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Abstract 

Wind is a complex phenomenon and a critical factor in assessing climatic conditions 
and pedestrian comfort within cities. This master’s thesis attempts to quantify and 
model the relationship between near ground wind speed and urban geometry using 
two-dimensional raster data and variable selection methods based on Multiple Linear 
Regression. Such model can be implemented in a Geographic Information System 
(GIS) to assess spatial distribution of wind speed at the street scale in complex urban 
environments.  

Wind speed data two meters above ground is obtained from simulations by computer 
fluid mechanics modelling (CFD) and used as a response variable. Utilizing a 
shadow-casting raster algorithm, four measures of urban geometry are derived from 
high-resolution surface models (DSM): Sky View Factor (SVF), Fetch, Frontal Area 
Index (FAI) and Angular Frontal Area Index (αFAI). To compute Fetch and FAI, the 
shadow-casting algorithm needs a search angle and search distance as input 
parameters. In order to evaluate the effect of these parameters, a number of settings 
are tested resulting in a total of 53 different predictors. Four DSMs and three wind 
directions are combined, resulting in twelve unique datasets from which observations 
are sampled. A sequential variable selection algorithm followed by all-possible subset 
regression was used to select candidate models for further evaluation.  

The results show that models including SVF and Fetch explain general spatial wind 
speed pattern characteristics, but the prediction errors are large, especially so in areas 
with high wind speeds. However, all selected models did explain 90% of the wind 

speed variability ( R2 ≈ 0.90 ). The RMSE of normalized predicted wind speed 
(amplification factor) for city models ranges from between 0.01 (dense building 
geometry) to 0.22 (wide street aligned in the wind direction with air flow 
channelling). The differences between the selected candidate models are less than 
0.02, and no model consistently performs “best” over all city models. Models that 
include FAI and αFAI did not improve on these results. Predictors adding information 
on width and height ratio and alignment of street canyons with respect to wind 
direction are possible developments to improve model performance. To assess the 
applicability of any derived model, the results of the CFD model should be 
thoroughly evaluated against field measurements. 

Keywords: Geography, Physical Geography, Geomatics, Urban climate, Urban 
geometry, Wind speed, Digital surface model, Spatial variability, Geographic 
Information System 
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Sammanfattning 
Vind är ett komplext fenomen och en viktig faktor att ta hänsyn till i studier relaterade 
till stadsklimat och klimatkomfort i städer. Föreliggande uppsats är ett försök att 
kvantifiera sambandet mellan marknära vind och stadens geometri utifrån 
tvådimensionella rasterdata och linjär multipelregression. En sådan regressionsmodell 
kan användas i ett geografiskt informationssystem (GIS) för att beräkna rumslig 
fördelning av vindhastighet i komplexa urbana miljöer.  

Genom tredimensionell modellering med en Computer Fluid Dynamics-modell (CFD) 
erhölls vindhastighets-data för ett horisontellt skikt två meter över marken som här 
används som responsvariabel. Vidare användes en skuggkastningsalgoritm som 
utifrån en högupplöst höjdmodell, digital surface model (DSM), beräknar fyra olika 
mått på urban geometri: Sky View Factor (SVF), Fetch, Frontal Area Index (FAI) och 
Angular Frontal Area Index (αFAI). Algoritmen använder två olika parametrar för 
beräkningen av dessa derivat av höjdmodellen, sökavstånd och sökvinkel, och olika 
värden användes för att undersöka effekten av parametrarna. Detta gav totalt 53 olika 
prediktorvariabler beskrivande den urbana geometrin. Fyra olika höjdmodeller och tre 
olika vindriktningar genererade tolv unika dataset, stadsmodeller, från vilka cirka 
2800 observationer av samtliga variabler samplades. Variablerna med största 
förklaringsgraden utgallrades och de bästa kombinationerna, modellerna, av dessa 
identifierades med hjälp av regression på alla möjliga kombinationer av de valda 
variablerna.  

Resultaten visar att modeller med endast SVF och Fetch förklarar generella 
vindhastighetsmönster, men felen är relativt stora, särskilt i områden med höga 
vindhastigheter. Alla valda modeller förklarar dock cirka 90% av vindhastighetens 

variation ( R2 ≈ 0.90 ). RMSE för förstärkningsfaktor varierar mellan olika 
stadsmodeller; 0,01 (tät bebyggelse) till 0,22 (bred gatukanjon med kanalisering av 
vindflödet). Skillnaden mellan de valda modellerna är mindre än 0,02 och ingen av 
dem är konsekvent bättre än de andra över alla tolv stadsmodeller. FAI och αFAI 
ökade inte förklaringsgraden. Variabler som beskriver gatukanjonernas riktning i 
förhållande till vindriktningen och kanjonernas höjd och breddförhållande är 
intressanta utvecklingsmöjligheter. För att bedöma en modells användbarhet, måste 
resultatet av CFD-modelleringen utvärderas med hjälp av mätningar i fält. 

Nyckelord: Geografi, Naturgeografi, Geomatik, Stadsklimat, Bebyggelsegeometri, 
Vindhastighet, Digital höjdmodell, Rumslig variation, Geografiska informationssystem. 
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1 Introduction 

The study presented in this master’s thesis in geomatics is a first attempt to quantify 
and model the relationship between near ground wind speed and urban geometry 
using continuous two-dimensional raster data within a GIS. Wind speed is a very 
complex phenomenon and a critical factor in assessing climatic conditions and 
pedestrian comfort within cities. A simple computational approach may therefore be a 
useful GIS-tool in both research and management applications. 

1.1 Background and motivation 

The urban environment is receiving more attention in many research fields, including 
both physical and human geography disciplines. A city may be viewed as a spatial 
aggregation of buildings of different size, shape and distribution, which defines the 
urban canopy. This can have a large impact on the physical environment on both local 
and regional scales, for example by affecting the natural hydrological cycle or the 
radiation balance at the Earth’s surface. The city also offers activities and 
opportunities that attract people, leading to increased global urbanisation and 
generating a need for research on critical environmental issues, many of them related 
to the urban climate. 

The urban climate results from human activities and from the modification of surface 
conditions. New surface materials, associated with buildings and roads along with 
changes to the surface morphology contribute to this new set of conditions 
(Grimmond 2007). Human activities are associated with the emission of heat, 
moisture and pollutants. Wind speed, wind direction, air pollution, driving rain, 
radiation and daylight are examples of physical quantities that constitute the outdoor 
climate and change due to the shape, size and orientation of buildings and other 
obstacles such as trees etc. Both increased and decreased wind speed may potentially 
be regarded as unfavourable changes leading to uncomfortable conditions for 
pedestrians and insufficient removal and accumulation of air pollutants. Increased 
wind speed at pedestrian level is one of the problems that are considered most 
important, and studies of the pedestrian wind environment for large construction 
projects are required by many urban authorities (Blocken & Carmeliet 2004). 

Wind in the urban environment is a highly complex phenomenon mainly dependent 
on the local geometry within the city structure. Traditionally wind flow is investigated 
using wind tunnel experiments or full-scale field measurements (S. Kim & Boysan 
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1999). An increasingly popular way to describe airflow in the urban environment is 
by using three-dimensional computational fluid dynamic (CFD) models where 
numerical methods are utilized to simulate the interaction between the atmosphere 
and the urban surface (Blocken & Carmeliet 2004; Murena et al. 2009). However, 
CFD-models are computational intense and allows for only a limited spatial extent to 
be analyzed (Lindberg et al. 2008).  

Assuming wind speed at the pedestrian level is dependent on the local urban 
geometry, it could be predicted if the relationship between wind speed and the 
geometry were quantified; i.e. if there were an equation, or model, defining this 
relationship. Within a GIS, measures of the urban geometry may be represented by 
two-dimensional raster data computed from detailed urban elevation models, thus 
allowing for a computationally efficient implementation of a model utilizing local 
raster operations. 

Sky View Factor (SVF) and Frontal Area Index (FAI) are two measures that are used 
in urban climatic research in order to quantify the spatial variation of urban geometry. 
SVF is a parameter that can be expressed as the ratio between radiation received (or 
emitted) by a planar surface and that received from (or emitted to) the entire 
hemisphere, which has been used in a variety of climate related studies such as energy 
exchange, spatial variations of urban air and surface temperature patterns and outdoor 
thermal comfort, as well as in the modeling of the urban climate and in urban 
planning (Lindberg & Grimmond 2010). FAI has been used in efforts to parameterize 
aerodynamic properties of the urban surface such as zero-plane displacement and 
roughness length (Grimmond & Oke 1999) and in mapping of urban roughness, 
ventilation paths, and wind dynamics (Gal & Unger 2009; Wong et al. 2010; Chen & 
Ng 2011). A novel measure related to FAI is introduced in this study, Angular 
Frontal Area Index (αFAI). Together with Fetch, which measures the distance to a 
change in aerodynamic properties of a surface (Oke 1988), these three measures are 
derived to represent urban geometry in this study. 

1.2 Objectives 

The overall objective with this study is to build a model for the prediction of 
pedestrian wind speed in complex urban settings using measures of urban geometry as 
explanatory variables (predictors). To achieve this, the influence on wind speed of 
four different measures is analyzed using statistical methods. These four measures, 
the predictors, are: SVF, Fetch, FAI, and αFAI. 

The specific objectives of this study are: 

• Investigate the relationships between wind speed and the predictors. 
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• Identify those measures, or combinations of measures of urban geometry 
that explain most of the wind speed variability. 

• Evaluate possible candidate models by mapping predicted values and 
residuals. 

The strategy is to use raster datasets representing simulated wind speed data and 
measures of urban geometry as response variable and predictor variables respectively. 
The predictor variables are derivatives of high-resolution digital surface data (DSM) 
computed by utilizing raster algorithms in MATLAB. The DSMs represent the spatial 
variation of the geometry in a complex real world urban environment. Wind speed 
data is simulated using a CFD-model, ENVI-met. Based on observations (samples) 
from these datasets, Multiple Linear Regression techniques are used to select 
important variables and to build models. 

Hereafter, a model is referred to as a regression equation predicting mean wind speed 
(y) including one or more measures of urban geometry as explanatory variables (x1 … xi). 
Such model can be implemented in a raster-based GIS application utilizing local 
operations on raster data. 

It is important to note that any suggested model in this work is a model predicting 
wind speed simulated by a CFD-model, not wind speed as measured in the real world. 
To evaluate the results of the CFD-model using field measurements is not within the 
scope of this work. 

1.3 Thesis structure 

This thesis is divided into seven chapters. In Chapter 2, focus is on wind flow within 
the urban canopy. The impact of buildings and building arrangements on wind 
conditions are discussed and some research efforts to model wind speed are presented. 
In Chapter 3, some important aspects of regression analysis are examined with focus 
on variable selection and model building. The methodology of the study is outlined in 
Chapter 4 including data preparation, computation of DSM-derivatives and 
application of statistical methods. The results are presented in Chapter 5 followed by 
a discussion and the conclusions, Chapter 6 and 7. 
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2 Wind and the urban environment 

The urban surface is one of the roughest on the Earth, which is why cities have major 
implications for the air flow at all scales (Grimmond & Oke 1999). The impact of the 
geometry of the urban environment is the single most important factor controlling 
wind at the local scale (streets), but it also contributes to the control of wind flow 
patterns in the surrounding rural areas, for example by trapping radiation, giving rise 
to the urban heat island and its associated wind flows. Thus, cities has a major 
influence on the planetary boundary layer, which is the part of the atmosphere where 
the conditions are characterized by the interaction between the atmosphere and the 
Earth’s surface. Thus, compared to the surrounding areas, a city usually provides a 
rougher surface, but also a warmer and maybe drier set of surface conditions. As air 
flows from the countryside to the city, it adjusts to this new set of conditions and the 
urban boundary layer (UBL), which is a local to meso-scale phenomenon within the 
planetary boundary layer develops. It extends above cities, where the conditions are 
governed by the characteristics of the urban surface (Oke 1988). A closer look at the 
city reveals the urban canopy layer (UCL), which is the layer below roof level. This 
layer is generated by micro-scale processes between the buildings (Oke 1988; 
Arnfield 2003). The climate, and thus wind speed at any location within the UCL is 
controlled by the surface characteristics and the geometry in the immediate 
surroundings (Hunter et al. 1991), which is the topic of this chapter.  

2.1 Wind flow in the urban canopy layer 

The basic geometric unit of the urban environment is the street canyon, defined by a 
road and its adjacent buildings. The microclimate characteristics of a street canyon 
depends on its orientation with respect to incoming solar radiation and angle-of-attack 
of the wind, construction materials and canyon geometry (Oke 1988), that is the 
height, shape and distribution of the buildings. The wind flow characteristics of the 
street canyon has been the subject to numerous of studies; in the field e.g. (Nakamura 
& Oke 1988; Eliasson et al. 2006), by wind tunnel and water channel experiments, 
e.g. (Johnson & Hunter 1999; Princevac et al. 2010) and by the use of numerical 
models e.g. (Hunter et al. 1991; Baik & Kim 1999). To summarize, the wind flow in a 
street canyon is driven and determined by the interaction of the flow field above 
buildings and local effects such as topography, building geometry, traffic and other 
local features (Georgakis & Santamouris 2008). 

When air encounters a building, it is deflected over the top, down the front (the 
windward wall) and around the sides. At the edges of the windward wall, the air 
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accelerates and the flow may separate from the building surface, initiating a reverse 
flow in low-pressure zones on the sides, top and leeward side of the building. On the 
leeward side, this recirculation (the wake zone) extends approximately two times the 
building height in the downwind direction. Above the lee eddy, converging air 
deflected over the roof produces a jet of high velocity. In front of the building, the air 
streaming down the windward wall produces a vortex at ground level with a 
recirculation in upwind direction. At some distance in front of the building, this 
counter flow meets incoming air and here a stagnation zone develops (Oke 1988; 
Wieringa et al. 2001; Blocken & Carmeliet 2004).  

In general, wind speeds in the urban canopy layer are reduced compared to surrounding 
rural areas. Local high wind speeds at pedestrian level are associated with corners 
streams and the windward vortex. These effects are enhanced by tall buildings, which 
deflect faster moving upper air, thus increasing wind speed at the pedestrian level. Air 
that streams downward the windward side of a tall building may also enhance the lee 
eddy of any upwind building producing a strong vortex which may give wind speeds 
higher than those in the open (Oke 1988; Blocken & Carmeliet 2004). 

Applied to a street canyon, this implies that different spacing between the buildings, 
i.e. canyon widths, with respect to building height may cause different flow patterns 
due to the interaction between upwind and downwind effects of buildings. Oke (1988) 
used the height to width ratio (H∕W ) of street canyons to categorize wind flow into 
three flow regimes: (1) isolated roughness flow, (2) wake interference flow and (3) 
skimming flow, Figure 1. 

In the case of isolated roughness flow, the buildings are relatively widely spaced  
(H∕W < 0.3) and other buildings do not affect the flow around them as if they were 
isolated obstacles (Figure 1a). As distance increases downwind from a building, the 
sheltering effect decreases and eventually the jet merges with the flow and readjusts 
to its undisturbed form (Oke 1988). Thus, in isolated roughness flow, the wind speed 
is expected to increase in the downwind direction behind a building fuelled by the 
merging jet, before encountering the next building downwind where a stagnation zone 
develops resulting in a decrease in wind speed.  

At closer spacing (0.3 < H∕W < 0.7) the wake zone of the upwind building interferes 
with the upwind stagnation zone of the next building downwind. This is the wake 
interference flow (Figure 1b). At more dense arrangements (H∕W < 0.7), the main 
flow starts to skim above the roofs, driving a lee vortex in the cavity between the 
buildings beneath, i.e. in the street canyons (Figure 1c). In this situation, the bulk of 
the flow does not enter inside the street canyon. In a study using numerical methods,  
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Figure 1 Flow regimes identified by Oke (1988): a) isolated roughness flow, b) wake interference flow, 
and c) skimming flow. (Adapted from Oke 1988). 

Hunter et al. (1991) found evidence suggesting that the canyon length affects the 
threshold  ratios for the transition from one flow regime to another.  

When the flow is perpendicular to the canyon axis, the recirculation on the canyon 
floor is directly opposite (G. T. Johnson & Hunter 1999) and for a H∕W -ratio near 
unity and roof-top winds exceeding 1.5–2 ms-1, the recirculation wind speed at the 
canyon bottom is of the order 1/3–1/2 of the roof-top wind (Britter & Hanna 2003). If 
the wind is oriented at some oblique angle to the canyon direction, the canyon vortex 
will still develop but having an along canyon component giving it a “cork-screw” 
motion (Britter & Hanna 2003; Oke 1988). The along-street channelling depends 
linearly on the component of the above-roof wind parallel to the street and the across-
street recirculation vortex depends linearly to the component perpendicular to the 
street (Dobre et al. 2005). If the above roof-level flow is parallel to the canyon, 
channelling may cause wind speeds greater than in the open (Oke 1988) and the flow 
direction at the canyon floor is the same as above roof level (G. T. Johnson & Hunter 
1999). Close to the canyon walls friction retards the wind flow. Hence, wind speed is 
expected to be higher in the centre of the canyon (Ahmad et al. 2005). 

Irregular canyon geometry introduces complications to the flow patterns described 
above by controlling the production of turbulence both inside and outside the canyon. 
For example, Kastner-Klein (2004) showed the influence of roof shapes on the wind 
flow pattern in street canyons. But in general the resulting flow is qualitatively 
consistent with the general expected flow described above (Carpentieri et al. 2009; 
Britter & Hanna 2003). 

H /W
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Obviously, the geometry of the urban canopy layer is more complex than the one 
street canyon. The flow in street intersections is highly complex and strongly three-
dimensional compared to the flow in street canyons (Carpentieri et al. 2009). For 
relatively regular street networks, field and wind tunnel investigations shows that the 
flow pattern may become more complicated at or near an intersection due to the 
interaction of winds between crossing street canyons (Wang 2007). When the wind 
flow parallel to one street reaches an orthogonal intersection, a large recirculation 
region develops at the entries to the crossing streets (Soulhac et al. 2009). Thus, the 
effect of street intersection extends into adjacent canyons up to a distance of about 
one street width (Tiwary et al. 2011). Princevac et al. (2010) experimented on airflow 
in between arrays of regular building blocks using water channel methods. The 
experiments showed that the flow along canyons (the main flow) parallel to the 
incoming flow was partially deflected sideways after the first row of buildings. 
Moreover, there was a counter flow back into the channel after the second row. The 
effect was enhanced by the presence of a tall building rising above surrounding 
buildings. Thus, at and near street intersections it is expected that wind speeds may be 
affected by either deflection or merging of airflows. 

Without exploring this topic any further, it can be concluded that by just increasing 
the complexity of the urban geometry stepping up from a single regular street canyon 
to a regular network of intersecting orthogonal streets, the flow patterns become 
intricately more complex. Moreover, the flow at intersections is very sensitive to 
minor changes in the geometry (Robins et al. 2002), suggesting that any established 
relationship between geometry and wind flow at one location may not be generalized 
to other locations. 
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3 Statistical concepts 

In research where data are observational, meaning that the variance in the response 
has not been manipulated by experimental design, difficulties in determining which 
casual factor or factors best explain observed responses may arise. In these situations, 
Multiple Linear Regression (MLR) is one of the most used techniques for describing 
such systems and identifying models consistent with the observed phenomenon 
(Whittingham et al. 2006). It is usually the case that models with fewer predictors 
have greater generality which is why scientific work usually is directed towards 
identifying relatively parsimonious models in agreement with observed data 
(Whittingham et al. 2006). Finding an appropriate subset of predictors to include in 
the model is often called the variable selection problem (Montgomery et al. 2001). 

In the present study, variable and model building techniques based on MLR are used 
to identify those variables that explain most of the variability in wind speed, the 
response variable. In this chapter the assumptions and diagnostic methods of linear 
regression and some aspects of variable selection and model building are discussed. 

3.1 Regression analysis and diagnostics 
Linear regression analysis begins, as the name implies, with the assumption that there 
is a linear relationship between the response variable (y) and the explanatory variable 
(x), the regressor. By fitting a straight line to the data, the outcome is an equation (or 
model) that can be used to predict values of y from new values of x (Rogerson 2010). 
Apart from linearity, there are some other assumptions, or requirements, that should 
be addressed and if necessary corrected for. In short, the assumptions of MLR can by 
summarized as follows (Montgomery et al. 2001; Rogerson 2010): 

1. Linear or approximately linear relationship between the response (y) and the 
regressors (x). 

2. The error term has zero mean. 

3. The error term has constant variance. 

4. The errors are uncorrelated. 

5. The errors are normally distributed. 

6. There is no multicollinearity in the data. 

In addition to these assumptions, there are some other potential problems that 
should be diagnosed: 

7. Outliers and influential cases. 
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A linear relationship between any two variables x and y is represented by a straight 
line and the simple linear regression fit to the data is 

 

where the intercept β0 and the slope β1 are unknown constants (the regression 
coefficients) and ε is a random error component, the residuals. In the case of MLR, 
there is more than one regressor in the equation, thus 

 

is the multiple linear regression extension of the simple linear regression equation 
with k regressors. The regression coefficients are estimated by least-squares 
estimation (Rogerson 2010; Montgomery et al. 2001). 

The residuals may be viewed as the variability in y not explained by the regression 
model, why problems such as non-linear relationships or non-constant variance in the 
response becomes a property of the residuals (Montgomery et al. 2001) possible to 
detect by some residual diagnostic. 

In order to use MLR when there is no linear relationship between the original 
variables, the variables should, if possible, be transformed. Common methods include 
logarithmic, quadratic or square root transformations. By transformation of the 
response and/or the regressor variables model inadequacies such as non-normal errors 
or non-constant variance may be eliminated, or at least reduced (Montgomery et al. 
2001). If no subject-matter knowledge on the form of the relationships (i.e. 
logarithmic, quadratic etc.) is available, the appropriate transformations have to be 
chosen empirically. Scatter diagrams (response against regressor) can be used to 
investigate possible linear relationship between two variables but in the case of MLR 
this may not be adequate. This is particularly the case when several important 
regressors are interrelated. Instead, residual plots (residuals against predicted values 
or predicted values against the response) or partial residual plots are preferred 
(Montgomery et al. 2001). The residuals should be normally distributed and 
uncorrelated, that is, there should be no evidence of any trends or patters when 
plotting the residuals against any of the regressors, the response or the predicted 
values.  

When two or more regressors are highly correlated to each other, multicollinearity is 
said to be present in the data. Effects of multicollinearity are large variances and large 
absolute values for the least-squares estimation of the regression coefficients. Also the 
regression coefficients may end up having different signs than expected and are very 
sensitive to changes in the data. The removal or addition of a few observations may 
have huge impact on the estimation of the regression parameters. In such cases, 

y = β0 +β1x1 +ε

y = β0 +β1x1 +β2x2 + +βkβ1 +ε
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inference based on the regression model may be misleading or erroneous. However, 
the linear combination of the parameters (the fitted model) may be a good predictor, 
even though the individual parameters are estimated poorly (Montgomery et al. 2001). 
The effect of multicollinearity can seriously undermine variable selection algorithms 
that use significance tests on parameter estimates as selection criteria, e.g. stepwise 
regression (Graham 2003; Whittingham et al. 2006). 

Multicollinearity can be detected by calculating the variance inflation factor, VIF 

 

where Rj is the coefficient of determination when xj is regressed on the remaining  
regressors. A high value of Rj gives high VIFs, indicating a multicollinearity problem. 
Several critical values have been suggested: VIFs > 10 indicate severe multi-
collinearity but values as low as two may have significant impact (Graham 2003).  
If the aim of the regression analysis is prediction only, and there is no interest in the 
particular relationships between the response and the regressors, then the problems 
with multicollinearity can be ignored (Graham 2003). If not, some method to deal 
with the problem has to be applied.  

3.2 Variable selection and model building 
To select a few important variables from a large set of candidate regressors is a 
compromise between two conflicting objectives. First, a model with as many 
regressors as possible is wanted so that the information content in these factors can 
influence the prediction of the response. Second, a model with as few regressors as 
possible is preferred due to the increase in predicted value variance with increased 
number of regressors. Also, many regressors means greater costs for data collection 
and model maintenance (Montgomery et al. 2001; J. B. Johnson & Omland 2004; 
Whittingham et al. 2006). In this study, the number of regressors equals the number of 
derivatives that have to be computed. Thus cost is equal to the processing load on the 
application used to compute DSM derivatives. 

To solve the variable selection problem, a suite of algorithms has been developed of 
which stepwise methods are most commonly used and included in most software 
packages. In stepwise multiple regression, successive addition (forward selection) or 
removal (backward elimination) of significant or non-significant terms, or a 
combination of both (stepwise regression), is performed. However, the significance 
testing approach adopted by the stepwise methods has limitations and the method has 
been criticised. Whittingham (2006) mention three main shortcomings of stepwise 
multiple regression methods: (1) bias in parameter estimations (2) inconsistencies 
among model selection algorithms, and (3) an inappropriate focus or reliance on a 

VIF = 1− Rj
2( )

−1
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single best model, where data are often inadequate to justify such confidence. 
Moreover, there is often no explicit criterion of what is the best model (Burnham & 
Anderson 2004). 

If there are not too many candidate variables to choose from, all-possible regression 
algorithms offer an alternative to stepwise methods. All-possible regression 
algorithms fit all possible equations involving one regressor, two regressors etc. 
(Montgomery et al. 2001). By using an appropriate criterion that involve both the fit 
and complexity, multiple candidate equations can be evaluated, hence avoiding the 
shortcomings of stepwise methods mentioned above (Whittingham et al. 2006; 
Johnson & Omland 2004). Competing models can also be evaluated using cross-
validation subsets or a separate test set (Luo 2008). In principle, all possible subsets 
should be tried, but as the number of possible subsets increases exponentially with 
increasing number of candidate regressors (2p – 1) more than 20–40 regressors is not 
feasible to include (Luo 2008; Montgomery et al. 2001). 

By contrast to traditional hypothesis testing (significance testing) model selection 
offers a way to draw inferences from a set of competing hypothesis or models 
(Johnson & Omland 2004). To choose among models, to compare or weight models, 
several selection criterion are available, for example: R2, Adjusted R2, Mallow’s Cp, 
Akaike’s information criterion (AIC) and Schwart’s Bayesian Information Criterion 
(BIC) (Luo 2008). R2 is not a very good criterion as it always increases when a new 
term is added to the model. Because of the lack of an optimum value for R2 it is not 
straightforward to use for selection (Montgomery et al. 2001). Adjusted R2 adjusts for 
the number of included terms and increases only if the improvement of the model by 
adding a term is better that what would be expected by chance (Luo 2008).  

AIC and BIC are defined as (Luo 2008): 

 

where RSS is the sum of residual squares, h is the number of regressors in the model 
and n is the number of observations. The equations above have two components: one 
that measure the model fit to the observed data and one bias correction factor which 
increases as a function of the number of regressors in the model, discouraging over-
fitting (Luo 2008; J. B. Johnson & Omland 2004). This means that both criteria 
account for both fit and complexity and the model with the lowest AIC or BIC value 
has the best relative fit given the number of parameters in the model (J. B. Johnson & 
Omland 2004; Whittingham et al. 2006).  

AIC = 2h + n ln RSS
n

BIC = h ln(n)+ n ln RSS
n
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Mallow’s Cp is a criterion related to the mean square error of a fitted value and is 
calculated as (Mallows 1973): 

Cp =
RSSp

σ̂ 2
− n + 2 p  

RSSp is the residual sum of squares for the subset regression with p regressors, σ̂ 2  is 
an unbiased estimate of σ 2, and n is the number of observations. Cp is frequently 
calculated by using the mean square error for the full model as an estimate of σ 2. In 
the presence of redundant variables this may be problematic due to overestimation of 

; consequently the values of Cp will be small. If the bias in the model is negligible, 
it can be shown that Cp = p. Thus, a model that is unbiased should have a Cp value 
close to p for that model and generally small values of are preferred (Montgomery et 
al. 2001). 

The methods described above are objective techniques to identify (possibly) 
important variables and to screen out those that are (likely to be) redundant. In 
practise, it is also important to consider subject-matter knowledge on the phenomena 
under study in order to judge which predictors that may be important. In the present 
study, the choice of predictors are based on the assumption that the urban geometry is 
the most important factor controlling wind speed near ground in between buildings. It 
is also assumed that SVF, Fetch, FAI and αFAI are appropriate measures of the 
geometry. However, there is no a priori knowledge about the relative effect of these 
compared to each other. Hence, the methodology applied in the present study once the 
set of predictors have been computed is data driven and based on objective variable 
selection techniques. 

  

σ 2
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4 Data and methodology 

The purpose of the selected methods is to derive models (equations) predicting wind 
speed from a set of candidate explanatory variables describing the urban geometry. In 
this study, a model is equal to a regression equation estimated by MLR. The input 
data in the regression analysis, wind speed (response variable) and geometry 
measures (predictor variables) was sampled observations (grid cells) from derivatives 
of digital surface models (DSM). Four different DSMs, hereafter denoted City 
Models, were constructed as described in section 4.1. The simulation of wind speed 
was performed using the CFD-model ENVI-met (section 4.2) and the computation of 
DSM-derivatives by a shadow-casting algorithm implemented in MATLAB is 
described in section 4.3. The regression analysis and variable selection methodology 
are outlined in section 4.4. 

4.1 City models 
As test cases, four areas in Göteborg city centre were used to construct four different 
City Models reflecting different types of urban morphologies; dense building 
structure with narrow canyons, open areas and canyons with varying width and 
orientation, (Figure 2 and Table 1). For each City Model a DSM was obtained by 
vector to raster conversion of a detailed governmental database (Lindberg 2007). The 
resolution of the resulting grids was 2 meters and the geographic extents were 
242×242 meters, i.e. 121×121 pixels. To facilitate the needs of the ENVI-met 
software, a buffer zone with zero elevation surrounding the DSM was added to the 
city model grid. Flat areas were chosen because the existence of topography would 
interfere with the effect of building geometry making any derived model highly 
biased by location. To eliminate any topographic influence, elevation between 
buildings was zeroed. The DSMs did not include vegetation.  

Again, it is important to note that this work will not try to model wind speeds within 
the selected areas of Göteborg, but the wind speeds simulated by a CFD-model 
(ENVI-met) using the four constructed city models as input data.  

4.2 Wind speed simulation 
As the response variable, wind speed patterns for the four city models were simulated in 
ENVI-met 3.1 (Bruse 1999; Bruse n.d.). ENVI-met is a three-dimensional computer 
model designed to analyse small-scale interactions between urban design (geometry), 
and microclimate. The model is able to simulate the interactions between different 
urban surfaces, vegetation and the atmosphere at typical scales of 0.5 to 10 meters  
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Figure 2 City Modes 1–4 (CM1–CM4). 

 

Table 1 Description of the four city models. 

City model Description 

  CM1 An open area (square) in the centre and quite dense building structure with narrow 
canyons running approximately in west to east direction in the north.  
A wide street canyon runs through the model in approximately south to north 
direction.  

CM2 Dense building structure with a small open area in the northwest. Street canyons are 
narrow and intersect at right angles. 

CM3 A very dense building structure with narrow street canyons, divided by a wide street 
running from south to north. 

CM4 Mainly open areas in between dense buildings in the south and a large isolated 
building in the north. 

 

and a maximum time step of 10 seconds (Ozkeresteci et al. 2003). The software uses 
input values for buildings, vegetation, ground surfaces, climatic conditions, soils 
(Rosheidat et al. 2008), and then simulates the impact on various climatic parameters, 
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such as wind speed and direction, air temperature and humidity, turbulence, radiative 
fluxes, bioclimatology and gas and particle dispersion (Ozkeresteci et al. 2003). 

ENVI-met allows for a maximum grid of 250×250×30 cells and takes a number of 
configuration parameters to set up the simulation environment. For this study the size 
of each model was 175×175 pixels, which include a zone of zero elevation around the 
actual DSM. This zone is needed for the software to establish a vertical logarithmic 
wind profile representing external undisturbed wind conditions. The roughness length 
parameter was set to 0.1 meters and input wind speed (undisturbed wind 10 meters 
above ground) to 6 ms-1. To study the effect of different wind directions with respect 
to the orientation of the geometry, three different wind directions, S (180°), SW 
(225°), and W (270°), were simulated for each of the four city models giving a total of 
12 simulations. Simulation time was one hour, between six and seven in the morning, 
thus the result is mean wind speed ( ) during this time. It was assumed that an input 
wind speed of 6 m s-1 in the morning makes any thermal effects negligible. 

In practice the combination of one city model and one wind direction may be 
regarded as one unique model, giving a total of 12 different datasets. Hence, hereafter 
City Model refers to a combination of one DSM (1, 2, 3 or 4) and one wind direction 
(S, SW or W), e.g. denoted CM1S. From the three-dimensional simulation result,  
2-dimensional (horizontal) grids were extracted at 2 meters above ground level. 
Finally, the wind speed grids were divided by input wind speed. Thus, the actual data 
used in the following regression analysis is the fraction of input wind speed, often 
called the amplification factor (Blocken & Carmeliet 2004), in this case: 

 

where  is the amplification factor in grid cell x,y,  is the simulated mean wind 

speed in grid cell x,y and  is the external reference wind speed, here given by the 

ENVI-met configuration (input wind speed). 

4.3 Computation of DSM derivatives 
As stated above, the fundamental assumption of this study is that the geometry of the 
urban environment is the major factor influencing wind speed within the urban 
canopy and at street or pedestrian level (two meters above ground). Building height, 
size, shape and the spatial distribution of buildings constitute the geometry. 
Therefore, a DSM is a useful representation of the urban geometry. However, DSMs 
do not represent the geometry at locations in between buildings, and since these are 
the locations of interest in this study (obviously there will be no street level winds at 

u

γ x,y =
ux,y

Uref

γ x,y ux,y

Uref
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the same locations as any building), such measures must be derived. This motivates 
the computation of SVF, Fetch, FAI and αFAI, since these derivatives are measures 
of the geometry at locations in between buildings. 

To compute the derivatives, a shadow-casting algorithm operating on raster data 
(Richens 1997; Ratti 2004; Lindberg & Grimmond 2010) was utilized in MATLAB. 
In the following sections the procedures are explained in more detail. 

4.3.1 Sky View Factor 
SVF is a measure of the degree to which the sky is obscured for a given point 
(Grimmond & Oke 1999). It is a dimensionless measure between 0 and 1; a value of 
zero represents total obstruction and a value of one free space. 

Figure 3 illustrates the influence on SVF of the geometry surrounding a given point. It 
is evident from this illustration that both the distance to, and the height of the 
buildings affects the value of SVF. In Figure 3 the building B1 obscures a larger part 
of the sky for point p1 to which it is close than for point p2, and it has no effect on the 
point p3, since building B3 at this location obscures it. Further, due to its height, B1 
obscures more of the sky than B2 at location p1. The segments indicated by the dotted 
lines represents the part of the sky that is not obscured for the three points. Compared 
to the corresponding segments for p1 and p3, SVFp3< SVFp1< SVFp2. 

 

 
Figure 3 Influence of geometry on Sky View Factor (SVF) illustrated by a vertical cross-section. The 
SVF for point p2 is indicated by the dotted line and is ≈ 1/3 of the “sky”. The effect of building height 
and distance to building is clearly seen at point p1 and p3, which have lower SVF values. Note that in 
reality the visible proportion of the whole hemisphere defines SVF. 

Using the shadow-casting algorithm, Ratti and Richens (1999) developed a method 
for calculation SVF from high resolution DSMs which have been evaluated and 
proved to be very accurate (Lindberg & Grimmond 2010). To calculate SVF, the 
shadow-casting algorithm is repeated for a large number of solar positions, distributed 
over the sky according to the concept of annulus weighting proposed by Steyn (1980). 
A predefined number of solar positions, distributed over a number of annulus levels, 
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i.e. levels of the same solar elevation angle, are used. For each level, azimuths are 
offset to give an optimal distribution of all solar positions on the hemisphere. The 
algorithm then computes the sum of weighted shadow maps obtained from each of the 
annulus levels (Lindberg & Grimmond 2010).  

The algorithm computes five different measures of SVF: (1) the global SVF taking all 
directions into account and (2–5) four direction specific SVF, one for each of the 
cardinal axis north (SVFN), east (SVFE), south (SVFS) and west (SVFW) using a 180° 
field of view. Since the interest here is in the geometry’s orientation with respect to 
wind direction, the four directional SVFs were recomputed accordingly. This can be 
done by computing the weighted sum of two of the four directional SVFs using local 
raster operations. For each model, SVF for the directions upwind, downwind, and the 
two directions perpendicular to the wind direction left and right were computed as 
illustrated in Figure 4. For example, if the wind direction is from SW (225°) the 
upwind SVF, SVFuw, is the weighted sum of SVFW and SVFS, computed as follows: 

 

where  and  are the weights for west and south respectively. Note that the 

upwind direction is one of the wind directions used in the simulation of wind speed, 
i.e. 180°, 225° or 270° (section 4.2). 

 
Figure 4 Five different measures of SVF. The rectangles represent buildings, and black indicates the 
part of the buildings surrounding point p that affects respective value of SVF at that point. The arrows 
indicate wind direction. 

4.3.2 Fetch 
Fetch is the distance, measured in the upwind direction, from a given point to a 
leading edge, that is, a change to a new and climatically different surface. Downwind 
from the leading-edge, the air must adjust to a new set of boundary conditions (Oke 
1988). In this study, Fetch is conceptualised as the distance from a point p to the 

SVFuw = SVFW ×wW + SVFS ×wS

wW =
225−180
270−180

wS =1−wW

wW wS
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nearest obstacle, e.g. a building, in the upwind direction. Compared to SVF, Fetch is 
not affected by building height.  

For each cell, Fetch is computed for a set of directions specified by a search angle, α, 
which forms a circle sector with radius r, defined by the search distance, as illustrated 
in Figure 5. If no building is located within the search distance, the value of Fetch is 
equal to the search distance. The resulting Fetch-value for point p in Figure 5 is the 
average value of the distances d1 to dn represented by solid lines (between point p and 
the x-marks) for l1 to ln, where n =α, normalized by the search distance, ds: 

 

Thus, Fetch is a value between 0 and 1. In Figure 5, two measurements (l4 and l5) have 
distances equal to the search distance, because no building is in “the line of sight”. 

The search distance and search angle are parameter settings in the algorithm and can 
in theory have any values. For example, a search angle of 360° would give a Fetch 
value representing the average distance to all buildings surrounding point p. The 
possible values in this study are restricted to values that keep the search sector within 
the boundaries of the built up part (the DSMs) of the city models. Figure 6 shows the 
maximum possible values, given that only a subset of the model is later sampled 
(section 4.3.4).  

 

Figure 5 Given a search angel, α, and a search distance ds the Fetch value for point p is the average 
distance to any building up wind from point p. In the figure, α = 11 and the distances are represented 
by solid lines ended by an x-mark. 

The maximum possible values of search angle and search distance were found to be 
61° and 144 meters respectively. To test the influence of search angle and search 
distance on the correlation to wind speed, all combinations of four different settings 
for each parameter were used: 

Fetchp =
1
ds

dii=1

n
∑

n , n =α, 0 < Fetchp <1
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Search angle: 11°, 21°, 41°, 61° 
Search distance: 10m, 50m, 100m, 144m 

Thus, a total of 16 different Fetch derivatives were computed. Table 2 summarises all 
derivatives. 

 

 
Figure 6 Illustration showing the maximum possible search angle and search distance for calculation of 
Fetch, FAI and αFAI. The medium grey area is the DSM part of the city model and the dark grey area 
is the areal subset used for sampling. To maximize search distance and search angle, the sampling area 
is different for the three different wind directions. 

4.3.3 Frontal area index and angular frontal area index 
FAI is a measure of building walls facing the wind flow in a particular direction and 
expressed as frontal area per unit horizontal area Figure 7a. It has a strong relationship 
with surface roughness and has been suggested as a good indicator for roughness in 
meso-scale meteorological models (Wong et al. 2010). However, in this study, FAI is 
conceptualized not as frontal area per unit horizontal area, but building height h 
facing the wind per unit distance d, as illustrated in Figure 7b. The value of FAI for 
point p is the sum of the heights h1 and h2 divided by the distance d. Compared to 
SVF and Fetch, FAI is a measure that is less “local” in that it accounts for all 
roughness elements (buildings) within a given distance. 

In this study, a novel measure of urban geometry is introduced. Similar to FAI, αFAI 
is a measure of the angle between the ground surface and a vector pointing towards 
the top of the wall facing the wind per unit distance. The angle is expressed as the 
ratio between the building height and the distance from a given point to where the 
height is measured. For the example in Figure 7b, αFAI for point p is equal to 

divided by the distance d.  

 

h1 / d1 + h2 / d2
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Figure 7 a) FAI is the sum of building walls facing the wind per unit horizontal area. b) Illustration of 
FAI and αFAI as conceptualized in this study. 

The difference between these two measures is that in the case of αFAI, the positions 
of the buildings in relation to point p have influence on the value. Shifting the 
positions of the two buildings in Figure 7b will increase the value of αFAI (β2 will be 
very large) but the value of FAI will be the same.  

Computation of FAI and αFAI follows the same conceptual method as for the 
computation of Fetch described above. The computed values are average values of 
several measurements, given a search angle and a search distance, as illustrated in 
Figure 8.  

Figure 8 Given a search angel, α, and a search distance ds FAI and αFAI for point p is the average 
value of FAI and αFAI along each line l1 to ln. 
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For simplicity, the same search distances and angles as for Fetch were used. Consider 
point p in Figure 8. The value of FAI is the average value of the building height h in 
each point marked by x along each line l1to ln, divided by the search distance, :

 

 

αFAI is computed in a similar way, but instead of the height, the ratio between the 
height h and the distance d between p and the points marked x along the lines l1to ln is 
used: 

 

 

4.3.4 Sampling 

In total, 53 different DSM derivatives (Table 2) were computed for all four city 
models and three different wind directions, giving 648 raster datasets, including wind 
speed. This means that for each city model and wind direction, each location (pixel) 
represents an observation of wind speed plus 53 derivatives. To obtain a dataset to use 
in the statistical analysis, a sample of observations from each model was extracted 
and compiled into one data set. The sample was taken from a subset area in each 
model chosen so to avoid border effects from the simulation of wind speed and to 
allow for as long search distance as possible when computing Fetch, FAI and αFAI. 
Thus the location of the sample area was different for the three wind directions, 
previously illustrated in Figure 6. The sample areas were 43×43 pixels. Pixels that 
coincided with buildings were excluded from the sample that in total included little 
more than 2800 observations. Because values of variables at one location tend to be 
strongly associated with values at nearby locations (i.e. spatial autocorrelation), a 
random sampling design can provide redundant information when sample locations 
are close to one another and may not be preferred (Rogerson 2010). Instead, a cyclic 
sampling design optimises the distances between sampling points, therefore the 
number of samples needed to represent the spatial characteristics of the data is also 
optimized (Burrows et al. 2002). Here, a 3/7 cyclic sampling design was used. 
Applied on raster data this design takes samples at position (pixel) 0, 1 and 3 within a 
seven pixel long sequence. This pattern is repeated along both columns (y) and rows 
(x) for the whole raster, or as in this case, for the whole sample area described above. 

ds

FAIp =
1
n

h∑
ds

i=1

n
∑ , n =α

αFAIp =
1
n

h
d∑

ds
i=1

n
∑ , n =α
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Table 2 Summary of all computed derivatives. For Fetch, FAI and αFAI search angle and search 
distance is indicated by the first and second subscripted digit respectively, i.e. Fetch-three-one (Fetch31) 
is Fetch computed using a search angle of 41° and a search distance of 10 meters. 

Sky view factor 
     

     
Fetch 

 10 m (1) 50 m (2) 100 m (3) 144 m (4) 

11° (1) Fetch11 Fetch12 Fetch13 Fetch14 
21° (2) Fetch21 Fetch22 Fetch23 Fetch24 
41° (3) Fetch31 Fetch32 Fetch33 Fetch34 
61° (4) Fetch41 Fetch42 Fetch43 Fetch44 

     
Frontal area index 

 10 m (1) 50 m (2) 100 m (3) 144 m (4) 

11° (1) FAI11 FAI12 FAI13 FAI14 
21° (2) FAI21 FAI22 FAI23 FAI24 
41° (3) FAI31 FAI32 FAI33 FAI34 
61° (4) FAI41 FAI42 FAI43 FAI44 

 
Angular frontal area index 

 10 m (1) 50 m (2) 100 m (3) 144 m (4) 

11° (1) αFAI11 αFAI12 αFAI13 αFAI14 
21° (2) αFAI21 αFAI22 αFAI23 αFAI24 
41° (3) αFAI31 αFAI32 αFAI33 αFAI34 
61° (4) αFAI41 αFAI42 αFAI43 αFAI44 

 

4.4 Statistical methods 

To assess the adequacy of the use of regression analysis to a given problem or dataset, 
possible violations of the regression assumptions should be diagnosed. Such 
diagnostic methods are primarily based on the study of the error terms, that is, the 
regression residuals (Montgomery et al. 2001). Since the regression residuals are part 
of the diagnostic results from a regression analysis, the methodological approach has 
to be iterative, where the initially specified model is edited and regressed again until 
the model is satisfactory. 

Here, the regressors are 53 different raster dataset representing derivatives of urban 
geometry and the main goal is to identify those regressors, or the combination of 
regressors, that best explain the variability in wind speed. It is important to recognise 
the nature of the data set. As described above, several varieties of the same derivative 
(e.g. 16 different Fetch) are included which is likely to result in many redundant 
variables and high collinearity. 

SVFg SVFuw SVFdw SVFlw SVFrw
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To achieve this, the following steps were performed: 

1. Fitting the full model using MLR, i.e. the model containing all 53 regressors. 

2. Examination of regression residuals and other diagnostics. 

3. Transformation of response and regressors if appropriate. Check for 
improvement. 

4. Selection of a set of candidate regressors using a sequential selection approach 

5. All possible subset regression on the set of selected regressors. 

6. Examine the results and select one (or more) model. 

7. Predict wind speed using the suggested models and evaluate model 
performance. 

4.4.1 Sequential variable selection algorithm 

A first screening of the relatively important regressors was performed using a 
sequential selection algorithm implemented in MATLAB (step 4 above), in which 
regressors were added to the model in a sequential order, minimising the residual sum 
of squares RSS in each step. To avoid adding more regressors than necessary to 
improve the model, the process continued until a model selection criterion was 
satisfied (minimized AIC or BIC). Here, BIC were used in favour of AIC because it 
penalizes many regressors harder. The algorithm was applied as follows: 

1. The dataset was partitioned into L-fold randomised cross-validation subsets 
using the cvpartition-function in MATLAB ( ). 

2. For each subset l, a sequential selection scheme using MLR under BIC was 
applied. For each step i, the regressor minimising RSS was selected as the ith 
regressor (xi) in the lth model and a binary value indicating the appearance 

of the regressor in the model was stored. The score indicating the order of 
selection (i.e. the value of i) and RSS, R2 and BIC was also stored. Regressors 
were added to the model as long as the value of BIC improves, i.e. decreases. 
This procedure results in 100 separate set of selected predictors, or models. 

3. The frequency of appearance  and average score were computed 

for each regressor. A high value of Fi indicates that a regressor was included 
in many of the models and a low score indicates that it was selected early in 
the process (a low i). Based on the results, a subset of candidate regressors 
was chosen for further analysis. 

Due to the fact that many regressors are varieties of the same derivative, it is 
reasonable to suspect a high degree of multicollinearity in the dataset. To account for 
this, the possibility of using Partial Least Square Regression (PLSR) instead of MLR 

L =100

Vli

Fi = Vlil=1

L
∑
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was tried. PLSR is a regression technique that is useful when there are many 
regressors compared to the number of cases in the data (high dimensional datasets), or 
when there is a high degree of multicollinearity. However, RSS, and thus BIC, 
computed on the full model by PLSR (plsregress in MATLAB) did not differ from 
values computed by MLR, which is why MLR was chosen as the regression method 
in the sequential selection algorithm. In MATLAB the function regstats were used 
in step two above. 

4.4.2 All-possible subset regression 

Based on the results from the sequential variable selection algorithm described above, 
a selected set of candidate regressors was subjected to the regsubsets function in 
the R-Package Leaps. regsubsets is an all-possible regression algorithm, fitting 
models to all possible combinations of regressors given as input. The output from the 
algorithm is a set of models including an intercept and p regressors, along with 
diagnostic statistics. 

4.4.3 Evaluation of models 

Four models were selected based on the results from the all-possible subset regression 
models. Predicted wind speed, or amplification factor, was computed for all city 
models. RMSE was calculated for the predictions within the sampling areas. For 
visual interpretation and evaluation of the model performances, predicted values and 
residuals were mapped. 

  



 25

5 Results 

In this chapter the most important results are presented and illustrated by maps and 
diagrams, and summarized by tables. Because of the many city models, wind 
directions and derivatives, the possible number of maps and diagrams are very large. 
Here only some of them are presented as examples. 

The chapter starts with a brief look at the simulated wind speed patterns and their 
relationships to the derivatives, section 5.1. After the specification and fitting of the 
full model, the influence of search angle and search distance are examined in section 
5.2. The results of the variable and model selection are presented in Section 5.3. Finally, 
in section 5.4, the results from predicting wind speed using the selected models are 
presented. 

5.1 Wind speed and derivatives 

5.1.1 Wind speed simulation 

The results of the wind speed simulation by ENVI-met are shown in Figure 9. To the 
left, wind is from the south (S) in the middle from southwest (SW) and to the right 
from the west (W). Wind speed is expressed as amplification factor ( ), i.e. the ratio 

between observed and external undisturbed wind speed. The red rectangles are the 
areas where samples were taken.  

Looking at the top row (CM1) in Figure 9, the highest wind speeds (γ > 0.6) are found 
in the centre of the wide street (1) running almost parallel to the external wind direction 
in CM1S and in corner streams (2). Moderately high wind speeds (0.4 < γ < 0.6) are 
found in the open square (3). Here, a distinct difference in CM1S is apparent: the two 
corner streams (2) means that there are lower wind speeds in the middle of the square 
than at the flanks. Generally the opposite pattern is found in open areas. Also, in 
CM1SW, wind speeds are higher in the down wind end of the square (4) leading into 
the wide street canyon.  

Low wind speeds are found in sheltered areas (5), at the windward side of buildings 
(6), and in the narrow street canyons. There is no sign of the vortex at the windward 
side of buildings produced by the air deflected down along the windward wall. 

The effect of angle-of-attack is visible in the wide street (1) where wind speed 
decrease as the wind shifts toward west and becomes more oblique to the street 
direction. In the open area, the wind pattern, i.e. the distribution of low wind speed 
close to the buildings, changes accordingly. This effect is not apparent in the narrow 

γ
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canyons. Also the effect of surface drag by the canyon wall is visible, particularly in 
the wide street in the S and SW. 

 

 
Figure 9 Simulated wind speed for all city models and all wind directions expressed as amplification 
factor, (γ). 
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5.1.2 DSM-derivatives 

Figure 10 shows examples of derivatives for CM1SW. Both SVF and Fetch show low 
values close to buildings and high values in open areas. As expected, the opposite is 
true for FAI and αFAI. The effects of search distance and search angle on the spatial 
patterns are clearly visible for Fetch, FAI and αFAI, which suggest that these settings 
are important. The main qualitative difference between all derivatives and wind speed 
is the lack of recognition of contextual wind pattern such as corner streams and 
channelling effects. 

Sky View Factor 
The upper row in Figure 11 shows scatter diagrams of wind speed against the three of 
the SVF regressors, not accounting for the effects of any other regressors. The 
diagrams show positive non-linear relationships between these variables. By 
transforming both wind speed and each of the SVFs by the natural log, i.e.

, gives the scatter diagrams in the bottom row in Figure 11. These 

diagrams show approximately linear relationships, but with large spread of 
observations at low values of amplification factor. 

Fetch 
The scatter diagrams in Figure 12 show very complex relationships between Fetch 
and wind speed. However, the same transformation (natural log) was found to be the 
best linear fit given this data set (bottom row in the figure). The spread of 
observations are highest at low values of both wind speed and Fetch. Also, at shorter 
search angles (exemplified with Fetch22 in the figure), the correlation seems to be 
weaker. 

Frontal area index 
The scatterplots for FAI in Figure 13 indicate weak negative relationships with wind 
speed. In general lower wind speeds are found at higher FAI-values, that is, in more 
dense geometry, which is to be expected. As in the case of SVF and Fetch, the 
variance of the predictor is high at low wind speeds. There is no clear indication of 
the effect of search distance and search angle. Transformation of FAI, given that 
amplification factor was transformed by the natural log, did not increase the linearity. 

Angular frontal area index 
As illustrated in  

Figure 14 αFAI shows an exceptionally negative exponential-like relationship to wind 
speed, which becomes approximately linear after the transformation of wind speed. At 
low wind speeds, the variability in αFAI is very high, and the opposite is true for low 
values of αFAI. Low values of αFAI are expected in open areas, not close to upwind 

ln(y)∝ ln(x)
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buildings and this may explain the variability in wind speed at low αFAI-values; both 
pixels in the open as well as close to the windward wall (down wind side of the open 
area) are included. 

 

 
Figure 10 Examples of maps showing the four measures of urban geometry, CM1SW. 
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Figure 11 Scatterplots showing the relationship between amplification factor and three different  
SVF-derivatives (top row). Transformation of both amplification factor and SVF increases the linearity 
of the relationships (bottom row). 

 
Figure 12 Scatterplots showing the relationship between amplification factor and three different  
Fetch-derivatives (top row) and the transformed variables (bottom row). 
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Figure 13 Scatterplots of amplification factor (γ) and FAI show a negative correlation (top row), which 
approximates a linear behaviour when γ is transformed (bottom row). 

 

Figure 14 Scatterplots of amplification factor (γ) and αFAI show a negative exponential like correlation 
(top row), which approximates a linear behaviour when γ is transformed (bottom row). At low 
amplification factor values, the point cloud is very dispersed. 

5.1.3 Fitting the full model 
As a first investigation, scatterplots of wind speed against the regressors revealed 
possible nonlinear relationships. This was confirmed by fitting the full model. Figure 
15 shows the residual diagnostics from the full model fit. The residuals are 
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approximately normal distributed (Figure 15a) but they indicate both non-linearity 
and non-constant variance (Figure 15b–c).  

 
Figure 15 Regression diagnostics for fitting the full 53-regressor model: a) histogram of standardised 
residuals, b) standardised residuals against observed response and c) standardised predicted values 
against observed response. 

Based on these findings, the response, the SVF and Fetch regressors were transformed 
by natural log, and the full model was fitted again with the transformed variables 
replacing the original. The results are shown in Figure 16. 

The residuals are still reasonably normally distributed (Figure 16a) but the residual 
plots (Figure 16b–c) have improved considerably. The curved shape of the point 
clouds has almost disappeared indicating that the model specification is roughly 
correct with respect to the linearity assumption. Still, there is evidence of non-
constant variance, mainly at low wind speed values, approximately at ln γ < –4, where 
the spread of data points increase with a trend towards negative residuals (Figure 16c). 
Examination of multicollinearity showed extremely high VIF-values for the 
transformed set of regressors, with a mean of 10,971, reaching maximum at 223,169 
for αFAI43. SVFdw have the lowest VIF-value, 24.2. In general, Fetch and αFAI were 
the most inter-correlated derivatives. 

 
Figure 16 Regression diagnostics for fitting the full transformed 53-regressor model: a) Histogram of 
standardised residuals, b) standardised residuals against observed response and c) standardised 
predicted values against observed response. 
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5.2 Influence of search angle and search distance 
One of the objectives of the present study is to investigate the influence of search 
angle and search distance on the correlation between wind speed and Fetch, FAI, and 
αFAI. As described in 4.3.2, four different search angles (αs) and four different search 
distances (ds) were used to calculate 16 different derivatives of Fetch, FAI and αFAI 
respectively. Figure 17 plots Pearson’s correlation coefficient r for the linear 
correlation between wind speed and all derivatives of Fetch, FAI and αFAI as a 
function of αs and ds . Because linearity is assumed, the transformed values of wind 
speed and Fetch were used in the calculations. Pearson’s coefficient is a bivariate 
measure of correlation assuming that the correlation is affected by no other variable 
than the dependent and one independent variable. Hence, it may not be appropriate to 
draw any conclusions on the importance of individual variables as part of a more 
complex model from these data. However, the correlation coefficient should provide a 
useful comparison between variables. 

 
Figure 17 Pearson’s correlation coefficients for wind speed (u) and Fetch (to the left), FAI (in the 
middle) and αFAI (to the right) against search distance (top row) and search angle (bottom row). 

Generally, the plots in Figure 17 indicate high correlations and most values of r are 
above 0.6, peaking at ≈ 0.85. The effect of search angle is consistent over all 
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derivatives; increasing αs has positive effect on r, which is most apparent in the case 
of FAI. The situation is somewhat more complex when it comes to search distance. 
For both Fetch and αFAI increasing search distance has a clear positive influence on 
the correlation coefficient and towards the maximum search distance, the curve 
flattens out. This is not the case for FAI. Here, a maximum correlation is obtained for 
all search angles at a search distance of 50 meters. 

5.3 Model building 

5.3.1 Variable selection 

As a first screening, the set of transformed regressors was submitted to a variable 
selection algorithm utilising MLR in a sequential added variable approach under BIC, 
as previously described in section 4.4.1. In Figure 18 the regressors are ranked (from 
left to right) based on the frequency of appearance, Fi (bars) of all selected regressors 
(Fi ≤ 1), leaving out those never selected in any model (Fi = 0).  

 
Figure 18 Frequency of appearance in 100 cross-validation subsets (bars) and average score (black 
dots). All regressors with Fi≥ 1 are included in the diagram. The order of selection is from left to right.  

Thirteen regressors stand out having Fi > 90, of which nine appears in all models  
(Fi = 100). Among these top ranked regressors, Fetch and SVF derivatives dominate, 
but three FAI-derivatives are also included. αFAI is not favoured by the selection 
algorithm and is present in only a few models and having high average scores. The 
diagram also shows the average score (dots). The first regressor to be selected by the 
algorithm receives the score one, the second two, and so forth. The three best-ranked 
regressors have average scores of 1.00, 2.00, 3.00, respectively, indicating that they 
are selected in this order in all 100 models. Looking at the following regressors, the 
average score starts to fluctuate, meaning that the order of selection for these is not 
constant over all subsets. The general trend is that a low average score is associated 
with a high frequency and thus a high rank, but this trend flattens out at lower 
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frequencies (around rank 14) and there are large deviations. For example, consider 
Fetch11, which has a very low average score (4.00), but a frequency of only six and is 
therefore ranked in place 20.  

Adding more regressors to a model results in a decrease in RSS and an increase in R2, 
which means that the more regressors the better fit. But with respect to parsimony, 
such criteria are not very useful and may result in overfitted models and unstable 
parameter estimations. Since the algorithm was run under BIC, a restriction was set on 
the number of regressors included in the models, this number ranging from 6 to 24. 
As seen in Figure 19, the decrease in RSS flattens out at around p = 4 and the same 
holds for the increase in R2, why the BIC criterion seems to be too relaxed and allows 
too many regressors to enter the model. 

 
Figure 19 Average RSS and R2 over all cross-validation subsets for each step (p) in the variable 
selection procedure. 

Considering the diagram in Figure 19, it may be suggested that selecting more than 
the four best-ranked regressors may result in an overfitted model. However, the 
algorithm selects the ith regressor given that there already are regressors in the model. 
This means that should the order be different, for example by forcing some regressor 
into the first slot or by running an all-possible subset regression, the order of 
selection, and hence the ranking might be different.  

Based on the results, the thirteen best-ranked regressors with respect to frequency of 
appearance (Fi > 90) were selected for further analysis in an all-possible subsets 
algorithm. This excludes all αFAI-derivatives from further analysis. 

5.3.2 Model selection 

The results of the all-possible subset regression on the selected regressors are 
presented in Table 3. For each number of regressors, p, the two best of all possible 
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models is shown. Not surprisingly, the best one-regressor model include SVFg, and 
the second best include Fetch44, which also were the two first selected regressors in all 
cross-validation subsets in the variable selection procedure previously described. 
With p = 2, however, SVFg is left out and the combination of Fetch44 and SVFdw is 
proposed as the best model. Here Fetch43 replaces Fetch44 in the second best model.  

Table 3 Summary statistics for all possible subsets regression. 
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R2 AdjR2 RSS MSres* Cp Cp** BIC Mean VIF 
1 1 *             0,802 0,802 1174 0,418 3108,7 2800,0 –4528  
2 1  *            0,748 0,748 1491 0,531 4704,6 4312,5 –3857  
3 2  * *           0,895 0,895 623 0,222 338,0 174,1 –6297 1,42 
4 2   *    *       0,893 0,892 637 0,227 408,2 240,7 –6235 1,40 
5 3 * * *           0,897 0,897 608 0,217 261,7 101,9 –6360 6,43 
6 3  * * *          0,897 0,897 608 0,217 266,0 106,0 –6356 3,07 
7 4  * * *         * 0,901 0,900 589 0,210 171,3 16,3 –6438 3,59 
8 4 * * *          * 0,900 0,899 595 0,212 200,4 43,9 –6410 6,27 
9 5  * * * *        * 0,901 0,901 586 0,209 158,9 4,6 –6444 7,09 
10 5  * * *      *   * 0,901 0,901 588 0,210 168,8  –6434 18,57 
11 6  * * * * *       * 0,903 0,902 578 0,206 118,0  –6477 14,73 
12 6  * * * *   *     * 0,902 0,902 579 0,207 122,7  –6472 55,00 
13 7  * * * *  * *     * 0,905 0,904 566 0,202 58,4  –6529 251,24 
14 7  * * * * * *      * 0,904 0,903 572 0,204 89,7  –6498 116,34 
15 8  * * * *  * *  *   * 0,905 0,905 563 0,201 48,1  –6533 284,76 
16 8  * * * *  * *   *  * 0,905 0,905 564 0,201 49,8  –6531 226,79 
17 9  * * * *  * *  * *  * 0,905 0,905 560 0,200 34,9  –6540 256,18 
18 9  * * * *  * *   * * * 0,905 0,905 561 0,201 39,3  –6536 236,22 
19 10  * * * *  * *  * * * * 0,906 0,906 557 0,199 22,3  –6547  
20 10  * * * *  * * * * *  * 0,906 0,906 558 0,199 24,1  –6545  
21 11  * * * *  * * * * * * * 0,906 0,906 554 0,198 10,3  –6553  
22 11  * * * * * * * *  * * * 0,906 0,906 557 0,199 22,4  –6541  
23 12 * * * * *  * * * * * * * 0,906 0,906 554 0,198 12,1  –6545  
24 12  * * * * * * * * * * * * 0,906 0,906 554 0,198 12,2  –6545  
25 13 * * * * * * * * * * * * * 0,906 0,906 554 0,199 14,0  –6537  

* n=2805  ** Cp best subset regression on the regressors included in the top nine models only. 

 

The first appearance of FAI in any model is in model 16 (FAI23). This is an indication 
of the importance of selection order, since this is not the FAI-derivative with the 
highest rank in the variable selection procedure.  

Looking at the statistics for each model in Table 3 as illustrated in Figure 20, RSS and 
R2 indicate a rapid increase in model performance as p increases. For p = 1, there is a 
relatively big difference between both models, but this difference becomes small at 
higher values of p. Above p = 3 there is very little difference. 

Figure 20 R2, RSS and BIC as functions of the number of regressors in the model (based on Table 3). 
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Given the evidence in the diagrams, it seems appropriate to select a model with three 
or four regressors since adding more regressors do not improve RSS or R2 very much. 
However, RSS and R2 are not necessarily good criteria for model selection. Instead the 
algorithm uses Mallow’s Cp to rank models. The diagrams in Figure 20 indicate that 
there are redundant regressors present in the dataset. Thus, a second set of Mallow’s 
Cp was calculated using only the regressors included in models with a mean VIF-value 
less than ten as the full model.  

A plot of Cp for all proposed models having Cp < 100 (Table 3) is shown in Figure 21. 
Filled dots are Cp-values when all thirteen regressors are in the full model and circles 
represent the situation with a subset of regressors in the full model. In the first case 
four models, number 21, 23, 24, and 25 are close to the line Cp = p and should 
therefore be considered as candidate models. In the second case, model nine is a first 
choice having a Cp value less than p and only five regressors. 

 

 
Figure 21 Mallow’s Cp for models having Cp < 100 as a function of the number of regressors in the 
model. Filled dots represent the situation where all selected regressors are included in the full model 
and circles when only the highest ranked regressors are in the full model. 

The presence of redundant regressors may be detected by looking for multicollinearity 
in the data. In Table 3 the mean VIF values for some models are listed and in Table 4 
the details behind those figures i.e. the contribution by each regressor, are revealed. 
Models with p = 1 are not included because VIF is not applicable on one-regressor 
models. It is clear from this table that SVFg is a major contributor to the total VIF in 
models having few regressors due to correlation to both the other SVF-regressors but 
also the Fetch-regressors. By examining the table it becomes evident that in general, 
adding two regressors of the same type e.g. two Fetches, increases the VIF values. For 
example, consider model 10 where both Fetch44 and Fetch42 are included and have 
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very high VIFs. However, VIF for Fetch31 are still reasonably low as are the  
SVF-regressors in the model. Being the only derivative that accounts for the geometry 
in the downwind direction, SVFdw adds less redundant information and has low VIF 
values through all models, except when SVFg is also in the model. 

Because of inter-correlation between regressors, the more regressors that are in a 
model, the higher the mean VIF, especially in this study where many regressors are 
very alike, e.g. different Fetches. The effect on FAI appears to be small and SVFdw is 
less correlated to other regressors than SVFuw. 

Table 4 VIF-values for each regressor included in some the models suggested by the all-possible subset 
regression. 

Model SVFg Fetch44 SVFdw SVFuw Fetch14 Fetch12 Fetch43 Fetch13 FAI13 Fetch42 FAI23 FAI44 Fetch31 Mean VIF 

3  1,42 1,42           1,42 
4   1,40    1,40       1,40 

5 10,25 3,18 5,87           6,43 
6  3,52 1,63 4,05          3,07 
7  4,12 1,89 5,13         3,22 3,59 

8 11,35 4,16 6,75          2,82 6,27 
9  13,25 1,89 5,29 11,80        3,23 7,09 

10  30,96 1,93 5,62      48,85   5,47 18,57 
11  13,27 1,89 5,43 30,72 31,98       5,06 14,73 

12  13,26 1,89 5,45 147,73   158,06     3,62 55,00 
13  498,52 1,92 5,64 307,32  582,56 358,99     3,75 251,24 
14  336,41 1,91 5,64 37,54 47,42 380,42      5,07 116,34 

15  566,18 1,94 5,76 312,26  895,10 364,66  126,13   6,06 284,76 
16  524,93 1,92 5,67 310,78  603,66 359,03   4,07  4,25 226,79 
17  580,67 1,94 5,82 314,53  897,77 364,66  129,82 4,19  6,26 256,18 
18  661,78 2,00 5,76 328,62  732,92 372,55   9,42 8,62 4,27 236,22 

 

Based on the results from the all-possible subset regression, four models were chosen 
for further analysis: model 3, model 6, model 7, and model 9. Hereafter they are 
denoted model A, B, C and D respectively. 

Model A (Fetch44 and SVFdw) has only two regressors and is therefore the best 
candidate from a parsimony point of view. It is also the model of the four selected 
with the lowest degree of multicollinearity, indicated by the VIFs. Further, the MSRes 
is almost as low as for competitors having more regressors but the Cp value is high, 
suggesting substantial bias in the predicted values. Model B is the second “best” 
model having three regressors, but the lower VIF-value than model 5 makes it a 
preferred candidate. Model C and model D adds more Fetch-derivatives to the model 
but still have reasonable low VIFs. Model D also has the most favourable Cp-value. 
At higher numbers of p, the slight increase in R2 and decrease in RSS may not be 
sufficient considering the very high VIFs. 

The coefficient statistics for models A–D obtained from the Linear Regression 
module in SPSS 19 are shown in Table 5. The figures emphasise previous findings: 
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Fetch44 and SVFdw contribute most to the explanation of wind speed variability, and 
between the two, Fetch44 is superior. Standardised coefficients1 (Beta in Table 5) give 
insight into the relative importance of each predictor in the model (Field 2005).  

Table 5. Regression coefficients and statistics for the four selected candidate models, Model A–D. 

MODEL A Unstandardized 
Coefficients 

Standardized 
Coefficients 

  95.0% Confidence 
Interval for B 

Correlations Collinearity 
Statistics 

 B Std. Beta t Sig. Lower Upper Zero-order Partial Part VIF 
Constant –.216 .013  –16.945 .000 –.241 –.191     
Fetch44 .792 .009 .619 84.915 .000 .774 .810 .865 .849 .520 1.415 

SVFdw 1.416 .023 .455 62.468 .000 1.372 1.461 .790 .763 .383 1.415 
            

MODEL B Unstandardized 
Coefficients 

Standardized 
Coefficients 

  95.0% Confidence 
Interval for B 

Correlations Collinearity 
Statistics 

 B Std. Beta t Sig. Lower Upper Zero-order Partial Part VIF 
Constant –.231 .013  –18.169 .000 –.256 –.206     
Fetch44 .699 .015 .546 48.141 .000 .671 .728 .865 .673 .291 3.517 
SVFdw 1.344 .024 .432 55.830 .000 1.297 1.391 .790 .726 .338 1.633 
SVFuw .313 .038 .100 8.224 .000 .238 .388 .831 .154 .050 4.054 

            

MODEL C Unstandardized 
Coefficients 

Standardized 
Coefficients 

  95.0% Confidence 
Interval for B 

Correlations Collinearity 
Statistics 

 B Std. Beta t Sig. Lower Upper Zero-order Partial Part VIF 
Constant –.194 .013  –14.830 .000 –.220 –.169     
Fetch44 .756 .015 .591 48.837 .000 .726 .787 .865 .678 .291 4.124 
SVFdw 1.255 .025 .403 49.267 .000 1.205 1.305 .790 .681 .294 1.887 

SVFuw .497 .042 .159 11.802 .000 .415 .580 .831 .218 .070 5.127 
Fetch31 –.415 .043 –.102 –9.557 .000 –.500 –.330 .601 –.178 –.057 3.224 

            

MODEL D Unstandardized 
Coefficients 

Standardized 
Coefficients 

  95.0% Confidence 
Interval for B 

Correlations Collinearity 
Statistics 

 B Std. Beta t Sig. Lower Upper Zero-order Partial Part VIF 

Constant –.197 .013  –15.031 .000 –.223 –.171     
Fetch44 .841 .028 .657 30.374 .000 .787 .896 .865 .498 .181 13.252 
SVFdw 1.252 .025 .402 49.270 .000 1.202 1.302 .790 .681 .293 1.888 
SVFuw .525 .043 .168 12.293 .000 .441 .608 .831 .226 .073 5.288 

Fetch14 –.085 .023 –.076 –3.700 .000 –.130 –.040 .830 –.070 –.022 11.797 
Fetch31 –.422 .043 –.104 –9.734 .000 –.507 –.337 .601 –.181 –.058 3.231 

 

Fetch44 and SVFdw have values > 0.40 in all models, 0.402 being the lowest value for 
SVFdw in model D. Measured this way, the other regressors may be regarded as less 
influential. The effect of adding regressors to a model can also be assessed by the 
correlation statistics2. For example, the zero-order correlation for SVFuw in model B is 
–0.831 indicating a strong positive relationship to γ in the same magnitude as Fetch44 
and SVFdw. However, accounting for the effects of Fetch44 and SVFdw, the partial and 
part correlation for SVFuw drops to 0.15 and the part correlation to 0.05 respectively, 
                                                
1 Standardised coefficients are regression coefficients measured in standard deviation units and so are 
directly comparable (Field 2009). 

2 In Table 5 (SPSS output table), zero-order correlation is equal to Pearson’s correlation between the 
outcome and the regressor. Partial correlation is the correlation between the regressor and the outcome 
controlling for the effects of all other regressors. Part correlation is the unique correlation between the 
regressor and the part of outcome not explained by the other regressors in the model (Field 2009). 
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while Fetch44 and SVFdw remain at high numbers. In the correlation statistics, the 
phenomenon of changing signs of a correlation when adding more regressors to a 
model is also illustrated, for example in the case of Fetch31 in Model C. 

5.4 Model performance: predicting wind speed 
The four models A–D, where γ is the amplification factor 

 

were used to predict wind speed for the four city models 1–4 and all wind directions 
(S, SW and W). The resulting wind speed maps for CM1 are shown in Figure 22. 

 
Figure 22 Predicted amplification factor for CM1, Models A–D. Arrows indicate external wind 
direction: S (top), SW (middle), and W (bottom). 

lnγ A = −0.216 + 0.792× ln Fetch44 +1.416 × ln SVFdw

lnγB = −0.231+ 0.699× ln Fetch44 +1.344× ln SVFdw + 0.313× ln SVFuw

lnγC = −0.194+ 0.756× ln Fetch44 +1.255× ln SVFdw + 0.497× ln SVFuw −0.415× ln Fetch13

lnγD = −0.197+ 0.841× ln Fetch44 +1.252× ln SVFdw + 0.525× ln SVFuw −0.085× ln Fetch14 −0.422× ln Fetch31
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The four models predict very similar wind speed pattern with almost no visible 
differences. In general the models predict the observed wind speed pattern fairly well 
if the spatial distribution of high and low winds are considered (compare to Figure 9) 
However, there are major deviations in the predicted values, which become apparent 
when mapping the residuals as in Figure 24. 

The prediction power of the four models (A–D) was assessed by computing RMSE 
for the prediction of wind speed within the sampling areas for all twelve City Models. 
This includes pixels that were not sampled and consequently not used in the model 
building process. The result is displayed graphically in Figure 23. Two things are 
evident: (1) there are large differences between City Models (or at least sampling 
areas) and (2) there is no obvious “best” model. 

 

 
Figure 23 RMSE for all city models, A–D for all wind directions. 

The mean of RMSE over all City Models for the four models are 0.084 (Model A), 
0.084 (Model B), 0.085 (Model C) and 0.085 (Model D) confirming the small 
differences. There is a weak indication that Model A performs better in both CM1S 
and CM3S which suggests that Model A predicts wind in the wide canyon parallel to 
external wind better than the other models. 

The spatial distribution of the prediction errors, the residuals, is shown in Figure 24. 
Negative residuals indicate under estimation and vice versa. It is evident that most 
contribution to the total error is due to underestimation at locations with high wind 
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speeds, such as corner streams. The effect of angle-of-attack is also clearly visible, 
comparing the three wind directions as the wind turns to west. Winds in the wide 
street canyon go from very high (S) to very low (W) and simultaneously the residuals 
go from high negative (under estimation) to slightly positive (over estimation). 

 

 
Figure 24 Maps showing the residuals of the predicted amplification factor for CM1. Arrows indicate 
external wind direction: S (top), SW (middle), and W (bottom).  
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6 Discussion 

Based on the recognition of the influence on the microclimate by the building 
geometry within the urban canopy, possible relationships between near ground wind 
speed and the geometry have been investigated. The methodological strategy was to 
use simulated wind speed as response variable and measures of the geometry as 
predictor variables in multiple linear regression in order to estimate equations 
(models) for the prediction of wind speed. The results presented above show that 
many of the derived measures of the geometry show high correlation with observed 
wind speed. Furthermore, the estimated models are able to predict general wind speed 
distribution patterns fairly well. However, the results also point to some limitations of 
the applied methods. Primarily, they are due to (1) the modelling domain of the 
ENVI-met model, and (2) the spatial characteristics of the investigated phenomena. In 
this chapter the results are discussed within this context. 

6.1 Spatial distribution of variables 

6.1.1 Observed wind speed 

The simulated wind speed patterns produced by ENVI-met has been examined by 
visual inspection of maps. In general, the maps shown in Figure 9 agree with the 
expected characteristics of wind flow distribution within the urban canopy for 
complex urban environments as described in Chapter 2. High wind speeds are found 
in corner streams and in the centre of wide canyons approximately parallel to the 
external wind direction. The highest wind speeds develop where these two co-occur 
(e.g. location (1), CM1S in Figure 9). Medium wind speeds are found in open areas 
while low wind speeds are located in close proximity to buildings; in narrow canyons, 
in the wake zones, and at the windward side of buildings facing open areas (e.g. 
location (6) in Figure 9). However, due to the windward vortex produced by the 
downward deflection of air down along windward walls, a zone with relatively high 
wind speeds is expected close to the wall and a stagnation zone is expected at some 
distance in the upwind direction. In the maps in Figure 9 there are no signs of the 
windward vortex. This suggests limitations of the capabilities of ENVI-met to 
simulate wind speed. Another possibility is that the conditions (geometry and 
configuration settings) are so that the vortex does not develop. The reason behind this 
is not investigated here, but if the simulated wind speed is erroneous, it has 
implications for the applicability for the use of any model estimated by this 
methodology in a real world scenario. 
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6.1.2 Measures of urban geometry 

Of the four measures of urban geometry (i.e. SVF, Fetch, FAI and αFAI), the results 
show that SVF and Fetch contributes most to the explanation of wind speed 
variability. As a single predictor SVFg comes out as ahead, followed by Fetch44. By 
mapping both amplification factor and DSM derivatives, the spatial distribution of the 
quantities may be examined and compared. The results showed that some of the 
expected features of the distribution of wind speed such as sheltering by buildings has 
its approximate counterparts in many of the derivatives, e.g. in SVFg, SVFuw and in 
the Fetches.  

Sky view factor 

The maps shown in the top row in Figure 10 shows the distribution of three of the 
SVF derivatives. As expected, low values are found close to buildings and high values 
in open areas, which in a very general way correspond to the observed wind speed 
pattern. This suggests that the proximity to buildings and building height are 
important components explaining the spatial distribution of wind speed. SVFuw and 
SVFdw emphasise different locations, the leeward and windward sides of buildings 
respectively. Of all derivatives, only SVF-derivatives correspond to the decrease in 
wind speed at the downwind side of open areas, i.e. location (6) in Figure 9 and of 
these SVFdw does “the best job”. The rate of change is high close to buildings which 
is why most areas have a SVF value higher than 0.7. This explains the appearance of 
the scatter diagrams in Figure 11 where there is high wind speed variability in this 
part of the diagrams. The SVF maps are also characterized by naturally looking 
smooth surfaces, similar to the wind speed maps in Figure 9. SVFrw and SVFlw do not 
seem to be of any importance given the used dataset.  

Fetch 

Fetch44 is the one of the Fetches computed by maximum search distance and 
maximum search angle. As the second “best” predictor, it shows similarities with 
wind speed distribution at the leeward side of open areas and in narrow street 
canyons. Fetch is a measure of the distance to the nearest obstacle in the upwind 
direction, adding a directional component to the notion made above on the importance 
of proximity to buildings. A comparison to the other examples of Fetches in Figure 10 
uncovers an important difference, resulting from the use of different search angle and 
search distance. Of these three maps, Fetch22 is the one with the shortest search 
distance and smallest search angle. As is clearly seen in this map (and in Figure 25),  
a very large area (many pixels) has a value of one. This “saturation effect” means that, 
in this area, there is no variability in the predictor variable that can explain the 
variability in wind speed. This is also evident in the scatter diagrams in Figure 12, 
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where there are a large number of observations at e.g. Fetch22 = 1. This effect 
decreases with increasing search angle and search distance, resulting in potential 
better predictors (e.g. Fetch44). In the sampled dataset, the number of observations 
where Fetch is equal to one is for Fetch11, Fetch14, and Fetch44 2,334, 460 and 1 
respectively (out of a total number of 2806). One conclusion of this is that the search 
distance should match the scale of open areas in the data. 

The distribution of wind speed and Fetch along a profile running over an open area or 
across a wide street in downwind direction shows a contradictory pattern. This 
situation is illustrated in Figure 25. At the upwind end of the profile (A), both wind 
speed and Fetch increase. At some distance downwind, the increase in wind speed 
flattens out having a maximum just over half way. Approaching the down wind end of 
the profile (B), wind speed decreases. Fetch, on the other hand, continues to increase 
along the whole profile meaning that there is a non-linear relationship between these 
two variables along the profile. Hence, the correlation between two variables varies in 
space. 

 
Figure 25 Variation of wind speed (red line) and four predictors along a profile running in 
approximately WSW direction across the open square in CM1. The variable profiles are for wind 
direction W. 

Of the predictors included in Figure 25 only SVFdw follows the decrease in wind 
speed approaching B. The combination of these two curves may serve as an 
illustration of the two variable model favoured by the best subset regression algorithm 
(Section 5.3.2)  
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Frontal Area Index and Angular Frontal Area Index 

Three FAI-derivatives survived the variable selection algorithm but none of these 
were favoured by the all-subset regression. No αFAI-derivatives were selected, 
having Fi values < 10. This indicates that the highly local spatial variations in wind 
speed at pedestrian height do not correspond to the variations in FAI and αFAI. One 
suggestion might be that wind speed and FAI and αFAI correlate on an aggregated 
scale.  

6.1.3 Transformed variables 

Examination of scatterplots (section 5.1) suggested non-linear relationships between 
wind speed and all of the predictors, but due to the complex spatial patterns discussed 
above, the scatter diagrams show very dispersed patterns and weak trends with 
embedded structures and “subtrends” within the point clouds. Thus, any applied 
transformation is not likely to improve on all observations. However, the natural log 
used here considerably improved the full model fit. Figure 26 shows the transformed 
variables along the same profile as in Figure 25. The same discussion as 
untransformed variables above is relevant also for this figure, but a comparison of the 
two strengthen the evidence for the applied transformations; the apparent shape of the 
predictor curves matches that of wind speed better. 

 
Figure 26 Variation of natural log-transformed wind speed (red line) and four predictors along a profile 
running in approximately WSW direction across the open square in CM1. The variable profiles are for 
wind direction W. 
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It is important not to draw hasty conclusions on this evidence alone; it is only one 
profile in one city model for one wind direction. However, it is an illustration of the 
effect of variable transformations in a spatial context, which is not possible to read 
from a scatter diagram. 

6.1.4 Predicted wind speed 

Looking at the results, there is no clear evidence in favour of any of the selected 
models A–D; no one consistently predicts wind speed much better over the twelve 
evaluation datasets than the others. There is also no evidence for the existence of any 
model not selected that should perform (much) better than any of the selected models, 
given the set of candidate regressors included in this study. 

The small differences between the models implied by Figure 22 and Figure 23 may be 
explained by the fact that they do include the same predictors, Fetch44 and SVFdw, 
which are the predictors selected as number two and three by the sequential selection 
algorithm. Since these two predictors explain most of the variability in observed wind 
speed, the other predictors SVFuw, Fetch41 and Fetch31 do not add information unique 
enough to make a great impact on the prediction. To illustrate this, the difference 
between model A and models B, C and D are mapped in Figure 27. 

 
Figure 27 Differences in predicted amplification factor between model A and models B, C and D, 
CM1SW. The colour scale is saturated at both ends to emphasise the spatial pattern in the differences. 

The main differences between predicted and observed wind speed, as well as between 
models, are in areas where wind speed is high due to channelling or deflection by 
buildings (corner streams). In such locations all models underestimate wind speed 
both in magnitude and in areal extension. Conversely, all models are in good 
agreement with the observed low wind speeds in narrow canyons and in canyons 
perpendicular to the wind direction. Here, the differences between models are also 
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almost zero, especially between model A and B. This is for example demonstrated by 
the low RMSE for CM2, CM3SW and CM3W where narrow canyons and thus low 
wind speeds dominate the sampling areas (Figure 9). This suggests that the models 
are biased towards low wind speeds.  

6.2 Comments on the methodology 

6.2.1 The data 

The small spatial domain of the CFD model limits the computation of DSM-
derivatives (i.e. possible search distances and search angles) and the effective area 
that can be used for sampling. This in turn makes the choice of study areas very 
important, if they are to provide a dataset representative of different urban 
environments. For example, the sampling areas in CM1S and CM1W covers corner 
streams and not much more. Given the results, such areas are likely to influence a 
model in a negative way, i.e. increase the prediction errors. The small spatial domain 
may also be one reason for the exclusion of FAI and αFAI as they work on a different 
scale than the more local measures Fetch and SVF. 

Even though the city models are constructed using real world urban geometry (DSM), 
they are simplifications due to the removal of topography. Also vegetation is not 
included in the models. This means that any model estimated with this method apply 
to idealized urban environments. Also the quality of the original GIS-data used to 
create the city models are of importance and may influence the results. 

6.2.2 Model building 

The scientific idea of parsimony is central to the concept of variable selection and 
model building. A model with a few predictors has both practical and statistical 
advantages; e.g. data acquisition is less costly, computations may be more effective, 
and the statistical properties of the estimated coefficients are more robust.  

To select variables, an appropriate selection criterion in combination with expert 
knowledge about the investigated phenomenon is very important. In this study, being 
an exploratory effort on the edge of a data mining adventure, several statistics that 
selection could be based on were computed. The set of candidate predictors were 
chosen based on the assumption that they are appropriate spatial measures of urban 
geometry, which in turn is the major influence on wind speed in the urban canopy 
layer. 

In order to identify those measures, or combinations of measures (models), of urban 
geometry that explain most of the wind speed variability, a sequential selection 
algorithm utilized RSS as selection criterion, was applied. The number of predictors 
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in the model was controlled by BIC; predictors were entered to the model as long as 
BIC decreased. Given the result of the final evaluation of model A–D, it can be 
concluded that this approach is too generous, adding too many regressors and 
overfitting the models. However, the computation of the frequency of appearance and 
average scores (Figure 18) serves well as tools to cut down the number of candidate 
predictors. The predictors with high F and low average scores are also the ones 
favoured by the all-possible subset regression. The use of such criteria is subjective 
and the threshold (e.g. Fi > 90) was set based on the results (Figure 18).  

Not unexpected, the full set of predictors showed very high collinearity; all predictors 
are measures of the same geometry and to some extent they all measures distances to 
buildings. SVFdw show consistently the lowest VIF-values. This is because it is a 
measure considering the geometry in the opposite direction (downwind) compared to 
all other predictors except SVFg, which also include this direction. The reason for 
including many predictors of the same type (e.g. Fetch) was to examine the effect of 
search angle and search distance. The results show that adding more than one Fetch 
predictor to the model, does not gain much in predictive power.  

High multicollinearity may alter the sign of the estimated coefficients so that they 
conflict with the assumed correlation to wind speed, i.e. positive or negative 
correlation. This happens in model C and D when additional Fetches enter the model. 
If only prediction is the purpose, this may be disregarded. However, it is an indication 
of an over estimated model including redundant data, which may be less predictive 
should it be applied on a new set of data. In this study, no thorough inspection of 
outliers and influence points were made. Such observations can have great impact on 
the results and should be evaluated and eventually removed from the dataset. 

The all-possible subset regression algorithm ranks models based on computed 
statistics and thus is an objective method. However, the final selection of models (A–D) 
was a subjective choice guided by those statistics. A possible alternative to this is to 
use several models by model weighting, which can be done by AIC. 
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7 Conclusions and further developments 

There is no thing as a true model; there is truth and there are models, and at most a 
model may be a useful approximation of that truth. In this thesis a first attempt to 
build a useful statistical model for the prediction of near ground wind speed from a set 
of measures of urban geometry has been described. Such model can be utilized in 
research and applications concerned with outdoor thermal comfort, urban climate 
modelling and climate planning. The specific objectives were to examine the 
relationship between the response and predictor variables and to identify those 
predictors that explain most of the wind speed spatial variability. From the set of 
selected candidate predictors, models were fitted and evaluated. 

In general, the relationships between wind speed and the predictors are very complex 
and there is evidence indicating that correlations vary in space. Multiple Fetch, FAI 
and αFAI derivatives were computed using different search angle and search distance, 
and it can be concluded that these settings are important. For Fetch and αFAI, the 
correlation to wind speed improved with both increasing search angle and search 
distance. FAI had best correlation at a search distance of 50 meters. None of the 
predictors showed clear linear relationships to wind speed, which is why 
transformations were applied. Transforming wind speed, SVF and Fetch by the 
natural logarithm, leaving FAI and αFAI untransformed improved the fit of the full 
model considerably.  

The variable selection and model building procedure favoured models including Fetch 
and SVF-predictors, of which Fetch44 and SVFdw explained most of the variability. 
The model with these two predictors explained 90% of the wind speed (R2 = 0.895). 
Adding more regressors did not improve predicted wind maps. Models having more 
predictors of the same type (e.g. multiple Fetches) suffered from severe 
multicollinearity problems.  

It can be concluded that, despite absence of a good over all fit, much of the variability 
in wind speed may be explained by SVF and Fetch. However, wind speed patters due 
to deflection of the airflow (e.g. corner streams) or channelling does not allow for 
prediction using this method. To improve prediction ability, future work should be 
directed towards measures depicting the spatial context of the geometry, e.g. 
alignment of street canyons and height and width ratios of urban spaces, and to 
develop algorithms for the computation of these as continuous raster data. Also, the 
measures used in this study may be elaborated and optimized to improved model 
performance. This should be possible to achieve within a raster based GIS utilizing 
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the shadow casting algorithm and digital surface data. Another focus would be to try 
different regression techniques and variable section methods to improve model 
specification and estimation of regression coefficients. 

Finally, the lack of the windward vortex in the simulated wind speed data does not 
agree with previous research on urban wind, and indicates possible shortcomings of 
the three-dimensional modelling procedure. Hence, the simulated wind speed 
obtained from ENVI-met should be thoroughly examined and validated in order to 
assess the applicability of the methods and any statistical model in estimating wind 
speed. 
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