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Notation and Symbols

Below is a list of frequently used symbols and notations.

RTL
(Cn

iR
R
RTLXTL
(C’VIX’VZ
A>0
AZ0
A>0
A>0

n-dimensional real space
n-dimensional complex space
imaginary axis

nonnegative orthant

all n x n real matrices

all n x n complex matrices
each element is positive

each element is nonnegative
positive definite
semi-positive definite

inverse

Moore-Penrose inverse
diagonal n X n matrix with a; as its diagonal entries
spectrum

trace

range

kernel (nullspace)

rank

determinant

transpose

i-th eigenvalue of A

identity matrix of dimension n
(i,j)-th entry of A

complex conjugate of a € C
real part of A € C

absolute value of oo € C
component wise absolute value of a matrix A € C"*"
2-norm

scalar product

Hoo-norm of G(s)

Ha space

Fourier transform of z(t)
Laplace transform of z(t)
defined as
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Introduction

This thesis is about model order reduction of positive linear systems and aims to give a
comparison between well-established approaches and those that were especially developed
for the treatment of positive systems.

Mathematical modelling of biological, chemical and physical systems often yields complex
high-dimensional models resulting e.g. from system identification [13] or discretized
partial differential equations [4] [26]. A serious problem of these models is that they are
hard to analyse and simulate, which is why lower-dimensional systems are preferred over
complex ones. Approximating high-order models by reduced ones is the essential idea
of model order reduction in control and has received considerable attention during the
past decades e.g. in [11] [12] [23] |24] [30]. In case of a linear time-invariant system, the
model reduction problem can be described as the approximation of a system

Ax(t) + Buf(t),

(0.1)
Cx(t) + Du(t)

Q
—N—
< r
- =X
—
1

with state variables x € R", input « € R™ and output y € RP, for small m, p and large
dimension n.[4| [12] Amongst the many optimality criteria for linear approximations,
most common is to consider the error with respect to the Hoo-norm, concerning the the
frequency domain, or the Hs-norm regarding the input-output behaviour.[12] [30] For
this purpose different reduction methods have been developed, but most famous became
those based on projection approaches, such as Balanced Truncation and Krylov subspace
methods. Both will be discussed in Chapter 3 and 5, respectively.

A class of linear systems which is of particular interest, is given by the so-called positive
linear systems and will be introduced in Chapter 1. These systems are characterized
by the nonnegativity of the output and state variables for every nonnegative input and
initial state. Systems with such positivity constraints are often found in the context of
measured quantities e.g. temperature or mass flow (see Chapter 7).
In order to perform a good simulation it is natural to preserve these properties after
performing model order reduction. Unfortunately, we will see in Chapter 2, that positive
systems are defined on cones instead of linear subspaces and therefore conventional
reduction methods are not able to guarantee the preservation of the positivity. In fact,
it will turn out, that this is in a large part also a positive realization problem.

As a consequence, new methods have been developed in [7|[14]|22|, which will be
presented and discussed in Chapter 3 and 4. Furthermore, we will investigate in Chapter
3 and 5 for which positive systems Balanced Truncation and Krylov subspace methods

vil
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can still be applied and use these results to develop a new approach in Chapter 6.
This approach is be based on a lesser-known symmetry characterization of balanced
single-input-single-output systems. Concluding, we compare the quality among all the
presented methods in Chapter 7.



1. Positive Linear Systems

In this chapter, we look at the two basic concepts of positive linear systems, external
(input-output) and internal (input-state-output).

For this purpose we first introduce the notion of stricly positive (nonnegative) vectors
and correspondingly strictly positive (nonnegative) matrices. The entries of a real vector
v € R™ and a real valued matrix A € R"*™ are denoted by v; and a;j, respectively. We
say

v; > 0 for all 4
v; > 0 for all ¢

v is a strictly positive vector, v>0 &
v is a nonnegative vector, v =0 :&
A is a strictly positive matriz, A>0 :& a;; > 0 for all (4,7)
A is a nonnegative matriz, A 20 :& a;; >0 for all (¢,7)

Observe the difference between the notation of a strictly positive (nonnegative) matrix
and a (semi-)positive definite matriz, which we denote as A > 0 and A > 0, respectively.
Naturally, we use all these notations to describe the relation between two arbitrary
elements, e.g. A > B is defined by A — B > 0.

A real vector valued function u(t) € R™ is called nonnegative if and only if u(t) = 0 V¢.

1.1. Continuous Time Systems

The notations above allow us to give the definition of external positivity of a linear system.
In this section we will focus on continuous time systems and discuss the discrete case in
the subsequent section.

Definition 1.1 (Ezternally positive linear system)

A linear system (A, B,C, D) is called externally positive if and only if its forced
output (i.e. the output corresponding to a zero initial state) is nonnegative for every

nonnegative input.[6]

Recalling the well-known representation of the impulse response matrix of a continuous-time
linear system:

g(t) == Ce™B + Di(t), (1.1)

where 0(t) denotes a delta-dirac impulse, we are able to give a better mathematical
description of an externally positive system.
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Theorem 1.1 (Ezternal positivity)

A linear system (A, B,C, D) is externally positive if and only if its impulse response
is nonnegative, i.e. g(t) =2 0, Vt > 0.[6]

Proof: » Necessity: Since d(t) is a positive input, g(¢t) = 0,V¢ > 0 by definition of external
positivity.

» Sufficiency: Assuming g(¢),u(t) = 0, the output to the system with zero initial state
is given by:
t
o(t) = [ gutt-r)dr = y(o) 2. .
0

Since the transfer function G(s) of a state-space system (A, B, C, D) is nothing else than
the Laplace transformation of g(t), i.e.

G(s)=C(sI —A)'B+D = ZL[g(t)] := / g(t)e *dt,
0
it follows by the nonnegativity of g(¢) that
o0 . o0 o0
G(0) 20 = |G(iw)| = / lg(t)[le™""|dt / lg(t)|dt = / g(t)dt = G(0),
0 0 0
where | - | denotes the component wise absolute value.

According to [30], the Hoo-norm of a system G(s) is defined as

|Glloe = supa{G(iw)} = sup [|G(iw)]2,

where & denotes the largest singular value of G(iw). Consequently by ||All2 < [||A]]|2 we
get the following lemma.

Lemma 1.1 (Gain of a positive system)

For the Hoo-norm of the transfer function of a positive system it holds:

[Glloo = IG(0)]]2-

A closer look at g(t) tells us immediately, that if e4*, B,C,D > 0 = g(t) = 0. In the
next example we will see, this is not a necessary assumption for external positivity, but
it will be for our second positivity definition, the so called internal positivity.
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Example 1.1 (Ezternal, but not internally positive system,)
Let us consider the following single-input-single-output (SISO) system.

A::(j _02>, b::(é), c:=(0 —1).

This system has eigenvalues Ay = —1 and Ao = —2. Thus the impulse response can be
expressed by

g(t) = aeM? + ger2t,

Moreover, g(0) = ¢b = 0, which yields &« = —f and then

g(t) = a(AeMt — hpe?h).

1
Since ¢(0) = cAb =1, we have a = SV > 0 and thus, g(t) = 0, Vt > 0.
1— A2

An obvious disadvantage of Theorem 1.1 is, that in many cases it is not possible to
check easily whether the impulse response of a system is nonnegative or not. Still there
is a useful exclusion criteria for external positivity based on the poles of the system.

Lemma 1.2 (Dominant Pole)

The transfer function of an external positive system has at least one real dominant
pole.[5]

Proof: A dominant complex pole leads to a long-term behaviour of g(¢) which is oscillating
and thus the impulse responses becomes negative. |

As a consequence of Lemma 1.2 we can also give a condition on the zeros in case of a
SISO system.

Lemma 1.3 (Real Zeros)

The real zeros of an externally positive SISO system are smaller than the dominant
pole.[6]

Proof: Assume there is a zero zy € R that is greater than the real dominant pole. By
this assumption zp lies within the radius of convergence of G(s) and therefore by the
nonnegativity of g(t)

G(zo):/ g(t)e=0tdt > 0,
0

which is a contradiction. Thus, there cannot exist any zero, that is greater or equal to the
real dominant pole. [ |
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For internal positivity it is much easier to check whether a system is externally positive
or not (see Theorem 1.3). Therefore we will draw most of our attention to this class of
systems and introduce them with the next definition.

Definition 1.2 (Internally Positive Linear System)

A linear system (A, B,C, D) is called (internally) positive if and only if its state
and output are nonnegative for every nonnegative input and every nonnegative initial
state.[6]

The difference between internal and external positivity is obviously the additional condition
of the nonnegativity of the state vector and hence every positive linear system is externally
positive. The definition requires explicitly a nonnegative output for every nonnegative
inital state and nonnegative input. Thus it suffices to consider the particular pair
[(0) = e;, u(0) = 0] for the analysis of (A, B,C, D) [6], where e; denotes the i-th
unit vector in R™.

Looking at the state-space-representation of a (cont.) linear system (0.1), it becomes
clear, that C' 2 0 has to hold in order to provide internal positivity: if (0) = e;, u(0) = 0
and ¢;; < 0 for at least one j, it will lead immediately to a negative output and therefore
C' = 0 is a necessary condition for (internal) positivity.

A similar consideration can be done for D by switching the roles of x(0) and u(0).
Together C, D = 0 are sufficient and necessary conditions for a nonnegative output
under the assumption of a nonnegative state and input.

All that remains is the analysis of the state-equation:
z(t) = Ax(t) + Bu(t) (1.2)

For this purpose we start with some important definitions and results for a certain class
of matrices, the so called Metzler matrices (or sometimes —Z-matrices) [2].

Definition 1.3 (Metzler- and Z-matriz)
If A+ al 2 0 with « € R™, then A is called a Metzler matrix or essentially

€
nonnegative, short A = 0.

(&
A is called a Z-matrix if —A 2 0 and hence a Metzler matrix is also called a
-Z-matrix.

A Metzler matriz is in a manner of speaking a matrix with nonnegative off-diagonal
entries.
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Remark: If A+ ol = 0, then it follows by the series representation of the exponential
function.

0 < ettal — el o A >0 (1.3)

Thus the matrix exponential of a —Z-matrix is always nonnegative and therefore et > 0
for all ¢t > 0.

An important subclass of Metzler matrices are the so called —M-matrices [2].

Definition 1.4 (M-matriz)

A matrix A € R" is called an M-matrix, if —A 2 0 and R(\) > 0, VA € 0(A), where
R(N) denotes the real part of \.

(]
Analogous: A is a -M-matrix if A 2 0 and R(\) <0, VA € o(A4).

This is, all the eigenvalues of a —M-matrix are suited in the left complex plane and the
matrix is stable. The most important results about asymptotically stable —M-matrices
are summarized in the following theorem.

Theorem 1.2 (Asymptotically stable —M -matriz)

Let A be a —Z-matrix, then the following statements are equivalent [2|:
(i) A is a nonsingular — M -matrix

(ii) R(A) <0,V € o(A)

(iii) If A= B — al with B 2 0, then p(B) < a.

(iv) (—4)1 20

(v) 3D > 0 diagonal : AD + DAT < 0.

Proof: (i) = (ii): By the nonsingularity of A it follows, that its determinant

det(A) = [ X #0 with X € o(A).

i=1

Hence, by definition of a —M-matrix we can conclude, that all real eigenvalues of A have
to be strictly negative and only strictly imaginary eigenvalues can fulfil f(\) = 0.

Let a > 0 be sufficiently large, such that A+ «l 20, then A+ a € (A + al), VA € o(A).
Consequently, if A possesses a strictly imaginary eigenvalue A\, then %(5\ + a) > Ao, Vg €
o(A) NR and therefore |A + «| > |Ao|. But this contradicts the Frobenius-Perron-Theorem
(Theorem 1.5).
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(i) = (i): Clear by (i) = (ii)’.

(ii) = (iii): Again by Theorem 1.5 there exists a Ao € o(B), such that A\g = p(B) > 0.
Since A\g = A+ a for a A € 0(A) and R(\) < 0 by assumption, we conclude o > 0 and
consequently by Pythagoras |\ + a|? < o?.

(iii) = (ii): In the same way as ’(ii) = (iii)’.

(iii) = (iv): Since (ii) and (iii) are equivalent, it follows from ’(ii) = (i)’, that A = B — al
1.1 1

is invertible. By assumption A~ = (B —al)™' = =(=B —1)"! and p(aB) < 1.

By the well-known Neumann series theorem [17] we conclude

o0

1 )
-1 _
(A = 5B 20,
i=0

(iv) = (v): Let @ := (—A)"te, with e = (1,..., 1)T.
Then by assumption
1
D, ::diag(xl,...,:cn) = >0
Ty
and thus
ADye = Az = —e < 0 (1.4)

Observe, since (—A)"1A = —TI and A is —Z-matrix, it follows by assumption that a;; < 0.
By (1.4) we conclude then, that AD is strictly diagonally dominant. The same can be done
for AT: let y := (—A) e, then D, := diag (yl, e ,yn) >0 and ATDye = Ay = e < 0.
Consequently, eTDyADz = Dye < 0 and DyAD,e = Dye < 0 and therefore D,AD, is
row and column diagonally dominant.

With the help of Gershgorin’s circle theorem [3] we receive

P:=D,AD, + D,A"D, <0,

because P is strictly diagonally dominant with p; < 0. Multiplying from both sides with
Dy_1 = D;T leads to

-1 -1 T _ n-Tpp-1
AD,D;' + D;'D, AT = D;TPD;! < 0.
Hence, D := D, D, " concludes the proof.

(v) = (ii): Follows directly by Lemma 3.1. |

Now we are ready to turn back to equation (1.2) and describe the properties of (A4, B)
in order to satisfy the condition of a nonnegative state vector. We make a consideration
similar to what has been done in [16] or [6]. Let us start with the case u(t) = 0:

(1) = Az(t).
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If (t) lies on the boundary of the positive orthant R}, i.e if 2(¢) contains an element z;
equal to zero, then the corresponding derivative z;(t) has to be nonnegative in order to
keep z; nonnegative. This is obviously equivalent to the fact that the off-diagonal entries
have to be nonnegative and hence A has to be a Metzler matrix. Since we only consider
asymptotically stable systems, we can conclude with the help of Theorem 1.2, that A
has to be a nonsingular —M-matrix and hence its diagonal entries have to be strictly
negative as seen in the proof to Theorem 1.2.

As for D, a negative entry in B and a corresponding u(t) = 0 would lead to a violation
of Z;(t) =2 0 , which is why we can conclude that B has to be nonnegative.

In conclusion we have shown that A being a Metzler matrix and B = 0 are sufficient and
necessary conditions to assure a nonnegative state vector. Altogether we summarize the
following characterization of positive linear systems.

Theorem 1.3 (Continuous Positive Linear System)

A (cont.) linear system (A, B,C, D) is positive if and only if A is a —M-matrix and
B,C,D = 0.

1.2. Discrete Time Systems

For discrete time systems the definitions of external and internal positivity remain the
same. The difference compared to continuous time systems is, that a discrete system
represents its own recursive solution algorithm [10]. The solution to the state can be
given explicitly by the recursion

t—1
2(t) = A" 0x(to) + Y~ ATF Bu(k). (1.5)
k=to

with an initial state z(¢g) at time ty. Consequently, we can consider immediately x(t+1),
instead of Z(¢). Analogous to the delta-dirac impulse, a pulse in discrete time is defined

as
lfort=0
0q(t) := 1.6
a®) {Ofort>() (1.6)

and thus for discrete time the impulse response (z(0) = 0), is given by

=1 D fort=20
=0 A" 1B, (k) + Doy(t) = n 1.7
gat) kzo atk) alt) CA™B fort>0 (17)

Obviously, for an discrete externally positive system it is necessary that

CA™'B>0fort>0 and D =0.
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By recursion (1.5) this is also a sufficient condition, i.e Theorem 1.1 is valid in discrete
time, too. In the same way, as in the continuous case, the transfer function of a discrete
system is given by the Z-transformation of its impulse response, i.e.

[e.e]
t)
G(z) = C(zI — A)™'B+ D = Z[g4(t) gd(t
t=0 o
Notice, by setting g; := gq(t), the series expansion of the continuous time impulse
response can be written as
O Al (i—1)
Ce'B + Do(t Z B+ Di(t Zgl |+ Dot), (1.8)
i—0 ! -

and gy is also known as Markov coefficients.

For a discrete internally positive system it is clear, that A, B,C, D = 0 is sufficient.
The necessity of this condition can be readily seen by considering z(t + 1) instead of
#(t) in the proof to Theorem 1.3. Then in case that z(¢) is on the boundary of R}, e
x(t) = e;, x(t+1); = a;; has to remain positive. Thus we can state the discrete analogous
of Theorem 1.3 as follows.

Theorem 1.4 (Discrete Positive Linear System)
A discrete linear system (A, B, C, D) is positive if and only if A, B,C,D = 0.

In Lemma 1.2 we have discovered that for a (cont.) positive system, A must have a real
dominant pole. With an extension of the so-called Frobenius-Perron-Theorem [16] [18]
one can make the same conclusion for the discrete case.

Theorem 1.5 (Frobenius-Perron Extension)
Let A > 0, then there exists a real \og > 0 and a xg > 0 such that

(i) Azg = Aoxo
(ii) Ao > |)\‘, Ve O’(A) \ {)\0}

In case of A 2 0, the same statements can be made by replacing the strict relations
with > and =, respectively.

Proof: » We start with the case A > 0:
Let Ao denote the maximal value for which Az — Az = 0, for some z € R} \ {0}. It is
obvious, that a lower bound for A is provided by A = 0, but it is also possible to find an

n
upper bound. Let ||A]« :=max; Y |a;;|, then
j=1

[Az]loo < [|Allcl[zlloe = (Az)i < [[Afloc max{w;}, Ve > 0
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and ||A]|« is an upper bound for A.

Let 29 € R} \ {0} be a vector fulfilling Azg — Agzg = 0, then by A > 0 it follows that
Ao > 0 and Az > 0 for all z € R} \ {0}. Consequently, A(Azg — Aoxo) > 0 and equal to
zero if and only if Axg = Agxg. By looking at

0< A(A.To — )\Omo) = A(A.’l?o) — )\o(ALU()),

we observe, that Ag is not maximal regarding the vector Axg > 0 and this a contradiction
to the maximality of A\g. Thus Az = Aoxzo > 0, which concludes the proof of (i) for A > 0.
Considering any other eigenvalue A € o(4) \ {\o} with eigenvector y, it is easy to see that

Alyl —[Ay| =0

and equivalently
Alyl = Allyl = 0.

Then by definition of A\g it must hold Ao > |A|. The strict inequality is readily seen by an
sufficiently small eigenvalue shift « > 0, such that A — af > 0. Using the first part we
conclude

A —al <X —a.
If there existes a complex A € o(A) \ {Ao} such that |[A\| = Ao, then by Pythagoras

A —al®> > (Ao — @)? and we have a contradiction to the maximality of Ao — a. This
concludes the whole proof for A > 0.

» Now we treat the case A = 0:

1

Let A be a strictly positive matrix. Then Ay := A + %A with k& > 1 defines a sequence of
strictly positive matrices converging towards A.
Thus, by the first part of the proof, we know there exists a strictly dominant eigenvalue
A > 0 of Ay. By Gershgorin’s circle theorem [3] it follows from the definition of Ay, that
A1 > Ay > --- > 1, where r denotes the spectral radius of A. Therefore {A;}r>1 defines a
monotonically decreasing convergent sequence.
Since {vy}r>1 defines a bounded sequence within the compact unit-ball, we can extract a
convergent subsequence {v, }x,>1, according to the well-known theorem of Bolzano-Weierstraf.
Consequently, by the positivity of vy and Ax we conclude

lim vy, = 0" 2 0 with ||[o*]=1 and lim Ay, = A" >

71— 00 1— 00
In the end we get

A7 = g Aw = g M = 27

and therefore Ay := A\* = r and vy := v*. |

Notice, that if A™zg = Agzg for some m > 0, then Azxg = Y/ Apxg. Hence, if A™ > 0,
we can apply Theorem 1.5 and get the same statements as for A > 0.

Corollary 1.1

Let A =2 0 and assume A™ > 0 for some m > 0. Then we can make for A the same
conclusions as for a positive matrix in Theorem 1.5.
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In order to find an answer, when such an m > 0 exists, we need to look at a certain class
of matrices, called irreducible matrices [18].

Definition 1.5 (Reducible matriz)

Let A € R" " then A is called reducible if there exists a permutation matrix 7, such

that
aT . B1 *
T Am = ( By

with square matrices By and Bs. If A is not reducible, then it is called irreducible.

Interesting property of the largest eigenvalue for irreducible nonnegative matrices is given
by the following lemma and theorem.

Lemma 1.4

If A is irreducible nonnegative matrix with a multiple dominant eigenvalue, then

tr(A) = 0. [18]

Theorem 1.6

A is a irreducible nonnegative matrix with unique largest eigenvalue if and only if]
A™ > 0 for some m > 0. [18]

For reducible nonnegative matrices this statements hold generally not true, what we
can see for example if we assume A to be the identity. However, reducible nonnegative
matrices have the property of having multiple nonnegative eigenvalues, which we can
conclude from the following lemma.

Lemma 1.5

Let A be a reducible nonnegative matrix, then there exists a permutation matrix m
such that
By x * *
By  x *
7l Ar = . ;

where each B; is irreducible or equal to zero. [18]

This means, the eigenvalues of A = 0 are given by the eigenvalues of B; = 0 and it is
possible to diagonalize 77 Am by a blockdiagonal matrix. Hence, according to Theorem
1.5, there must exists at least one nonnegative eigenvector to each B; corresponding to
the largest eigenvalue of B;.



2. Positive Realization

A clear drawback of Theorem 1.3 is the fact, that a simple state-space transformation can
already destroy the nonnegativity of (B, C, D) and the Metzler matrix property of A. In
this case all that is left is the nonnegativity of the impulse response. On the other side,
as we demonstrate in Example 2.1, the nonnegativity of the impulse response does not
guarantee a minimal positive realization. This chapter will treat the problem of positive
realizability.

For a first order system with transfer function

1
G(s) = M with M € RF*™ (2.1)
S+ oq

it can be seen, that the nonnegativity of the impulse response g(¢) implies the positivity
of the minimal realization of G(s). By the nonngetivity of g(t) it follows M = 0 and its
rank 7k(M) of M must be equal to one, due to the fact that G(s) is a system of first
order. For instance by applying Singular Value decomposition, we can decompose M
into two positive vectors C' € R* and BT € R™: let M = USVT with

Y = ("1 0> e RF>*™ U e RF*F and V e R™*™,

then MMT = U207 > 0 and MTM = V32VT > 0. We conclude that in each case
the first column w; of U and vy of V is an eigenvector to the largest eigenvalue o7y.
Consequently, by Theorem 1.5, u1,v1 = 0 up to a negligible sign-change and therefore
we can define

A= —Q, B := \/Ullvl‘T, C .= ﬁ\ul\, (2.2)

which is a positive minimal realization of G(s).

This implication does not hold for systems of higher orders in general and hence, the
minimal realization of a positive system does not need to be just a transformation of a
positive realization. In order to get the positive realization of an (internally) positive
system, we may need to increase the state-space dimension.

Example 2.1 (Nonpositive minimal realization)
Let us consider the system (A4, b, c) with

2 0 0 1 1
1 =2 0 o0 o
A= 1 9 o] ==y
0 0 1 -2 1

11
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The transfer function of this system is given by

252 +Ts+ 7 252+ Ts+ 7

G == =
(s) (s+1)(s2+4s+5) s3+5s24+9s+5’

which has poles at —1 and —2 & i. However, by a straight forward calculation of the
characteristic polynomial of a 3 x 3-Metzler matrix A and a comparison of its coefficients
with s% + 552 + 9s + 5, it follows

—ai1 — a2 —aszz3 =5 and ai1a92 + a11as3 + assazz > 9.
This gives
(—4 — a2 — ass)(age + ass) > 9

or equivalently
(Gg2 + as3 + 2)2 < 5.

Hence, the system does not have a minimal realization, which is positive.

2.1. Reachability, Observability and Realizability

In the following we want to investigate where the reasons lie, that not every externally
positive SISO-systems system has a positive minimal realization. Furthermore, we will
show that for second-order systems, external positivity is equivalent to internal positivity.
For this purpose we start with the definitions of reachable and observable sets with respect
to a nonnegative input.

Let us consider the linear time-invariant SISO-system (A, b,c’)
T = Ax + bu,
y=clz, (2.3)

then, as in [1] [6] [19], the reachable and observable sets, with respect to nonnegative
inupts, are defined as follows.

Definition 2.1 (Reachable set)

Let Xoo(A,b) be the set of all points that can be reached within finite time from the
origin by nonnegative inputs, i.e.

t
Xoo(A)b) :={z |z = / A bu(r)dr,t > 0,u > 0 integrable}.
0

Then we define the reachable set X, as

X, = X, (A,0) := X (A,0).
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Definition 2.2 (Observable set)

Let X,(c”, A) be the set of all states, that cause a nonnegative output for all t > 0 if
u(t) =0, ie.

Xo = XO(CT,A) 0= {[E | <C, €Atl'> > 07Vt > 0}7

where (-,-) denotes the scalar product. Then X, is called the observable set.

Note, do not confuse X, and X, with the reachable and observable subspaces of a system,
which are given by the ranges of P and @ in (3.2) and (3.4), presented in the next chapter.

By looking at the definition of X (A,b) it is easy to see that X (A,b) is a convex
cone because of the linearity of the system (see Appendix): assume x1, xo € Xoo(A4,d)
are two states steered by u; and usg in time t; > t3. Then by setting

~ ( ) 0,027’<t1—t2
Uo(T) :=
? us(r) i —ty <7<t

we can steer the system from the origin to
Ty = ary + Bre, a, >0
by the positive input
ug = auq + Bus.

Since X, is the dual set to {e" ¢, Vt > 0}, it is closed and convex (Lemma A.1). We
can conclude the same by its property of being the dual cone to X,. In order to do this
we need to show, that every z € X, can be approximated similar as the points in X,.[1]
[19]

Lemma 2.1

If C, denotes the smallest convex cone containing the set
{x |z =e4, t >0}
then

X, =C,.

Proof: For a real-valued interval [0,¢] C R, it holds

. eAt=10)p 14 €]0, ¢
/ eA(t*T)bé(T —10)dT = %e“‘(t—m)b, To=0or7T="bfort>0 (2.4)

0 .
0, otherwise.
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Let v € {z | x = €,V t > 0}, then by equation (2.4) we find with u(r) := 2§(7) a
nonnegative input such that v € X (A4,0). Since C,. and X, are both convex, we conclude
C, C X,.

Suppose z € Xoo(A,b). Since e € C, ¥t > 0 we get because of its cone property
eA=Npu(1)A € X, with 0 <7 <t and A > 0. Consequently if we approximate

t
x:/ AN bu(r)dr
0

by its Riemann-sum Sy, we get by convexity of C,
N
r~ Sy = ZeA(t_”)bu(Ti)(Ti —7i1) €EC.withp=0<7 < <7y =t
i=1

Since Sy defines a convergent series of C,., its limit lies in C, and therefore
= lim Sy €C,.
N— oo |

Observe the similarity between X, and C;. By definition of the dual cone and the fact
that every dual cone is closed, it holds

X (A,0)" = CF = {y | ("b,y) > 0, vt > 0}
= {y | (b,e*"ty) >0, Vt > 0}
= X, (b7, AT).

Since X, is closed and convex, we get by Theorem A.1, X* = X,.

Lemma 2.2 (Dual Cone)

X (A, 0)* = X, (b, AT) and X,(c',A)* = X,.(AT,c). [19]

In the following we want to find out more about the geometric structure of X, and X, in
case of external positivity and relate them to (externally positive) minimal realizations.

Lemma 2.3

Let (A,b,c?) be an externally positive system, then X, C X,.[19]

Proof: By Lemma 2.1 and its proof we know, that a vector x € X,. can be arbitrarily close
approximated by a nonnegative finite linear combination of C,.

N
T = Z eAtipA,;.
i=1
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According to Theorem 1.1
ey >0Vt >0

and therefore

N
ety = ZcTeA(H'ti)bAi >0,Vi>0 = z€ X,.
=1

Theorem 2.1 (Minimal Realization)
(A,b,c") is a minimal realization if and only if X,(A,b) is solid and X,(c',A) is
pointed.[19]

Proof: By Lemma 2.2 and Theorem A.2 we only have to show the statement for either X, or
X, and the other follows by duality. Notice, in fact we will basically use the same arguments
as to prove Theorem A.2.

Suppose X, is not pointed, then as in the proof of Theorem A.2 there must be a line
av € X, Va € R and v € R \ {0} for which ¢"e**av > 0 holds.
Consequently,

c"Av =0Vt >0,

and thus Qv = 0, which means that v has no influence on the output and cannot be observed.
This contradicts the minimality of the realization.

In the other case, if the realization is not observable, there must exist a nonzero vector
w € R™ such that
ety = 0 vt >0,

and as before there would exist a line in X, such that aw € X, Va € R, which contradicts
the pointedness. |
A direct consequence of Lemma 2.3 and Theorem 2.1 is the following result about minimal
realizations of externally positive systems. The same follows from the results in [19], but
by assuming external positivity, we can give a much shorter proof here.

Theorem 2.2

Let (A,b,c") be a minimal realization of an externally positive system. Then X, and
X, are proper comnes.

Proof: By Theorem 2.1 we only need to show the pointedness of X, and solidness of X,.

Let us assume X, is not pointed. Then

dreR": 2z e X, N—-X,.
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According to Lemma 2.3, X,, C X, and hence
re X,N—-X,,

which means X, would be pointed. Since we have assumed to have a minimal realization
this is a contradiction to Theorem 2.1. Again, the same statement for X, follows by the
duality of X, and X,. [ |

These results show which strict requirements have to be fulfilled for a minimal realization
of a positive system. The questions is now, by looking at X, and X,, what is the
distinction between internal and external positivity of a minimal realization.

Theorem 2.3 (Minimal Positive Realization)

Let (A, b, cT) be a minimal realization of a strictly proper transfer function G(s). Then
G(s) possesses a positive realization if and only if there exists a polyhedral cone X,
such that

(i) (A+ X)X, C X, for some A > 0,
(i) X, C X, C X,.[19]

In the proof of the theorem as well as in the subsequent conclusions we will need the
following lemma.

Lemma 2.4

(i) Xr(A,b) = X (A+A,b), Xo(c,A) = X,(c, A+ ), VAER
(i) X, Cc X, eMX,C X,, Vt>0.[19]

(A+AI)t At T At

Proof: The first statement follows by c’e x = e ctetx, the definition and cone

property of X, and Lemma 2.2. ) )
For the second statement we just need to notice, that e4tet = eA(t+1) and apply it to the
definition of X, and X,. [ |

Now we are ready to prove the main theorem of this chapter.

Proof to Theorem 2.3: » Sufficiency: By definition of a polyhedral cone we can write X,
as X, = PRY with P € R"**. Consequently from assumption (i) we conclude

(A+\)P = PKy4, with K4 € RF*F,

and define
e
Ap ::KA—AIZO.
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By the definition of C, and assumption (ii), b € X, C X,. Hence, there exists a vector
b, € RY such that

Pb, =b.
Again, with the same arguments it holds ¢ € X,.(AT,¢) = X,(cT, A). Since X, C X, it
follows by the definition of a dual set, that X; C X and consequently ¢ € X7. Then by
the definition of the dual set, there must exist a vector ¢, € R such that

c, = PTe.
Noticing that AP = PA, and thus A"P = A" 1(AP) = AF"1PA, = ... = PAY we can
compare the impulse responses of the system (A,b,c’) and (A,, by, cg) as follows
<, ARk 2, Akt
T At T T T Apt
ceb=c Z i Pb, =c PZ#b:cpe by.
k=0 k=0

Hence, it holds for the transfer functions
ey (sI — Ap) "'y = T (sI — A)~ ',
and (Ap, by, c}) is a positive realization of G(s).

» Necessity: Assume (A,,b,, cg) is a positive realization of G(s) of dimension N.
By setting A\ := max;=1,.. n{—ap,} we define a nonnegative matrix flp by

flp =Ap,+ A and A=A+
It is readily noted, that (zzlp,bp,c;";) and (A,b,cT) are both realization of G(s — \), where
(A,b,¢T) is a minimal realization. With the help of Lemma 2.4 (i) we get
X, (A,b) = X, (A,b) and X, (cT,A) = X (¢, A),

and thus in order to conclude the prove it is sufficient to show that there exists a polyhedral
cone X, C R" such that

(i) AX, C X,

(i) X,(A,b) C X, C X,(c7, A).
We will find such a polyhedral cone by doing so for the observable part of (/Nlp, by, cg).
Let us transform the system (A, b,, ¢}') into the observable canonical form:

chlﬁpTo = <A*11 2) s Tcrlbp = (b*l) ) CZTO = (CP{ ) :

Since (A11,b1,¢1) is observable, we can transform it into the controllable canonical form

AT
Aga =TT AT, = (‘% :) , be =Ty = (8) o= T = (07 ).

and retrieve the minimal realization (AT, ¢,bT). The reason why we use this form instead
of (A,b,c"), is that by transposing we get the same matrix structure as for the observable
form. Notice, this is only possible for SISO-systems. Then, by defining

pp— Tc
re (%),
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we get a system

N -1
T AT = (Aaa 0) , T, = (ba> , T = (' 0) andT7" = ((T )“> .

* * * *

We have partitioned the system in exactly this way because of the zero-matrices that we
will need in the following and the fact, that we can express (flp, by, ¢p) in terms of (;1, b, c).
Given a matrix @, we define by cone{Q} the polyhedral cone generated by the columns of Q.
If we set Xy, := (cone{(T~1),})* then X} = cone{(T~1'),} and Aua X} = cone{Aua(T1),}.

By looking at
<<T*1>a) i ((T-?aﬁp) _ (A:a ‘j) ((T*m)

we observe

Hence,
Aga Xi = cone{(T1),A,} C cone{(T71),} = X},

where the inclusion follows by [lp > 0. Consequently, by the definition of a dual cone
AT X} C X}.. Because b and c are nonnegative we get

bo = (T71)ab € X; and because cX (T™1), = ¢, ¢, € Xp.

Let us write the polyhedral cone X}, as
P
Xi = coneq and define X, := cone{P},

where P denotes the matrix of the first n rows, corresponding to A in AL . Then by
considering the corresponding parts of P in b, and ¢, it is straightforward to see that

AX, C X,, be X, and " € X. (2.5)

Thus condition (i) is verified and it is left so show condition (ii).

By (2.5) we get A’b € X,,,Vi > 0 and therefore by Lemma A.2 eAth = S Al € X, Yt > 0.
i=0

Together with Lemma 2.1 we get conclude X, (A4,b) C X,,.

In the same way we can show the second inclusion. By the A-invariance of X, it follows

again AT X* C X and hence as before X, (A", ¢) C X7, From the definition of a dual cone,

Theorem A.1 and Lemma 2.2 we get X,;* = X, C X, (AT, ¢)* = X, (T, A). |

In Lemma 2.3 we got, that X, is a subset of X, and hence it would be a perfect candidate
for X,. Unfortunately we know, not every externally positive system has a positive
realization of dimension equal to the order. In this case X, is either not polyhedral
or not (A + Al)-invariant. The next lemma will show the relation between these two
properties.
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Lemma 2.5

Let X, C R" and A € R™". Then eAtXp C X, Vt > 0 if and only if there exists a
A >0, such that (A+ X)X, C X,.[19]

Proof: » Sufficiency: Let us assume there exists an x € eAtXp \ X, then by the cone
property of X,
eMteAt = e(AtnDt ¢ X,, V.

Consequently, by series expansion it holds

— (A+nl)z,
DY X, V= 0
=0

Together with Lemma A.2 this is a contradiction to (A + M)X, € X,. Observe for this
direction a closed convex cone X, would have been sufficient.

» Necessity: Let X, be generated by the set {p1,...,pn} and X by {q1,...,qn'}. Hence
by definition of the dual cone and by assumption

(gj,pi) >0 and (gj,e*'p;) > 0,¥t >0, 1<i< N, 1<j<N (2.6)

Again by definition of X, the existence of a A > 0 such that (A+\) X, C X, is equivalent
to
IA>0: ((A+ MD)p;,q;) = {(gj, (A+ M)p;) >0, 1<i<N, 1<j<N.

If {q;, Ap;) > 0 then it is obvious by (2.6), that
and we set \;; = 0. If (g;, Ap;) < 0 and (g;,p;) > 0 we can define

>\i' = _M >0
! (a;,p:) ’

and it holds (gj, (A + \ijpi;) > 0. For the case (g;,p;) = 0, we have to take a look at the
series expansion of (g;, etp;)

0 < gz, e™pi) = (a5, pi) + (0, Api)t + R(t) = (q;, Api)t + R(t),¥t > 0 and R(t) € O(t?).
Hence, by dividing by ¢ > 0 yields
(g;, Ap;) + R(t),¥t > 0 with R(t) € O(t),
and we can conclude (g;, Ap;) > 0, because for sufficiently small ¢ > 0 it holds
[R(1)| < |(gj, Api)-

Setting A := max; ; A;; concludes the proof. u
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As a consequence of Lemma 2.4 (ii) and Lemma 2.5 it follows, that if X, is polyhedral
then it is also (A — AI)-invariant. Unfortunately, neither the location of a polyhedral
cone X, nor the determination if X, is polyhedral, is an easy solvable problem and to
the authors knowledge there exists no systematic way.

An exception is the case of a second-order system. In this case we know from Lemma
A.3 and Theorem 2.2 that X, is always polyhedral.

Corollary 2.1 (First- and Second Order Realizability)

Every first- and second-order externally positive system has a positive realization.

Still, in the view of positivity preserving model order reduction, the same problems will
remain and thus it is more advisable to stick to the preservation of the matrix properties,
as we will do now to get an explicit expression of a second-order system.

2.2. Second-Order Realization and Special Cases

In the following we will show an easy way to get a second-order positive realization and
discuss some special cases of higher dimensional positive realizations.

By equation (1.8) and the rules for Laplace transformation we know that we can write
any (discrete- and continuous-time) transfer function,

Bip" 4 Bap" P+ -+ B
prtonp"t 4+ ap

G(p) =

)

as a series of Markov coefficients
G =Y % (2.7)
i=1

Applying polynomial long division on G(p) and comparing the coefficients with equation
(2.7) yields that for the first n Markov coefficients|6]

i—1
Bi=gi+ Y ongik, i=1,...,n. (2.8)
k=1

Among many canonical realizations of a SISO-tranfer function G(s), the most well-known
are the observable canonical form

00 -+ 0 —ay Bn
10 --- 0 —0np—1 /Bn—l
A, =0 1 o 0 —an by = | Bn—2 |, =0 0 - 0 1)

00 -+ 1 —a 5
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and the controllable canonical form

_ AT T T
Ac=A4A,, b.=c,, c.=b,.

Beside those two canonical forms, there exist two further interesting realizations called
Markov form and Dual Markov form |6], which follow directly from the first two by

consideration of equation (2.8).
The Markov form is given by

Ay =4, by=|01, cr=(m 90 - g1 gn)

and its dual by
Ay = A% by = e, cﬂ* = bﬂ.
Observe, by the proof to Theorem 1.2 none of these realizations is suitable for a continuous-time

positive system, since in this case all the diagonal entries have to be smaller than 0.
Fortunately for a discrete system we only need A = 0.

Theorem 2.4

Let G(z) be the transfer function of a discrete externally positive system with «; < 0,
1 = 1,...,n, then the system is positively realizable with dimension n by the Markov
form and its dual.[6]

For a positive continuous-time system (A, b, ¢*') it follows by the definition of a —M-matrix,
that there must exist an v > 0, such that A +~I > 0. Hence, the system (A +~I,b,cT)
possesses nonnegative Markov coefficients and its transfer function is given by

Gals)=cl'(sI — A+~ o=c((s =) —A)"'b=G(s — ).

Applying Lemma 2.4 leads to the following theorem.

Theorem 2.5

Let G(s) be the transfer function of a continuous-time externally positive system. If]
there exists an v > 0, such that the Markov coefficients g, of G(s—y) are nonnegative
and the corresponding v, are nonpositive, then there exists a positive realization of]
dimension n.[6]
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Observe, v cannot be chosen arbitrarily: assume we have have a Markov form positive
realization (A, by, cl;) of G(z — «), then the positive continuous-time realization is
given by (Apyr — I, by, c%}) By looking at the Markov form we notice, that the trace of
Apr — 7y is given by

tr(Ap —v) =—(n—1)y+ (—y — a1) with a; <0.

Consequently,
tr(Ap +7) + a1 - tr(Am +9)

7= =
n n

and we have found a lower bound. Since the trace of a matrix is invariant under similarity
transformations and equal to the sum of all eigenvalues, we can conclude the following
result.

Theorem 2.6

Assume G(s) is the transfer function of a continuous-time externally positive system
and there exists a v > 0, such that the Markov coefficients g,, of G(s — ) are
nonnegative and the corresponding cv,, are nonpositive. Then it has to hold

1 n
Y Z _E 21917
=

where p; denote the poles of G(s).

Now let us consider the second-order case. Corollary 2.1 tells us, that each externally
positive transfer function
s+
G(s) = 251—52 (2.9)
¢+ a1s+ ag
can be positively realized with a state-space dimension equal to 2. By Lemma 1.2 we
know that the dominant pole of G(s) has to be real and therefore G(s) consists of two

real poles p1,p2 < 0. Since G(s — ) can then be written as

Bi(s =)+ B2
(s = (v +p1)(s— (v +p2))

G(s—7) =
it follows for ., and ., that

ay = —(y+p1) = (y+p2) =27y (p1+p2) and  ay, = (v +p1)(y + pa).

Observe, since ay,, a4, < 0, ay, gives the same condition as Theorem 2.6.

Let v := —w then

p1+ P2 p1+p2
Ay = (_ 9 +p1)(_72 = — <0

2 2 4 -

+ D2

):(Pl—m)(l)z—pl) (p1 — p2)?
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and thus we found a discrete realization given by

0 (p1—p2)* 1
Ay = (1 é , by = 0/’ C?\} = (971 972) :

Together with equation (2.8) we get the following continuous-time positive reali-zation

PLt P2 (pr—po)?

4 1 p1+ p2
A = ’ pitp2 | bp:(())’ CI:JF:<61 b2 = b, ) (2.10)

It easy to show that another realization of G(s) is given by

_ P2 0 1 o
4= <52 + Sip1 p1> = (0) = (B 1) .[6] (2.11)

Since 1 > 0 by equation (2.8) and py < p; < 0, all we need to verify for internal
positivity is that
B2 + Bip1 > 0.

This is equivalent to show that p; > —%. Since —% represents a real zero of the system,

the internal positivity follows by Lemma 1.3.

Notice, for both realizations we avoid to show the nonnegativity of the impulse response.
In comparison to Theorem 2.3, we also do not need to find the boundaries of X,. Thus,
we found an shorter and more applicable proof for the equivalence of external and internal
positivity for second-order continuous-time systems.

Theorem 2.7 (Second Order Positive Realization)

Let G(s) be a second-order transfer function given by equation (2.9). Then G(s) is
externally positive if and only if 1 > 0 and the system possesses a real dominant pole

p1 such that 8o + [ip1 > 0.

If G(s) is externally positive, then it possesses an internally positive realization given
in (2.10) or (2.11).

All these problems of positive realizability, that we have encountered in this section and
the section before, are basically the main difficulties we have to deal with, when we want
to preserve the (internal) positivity of a system after performing model order reduction.
Especially problematic is, that even if we have an externally positive reduced system, we
cannot estimate how large its positive realization gets, as seen in Example 2.1.




3. Balanced Truncation

Amongst the different reduction methods one has turned out to be simple and efficient,
the so-called Balanced Truncation. The main advantage of Balanced Truncation is its
interpretation with the help of energy functions and the providence of a good error bound
estimation in the Hso-norm.

The easiest way to perform model order reduction is to remove successively uncontrollable
and unobservable states in order to gain a minimal realization. In fact, this means
nothing else than getting a realization with identical reachable and observable space.
This idea can be interpreted and generalized with the help of energy functions and
Lypunov equations.

It is a well-known result, if we define P by

AP+ PAT = —BBT o(A) c C™ (3.1)

o
P = / e BBT A dt, (3.2)
0

the range rg(P) of P is equal to the reachable subspace. P is called the Controllability
Gramian. The same consideration can be done for the observable subspace.

Let @ be defined by

ATP+ PA=-C"TC,0(A) Cc C™ (3.3)
Q:A AT CT CeMdt, (3.4)

then rg(Q) is again equal to the observable subspace and @ is called the Observability
Gramian.

The equations (3.1) and (3.3) give obviously an indirect way of testing, whether a
system is controllable/observable and are named after its discoverer Lypunov equations.
Lyapunov equations are especially important in the context of stability, which we want
to explain with the next Lemma.

24
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Lemma 3.1
Let P be the solution to

AP + PAT = —H, (3.5)
then
1. R(N\(A) <0if P>0and H>0
2. R(Ni(A)) <0if P>0and H >0,

where \;(A) denotes the i-th eigenvalue of A.[30]

Proof: Let v be an eigenvector to the eigenvalue A of AT, i.e. ATv = Av. Then by assumption
T (AP + PAT)y = 2(\ + \)oT Pv = 6T Hv < 0

and since P > 0 it follows that A + A = R(\) < 0. u

Remark: The solution to a Lyapunov equation as in (3.5) is unique if and only if
Ai(A) + Aj(A) # 0,Vi,j. Hence, the solution can be attained by solving a system of
equations and it is not required to solve the integral explicitly.[30]

Let us assume the situation of an uncontrollable system (A, B, C, D) with Controllability
Gramian P = (Pl 0), Py > 0. Inserting P into equation (3.1) and partitioning the

system matrices A, B and C, leads to

AP+ PlA"lTl + BlB{ PlAgl + BlBg

_ T T _
0=AP+ PA” + BB _( A Pyt BoBT BT

>:>BQZO,A21=O.

Consequently, the transfer function G(s) = C(sI — A)"'B+ D = Cy(sI — Ay1) "' B;.
The result is not surprising, but we can see how simple it is to reduce uncontrollable
states of a system with the help of Lyapunov equations. Since this will be the essential
idea of this chapter, we summarize it in the following Lemma.
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Lemma 3.2

Let (A, B,C, D) be the state-space realization of a stable system with transfer function
G(s) and Controllability Gramian P = (Pl 0), P; > 0. Partitioning the system

according to P into

An A12) (Bl)
A=  B= C=(C Gy,
<A21 Az By @ &)
such that

An P+ P Al = -B1 B,
AT P+ P Ay = -CEoy,

results in a controllable state-space system (A11, B1,C1, D), which is also a realization
of G(s).[30]

Remark: By switching the roles of P and @ = (Ql 0) the same can be done, which
leads to an observable state-space realization (A11, B1,C1, D) of G(s).
Beside the range of P, the interesting property of the Controllability Gramians is the

interpretation, that it measures how difficult it is to reach a certain state in a stable
system.

Lemma 3.3 (Control of Minimal Energy)

Let xy be a reachable state, i.e. zg € rg(P). Among all controls u, steering the system
from 0 to 2(0) = xo over the interval | — 00,0], u(t) = BTe~A" Ptz minimizes the
energy Ec(u) = [° || u(r) |? dr = zoP*zo.[28]

The minimization is done over the interval | — oo, 0] and thus all possible controls steering
the system to xo over an interval [t1, 0], with ¢; < 0, are considered.

Further, P# denotes the Moore-Penrose pseudoinverse of P, which results from its Singular
Value Decomposition by

PZUT(? 8>U7 E:diag(sl,...,sn), 312822”'3n>07 UﬁlZUT

and
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Hence, depending on the eigenvalues of P, there are states requiring more energy compared
to others to reach them. Now, the idea could be to transform the system with z = U¢,
resulting in the system (4, B,C, D) := (UTAU,UT B, CU, D)

with diagonal Controllability Gramian P = UPUT = <§ 8)

- -1 - 1
Then P! = <EO 8) and F.(u) = ¢ P¥¢y = — for & = e;. Therefore its maximum is
i

1
attained in —. We may conclude to proceed as for uncontrollable states and suppress
Sn R
those states &;, that correspond to small values in P. This would lead to a stable system
(Lemma 3.1), but in many cases also to a very big Hso-error between the original and

the truncated system.[30]

The same consideration is valid for the observability of a state. The more influence
a state has on the system output, the easier it is to observe. If z(0) = xo denotes the
state to observe and we set the input v = 0, then the output of the system is given by
y(t) = Cettazy. As before for u we consider the energy E,(y) of v,

E,(y) _/0 y(T)Ty(T)dT —/0 :EOTeATTCTC’eATdeT = xOTQaco

and note, the smaller mngo, the harder it is to observe xg.
> 0

0 0> U and transform the

Analogous to P, we could again diagonalize Q = UT(

X 0
0 0
neglection of states, which are hard to observe (small E,), can lead to a big Hse-error as
well.|30]

system by x = UT¢ with new Observability Gramian Q= < ) Unfortunately, the

Example 3.1 (High Truncation Error)
Let

be a system with a state-space representation

-2 0 2 0 2 0
A= (0 5) =0 2) o= (5 )
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Then it is easy to see, that the Gramians are given by
1
- 2) o)
— !
o

Consequently, the weaker the second state to reach/observe the easier it is to observe /reach.
Truncating this state leads to a system

with transfer function

4
Gi(s) = s+1 0
0 0

Then by Theorem 1.1 it follows, that |G|l = ||G — G1|lec = 4, which gives a relative
error of 100 %.

Notice, Eo(y) = [;° y(7)Ty(7)dr is nothing else than the scalar product in the well-known
Hilbert Space L? [30]. By Parsevals formula [21] we can describe this in the frequency
domain as

o 1 [ o1, . I .
Il = [ i rur)ar V7 ()Y (i) = 5 [ Y (o) B

:% .

where Y (iw) = .Z[y(t)] denotes the Fourier-Transformation of y(¢). In words the equations
says, that the total energy of a signal in time-domain is equal to its total energy in
frequency domain.

Using that Y (iw) = G(iw)U (iw), we can conclude the following inequality

[ . [ : .
Il = 5 [ IV G@lBdo < oo [ 16w BT ) o < 1612l

Observe, by looking at the Fourier transformation of a sinusoid

F (sin(wot)) = mé(w — wo) 2—i5(w + wo)

and the well-known properties of §(¢) as in equation 2.4, we find an input to give equality
at the maximizing frequency wg of a SISO-system. In the MIMO-case such an input can

also be constructed by considering the Singular Value Decomposition of G(iw) as done
in [30]. Thus

Iyl
IClloe = sup 1

. (3.6)
lull20 ll2ll2

Soon, this fact will be very important to prove the error-bound of a truncated system.
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3.1. Standard Balanced Truncation

The problem with the considered truncation approaches is obviously, that a state which
is hard to observe does not need to be hard to reach and vice versa. Consequently the
neglection of states, which are hard to observe and to reach at the same time, is the only
feasible way. This leads us to the concept of balancing a system, which is based on the
following theorem.

Theorem 3.1 (Balancing Transformation Matrix)

Let P and (Q be two real positive semi-definite matrices. Then there exists a
non-singular matrix T such that

Py :=T'PT" = diag (Z,%,,0,0), Qp:=T"QT = diag (X,0,%,,0),

with diagonal 3, ¥, ¥, > 0 [30]

Proof: We only show the proof for the case P, > 0 and refer otherwise to [30].
Let P be decomposed by Singular Value Decomposition into

P=UxpUT,

and define )
L:=UX3.

By another Singular Value Decomposition of LT QL into
LT'QL =vxvT,

and we define )
T:=LVX 2,

Then it it straightforward to verify that

|
™

TP ' =y VT LT Tyn:
and

TTQT =2 :VILTQLVY: = % -

Let P and @ be the Gramians of a linear system (A, B,C, D) and T the corresponding
matrix given in Theorem 3.1. Transforming the system by the equation z = T¢ results
in the new state-space representation

(Ap, By, Cy, Dy) := (T 'AT, T~'B,CT, D), (3.7)

with the Gramians P, and )y as defined in Theorem 3.1. The zero matrices in P, and Q)
correspond to uncontrollable and unobservable states, which can be neglected without
causing an error (Proposition 3.2). Thus the important information is collected in

Y =diag (o11y,,...,onIky), o1 > 02>+ >0y >0, k;>0,i=1...N  (3.8)
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and {o1,...,0n} are called the Hankel Singular Values of (A, By, Cy, Dp).

Observe,

2t

P,Qy, =T 'PQT = < 0) = {0,...,0%} =0o(PQ)\ {0} (3.9)

and the columns of T have to be eigenvectors of PQ.

Finally we are able to identify states, which are both hard to reach and to observe.
A state-space realization (A, By, Cy, Dy), possessing the identical Controllability and
Observability Gramians is then called a Balanced Realization.

The final step is to decide which states to truncate and to partition the system according
to those.

If our balanced state-space system is given by

{é(t) = AyE(t) + Byu(t),
y(t) = Cpé(t) + Dyu(t),

we know, states that correspond to small Hankel Singular Values have the least influence
and cause the smallest error when truncated. Hence, the question that is left is, how big
the error might become. An answer to this has been given e.g. in [24] and [30].

Theorem 3.2 (Balanced Truncation and Error Bound)

Suppose (Ay, By, Cy, Dy) is the balanced realization of an asymptotically stable system
with transfer function G(s), Gramians ¥ = diag (21, %2),

21 = diag (Ullkla “. ;UrIkr) 722 = diag (UT-HIkr-Ha c. 7UNIkN)
and Hankel Singular Values o1 > -+ > 0, > 0pp1 > --- > oy > 0.

Partitioning the system matrices Ay, By and Cy accordingly to i results in a
truncated system (A, B.,C,,D,) := (A1, B1,Cy, D) with transfer function G,(s)
which is balanced, controllable, observable and asymptotically stable.

Moreover, it holds for the Ho-error

N
IG(s) = Gr(9)lloo <2 Y 0. (3.10)
i=r+1
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Proof: Note, since A is asymptotically stable and ¥ > 0, we assume implicitly, that (A, B)
is controllable and (A, C) observable. According to Lemma 3.2, this is not a restriction.
Partitioning the system into

&\ (An AR\ (& By
(6) = a2) )+ ()

y=(C1 Co) (g) + Du,

gives the reduced system

gr = Allfr + Blua
Yr = ler + DU,

and the following Lyapunov equations

ApYy + 34T, = -B, BT, (3.11)
AT Y + 3,40, = -CT ¢y, (3.12)
A9y + X0 AT, = —Bo BT, (3.13)
ALY + 3,45 = —CT . (3.14)

Since Ble > 0 it follows by Lemma 3.1 that A;; is a stable matrix. Now let us assume
there exists a purely imaginary eigenvalue iw of A;; with an eigenbasis collected in the
matrix V, i.e.

A =iwV  and VTA?1 S
By multiplying equation (3.12) from the left with V" and from the right with V' we get
WV SV — iV SV = -V e e V' eTe,v =0
and hence
C,V = 0. (3.15)
Thus, multiplying (3.12) with V" only from the right side yields

ATV = —iwS V. and V'S4, = iwV 5. (3.16)

Using these equations after multiplying equation (3.11) from the left with VTEl and from
the right with ¥,V leads to
. =T 9 . =T 9 —T T —T T
iwV XV —iwV XV ==V BB Y,V & V ¥1BB Y V=0
and therefore
By, v =o. (3.17)

As before this yields
A Y3V = iwsiV (3.18)

by multiplying equation (3.11) only from the right side with 3;V. Obviously, this means
E%V consists of eigenvectors of Aj; to the eigenvalue iw, which is why there must exist a
matrix M such that $3V can be expressed as

YV = VM.
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Furthermore, 7g(V) is an Y?-invariant subspace and thus for every eigenvalue A\ € o (M)
with eigenvector w) it holds
E%VU})\ = )\Vw,\,

which shows, that A € o(X%) with an eigenvector in rg(V'). Hence, we can choose V such
M =32

with a diagonal 31, whose diagonal entries are subset of those belonging to ;. Further, by
multiplication of equation (3.13) with £,V from the right we get from equation (3.17), that

A X3V + 5, ALYV =0,

Similar, if we multiply equation (3.14) with X5 from the left and V from the right, we can
conclude by equation (3.15), that

Y240,V + S ALYV = 0. (3.19)
Together we receive
An Y2V = 2245V & A V2 =524,V & (22)71A45 V2

After assuAmption 31 and Y2 do not have common diagonal entries and hence the same
holds for 3% and ¥3. This leaves us with the conclusion

AV =0,

A Aigg Vy . V
Ay A ) \0) ™™\ 0 )

But this is a contradiction, since we have assumed A to be asymptotically stable and
therefore Aj; cannot possesses a purely imaginary eigenvalue. Consequently, the reduced
system is asymptotically stable with the Gramians X, which also means, that (A1, By) is
controllable and (Aj1,Cy) observable.

which allows us to write

Now, we take care of the error bound estimation. For this purpose we rewrite (3.1) as
ATY '+ 2 A=-2"'BBTS L
Since

»1BBTy-! —¥»-1B\ [(%7'B
—-BTy~1 I S\ =T

> (BTZ_1 —I) >0
we get

BTyt -1

ATyl 4314 »-1B e 0 0
BTy—! 0 —\0 I)°

Rewriting the left side of this inequality results in

CODEDEY em

Ty—1 -1 -1
<AZ +X7A X B><O

or equivalently
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Let us define
Z(f,) = Aglfr(ﬁ) + Bg’u,(t),

and assume that £(0) = 0 and &,.(0) = 0. Multiplying (3.20) from the right with

fl + gr
&2
2u

and from the left with its transpose, gives then

. .. T _ . .
& +& 0 0 = 0N [G+6
2tz 91 0 0 X §2+2 < 4Ty
& +4& 2 0 0 0 & +&
& 0o X' 0 0 &
or equivalently . ] )
26 +&) 2T+ &) T2 +2)TE 6 < duTu (3.21)

By applying partial integration we get

2 /0 G +&EM)TSTH ) + &@)dt = (E(T) + &(T) ST (& /(T) + &:(T))

and -
2 / ()7 6 (t)dt = £7(T)ST 6(T).

Consequently, integrating over the inequality (3.21) gives

<§1(T) + &(T))T -1 (61 (T) + ST(T)> P /OT (425 6 () dt < 4 /OT u” (t)u(t)dt

&(T) &(T)
and by the positive definiteness of =1 we get
o)
2/ ()55 e (1)dt < 4lJul2. (3.22)
0

A similar consideration can be done for (3.3). Rewriting the equation as

() ¢ ()

and multiplying it from the right with
<§1 - §r>
§2

and from the left with its transposed, leads to

51 - gr g 0 0 21 0 51 - gr

fo—2 00 0 )| &—2

& =& > 0 0 0 & =&
&2 0 % 0 0 &2

= (y - yr)T(y - yr)'
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As before partial integration yields

T T T
(51(T§)2(—T£)7-(T)) 2(51(T€)2(_T€)"(T)>—2 | omena < - [ e O w0

and consequently

2 [ T8kt + -l <0, (3.23)
0

Suppose now, we perform the truncation successively for each Hankel Singular Value,
starting with the states belonging to ox and calling the truncated system Gy_;. Then
we can assume Yo = o] and we get by multiplying (3.22) with o3, and adding it to (3.23),
that

Iy —yn-1ll2 < 205 Jull2,

which is according to (3.6) equivalent to
||G — GN—lHoo S 20’1\7.

By expanding G — G, to a telescope sum and using the triangle inequality, we get

N
IG = Grlloo =G = Gna+Gnat 4+ G = Grll <2 > 04
1=r+1 .

Note, the error bound does only depend on the Hankel Singular Values given by (3.9). By
contrast, the multiplicity k; of o; is not important. But if the system possesses Singular
Values 0; = 0, we cannot assume, that the influence on the upper error bound will be
close to 20;. Instead we have to expect 20; + 20; ~ 40;.

Example 3.2 (Close Hankel Singular Values [30])
Let us consider the transfer function

G(S) - Z S —?—iai

i=1

b
with a;,b; > 0. This is obviously a positive system with ||G(s)|lc = Y.r; — and a
@

T
realization

A :=diag (—a1,...,—a,) and BT =C = (Vbr ... Vby).
Then by (3.1) and (3.3), it follows
AP+ PAT = ATQ + QA =BBT =c'c,
which leads to P and @) with entries

\/b;b;
bij = 4qij = ( ])-

a; + a;
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Thus g; — /\Z(P) = /\z(Q) and
b1
i =tr( L = |G| o-
Za ") =3 5 =3l

By choosing a; = b; = " we attain P = Q — %I as « — oo and therefore o; — % This
shows the tightness of the error bound.

24

Observe, scaling a system G(s) by k, i.e. G(s) := kG(s), also scales the reduced-order
system and the Hankel Singular Values by the factor k. Consequently for a for very
small/large k, we attain a very small/large error. In order to perform a fair comparison
we need to consider the relative error

G-G 2
I rlloo < Z o, =2 Z 0;, with g; =

1Glle — Gl , 57, Pari

IIGHoo

For asymptotic stability it might be important to truncate all states, that correspond to
the same Hankel Singular Value.

Example 3.3 (Unstable Balanced Truncation)
The system (A, B,C) given by

-2 0 0
A=10 0 05|, C=B=diag(2,0,2),
0 —05 -2

is clearly a balanced asymptotically stable system with P = Q = diag (2, 1, 1). Thus, if
we truncated only the third state, we would obtain an unstable system.

3.2. Balanced Truncation Algorithm

Let T = (T1 Tz) be the balancing matrix of Theorem 3.1, partitioned according to >
S1

of Theorem 3.2, and T~ ! = <
Sa

). Then the balanced system is given by

4y — AT — <51AT1 SlAT2>

So ATy S AT

el (S1B
B, =T B_<S2B ,

C,=CT = (CTy CTy),
Dy =D.
Thus the reduced system can be written as

A, = S$ATy, B.=SB, C.=CT\, D,=D (3.24)
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and we observe, instead of balancing the whole system we only need to find 77 and S
with S1Th7 = I. For P,Q > 0 we saw in the proof to Theorem 3.1 how to get them in
a systematic way. In case of P,Q > 0, we can proceed in almost the same manner to
achieve a balanced truncated system, without balancing the original one.

As before, P can be decomposed into

- Yp 0\, .71
peu (3 Do

1
L=u(* 0},
0 0

The difference compared to P > 0 is obviously, that L does not have full rank. By
considering the Singular Value Decomposition of )

_ g 0\ .1
@="Uo ( 0 0) Yo
it is clear, that o(LTQL) = o(PQ). Thus, Singular Value Decomposition yields

2
L'QL=v (Eol 8) VT,

and we define

Let V = (1)1, Ce 3y UN e ,’Un), with N, := ki1 4+ --- + knx corresponding to the notations
of Theorem 3.2. Then we can define the matrices 77 and Sy as follows

1
T1 =1L (1)1, cee ,vra) diag (Ulfkl, .o '70-7‘Ikr) 2 s
([
S1 = diag (Ulfkl,...,O'TIkr)E : Lt :Tlti

T

Uy,

with 75 := k1 + - -+ 4+ k.. Notice, if we choose r, = N,, we get
1 1
S PST =2 VILILLTLF V2 = 5,
_1 _1
TEQT =%, *VILTQLVY ? =¥y,

and end up with a balanced realization, that has truncated all uncontrollable and unobservable
states, i.e. a minimal realization.

3.3. Singular Perturbation Balanced Truncation

A property of Balanced Truncation, as we have introduced it now, is that
g, Grle) = g, G10)

This is easy to see since D, = D. With a bit more care it is possible to get G,(0) = G(0)
instead, meaning that the stationary property is preserved.
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Corollary 3.1

Suppose we are in the position of Theorem 3.2. The system of the truncated states
(Agg, Ba, Cy, D) is also balanced and asymptotically stable.

Proof: In the same way as for Ay;. [ |

Let us partition the balanced system, which has already truncated all the uncontrollable
and observable states, as follows

&\ _ (A A 13 B
<é§> N <Ai AZ) <g§) * <B;> U (3.25)
y=(C1 ) <§;) + Du.

We know the system is in stationary state if and only if there is no change of §; and &
after some time or equivalently, when § = 0 and § = 0. Thus replacing &2 by its static
relationship will preserve the stationary property of G(s). Setting & = 0 gives

0= A9&1 + Agaba + Bou & & = —Ay) (Aai&r + Bou)

and is well defined by Corollary 3.1. Inserting this expression of & in (3.25) results in a
reduced system

& = A&y + B
y=Cp&1 + Dyu

with

Ap = Ay — AppAs) Aoy, B, = By — A12A5) Bo,
C, = Cy — CoAyt Asy, D, =D — CoAy} Bo. (3.26)

This variation of Balanced Truncation, preserving the stationary property, is called
Singular Perturbation Balanced Truncation [10] and leaves Theorem 3.2 unchanged. For
a better distinction we refer in the following to our first variant as Standard Balanced
Truncation.

In contrary to Standard Balanced Truncation, where it is sufficient to calculate the terms
in (3.24), Singular Perturbation Balanced Truncation requires to calculate all the terms
of the balanced realization. Since Balanced Truncation is independent of the state-space
representation of the original system, we just need to choose r, = N, in the forgone
section.

Remark: Generally, neither of both Balanced Truncation methods preserve the physically
meaning of the state.
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3.4. Balanced Truncation of Positive Systems

Let us turn our focus back to positive systems. In general Balanced Truncation applied
to positive systems does not result in positive truncated systems, as we can see in the
following example.

Example 3.4 (Nonpositive Reduced System)
Consider the following positive system

-3 1 0 3
A=10 -4 1], B:=|0], C:=(5 4 1).
0 0 -3 2

By reduction to second order we obtain the system

—2.57  0.34 4.13
Ag = (_0.34 _2'82), By = <0027), Cy = (413 —0.27),

which has poles in —2.70 & 0.31é. According to Lemma 1.2, this cannot be a positive
system.

Remark: We already know a minimal representation of a positive system does not have
to have the same amount of states as its positive realization. In turn, neglecting the states,
that correspond to the zero matrices in P, and @, can have the effect of destroying the
positive realization, though the procedure does not cause an error in the transfer function.

The reason why we could not consider the easier case of n = 2 in Example 3.4 is a
consequence of the next theorem.

Theorem 3.3 (Positive First Order Balanced Truncation)

Let (A1, B1,C1, Dy) be the reduced first order system attained by Standard Balanced
Truncation of a positive system (A, B,C, D).Then (A1, B1,C1, D1) is always positive
and asymptotically stable with first order positive realization (Ay, |Bi|,|C1|, D1).

Proof: Let P and @ be the Gramians to a positive system (A, B,C, D), explicitly given by
the equations (3.2) and (3.4).
By implication (1.3) we know

eM>0VE>0 = eMB,Ce >0Vt > 0.

Hence P and @ are nonnegative matrices and we conclude PQ = 0. In (3.9) we noticed the
Hankel Singular Values of a system are eigenvalues of PQ and the columns of T' given by
Theorem 3.1 correspond to its eigenvectors.

We first consider the case if o1 is a unique Hankel Singular Value. By Theorem 1.5 there
exists a nonnegative right-eigenvector v; to the largest eigenvalue oy, i.e.

PQuy = oyvy  with T:(vl, mn).
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wy
If we denote the rows of 7! by w!, ie. T7! = : and recall that
wyy
b)) b
Qy=T7QT = 0 & Qr=T1"T 0
b= = 8 = N )
0 0

we conclude
0= Qv =wio1 = w20,

and w; is a nonnegative left-eigenvector of PQ to the eigenvalue o7.

Hence by Theorem 3.2,
Ay =wlAv, <0, Bi=wliB>0, C,=Cv; 20, D =D2>0.

In case of a o1 with multiplicity k1 > 1, we have seen in Example 3.3, that A; = 0 is possible.
On the other hand, since the k;-th order reduced system, which belongs to all o1, is according
to Theorem 3.2 asymptotically stable, there must exist at least one asymptotically stable
first approximation. We want to show now, that in this case positivity is still preserved.

We start with the case, that PQ is irreducible. Since o(PQ) contains a multiple o7, it
follows by Theorem 1.6, that tr(PQ) = 0. This is obviously a contradiction, which is why
PQ can only be reducible.

If PQ is reducible, then it follows by Lemma 1.5, that there exist k; linear independent
nonnegative eigenvectors to the eigenvalue o7. Hence, as in the case of a unique o; we can
obtain an asymptotically stable first order approximation with By, C1, D1 2 0.

In all the cases Theorem 1.3 concludes the proof. |

Remark: Theorem 3.3 is in general not transferable to Singular Perturbation Balanced
Truncation. For example, if we truncate the system in Example 3.4 to first order, then
we result in a system (Aj, By, C1, D) = (—2.61,4.16,4.16,0.03).

Observe, a reduced order system resulting of Balanced Truncation is independent of
the state-space representation of the original system. Hence, Theorem 3.3 gives a new
way of testing, whether it is possible that a system possess a positive realization or not.

Corollary 3.2

If for the reduced first order system Gi(s) = M of a transfer function G(s)

I
(s —a1)

does not hold M = 0, then G(s) is not a positive system.

Remark: By reducing the truncated system of Example 3.4 to first order, it is clear that
this can only be a necessary condition.
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3.4.1. Balanced Truncation with respect to Lyapunov Inequalities

A first order approximation is not always sufficient, of course. In Chapter 6 we will give
an extension of Theorem 3.3 to higher orders in case of a SISO-system.

Before doing so we want to investigate some methods that have already dealt with higher
order approximations. Until today, there are to the author’s knowledge three methods
[7], [14] and |22] concerning model order reduction of positive systems. The method in
[22] is based on Balanced Truncation with respect to Lyapunov Inequalities and will be
discussed in this section.

The idea is, instead of considering the Lyapunov equations (3.1) and (3.3), to regard

AP+ PAT + BBT <,
ATQ+QA+CTCc <o, (3.27)

with P,@Q > 0.

In the same way as for the Gramians we can apply Theorem 3.1 to any solution pair
(P, Q) satisfying the Lyapunov Inequalities (3.27) and obtain a balanced system

(Ab7 By, Cy, Db) = (T_lAT7 T_lB7 CT, D)
with

Py=T'PT " = diag (£,%,,0,0) and Q,=T"QT = diag (£,0,%,,0), (3.28)

fulfilling
APy + PAL + BBl <0,
ALQy + QuAy + CL Cy <0, (3.29)
and
Y = diag (Ulszl, . ,O'NIkN) for some o1 > 09 > -+ > oy > 0.
In this case we call {o1,...,0nx} the Generalized Hankel Singular Values, because for the

truncation they will play the same role as the Hankel Singular Values.

In fact, it is readily seen, that the proof in Theorem 3.2 does not change for Lyapunov

Inequalities and thus performing truncation on (Ay, By, Cy, Dy) with respect to the Generalized

Hankel Singular Values leaves the statements of Theorem 3.2 and Corollary 3.1 almost
completely invariant: the difference is, that P and ¢ do not necessarily represent the
controllable and observable subspaces any more and hence we cannot assume the minimality
of the truncated system. Since this is obviously a generalization of Balanced Truncation,
we refer to it as Generalized Balanced Truncation.
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By the consideration of Lyapunov Inequalities we gain a degree of freedom that allows
us to use P and @ to shape a certain balancing transformation matrix 7. In order to
guarantee a positive truncated system, the first idea would be to get a matrix 7" such
that

By=T"'B>0 and C,=CT >0.

The easiest way to fulfil these requirements is to attain a matrix 77 > 0 with 7! > 0.
This brings us to the definition of a certain class of matrices, called Monomial Matrices

12).

Definition 3.1 (Monomial Matriz)

Let A be a matrix that can be expressed by the matrix product A = wD, where D
is diagonal and invertible and m a permutation matrix. The matrix A is then called

monomial or generalized permutation matriz.

In the following Lemma we will see why this class of matrices is so important for our
idea.

Lemma 3.4

If A is a nonnegative matrix, then its inverse A~! is nonnegative if and only if A is

monomial.[2]

Proof: »Sufficiency: Clear by A=! = D~ 1r.
»Necessity: If A = (al, cee an) and A~! = (sl, cee sn)T7 then it has to hold

lifi=y
sTaj=4 """
0ifi#£j
Since a;, $; = 0 Vi, it must hold by linear independence of {s;,i =1,...,n}, that a; contains
at least (n — 1) zeros. Consequently A is a monomial matrix. |

Hence our problem reduces to find P and @ fulfilling (3.27), such that the eigenvectors
of PQ can be represented by a permutation matrix. This is the case if and only if PQ
is diagonal. Fortunately we know by Theorem 1.2 (v), if A is an asymptotically stable
-M-matrix, there exist diagonal matrices P, () > 0 such that

AP+ PAT <0 & 3N, >0: AP+ PAT < -\ 1,
ATQ+QA<0 < 3IN>0:ATQ+QA< -\

- P| B3 ~ 2
Scaling P and @ to P := H)\Hz and Q := QH)\% provides us with feasible diagonal
P q

solutions to the Lyapunov Inequalities in (3.27).
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Obviously PQ_ls diagonal and applying Theorem 3.1 leads then to a monomial transformation

matrix 7' = 7T with diagonal T' > 0 and permutation matrix 7. As for normal Balanced
Truncation we get a balanced system (A, By, Cp, Dy) as defined in (3.7) with

_ I (T
TleQbT:< 0) = T:< I)

and because of the permutation we can assume w.l.o.g. that the Generalized Hankel
Singular Values are in descending order.

Multiplying a —Z-matrix with a positive diagonal matrix preserves the sign of each matrix
element, thus A := T'AT is —Z-matrix. It is straightforward to see, that this also holds
for Ay = 77 Ar and consequently (Ay, By, Cy, Dp) is a positive system by Theorem 1.3.
Standard Truncation of such a system yields an approximation (4;, B,,Cy, D,), which
is again positive, because B;., C,, D, =2 0 and A, is a —M-matrix as the principle minor
of a —M-matrix.

The same conclusions can be done for the Singular Perturbation Truncation. Since
As1,A21 = 0 and —A2_21 = 0 by Theorem 1.2 (iv), we see immediately B,,C,.D, = 0
as defined in (3.26). The —M-property of A, can be seen by noticing, that

A=Ay — A12A§21A21

is the Schur complement of a —M-matrix: it is well-known [30] that

An A\ _ A —A AL A, <0 (3.30)
Agp Asn) \—ApAn Al AL+ A A AT ARAY ) T '

and thus —A-! > 0. Since —A12A§21A21 = 0 it follows that A, is a —Z-matrix and
therefore by Theorem 1.2 (iv), A, must be a nonsingular —M-matrix.
For the reduced system we can summarize the following result.

Theorem 3.4

Let (Ap, By, Cy, Dy) be the balanced realization of an asymptotically stable positive
system G(s) with respect to the Lyapunov Inequalities given in (3.29) and diagonal
solutions Py, Qp > 0 as in (3.28). Then regardless of whether applying Standard
Balanced Truncation or Singular Perturbation Balanced Truncation the reduced-order
system (A, By, Cy, D,) is again asymptotically stable and positive.

For the error-bound it holds the same as in Theorem 3.2.

Note, for the computation of the reduced system, it is not necessary to compute the
balanced realization itself. Let us assume without loss of generality 7' =77 and define

A:=7TAr, B:=x'B, C:=Cr, D:=D.



3.4. BALANCED TRUNCATION OF POSITIVE SYSTEMS 43

By splitting 71, A, B and C according to the truncation candidates into

- (T (A Ap ~ (B N (A A
Tl( T12>’A<f_121 14_122)’ B<Bz>’ C=(C @),

we can rewrite the resulting balanced system as

() < (Tduln Todati) (6 (Tih),
&2 TR ATy Tt AwTia) \& To'By)
y= (T CoTho) (g) + Du.
We observe, thg truPcaEed system (Tﬁlf_lnTn, TﬂlBl, CiTh1, D) results by the transformation
T = Tﬁlg of (A11, By, C1, D), which is a positive system itself. Thus, for the computation
of the reduced model, it is sufficient to determine the permutation matrix 7, which can
e.g. be done by calculating the Singular Value Decomposition of PQ with

PQ=mn <21 O) .

It can easily been seen, that the same holds in case of appyling Singular Perturbation
Balanced Truncation.

Observe, since the reduced system (A1, By, C1, D) is just a permutation of the original
system, the Gramians are preserved up to a permutation. The advantage is, that we are
keeping the physical meaning of each state. On the other hand we are basically left with
the same problems as for an unbalanced system in the sense of Lyapunov Equalities.
Thus we have to expect large Generalized Hankel Singular Values and a big truncation
error. In fact, during numerical experiments, especially for SISO-systems, it turned out,
that this method has poor approximation properties compared to the first order reduction
via Balanced Truncation with respect to Lyapunov equalities.

Example 3.5 (Large Truncation Error)
Let us consider for instance the system

A= —diag (1,1,1), B"=C=(1 1 1)

with transfer function

3
G(s) = Py

By application of Balanced Truncation we obtain, according to Theorem 3.3, a minimal
first order positive realization. In contrast, Generalized Balanced Truncation leads to

1

Gils) = s+1’

which gives an absolute error |G — G|l = 2.
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In order to minimize the error of Generalized Balanced Truncation, it is essential to
minimize the Generalized Hankel Singular Values, i.e. to attain many small values in
PQ@Q. A diagonal solution, as given in the proof to Theorem 1.2, is therefore not advisable.
Instead Semidefinite Programming, a subfield of convex optimization, can be used to solve
the Lyapunov inequalities. For the reason, that minimization of all eigenvalues is clearly
not a convex problem, i.e. cannot be expressed as a convex function, an alternative is to
minimize the trace and use a two step procedure as proposed in [22]. This procedure is
based on the following algorithm.

Algorithm 3.1 (Minimization of the Generalized Hankel Singular Values)

(i) For j =0 let Py be the solution to (3.27) s.t. mintr(P).
(ii) For any j and fixed Pj_1, solve (3.27) for Q; s.t. mintr(P;_1Q).

(iii) For fixed Q; find Pj s.t. oj = mintr(P;_1Q) and (3.27).

e i} < TOL,, for a prescribed tolerance TOL,,, then we have obtained
Qj
optimal P = Pj and @ = Q).

Otherwise set j := j + 1 and continue with (ii).

In the first step we apply Algorithm 3.1 to the whole system. Subsequently, we make a
decision about the truncation candidates. The second step serves the purpose of getting
a sharper error bound and does the same as in the first step, but restricted to those
values in P and @, that correspond to the truncation candidates.

Remark: The minimization of the trace does not guarantee, that we choose the best
truncation candidates. Still, empirically it suffices in most cases.



4. Model Reduction of Positive Systems
based on the Bounded Real Lemma

Beside the Hankel Singular Values in case of Balanced Truncation, there exists another
well-known condition for a bound of the H,, truncation error, given by the so-called
Bounded Real Lemma [30]. In this chapter we discuss two iterative methods, developed
in |7] and 14|, which are based on this lemma.

Theorem 4.1 (Bounded Real Lemma)

Let (A, B,C, D) be a state-space representation of G(s). Then G(s) is asymptotically
stable and satisfies ||G||s < 7 if and only if there exists a matrix P > 0, such that

ATp+pPA PB CT
BTP —~I DT | <o. (4.1)
C D —I

Let

G:{Mﬂzmm@+&mm
"\ () = Cran(t) + Da(t)

be a reduced-order approximation of (0.1). By denoting, & = (a:T a:g)T and e = y — yy,

we can represent the error system (G(s) — G,(s)) as
. (4.2)

with
- A 0 B - -
Az(o Ar>7 B:<3r>, C:(C’ —CT) and D=D-—D,.

Then the Hso-error of the approximation can be described as

HG - GrHoo = ||Ge||007

45
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and by Theorem 4.1 it follows, that ||Ge|lso < v if and only if there exists a matrix P,
such that
ATp+PA PB CT
Il := BTP -1 DT | <o. (4.3)
C D -1

In contrary to just finding P, which could be solved by semidefinite programming, in this
situation P is coupled by its product with A and B and consequently with A, and B,,
which are variables themselves. Our aim is now to resolve this coupling by introducing
a new matrix variable with flexible structure.

4.1. lterative Linear Matrix Approach |

Let us collect the system matrices of the reduced system in a matrix

A, B,
o (0 8)
and define

A:<§8» B:(?» Ci=(C 0), D:=D,

Fe(?S),Aﬁ—(Sé» Ne—@),zp—m-Jy, (4.4)

Then we can express the error system G, in terms of ¥, as follows
A=A+ F4N, B=B+F4N, C=C+HGM, D=D+H4N. (45)
Observe, since IT < 0 it holds that II"! < 0 and hence

pPF\"  [PF
o | o'f o |<o
H H
Thus for any matrix S > 0, there must exist an a > 0 such that

PR\ " PR
—aS—| o | It o0 | <o (4.6)

H H

By Schur complement and its application to the inverse of a negative definite matrix, as
given in (3.30), we get
ATP+PA PB CT PF
BTPp —~I DT 0
. . _ | <0 with X :=ab.
¢ D I H W “
FTP 0o H" -X

1L, :=
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Consequently the existence of the matrices P, X > 0, such that II, < 0, is equivalent to
the Bounded Real Lemma. We want to use this fact to construct an equivalent expression
in terms of the matrices given in (4.4). For this purpose we define

1
0
0

O~ O

T :=

~N O O O
O N O O

-U

where U := 4.M and V := %.N. T is obviously invertible because of its full row rank,
which is why we can define II, by

I, .= TTIL.T < 0.
Expanding II, yields

ATp+ PA-UTXU PF+UTX pPB-UTXxV (T

. FTP 4+ XU -X XV HT “0
P BTp-vTXU vTx —VTXV —~1I DT
C H D —I

and we observe, that P is completely decoupled from ¢,.. Instead we have constructed a
new coupling with X, which is however much more flexible, since X is arbitrary up to a
scaling factor. Let us summarize this result in the following Lemma.

Lemma 4.1

Let G¢ be the error system given in (4.2) and expressed in terms of (4.4). Then G,
is asymptotically stable and satisfies ||Gelloo < v if and only if there exist matrices
P, X >0 such that 1I,, < 0.

Observe, so far all the results hold for any reduced-order system. If we could fixate U
and V', our problem could be easily solved by convex optimization. In the following we
want to decouple U and V from ¥, and treat them as variables. At the same time we
want to incorporate the required positivity constraints.

Let L be a matrix of the same size and partitioning as ¢,., such that

(L1 Lo
L= <L3 L4> cP (4.7)

i.e. L; is a nonsingular —M-matrix and Lo, L3, Ly = 0. By assuming

4. =X"'I. & L=X9 (4.8)
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with diagonal X > 0, we can rewrite II, as

ATp+ PA PF+MTLT PB (CT UTXUu o0 UTXV 0

FTP+ LM - X LN HT 0 0 0 0
BTP NTIT a1 D7 | T |vixu o0 vixy o] <0 @9
C H D —~I 0 0 0 0

Expressing the second term of (4.9) with the help of

:=(M 0 N), Vv:=(U 0 V),

leads to

U'xXu o UTXV
- 0 0 0 = 0Ty x4 ®
VIXu o VTXV
= oT9TXG.d + (V- 4,0)"X (V- 4,0)
=—0TLe — T LTU + 0T X, (4.10)

Consequently (4.9) is equivalent to

I, PF+MTLT 11, CT

FTP+ LM -X LN HT

I, = - ! <0 (4.11)
' HIEB NT_LT Hg33 DT
C H D —~I

with

I, = ATP+ PA-UTLM + MTL"U + UTXU

I, = PB— ML'V —UTLN + UTXV

M, ;= VLN - N'LTV + VI XV — 4T
in case that (A,, B,,Cy, D,) is a positive system. It is readily seen, that we can generalize
this result to arbitrary matrices U and V as follows. If we define ¥ := (U 0 V), we
can write (4.10) as

—0T9TXq.0 < —0T9TX9.0 + (V- 9.0)T X (V- 9,0)
=—0TLe —TLTU + U7X, (4.12)

Thus, if
I0,,, PF+MTLT T11,, CT
FTP4+ LM -X LN HT
ﬁgls NTLT I,

H D -+l

HP(U,V) =
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where
il = ATP+ PA— OTLN + NTLT0 + 0T X0
M, := PB— MLV —-UTLN + UTXV
fl,, = —VTLN — NTLTV + VT XV — A1

and

G, =X'L (4.13)

it follows by Lemma 4.1, that |G|l < v with a positive solution (4,, By, Cy, D,).
Let us summarize this result in the following theorem.

Theorem 4.2

Ge is asymptotically stable and satisfies ||Gelcc < v with a positive system
(A, B,,C,, D,) if and only if there exists a P > 0, matrices U and V, a diagonal
X >0 and L € P such that I1,(U,V) < 0. Then we can write %, = X 'L.

As mentioned before, if we already knew U and V, solving IL,(U, V) < 0 for P, X and
L is a convex problem. Thus our problem reduces to how to choose them properly.

4.2. Algorithm: Iterative Linear Matrix Approach |

Now, we want to propose a method how to find U and V iteratively. For this purpose we
notice first, if X, L and P are fix, there must exist an a € R for every U and V , such
that

1
o 0
IL,(U,V) < a s (4.14)
0
By (4.10) and (4.12) it follows, that « attains its minimum for
U=X"'LM and V=X 1LN. (4.15)

On the other hand it is clear, that for fixed U and V, we can always attain solutions
P. X, L and «, satisfying (4.14), by convex optimization.

Consequently, if we start with U = Uy and V = V, and find solutions 15 X and L
fulfilling (4.14) for the smallest possible a, we can decrease o monotonically by updating
U and V as in (4.15). When « reaches a nonnegative level we have found a positive
approximation (A,, By, Cy, D,) accordingly to Theorem 4.2. The case that « converges
to a positive value will be treated later.

A good way of choosing Uy and Vp can be found by considering the expression of the
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error system matrices in (4.5) and using (4.3). If we cannot find solutions Q, Vo, Up
fulfilling
(A+ FU)"Q+ QA+ FUy) Q(B+FVy) (C+ HUp)"
p (U, Vo) := (B+ FVp)'@Q el (D + HVp)" | <0,
C+ HUj D+ HVy —1

then, according to Theorem 4.1, there does not exist any solution satisfying this error
bound. As before, finding these solutions is not a convex problem because of the products
QFUO and QFVO. We can overcome this obstacle by defining Wy := UOQ and considering
its dual problem, i.e. we apply the Bounded Real Lemma to G, which leaves the error
bound unchanged. Thus we get

AQ + FWy + QAT + FTw{ QCT + Wl HT B+ FVj
CQ+ HW, = D+HV,| <0 (4.16)
(B+ FVvp)T (D + HVp)T —~1

and finding the solutions Q, Vo and Wy is a convex problem.

In this case the connection between Uy, Vp and ¥, is not important to us, why solving
for Wy is feasible. Especially because of our positivity constraints on %, we cannot do
the same for achieving a positive reduced-order system.

We have already seen, if there exist a diagonal X > 0, P >0 and ¢*, such that II,, <0,
then we conclude by (4.12), for sufficiently small

(T — @) X (Vg — G ®)|2 with To:= (Uy 0 Vp)

it holds I1,(Up, Vo) < 0, with L = X¥*. Since X can be very large, as seen in (4.6), we
need a way of minimizing [|[Uy — 4*®||2. Such a method can be concluded from the next
theorem.

Theorem 4.3 (Initial Optimization)

Let € > 0 be sufficiently small and ® and Vg as defined before, then the following
statements are equivalent:

' . ’ eljoco — G 2 > €.
(i) There exists a solution ¥*, such that ||Ge|lco < v and ||¥g — G*P||2 < €

(ﬁ) ||\I/0(I)L||2 < e and Hp(Uo,%) < 0.

where ® | denotes a matrix consisting of a basis of the kernel of ®, i.e. PP = 0.

Proof: (i) = (it) : @ as defined before is explicitly given as
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and thus ® | has the form

I 00
00 0
o, =0 1 0
00 I
00 0

Since, ®T®, = I, it follows that ||® [l = 1 and by assumption that
[Wo®Lllz = [[WoPL —F PP, [z < [|Wo — G P[2f|P L2 <€

Let @ be a solution that satisfies I1p(4*M,%9*N) < 0. Then I1p(Up, Vp), with the same Q,
can be expressed as

Up(Uy, Vo) =11p(9*M,9*N) +E,
where
(Uo —%*M)TFTQ + QF (Uy — 4*M) F(Vo—%*N) (Up—%*M)TH”

- (Vo —9*N)TFT 0 (o—-o'N)THT
H(Uy — 9* M) H(Vy —9*N) 0

[1]
|

Consequently, if ¥g—4*® = (UO —~9*M 0 Vy— g*]\_f) is sufficiently small, it follows by
the negative definiteness of IIp(4*M,%4*N), that I1p(Uy, Vp) < 0 with the solution 0.

(ii) = (i) : By choosing ¥* = ¥®T and noticing, that ®®T = I, we can write

(o —9®) (8T @.) = (0 Wod,).

It is obvious, that (<I>T (IU_) is an invertible matrix with <§){> (<I>T (I)J_) =1.

Consequently,

Uy — 4= (0 Wb, ) (T &)

and by assumption
* ~1
[T =G @l =[| (0 Do) [2f| (2T @1) [l2 <e
Showing that ||G.||c < 7 follows as before by IIp(Uy, Vp) < 0 and
Hp(g*M,g*N) = HP(U(),VE)) —=2<0

for a sufficiently small e. |

Observe, if we can find Uy and Vp, such that |¥®, |2 = 0 with IIp(Up, Vp) < 0, then
I1,(Up, Vo) < 0. Further, for fixed @, it is a convex problem to solve IIp(Uy, Vp) < 0,
such that ¥* = U® | represents a positive system. Thus, we can already include our
positivity constraints into the optimization of the initial values.

Let us summarize the algorithm as we have developed it so far. The condition [|[To® |2 =
a(Po® ) < e will be expressed with help of its Schur complement equivalence.
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Algorithm 4.1 (Initial Value Optimization)

(i) Solve the initial problem (4.16) to get Uy and Vy and set j = 0.
(i) For any j and fixed ¥; = (U; 0 V;) find a solution Q; to I1p(U;,V;) < 0.

(iii) For fixed Qj find an optimized U} = (U;‘ 0 V]*) and €] such that

HP(Ujavj) <0

—e; I (U,;0))7
e;f = min €; s.t. € (2;21) <0
;=[U; 0 V] VP —I
U0, €P

. ‘5; - 6;—1’ . . .
(iv) If e < TOLjpit or j = M AXjter, where T'O Lyt s a prescribed tolerance

€*

J

and M AXer a maximal number of iterations, then optimal initial matrices

Uy = U; and Vi = V}* are obtained.

Otherwise set W11 := V%, j:=j+ 1 and go to step (ii).

Algorithm 4.2 (Iterative LMI Approach)

(i) Set j =0 and U; := Uj and Vj := V| obtained by Algorithm 4.1

(ii) For any j and fixed U; and V; find optimal P* >0, diagonal X7 >0, LT € P
and o, such that

a; = min as.t. IL,(U;,V;) < a;j I
P;,X;,L;

(iii) If o <0, then an optimal 4 = (X;)_lL; is found.
’0‘; - 0‘;—1‘

If <TOL, or j = M AXjter, for a prescribed tolerance T'OL, and

o
J
an maximal number of iterations M AX;ir, then o has probably converged to
a positive value and we stop without a solution.

Otherwise, set j := j + 1,

Ujyr:= (X;)7'L;M, Vi = (X)) 'LiN

and continue with step (ii).
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Now we want to treat the case, when we cannot find an o < 0. For the initial value
determination we already considered the dual problem G?. By defining Uy := F%, and
Vy := HY, we can write

AT = AT 4 MTUT, BT .= BT+ NTUT, ¢ =0T + MTVF, DT .= DT + NV,

Then analogously to G., we can define

where
My, = AQ + QAT —UL"FT + FLUT + UZUT
f[d12 = QMT =+ FL
My, :=QCT — FLvT —uL™Aa* +vzv™
My, = VL THT —HLVT + VZVT — 41
Theorem 4.4

GT is asymptotically stable and satisfies ||QBT||OO < v with a positive system
(A, By, Cy, D,) if and only if there exists a () > 0, matrices U and V, a diagonal
Z >0 and L € P such that I14(U,V) < 0. Then we can write %, = LZ .

In the same way as for the primal algorithm, we can obtain initial matrices Uy and Vj,
by applying the Bounded Real Lemma to G.. The Dual Iterative LMI Approach can
then be given as follows.
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Algorithm 4.3 (Dual Iterative LMI Approach)

i) Set j =0 and U; := Uy and V; := Vj.
J J

(ii) For any j and fixed U; and Vj find optimal Q* > 0, diagonal Z;>0,LreP
and B;, such that

B = min Bs.t 14U}, V) < Bj I
Qj,Z5,L;

(iii) If 37 <0, then an optimal 4 = L%(Z7)~".

|87 = Bj Al

155
J
a maximal number of iterations M AX,, then 5} is probably converged to a
positive value or converges so slow, that we stop without a solution.

(iv) If < TOLg or j = MAXjer, for a prescribed tolerance TOLg and

(v) Otherwise, set j :=j+ 1,
Ujer = FL(Z)7), Vi = HL}(Z5) !

and continue with step (ii).

The motivation behind the additional consideration of the dual approach is, that an
optimal solution in primal direction does not imply the optimality in dual direction and
vice versa. Consequently if o converges to a positive value with 4 := %,., we can define
Uy = F9* and Vo = HY* to use them as the initial matrices in the dual approach.
Conversely, if 8 converges to a positive value with @f = 9., we can to the same by
defining Uy = @8 M and Vo = 4PN and applying the primal approach. This procedure
can be repeated until either o and 3 converge or one of them becomes nonnegative.

4.3. lterative Linear Matrix Approach lI

In this section we want to have a look at another approach to decouple A, and B, from
13, as presented in |7]. It is readily seen, since the Schur complement of negative definite
matrix is also negative definite, that the existence of P > 0 such that IT < 0 holds if and
only if there exists P > 0, such that

AT D DA AT A D1 AT 1
@::(A P+PA+CTC PB+C D><0' (4.17)

BTP+DTC —~*1+DTD
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P and P fulfil the relation P = vP. Further, if (4.17) is valid, then there must exist a
sufficiently small € > 0, such that

ATP+ PA+CTC + cATPA PB+CTD —0 (4.18)
BTpP 4+ DTC —21+DTD + eBTPB ' '
In order to apply Schur complement equivalence to (4.18), we notice
o_ I eB T —eLp 0 I eB -
I+eA 0 0 —'P)J\I+eA 0)
(“2 1P ETE 6TD
- DTC —21+DTD
which leads to a decoupling of A and B with P as follows
—2¢ 1P+ CTC CTh I T+ AT
D¢ —2I1+DTD BT 0 “0
I B —epP! 0 '
I+€A 0 0 —ep1
If we define then
zle = €A, BT =eB,, X:= P Xi=eP!
with - -
X11 X12> > <X11 X12>
X = , X=1[75 ~ ,
<X1T2 X XL Xoo
it follows by another Schur complement equivalence for C and b, that
—2X11 —2X19 0 I 0 IT+eAT 0 cr
—2X{, —2Xo 0 0 I 0 I+AT  —OTf
0 0 —2I eBT B,T 0 0 DT — D,F:F
I 0 eB  —Xin —Xio 0 0 0
O, = ~ ~ ~ < 0.
c 0 I B,  —X{, —Xo 0 0 0
I+eA 0 0 0 0 —X11 —X19 0
0 1+ A, 0 0 0 —X{[Q —Xo99 0
C -C., D-D, 0 0 0 0 I
Theorem 4.5

Let (A,B,C, D) be an asymptotically stable positive system with transfer function

G(s). Then a reduced-order asymptotically stable positive system G, with ||Ge|loo < 7y

exists if and only if we can find € > 0, X, X > 0, a —M-matrix A, and B,,C,, D, = 0
such that ©, < 0 and XX = 1.

Observe, in O, all the variables are decoupled. Hence without the requirement XX = I,
we would be left with a convex problem.
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4.4. Algorithm: Iterative Linear Matrix Approach I

In the following we will see how to treat this coupling of X and X with the help of the
so-call Convex Cone Linearization Algorithm (CCL) |9]. The basic idea of this algorithm
is to minimize tr(X X) with respect to positive definite matrices X, X € R™ " fulfilling

()I( )I() > 0. (4.19)

If (4.19) holds, then by considering its Schur complement, we conclude

N[

X-X>0 e X2XX2-1>0, (4.20)

and thus

tr(XX) =tr(X

N|=

XX

N

) > n. (4.21)

It i18 ob_vilous, that equality can be achieved if XX = I, but by considering the diagonalization
X2XX2 =TTDT with D > 0, it follows by (4.20) and (4.21) that

D—I1>0and tr(XX —1)=tr(D—1)>0.

Hence, tr(XX) = n if and only if XX = I and we can reduce our problem of finding
XX =TI to the minimization of tr(X X) with respect to (4.19).

Since minimizing tr(X X) is not a convex problem either, it will be solved by considering
its linearisation. At a given, feasible point (Xo, Xo) a linear approximation can be given
as

tr(XX) = c+tr(XXo+ XXo), ceER

From Theorem 3.1 we know, that the product of two matrices P, Q > 0 has exclusively
nonnegative eigenvalues and hence tr(PQ) > 0. Applying this to XXy and X X leads
to

tr(X Xo + X Xg) = tr(X Xo) + tr(X Xo) > 0. (4.22)
Thus, the smaller tr(X Xo+ X Xo) the smaller tr(X X). The idea of the CCL-algorithm is

to minimize tr(X X + X Xo), which a convex problem, because X and X are decoupled.
The whole CCL-algorithm can be described as follows.
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Algorithm 4.4 (Convexr Cone Linear Approximation Algorithm)

(i) Let (Xo, Xo) be a feasible solution of (4.19) and set j = 0.
(ii) For any j and fixed (X, X;) find an optimal solution (X*, X*) to

P+ min tr(XX; + X X;) s.t. (4.19).
(X, X)

(iii) If a stopping criterion is fulfilled, then an optimal (X*, X*) is found.
Otherwise set j := j + 1,

Xj+1 = )(*7 Xj+1 = X*

and go to step (ii).

By defining ¢; := tr(X;+1X; + X;+1X;) and by the optimality of of ¢; with respect to
Py, it follows immediately that
tj S tT(Xij_l + Xij_l) = tj_l

Thus {¢;} is a monotonically decreasing sequence, which converges according to (4.22).

Now we are ready to give the whole algorithm in order to fulfil the requirements of
Theorem 4.5.
Algorithm 4.5 (CCL-based LMI Approach)

(i) For given reduced order v and error bound ~, let (Xo, Xo) be a feasible solution
s.t. (4.19) and ©. < 0. If the solutions exists set j = 0, otherwise stop without
a solution.

ii) For any j and fixed (X;, X;) find an optimal solution (X*, X*, A,, B,,C,, D, €
Jr g

t intr(XX; + XX;) s.t (4.19)
.= minir 1 i) S.t.
J X, X I J ©.<0

(iii) Set A, = ¢ 1A, B, := e’lgT,]S := eX™ and plug them into ©. If © < 0, then
a reduced order system, satisfying the prescribed error bound, is found.

ti —1;_

If ]ti]l > TOLs or j < MAXer, for a prescribed tolerance TOLgs and the
J

maximal number of iterations M AXter, set j :=j+1,

Xj =X Xjp:=X"

and go to step (ii). Otherwise stop without a solution.
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Remark: The CCL-algorithm also works without the constraint in (4.19), which is why it
could be used as an alternative to minimize ¢r(PQ) in order to minimize the Generalized
Hankel Singular Values in Subsection 3.4.1. From the experience of numerical examples
this does not add any advantage. In contrary, by using Algorithm 3.1 instead of the
CCL-algorithm, the convergence of the algorithm discussed in this section is much slower.

In Chapter 7 we will see, even though both methods in this chapter are based on the
Bounded Real Lemma, the method of Section 4.1 gives significantly better results than
the just presented one. Still, we should notice, that both methods are based on LMIs,
which restricts its application to low dimensional systems due to the high numerical effort
of performing the required optimizations. A conventional solver e.g. SeDuMi possesses
a complexity of O(n?m?® + m3?), where n stands for the number of decision variables
and m for the number of rows in the LMI [20].



5. Krylov Subspace Methods

In the previous chapter we have encountered the problem, that the performance of model
order reduction methods can depend strongly on the dimension of the system we would
like to reduce. However, the occurrence of systems consisting of several thousand states,
called large-scale systems, is not unusual. Applying LMI approaches as well as Balanced
Truncation to such systems requires far more computational power than we have at our
disposal today. A way of getting around this problem is given by the so-called Krylov
subspace methods [4][12], which will be covered in this chapter.

The problem of large scale systems originates from the context of solving a system of
linear equations

Ar =b,A e R beR"

with "very large" dimension n. Since direct solving methods such as LU- and
QR-decomposition et al. possess a complexity of O(n?), those methods can easily reach
the limit of computational power. Overcoming this problem in case of a system with
random A is probably impossible. However, if A is sparse, i.e. A contains "sufficiently
many" zeros, it is feasible to approximate the solution.

For this purpose iterative methods with complexity O(n?) have been developed .[27] A
particular class within those iterative methods are the Krylov subspace methods [27].
In the following we will not discuss the solvers itself, but we are interested in their
fundamental concepts, which will be used for developing a model order reduction method.

5.1. Arnoldi Iteration

The basic idea of all Krylov subspace methods is the (orthogonal) projection of A onto
the Krylov subspace K,,(A,b), which we define now.

Definition 5.1 (Krylov subspace)

For A € R™*" b e R" the Krylov subspace of dimension m is defined as

Kum(A,b) := span{b, Ab, ..., A™ b}

The orthogonal projection of A onto ICp,(A,b) should be interpreted by the following
linear operator KCp, (A, b) = K, (A, b): for given x € K,,,(A,b) apply A to it and perform
an orthogonal projection of Az back into Ky, (A4, b).

99



60 5.1. ARNOLDI ITERATION

The orthogonal projector of R™ onto K,,(A,b) can be described with the help of a
modified Gram-Schmidt iteration applied to K,,(A4,b), known as the Arnoldi iteration
algorithm.

Given A € R™" b e R™\ {0} we can set similar to Gram-Schmidt

b o
wp 1= v =
T 5 Jwollz
w1
wy = Avy — (vy, Avi)oy, Vg 1= Tonls
m W
Wy = Avy, — Zj:1<vj,Avm>vj, Umt1 = m
m

and attain an orthonormal basis {vi,...,vm} of Kpn(A4,0) if w; #0for 1 <i<m—1.
Otherwise the Krylov subspace dimension is smaller then m, i.e. K, (A,b) C Ki(A,d)
for some k£ < m and we consider the projection onto Kx(A,b) instead.

By defining

(v1, Avy) (v, Avg) . (v1, Avp,)

w vg, Av va, Avp,
i, o | Il o du L Vo= (01 - o),

Jwm-tlls (o, Avim)
we can write
AV = Vi Hyp + wel .
Observe, since V,I'V,,, = I and VL w,, = 0, we obtain
hi1 hiz - him

viav, —m, - | " e

hmﬂn—l hmm

and A is an upper Hessenberg matrix with respect to the orthonormal basis of KC,,, (A, b).
Further, if x € R?, then V;,V.Iz € K;,,(A4,b) and

Ve -v,vIz)=o.

Obviously, V;,,V,I" is an orthogonal projection and the projection of Az onto K,,(A,b) can
be written as V,,V,L Az. Therefore, the linear operator V;,,V,I' A describes the orthogonal
projection of A onto K,,, (A, b). Moreover, if we write x € ICp, (A, b) in the basis {v1,..., v}
as V&, then

Vi V.E Az = Vi, ViEAV,,€ = Vi,
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with
n = Hpy.

Again, we can say that V,,,n is the representation of 1 in the standard basis and consequently
H,, can be interpreted as the matrix representation vagA:B with respect to the basis

{’Ul, N ,?)m}.

The Algorithm to the Arnoldi Iteration can be described efficiently in the following
form.

Algorithm 5.1 (Arnoldi Iteration Algorithm)

Let b # 0 be arbitrary and set vy := be||2
FORj=1,....m

z = Avj

hij = <v,~,z>,_i:1,...,j

wj = 2= by

hivrg = llwll2

IF hj+1,j =0: STOP
wj

ELSE ’Uj+1 =
hjt1,

END

5.2. Lancozos lteration & Biorthogonalization Algorithm

In case that A is symmetric, it is readily seen that

ar B

Hy = HL = | a2 with 8; > 0 Vi. (5.1)

Bmfl

Bm—l QA

The Arnoldi Algorithm simplifies to the so-called Lanczos Iteration Algorithm, which
requires the determination of maximal three entries per iteration.
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Algorithm 5.2 (Lanczos Iteration Algorithm)

b
Let b # 0 be arbitrary and set vy := W’ vo = 0 and [y = 0.
2
FORj=1,....m
z = Avj
o = (v5,2)
z = Zz— ozjvj — ﬂj_lvj_l
Bi = |zl

IF B;=0: STOP

ELSE wvj; := /Bi
J

END
END

This idea can be generalized to the so-called Biorthogonalization Algorithm. If we insist
on getting a tridiagonal H,,, even if A is not symmetric, we need to give up the use of
unitary transformation matrices.

Let A= VTV ~! for a nonsingular, but generally not unitary V and a tridiagonal T'.
If we define W := V~7T and take the transpose of A, we receive the equivalent equation
AT = WTTW =1 and it is obvious that WTV = V'V = I. Though the columns of V do
not form an orthogonal basis, they are orthogonal to the columns of W. The central idea
of the Biorthogonalization Algorithm is to find such matrices V and W with biorthogonal
columns.

In the view of the Arnoldi and Lanczos Iteration, our aim is to determine matrices
Vin = (vl,...,vm), W = (wl,...,wm)
such that
ar mn

Q

WiV, =1 and WZLAV,, =H, = e
Tm—1
Bm-1 Qo

We will find such matrices by computing two biorthogonal bases
Viyeooy Uy of Kip(Ayv1) and  wy, ..., wy, of ICm(AT,wl).

Again, Biorthogonalization can be performed by a modification of Gram-Schmidt.

Given A € R™ " and vy, w; € R™ with (vi,w;) = 1, we set

k k

ot e E ~ AT 2 : T
V41 = Avk — <A’Uk, wj>vj, Wk41 = A Wg — <A Wi, vj>wj
j=1 J=1
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and

(] W41
Vk+1 = B’ W1 = p”
k k

such that
Okt 1, Whey1)

B (Vkt1, wpt1) = 1.

It is easy to see, that vy L span{wy, ..., wp_1} = Kp_1(AT,wy), why

k—2 k—2
(Avg, wj)v; = Z(Aka,vj>wj =0.
j=1 7j=1

Then by defining
ay = (Avg, wy)

H,, attains the desired tridiagonal form.

As before, since
ViWhe =z,

for 2 € Kn(A”,v1), we can interpret H,, as the matrix representation of the projection

of A onto C,, (AT, v1).

The Biorthogonalization Algorithm can be described efficiently as follows.

Algorithm 5.3 (Biorthogonalization Algorithm)

FORj=1,...,m

Vj41 = Avj

wipr = Alw;

@ = (Uj+1,w5)

Vi1 = Vi1 — v — Bi-1vj-1
Wi+l = Wil — QW5 — Yj-1Wj—1
Bj = [(Vrs1, wry1)]?

V) = sign((Vky1, Wke1))B)

IF B;=0: STOP

Vi w;
Jj+1 Jj+1
ELSE ’Uj+1 =", 'wj+1 =

Bj Vi

END
END

Let v1,w; # 0 be arbitrary with (vy,w1) = 1. Set By = v = 0 and vg = wy = 0.
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5.3. Model Reduction via Coefficient Matching

Now we are interested in how the forgoing theory applies to model order reduction of
linear control systems. For this purpose let us consider SISO-systems represented as

. {a’c(t) = Ax(t) + bu(t),

y(t) = ca(t) (52)

where A € R™ ™ and b, ¢! € R™.

By applying Arnoldi iteration to &y, (A, b) for some m < n with
rg(Vin) = Kn(A,b) and VIV, =1,
we can define a reduced order system as
A:=VIAV,, eR™™ b:=VIbeR™ and é=cV,, e RX™.

For the reduced order system (A,b,¢) we will not be able to find an error bound or
guarantee its stability, instead the motivation behind this procedure is given by (2.7)
and the following theorem.

Theorem 5.1 (Markov Coefficient Matching by Arnoldi)

If V,,, is obtained from the application of Arnoldi’s Iteration Algorithm to A and b,
then

eAF1h = A, k=1,...,m
i.e. the first m Markov coefficients of (A, b, ¢) and (A, b, c) match.[4]

Proof: In (5.1) we have seen, that V;,,V,T is the orthogonal projection of R" onto /C,,(4,b).
Thus .
berg(Vi) = Vb=V, Vil =b.

We can continue in the same and get

Ab e rg(Vy) = Vi Ab =V, VAV, Vb =V,,VEAb = Ab

m
AP erg(Vy) = Vi AR b=V, VT AR h = AF 1, 1<k <m

In conclusion, since ¢ = cV,, it follows
eAR T = eV, AR = AP, k=1,...,m

which concludes the proof. |
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If G(s) denotes the transfer function of (A,b,é), then with the help of (2.7), the Hy,
error between G(s) and G(s) can be given as

i cAR=1p — cAF—1p

16 = Gl = .

k=m-+1 o

Thus, if the Markov coefficients of G(s) and G(s) reach their limits of zero sufficiently
fast, a small error can be attained.

Notice, the range of the Kalman controllability matrix is equal to C,(A,b). Hence,
if the state-space realization of a system is not completely controllable, there must exist
a maximal m < n, such that r7&(K,,(A,b)) = m. In this case K,,(A,b) is A-invariant and
we get

AV = VinHp,.

This is exactly the same problem as the construction of a Kalman Controllability Decompositon.
If {w1,...,wp_m} is chosen such that {v1,...,vm,w1,...,wn_m} is an orthonormal basis
of R", we can define

T .= (Vm W) = (Vm wy e wn_m)
and express AW as
AW = VA2 =+ WA3
Thus

AT = (AV,, AW) = (AVp, VAs+WA3) = (Ve W) (Hm A2),

0 A

Since b € K, (A, b) we get

b= Vb = (Vs W) (’g)

and consequently

A 4, T b
TTAT = d T"B = :
(6 5) we 77o= ()
In conclusion, Arnoldi’s Algorithm can be used in order to remove uncontrollable states,
which does not cause any error. By doing the same to the transposed system, we can go
on and remove unobservable states.
Further, from the proof to Theorem 5.1 we know, that

Vi (b Ab - A™ 1) = (b Ab - A™ 1),

and hence R X R
rk((b Ab - Am_lb)):m.
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This means together with the controllability of (A4, b, ¢), that a reduced system, resulting
from Arnoldi’s Algorithm, is always controllable.

From the construction of the Biorthogonalization Algorithm we know, that Biorthogonalization
can take care of both, the controllable and the observable subspace. Thus, instead of
applying Arnoldi’s Algorithm successively to remove uncontrollable and unobservable
states, the idea could be to use Biorthogonalization with

b cr
vy = and wj =

and define then a reduced system as

A:=WLAV,,, b:=WLb and ¢é:=cV,.

In this case we would expect a lower error compared to Arnoldi’s Algorithm, which can
indeed be motivated by the statement of the next theorem.

Theorem 5.2 (Markov Coefficient Matching by Biorthogonalization)

If V,, and W, are obtained from the application of the Biorthogonalization Algorithm
to A and (5.3) , then

eAF 1 = cA¥ b, k=1,...,2m
for A, b, ¢ as defined in (5.3).[4]

Proof: Since b € rg(V,,) and WLV, = I, it follows immediately by the choice of v; and wy,
that

wlib #0
VH’LB = Vtrnwgb - ‘/NL O = Ulw,lrb = b c b=>»
: V0 bel /|bel
0

Consequently, we can conclude

Ab e rg(Vy) = V9 Ab =V, WEAV,, Wb =V,,WLAb= Ab

AR e rg(Vy) = Vi AR b=V, WEAR I = AP 1<k <m

The same can be done with ¢, i.e. since ¢I' € rg(W,,) and V.IW,, = I, it follows, that
Wl =V, W = (VITW,, =c.
Thus
(AT €rgWn) = AW = cV,,WEAV,, WL = cAV,, W = (VI (cA)T )WL = cA

(AT € rg(W,,) = ¢ATTWE = cA= W, WL =cAt 1<i<m
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Summarizing both results leads to
eATE) = A WT AV, AF b = c AT AAR T D = c AR 1 <kl <m
which concludes the proof. |

As before, the proof shows, that the reduced system (121, i), ¢) is always controllable.
Additionally we have

(éT ATeT . (AT)mflé)TWgn’ _ (CT AT L (AT)m—lc)T
which implies that (A, b, é) is also observable.

Comparing the results of numerical experiments indicate, that Balanced Truncation
generally performs a great deal better, regardless of whether Arnoldi or Biorthogonalization
has been used.

Nevertheless, those approaches are iterative methods, which means that an approximation
can be attained very efficiently. Unfortunately, neither Arnoldi nor Biorthogonalziation
guarantees the stability of the reduced model.

Example 5.1 (Unstable Biorthogonalization)
Let us consider the following system

-1 3 4 5
A= 3 =9 5 |, b:==[5], c:=(1 4 4).
4 5 —19 0

Then cAb = 20 and Biorthogonalization cannot even attain a stable first order approximation.

For the sake of completeness, we want to mention, that there is a simple way of dealing
with MIMO-systems, which is called Block Arnoldi Algorithm and can be outlined as
follows.

If B e R" with B = (b1 e bq), then Arnoldi iteration will be applied separately
to A and b; in order to get the matrices Vn(f). Subsequently, those matrices will be
collected in one matrix V := (V;gl) V,%q)) Choosing an orthonormal basis of V'

can be done by the computation of a reduced QR-factorization of V. Finally, we choose
the first m columns of @) as V,;, to define the reduced system.

This method can work for positive MIMO systems, but generally it does not preserve
all the useful properties, that we have in case of a SISO system.

5.4. Coefficient Matching for Positive Systems

As for Balanced Truncation, Coefficient Matching generally does not preserve internal
positivity.
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Example 5.2 (External positivity not preserved)
If consider the system

—26 3 9 9.6
A= 3 =23 7 |, b:=[(21], c:=(49 99 17),
7 7 =31 4.6

then Biorthogonalization leads to a second-order system
(1278 —4.10 7 (870
A= ( 4.10 —14.52>’ b=c = < 0 >
which has poles in —13.65 £ 4.00¢. Thus, by Lemma 1.2, this is neither an external nor
an internally positive system.

Still, in many examples of linear positive SISO systems, Coefficient Matching performs
fairly well. In the following we will find an explanation for this behaviour, which is given
by some interesting properties of the just presented Coefficient Matching methods.

As mentioned in the introduction to this chapter, large-scale system usually possess a
sparse A matrix, as they result from the discretization of partial differential equations.
In Chapter 7 we will see, that those discretization matrices often have the additional
property of being symmetric.

In this case we know from (5.1), that Coefficient Matching by Arnoldi results in a
symmetric Metzler matrix A T Ais asymptotically stable and B, ¢ 2 0, we have found
a positive approximation.

Observe, if A is symmetric and asymptotically stable, then A must be negative definite.
By Lanczos Iteration Algorithm we can conclude, that a; = U;*-FAvj < 0. Since the first

column of V,, is given by v; = = 0, we can give the following analogue to Theorem

3.3.

b
181l

Theorem 5.3 (First Order Positive Coefficient Matching)

Let (Al,Bl,él) be the reduced first order system attained from Coefficient Matching
by Arnoldi for a positive system (A,b,c). Then (Ai,b1,¢1) is always positive and
asymptotic stability can be guaranteed in case that A = AT or b7 Ab < 0.

Through out all the discussed reduction methods in the chapters before, the Metzler
Matrix property was basically the main difficulty. Here we haven seen, that the symmetry
of A makes it very likely, that Coefficient Matching by Arnoldi results in an asymptotically
approximation, where A is guaranteed to be a Metzler Matrix.

The nonnegativity of bis easily assured by the fact, that

b=VIb=(pl. 0 --- 0)" >0.

Hence, we are left with the problem of a nonnegative ¢, which generally cannot be
guaranteed. However, as we have just seen for b, if ¢! = kb with k& > 0, then ¢ > 0.
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Theorem 5.4

Let (A, b, c) be a positive system with A = AT and b = kc” for k > 0. Then Coefficient
Matching by Arnoldi always results in an asymptotically stable positive system (A, b, ¢).

Theorem 5.4 naturally transfers to the use of Biorthogonalization. However, by using
Biorthogonalization, the symmetry of A does not assure the asymptotic stability of
the first order reduced system, as seen in Example 5.1. Instead we require cAb < 0.
Further, Biorthogonalization always assures the nonnegativity of band ¢ by WV, = 1.
Nevertheless, if A = AT and b # ke’ we need to pay the price, that we might lose the
Metzler Matrix property of A for a very low order.

Example 5.3 (Low order Biorthogonalization)
Consider the system

-9 4 0 0 3
4 -12 3 0 3

A= 3 6 1l =10l ci=(1 2 4 1),
0o 0 1 —4 1

then Biorthogonalization yields a second-order system
(=270 —-1.90 o (316
Ay i= < 1.90 —5.90)’ bp=c = ( 0 )

which is clearly not symmetric. In contrast Arnoldi gives

—6.37  2.78 0 4.36
Ag:=| 278 —10.03 497 |, bo:=| 0 |, co:=(229 3.03 2.59).
0 4.97  —9.89 0

The first-order approximation by Biorthogonalization leads to a relative error of 0.17,
whereas the third-order system obtained by Arnoldi gives 4.39 - 1073. Thus, there
are examples for positive systems, where Arnoldi performs a great deal better, than
Biorthogonalization, though the approximation was stable.

In Chapter 7 we will discuss examples, where Biorthogonalization preserves the positivity
for any reduced order and Arnoldi has to stop at a much earlier stage, due to the violation
of ¢ 2 0.

In case of a non-symmetric A, Arnoldi will usually not return a symmetric 121, because
the consideration of the additional entries in H,, makes it very unlikely to preserve the
positivity for higher orders. Here, Biorthogonalization is clearly preferable because of its
guaranteed band matrix structure with 8; = 4y;. A direct consequence of this is, if a



70 5.5. ITERATIVE RATIONAL KRYLOV ALGORITHM

system is transformed by a non-unitary transformation matrix, then Coefficient Matching
does mostly not results in a positive system. In Chapter 6 we will see how to treat cases
where the symmetry properties are destroyed or not given a priori.

Notice, Theorem 5.4 holds still true, if b and ¢ contain negative elements. Hence, any
system with A = AT, b = ke and k > 0 must be a positive system and can be realized
by Arnoldi/Lanczos. In this sense, Arnoldi/Biorthogonalization /Lanczos cannot only be
used for approximation, but also interpreted as positive realization algorithms. In the
view of Chapter 2, where we have seen, that a positive realization for systems of high
orders is hard to obtain, this is an observation of great importance.

A further interesting property arises, when we focus on the external positivity. Since
our methods match the first m, respectively 2m Markov coefficients, we know from (1.8),
that the error between the impulse responses of G and G can be given as

0o (k=1) o0 t(k=1)

t)—g(t)| = Gi — 9i——| < 9i — 9il 77—

o) =90l =| > d—gg—y| < 2 1o al gy
k=m-+1 k=m+1

As for the Hyo-error we can conclude, if the Markov coefficients reach their limits of zero
sufficiently fast, a small error can be obtained and thus external positivity preserved.
Unfortunately, we have seen in Example 5.2, that also for these methods we can find
counter examples for the preservation of external positivity.

5.5. lterative Rational Krylov Algorithm

An alternative way of preserving the external positivity of a SISO-system can be found
by minimizing the error between the outputs of the original and the reduced system.
This is the central idea of the so-called Ha Model Order Reduction [12].

Let

G {oér(t) = Az, (t) + bru(t),
yr(t) = cran(t)

be a reduced-order approximation of 5.2, with A, € R"™*" and b,,cl € R™. If u(t) is an
input, such that [lullz < 1, then we can describe the error between the output of G(s)
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and G,(s) by the inverse Laplace-transformation as follows

max [y(t) — y,(t)] = max

o [ o) - miw))eiwtdw’ <o [ G~ Vi)l

21 J_ o 2 J_

< <217r /Z |G (iw) —Gr(iw)|2dw> (;ﬂ /Z ‘U(W)!def
< (g /1606 - Gr@w)l?dw)% el
G (i) )

[NIES

—00

< <217r /_Z |G (iw) —

The Ha-norm results from the scalar product of the well-known L5 (iR) space [30], which
is a Hilbert space consisting of all matrix-valued functions G on iR fulfilling

1
2

Pdw ) =[G~ Gyl

/ (GG iw) )dw < 0.

— 00

The scalar product of this space is given by

(G H) = - / (G H (i) deo

2m J_

for G,H € L5(iR). It can be shown [30], that the set of all matrix functions G(s) €
L2(iR), which are analytic in the open right half plane, R(s) > 0, builds a closed subspace
of L£5(iR), which is called Ha. Moreover, the set of all strictly proper and real rational
transfer functions represents a subspace of Ha [30].

Due to our restriction to real stable SISO-systems we define

(G, H)yy, = % /OO G(iw)H (iw)dw = 2177/00 G(—iw)H (iw)dw.

Gy = /(G H)yy,

Notice, since (G, H)4,, = (H,G)4, it follows, that (G, H),, must be real.

and

In the following we will present a method, which is called [terative Rational Krylov
Algorithm (IRKA) [12]. This method locally minimizes |G — G,||%,, aiming to preserve
stability and due to its relation to Krylov subspaces, it can be applied to large-scale
systems.

The main idea behind the Iterative Rational Krylov Algorithm is a Moment Matching
approach called Rational Interpolation, which we want to discuss now. Moment Matching
consists of finding a reduced system G, that interpolates the values of G(s), and maybe
additionally some derivative values, at given points {o1,...,0,} C C\o(A), called shifts.
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Since the Iterative Rational Krylov Algorithm uses simple Hermite interpolation, our
problem reduces to the location of G, so that

/

Gylop) = Goy) and Go(op) =G.(o), 1<k <r
or equivalently
Cr(UkI—Ar)ilbr = c(opl — A)flb and ¢ (o] — Ar)fzbr = c(oxl — A)be, 1<k<r.

The expression c(op] — A)~UFDb is called the j-th moment of G(s) in o} and we want
to match the first two moments. We will see, that this problem can be solved iteratively
and is strongly related to Arnoldi/Biorthogonalization.

In order to show this we consider a reduced order model G, constructed by the so-called
Galerkin approximation. The Galerkin approximation has its origin in the solution
approximation of partial differential equations [26] and represents a generalization of
the Krylov subspace methods discussed in Section 5.3. In case of a linear system this
method works as follows. Let V, and W, be given r-dimensional subspaces of R", such
that V, N Wi+ = {0}, where Wi+ denotes the orthogonal complement of W,. The idea is
to find an v(t) € V,, such that

0(t) — Av(t) — bu(t) L W, for all u(t). (5.3)

In this case the output of the reduced order system is defined as vy, := cv(t). Let
Vi, W, € R™™7" denote matrices whose columns consist of a basis of V,, respectively W.,.
Then we can write v(t) = V,x,(t) with z,(t) € R" and we get from (5.3), that

W (Vedr — AVpa, (1) = bu(t)) = 0.
This leads to a reduced order system given by

Ay = (WIV)TTWIAV,, b= (WIV)T'WID and ¢, = cV. (5.4)

i

Observe, the nonsingularity of W1V, is a direct consequence of V. N W;- = {0}, because
this is equivalent to the kernel, ker(W,'V;.), of W'V, being trivial. Further, if we require
the biorthogonality of W,. and V;., then by choosing V, = K,.(A,b) and W, = K, (AT, cT),
we get the same results as for Biorthogonalization/Arnoldi. With the following Lemma
we will relate this procedure to our interpolation problem.

Lemma 5.1
Ifo € C\ {o(A)Uc(A,)}, then the following statements hold.

(i) If (oI — A)~tb € V,, then G,(c0) = G(0).
(i) If (6 — AT)=tcl € W, then G.(0) = G(0).
(iii) If both assumptions of (i) and (ii) hold, then G,(¢) = G(c) and G..(c) = G’ (o).
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Proof: Our aim is to express G(0) — G, (o) in terms of (61 — A)~'b and (oI — AT)~1c?. This
can be done efficiently by identifying V, and W, by means of the following linear projections

P.(0) :=V,(oI — A) "WV, TWT (oI — A)

and
P.(0) := (0 — A)P,(0)(c] — A)~L.

To verify that these linear mappings are indeed projections, we need to notice, that

(o — A)*WIV)TWT (oI — AV, = (o] — A,) Yol — WL AV,)
= (oI —A) Yol —A,)=1.

Thus

P.(0)? =Vi[(oI — A)*(WIV) W (oI — AV, ] (oI — A) Y (WIV) W (0] — A)
=V (oI — A)*WIV)*WE (oI — A) = P.(0)

and P,(0)? = P.(0). Further, if v € V,, we can express it as v = V,z with € R” and
Po(o)v = Vi(ol — A) Y (WIV) W (o — A)Vex = Ver = v

Hence, P, (o) is a linear projection on V, and V, = rg(P,(0)). In the same way we can

= T
show, that P.(o) is a linear projection on W, and W, = rg | P,(0) |. Consequently,

since Wit is the orthogonal complement of W, we can conclude, that Wi = ker(P,.(0)).
By rewriting G, (o) as

we attain
G(o) — Gr(o) = c¢(I — Py(0))(ol — A)"1b
= c(ol — A7 - P.(0))b
= c(ol — AT — Pp(0))%
=c(ol — A)7YI - P,(0))(0I — A)(I — P.(0)) (ol — A)~'b (5.5)

From the theory of linear projections [25], we know rg(P,(0)) = ker(I — P.(0)) and
correspondingly ker(P,(0)) = rg(I — P.(c)), which shows together with (5.5), that (i)
and (ii) hold.

In order to show the same for the derivatives, we need to notice, as long as o is not an
eigenvalue of A or A,, we can consider P,.(c) and P,(0) as matrix-valued functions in o,
which are analytic in a sufficiently small neighbourhood of o. Then for sufficiently small e

it follows in the same way as before, that
V, =rg(Po(oc +¢) and Wi =rg(I — P.(o +¢)).
Thus, together with the series expansion of [(o +€)] — A]!

(ol +el —A) ' = (ol — A —e(ol — A)"2+ O(?)
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we get
cllo+ e — AT = P(o+€) =c[(c] — A~ —e(al — A)"2 + O(2)](I — Pe(0 +€))
= —ec(ol —A)"HI — P.(o +€)) + O(e?)
and analogously
(I —P(oc+€)[(o+e)I—A = —eI - P.(o+e€))(ol — A)72b+ O(?).
Consequently by (5.5)

which concludes the proof. |

Remark: For complex o the rg(V;) and rg(W,) is considered over the complex space and
therefore the restriction to V., W, € R™*" is feasible. Equivalently, the same method
can be performed with complex-valued matrices V;. and W,., where W, is substituted by
Wf However, in this case we would generally not end up with a real-valued state-space
representation.

Theorem 5.5 (Moment Matching)

Let G(s) be a linear system with state-space representation (A,b,c), {o1,...,0,} a set
of distinct shifts, which is closed under conjugation (i.e. all shifts occur in conjugate
pairs) and

V, := span{(o1I — A)~'b,..., (0,1 — A)~'b}
W, = span{(o'lf — AT)_ICT, ce (O'q«I — AT)_ICT}

linear subspaces in C". Then by choosing real matrices V., W, with V, = rg(V,.) and
W, = rg(W,), the defined reduced system G,(s) given in (5.4) matches the first two
moments of G(s) in oy, fork=1,...,r.

Remark: The vectors (0,1 — A)™'b and (011 — AT)~1c” do not require the numerically
expensive computation of the inverse. Instead a matrix factorization approach, such as
LU-decomposition should be used. Further, the rank of W, and V, are not necessarily
equal to the chosen reduced order. Thus, Moment Matching often achieves a reduced
system of even smaller dimension.

The question is now, how to choose the shifts properly in order to minimize the Ha-error.
For this purpose we want to look at a residue description of the scalar product in Hs.

Let f(s) be a meromorphic function on an open set D € C, i.e. f(s) is a complex
function, which is holomorphic on D except for its poles. Then we denote by Resy[f(s)]
the residue of f(s) at a pole A and thus

1 d(k—l)

(k—1)! dsk—D) (s — /\)kf(S)L (5.6)

Resy[f(s)] =
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where k is the order of \.

Lemma 5.2 (Residue description of the Ha-norm)

Let G(s) and H (s) be two strictly proper, asymptotically stable transfer functions with
poles {1, ..., A\n}, respectively {p1, ..., pm}, then

(G,H)yy, = > Resy,[G(—s)H(s)] = Y Resy [H(—s)G(5)].
k=1 k=1

Proof: The proofis just the application of the well-known Residue Theorem [8] to G(—s)H (s).
By assumption it is clear, that the only singularities of G(—s)H (s) in the left half plane

are the poles of H(s). For sufficiently large R > 0, we can enclose them by the left half
semicircular contour

FR::{ZE(Cz:iwwithwe[—R,R]}U{zeC

. T 3T
=Re" withfe |-, =—|}.
z e’ wi 6[2,2]}

If we define then yg(w) := iw with w € [-R, R] we can write by the definition of the curve
integral

(G,H)y, = %/_OO G(—iw)H (iw)dw = lim L/ G(—s)H(s)ds.

R—o0 207

Further, since G(s) and H (s) are strictly proper, we can estimate

lim
R—o0

1
. /R G H()s

and thus by the Residue Theorem

1
< lim — sup |G(—s)H(s)|Rmr =0

T R—00 2T 4_peie

A direct consequence of Lemma 5.2 and (5.6) is the following corollary about the Ha-norm,
which we will use in order to explain the Ha-error.

gorollary 5.1

If G(s) is a strictly proper, asymptotically stable transfer function with simple poles
{A1,...,\n}, then

2

1Glln, = (Z Resy, [G(S)]G(—/\k)>
k=1




76 5.5. ITERATIVE RATIONAL KRYLOV ALGORITHM

Let {A1,..., A} and {A1,..., A} be the poles of G(s) and a reduced order model G (s),
respectively, and assume that the poles of G, (s) are distinct. Further, let ¢; and ¢; be
defined as follows

¢i = Resy,[G(s)] fori=1,....,n and ¢;:= Res; [Gr(s)] forj=1,....r

Then the Ho-error of the approximation can be expressed as

IG = Grli3, = ZRGSAi[(G(S) — Gr(5))(G(=5) = Gr(=9))]

+ Y Res; [(G(s) = Gr(5))(G(—s5) = Gr(—9))]
j=1

n '
= i(G(=X) = Gr(=A) + D 6(G(=A) = Go(=h)). (5.7

) j=1
From (5.7) we observe, that the Ha-error arises due to the mismatches of G(s) and G, (s)
at —\; and —j\i. Since —;\i is a priori unknown, the idea could be to set o; := —\;, where
AL, ..., Ar denote the poles with the largest residues. It has been shown in [11], that this
selection of shifts performs quite well. However, in the following we will show, that the
interpolation in —\i is of greater importance, because as we will see, this represents a
necessary condition for the optimal Hs model reduction.

As mentioned initially, our aim is to find an r-dimensional reduced order system G,
which is stable and optimal in the sense, that it minimizes the Hg-error. Thus, if we
define Q, := {G, | G, stable with dimension r} we can write our optimization problem
as R

1G = Grlln, = min 1G = Grli3e- (5.8)
Obviously, €2, is not a convex set, why (5.8) may possesses multiple local minimizers and
as a practical matter the global minimizer is hard to obtain.

Definition 5.2 (Local minimizer)

A reduced system G, is called a local minimizer, if

IG = Grllw, < I1G = G134,
(¢)

for all sufficiently small € > 0 and for all r-dimensional stable dynamical systems Gy

with |Gy — G913, = O(e).

We already know, that Hs is a Hilbert space and thus one could think about using the
well-known characterization of the element of best approximation in a Hilbert space [17].
Unfortunately, this is not possible, since €2, is not a closed subspace of Ho. In order to
overcome this problem, we have to restrict our solutions to a certain class, which is given
in the next theorem.
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Theorem 5.6

Let {5\1, A } be a set of distinct points in the open left half plane and define P, (AA) to
be the set of all r-th order strictly proper rational functions with poles at {)\1, cey Arte
Then the following holds

(i) Pr(N) is a (closed) (r-1)-dimensional subspace of Hs.

(ii) G, € P,(\) is an element of best approximation, i.e.

r€Pr

|G = Grl#, =  min ) IG — Gl

if and only if X
(G =G, H)y, =0 VH € Pr(A).

Moreover, G, exists and is unique.

Proof: The first statement is obvious due to the strict properness and a fixed denominator
of the elements of P.(A). The second statement follows directly from the first one by the
characterization of the element of best approximation in a Hilbert space [17]. u

This result can be used to give a necessary condition for the optimality of a reduced
order system G, with simple poles.

Theorem 5.7 (Local Minimizer)

Let G, be a local minimizer to G, possessing only simple poles. Then

(G -Gy, G Hy + H2>7-l2 =0

for all real systems Hy and Hy having the same simple poles as G,

Proof: By writing
(G = Gr,GrHy + H2)yy, = (G — G, GrHy) gy, + (G = Gry Ha)yyy =0

we can observe by Theorem 5.6, that this is equivalent to (G — G, G, H1),,, = 0. Further,
let {1, ..., tim, } C R denote the real poles of G,-(s) and {tm, 41, -+ mytm, } C C\R the
complex poles in the upper half plane. Then by partial fraction decomposition we can write

my my my my

7 bz+z +z
H1<s>=25fm+ > (# >t Y TJF;

i=m,+1 S_'ul)(S_MZ) =1 ST H i=m,+1

for some a;,b;,¢; € R and p; = oy + i5;.
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This allows us to express (G — G, GTH1>H2 as follows

w—Gm@Hmh:Zp{G—Gm&“w
Ho

S — :
=1 Hi

Myp+me
— (s — a;)Gr(s)

1=m,+1
my-+m
S G (5)

+ Z C7,<G_Gr, (3—041')2+5i2>7{2'

i=my+1

In the following we want to show, that each of these terms it equal to zero.

Let {GSE)} be the set of real stable transfer functions as defined in Definition 5.2 with
G, — Gl |3, < Ce for some constant C' > 0. Then for all sufficiently small ¢ > 0

IG = Grll, NG = G, < NG = Gr) +(Gr = G,
=G =Gl +2(G = GG = G)  +1|G, = G,

Hence, for all all sufficiently small € > 0

0< 2<G—GT,GT —G§E>>H2 G = G2, (5.9)

<G—Gr, G’“(S)> £0.
S [ Ho
P,_1(s)

By writing G,(s) = G0, 10y for real polynomials P._1(s) and Qr—1(8) of degree r—1,
we can define

Assume now, that

A P._1(s)
GS,E) s) = r-1 ,
& = - E)@ )
. G, (s) . . A(€)
where the sign of +¢ matches that of {( G — G,., . Then series expansion of Gy
ST Hi /),
yields
G (s) = Go(s) £ eSGT(Z) + O(e),
which leads to o
Gr(s) — GO(s) = 7o) L o)
S M
Consequently, we get
<G—GT,GT —G£€>> S <G—Gr, GT(S)> +0(2)
Ho S — Uy Ho
and )
G - GO, = | E T 4 o,
— i |5,
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which gives together with (5.9)

0< Sée

<G—GT, GT(S)>
ST Hi/ 3,

for some constant C' > 0. Thus for € — 0 we have a contradiction to (5.5).

Pr_l(s)
((s—a:i)2+B7)Qr—2(s
degree r — 2, we can show in the same way, that

<G -G, MW> —0 with fo) — PTfl(s)
Ho

Again by writing G,(s) = 3> for a real polynomial @,_2(s) of

(s — )+ 37 (s — i — (£€))* + 57)Qr—2

and
Gy (s) > . A P._1(s)
GGyl ) =0 with G = ;
(-6 imara T T e 0 1 B
which concludes the proof. |
In (5.7) we have already noticed the the importance of choosing the shifts as o; := —\;

for a reduced system G, with simple poles {5\1, . ,5\7«}. Together with Theorem 5.7 it
can be shown, that this is a necessary condition for the optimal Ho model reduction.

Theorem 5.8

Let G,(s) be an r-dimensional minimizer of the optimal Hy model reduction problem
given in (5.8) and assume the poles {\1,..., A} of Gr(s) to be simple. Then G.(s)
interpolates G(s) and its derivatives at {—A1,...,—Ar}, e

Gr(—=Xi) =G(=N) and G,(=X\) =G (=X\) fori=1,....r.

Proof: Applying Theorem 5.7 with H; = 0 and arbitrary Hs yields

(G = Gy, Hy)yy, = Y Ress [(G(—s) — Gr(—5))Ha(s)]
i=1

= > Resy [Ha()](G(=A) = Gr(=4)) = 0

Since Ress [H2(s)] is chosen arbitrarily we can conclude G(=X\i) = Gr(=X;). Now let us
consider the case Hy = 0 and H; arbitrary. Then by assumption of Theorem 5.7, G,-(s)H1(s)

possesses a double pole in \; and together with G(—X;) = G,.(—);), we can write the residue
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s—A; ds
= lim (G(=s) = G s>>%[<s NG (s)Hy(s)]
- 3321.“;(‘5)/ — G (=3))[(s = X)* G (s) Hu(s)]
= —(G(=A) = Go(=A) Tim [(s = X)*Gr () Ha(s)]

Thus, we have

(G — Gy GrHi)y, = Y Res; [(G(—s) — Gr(—5))Gy(s)Hy(s)
=1

- Z —(G'(=Ai = G.(= X)) Ress [Gr(s)| Ress, [Hi(s)] = 0.

’

As before, by the arbitrariness of Res; [Hi(s)] we conclude G (=) = G.(=\). |

Remark: Observe, by (5.6) it is readily seen, that we can obtain analogous results for
the case of higher order poles, which correspond to the interpolation of higher derivatives.

Although we know now, that the interpolation of G(s) at {5\1, ce XT} is necessary for
the optimality of the Ho-error, there is still the problem remaining, that {5\1, e ,S\T}
are a priori unknown. In the following we will solve this problem with the help of the
well-known Newton’s method. For this purpose we have to rewrite our problem as a
function of {o1,...,0,}. Let us define

o:=(o1 - UT)T and A(o) = (N - 5‘7")T’

where {1, ..., \,} denote the poles of G, and G, interpolates G(s) and G’ (s) at {1, ...,0,}.
Observe, A(o) defines a complex function from C" — C”. By defining a complex function

g(o) =X(o) +o.

from C" — C", we get for g(o) = 0, that A(o) = —o, which is equivalent to Theorem
5.8. Thus g(o) is the required candidate for Newton’s method, which appears as

o1 =0k — (I +J) ok + A(ay)),
where J is the Jacobian matrix of A(o).
In [12] it has been shown, that instead of computing J explicitly, J = 0 is a feasible
choice, due to small entries of the Jacobian matrix in the neighbourhood of an Hs

optimal o. This suggests the shift update strategy ox+1 = —Ai(4,) and leads to an
Iterative Rational Krylov Algorithm (IRKA).
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Algorithm 5.4 (Iterative Rational Krylov Algorithm)

(i) Set j = 0 and choose initial shifts {a%o), . ,J,EO)}.

(ii) For any j choose real matrices V, and W, such that

rg(V,) = span{(agj)l —A) 7, 0V — Ay
rg(W,) := span{(o’gj)l — AT (oW — ATy Y

(iii) Define A, := (WXV,)"'WT AV, and set UZQ) = —X\i(4,) fori=1,...,r.
|U(j) . U(jfl)’

o7
is given by

(iv) If < TOL,, for a prescribed tolerance TOL,, then an optimal G,

Ay o= WIV)TTWEAV,, b= (WIV) Wb, ¢ = eV

Otherwise, set j := j + 1 and continue with step (ii).

As explained earlier, a reasonable choice of the initial shifts could be o; := —X\;, where
A1, ..., Ar denote those poles with the largest residue. Unfortunately, the determination
of the residues can be very expensive numerically in case of large-scale systems.

Another approach of choosing the initial shifts is to generate them randomly. During
numerical experiments this turned out to work very efficient. IRKA always converged to
a stable solution after a small number of iterations.

Instead of using J = 0, J can also be computed explicitly as shown in the end of [12],
which we will not discuss here.

Compared to the Coefficient Matching approaches of Section 5.3, IRKA provides similar
good results as balanced truncation and results in stable approximations. In many
examples IRKA preserves the external positivity of a system, especially when it comes
to sparse matrices. Still, as for the other Krylov subspaces method this does generally
not hold true, as shown in the following example.

Example 5.4 (IRKA not externally positive)
By considering the same example as in Example 3.4, IRKA results in the second order

system
—2.83 —0.32 —3.55
Ay = < 0.5 _2‘56) , by = < 0.93 > , cp:= (=504 —3.92),

with poles at —2.70 4+ 0.31¢. Thus the reduced system cannot be externally positive.



6. Symmetric Balanced Truncation

In practice a way to combine Balanced Truncation with Krylov subspace methods is

to reduce a system with order much greater than 1000 to m ~ 1000 and then apply
balanced truncation to attain a system of order r < 100.[4] Unfortunately, neither
balanced truncation nor Krylov subspace methods have to result in a positive system.

Apart from this combination of Krylov subspace methods and Balanced Truncation,

we will present a further relation in this chapter with focus on the positive realization
property of the Krylov subspaces methods. To this end we describe a symmetry characterization
of balanced SISO-systems, which can be used to obtain an extension of Theorem 3.3 to
higher order approximations. Moreover, an algorithm will be proposed in order to use

this result in the context of large-scale positive systems.

In Section 5.4 we have observed the advantage of dealing with systems that consist
of a symmetric A-matrix. Further, we noticed, by showing how to use Arnoldi/Lanczos
for the purpose of obtaining a minimal realization, that the determination of a minimal
realization can always preserve the symmetry property of A. Hence, it naturally arises
the question, if Balanced Truncation, which can be used to attain a minimal realization,
does also preserve the symmetry.

In general we can answer to this question with no, as seen in Example 3.4. Instead let
us start our investigation with a situation similar to Theorem 5.4. If we have a system
(A, B, C), not necessarily SISO, with A = AT and B = kCT for some k € R, we call the
system symmetric. It follows immediately from (3.2) and (3.4), that

o0 oo
P= / eABBTeA = |2 / AtCT et = K2Q.
0 0
By diagonalization of kP as kP = TTXT we can write PQ = k*P? = T~'S?T with
T = \/|k|T. Obviously, T is a balancing transformation matrix and consequently the
balanced system is given by

(Ay, By, Cy) == (T7YAT, T7'B,CT) = (TT AT, \/|k|(CT)T, \/|k|CT).
Observe, balancing the system did not only preserve the symmetry property of A, it also
added By, = CF, i.e. (Ap, By, Cp) is a symmetric system with & = £1. Such a system
is sometimes called state-space symmetric [15]. Thus, every symmetric system can be

identified with a state-space symmetric one. The application of the truncation step to
(Ap, By, Cp), leads to the following lemma.

Lemma 6.1 (Balance Truncation of symmetric systems)

Balanced Truncation preserves the symmetry of any symmetric system.

82
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In case of a SISO-system Lemma 6.1 becomes even more interesting, because then by
applying Lanczos we can generate a positive realization of the reduced system. We have
observed in Section 5.4, that all symmetric SISO-systems with k > 0 can be realized as
a positive system. Together with Lemma 6.1 we can extend this statement to arbitrary
ke R.

Theorem 6.1 (Balanced Truncation of symmetric systems)

Let (A,b,c) be a symmetric SISO-system, then Balanced Truncation followed by
Lanczos will always result in a positive reduced-order system.

The result of Theorem 6.1 motivates the question, how much a small perturbation of the
symmetry effects the symmetry of the balanced system. To that end let us consider the
following example.

Example 6.1 (Symmetry Perturbation)
Let us consider for instance

(=2 1+01 s 1
a2, e (1)

Then balancing yield the symmetric system

A= <_é:2§ _g:gg) , b=c":=(-0.95—-10.31)

Obviously, for some perturbations of the symmetry the balanced system remains
symmetric. Since every system can be considered a symmetric system with some "large"
perturbation, we know from Example 3.4 that this result does not apply to every perturbation.
The reason for both cases is a consequence of the next theorem, which presents a
symmetry characterization regarding balanced SISO-systems and is the central idea of
this chapter.

Theorem 6.2 (Absolute symmetry of a balanced system)

Let G(s) be the transfer function of an arbitrary SISO-system. Then there exists a
balanced realization (A,b,c) of G(s), such that (A,b,c) is absolutely symmetric,
ie.

Al =|AT] and o] =|c"].

Proof: Let (A,b,c) have simple Hankel singular values {o1,...,0,}. Then by definition of a
balanced system, its Lyapunov equations can be written as

AL+ 3AT =" & a0 +oia; = —bb;, 1<ij<n
AT 434 =-"T¢ & a0, +0ja5; = —cicj, 1<i4,j<n (6.1)
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with ¥ := diag(oy,...,0y,). In particular, we get for i = j
2a;;0; = —b? = —02 = b =+¢; 1<i<n. (62)

)

Further, if ¢ # j we can deduce from (6.1)

g; 0; Qij\ bibj
0; 0y aji o CiCj ’

Solving this linear system for (aij aji)T., yields together with (6.2)

(e 2% _ 1 0 —0; bzbj _ bzb] 0+ 0; _ bibj 0j + 0
Qaji JJQ, — 02.2 —0; 0j :H)Zbj 0.]2_ — 02.2 —0; + 0j (7]2, — 0'12 :|:(O'j F Ji)

and hence a;; = aj;.

In case of multiple Hankel singular values we can assume w.l.o.g., that ¥ := diag(o1j, 09, ...,04)
for some k > 1. Then by partitioning A = <il :) and b = <B;1> accordingly to o1},

we can write
01(A1 + A?) = BlBg1

A0

Thus diagonalizing B; BT = U”T (O 0

) U, with A > 0, yields

o (UAUT +UATUT) =UB BT UT = (g 8)
and it follows for A := UA,UT, that Qij = —aj;, 1 < 14,5 < k. Defining T := diag(U,I)
gives a balanced absolute symmetric realization

(A,b,¢) :== (TATT , TB,CT"),

which concludes the proof. |

The important consequence of Theorem 6.2 is, if Balanced Truncation of a positive
SISO-system is performed up to an order where the reduced system is still symmetric,
then by applying Lanczos we obtain a positive approximation. In the following we will
refer to this method as Symmetric Balanced Truncation. In worst case this procedure
just ends up with a first order positive approximation, which is why Symmetric Balanced
Truncation can be considered an extension of Theorem 3.3.

For the identification of the symmetric part of the balanced realization it is not
necessary to look at A itself. Instead it can be concluded from the proof to Theorem
6.2 that b;b; = —c;c; if and only if a;; = —aj;. Thus in case of a positive system, the
i-th leading principle minor of A becomes non-symmetric, when b; = —¢; for the first time.

Compared to Arnoldi/Biorthogonlization and Generalization Balanced Truncation, this
procedure works for any transfer function, independent of its state-space representation.
Thus we lose the importance of requirements such as the internal positivity or the
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symmetry of a system.

Still, we know from Example 3.4, that the symmetry can only be a sufficient condition.
Beyond the possibility of applying Symmetric Balanced Truncation to positive systems, it
can also be used to attain positive approximations of systems, that are not even externally
positive. This could be of interest e.g. if the model of an (externally) positive system was
attained by system identification and contains small errors, which violate the positivity.

Impulse Response

25

Amplitude

3
Time (seconds)

Figure 6.1.: Impulse response of a nonpositive system G with positve

Example 6.2 (Nonpositive system)
Let us consider the following system

20 2 -4
o 0 -1 0 o
A=l_91 ¢o of b=¢=

0 0 0 -4

approximaton Go

The impulse response of the system can be seen in Figure 6.1 together with its positive
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second-order approximation
(=577 031 . (450
Az:= ( 0.31 —0.05) ) 2= = ( 0 ) '

However, in general we can say it is very unlikely to receive a positive approximation
of a nonpositive system. This is reasonable, since in the same way as the preservation
of the positivity, the maintenance of the nonpositivity is natural a requirement on its
reduced model.

Observe, for A in the proof to Theorem 6.2, we can also conclude, that a; = 0 for
i = 2,...,k. In case of a non-zero two-dimensional system G(s), that has only one
singular value, we can obtain a balanced realization

ail a1z b1
AZ(_a12 0), b1=(0>, Clz(bu 0).
If this was a positive system, it would hold ||G||cc = G(0) = —cA~'b. Since
A1 — 1 ( 0 —a12>
a2 \@12 an

it follows, that G(0) = —cA~'b = 0, which is clearly a contradiction. This motivates the
following conjecture, which has been proved only numerically so far.

Conjecture 6.1 (Simple Hankel singular values)

There does not exist a positive SISO-system which possesses a multiple positive Hankel
singular value.

6.1. Symmetric Balanced Truncation Algorithm

By numerical experiments it can be observed, that especially for sparse systems a higher
dimension of the symmetric part can be expected. As mentioned in the introduction to
Chapter 5, those systems occur very often in the context of discretized partial differential
equation, which usually have a very large dimension and possess a symmetric A from
the beginning. In order to use Symmetric Balanced Truncation, we have to reduce the
system to dimension m = 1000, which allows us to apply Balanced Truncation. A natural
desire of this pre-approximation should be, that the dimension of its balanced symmetric
part is not decreased compared to the original balanced system, unless the error of both
symmetric reduced systems is of the same quality.

In the end of Section 5.5 we said, that the Iterative Rational Krylov Algorithm performs
comparable well as Balanced Truncation itself. Indeed, it turned out, during numerical
experiments, that a pre-approximation via IRKA does not add any significant drawback
in the context of Symmetric Balanced Truncation. Thus we can complete our method of
Symmetric Balanced Truncation yielding the following algorithm.
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Algorithm 6.1 (Symmetric Balanced Truncation Algorithm)

(i) For a given positive system of dimension n, choose m such that m = min{n, 1000}
and apply IRKA starting with m random shifts. Denote the resulting approximation
with G,,.

(ii) Compute a balanced realization (Ap, by, cp) of Gy,

(iii) Compare the entries of b, and ¢, in order to identify the smallest k, where by, #
Ch -

(iv) If k = 2, perform the truncation of (Ay, by, cp) to obtain a reduced system Gy of
the order 2. Then apply Theorem 2.7.

(v) If Theorem 2.7 does not apply, perform the truncation of (Ap, by, cp) to obtain
a reduced symmetric system Gj_q1 of the order k — 1. Then attain a positive
realization of G,_1 with the help of Lanczos Iteration Algorithm.

Step (iv) is included, since not every second-order positive system needs to be symmetric
after balancing, as seen in the next example.

Example 6.3 (Non-symmetric positive system)
Let a system (A, b, ¢) be given by

A::<59 _510>, b::(é), c:=(5 5).

By balancing this system we get

~437 101 —3.90
A= <—1.01 —14.63)’ b"( ) c:=(~3.90 0.45)

For the sake of completeness, we should notice, if the Hankel Singular Values are
close to each other, the symmetric part can be increased sometimes by a permutation
of the balanced system states. However, so far we could not find an example, where a
permutation made any significant difference.

6.2. Symmetric Balanced Truncation for MIMO-systems

In case of a positive MIMO-system Symmetric Balanced Truncation can usually not
be applied. Of course one reasons is, that we use Lanczos Algorithm for the positive
realization. But more important is, that Theorem 6.2 does not hold generally for
MIMO-systems. Still, there are cases, where this procedure can be transferred.

Let us consider an n-dimensional positive MISO-system with balanced realization (A, B, c)
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and B = (b1 e bk). With ¥ = diag (01, e ,an) we can write the Lyapunov equation
(3.27) as
AY 4+ X AT = BBT = bib? + - + bl

By assuming, that bjb] = ... = bkbg, we can conclude
AS + DAT = kb = (VEL)(VED)T, 1<i<k and ATS +3A=cTc

From Theorem 6.2 it follows then, that |v/kb;| = Vk|b;| = |¢T| and |A| = |AT|. Hence,
if (A, By, c,) denotes the reduced system of order r, with symmetric A,, then Lanczos
applied to (A,,br,,c,) yields identical positive systems (Ap,bp,,cp) for all i = 1,... k.
Thus a positive realization of (A, By, ¢;) can be obtained as (4, By, ¢p), where

By = (bm bpk)-

Observe, if we partition A = (A*H :) and accordingly b; = (bj}) and ¢ = (01 *),

it suffices to have by1bl; = - = bklb;‘gl in order to get ]\/Ebiﬂ = \/E|bi1| = |cf| and
|A11] = |AT}|. Thus, we can proceed in the same way as before and observe, that it is

not necessary to have a positive system with a B-matrix consisting of identical columns.
Of course, the same applies in case of a SIMO-or MIMO-system, where we need to

. T
partition C' = (c{ e c%;) and assume ¢} = - - - = ¢, or analogously for ¢; = (cil *),
that cjicl] =+ = cick ;.



7. Numerical Examples

In Chapter 3-6 we have studied many different model reduction approaches, that satisfy
our aim, preservation of the positivity. All of them possess some theoretical advantages
and limitations, which has influence on the quality of their approximations in the view
of the relative Ho-error. Based on some practical examples, this chapter will give an
comparison of the quality among all the methods.

The examples presented here were run in MATLAB® Version 7.10.0 on a PC with with
an Intel®Core™ i5-650 CPU 3.20 GHz. Moreover, YALMIP Version 3 and SeDuMi
Version 1.3 were used for the optimizations with respect to the linear matrix inequalities.
For methods which involve LMIs, we will not be able to show their performance for
large-scale systems, due to the limits of computational power.

Throughout the examples we choose the following tolerances and maximal iterations:
e IRKA: MAX;t, = 100 and TOL, = 1-1078.
e Generalized Balanced Truncation: TOL, = 0.01.
e ILMII: TOL, = TOLg = TOLjpiy = 0.01 and Max;se, = 500.
e ILMIIL: TOLs = 1-107% and Maz;ie, = 1000.

These levels turned out to be sufficient and do not add any significant disadvantage during
the optimization of the shifts and the Generalized Hankel Singular Values. Furthermore,
we distinguish between "Symmetric Balanced Truncation (IRKA)" using IRKA and
"Symmetric Balanced Truncation" by direct balancing.

Of course, for ILMI I & IT we cannot say if our tolerances are sufficient, but this is a
general problem of these methods. Beside this, it should be noticed, for smaller tolerances
and larger number of iterations, the algorithms become very time-consuming, which can
also be considered as a limit of computational power. Under this consideration we will
stop ILMI I after 1 hour of switching between its dual and its primal approach.

Furthermore, ILMI T & II require a prescribed error bound. We start with a relative
error of 0.1, because in the view of Theorem 3.3, everything above this border would not
justify to use such numerically expensive methods. For the same reason, we will always
decrease the order of the prescribed error bound in case of an increasing dimension of the
approximation. For example, if we attain a first order reduced system with an error of
0.04, then we will prescribe an error bound of 0.01 for the second order approximation.

For the sake of fairness we include step (iv) of the Symmetric Balanced Truncation
Algorithm into Arnoldi/Lanczos and Biorthogonalization.

89
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7.1. Water reservoirs

Figure 7.1.: System of n water reservoirs

The example of n connected water reservoirs as schematically shown in Figure 7.1, was
presented in [22], in order to show the properties of Generalized Balanced Truncation.
For simplicity all the reservoirs Ry, ..., R, are assumed to be located on the same level,
i.e the connection between two water reservoirs is always horizontal. We denote with a;
and h; the base area and the fill level of the reservoir R;, respectively. Moreover, let R;
and R; be connected by a pipe of diameter d;; = dj; > 0, then the direct flow f;; from
R; to R; is assumed to be linearly dependent of the pressure difference on both ends.
We consider the external inflow to reservoir R; as the input of the system. The output
is given by the sum of all outflows f,; of R; through a pipe with diameter d,;. With the
help of Pascal’s law we can describe the system flows by

fij@) =dZj - k- (ha(t) = hy(t)) and  foi(t) =d2; - k- (hi(t) — hy(t)),

where k is a constant representing gravity as well as viscosity and density of the medium.
Thus, the fill level h; of R; follows the differential equation

. n 1
hi = — | =dZha(t) + > d3;(hy(t) — ha(t)) | + —6rsu(t),

where d1; stands for the Delta-Kronecker symbol, i.e. d1; = 1 if and only if i« = 1 and zero
otherwise. Writing this equations as linear state-space system results in a SISO-system
(A,b,c) with b = (i 0o --- O)T, c=k(d2, --- d3,) and a symmetric A-matrix
with entries

with du = 0.

I AR DT A
1)
ST i # 7,



7.1. WATER RESERVOIRS 91

In [22] the system was supposed to consist of two substructures, each with five reservoirs.
In both substructures each reservoir is assumed be connected to every other reservoir by
a pipe of diameter 1, i.e d;j; = 1 for i #¢, 1 <4,5 <5 and 6 < 4,5 < 10, respectively.
The connection of the substructures is given by a pipe of diameter di 19 = d10,1 = 0.2,
between reservoir 1 and 10. Moreover, for simplicity we set a; =1 and k = 1.

For a reduced order of 5 an error bound of 0.06 was given in |22] by applying Generalized
Balanced Truncation. This coincides with our results and can be compared with the
relative Hoo-errors of the other methods, given in the following tabular.

Order 1 4 5
Generalized Balanced Truncation 0.80 0.51 | 0.01
Symmetric Balanced Truncation (TRKA) 0 - -
Symmetric Balanced Truncation 0 - -
ILMI 1 7.65-107° | - -
ILMI 11 0.02 - -
Arnoldi/Lanczos 0.80 0 -
Biorthogonalization 0 - -

The results show, that the system is actually of first order and thus by Theorem 3.3
Symmetric Balanced Truncation returns a first-order positive approximation without
causing an error. The same holds for Biorthogonalization because of its minimal realization
property. Similarly, Arnoldi/Lanczos has removed the uncontrollable states. Notice,
by Theorem 5.3 it follows, that if we apply Arnoldi/Lanczos to the transposed of its
approximation, we also end up with a positive minimal system of first order.

With this knowledge, even the fifth order reduced system resulting from Generalized
Balanced Truncation must be considered as a poor approximation. By inheriting the
difficulties of truncating an unbalanced system, Generalized Balanced Truncation cannot
perform any better. For our other examples this will become even more significant.

Although, ILMI T & II are numerically very expensive, in case of such a small system
they terminated within half an hour. We observe, ILMI I performs a great deal better
than ILMI II. Unfortunately, in both cases, we could not find a realization of order 4 or
5 with a significantly smaller error.

The first-order property of this system is clearly a result of the strong connection and
the homogeneity within the substructures. Therefore an increased dimension (amount
of reservoirs) does not change the order. Instead, let us consider a slight modification of
the outflows, i.e. we set d,; = 0.1 -4. This system is not of first order any longer and
thus we expect larger errors, as shown in the next tabular.
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Order 1 2 5
Generalized Balanced Truncation 1.00 0.98 0.08
Symmetric Balanced Truncation (IRKA) | 0.02 | 1.99- 1073 -
Symmetric Balanced Truncation 0.02 | 1.99-1073 -
ILMI I 0.08 - -
ILMI II - - -
Arnoldi/Lanczos 1.00 | 1.68-1072 | -
Biorthogonalization - - -

For Biorthogonalization the first order model is already unstable and hence, this method
is not applicable. In contrast, Symmetric Balanced Truncation led to the best results.
Observe, in this case there is not difference between TRKA and Balanced Truncation,
though the system is not just reduced to minimality.

ILMI II could not return a model with an error, that is smaller than 0.1. On the other
hand, ILMI I gives a quite good first order reduced system, but again no second order
approximation with a smaller error could be found. Beside this, for Arnolid as well as
for Symmetric Balanced Truncation, the highest achievable order for a positive reduced
system is restricted to 2.

As a last point let us consider the same system with n = 250. In this case the
optimizations for ILMI T & II take such a long time, that the first optimization already
requires hours. Thus, we are left with Balanced Truncation and the Krylov subspaces
methods, which perform as follows.

Order 1 2 100
Generalized Balanced Truncation 1.00 0.99 0.45
Symmetric Balanced Truncation (IRKA) | 0.13 | 1.51-1073 | -
Symmetric Balanced Truncation 0.13 | 1.51-1073 -
Arnoldi/Lanczos 1.00 0.15 -
Biorthogonalization - - -

The important consequence of the results in this section is, that among all the methods,
only Symmetric Balanced Truncation is robust with respect to an increasing order.

The reason why we could still apply Generalized Balanced Truncation for such a medium
scale system with 250 states is, that for a system with n states, we only need to
optimize 2n variables with 2n rows. As seen in the end of Chapter 4, this gives a
complexity of O((2n)%(2n)*? + (2n)3), which is already extremely high. In case of the
ILMI-approaches this becomes even worse because of the large amount of rows, which
leads to the exceeding of computational power.

7.2. Compartmental Networks

Compartmental networks built a general class of systems that consist of a finite number
of homogeneous subsystems (compartments), which all interact with each other and their
environment.|14| Representatively, the interaction of two compartments is schematically
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Figure 7.2.: a) Segment of a compartmental network. b) Compartmental network of 6
components

given in Figure 7.2 a). Observe, the systems in Section 7.1 are classical examples for
compartmental networks. Generally, these networks can be described as follows [14]:
if x;(t) denotes the mass, which compartment ¢ is using at time ¢, then we denote
with k;jz; the mass flow from compartment j to ¢ and with k,;x; the sum of all
outflows of compartment ¢. Further, the external inflow of compartment ¢ is given by
I; = 377" biju;(t) where u;(t) represents the j-th input source. As for the water reservoir
example, a compartmental network consisting of n compartments can be described by
the linear differential equation

xz(t) = —ko,,;xi(t) + Z[kijxj(t) - kﬂl’l(t)] + Z bz‘ju]'(t) for 1 = 1, ey n.
i j=1

The state-space representation of this system is given by A = [a;j]nxn with

Wi — {_ko’i = 2 g ki =7
ij — . )
kij, i j

and B = [bjj]nxm. In Figure 7.2 a) we can observe the difference to the water reservoir
examples: we do not assume any longer, that the influence of compartment i to j is
mutual and thus the system does not need to be symmetric. In [14] the following system,
consisting of the 6 compartments as shown in Figure 7.2 b), was used to demonstrate
the ILMI I approach

—-15 06 1.0 0

0.3 —-19 0.2 0 0 0
02 05 =27 1

0 05 -3 06 05
0 04 -16 03 O
0

1

OO OO o
(= elelall -

0 0.6 05 —1.6
C = (1
Observe, this is a MIMO-system and thus only Generalized Balanced Truncation, Balanced

Truncation to first order and the ILMI-approaches can be used. A comparison of these
methods gives
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Order ‘ 1 ‘ 2 ‘ 3
Generalized Balanced Truncation | 0.78 | 0.26 | 0.06
Balanced Truncation to first order | 0.01 - -
ILMI I 0.01 - -
ILMI 11 - - -

Hence, as before for the SISO-case, the best results arise from ILMI I and Balanced
Truncation. In contrast ILMI IT could not find any solution smaller than 0.1. Let us see
how these results transfer to the SISO-case. We transform this non-symmetric example
to a SISO-system by assuming, that compartment C7; and Cs share the same input
source, i.e. B = (1 1 0 00 O)T. The results for this non-symmetric example are
summarized in the following tabular.

Order 1 2 3
Generalized Balanced Truncation 0.69 0.24 0.06
Symmetric Balanced Truncation (IRKA) | 1.70-1073 | 7.41-107% | -
Symmetric Balanced Truncation 1.70-1073 | 7.41-10~* -
ILMI I 8.18-1073 - -
ILMI 11 - - -
Arnoldi/Lanczos 0.26 1.89-1073 | -
Biorthogonalization 0.03 5.19-1073 | -

ILMI IT could not find any solution, though the dimension of this system is comparably
low. This shows, together with the the forgone examples, that ILMI II is only of
theoretical interest, but performs not sufficiently well in practice. Another interesting
fact of this example is, that ILMI I performs well for finding a first order system, but by
trying to find a higher order approximations, below the error of the first order system,
ILMI I ran into numerical problems.

For the other methods we can observe, the quality of their approximations remained
almost the same compared with those of the water reservoir example.

7.3. Heat Equation

The heat equation is an important partial differential equation, which is given in the
plane as
. 0? 0?
T=AT=_—T+—T. 7.1
Ox? Oy (7.1)
By discretizing this system with the help of finite differences [26] and numbering the
discretization points as shown schematically in Figure 7.3, we can write

1
h?
where h denotes the grid step. If we consider the temperature on the grid boundaries

to be steered by four different inputs, then we can write TZJ = AT;; as a linear positive
system with input uy, ..., us. For this purpose let us consider the unit-square, discretized

ATij = =35 AT — Tivay — Tijyr — Tj1j — Tij1),
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h
' T11|T12|Ta3
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()

X

Figure 7.3.: Discretized heat equation on a quadratic plate

with (n-+2)? points. Since the boundary points are taken by the inputs, our state variable
consists of the n? inner points as shown in Figure 7.3. Then we can define our system
matrices

P I 0 4 1 0
I P I 0 1 —4 1 0
A= eR™X™  with Pi= e R™™,
0 I P I 0 1 -4 1
0 —I P 0 1 4

and B := [b;;] € R" >4 where

1, fori=1,...,n 1, for i =n,2n,...,n?
bip = _ , big = _ ;
0, otherwise 0, otherwise
1, fori=nn-1)+1,...,n° 1, fori=1n+1,...,n(n—1)+1
big 1= . o big = . :
0, otherwise 0, otherwise
By setting # := (T ... T Tia ... Tug .. Tin ... Tun)' € R™, we have
discretized (7.1) as
. 1 A 1 . . T 4
xwﬁ x—l—ﬁBu with u.z(ul u4) c R*.

As the output of the system we want to consider the average temperature, i.e.
1
y=-CT, with C:=(1 --- 1)eR>™
n

Notice, the smaller h the better the approximation of the heat equation. Thus, in case

of a good approximation, the system (A, B, C') will be become large-scale since h = %H



96 7.3. HEAT EQUATION

Let us start the model reduction comparison with a "bad" approximation, due to the
LMI problems for high orders. In particular we choose n = 3 and set up = uz = uqg =0,
which yields a SISO state-space system of dimension 9. Then our discussed methods
perform as follows

Order 1 2 3 5 8
Generalized Balanced Truncation 0.88 0.70 0.49 | 0.31 | 0.07
Symmetric Balanced Truncation (IRKA) 0.02 2.73-107° | 0 - -
Symmetric Balanced Truncation 0.02 2.73-107° | 0 - -
ILMI I 9.74-107° - - - -
TLMT 11 - - - - -
Arnoldi/Lanczos 0.50 0.23 0.08 ] 0 -
Biorthogonalization 0.20 7.94-1073 | 0 - -

Considering, that we only measure the the average temperature, it is not surprising, that
we cannot observe all the states and thus the state-space representation is not minimal.
Observe, Symmetric Balanced Truncations as well as Biorthogonalization end up in a
positive minimal realization. In contrast, Generalized Balanced Truncation gives for an
order of n — 1 a worse result than reduction to first order.

In this example, ILMI I gives for a first order approximations the best result. However,
as in the previously discussed examples, if we want to improve this error by increasing the
order, the optimization runs into numerical problems. Further notice, the application of
Lanczos to its transposed fifth order system does not result in a positive system this time.

Let us consider the same system with n = 10, i.e a state-space-dimension of 100. Then
we attain

Order 1 9 15 18
Generalized Balanced Truncation 0.99 0.85 0.74 0.31
Symmetric Balanced Truncation (IRKA) | 0.15 | 2.52-10713 - -
Symmetric Balanced Truncation 0.66 | 2.52- 1013 0 -
Arnoldi/Lanczos 0.81 0.14 3.60-107* | 5.85-1076
Biorthogonalization 0.5 | 1.04-1074 0 -

Since direct balancing performs perfectly well, this indicates, that this system always
possesses a symmetric minimal realization. As in all the examples, there is no difference
between IRKA and direct balancing, which shows, that IRKA is indeed a reliable precursor.
This is especially important in the context of large-scale systems, what we will consider
now.

In case of n = 30, we have to deal with 900 states and Generalized Balanced Truncation
is not applicable any longer. Thus we are left with the Krylov subspaces methods and
Symmetric Balanced Truncation, which give
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Order 1] 11 45 55
Symmetric Balanced Truncation (IRKA) | 0.36 | 8.73 - 10~ - -
Symmetric Balanced Truncation 0.16 | 2.37-10710 0 -
Arnoldi/Lanczos 0.93 0.53 2.54-107* | 5.85-1076
Biorthogonalization 0.88 | 1.04-107* | 6.32-10712 0

Biorthognalization works in the same way as before, but it is remarkable how much better
Symmetric Balanced Truncation performs.

Notice, from a practical perspective there is no difference in which side of the plate
is used as the single-input and thus for all sides we get the same results. Moreover,
since CB = (nn), for all the four possible SISO-systems we even get identical
approximations by applying Biorthogonalization. It is easy to see, that this extends
to Arnoldi and Symmetric Balanced Truncation. Thus, we are in the situation of
Section 6.2, which allows us to apply those methods to the full MISO-system (A, B, C).
If (A, by, cr) denotes the approximation of one of the four SISO-systems, then the
reduced MISO-system can be given by (A,, By, ¢,), with B, := (br b, b, br). Such
an approach is not applicable for the SISO-systems attained by ILMI I. Consequently,
obtaining a MISO-approximation becomes even more expensive due to an in increase
of the number of variables. The results of MISO-system approximations for n = 3 is
summarized in the following tabular.

Order 1 2 3 5 8
Generalized Balanced Truncation 0.95 0.89 0.84 | 0.69 | 0.33
Symmetric Balanced Truncation (IRKA) 0.02 2.74-107° | 0 - -
Symmetric Balanced Truncation 0.02 2.74-107° 0 - -
ILMI I 9.74-107° - - - -
ILMT 11 - - - - -
Arnoldi/Lanczos 0.50 0.23 0.08 ] 0 -
Biorthogonalization 0.20 7.94-1073 | 0 - -

Except for Generalized Balanced Truncation, all the methods returned the same error as
for the SISO-case. This result can be extended to higher order systems and we conclude,
in case of a MIMO-system the drawbacks of Generalized Balanced Truncation show up
even more.



Conclusions and Open Problems

All positivity preserving model order reduction methods, that were found by the author
till this day, have been discussed in this thesis. As a consequence of high numerical
complexity and generally poor approximation properties, we could observe, that none of
these methods are applicable to high-dimensional systems. This restricts these methods
to systems, where we usually do not see the need to reduce them.

Basically, all the discussed LMI-approaches share the same problem, that they cannot
take advantage of well-established methods, such as Balanced Truncation and Krylov
subspaces methods. The main reason for this lies in the difficulty, that the established
methods mostly do not return a positive approximation, even though the reduced system
might be positively realizable.

To this end, it has been shown, that in case of a symmetric system, the Krylov
subspaces methods can be considered a positive realization algorithm. Moreover, a new
symmetry characterization of balanced SISO-systems has been presented. Combined
with the Krylov subspace methods, this led to the applicability of Balanced Truncation
to positive SISO-systems. Based on its good approximation properties, this method
outperforms the LMI-approaches in most cases. Additionally, we motivated to use IRKA
for a pre-approximation in order to make our new approach applicable to large-scale
systems.

As a consequence of these results the positive realizability of the Krylov subspaces
methods has been extended and we found a way to replace SISO-systems by symmetric
approximations. This could be of great interest e.g. in the context of system analysis.
Beside this, we discovered a new necessary condition for the positive realizability of an
arbitrary transfer function, which avoids the consideration of the impulse response.

In Section 6.2 we transferred the symmetry approach to a certain class of MIMO-systems.
Nevertheless, a full analysis is still missing here. Also the use of other pre-approximation
methods as well as the consequences for time-varying systems, non-linear systems, etc.
have not been investigated so far.
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A. Appendix

A.1. Cones

Definition A.1 (Cone)
Let X C R™, then the set

CX)={y|ly=azx,a >0,z € X}

is called the cone hull of the set X and X is said to be a cone if and only if X = C(X).[6]

Definition A.2 (Dual Cone)
The dual of a set X C R"™ is defined by

X" ={y|(y,x) >0V e X}.

If X is a cone, we call X* its dual cone.[2]

Definition A.3 (Convezr Cone)

A cone X is called convez if it contains the line segment between any two points of it,
ie.

z1,2€ X = ars+(1—a)r1 € X, 0<a <1,

or equivalently by cone defintion

1,22 € X = ax1+ fre € X,a,8 > 0.[2]

Remark: If X C R"™, then the smallest convexr cone containing X consists of all finite
nonnegative linear combinations of elements of X.

The dual set is defined by the scalar product and hence by the continuity and linearity
of the scalar product, we get it the following result.

Lemma A.1

For every set X, its dual X* is a closed convex cone.[2]
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Definition A.4 (Pointed and Solid Convexr Cone)

For a convex cone X we say it is

e pointed if X N —X = {0},

e solid if the interior of X, X # 0.[2]

Definition A.5 (Polyhedral Cone)
A cone X C R" is called polyhedral, if it is finitely generated, i.e. if

k
X = BR:

for some natural number k and an n x k matrix B.[2]

A polyhedral cone is in a manner of speaking, a cone with a finite number of edges. Thus
the cone consists by definition of nonnegative linear combinations of finite number and
is therefore automatically convex. It also has to be closed because of the continuity of
the linear mapping B.

Lemma A.2

Every polyhedral cone is closed and convex.[2|

Definition A.6 (Proper Cone)

A closed, pointed, solid convex cone is called proper cone.[2]

Lemma A.3

In R? every closed proper cone is polyhedral.[1]

Proof: Let X be a closed convex cone in R?. Since X is pointed, the maximum angular
between two vectors of X must be strictly smaller than 7. By taking exactly the two
vectors of X with maximum angular, the area enclosed by their convex combinations must
lie in X and by assumption of the maximum angular there cannot be any point in X outside
this area. |

A direct consequence of the well-known Seperation Theorem in functional analysis [25]
is the following result.
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Lemma A.4 (Seperation Theorem for convex cones)

Let X C R™ be a closed convex cone and xy € R™\ X. Then there exists ' € R™ such
that

(xg,2') <0 and {(z,2') >0Vz € X.

By the help of this lemma it will be easy to prove the following important theorem about
the dual of a dual cone.

Theorem A.1
X is a closed convex cone if and only if X = X** := (X*)*.[29]

Proof: » Sufficiency: If X** = X then by Lemma A.1 X is a closed and convex cone.

» Necessity: X* ={y | (z,y) >0Ve € X} = (y,z) >0Ve € X and Vy € X*.
Since X** = {z | (y,2) > 0 Vy € X*} it is clear that X C X**.

Suppose there exists a zp € X** \ X, then by Lemma A.4 there is a vector =/, such that
(20,2') <0 and (z,2') >0V € X.

Hence 2’ must be an element of X* and therefore (zp,2’) < 0 contradicts the definition of
X, |

Observe, if X was not closed, X** would be equal to the smallest closed convex cone
including X. Next we want to characterize a closed convex cone by its dual.

Theorem A.2 (Duality Theorem)
A closed convex cone X C R" is pointed if and only if X* is solid. [29]

Proof: » Sufficiency: Suppose X is not pointed, then 32 € X : 2 € X N —X,ie. z and —2
are both elements of X and hence az € X, Va € R by definition of a cone.
By definition of the dual cone, (y,aZ) > 0,Vy € X*.

If X* is solid, then Je > 0, xgp € X* : Be(xo) C X* and therefore it is possible to find
ay € B(xp) : (y,Z) # 0. Choosing o = —sign({y, Z)) contradicts the condition (y,az) > 0.

> Necessity: Assume X* is not solid and let {z1,...,2;} denote k linear independent
unit vectors of it.

n
If we could choose k = n, then z = > z; is an inner point X* :
i=0
Let 1 > ¢ > 0 and y € B.(z). Since {x1,...,2x} spans the whole R" we can write

n n
y=z+ Y a;z; with > a? <€ < 1. Thus |o;| < 1 and therefore y is a nonnegative linear
i=0 i=0
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combination with coefficients (1 — ;) > 0.

Hence, kK < n and it is possible to find a vector p € R™ that is orthogonal to the set
{z1,..., 2} and (p,z) = 0 Vo € £X*. That implies p € X** N —X** which is by Theorem
A.1 a contradiction to X being pointed. |
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