus represent a realistic mode of operation, at least initially.

For each of the configurations B, D and I, three subset configurations were generated, as shown in Fig. 8.
The configurations shown in the leftmost column, designated B2, D2 and I2, were obtained by selecting half of
the full set of telescopes in a semi-random manner (attempting to preserve the overall “shape” of the array).
In the middle column, one in four telescopes was retained (these are referred to as B4, D4, and I4) and in the
rightmost column only one telescope in eight was kept (B8, D8, and I8).

Figure 9 shows the output from simulations of the binary star in Fig. 6(a) using these subsets. The simulation
parameters were the same as in Fig. 7 except that the magnitude of the star was now fixed to mV =5 and the



integration time was increased to 10 hours per timestep in order to depress measurement noise and thus highlight
sampling effects for the various configurations.

Figure 9. Simulated observations of the binary star in Fig. 6 with subsets of configuration B (top row), D (middle row)
and I (bottom row). The left column is for subsets containing half of the telescopes; the center for a quarter, and the
rightmost for one eighth (see Fig. 8).

It is obvious that more telescopes are better in terms of Fourier plane sampling, and too few telescopes can
ruin the results, as illustrated by the observation with D8. It should be noted, however, that no attempt was
made to optimize the selection of telescopes in order to improve the sampling. Once the design for CTA is
finalized, this could be one of the first problems to examine in order to determine which telescopes to equip first
for intensity interferometry.

4.3 Image reconstruction

The discussion above has only dealt with Fourier magnitudes, which is what is directly measured by an intensity
interferometer. Fourier magnitudes alone can be used to fit model parameters such as stellar diameters, binary
separations, circumstellar disk thicknesses, etc. As is shown in Ref. 7, model-independent image reconstruction
from the Fourier magnitude alone is indeed possible (though with some limitations).

Figure 10 shows a proof-of-concept example of an image reconstructed from simulated data using one of
the candidate configurations. However, image reconstruction is an active area of research and many practical
issues remain to be improved. Thus, at this stage, it is not yet possible to tell which imperfections are due to
fundamental limitations of the algorithms used or simply due to practical issues that can be solved. There is thus
a risk that a comparison between reconstructed images from the different candidate arrays would be misleading,
which is why the focus here is instead on the algorithm-independent Fourier magnitudes.



Figure 10. Image reconstructed from simulated data corresponding to 50 hours of observation of a magnitude 6 rotationally
flattened star with an obscuring disk. The simulation was done using a telescope array qualitatively similar to those
discussed in this paper (see Ref. 7 for details). The image in the bottom-right corner was used as input for the simulation.
Also shown is the pristine image convolved with the point-spread-function of the array. The difference in sharpness
between this and the pristine image is due to the inability of a finite-sized array to measure all the higher-frequency
Fourier components. The convolved pristine image is thus the best image that is theoretically possible to reconstruct.

5. CONCLUSIONS

A facility such as the CTA will most likely be able to produce excellent scientific data if used as an intensity
interferometer, providing measurements of spatial structures on scales down to a few tens of µas – orders of
magnitude better than what is possible today in visible light.

The candidate configurations examined here – while not optimized for intensity interferometry – all provide
very dense sampling of the (u, v)-plane due to the sheer number of telescopes. Apart from the simulations
described above, a number of other tests were carried out to determine effects from varying the declination of the
star and the geographic orientation of the telescope array. It was found that the very large number of telescopes
make the effects of any such variations almost negligible.

However, it must be noted that an array such as configuration D will be severely crippled by its lack of short
baselines, essentially limiting such a facility to only studying stars smaller than ∼0.5 mas. Also, to improve
coverage of the (u, v)-plane and to ensure a wider variety of baselines (enabling better image reconstruction),
an exact east-west orientation should be avoided for the grid of many smaller telescopes (since stars rise in the
east, and move towards west, the projection of any east-west baseline will vary only in amount, not orientation).
For the fewer large telescopes, repetitive geometric patterns should be avoided, in order to avoid redundancy in
baselines. To cover astrophysically relevant dimensions between 0.1–3 milliarcseconds, baselines between pairs
of telescopes should as far as possible cover the whole interval 30–2000 m.
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[1] Dravins, D., Jensen, H., LeBohec, S., and Nuñez, P. D., “Stellar intensity interferometry: Astrophysical
targets for sub-milliarcsecond imaging,” Proc. SPIE 7734, 7734–9 (2010).

[2] Le Bohec, S. and Holder, J., “Optical intensity interferometry with atmospheric Cerenkov telescope arrays,”
Astrophys. J. 649, 399–405 (2006).

[3] LeBohec, S., Barbieri, C., de Witt, W.-J., et al., “Toward a revival of stellar intensity interferometry,”
Proc. SPIE 7013, 70132E (2008).

[4] Hanbury Brown, R., [The Intensity Interferometer ], Taylor & Francis, London (1974).
[5] Labeyrie, A., Lipson, S. G., and Nisenson, P., [An Introduction to Optical Stellar Interferometry ], Cambridge

Univ. Press, Cambridge (2006).
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ABSTRACT
Sub milli-arcsecond imaging in the visible band will provide a new perspective in stellar astrophysics. Even
though stellar intensity interferometry was abandoned more than 40 years ago, it is capable of imaging and
thus accomplishing more than the measurement of stellar diameters as was previously thought. Various phase
retrieval techniques can be used to reconstruct actual images provided a sufficient coverage of the interferometric
plane is available. Planned large arrays of Air Cherenkov telescopes will provide thousands of simultaneously
available baselines ranging from a few tens of meters to over a kilometer, thus making imaging possible with
unprecedented angular resolution. Here we investigate the imaging capabilities of arrays such as CTA or AGIS
used as Stellar Intensity Interferometry receivers. The study makes use of simulated data as could realistically
be obtained from these arrays. A Cauchy-Riemann based phase recovery allows the reconstruction of images
which can be compared to the pristine image for which the data were simulated. This is first done for uniform
disk stars with different radii and corresponding to various exposure times, and we find that the uncertainty
in reconstructing radii is a few percent after a few hours of exposure time. Finally, more complex images are
considered, showing that imaging at the sub-milli-arc-second scale is possible.

1. INTRODUCTION
There has been a recent interest in the revival of Stellar Intensity Interferometry (SII) due to the excellent
baseline coverage of planned air Cherenkov telescope arrays.1, 2 This interest has lead to developments in
instrumentation, experimentation, and simulations of the capabilities of this technique. Various analog and
digital correlator technologies3 are being implemented by LeBohec et. al.,4 and cross correlation of streams of
photons with nanosecond scale resolution has already been achieved. The suitability of various proposed array
configurations is being evaluated by Jensen et al.5 to understand their different sensitivities for interferometric
imaging before final choices of the array layouts are made. Image reconstruction algorithms such as the one
suggested by Holmes et. al.6 have opened the possibility of imaging and have become interesting subjects
in their own right. In this paper we will focus on the imaging capabilities and limitations of air Cherenkov
telescope arrays used as high angular resolution intensity interferometers.

High angular resolution astronomy in the optical range will open a whole new field of exploration. The
possibility of viewing stars as extended objects will enable the testing of many current astrophysical models,
and the knowledge acquired will have consequences on many fields related to stellar astrophysics. As a first
example consider the measurement of stellar diameters, which can be performed to an accuracy of a few percent
with the methods discussed in this paper (see section 4.1). When measuring diameters at different wavelengths,
we can learn about the behaviour of the optical depth as a function of the radius of a particular star.7 This
type of measurement becomes particularly useful at shorter wavelengths (λ ∼ 400nm) than those feasible with
conventional amplitude (Michelson) interferometry. Another interesting science case is the study of fast rotating
stars, for which we can measure oblateness, pole brightening, and disk formation. There is also the study of
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interacting binaries. An actual image of an interacting binary will not only aid in the determination of the or-
bital parameters to a high degree of accuracy, but also in the study and imaging of mass transfer and accretion.
Although not rigorously discussed in this paper, imaging mass transfer will improve our understanding of late
stellar evolution, i.e. the formation of type II supernovae, which are of great importance in cosmology,8 and our
understanding of the formation of compact objects. The number of interesting science cases and astrophysical
targets is overwhelmingly large, and a detailed discussion is given by Dravins et al.9

We propose the use of Intensity Interferometry for high angular resolution astronomy (see Holder et. al.1
for more details). This technique was introduced in the 1950’s by R. Hanbury Brown10, 11 and implemented in
the 1960’s with the Narrabri Stellar Intensity Interferometer,12 accomplishing the measurement of over thirty
stellar diameters. The use of planned air Cherenkov telescope arrays poses a unique opportunity to revive
Intensity Interferometry. With hundreds of telescopes separated by up to ∼ 1km, it will be possible to have an
unprecedented coverage of the Fourier plane and thus achieving sub-milliarcsecond resolution.

The most important difference between SII and amplitude interferometry is that SII relies on the correlation
between the low frequency intensity fluctuations and so does not rely on the relative phase of the individual
waves received at different telescopes. Intensity interferometry measures the squared modulus of the complex
degree of coherence |γ|2.

|γ|2 =
< ∆Ii∆Ij >

< Ii >< Ij >
(1)

Here < Ii > is the time average of the intensity received at a particular telescope i, and ∆Ii refers to the
low frequency intensity fluctuations received at telescope i. Intensity interferometry has several advantages and
disadvantages when compared to amplitude interferometry. The main advantages are that it is insensitive to
atmospheric turbulence and that it does not require high optical precision†. The complex degree of coherence
is proportional to the Fourier transform of the object in the sky (Van Cittert-Zernike theorem), and since we
measure the modulus squared of γ, the main disadvantage is that the phase of the Fourier transform is lost
in the measurement process, posing difficulties in recovering actual images from magnitude information only.
In addition to imaging difficulties, measuring a second order effect also results in sensitivity issues,1 which can
be dealt with by using large light collection areas and exposure times. As for the imaging limitations, several
phase retrieval techniques exist, and we will implement a two dimensional version of the one dimensional ap-
proach introduced by Holmes & Belen’kii.6 It is important to note that our results pertain to a single phase
recovery algorithm,6 and a comparison to other algorithms is currently being investigated.13 Once a sufficient
coverage of the Fourier plane is available, and phase recovery is performed, a study on imaging capabilities
can be performed. Here we will first concentrate on the study of the uncertainty when reconstructing disk-like
stars. Then a less exhaustive analysis on the capabilities is performed for more complicated images such as
oblate rotators, binary stars and stars with bright & dark features.

The outline of the paper is the following: First we will briefly discuss the phase retrieval technique. Then
we will discuss the simulation of our data and how it will be fitted to an analytic function so that the phase
retrieval method can be applied. Finally we will discuss the capabilities for imaging disk-like stars, binary stars
and more complicated objects.

2. PHASE RECONSTRUCTION
The objective of phase reconstruction is to recover the phase of the Fourier transform of the image from magni-
tude information only.6 The resulting image is then reconstructed up to an arbitrary translation and reflection.
It is simpler to first understand phase retrieval in one dimension and then generalize to two dimensions . One
possible route towards phase retrieval starts by first approximating the continuous Fourier transform I(x) by

†For a more detailed discussion on the advantages of Intensity Interferometry see Hanbury Brown12



a discrete one (I(m∆x) =
∑

j O(j∆θ)eijmk0∆x∆θ, where O(θ) is the image in the sky and k0 is the usual wave
vector). Then the discrete Fourier transform can be expressed as a magnitude times a phasor (I(z) = R(z)eiΦ(z)

where z ≡ eimk0∆x∆θ is complex). The most important step is then to apply the theory of analytic functions
i.e. the Cauchy-Riemann equations‡. These relate the phase Φ and the log-magnitude lnR along the real or
imaginary axes. One can show by using the Cauchy-Riemann equations, that the phase differences along the
radial direction in the complex plane§ are directly related to the differences in the logarithm of the magnitude
(see Holmes & Belen’kii6 for more details), so that integrating the Cauchy-Riemann equations directly does not
immediately solve for the phase. In other words, phase differences along the purely real or imaginary axes are
not available directly from the data.

Since z, the independent variable of the Fourier transform (z ≡ eimk0∆x∆θ), has modulus equal to 1, the
phase differences that we seek lie along the unit circle in the complex plane. Consequently, the procedure to
find the phase consists in first assuming a plausible solution form, then taking differences in the radial direction
of the complex plane, and finally fitting the data to the radial differences of the assumed solution. A general
form of the phase can be postulated by noting that the phase is a solution of the Laplace equation in the
complex plane (applying the Laplacian operator on the phase and using the Cauchy-Riemman equations yields
zero). Since the phase differences are known along the radial direction in the complex plane we can take radial
differences of the general solution and then fit the log-magnitude differences (available from the data) to the
radial differences of the general solution.

One can think of this one-dimensional reconstruction as a the phase estimation along a single slice in the
Fourier plane. A generalization to two dimensions can be made by doing the same procedure for several slices.
The direction of the slices is arbitrary, however for simplicity we reconstruct the phase along horizontal or
vertical slices in the Fourier plane, and noting that one can relate all slices with a single orthogonal slice, i.e.
once the phase at the origin is set to zero, the single orthogonal slice sets the initial values for the rest of the
slices. The resulting reconstructed phase will be arbitrary up to a constant and a linear term, which corresponds
to a translation. It should be noted that the above solution approach gave reasonably good results. However,
it is not the only possible approach. We have also investigated Gerchberg-Saxton phase retrieval, Generalized
Expectation Maximization, and other variants of the Cauchy-Riemann approach.13

3. PROCEDURE
Having briefly discussed the phase reconstruction algorithm, our basic procedure for recovering images is the
following: First we simulate realistic data as would be obtained from an air Cherenkov telescope array such
as CTA or AGIS. Once simulated data are available, they are fitted to an analytic function so that the phase
recovery algorithm can be applied in a more straightforward way. Finally, once the phase is recovered, the
inverse Fourier transform will provide us with a reconstructed image. Some details concerning the simulations
and data fitting approach now follow.

3.1 Simulation of realistic data and array design used
The simulation of the the data that may be produced by an array of telescopes starts from a pristine image,
generally 2048×2048 pixels with an arbitrary dynamic range. The squared magnitude of the Fourier transform
of this image is obtained by means of an FFT algorithm and it is normalized so its maximum at zero baseline
is equal to one. With a wavelength λ = 400 nm, and the full scale of the image typically set to 10mas, this
provides a value for the expected degree of coherence on a square grid with a pitch of ∼ 8.2 m extending over
a ∼ 16.8 km× 16.8 km area.

The squared Fourier magnitude map is sampled by the set of pairs available in the simulated array. Sim-
ulations presented here have been obtained with an array of N = 97 telescopes, each with a light collecting

‡The C-R equations can be applied because I(z) is a polynomial in z, where z ≡ eiφ.
§If ξ is the real axis and ψ is the imaginary axis, then a difference along the radial direction is ∆ξ + i∆ψ.



Figure 1. Array configuration used for our analysis.

area of 100 m2 and a quantum efficiency α = 0.30 resulting in an effective area of 30 m2. The telescopes are
distributed in the field according to an early design of the CTA array shown in figure 2. Such an array provides
a coverage of the interferometric (u,v) plane with N(N − 1)/2 = 4656 baselines many of which are redundant.
The baselines are shown in figure 2. The degree of coherence recorded by each baseline is obtained from a linear
interpolation between the closest four points in the Fourier magnitude table.

The data recorded by a real array would be affected by the diurnal motion of the observed star which affects
the effective baselines by projection. The average correlation must then be recorded for each baseline at time
intervals short enough for the baseline change to be negligible. In the first simulation study reported here we
have decided to avoid this complication and simulate data that would result from the observation of fixed stars
at zenith so the effective baselines used are those shown in figure 2 without any further projective distortion.
The implications of this simplification choice are a less uniform sampling of the (u,v) plane compensated by
smaller error bars on the degree of coherence from each baseline record. These two effects essentially cancel each
other as long as small scale features in the (u,v) plane are not central to the analysis. The benefits from the
simplification is a reduction in the volume of data to handle (each simulation produces a single record for each
pair of telescopes) and eliminates further arbitrary parameters (such as the site latitude, celestial declination,
range of hour angles and time interval between recordings).

Once the degree of correlation within each baseline has been obtained, Gaussian noise is added. The
Gaussian nature of the noise was tested with detailed simulation of a pair of photo-multiplier tube signals
corresponding to a random stream of photons. The time integrated product of the two traces was Gauss
distributed. The magnitude mV of the star is used to compute a spectral density (m−2s−1Hz−1) according
to n = 5 × 10−5 × 2.5−mV . The standard deviation of the Gaussian noise added to the pair of telescopes
(i, j) is calculated as σ = n

√
Ai · Aj ·∆f ·∆t/2 where Ai is the effective light collection area of the ith tele-

scope, ∆f is the signal band-width and ∆t is the observation duration. For simulations presented in this paper
∆f = 200MHz which is a realistic choice when considerations on air Cherenkov telescope optics and electronics
are taken into account (See Holder & LeBohec1 and LeBohec et al.4).



Figure 2. Available baselines for the array design used in this study.

3.2 Fitting the data to an analytic function
The phase reconstruction algorithm is greatly simplified when data are known on a square grid rather than in
a ‘randomly’ sampled way as is directly available from observations. This is because sampling data on a fine
square grid enables an easier estimation of the derivatives of the log-magnitude.

Assuming that data f(xi) are known at positions xi, with uncertainty δf(xi), our goal is then to find a
function that minimizes the following χ2

χ2 =
∑

i

[
(f(xi) −

∑
k akgk(xi))

δf(xi)

]2

. (2)

Here, the ak
′s are the coefficients of the basis functions gk that we want to use to fit our simulated data.

Any complete basis will suffice in theory, however it is more appropriate to choose a set of basis functions
that tend to zero at infinity. The reason for this requirement of our basis functions is so that data are more
realistically fitted in regions were there is not much data available. For the case of the CTA array design that
we used, we noticed that there is less data at baselines greater than 600 m (see figure 2). We found that basis
functions that meet this requirement are the solutions to the two dimensional quantum-mechanical harmonic
oscillator, i.e. Hermite polynomials with Gaussian envelopes. These also turn out to be convenient because
they are eigenfunctions of the Fourier transform operator.

Now we can turn this problem into a linear system by taking derivatives with respect to the unknowns ak.
Our data fitting typically starts with a small number of basis elements, then we check to see if a certain reduced
χ2 is met (in our case, we chose an acceptable reduced χ2 to be 1.5), if this condition is not met, then the
number of basis elements is increased iteratively until it does.

4. IMAGING CAPABILITIES
We may start by quantifying the resolution of an air Cherenkov telescope array such as the one shown in figure
2 by recalling that quantities that are related to each other by a Fourier transform obey an uncertainty relation.
For an order of magnitude estimation it suffices to relate the size of the array to the maximum resolution by

∆θ ∼ λ

∆x
. (3)



With a kilometer size array (∆x ∼ 1 km), and a wavelength of λ ∼ 400nm we obtain a resolution of
∆θ ∼ 0.1 mas. On the other hand, the largest objects observable with an array whose inter-telescope sepa-
ration is of the order of ∆x ∼ 50m is ∆θ ∼ 1 mas. These order of magnitude considerations will be taken
into account when performing simulations and image reconstructions, i.e. the minimum and maximum size of
pristine images will not go far beyond these limits.

We tested the imaging capabilities for simple objects, namely uniform disk-like stars, oblate rotating stars,
binaries, and more complex images. First we will concentrate on the capabilities and limitations for recon-
structing uniform disk-like stars. We will show that such a preliminary analysis reveals more precisely, when
compared to the previous estimate, the sizes of objects that can be observed. Even though using a Cauchy-
Riemann based approach to recover images might not be the most efficient way to measure stellar radii, such
a study will start to quantify the abilities of measuring other scale parameters in more complicated images
(oblateness, distance between binary components, etc.).

4.1 Uniform disks
Simulated data were generated corresponding to uniform disk stars of a particular brightness. We set the
brightness to magnitude 6 after noting that an error of a few percent in the simulated data can be achieved in
a few hours. Also, 6th magnitude stars are appropriate since they roughly correspond to the upper limit for
most of the interesting astrophysical targets found by Dravins et al.9

It is interesting to first study the uncertainty for a particular exposure time and a brightness corresponding
to 6th magnitude. We simulated data corresponding to uniform disks of random radii up to 1 mas for 50 hours
of exposure time. An example of such a reconstruction is shown in figure 3b, where the brightness is shown
in arbitrary units between 0 and 1. A first look at the example reconstruction reveals that the edge of the
reconstructed disk is not sharp, so a threshold in the brightness was applied for for measuring the radius. The
radius was measured by counting pixels above a threshold and noting that the area of the disk is proportional
to the number of pixels passing the threshold. After experimenting for different radii, we chose the threshold for
measuring the radius to be 0.2. We can now compare the simulated and reconstructed radii as shown in figure
3a, where each point in the figure corresponds to an individual simulation (including noise) and reconstruction.

Figure 3a clearly shows that stellar diameters ranging from 0.05 mas to 0.5 mas can be measured with
uncertainties smaller than 5%. The ‘tail’ seen in the bottom left of figure 3a shows the smallest measurable
radius, so we take this radius (% 0.03 mas) to be the point spread function (PSF) of the array. The uncertainty
shown in the sub-figure in figure 3 was estimated after running noisy simulations many times as is shown in
figure 4.

It can be seen from figure 3a, that the uncertainty increases roughly linearly as a function of the pristine
(simulated) radius. This can be understood from the following argument: As the pristine radius decreases, the
distance to the first zero in the correlation increases as ∼ r, so the number of telescopes contained within the
Airy disk increases as ∼ r2. Consequently, decreasing the pristine radius is equivalent to increasing the number
of independent measurements by a factor of ∼ r2 at most (at least by a factor of r). Since the uncertainty will
decrease as the square root of the number of independent measurements, the error will decrease as ∼ r at most.
For radii above 0.6 mas, there are simply not enough baselines to constrain the Fourier plane information for
image reconstruction. For radii greater than 0.6 mas, the size of the Airy disk is of the order of 100 m, and this
results in having less than 100 independent measurements as can be seen in figure 2. Also shown in figure 4 is
the percent error as a function of time for two different radii, where it can be seen that a percent error of less
than 5% is achieved after only a few hours.

5. COMPLEX IMAGES
Our algorithm has also been tested on more complex images such as oblate rotating stars, binary stars, and
stars with brighter or darker regions. Since we have not developed a proper tool for quantitatively comparing



Figure 3. a) Simulated vs. Reconstructed radii for magnitude 6 stars with 50 hours of observation time. The top sub-
figure shows the uncertainty for a 0.2 mas measurement. The bottom sub-figure shows the residual (Reconstructed-Real)
along with the uncertainty in the radius. b) Example of a reconstructed uniform disk of radius 0.2 mas. Also shown is
a slice of the reconstructed image (solid line) compared to a slice of the pristine image (dashed line).

Figure 4. a) Histogram of real radius minus reconstructed radius for 50 hours of exposure time on a 6th magnitude star
of 0.2 mas radius. b) Percent error as a function of time for several reconstructed radii.



Figure 5. a) Simulated and reconstructed oblate rotator of magnitude 3 and 10 hours of observation time. b) Simulated
and reconstructed binary of magnitude 6 and 12 hours of observation time.

simulated and reconstructed images¶, we will only show a few representative examples of what the algorithm is
capable of. Figure 5a shows an example reconstruction of an oblate rotating star of magnitude 3 and 10 hours
of observation time, the semi-major axis and semi-minor axis of the pristine ellipse are 0.2 mas and 0.12 mas
respectively. Also shown in this figure, and all subsequent ones, is the pristine image convolved with the point
spread function of the array (see section 4.1). Reconstructed noise of less than 10% can be seen in the figure.
These noise fluctuations are not so much a consequence of noise in the simulated data, but of the reconstruction
algorithm itself, and the preferential direction of this reconstructed noise (along the vertical direction) is due
to our choice of the slice direction for the phase reconstruction, i.e. the phase was reconstructed by taking
horizontal one-dimensional slices of the magnitude, and then related to each other with a single vertical slice.
As for the structure (bumps) within the star in figure 5a, these start to appear when either the star becomes
bright or enough exposure time is supplied so that information other than the first lobe in the Fourier magni-
tude is significant. In other words, when high frequency portions are visible in the Fourier magnitude, fictitious
structure starts to become visible. This is most likely due to the fact that most of the high frequency infor-
mation in the Fourier plane is used to reconstruct a dark background of several mas’s with a central bright region.

The case of a binary star is shown in figure 5b, corresponding to a magnitude 6 binary star for 12 hours
of exposure time. The noise in the reconstructed image has the same origin as in the case of the oblate star.
Although the inclination angle was well reconstructed in both cases in figure 5, image reconstruction is degraded
when the symmetry axis is neither the x or y axis. Again, this is due to the particular phase recovery method
of taking horizontal or vertical slices and the degradation is significantly reduced when aligning one symmetry
axis of the magnitude to our x or y axis.

Having this symmetry consideration in mind, a slightly more complicated example is shown in figure 6a,
corresponding to a star obscured by a disk (of dust for example). A black streak in the pristine image repre-
senting the obscuring disk is aligned with the x axis. The black streak can be easily seen in the reconstruction
as well as the contour of the obscured star. This image becomes increasingly easier to reconstruct as the image
becomes more and more symmetric, that is, as the black streak in the pristine image moves towards the center

¶Since the simulated and reconstructed objects can differ by translations and reflections, developing a tool than can
accurately quantify the difference between simulated and reconstructed images is not trivial.



Figure 6. a) Simulated and reconstructed star obscured by a disk. This corresponds to magnitude 4 and 15 hours of
observation time. b) Uniform disk of radius 0.2 mas with a dark spot of radius 0.05 mas. The simulation was done for
magnitude 6 and 100 hours of observation time.

of the star‖. As a final example, we considered the case of a dark spot in a star as shown in figure 6b. The
simulation corresponds to a magnitude 6 star and 100 hours of observation. Even though the reconstructed
image appears brighter in the bottom, and the location of the spot is more symmetric, the size of the spot
(comparable to the PSF) is well reconstructed.

6. CONCLUSION AND OUTLOOK
We have shown that planned air Cherenkov telescope arrays have sufficient baselines to provide an excellent
coverage of the (u,v) plane. By first simulating realistic data, we show that it is possible to achieve a signal to
noise ratio of the order of 10 within a few hours for relatively faint stars (magnitude 6), and obviously higher S/N
for brighter stars. Once data were simulated we also show that imaging is possible using a Cauchy-Riemann6

phase recovery technique. A study of the error propagation with disk-like stars reveals that the uncertainty in
reconstructed radii is of a few percent. We also explored imaging capabilities for more complex images such
as oblate rotating stars, binary stars, and stars with dark/bright regions yielding good results. A quantitative
analysis of the reconstruction capabilities for complex images is still in progress.

The array design could certainly be improved by including telescopes at shorter distances. This could sig-
nificantly improve the size range of observable objects, in particular, we could observe objects of more than 1
mas across at 400 nm.

The analysis can also be improved by doing several things: If the pristine object has a symmetry axis, a
first reconstruction can be made to find it, and then a second image reconstruction can be made to improve the
first results. Something else worth implementing is a first reconstruction only constraining the low frequency
components of the phase by using the low frequency part of the magnitude, then a second reconstruction could
be performed, only dealing with the internal details of the image.

‖This can be understood by noting that the Fourier magnitude of a non symmetric binary becomes almost indistin-
guishable from the one corresponding to a central bright star with two fainter companions at either side.



To conclude this simulation phase, pristine images generated from astrophysical models should be gener-
ated in order to identify how much of the astrophysical model can actually be constrained. This aspect of the
simulation phase is currently under development.
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ABSTRACT
Experiments are in progress to prepare for intensity interferometry with arrays of air Cherenkov
telescopes. At the Bonneville Seabase site, near Salt Lake City, a testbed observatory has been set
up with two 3-m air Cherenkov telescopes on a 23-m baseline. Cameras are being constructed, with
control electronics for either off- or online analysis of the data. At the Lund Observatory (Sweden),
in Technion (Israel) and at the University of Utah (USA), laboratory intensity interferometers
simulating stellar observations have been set up and experiments are in progress, using various
analog and digital correlators, reaching 1.4 ns time resolution, to analyze signals from pairs of
laboratory telescopes.

1. INTRODUCTION
The recent years have seen an increase of interest for the possibility of reviving Stellar Intensity
Interferometry (SII), which was pioneered by Robert Hanbury Brown and Richard Twiss who es-
tablished the technique in 1956.13 They then exploited14 it with their colleagues with the Narrabri
Stellar Intensity Interferometer (NSII15) operated until 1972, after which the technique was aban-
doned. The present renewed interest draws from a few key ideas. Large baselines (100m and
more) in the visible band are still challenging for amplitude (Michelson) interferometry while the
SII technique is relatively unaffected by poor seeing conditions and large baselines. Several large
scale projects including large arrays of large light collectors are currently under development. Tech-
nological developments in photo-detection and signal processing since the time of the NSII make it
possible to process the high bandwidth signals from a large number of telescopes.

The recent interest for SII induced the formation of a dedicated working group within IAU
commission 5421,23 which had a first meeting in January 200925 during which planned imaging
atmospheric Cherenkov telescope (IACT) arrays used for very high energy (E > 100 GeV ) gamma
ray astronomy were identified as the most favorable settings for the deployment of a major Stellar
Intensity Interferometer. The working group subsequently contributed to the 2010 Astronomy and
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Astrophysics Decadal Survey Astro2010 in the USA with a white paper3 and a response to a request
for information8 identifying the science potential of a modern version of SII with large telescope
arrays as well as technical challenges and options for a successful deployment. This program is now
underway as SII gets increasingly integrated in IACT projects in the form of task force groups within
the CTA7 and AGIS2 collaborations which are planning construction to start in 2013. The recently
approved upgrade of the VERITAS gamma ray observatory30 includes SII in its program and will
serve as a test bench for more ambitious SII projects. Efforts are going along four main directions
about each of which a report can be found in these proceedings. The science potentials of a modern,
large scale SII with imaging capabilities are being better identified and characterized10 with lists
of interesting targets. Imaging possibilities offered by SII are implemented and evaluated26 using
increasingly realistically simulated data. The optimal geometry of telescope arrays to be used as SII
is investigated in order to identify and evaluate possible options and compromises that would further
improve SII capabilities without being detrimental to the Very High Energy (VHE – E > 100 GeV )
observing program.16 Finally, the present paper is a report on developments concerning the design
and testing of various prototypes for the optics, front end electronics and correlation electronics.

This paper is organized as follows. Section 2 gives a brief outline of the principle of intensity
interferometry with its capabilities and requirements using IACT arrays. Section 3 presents the
telescopes in StarBase which are to be used as a realistic environment testing bed with easy access.
Section 4 presents a prototype of secondary optics making SII compatible with VHE instrumenta-
tion. Section 5 presents the slow control and front end electronics prototypes under test. Individual
photodetector signals are brought to the central recording and correlation station via analog optical
fibers. Section 6 presents various correlator options being investigated. This is the critical and most
challenging part of an SII as the instantaneous signal to noise ratios are extremely small. Finally
section 7 anticipates on the future developments toward the effective deployment and operation of
an array of SII receivers.

2. INTENSITY INTERFEROMETRY
Intensity Interferometry relies on the fact that the beating of Fourier components of light results in
correlated star light intensity fluctuations in different telescopes. The degree of correlation between
the intensity fluctuation δi1 and δi2 recorded by two telescopes provides a measurement of the
squared mutual coherence, |γ(d)|2, of the light at the two telescopes separated by a distance d,
which is the square of the normalized magnitude of the Fourier transform of the image.20 The
degree of correlation is obtained by averaging over time the product of the intensity fluctuations
(see Equation 1) and the measurement relies on a second order effect implying severe sensitivity
limitations which can only be alleviated by using telescopes with very large effective light collecting
areas.

|γ(d)|2 =
< δi1 · δi2 >

< i1 >< i2 >
(1)

However, the intensity fluctuations are of relatively low frequency set by the exploited coherence
time and the requirements on optical and mechanical tolerance are much relaxed in comparison
to amplitude interferometry. The signal to noise ratio in a single pair of telescopes is given by
Equation 2 where A is the light collection area of each telescope, α is the quantum efficiency, n is
the spectral density (m−2s−1Hz−1), ∆f is the intensity fluctuation signal bandwidth and T is the
duration of observation.

(S/N)RMS = A · α · n(λ)|γ(d)|2
√
∆f · T/2 =

√
< i1 >< i2 > · |γ(d)|2 ·

√
∆f · T/2 (2)



This equation does not take into account effects such as photo-detector excess noise, night sky
background light or partial resolution by individual telescopes.22 It can however be used to estimate
the sensitivity of a realistic pair of telescopes. With A = 100m2, α = 30% and ∆f = 100MHz,
a single pair of telescopes used for five hours would provide a five statistical standard deviation
detection and measurement of degrees of mutual coherence |γ|2 = 0.3 and |γ|2 = 0.03 for stars of
visual magnitude 4.8 and 2.4 respectively.8 Crude light collectors composing IACT arrays used
for VHE gamma ray astronomy observations are perfectly suited to be used also as SII receivers.
VHE gamma ray observations are restricted to low moon light nights during which SII observations
could be made through narrow optical passbands. The recent successes in the field of VHE gamma
ray astronomy resulted in the ongoing design of much larger arrays counting up to one hundred
telescopes which would provide close to five thousand simultaneous baselines16 ranging from ∼
50 m to more than 1000m. Such a set of baselines with large telescopes suggests observations of
visual magnitude 9 stars with an angular resolution of 50µas for λ = 400nm would be possible.
The magnitude limitation is coming from both the practicality of the required observations times
(T < 50 h) and from the night sky background signal contamination.22 The rich coverage of
the interferometric plane allows model independent imaging26 by means of various phase recovery
techniques.17,18

In order to make it possible to use IACT arrays for SII observations, dedicated instrumentation
to measure, communicate, record and correlate the intensity fluctuations at individual telescopes is
necessary. The subsequent sections of this paper are dedicated to the ongoing24 design, construction
of testing of prototypes aiming at providing SII capability to the future IACT arrays for which start
of constructions is anticipated in the coming three years.

3. THE STAR BASE TELESCOPES
As a first test toward implementing SII with IACT arrays, pairs of 12m telescopes in the VERITAS
array at the Fred Lawrence Whipple Observatory in Arizona were interconnected through digital
correlators.11 These tests were made during parts of nights otherwise shared with VHE observations
with a very temporary setup and established the need for a dedicated test bench on which various
options of secondary optics and electronics could be evaluated in a realistic environment. In order to
satisfy this requirement, the two StarBase29 telescopes were deployed on the site of the Bonneville
Seabase diving resort6 in Grantsville, Utah, 40 miles west from Salt Lake City. The two telescopes
(Figure 1) are on a 23m East-West base line. The telescopes had earlier been used in the Telescope
Array experiment1 operated until 1998 on the Dugway proving range. Each telescope is a 3m, f/1
Davies-Cotton9 light collector composed of 19 hexagonal mirror facets ∼ 60 cm across. This design
is typically used for IACT and secondary optics tested on the StarBase telescopes could be used
directly on the VERITAS telescopes for larger scale tests. The telescope mounts are alt-azimuthal
with the motion around both axes controlled by tangential screws and absolute encoders with a
few arc-seconds resolution. The tracking model parameters are being optimized but the absolute
pointing accuracy is better than four arc-minutes and can be compensated by online corrections.
This should be compared to the focal plane optical point spread function (PSF) full width at half
maximum (FWHM) which is on the order of 0.1◦. The PSF is dominated by spherical aberration
of individual mirror facets. This is untypical of large Davies-Cotton Cherenkov telescopes for which
the PSF FWHM is typically around 0.05◦. This difference is due to the facets of the StarBase
telescope being much larger in proportion to the telescope diameter than in usual IACTs. For
example, the VERITAS telescopes are 12 m in diameter f/1 light collectors made of 350 mirror



Figure 1. The StarBase 3 m telescopes are protected by buildings which can be rolled open for observation
(left) The control room is located in a smaller building located between the two telescopes. The picture on
the right shows a close up view of one telescope before the camera was mounted.

facets ∼ 60 cm across. Interestingly, this lower angular performance of the StarBase light collectors
make them ideal test beds for a larger scale implementation of SII as the PSF linear extent measured
in the focal plane is very comparable to that in large IACTs such as in VERITAS and the aperture
ratio is the same.

4. STELLAR INTENSITY INTERFEROMETRY CAMERAS
The cameras designed for the StarBase telescopes must satisfy two objectives. They must perform
as SII cameras providing two channels for zero baseline measurement. They must also demonstrate
their compatibility with the VHE Cherenkov camera occupying the focal plane of IACTs. This is
achieved by using a large enough mirror making a 45◦ angle with the telescope optical axis so all
the secondary optics is mounted in a plane parallel to the focal plane. The idea is that such a SII
camera could simply be mounted in front of the VHE camera or, even better, integrated in the
shutter protecting the VHE camera.

The SII camera must collect the light, selecting a narrow optical passband and concentrate it
on one or two photodetectors if the zero baseline correlation is to be measured. Interest for narrow
optical passbands is two fold. As already seen above, the sensitivity of SII does not depend on
optical passband width. For very bright stars, selecting a narrow optical passband preserves the
sensitivity while minimizing problems associated with measuring a high photon rate with a high
gain photomultiplier tube. For faint stars there is no such need for a narrow passband. However
the capability of working with narrow optical passbands will allow measurements through multiple
independent optical passbands, thereby improving sensitivity for observations where wavelength
dependence is not critical. For example, replacing the beam splitter used to illuminate the two
channels with a dichroic mirror would allow the measurement in two different optical passbands
simultaneously.

Working with narrow optical passband, say ∆λ ≈ 10 nm typically requires the light to be
collimated to within ∼ 5◦. The extent of the PSF measured in the focal plane being ∼ 10 mm, this
implies using a collimating lens of focal length longer than ∼ 57 mm and since the aperture ratio of
the telescopes is unity, the secondary optics need to be of diameter larger than 57mm. This simple
estimate does not fully prevent vignetting of some of the point sources in the focal plane, 5mm
from the optical axis so the minimal optics diameter should in fact be set to 67mm. However,



Figure 2. All the optics of the SII camera is mounted on a plate, just above the focal plane of the telescope
as shown on the AutoCAD drawing on the left. The light is reflected by a flat mirror at a 45◦ angle from
the optical axis. It is then picked up by a collimating lens on which is mounted an interferometric filter. A
beam splitter allows the light to be sent to two independent channels. The light is concentrated onto the
photo-detector by an f/1.2 60mm lens. The electronics can be mounted next to the photo-detectors and
on the back of the camera. The actual camera is shown on the right with only one channel in place and no
electronics yet. The picture in the lower right corner is an image of the PSF taken while tracking Capella,
The grid shows a 1 cm spacing in the focal plane, which corresponds to 0.19◦.

and in order to save some of the optics cost, we decided to work with 50mm optics, setting the
focal length of the collimating lens to 37mm by combining a 100mm with a 60 mm focal length
lens. This results in a collimation within less than 8◦. Figure 2 shows an autoCAD drawing of the
camera and an actual camera mounted on one of the StarBase telescopes.

5. FRONT END AND SLOW CONTROL ELECTRONICS
The camera electronics consist of two parts. The slow control electronics provide power to the front
end, digitize the anode current to monitor the DC light intensity < in >, provide high voltage to
the photo-detector and can be used to program parameters of the front end electronics. The front
end electronics convert high frequency intensity fluctuations δin down to the single photon level
to analog light pulses which can be transported by optical fiber with minimal bandwidth loss over
great distances. The optical fiber signals are then converted back to electrical signals which may
be correlated at the central control building.

5.1 Slow control electronics
The slow control system is responsible for providing high voltage power to the camera photomulti-
plier tubes (PMT) as well as capturing the average anode current < in >. A central microprocessor
on the circuit board records the anode current that is optically isolated from the separate capture
circuit through a built in ADC. The optical isolation is intended to avoid the injection of correlated
noise in the front end electronics. The PMT is powered by an onboard programmable high voltage
power supply that is controlled by the microprocessor through a DAC. The circuit also records



the ambient temperature and measures the voltage of its power source. In order to adjust com-
pensation for the temperature sensitivity of the gain of the front end electronics, the slow control
system writes to a programmable resistor chip on the front end electronics through a two wire
Inter-Integrated Circuit (I2C) protocol. The anode current, high voltage output, temperature, and
power supply voltage data are relayed to a computer using the RS-232 protocol through serial to
fiber-optic converters. The graphical software for the slow control board is written in wxPython
and can control up to eight boards at a time. The software also records the anode current levels
and writes them to a file so their values can be used in the data analysis to obtain measurements
of |γ(d)|2 by means of Equation 1. In the event that the PMT is exposed to excessive light levels,
hardcoded circuit protection shuts off power to the high voltage supply. The slow control system
conditions and provides power to the front end electronics. Each channel (two per telescope) is
powered by local rechargeable batteries and is only optically connected to the outside of the focal
plane instrumentation.

5.2 Front end electronics
Future IACT arrays consisting of several tens of individual reflectors could in principle allow up to
a few thousand different baselines. Detectors may be separated by as much as a kilometer, over
which distance coherence must be maintained if one is to combine pulses of 3 − 5 ns FWHM at a
centrally located correlator. From Equation 2, we see that the sensitivity for SII observations is
proportional to to the square root of the signal bandwidth. Clearly signal transmission via co-axial
cable which adds 50% dispersion to the pulse FWHM and perhaps 25% amplitude attenuation over
100 m is not suitable.24

The concept of a VCSEL (Vertical Cavity Surface Emitting Laser) based system to transmit
undigitized photomultiplier pulses over optical fibre at high bandwidth with minimal attenuation for
use in IACTs was proposed by J. Rose.28 Optical fibres have the additional advantage of immunity
to cross-talk and to electromagnetic interference and avoid the difficulty of maintaining a common
ground and protection for the receiving electronics against (not uncommon) lightning strikes across
the array. They are also relatively lightweight. A 12 channel transmitter of the type tried in the
Whipple 10m telescope weighed 650 g, mainly due to its heatsink, and the weight per channel of
the 30 core graded index glass fibre cable used was about a tenth of that of RG59 copper cable.5
Thus the short-term installation, for interferometric observations in several optical passbands, of a
plate carrying secondary optics, photomultipliers and signal transmission electronics in front of an
existing IACT camera is conceivable.

The single channel optical fibre signal transmission system being developed in Leeds for deploy-
ment between SII instrumentation prototypes is essentially a revision of that described in detail by
R.J. White,31 which was found to give a linear response to within 12% over a dynamic range of 61
dB. In the transmitter, an operational amplifier is used to develop a signal current proportional to
the input signal voltage which is then AC coupled to the 850nm Zarlink ZL60052 VCSEL anode.
The bias current supplied to the VCSEL, by a MAX3740A laser-driver chip, can be controlled by
the slow control system over an I2C interface via a DS1859 resistor chip. The DS1859 also monitors
temperature and contains a look-up table which can be pre-programmed to maintain a uniform
gain by adjusting the bias current in response to the self-heating of the VCSEL. Furthermore, the
VCSELs used have been carefully selected from a batch tested for stability in order to avoid the
sporadic gain changes observed in the Whipple 10m telescope system and attributed to laser mode
hopping. The signal is communicated via a 62.5 µm core, multi-mode optical fibre coupled to a PIN



photodiode based receiver. Both VCSEL and photodiode are encapsulated in E2000 connectors for
laser safety.

An RC network and amplifier has been added to the transmitter board to convert the anode DC
current to a voltage made available on an RJ45 connector for the slow control system used to provide
power, monitoring and control signals. As well as providing the normalization for the measurement
of the degree of coherence |γ(d)|2, this allows one to record changes in the apparent brightness of a
target star due to atmospheric effects and to safely reduce or cut the high voltage supplied to the
photomultiplier should stray light flood its field of view. Further additional functionality includes
the ability to inject test pulses into the laser-driver to test the link in daylight. The OPA695
amplifier used by R.J. White et al.31 has been superseded by Analog Devices’ AD8000, one of
a new generation of amplifiers not previously available, which has a comparable slew rate but a
quoted input voltage noise of just 1.6 nV/

√
Hz. Initial laboratory tests show that a photomultiplier

pulse rise time of the order of 2ns can be well reproduced.

6. CORRELATORS
One of the most critical elements of an SII is the correlator which provides the averaged product
of the intensity fluctuations < δi1 · δi2 > to be normalized by the average intensities < i1 >
and < i2 > provided by the slow control system. Several approaches are investigated in different
groups. Different systems are currently being tested in the laboratory at the Lund Observatory, at
the University of Utah and in Technion. These laboratory tests also include experimentation with
different types of detectors from high quantum efficiency photo-multiplier tubes to single-photon-
counting avalanche photodiodes. In these laboratory experiments, an artificial star is provided by
an illuminated pinhole at some distance from miniature telescopes whose separation can be varied
by moving them on an optical bench perpendicular to the observing direction. Photodetectors and
correlators will be further tested on the StarBase telescopes starting summer 2010.

6.1 Analog correlator
At the Technion, a laboratory experiment is set up for testing the applicability of intensity in-
terferometry to space, where large collectors and long base-lines are relatively easier to deploy.
Communications between collectors (perhaps on different spacecrafts) might be the bottleneck. In
the laboratory, a barely resolvable blue LED is monitored by two Fresnel lenses and photomultiplers.
Each photomultiplier current signal is converted to a voltage, and the two voltages are correlated
by an analog device (Figure 3). This is a communications RF gain and phase detector, able to
reach 2.5 GHz. This device serves as a correlator able to find the phase difference between the two
inputs. It is operated above 100MHz because of interference from local radio stations, and below
1 GHz because of detector limitations. The phase signal is found assuming we know approximately
the frequency of the inputs, which is of course random. However the frequency is not so important
as long as we stay in the zero-phase-difference regime.

For bright objects as encountered in Intensity Interferometry, the Poisson signal is overwhelming,
and only deviations from it signify a signal. For example, a 20-bit number of photons will yield a
10-bit Poisson noise. Obviously deviations from Poisson noise on the scale of one or two bits are
insufficient, so an even higher signal might be required. This is still difficult to handle with digital
electronics, which is why analog processing is the initial choice.



Figure 3. (Left) A modulator at the output of the detector (bottom curve) modulates the signal (middle),
and the result is demodulated after the correlator (top). (Right) In the presence of signal, the noise
increases, as is obvious from the middle and top curves. This additional noise is actually our correlation
output.

At the same time, for the space application, we need to transmit the signals to a central cor-
relator. Here we opted for 8-bit digitizers running at 1GHz, followed by correlation in Field
programmable Gate Array (FPGA). This version is now being tested and integrated.

6.2 Digital on-line correlator
A 100 MHz signal bandwidth correlator was designed and constructed at the University of Utah.
The two input correlator digitizes the signals into 12 bits at a rate of 200MHz. The digitized
signals are collected by an FPGA programmed to provide a 5ns resolution time delay. In order to
obtain a finer control of the relative timing, the FPGA also programs analog delays in st of 0.6 ns up
stream for the digitization. After the digital delay, the samples are multiplied and summed up in an
accumulation register to obtain the correlation. In order to minimize the effects of offsets and slow
drifts, the correlator makes use of a double phase switching. The FPGA controls a programmable
periodic phase modulation on both inputs, prior to digitization. The multiplied samples are in fact
added or subtracted from the accumulations register in a way that depends on the mutual states
of the phase switches do achieve a demodulation of the correlation signal. This system is now fully
operational.

6.3 Photon stream correlator
The Narrabri intensity interferometer is often seen as the first experiment in quantum optics, and its
subsequent theoretical understanding, together with the development of the laser, led to a number
of somewhat analogous applications of light scattering against laboratory specimens4 It was realized
that high-speed photon correlation measurements were required and electronics initially developed
in military laboratories were eventually commercialized, first by Malvern Instruments Ltd. in the
U.K..27

At the Lund Observatory, such digital correlators were acquired and used to pursue experiments
for high-speed optical astrophysics, including studies of atmospheric scintillation at the observatory
on La Palma.12 While the first correlators were impressively voluminous rack-mounted units, their
electronics have since been miniaturized and current units are very small and easily transportable
items, built around FPGAs, accepting many input channels, running at sampling frequencies up to



700 MHz, and with easy USB data transfer to a host computer. It is believed that their electronic
performance is now adequate for full intensity interferometry experiments. These have already
been used at different observatories, both in searches for high-speed astrophysical phenomena, when
connected to the OPTIMA photometric instrument of the Max-Planck-Institute of Extraterrestrial
Physics,19 and also for the first full-scale intensity interferometry experiments with Cherenkov
telescopes of the VERITAS array in Arizona.11

At present, different correlators (made by the company Correlator.com) are used, with the high-
est time resolution reaching 1.4 ns. The correlators can handle continuous data flows of more than
100 MHz per channel without any deadtimes. Their computer output contains the cross correla-
tion function between the two telescopes (as well as autocorrelation functions for each of them),
made up of about a thousand points. For small delays (where most of the intensity interferome-
try signal resides), the sampling of the correlation functions is made with the smallest timesteps,
which increase in a geometric progression to large values to reveal the full function up to long
delays of seconds and even minutes. Individual photon events are normally not saved, although
that is possible for moderate count rates below about 1MHz. The advantage with such real-time
firmware correlators is that they produce correlation functions in real time, and avoid the build-up
and storage of huge amounts of photon-count data (e.g., just one of the present correlators, using its
8 input channels, each running at 50MHz during one 8-hour observing night would process more
than 10TB of photon-count data). Their limitation, of course, is exactly analogous: if something
needs to be checked afterwards, the full set of original data is no longer available, and alternative
signal processing cannot be applied.

Besides the correlator, another piece of electronics is required for real-time intensity interferom-
etry, namely one to implement the continuously variable time delay from the target star to each
telescope, as the star moves across the sky. Since – in contrast to the historic Narrabri interferom-
eter whose telescopes moved on railroad tracks – the locations of Cherenkov telescopes are fixed,
there is a need to keep measurements of the target constant within some nanosecond or so, rela-
tive to its wavefront. At Lund Observatory, an experimental hardware unit (QVANTOS precision
delay) was designed by engineer Bo Nilsson, and verified in the laboratory. This unit enables a
continuously variable and programmable delay up to a few µs (corresponding to differential light
travel distances of half a km) as applied to a stream of electronic pulses. The pulses are read into a
large buffer memory and almost simultaneously read out but then with a slightly different readout
frequency, slightly stretching or squeezing the electronic pulsewidths to create the required delay.
If such a delay unit is not used, the maximum correlation signal will appear not in the channel
for zero time delay between any pair of telescopes, but rather at a delay equal to the light-time
difference between telescopes along the line of sight towards the source. In principle, this would
be possible to handle already with existing digital correlators since these can be programmed to
measure the correlation at full time resolution also at time coordinates away from zero. However,
since these delays continuously change as the star moves overhead, such an arrangement would
require frequent readouts and might prove not practical for more routine observations.

6.4 Correlation using continuous digitization & software processing
Recent advances in commercial high speed data acquisition has enabled the ability to perform the
correlation between the telescope intensity signals entirely in software. Using a National Instru-
ments PXIe-5122 high speed digitizer (100MHz sampling, 12 bit resolution, 2 channels), we can
continuously digitize the electronic signal stream from each photomultiplier tube. The high speed



backplane of the PXIe mainframe (4 giga-samples per second – Gs/sec) allows the entire data
stream to be continuously recorded for several hours onto a high speed RAID disk (600Mb/sec,
NI 6282 Controller + NI 8264 RAID disk) . The data streams from multiple telescopes can then
be cross-correlated using a software correlation algorithm, and digital filtering algorithms can be
employed to implement narrow-band notch filters to eliminate interference noise from narrow band
sources such as cell-phones, motors, computer clocks, etc. This type of systems allows measurement
of two-telescope intensity correlations as well as higher order correlations (3 telescopes and higher)
which may prove useful for phase recovery.

We are currently testing a two channel continuous digitization stream system built with the
above commercial components. The system has demonstrated the ability to stream data continu-
ously to disk for 4 hours at 100MHz sampling rate (2 channels, 12 bit resolution) without loss of
any data. Preliminary FFT studies of the data stream indicate very flat spectral response and only
a few very narrow band man-made noise sources. A 2-telescope software correlation algorithm has
been developed, and we are currently fine tuning the algorithm to develop optimal sensitivity.

During the summer of 2010, we expect to field test the continuous digization system at the
StarBase telescopes. National Instruments is also developing a higher speed continuous streaming
digitizer (500MHz 8-bit resolution, and 1GHz, 8-bit resolution) which is scheduled to be available
during 3Q 2010. The imminent availability of these higher speed commercial digitizers, in conjunc-
tion with a substantial reduction in the cost of 10Gs/sec data transmission using 9/125 single-mode
optical fiber may allow a distributed array to stream data from every telescope in an array to a
central station for continuous software correlation between every telescope pair in quasi-real time.

The continuous digitization/software correlation approach has strong advantages, including
short development time, excellent flexibility and ease of modification, the ability to examine FFT
characteristics of each photomultiplier tube, and the ability to look at higher order intensity corre-
lations. These extraordinary advantages are offset by the computational difficulties encountered in
handling large (multi TB) data sets. The net result is a very powerful technique which is already
strongly competitive with traditional analog and chip-based correlators.

7. OUTLOOK
During the summer of 2010, the camera electronics, front end and slow control should be in place
to be tested on the StarBase telescopes so signals will be available for correlation studies using the
various techniques available.

Using Equation 2 with conservative parameters for the StarBase telescopes (A = 6m2, α = 0.2
and ∆f = 100MHz), the 5 standard deviation measurement of a degree of coherence |γ(d)|2 = 0.5
will require an observation time T ≈ 10 min × 2.52V where V represents the visual magnitude
and where we have made the crude approximation n = 5 × 10−5 × 2.5−V m−2 · s−1 · Hz−1. This
corresponds to one hour for V = 1 and 6.5 hours for V=2 and when considering the measurement
of |γ(d)|2 ≈ 1, these observation times should be divided by four.

The first objective will be the detection of the degree of coherence for an unresolved object
(|γ(d)|2 ≈ 1). The distance between the two telescopes being 23m (smaller baselines can be obtained
during observations to the East and to the West due to the projection effect), at λ = 400nm the
stars have to be smaller than typically ∼ 3 mas in diameter. An essentially unresolved star suitable
for calibration should be less than ∼ 1 mas in diameter. Good candidates for this are in increasing
order of magnitude αLeo, γ Ori, β Tau or even η UMa which, with a magnitude of 1.76 should



be observable as a unresolved object for calibration within 50 minutes. Alternatively, it will be
possible to measure any star as an unresolved object by correlating the signals from two channels
mounted on the same telescope by means of the camera beam splitter. These observations should
allow to establish methods for adjusting the signal time delays optimally and also to identify the
most effective correlator. A next phase will be dedicated to the measurement of a few bright stars in
order to further demonstrate the technique. This second phase will possibly include the observation
of coherence modulation resulting from orbital motion in the binary star Spica with a a = 1.5 mas
semi major axis and V = 1.0, or even, possibly Algol (a = 2.18 mas, V = 2.1).

These tests over the coming year or two will be ported to the VERITAS telescopes and will
permit to clearly identify all the aspects of a larger scale implementation and converge with con-
fidence toward a practical and effective design of SII instrumentation to be integrated into future
IACT arrays such as CTA and AGIS.

8. ACKNOWLEDGEMENT
This work is supported by grants SGER #0808636 from the National Science Foundation. The work
at Lund Observatory is supported by the Swedish Research Council and The Royal Physiographic
Society in Lund. The authors are grateful to Linda Nelson and George Sanders for hosting the
StarBase observatory on the site of the Bonneville Seabase diving resort6 .

REFERENCES
[1] S. Aiso, M. Chikawa, Y. Hayashi et al., ”The detection of TeV gamma rays from the Crab using

the Telescope Array prototype”, Proc. 25th International Cosmic Ray Conference, Durban,
5, 177-181, (1997)

[2] Advanced Gamma-ray Imaging System (AGIS) home page:
http://www.agis-observatory.org

[3] C. Barbieri, M.K. Daniel, W.J. de Wit et al., ”New astrophysical opportunities exploiting
spatio-temporal optical correlations”, Astro2010 white paper, arXiv:0903.0062, (2009)

[4] W. Becker, [Advanced time-correlated single photon counting techniques], Springer, Berlin,
(2005)

[5] Bond, I. H.; Bradbury, S. M.; Ogden et al., ”Design and performance of analog fiber optics
links used on the Whipple 10m Cherenkov telescope”, Proceedings of the 27th ICRC, 2904 -
2907, Hamburg, (2001)

[6] Bonneville Seabase Utah web page: http://www.seabase.net
[7] Cherenkov Telescope Array (CTA) home page: http://www.cta-observatory.org
[8] M. Daniel, W.J. de Wit, D. Dravins et al., ”Towards the intensity interferometry stellar

imaging system”, Astro2010 RFI submitted by D. Kieda, arXiv:0906.3276, (2009)
[9] J.M. Davies and E.S. Cotton, ”Design of the quartermaster solar furnace”, Journal of Solar

Energy, 1,16-22, (1957)
[10] D. Dravins, H. Jensen, S. LeBohec and P.D. Nuñez, ”Stellar Intensity Interferometry: Astro-
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ABSTRACT   

Intensity interferometry permits very long optical baselines and the observation of sub-milliarcsecond structures.  Using 
planned kilometric arrays of air Cherenkov telescopes at short wavelengths, intensity interferometry may increase the 
spatial resolution achieved in optical astronomy by an order of magnitude, inviting detailed studies of the shapes of 
rapidly rotating hot stars with structures in their circumstellar disks and winds, or mapping out patterns of nonradial 
pulsations across stellar surfaces.  Signal-to-noise in intensity interferometry favors high-temperature sources and 
emission-line structures, and is independent of the optical passband, be it a single spectral line or the broad spectral 
continuum.  Prime candidate sources have been identified among classes of bright and hot stars.  Observations are 
simulated for telescope configurations envisioned for large Cherenkov facilities, synthesizing numerous optical baselines 
in software, confirming that resolutions of tens of microarcseconds are feasible for numerous astrophysical targets. 
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1. HIGHEST RESOLUTION IN ASTRONOMY  
     Science cases for constantly higher angular resolution in astronomy are overwhelming, driving many instrumentation 
developments. Tantalizing results from current optical interferometers �– revealing circumstellar shells or oblate shapes of 
rapidly rotating stars �– show how we are beginning to view stars as a vast diversity of objects, and a great leap forward 
will be enabled by improving angular resolution by just another order of magnitude. Bright stars have typical sizes of a 
few milliarcseconds, requiring optical interferometry over hundreds of meters to enable surface imaging. However, 
phase/amplitude interferometers require precisions to a fraction of an optical wavelength, while atmospheric turbulence 
makes their operation challenging for baselines much longer than 100 m, and at shorter visual wavelengths.  
 
Together with very long baseline radio interferometry at the shortest radio wavelengths, optical intensity interferometry 
seems the currently most realistic way to realize astronomical imaging on submilliarcsecond scales (Figure 1).   Using a 
simple /D criterion for the required baseline, a resolution of 1 milliarcsecond (mas) at  500 nm requires a length around 
100 meters, while 1 km enables 100 µas.  For the forthcoming large arrays of Cherenkov telescopes, extensions over 
some 2 km are discussed, and if such could be utilized at  350 nm, resolutions could approach 30 µas. 
  
The tantalizing potential of very long baseline optical interferometry has been realized by several1,2, and proposed 
concepts include very large optical and ultraviolet phase interferometer arrays placed in space:  Stellar Imager3 and the 
Luciola hypertelescope4, or possibly placed at high-altitude locations in Antarctica5.  However, the complexity and 
probable expense of these projects make the timescales for their realization somewhat uncertain. 
 
Compared to ordinary phase interferometry, optical intensity interferometry presents both advantages and challenges.  
One great advantage is to be practically insensitive to either atmospheric turbulence or to telescope imperfections, 
enabling very long baselines as well as observing at short optical wavelengths, even through large airmasses far away 
from zenith.  However, it requires large photon count rates (thus large flux collectors), and very fast electronics. 

Seemingly ideal flux collectors for this purpose are those air Cherenkov telescopes that are being erected for gamma-ray  
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astronomy.  These measure the feeble and brief flashes of Cherenkov light in air produced by cascades of secondary 
particles initiated by very energetic gamma rays.  Time resolution has to be no worse than a few nanoseconds (duration 
of the Cherenkov light flash); they must be sensitive to short optical wavelengths (Cherenkov light is bluish); they must 
be large (Cherenkov light is faint), and they must be spread out over hundreds of meters (size of the Cherenkov light-
pool onto the ground).  Currently planned large arrays: CTA (Cherenkov Telescope Array)6 or AGIS (Advanced 
Gamma-ray Imaging System)7 envision on the order of 50-100 telescopes with various apertures between about 5-25 
meters, distributed over at least some square kilometer.  For their use as an intensity interferometer, appropriate data 
analysis software would digitally synthesize very many pairs of baselines between all possible pairs of telescopes8,9. 

Baselines in existing air Cherenkov telescope arrays (CANGAROO, HAGAR, H.E.S.S., MAGIC, PACT, VERITAS, 
etc.) do not exceed some 200 meters, and their achievable angular resolution largely overlaps with that feasible with 
existing phase interferometers (although one could observe in the blue or violet, where the contrast of many stellar 
features is expected to be higher).  Experiments in connecting pairs of Cherenkov telescopes for intensity interferometry 
have already been carried out at VERITAS10, and although some observations might be made already with existing 
facilities, any significant leap in optical astronomy will require the planned large arrays.  Their use for also intensity 
interferometry is now part of their respective design studies, and preparatory experimental work is already in progress11. 
 

 
        Fig.1. Angular resolution for existing and future observatories at different wavelengths.  Except for X-rays, resolutions were 
taken as diffraction-limited.  HST = Hubble Space Telescope; JWST = James Webb Space Telescope; NSII = Narrabri Stellar 
Intensity Interferometer; E-ELT = European Extremely Large Telescope; VLTI = Very Large Telescope Interferometer; SKA = 
Square Kilometer Array; VLA = Very Large Array; ALMA = Atacama Large Millimeter Array; VLBI = Very Long Baseline 
Interferometry (here for a baseline equal to the Earth diameter); CTA = Cherenkov Telescope Array.  Stellar intensity interferometry 
(SII) offers unprecedented angular resolution, challenged only by radio interferometers operating between Earth and deep space. 

2.  CHOICE OF ASTROPHYSICAL TARGETS  
     Pushing into microarcsecond domains with kilometric-scale interferometry will require attention not only to 
optimizing the instrumentation but also to a careful choice of targets to be selected.  These must be both astronomically 
interesting and realistic to observe; discussing such a target selection is the purpose of this paper. 

The now historical Narrabri Stellar Intensity Interferometer (NSII) in Australia12 was primarily used to measure angular 
diameters of hot and bright stars (indeed, its design parameters with a track of 188 m diameter are said to have been 
chosen to enable it to spatially resolve the O5 star  Puppis).  With that instrument, 32 stars brighter than about mV = 2.5 



 

 

and hotter than Teff = 7000 K were measured, producing an effective-temperature scale for early-type stars of spectral 
types between O5 and F8. 

With longer baselines, the scientific aims can be enhanced; stars can be not only spatially resolved but one may start 
analyzing structures on and around them.  However, it is essential to understand what can (and what cannot) realistically 
be done with intensity interferometry.  While the sensitivity of the method has characteristics that make it suitable for 
observations of hot and small sources at short wavelengths, it is impractical for studying cool or extended sources in the 
near-infrared.  Since the latter is a specialty of phase interferometry, this is a good example of complementarity between 
both these interferometric methods. 

If a source can be studied with either phase-, or intensity interferometry, it should normally be simpler to attain low-
noise data from measuring the first-order coherence in phase interferometry.  Intensity interferometry should become the 
method of choice when other methods run into limitations set by atmospheric turbulence. 

2.1 Signal-to-noise in intensity interferometry  

Intensity interferometry measures the second-order coherence of light, and the noise properties in its measurement are 
essential to understand for defining realistic observing programs.  For one pair of telescopes, the signal-to-noise ratio12 is 
proportional to: 
 
   (1) Effective telescope area 
         [geometric mean of the areas (not diameters) of the two telescopes] 
   (2) Detector quantum efficiency 
   (3) Square root of the integration time 
   (4) Square root of the electronic bandwidth 
   (5) Photon flux per unit optical frequency bandwidth 
 
The first four parameters depend on the instrumentation but (5) is a property of the source itself, a function of its 
radiation temperature.   Thus, for a given number of photons detected per unit time [determined by (1)�–(4)], the signal-
to-noise ratio is better for sources where those photons are squeezed into a narrower optical passband.  This can be 
understood from a quantum optics point of view: the method is based upon two-photon correlations �– more photons 
inside one optical coherence volume imply a higher probability for detecting two of them simultaneously.  Alternatively, 
from a classical wave-optics point of view, a narrower passband implies a more monochromatic source with a longer 
coherence time, and smaller loss of temporal coherence during the electronic integration time.  A corollary is that the 
signal-to-noise is independent of: 
 
   (6) Width of optical passband 
 
The latter property implies that the S/N remains equal, whether observing only the limited light inside a narrow spectral 
feature or a much greater broad-band flux.  Although at first perhaps somewhat counter-intuitive, the explanation is that 
realistic electronic resolutions of nanoseconds are very much slower than the temporal coherence time of broad-band 
light (perhaps 10 14

 s).  While narrowing the spectral passband does decrease the photon flux, it also increases the 
temporal coherence with the same factor, canceling the effects of increased photon noise.  This property was exploited 
already in the Narrabri interferometer by Hanbury Brown et al. to identify the extended emission-line volume from the 
stellar wind around the Wolf-Rayet star 2 Vel.  
 
The dependence on photon flux per unit frequency bandwidth implies that the method is particularly sensitive to hot 
objects.  Only those are feasible targets for kilometric-scale interferometry since a source must not only provide a 
significant photon flux, but also be small enough for its structures to produce significant visibility over such long 
baselines (Figure 2).  A cool source would have to be large in extent to give a sizeable flux, but then it will be spatially 
resolved already over short baselines.   Seen alternatively, for stars with the same angular diameter but decreasing 
temperature (thus decreasing fluxes), telescope diameter must successively increase to maintain the same S/N.  When the 
star is resolved by a single mirror, the S/N begins to drop (the spatial coherence of the light decreases), and no gain 
results from larger mirrors. 
 



 

 

Given that the electronic signal bandwidth cannot realistically be higher than about a gigahertz, the temporal coherence 
of the light is diluted (compared to a hypothetical full time resolution of 10 14

 s, say), and a significant photon flux is 
required in order to measure the second-order coherence to a good precision.  Calculations, simulations, and 
extrapolations from work with the Narrabri instrument demonstrate that, for realistic optical and electronic parameters8, 
the limiting visual magnitude for a continuum source will be on order mV = 9.  This limit is conservative as it could be 
pushed by employing larger flux collectors, higher signal bandwidth, and/or simultaneously observing in multiple 
spectral channels.  For the present discussion, however, we restrict ourselves to stars brighter than mV=7. 
 

 
     Fig.2. Relationship between stellar diameter and effective temperature for different apparent magnitudes. Stars are assumed to be 
blackbodies with uniform circular disks, observed in the V band (centered on  545 nm).  Dashed lines show baselines at which 
different diameters are resolved, i.e., where the first minimum of the spatial coherence function is reached. 
 
 
Since the S/N does not depend on the width of the spectral passband, it follows that a source with bright emission lines 
may be observed in just those lines to enhance the S/N to a level corresponding to the emission-line radiation 
temperature, while the integrated light from the source could be fainter than those magnitude limits.  Already in work 
preceding the Narrabri intensity interferometer, estimates of possible S/N (using then current instrumental parameters, 
and integrating for 1 hour) were given by Hanbury Brown and Twiss13 (their Figure 6) as function of stellar temperature: 
about 200 for 10,000 K, reaching 1000 for 20,000 K.  For any given electronic performance, stars cooler than a certain 
temperature will not give any sensible signal-to-noise ratio, no matter how bright the star, or how large the telescopes. 
 
In principle, the signal could be enhanced by increasing the electronic bandwidth (up to that of the light itself, of 1015

 Hz 
or so), but then one would essentially have re-created a phase/amplitude interferometer with all its requirements to 
control optical and electronic delays to within 10 15

 s or less, equivalent to the light-travel distance over a fraction of an 
optical wavelength, exactly the requirement that intensity interferometry was set out to circumvent in the first place. 
 
With one single pair of telescopes one measures the second-order spatial coherence corresponding to that particular 
Fourier component of the source intensity distribution which corresponds to the baseline vector between the telescopes, 
projected along the line of sight to the source and which (for stationary telescopes) gradually changes as the source 
moves across the sky.  While, for a small number of telescopes, the coverage in the two-dimensional Fourier-transform 
(u,v)-plane remains sparse, arrays with N  telescopes enable N(N 1)/2 baselines, and the planned large Cherenkov arrays 
will permit thousands of baselines to be synthesized in software.  Not only does this greatly decrease the noise and 
improve the (u,v)-plane coverage but it also enables the stable reconstruction of full two-dimensional images.  This could 



 

 

have been an issue because intensity interferometry provides the squares of the amplitudes of the corresponding Fourier-
transform components (in contrast to phase interferometry, the phases are not directly obtained).  While this does provide 
information on the sizes of structures in the source, the reconstruction of an actual source image involves certain 
mathematical operations which become much easier for any more complete coverage of the (u,v)-plane14. 
 
 
2.2 Hot and bright sources 

Primary targets are hot stars brighter than about mV = 7, such as listed among the about 9000 objects of the Bright Star 
Catalogue15.  Some 2600 objects are both hotter than 9000 K and brighter than mV = 7, among which the brightest and 
hottest should be those easiest to observe.  Table 1 lists such a subset of 35 stars brighter than mV = 2 or hotter than 
Teff = 25,000 K (effective temperatures were approximated from measured B V colors, using a polynomial fit to values 
from Bessel et al.16).  Naturally, this list of potential targets partially overlaps with those that were selected for diameter 
measurements already with the Narrabri interferometer17; those are marked with asterisks.  However, the present list is 
biased more towards hotter stars, with typically smaller diameters , as appropriate for longer baselines. 
 

 
     Table 1.  Candidate sources from The Bright Star Catalogue15: 35 stars brighter than mV = 2 or hotter than Teff = 25,000 K. Those 
whose angular diameters were measured already with the Narrabri intensity interferometer17 are marked with an asterisk (*). 
 

 

Name  
[mas] 

Vrot
[km/s] 

Spectr.
class 

Teff 

 [K] 
V 

[mag] 

 

Notes 

Achernar,  Eri, HR 472 1.9 250 B3 Ve 15 000 0.46 High Vrot, * 
Rigel,  Ori, HR 1713 2.4 30 B8 Iab   9 800 0.12 Emission-line star, 

supernova candidate, * 
 Lep, HR 1756  70 B0.5 IV 28 000 4.29  

Bellatrix,  Ori, HR 1790 0.7 60 B2 III 21 300 1.64 Variable, * 
Elnath,  Tau =  Aur [sic], HR 1791 1.5 70 B7 III 13 500 1.65 Binary system 

 Ori, HR 1855  20 B0 V 28 000 4.62 Variable 
HR 1887, HD 36960  40 B0.5 V 26 000 4.78 Binary system 
Alnilam,  Ori, HR 1903 0.7 90 B0 Iab 18 000 1.7 Emission-line star, * 
µ Col, HR 1996  150 O9.5 V 33 000 5.17  
 CMa, HR 2294 0.5 35 B1 II-III 23 000 1.98  Cep-type variable, * 

Alhena,  Gem, HR 2421 1.4 30 A0 IV   9 100 1.93 * 
S Mon, HR 2456  60 O7 Ve 26 000 4.66 Pre-main-sequence 
Sirius,  CMa, HR 2491 5.9 10 A1 V   9 100 -1.46 * 
EZ CMa, HR 2583   WN4 33 000 6.91 Highly variable W-R star 
Adara,  CMa, HR 2618 0.8 40 B2 Iab 20 000 1.5 Binary, * 
Naos,  Pup, HR 3165 0.4 210 O5 Ia 28 000 2.25 BY Dra variable, * 

2 Vel, HR 3207 0.4  WCv+ 21 300 
35 000 

1.78 Wolf-Rayet binary, 
WC8 + O7.5, * 

 Car, HR 3685 1.5 130 A2 IV   9 100 1.68 * 
Regulus,  Leo, HR 3982 1.4 330 B7 V 12 000 1.35 High Vrot,* 

 Car, HR 4210 5.0  peculiar 36 000 6.21 Extreme object, variable 
Acrux, 1 Cru, HR 4730  120 B0.5 IV 24 000 1.33 Close binary to 2 Cru 
Acrux, 2 Cru, HR 4731  200 B1 V 28 000 1.73 Close binary to 1 Cru 
 Cru, HR 4853 0.7 40 B0.5 IV 23 000 1.25  Cep-type variable, * 
 UMa, HR 4905  40 A0 p   9 500 1.77 2 CVn-type variable, 

chemically peculiar 
Spica,  Vir, HR 5056 0.9 160 B1 III-IV 23 000 0.98  Cep-type variable 
Alcaid,  UMa, HR 5191 < 2 200 B3 V 18 000 1.86 Variable 
 Cen, HR 5267 0.9 140 B1 III 23 000 0.61  Cep-type variable 
 Sco, HR 6165  25 B0.2 V 26 000 2.82  
 Sco, HR 6527  160 B2 IV+ 21 000 1.63  Cep-type variable 

Kaus Australis,  Sgr, HR 6879 1.4 140 B9.5 III   9 800 1.85 Binary, * 
Vega,  Lyr, HR 7001 3.2 15 A0 V   9 100 0.03 * 
Peacock,  Pav, HR 7790 0.8 40 B2 IV 19 000 1.94 Spectroscopic binary, * 
Deneb,  Cyg, HR 7924 2.2 20 A2 Iae   9 300 1.25 Variable 

 Gru, HR 8425 1.0 230 B6 V 13 000 1.74 * 
Fomalhaut,  PsA, HR 8728 2 100 A4 V   9 300 1.16 With imaged exoplanet, * 



 

 

2.3 Primary targets 

2.3.1. Rapidly rotating stars 
 
Rapidly rotating stars are normally hot and young ones, of spectral types O, B, and A; some are indeed rotating so fast 
that the effective gravity in their equatorial regions becomes very small and easily enables mass loss or the formation of 
circumstellar disks.  Rapid rotation causes the star itself to become oblate, and induces gravity darkening.  The von 
Zeipel theorem18 states that the radiative flux in a uniformly rotating star is proportional to the local effective gravity and 
implies that equatorial regions are dimmer, and polar ones brighter.  Spectral-line broadening reveals quite a number of 
early-type stars as rapid rotators and their surface distortion was looked for already with the Narrabri interferometer, but 
not identified due to then insufficient signal-to-noise levels19,20. 
 
A number of these have now been studied with phase interferometers.  By measuring diameters at different position 
angles, the rotationally flattened shapes of the stellar disks are determined.  For some stars, also their asymmetric 
brightness distribution across the surface is seen, confirming the expected gravitational darkening and yielding the 
inclination of the rotational axes.  Aperture synthesis has permitted the reconstruction of images using baselines up to 
some 300 m, corresponding to resolutions of 0.5 mas in the near-infrared H-band around  1.7 µm21. 
 
Two stars illustrate different extremes: Achernar (  Eridani) is a highly deformed Be-star (Vsin i = 250 km/s; > 80 % of 
critical).  Its disk is the flattest so far observed �– the major/minor axis ratio being 1.56 (2.53 and 1.62 mas, respectively); 
and this projected ratio is only a lower value �– the actual one could be even more extreme22.  Further, the rapid rotation 
of Achernar results in an outer envelope seemingly produced by a stellar wind emanating from the poles23,24.  There is 
also a circumstellar disk with H -emission, possibly structured around a polar jet25. The presence of bright emission 
lines is especially interesting: since the S/N of an intensity interferometer is independent of the spectral passband, studies 
in the continuum may be combined with observations centered at an emission line. 
 
Vega (  Lyrae, A0 V) has been one of the most fundamental stars for calibration purposes but its nature has turned out to 
be quite complex.  First, space observations revealed an excess flux in the far infrared, an apparent signature of 
circumstellar dust.  Later, optical phase interferometry showed an enormous (18-fold) drop in intensity at  500 nm from 
stellar disk center to the limb, indicating that Vega is actually a very rapidly rotating star which just happens to be 
observed nearly pole-on.  The true equatorial rotational velocity is estimated to 270 km/s while the projected one is only 
22 km/s26,27.  The effective polar temperature is around 10,000 K, the equatorial only 8,000 K.  The difference in 
predicted ultraviolet flux between such a star seen equator-on, and pole-on, amounts to a factor 5, obviously not a 
satisfactory state for a star that should have been a fundamental standard. 
 
Predicted classes of not yet observed stars are those that are rotating both rapidly and differentially, i.e. with different 
angular velocities at different depths or latitudes.  Such stars could take on weird shapes, midway between a donut and a 
sphere28.  There exist quite a number of hot rapid rotators with diameters of one mas or less, and clearly the angular 
resolution required to reveal such stellar shapes would be 0.1 mas or better, requiring kilometric-scale interferometry for 
observations around  400 nm. 
 
2.3.2. Be-stars with circumstellar disks 

Rapid rotation lowers the effective gravity near the stellar equator which enables centrifugally driven mass loss and the 
development of circumstellar structures.  Be-stars make up a class of rapid rotators with dense equatorial gas disks; the 
�“e�” in �“Be�” denotes the presence of emission in H  and other lines.  Observations indicate the coexistence of a dense 
equatorial disk with a variable stellar wind at higher latitudes, and the disks may evolve, develop and disappear over 
timescales of months or years29.  
 
The detailed mechanisms for producing such disks are not well understood, although the material in these decretion 
(mass-losing) disks seems to have been ejected from the star rather than accreted from an external medium.  The rapid 
rotation of the central B star certainly plays a role30.   Some Be-stars show outbursts, where the triggering mechanism is 
perhaps coupled to non-radial pulsations.  Some of their disks have been measured with phase interferometers, e.g., 
 Tau31,32.  A related group is the B[e] one, where emission is observed in forbidden atomic lines from [Fe II] and other 

species.  A few of those stars are within realistic magnitude limits (e.g., HD 62623 = l Pup of mV=4.0). 
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cause the local radiation force over those to differ, leading to locally faster or cooler stellar-wind streamers which may 
ultimately collide, forming co-rotating interaction regions.  Further, effects of magnetic fields are likely to enter and �– 
again analogous to the case of the solar wind �– such may well channel the wind flow in complex ways. 
 
2.3.4. Wolf-Rayet stars and their environments 

Being the closest and brightest Wolf-Rayet star, and residing in a binary jointly with a hot O-type star, 2 Velorum is an 
outstanding object for studies of circumstellar interactions.  The proximity to the O-star causes the dense Wolf-Rayet 
wind to collide with the less dense but faster O-star wind, generating shocked collision zones, wind-blown cavities and 
eclipses of spectral lines emitted from a probably clumpy wind34,39. The bright emission lines enable studies in different 
passbands, and already with the Narrabri interferometer, Hanbury Brown et al.40 could measure how the circumstellar 
emission region (seen in the C III-IV feature around  465 nm) was much more extended than the continuum flux from 
the stellar photosphere, and seemed to fill much of the Roche lobe between the two components of the binary.  
 
A few other binary Wolf-Rayet stars with colliding winds are bright enough to be realistic targets.  One is WR 140 
(mV = 6.9), where the hydrodynamic bow shock has been followed with milliarcsecond resolution in the radio, using the 
Very Long Baseline Array (VLBA), revealing how the bow-shaped shock front rotates as the orbit progresses during its 
7.9 yr period41. 
 
2.3.5. Blue supergiants and related stars 

Luminous blue variables occupy positions in the Hertzsprung-Russell diagram adjacent to those of Wolf-Rayet stars, and 
some of these objects are bright enough to be candidate targets, e.g. P Cyg (mV = 4.8).  Luminous blue variables possess 
powerful stellar winds and are often believed to be the progenitors of nitrogen-rich WR-stars.  Rigel (  Orionis; B8 Iab) 
is the closest blue supergiant (240 pc). It is a very dynamic object with variable absorption/emission lines and oscillations 
on many different timescales.  Actually, the properties of Rigel resemble those of the progenitor to supernova SN1987A. 

 Centauri (B1 III) is a visual double star, whose primary component is a spectroscopic binary with two very hot, very 
massive, pulsating and variable stars in a highly eccentric orbit (e = 0.82)42,43.  Its binary nature was first revealed with 
the Narrabri interferometer17, then measuring a significantly lower intensity correlation than expected from a single star.  
The formation history of such massive and highly eccentric systems is not understood; a few others are known but  Cen 
is the by far brightest one (also the brightest variable of the  Cep type), and thus a prime target. 

The most remarkable luminous blue variable in our part of the Galaxy is  Carinae.  This, the most luminous star known 
in the Galaxy, is an extremely unstable and complex object which has undergone giant eruptions with huge mass 
ejections during past centuries.  The mechanisms behind these eruptions are not understood but, like Rigel,  Car may 
well be on the verge of exploding as a core-collapse supernova. Interferometric studies reveal asymmetries in the stellar 
winds with enhanced mass loss along the rotation axis, i.e., from the poles rather than from the equatorial regions, 
resulting from the enhanced temperature at the poles that develops in rapidly rotating stars44,45.  
 
2.3.6. Interacting binaries 

Numerous stars in close binaries undergo interactions involving mass flow, mass transfer and emission of highly 
energetic radiation: indeed many of the bright and variable X-ray sources in the sky belong to that category.  However, to 
be a realistic target for intensity interferometry, they must also be optically bright, which typically means B-star systems.   
One well-studied interacting and eclipsing binary is  Lyrae (Sheliak; mV = 3.5).  The system is observed close to edge-
on and consists of a B7-type, Roche-lobe filling and mass-losing primary, and an early B-type mass-gaining secondary. 
This secondary appears to be embedded in a thick accretion disk with a bipolar jet seen in emission lines, causing a light-
scattering halo above its poles.  The donor star was initially more massive than the secondary, but has now shrunk to 
about 3 M , while the accreting star now has reached some 13 M .  The continuing mass transfer causes the 13-day 
period to increase by about 20 seconds each year37.  
 
Using the CHARA interferometer with baselines up to 330 m, the  Lyrae system has been resolved in the near-infrared 
H and K bands46.  The images resolve both the donor star and the thick disk surrounding the mass gainer, 0.9 mas away.  
The donor star appears elongated, thus demonstrating the photospheric tidal distortion due to Roche-lobe filling.  
Numerous other close binaries invite studies of mutual irradiation, tidal distortion, limb darkening, rotational distortion, 



 

 

gravity darkening, and oscillations.  These include Spica (  Vir; mV =1.0; primary B1 III-IV); the pre-main sequence 
15 Mon (S Mon; mV = 4.7; O7 V(f) + O9.5 Vn); HD 193322; mV = 5.8 (primary O9 V);   Sco (mV = 2.3; primary 
B0 IVe);  Ori (mV = 2.2; O9 II + B0 III); and the complex of stars in the Trapezium cluster, e.g., 1 Ori C (mV = 5.1; 
primary O6pe), and others. 
 
Another class of interacting stars is represented by Algol (  Persei; mV = 2.1 ), a well-known eclipsing binary in a triple 
system, where the large and bright primary  Per A (B8 V) is regularly eclipsed by the dimmer K-type subgiant  Per B, 
for several hours every few days.  It could appear as a paradox that the more massive  Per A is still on the main 
sequence, while the presumably coeval but less massive  Per B already has evolved into a subgiant: significant mass 
transfer must have occurred from the more massive companion and influenced stellar evolution.  Algol is also a flaring 
radio and X-ray source, and analyses of its variability suggest that to be related to magnetic activity.  Magnetic fields of 
the components apparently interact with the mass transfer and the accretion structure.  Possibly, not only the cooler 
(solar-type) star is magnetically active, but magnetic fields are generated also by hydrodynamically driven dynamos 
inside the accretion structures (circumstellar disks or annuli).  The disk and stellar fields interact, with magnetic 
reconnection causing energy release in flares and acceleration of relativistic particles47.  As discussed already for Be-type 
stars, magnetic fields can in addition channel the gas flows in the system and generate quite complex geometries.    
 

3. OBSERVING WITH INTENSITY INTERFEROMETERS 
 
3.1. Observing programs 
 
The most promising targets for early intensity interferometry observations thus appear to be relatively bright and hot, 
single or binary O-, B-, and WR-type stars with their various circumstellar emission-line structures, as exemplified in 
Figure 3.  The expected diameters of their stellar disks are typically on the order of 0.2�–0.5 mas and thus lie [somewhat] 
beyond what can be resolved with existing phase/amplitude interferometers.  However, several of their outer envelopes 
or disks extend over a few mas and have been resolved with existing facilities, thus confirming their existence and 
providing valuable information on what types of features to expect when next pushing the resolution by another order of 
magnitude.  Also, when observing at short wavelengths (and comparing to phase interferometer data in the infrared), one 
will normally observe to a different optical depth in the source, thus beginning to reveal also its three-dimensional 
structure. 
 
Also some classes of cooler objects are realistic targets.  Some rapidly rotating A-type stars of temperatures around 
10,000 K should be observable for their photospheric shapes (maybe one could even observe how the projected shapes 
change with time, as the star moves in its binary orbit, or if the star precesses around its axis?).  Stars in the instability 
strip of the Hertzsprung-Russell diagram, of spectral types around F and temperatures below 7,000 K, undergo various 
types of pulsations.  For example, the classic Cepheid l Car (mV = 3.4) was monitored at  700 nm with the SUSI 
interferometer over a 40 m baseline, finding its mean diameter of 3.0 mas to cyclically vary over its 35-day pulsation 
period with an amplitude of almost 20 %48.  
 
However, the diameters of such brighter Cepheids (typically 1-3 mas) can be resolved already at modest baselines, and 
those that would require kilometric baselines are too faint for presently foreseen intensity interferometry.  Nevertheless, 
several such stars are expected to undergo non-radial pulsations, with sections of the stellar surface undulating in higher-
order modes.  The modulation amplitudes in temperature and white light presumably are modest (not likely to 
realistically be detectable) but the corresponding velocity fluctuations could perhaps be observed.  If the telescope optics 
permit an adequate collimation of light to enable measurements through a narrow-band spectral filter centered on a 
stronger absorption line of 50 % residual intensity, say, the local stellar surface will appear at that particular residual 
intensity (if at rest relative to the observer), but will reach full continuum intensity if the local velocities have Doppler-
shifted the absorption line outside the narrow filter passband.  If such spatially resolved observation of stellar non-radial 
oscillations can be realized, they would provide highly significant input to models of stellar atmospheres and 
interiors49,50,51.  
 
 



 

 

3.2. Positions of potential targets 

Potential sources are distributed over large parts of the sky and permit vigorous observing programs from both northern 
and southern sites.  However, several of the hot and young stars belong to Gould�’s Belt, an approximately 30 million 
year old structure in the local Galaxy, sweeping across the constellations of Orion, Canis Major, Carina, Crux, 
Centaurus, and Scorpius, centered around right ascensions 5-7 hours, not far from the equator.  Thus, many primary 
targets are suitable to observe during northern-hemisphere winter or southern-hemisphere summer.  For intensity 
interferometry, this might be a further advantage in coordinating work with Cherenkov telescopes.  Not only can 
observations be made during full moonlight (when observations of the feeble Cherenkov light induced by gamma rays 
are problematic), but they can preferentially be made during those parts of the year when it is not possible to observe the 
many gamma-ray sources near the center of the Galaxy (which is at right ascension 18 hours). 

 
3.3. Simulated observations 
 
Observations of various types of targets have been numerically simulated for telescope configurations envisioned for 
currently planned facilities.  The example in Figure 4 shows an assumed pristine image and simulated observations of the 
magnitude of its two-dimensional Fourier transform in the interferometric (u,v)-plane with an array of Cherenkov 
telescopes distributed over baselines of up to 2 km between the outermost pairs.  The source is a rapidly rotating and 
rotationally flattened star, (mV = 6; Teff = 7000 K), some 0.4 mas across, seen equator-on, with a very thin (10 µas) disk 
visible in the He I emission line at  587 nm, assumed to be six times stronger than the local continuum (a not 
uncommon value for Be emission-line stars).  For an electronic time resolution of 1 ns and a detector quantum efficiency 
of 70 %, data were assumed to be integrated for 10 hours with a telescope configuration analogous to one being 
discussed for the Cherenkov Telescope Array.   
 
 

   
 
     Fig.4. Simulated observations of a rotationally flattened star with an emission-line disk.  Left: Assumed pristine image.  Center: 
Simulated observations of the magnitude of the two-dimensional Fourier transform of the source�’s intensity distribution in continuum 
light, as sampled by a large number of telescopes.  The flattening of the stellar disk is visible as an asymmetry in the (u,v)-plane.  
Right: The same, but for a narrow-bandpass filter centered on the He I emission line, showing the distinct signature of a narrow 
equatorial disk. The simulated observations were interpolated between measured points, plotted on a logarithmic scale, and with a 
pseudo-3D shading to better show the geometric patterns in various parts of the (u,v)-plane.  
 
 
The center and right-hand panels illustrate the roles of different baselines: The flattened stellar disk is resolved already 
by the innermost few-hundred-meter baselines while the signal from the very narrow (10 µas) emission disk clearly 
continues beyond the assumed longest baselines, and is thus not fully resolved.  Although phase information is not 
directly obtained, such measures of the Fourier transform magnitudes permit the two-dimensional image to be 
reconstructed14, confirming the feasibility of submilliarcsecond imaging through intensity interferometry with Cherenkov 
telescope arrays.  More details about such simulations with further examples are presented elsewhere, also illustrating the 
response of different array layout configurations52. 
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